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modelleme; rassal tamsayılı programlama; L-şekilli yöntem; dal-ve-kesi

Özet

Çalışmamız kapsamında, yardım malzemelerinin afet öncesinde depolandığı yerel
dağıtım merkezlerinin mevcut olduğu durumlar için afet sonrası müdahale ağı tasarımı
problemi üzerinde durulmaktadır. Afet öncesi mevcut ağ ile bütünleşik olarak, yerel
dağıtım merkezlerinin ve son dağıtım noktalarının yerleri ve kapasiteleri afet sonrası
duruma ilişkin belirsizlikler de göz önüne alınarak belirlenmektedir. Yeni erişilebilirlik
ölçütleri tanımlanmış ve de daha erişilebilir ve daha adil bir şekilde yardım malzemelerinin
dağıtılmasını sağlayacak iki alternatif iki aşamalı rassal programlama modelleri geliştirilmiştir.
Ortaya konulan eniyileme modellerinin çözülmesi bilgisayısal açıdan güç olduğundan
ayrışım yaklaşımna dayalı dal-ve-kesi algoritmaları geliştirilmiştir. Önerilen modellerle
ilgili çıkarımlar sağlamak adına 2011 tarihinde Van ilimizde gerçekleşmiş olan depreme
ilişkin verilere dayalı sayısal bir analiz yapılmıştır. Ayrıca, çözüm yöntemlerimizin etkinliğini
gösteren sayısal bir çalışma da ortaya konmuştur.
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Industrial Engineering, Master’s Thesis, 2014

Thesis Supervisor: Nilay Noyan Bülbül
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Abstract

We study a last mile distribution network design problem for situations where there ex-
ist local distribution centers (LDCs) with pre-positioned supplies. Given the information
on the existing pre-disaster relief network, the problem determines the locations and ca-
pacities of LDCs and points of distribution in the relief network, while capturing the
uncertain aspects of the post-disaster environment. We introduce new accessibility met-
rics, and develop two alternate two-stage stochastic optimization models that would allow
more accessible and equitable distribution of relief supplies. Since solving the proposed
optimization models is computationally challenging, we employ decomposition-based
branch-and-cut algorithms. We perform numerical analysis based on the real-world data
from the 2011 Van earthquake in Turkey to provide insights about the proposed models,
and also conduct a computational study that demonstrates the effectiveness of the solution
method.
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Chapter 1

Introduction

As observed during recent disasters (e.g., 2005 Pakistan earthquake, 2010 Haiti earth-
quake, 2011 Turkey earthquake), relief organizations may face serious logistical chal-
lenges in the final stage of relief operations, in which aid is delivered to the people in
affected areas. This final stage is known as the “last mile”, and it is indeed usually the
toughest stage of relief operations and can affect the overall effectiveness of response.
The main challenges involve a high level of uncertainty in demand and transportation
infrastructure, and high stakes associated with quick demand satisfaction (Kovacs and
Spens, 2007; Balcik et al., 2008). Considering these challenges and the need of allo-
cating scarce resources in an effective way, last mile logistics could greatly benefit from
operations research methods (Altay and Green, 2006; Van Wassenhove and Pedraza Mar-
tinez, 2012). Along these lines, our study focuses on developing optimization models for
the last mile network design problem, which incorporate the inherent uncertainty and the
critical concerns in providing effective response service.

In disaster-prone regions (e.g., Turkey), local relief organizations pre-position relief
supplies at several logistical facilities (local distribution centers) to decrease the response
times, and consequently, to alleviate the suffering of the people in need, in case of a dis-
aster. For instance, the Istanbul Metropolitan Municipality stores several types of relief
items (e.g., water, blankets, tents, portable kitchen) at the distribution center located in
Halkalı, which is constructed in 2006 with a total area of 38,000 square meters (Istanbul
Metropolitan Municipality, 2006). The importance of establishing such pre-disaster re-
lief networks has been emphasized in the recent literature (see e.g., Balcik et al., 2008;
Salmerón and Apte, 2010; Hong et al., 2014). When a disaster occurs, it is crucial es-
pecially for the local relief organizations to evaluate the existing distribution network,
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and effectively utilize it in a post-disaster setting. In particular, post-disaster network
conditions such as damaged transportation infrastructure can strongly affect access to the
pre-positioned relief supplies. In such situations, relief organizations can set up new dis-
tribution centers in order to quickly deliver the pre-stocked supplies -as well as the relief
supplies rushing into the country- to the affected areas. Thus, decisions on how to dis-
tribute the pre-stocked supplies include also decisions on whether or not to transfer them
to the newly established distribution centers. Therefore, it is essential to consider the
integrated structure of the overall network while making the last mile network design de-
cisions, when the post-disaster environment entails setting up new distribution centers in
addition to the existing ones.

The critical considerations in last mile relief network design include ensuring a high
level of access to the supplies and ensuring equitable services (Sphere Project, 2011;
Noyan et al., 2013). As emphasized in Noyan et al. (2013), post-disaster network condi-
tions (such as damaged roads, topographical barriers, etc.), and demographical (such as
gender and age) and socio-economical (such as vehicle ownership) characteristics of the
affected population groups can strongly affect people’s access to relief supplies. The def-
inition of equity highly depends on the context (Marsh and Schilling, 1994). As in Noyan
et al. (2013), we consider equity both in accessibility and supply allocation; equity in sup-
ply allocation is defined based on proportion of unsatisfied demand. In addition, it is also
important to consider the logistics costs due to the decisions on locating new LDCs and
distributing the relief supplies between the LDCs. In this spirit, we develop mathematical
programming models for last mile relief network design, given a pre-disaster network that
incorporates accessibility, equity and logistics costs.

In this research, we study the Stochastic Last Mile Relief Network Design Problem
with Resource Reallocation (SLMRNDR), which assumes that there already exist some
resources located before a disaster occurs, and integrates the decisions on the realloca-
tion of pre-stocked relief supplies. In particular, we mainly determine the locations and
capacities of LDCs and PODs, how to reallocate the pre-stocked relief supplies between
the LDCs, and how to allocate the total available supply among the PODs. SLMRNDR
incorporates the accessibility and equity concerns, and the uncertainty in post-disaster re-
lief demands and transportation network conditions. To the best of our knowledge, this is
a first in the humanitarian logistics literature. A closely related study Noyan et al. (2013)
consider a similar last mile network design problem; however, it does not integrate any
existing relief network into last mile network design, and assumes that there is a single
LDC, whose location is fixed and known. More specifically, we extend the study -on a
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two-echelon relief system- by Noyan et al. (2013) to a more elaborate integrated last mile
network design problem -for a three-echelon relief system.

Following the characterization of equity in supply allocation proposed by Noyan et al.
(2013), we consider two policies for allocating supplies equitably among the selected
PODs. The first supply allocation policy is proportional allocation (referred to as the PD
Policy); it allocates the available relief supplies among the PODs in proportion to the total
demand assigned to the PODs. The second policy (referred to as the TD Policy) allocates
supplies by limiting the shortage amount at each POD by a specific proportion of the cor-
responding total demand; setting the proportion parameters equal for all PODs ensures
equitable allocation. Noyan et al. (2013) show that enforcing the PD policy is better than
enforcing the TD policy in terms of the equity performance. However, they also show
that enforcing a strict proportional allocation can significantly compromise accessibility
compared to enforcing the TD policy; this tradeoff between equity and accessibility be-
comes even more evident when capacity restrictions of PODs are more severe. In order to
balance this tradeoff, as proposed by Noyan et al. (2013), we consider a hybrid allocation
policy that combines the two equitable supply allocation policies. Different from Noyan
et al. (2013), considering additional decisions regarding the multiple LDCs creates chal-
lenges in defining the accessibility metrics for the three-echelon relief network. Taking
this challenge into account, we propose two new approaches to incorporate accessibility
into optimization models. Consequently, we develop two alternative two-stage stochas-
tic programming models incorporating the hybrid allocation policy that can achieve high
levels of equity and accessibility simultaneously.

We characterize the inherent randomness by a finite set of scenarios, where a scenario
represents a joint realization of all random parameters. It is well known that stochastic
programming models are computationally challenging due to the potentially large num-
ber of scenario-dependent variables and constraints. Introducing integer variables into
stochastic programs, as in the proposed ones, further complicates solving these models.
To be able to solve large problem instances, we develop an effective branch-and-cut algo-
rithm based on Benders decomposition.

The rest of the study is organized as follows. In Chapter 2 we review the relevant
literature. In Chapter 3, we describe the problem SLMRNDR in detail and present the
corresponding mathematical programming formulations. Chapter 4 is dedicated to the
solution method and computational enhancements, while Chapter 5 presents a case study
and an extensive computational study. We conclude in Chapter 6 with further research
directions.
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Chapter 2

Literature

There is a growing Operations Research literature that addresses problems related to the
different phases of the disaster management cycle. The existing studies that focus on
facility location and network design problems in humanitarian relief mostly focus on the
disaster preparedness phase, and propose models for selecting locations to pre-position re-
lief supplies for responding to future disasters (e.g., Balcik and Beamon, 2008; Ukkusuri
and Yushimoto, 2008; Rawls and Turnquist, 2010a; Mete and Zabinsky, 2010; Döyen
et al., 2011; Duran et al., 2011; Gormez et al., 2011; Noyan, 2012). The majority of these
studies incorporate uncertainty related to the occurrence of disasters through scenarios,
and uses stochastic programming models where the objective is to minimize the expec-
tation of one or more of the following: logistics costs, traveling distances, and unmet
demand. Some of these studies use commercial software to solve the proposed models
(e.g., Balcik and Beamon, 2008; Duran et al., 2011), while others develop specialized
solution methods (e.g., Rawls and Turnquist, 2010a; Noyan, 2012). Moreover, some
studies also feature case studies and/or disaster scenarios based on real-world data (e.g.,
Rawls and Turnquist, 2010a; Duran et al., 2011). Despite the richness of the literature on
network design problems that address pre-disaster decisions, post-disaster network design
problems have not received much attention.

In the fairly developed post-disaster literature, the main focus is on vehicle routing and
network flow type models (e.g., Barbarosoglu and Arda, 2004; Tzeng et al., 2007; Bal-
cik et al., 2008; Huang et al., 2012). However, there are only a few studies that address
locating last mile facilities. Horner and Downs (2008) consider the problem of locating
distribution centers in a hurricane region for providing relief supplies after a disaster oc-
curs, while considering the socio-economic characteristics (e.g., household income levels)
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of the affected population. Horner and Downs (2010) extend this study by incorporating
the decisions on the flow of relief goods shipments between facilities, while Widener and
Horner (2011) extend it by considering the capacitated last mile facilities. There are also
some studies that address location and routing decisions simultaneously in a post-disaster
setting (e.g., Yi and Ozdamar, 2007; Rath and Gutjahr, 2011; Afshar and Haghani, 2012;
Lin et al., 2012; Tricoire et al., 2012). The majority of the studies in the post-disaster
literature either assume a deterministic setting; although in a practical setting, the exact
values of various factors are not known with certainty at the time of decision making,
and/or do not address the critical concerns in last mile relief network design, namely
accessibility and equity. To the best of our knowledge, Noyan et al. (2013) is the only
study, which considers accessibility and equity in last mile relief network design with a
stochastic setting.

Several factors that affect accessibility in a post-disaster setting have been discussed in
the literature (e.g., Morrow, 1999; Zakour and Harrell, 2004; Kovacs and Tatham, 2009)
and also in the real-life practice (e.g., IFRC (International Federation of Red Cross and
Red Crescent Societies), 2013; OCHA (Office for the Coordination of Humanitarian Af-
fairs), 2012). The mainstream approach is to define accessibility only based on the travel
times, yet various demographical/socio-economical factors (such as age, gender, being
in a female-headed household with young children) can also drastically affect access to
aid. Noyan et al. (2013) emphasize the importance of such factors and incorporate these
factors into the characterization of accessibility within the context of last mile distribution
network design. In particular, they develop accessibility metrics by focusing on two ech-
elons of the last mile relief network separately. They take into consideration the physical
factors (e.g., geographical, topographical, infrastructural) along the first echelon, whereas
they consider both physical and demographical/socio-economical factors (e.g., age, gen-
der, economical status) along the second echelon.

The concept of equity has been receiving increasing attention in the context of humani-
tarian logistics (e.g., Tzeng et al., 2007; Balcik et al., 2008; Campbell and Jones, 2011; Vi-
toriano et al., 2011; Huang et al., 2012). The equity concern in the last mile relief network
was initially motivated by studies which incorporate equity into facility location problems
in other settings (e.g., locating public facilities such as fire and ambulance stations; see
e.g., Mulligan (1991); Current and Ratick (1995); Felder and Brinkmann (2002); Noyan
(2010)). However, there is no consensus on how to characterize and measure equity; its
definition highly depends on the context as discussed in Marsh and Schilling (1994). We
can say that there are only a few studies incorporating equity into last mile relief network
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design. The most relevant one is by Noyan et al. (2013), which proposes methods to
model equity in supply allocation and equity in accessibility.

In this study, we consider a stochastic last mile relief network design problem, which
is an extension of the one introduced in Noyan et al. (2013). Our problem is a significant
and non-trivial extension, which considers a three-echelon-relief system with pre-stocked
relief supplies at the first-echelon. In practice, relief supplies are not merely reallocated
among existing distribution centers, relief organizations can also reallocate all/some of
the supplies available at existing distribution centers to new facilities that are like to be
more accessible. For instance, in the 2011 Van earthquake, the Van Airport was used
to store relief items, some of which were sent from existing distribution centers due to
its ease of access (Turkish Red Crescent Disaster Management, 2012). In this spirit, we
allow opening new LDCs at selected set of locations as well as closing the existing ones
or reallocating the existing resources within the network, if necessary. In contrast to
extensive literature on resource reallocation in inventory planning, a limited number of
studies consider the reallocation of relief goods in a post-disaster setting.

Rottkemper et al. (2011) address the importance of relocation of relief supplies for
post-disaster situations, where a sudden change in demand or supply occurs and triggers
the reallocation of a relief item during an ongoing humanitarian operation. Considering a
post-disaster setting where such overlapping disasters can occur, they introduce a distri-
bution network design problem, which minimizes the total cost (transportation, inventory
holding, and unsatisfied demand costs) for a particular relief item over a specified plan-
ning horizon. Their model is based on an existing distribution network which comprises
a global, a central and a number of regional depots. We note that global, central, and
regional depots correspond to central depot, LDC, and POD in our setting, and different
from their study, we do not assume that the locations of the central and regional depots
are given. They also assume that all parameters (e.g., distances between depots, aver-
age travel times, the demand during the ongoing humanitarian operation) excluding the
demand triggered by sudden changes are known. Although the authors assume that a
known and limited amount of a particular relief item is pre-positioned at the regional de-
pots as well as the central depot, the global depot is assumed to have unlimited inventory.
In case of an overlapping disaster, their model determines a reallocation plan of relief
items – determines the inventory levels and transhipment decisions– while considering
the possible future disruptions. In order to deal with the new information arising during
the ongoing relief operation, they use a rolling horizon solution approach. Rottkemper
et al. (2012) extend the study of Rottkemper et al. (2011) by incorporating a time span
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dimension; in particular, the longer the demand has remained unsatisfied, the higher are
the penalty costs. Focusing on unsatisfied demand and logistics costs, they introduce a
multi-objective problem based on a weighting method, and conduct a sensitivity analysis
on the choice of the weights to investigate the trade-off between the unsatisfied demand
and logistics costs. Although the main goal of humanitarian operations is to effectively
provide help to the affected people, in practice, the humanitarian organizations face lim-
ited financial resources (Tomasini and Wassenhove, 2009). Such financial concerns have
been addressed in the post-disaster literature (e.g., Li et al., 2011; Rottkemper et al., 2011,
2012). However, while incorporating cost into humanitarian operations, the key issue is
the relative importance of logistics (e.g., transportation, inventory) costs versus social (re-
lated to equity, accessibility, unsatisfied demand, etc.) costs (Holguı́n-Veras et al., 2012).
In last mile, the humanitarian relief organizations are primarily concerned with the well-
being of the people in the affected area, however, they shall take actions in accordance
with their scarce financial resources. Therefore, we give more importance to accessibility
and equity issues, while we still intend to keep the logistics costs associated with locating
additional LDCs and reallocation operations within a specified limited budget.

Our study contributes to the humanitarian logistics literature by introducing new ac-
cessibility metrics, and developing alternate optimization models that address accessibil-
ity, equity, and budget issues for the last mile relief network design problem with resource
reallocation in a stochastic setting. We assert that our accessibility metrics are suitable in
designing such integrated relief networks. To the best of our knowledge, our study is a
first in developing such stochastic optimization models that incorporate the decisions on
the reallocation of relief goods while allowing more accessible and equitable services to
the beneficiaries.
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Chapter 3

Stochastic Optimization Models

In this chapter, we first describe the main characteristics of the stochastic last mile relief
network design problem with resource reallocation – SLMRNDR –, and then develop the
corresponding stochastic optimization models.

3.1 Problem Setting

We assume that there already exist some recourses allocated – to serve the affected region
in case of a disaster– before the disaster occurs. More specifically, we are given a set of
existing LDCs and the amounts of relief supplies pre-positioned at those LDCs. We focus
on designing a relief distribution network which is integrated with the given pre-disaster
relief network. The last-mile network structure of interest is illustrated in Figure 3.1. As
shown in the figure, relief supplies arriving at a central depot are sent to LDCs, and pre-
stocked supplies can be reallocated. A candidate LDC can receive delivery from existing
LDCs and the central depot, while an existing LDC can receive delivery also from other
existing LDCs. Then, the relief supplies are distributed to PODs, where aid recipients are
delivered the supplies. Each demand location is assumed to be served by a single POD as
it makes it easier to track whether the aid reaches those intended effectively. We ignore
any potential behavioral elements that may cause some beneficiaries to travel to PODs
other than their assigned POD to receive aid.

Given a network that involves a set of demand locations, a set of existing LDCs, a set
of candidate additional LDCs, a set of candidate PODs, the SLMRNDR determines i) the
locations and capacities of the LDCs, i) the locations and capacities of the PODs, ii) the
amounts of supplies to be delivered from the central depot to LDCs, iii) the amounts of
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Figure 3.1: Example last mile relief network (Modified from Horner and Downs (2007); Noyan et al.
(2013))

supplies to be delivered between LDCs, iv) the amounts of supplies to be delivered from
LDCs to PODs, and vi) the assignments of the demand points to the PODs, while con-
sidering accessibility and equity issues, and incorporating the uncertainties in the demand
and transportation network conditions.

We follow the characterization of the accessibility and equity presented in Noyan et al.
(2013). Following their approach, we obtain accessibility scores from the weighted travel
times, where the weights are based on a mobility score and a risk score. The mobil-
ity score reflects the proportions of socially-disadvantaged populations (disabled people,
elderly, and women with children), whereas the risk score is related to topographical bar-
riers (e.g., flooding risks). Different from Noyan et al. (2013), in our setting the lower
the accessibility score the higher the accessibility (for a detailed discussion see Remark
2). Along these lines, we aim to minimize the specified aggregated accessibility metrics,
which are defined based on accessibility scores, in order to improve the performance of
the system in terms of accessibility. In terms of equity in supply distribution, we enforce
the hybrid allocation policy, and in terms of equity in accessibility, we define the coverage
sets for PODs and demand locations by enforcing an upper bound on each accessibility
score associated with candidate LDCs and PODs, respectively.

As mentioned in Chapter 1, we extend the study by Noyan et al. (2013) to a more
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elaborate integrated last mile network design problem. The main difference in our setting
compared to the one described in Noyan et al. (2013) is the additional echelon involving
multiple LDCs, and the way we define the aggregated accessibility metrics. A detailed
discussion on our aggregated accessibility metrics is provided in Section 3.3. In fact,
Noyan et al. (2013) introduce alternate supply allocation policies, while we introduce
alternate accessibility metrics. Considering all the critical issues, it can be quite costly
to establish a last mile relief distribution network, yet it should be done with a limited
budget. We admit that, in post-disaster stage, cost issues are secondary compared to
the accessibility and equity issues. However, in our setting, it would be reasonable to
consider at least the logistics costs associated with the first-echelon while determining the
decisions on locating new LDCs and distributing the relief supplies between the LDCs.
In particular, we consider two types of cost: fixed cost of opening a LDC or extending the
capacity of an existing LDC, and cost of delivering the relief supplies to open LDCs. We
still give more importance to access to relief supplies by incorporating the accessibility
metrics into the objective function, and controlling the logistics costs only via a budget
constraint.

3.2 Mathematical Models

We consider a network where each node represents a geographical area (a village or a
number of settlements, etc.) according to the size of the affected region. Considering the
three echelons of the last mile relief network, we introduce the following notation: the
sets of nodes representing the candidate facilities in the second and the third echelon are
denoted by J (1) and J (2), respectively. That is, J (1) denotes the set of candidate additional
LDCs, while J (2) denotes the set of candidate PODs. We denote the sets of demand nodes
by I , and assume that J (2) ⊆ I . In addition, the set of nodes in the network that represent
the existing LDCs are denoted by H , and the set of nodes representing all the LDCs is
denoted by J̄ (1), i.e., J̄ (1) = J (1) ∪ H . The LDCs can have different storage capacities;
the set of size categories of an LDC at node k is denoted by Lk, k ∈ J̄ (1). In order to
ensure equitable accessibility of PODs from the LDCs and demand locations, the coverage
sets are defined based on the accessibility scores. In particular, we enforce a maximum
threshold requirement on each weighted travel time (accessibility score), where τ (1) and
τ (2) denote the specified common threshold value for the second and the third echelons,
respectively.

We capture the inherent uncertainty through a finite set of scenarios denoted by S,
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where each scenario represents the joint realization of the demands at all nodes and the
accessibility scores associated with the links of the network. We follow the scenario
generation methods presented in Noyan et al. (2013) and Hong et al. (2014), which char-
acterize the dependency structure in relief networks by taking into account the geograph-
ical distribution of the affected locations. Since each accessibility score is defined as a
weighted travel time, we aim to minimize the accessibility metrics that are defined as
a linear combination of accessibility scores in order to improve the performance of the
system in terms of accessibility.

Decision-makers (such as relief organizations, governments) usually have to make the
last mile distribution network design decisions before the inherent uncertainties related
to the post-disaster conditions are resolved. Due to this special structure, we propose a
mathematical programming approach in the presence of uncertainty for the SLMRNDR.
In our two-stage framework, the decisions on the locations and capacities of the LDCs and
PODs are made at the first stage. Then, once the uncertainty in accessibility scores and
demand are resolved, given the predetermined first-stage decision variables the second-
second problem is solved to determine the decisions on the assignment of demand points
to PODs, the amount of supplies delivered to LDCs (from the central depot and the exist-
ing LDCs) and PODs (from the open LDCs).

We introduce the following notation for our models:

Scenario-dependent input parameters

ps: probability of scenario s ∈ S,

dsi : demand at node i under scenario s, i ∈ I, s ∈ S,

ν
(1)
kjs: score for accessibility to POD j from LDC k under scenario s, k ∈ J̄ (1), j ∈
J (2), s ∈ S,

ν
(2)
ijs : score for accessibility to POD j from demand node i under scenario s, i ∈
I, j ∈ J (2), s ∈ S,

N
(1)
js = {k ∈ J̄ (1) | ν(1)

kjs ≤ τ (1)}: coverage set of candidate LDCs that can serve
POD j under scenario s, j ∈ J (2), s ∈ S,

M
(1)
ks = {j ∈ J (2) | ν(1)

kjs ≤ τ (1)}: coverage set of candidate PODs that can be served
by the LDC k, k ∈ J̄ (1), s ∈ S,

N
(2)
is = {j ∈ J (2) | ν(2)

ijs ≤ τ (2)}: coverage set of candidate PODs that can serve
demand node i under scenario s, i ∈ I, s ∈ S,

11



M
(2)
js = {i ∈ I | ν(2)

ijs ≤ τ (2)}: coverage set of demand nodes that can be served by
the candidate POD j under scenario s, j ∈ J (2), s ∈ S.

Scenario-independent input parameters

I: set of nodes in the network,

J (1): set the candidate additional LDCs,

J (2): set of the candidate PODs,

H: set of the existing LDCs,

J̄ (1): set of all the LDCs,

Lk: set of size categories of an LDC at node k, k ∈ J̄ (1),

δkl: capacity of LDC k of size category l, k ∈ J̄ (1), l ∈ Lk,

θk: amount of pre-stocked supply at the existing LDC k, k ∈ H ,

θ̄: amount of additional available supplies,

Kj: upper bound on the capacity of POD j, j ∈ J (2),

κ(1): upper bound on the number of LDCs (including opened and existing ones),

κ(2): upper bound on the number of PODs to be opened,

B: available budget,

fkl: fixed cost of opening an LDC of size category l at node k, k ∈ J̄ (1), l ∈ Lk;
for an existing LDC it represents the cost of extending the capacity.

cshk: unit shipping cost to LDC k from LDC h under scenario s, h ∈ H, k ∈
J̄ (1), s ∈ S,

cs0k: unit shipping cost to LDC k from the central depot, k ∈ J̄ (1).

First-stage decision variables

zkl = 1 if an LDC of size category l ∈ Lk is located at node k, k ∈ J̄ (1), and
zkl = 0 otherwise. For an existing LDC k ∈ H , the value of 0 indicates that it is
closed/not used in the post-disaster stage.
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yj = 1 if a POD is located at node j ∈ J (2), and yj = 0 otherwise,

Rj: the capacity of POD j ∈ J (2).

Second-stage decision variables

xsij = 1 if demand node i ∈ I is served by POD j ∈ N (2)
is under scenario s ∈ S,

xsij = 0 otherwise.

rs0k: amount of supply delivered from the central depot to LDC k ∈ J̄ (1),

rshk: amount of supply delivered from the existing LDC h ∈ H to LDC k ∈ J̄ (1) \h,

ws
kj: amount of supply delivered to POD j ∈ J (2) from LDC k ∈ N

(1)
js under

scenario s ∈ S.

Auxiliary decision variables (introduced mostly for ease of exposition)

NSs
k: amount of total net supply at LDC k ∈ J̄ (1),

TDs
j: total demand assigned to the PODs; expressed in terms of the assignment

decisions as TDs
j =

∑
i∈M(2)

js

xsijd
s
i , j ∈ J (2), s ∈ S.

We next present the mathematical formulation of the first-stage problem

min E[Q(z,y,R, ξ)] (3.1)

subject to:
∑

k∈J̄(1)

∑
l∈Lk

zkl ≤ κ(1), (3.2)∑
j∈J(2)

yj ≤ κ(2), (3.3)

∑
l∈Lk

zkl ≤ 1, k ∈ J̄ (1), (3.4)

Rj ≤ Kjyj, j ∈ J (2), (3.5)

zkl ∈ {0, 1}, k ∈ J̄ (1), l ∈ Lk, (3.6)

yj ∈ {0, 1}, j ∈ J (2), (3.7)

Rj ≥ 0, j ∈ J (2). (3.8)

Here ξ denotes the random data and Q(z,y,R, ξ) is the objective function of the second-
stage problem for a given set of first-stage decisions. For ease of exposition, we use the
notation Q(η, ξ) with η = (z,y,R).
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It is well-known that expressing the exact expected value of Q(η, ξ) is in general
not possible, since it requires solving an optimization model in the second-stage. To
alleviate this issue, as in most of the applied stochastic programming models, a point
estimation of the expected second-stage objective function value is obtained via sample
averaging. More specifically, we consider |S| samples of the random data ξ, then obtain
corresponding values of Q(η, ξ) by solving the second-stage problem, and finally take
the average of these values across all |S| samples (scenarios). For ξs = (ds,ν

(1)
s ,ν

(2)
s )

denoting the realization of the random data under scenario s ∈ S, the general form of the
second-stage problem is given by

Q(η, ξs) = min f(xs,ws, rs) + ε
∑
j∈J

βs
j (3.9)

s. t. NSs
k ≤

∑
l∈Lk

zklδkl, k ∈ J̄ (1), (3.10)

NSs
k =


∑

h∈H\k
rshk + rs0k, k ∈ J (1),

θk +
∑

h∈H\k
rshk −

∑
h∈J̄(1)\k

rskh + rs0k, k ∈ H,

(3.11)∑
k∈J̄(1)

rs0k = θ̄, (3.12)∑
j∈J(2)

∑
k∈N(1)

js

ws
kj = min(

∑
k∈H

θk + θ̄,
∑
i∈I

dsi ), (3.13)

∑
j∈M(1)

ks

ws
kj ≤ NSs

k, k ∈ J̄ (1), (3.14)

∑
k∈N(1)

js

ws
kj ≤ Rj, j ∈ J (2), (3.15)

∑
j∈N(2)

is

xsij = 1, i ∈ I, (3.16)

xsij ≤ yj, i ∈ I, j ∈ N (2)
is , (3.17)

xsjj ≥ yj, j ∈ J (2), (3.18)∑
k∈N(1)

js

ws
kj ≤ PDs

j +βs
j ≤ TDs

j , j ∈ J (2), (3.19)

TDs
j −

∑
k∈N(1)

js

ws
kj ≤ ρTDs

j , j ∈ J (2), (3.20)
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∑
l∈Lk

∑
k∈J̄(1)

zklfkl +
∑
h∈H

∑
k∈J̄(1)\h

rshkc
s
hk +

∑
h∈J̄(1)

rs0hc
s
0h ≤ B,

(3.21)

ws
kj ≥ 0, j ∈ J (2), k ∈ N (1)

js , (3.22)

βs
j ≥ 0, j ∈ J (2), (3.23)

xsij ∈ {0, 1}, i ∈ I, j ∈ N (2)
is , (3.24)

rshk ≥ 0, h ∈ {H ∪ 0} , k ∈ J̄ (1) \ h, (3.25)

NSs
k ≥ 0, k ∈ J̄ (1). (3.26)

Here PDs
j denotes a specific proportion (based on the total assigned to POD j under

scenario s) of the total delivery amount Θs def
= min(

∑
k∈H θk + θ̄,

∑
i∈I d

s
i ); in particular,

PDs
j = Θs(TDs

j /
∑
i∈I

dsi ) j ∈ J, s ∈ S.

The objective function (3.1) minimizes the expected value of a specified aggregated
metric, which quantifies people’s access to relief supplies. Specifically, we propose two
types of f(·) function to express the aggregated accessibility metric, which will be ex-
plained in the next section. By constraints (3.2) and (3.3), the numbers of LDCs and
PODs do not exceed the specified limits, whereas (3.4) ensures that at most one and a
single type of LDC can be located at any node representing a candidate or existing LDC.
Constraints (3.5) impose a maximum capacity limit for PODs to prevent oversized facili-
ties.

In the second-stage problem, constraints (3.10) guarantee that relief supplies are stored
at open LDCs and the amount of supplies allocated at an LDC does not exceed its capac-
ity. The conservation of flow at each node associated with an LDC is represented by
constraints (3.11); they determine the net supply amount at each LDC and imply that∑
k∈J̄(1)

NSs
k =

∑
k∈H

θk + θ̄ for all s ∈ S. By constraint (3.12), all the additional available

supplies are delivered to LDCs, and then constraint (3.13) ensures that the total amount
of delivery to the PODs is equal to the total available supplies, unless the total demand
is less than this value. Additionally, by (3.14) and (3.15), the amount of total supply de-
livered from an LDC is limited by its total net supply, and the total amount of delivery
to any POD is limited by its capacity, respectively. Observe also that constraints (3.15)
together with constraints (3.5) ensure that there has to be a POD located at node j if there
is any delivery to that node (i.e., if

∑
k∈N(1)

js
ws

kj > 0 for at least one scenario). Constraints
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(3.16)-(3.18) guarantee the connectivity of the network in such a way that each demand
node is assigned to a single open POD, and a POD located at a demand node serves its
own location. In accordance with the latter assignment condition, which would be rea-
sonable in practical settings, we assume that the values of the capacity parameters Kj

are sufficiently large to allow an open POD to serve at least its own location under any
scenario; Kj ≥ maxs∈S d

s
j for j ∈ J (2). As in Noyan et al. (2013), constraints (3.19) and

(3.20) are enforced to ensure an equitable supply distribution -at the POD level- based
on the hybrid allocation policy. According to this policy, we aim to distribute supplies
as proportionally as possible without comprising accessibility; this is achieved by (3.19)
and minimizing the term involving the β variables and a very small penalty coefficient
ε. By changing the value of the parameter ε, the decision makers can control the balance
between accessibility and equity. In fact, for extremely large and small values of this pa-
rameter, the hybrid policy behaves like the PD policy and the TD policy, respectively. In
addition, we limit the demand shortages via constraint (3.20); the upper bound on short-
ages is specified as a common proportion of the total demand assigned to PODs. On the
other hand, constraint (3.21) will not allow the total logistics cost associated with the first
echelon – total cost of opening LDCs and extending the capacities of existing LDCs, and
delivering the relief supplies to open LDCs– to exceed the available budget. The rest of
the constraints are for non-negativity and binary restrictions.

According to this formulation, as desired, it is not possible to obtain a solution where
yj = 1 if there will be no delivery to POD j, i.e, if

∑
k∈N(1)

js
ws

kj = 0 for all s ∈ S.

Suppose that yj = 1 for an index j ∈ J (2). Then, by (3.18) and (3.20), we have xsjj > 0

(implying TDs
j > 0), and

∑
k∈N(1)

js

ws
kj > 0 for all s ∈ S, respectively. In another words, any

open POD should satisfy at least a certain amount of the total demand based on the value
of parameter ρ (ρ < 1) under each scenario. Therefore, we have ws

kj > 0 for at least one
index k ∈ N (1)

js for all s ∈ S, which contradicts with the assumption that
∑

k∈N(1)
js
ws

kj = 0

for all s ∈ S. However, at an optimal solution we can observe that
∑

l∈Lk
zkl = 1 even

if there is no need to keep/open LDC k, i.e., maxs∈S
∑

j∈M(1)
ks
ws

kj = 0 (since we do not
minimize the cost of opening facilities). We can deal with this issue by constructing an
alternative optimal solution: set zkl = 0 for all l ∈ Lk if maxs∈S

∑
j∈M(1)

ks
ws

kj = 0 at any
optimal solution. It is easy to see that this new solution is feasible with the same objective
function value.
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3.3 Alternative Accessibility Metrics

We aim to define an aggregated accessibility metric, which quantifies the total accessi-
bility of the supplies (at the open LDCs) all the way from the demand locations. An
alternative approach can be found in Noyan et al. (2013); in particular, they define an
accessibility metric as the summation of the total accessibility of the PODs from the LDC
and the total accessibility of the PODs from the demand locations. Different from their
approach, we opt for defining a metric that would consider the structure of a multi-echelon
network in a more integrated way. To be able to discuss the differences in these alterna-
tive approaches and provide motivation for our approach, we first present the objective
functions proposed in Noyan et al. (2013).

In the study of Noyan et al. (2013), it is assumed that there is a single fixed LDC,
and therefore, it is sufficient to consider a single type of facilities (i.e., consider J instead
of J (1) and J (2)). Denoting the expected accessibility to POD j from the single LDC by
ν̄0j =

∑
s∈S p

sνs0j, j ∈ J , their first-stage objective function is given by

f(y,R) =
∑
j∈J

ν̄0jyj + E[Q(y,R, ξ)], (3.27)

with
E[Q(y,R, ξ)] =

∑
s∈S

psQ(y,R, ξs) =
∑
s∈S

ps
∑
i∈I

∑
j∈Ns

i

νsijx
s
ij.

In general, the above expected total accessibility is an effective metric in establishing last
mile relief networks. However, there is a slight concern arising from completely sepa-
rating the quantification of the accessibility in two echelons (from LDCs to PODs and
from PODs to demand points). For now, consider the case where larger accessibility
score means higher accessibility, i.e., the objective is to maximize the function (3.27).
This approach can reward locating additional PODs in a way that results in higher total
accessibility but lower accessibility (considering the same demand locations) in both ech-
elons. We illustrate this claim by using the following small example in Figure 3.2, where
the scenario dependence is ignored, and only a very small portion of a network is con-
sidered. The objective function (3.27) is not consistent with the rational choice of setup
1 over setup 2. As a remedy, we can quantify the accessibility to the LDC all the way
from demand locations. More precisely, the corresponding first-stage objective function
becomes

f(y,R) = E[Q(y,R, ξ)], (3.28)
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POD

Setup 1: Total Accessibility=10

LDC

POD

Setup 2: Total Accessibility=12

LDC

POD

Score: 6

Score: 2 Score: 2

Score: 5

Score: 5

Score: 1

Score: 1

Figure 3.2: Illustrative example for the existing accessibility metric

with

E[Q(y,R, ξ)] =
∑
s∈S

psQ(y,R, ξs) =
∑
s∈S

ps
∑
i∈I

∑
j∈Ns

i

(νs0j + νsij)x
s
ij. (3.29)

This integrated version ensures accounting the accessibility to the LDC from the single
POD in setup 1 twice (since it serves two demand points, implying that both x assignment
decisions are 1), and the resulting total accessibility would be 16 instead of 10. Alterna-
tively, one can give more weight to the second term in (3.27) to avoid any potential issues
illustrated in the above example. We would like to note that the raised issue is not a prac-
tical concern in situations where there is a limited fixed number of PODs to be opened (as
in Noyan et al., 2013). As illustrated in Figure 3.2, the main problem arises from compar-
ing the options (setups) with different number of PODs. If we would compare the setups
with a fixed number of PODs (such as 1 or 2 in our small example), the objective func-
tion (3.27) would also favor the setup with higher accessibility in both echelons. Thus,
even if the way the aggregated accessibility metric is reasonable for certain settings, we
shall still develop a more elaborate version of it for more general settings. In fact, such
an elaborate metric is essential for our setup, which has a more complicated structure
due to the additional echelon involving multiple LDCs. In addition, we also consider a
demand-weighted version of (3.29), which is a very natural extension to assess the effec-
tiveness of the response in terms of equitable accessibility. We next formally define our
new aggregated accessibility metrics.

In line with the above discussions, according to our notation, an ideal demand-weighted
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objective function should have a representation of the form∑
i∈I

∑
j∈N(2)

is

(ν̂js + ν
(2)
ijs )xsijd

s
i , (3.30)

where ν̂js designates an estimated score for accessibility of POD j from the open LDCs.
It is important to observe that this parameter is trivially given by ν̂0j in (3.29), since there
is a single LDC in Noyan et al. (2013). The challenge in estimating the parameters ν̂js
stems form the fact that the open LDCs and the delivery amounts to PODs from the open
LDCs are not known a priori. An ideal way of estimating these scores is given by

ν̂js =

∑
k∈N(1)

js

ws
kjν

(1)
kjs∑

k∈N(1)
js

ws
kj

, j ∈ J (2). (3.31)

It is clear that a proper approach, which quantifies the access to the supplies, should give
more importance to the accessibility scores associated with the links between POD j and
the LDCs that deliver more supplies to that POD. In (3.31) we also need scaling to obtain
a single score which is appropriate in terms of unit dimension. Since ν̂js depends on the
w decisions on the delivery amounts, it is also a decision variable. Unfortunately, incor-
porating these decisions into (3.29) would lead to fractional and quadratic terms (ws

kjx
s
ij)

in the objective function, and consequently, we have to deal with non-convex global opti-
mization problems. It is evident that we need to develop computationally tractable ways
of estimating the parameters ν̂js. In this regard, taking into the delivery amounts into ac-
count, we propose two approaches to approximate the desired objective function (3.30).

• Alternative 1: Taking a closer look into (3.30) of the form∑
i∈I

∑
j∈N(2)

is

ν̂jsx
s
ijd

s
i +
∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsx

s
ijd

s
i , (3.32)

we can say that the coefficients of the accessibility scores in the first term is related
to the amount of the delivered supply, as the accessibility scores themselves. In
an intuitive way, considering the scalarization appearing in (3.31), we propose the
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following approximation:∑
k∈J̄(1)

∑
j∈M(1)

ks

ws
kjν

(1)
kjs +

∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsx

s
ijd

s
i . (3.33)

To provide additional insights, we note that
∑
i∈I

∑
j∈N(2)

is

xsijd
s
i =

∑
i∈I
dsi and the scalar-

ization factor
∑

k∈N(1)
js

ws
kj (appearing in (3.31)) is related to

∑
i∈I
dsi via the constraint

(3.13).

• Alternative 2: In this approach, we propose to consider a selected subset of LDCs
in (3.31), i.e., consider a subset of the coverage setN (1)

js , denoted by N̂ (1)
js . In consis-

tent with the significance of the delivery amounts, we particularly select the LDCs
that correspond to the αj largest of the delivery amounts ws

kj, k ∈ N
(1)
js , where αj

is a specified constant (1 ≤ αj ≤ mins∈S |N (1)
js |). Giving equal importance to those

selected LDCs, we calculate the associated average score for the accessibility of
POD j through the αj most influential LDCs as:∑

k∈N̂(1)
js

ν
(1)
kjs/αj. (3.34)

Thus, we propose to use (3.34) to approximate (3.31), which results in the following
approximation of the ideal objective function (3.30):

∑
i∈I

∑
j∈N(2)

is

∑
k∈N̂(1)

js

1

αj

ν
(1)
kjsx

s
ijd

s
i +
∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsx

s
ijd

s
i . (3.35)

The challenge in incorporating the above objective function into our optimization
model stems from the fact that the selection of the LDCs (the identification of the
subset N̂ (1)

js ) depends on the sorting of the ws
kj decisions, which cannot be known a

priori. To this end, we obtain the following analytical result.

Proposition 1 The function (3.35) can be equivalently expressed as

∑
i∈I

∑
j∈N(2)

is

∑
k∈N(1)

js

1

αj

ν
(1)
kjsq

s
kjid

s
i +
∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsx

s
ijd

s
i (3.36)
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if the non-negative variables qskji, i ∈ I, j ∈ N
(2)
js , k ∈ N

(1)
js , satisfy the following

constraints:

ϑs
j ≥ ws

kj − ζskjMs
jk, j ∈ J (2), k ∈ N (1)

js , (3.37)

ϑs
j ≤ ws

kj + (1− ζskj)Ms
jk, j ∈ J (2), k ∈ N (1)

js , (3.38)∑
k∈N(1)

js

ζskj = αj, j ∈ J (2), (3.39)

ζskj ∈ {0, 1}, j ∈ J (2), k ∈ N (1)
js , (3.40)

qskji ≤ ζskj, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js , (3.41)

qskji ≤ xsij, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js , (3.42)

qskji ≥ ζskj + xsij − 1, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js , (3.43)

whereMs
jk are sufficiently large constants to make the constraints (3.37) and (3.38) re-

dundant whenever ζskj = 1 and ζskj = 0, respectively.

Proof. Let Bs
j = {k ∈ N

(1)
js : ζskj = 1} and B̄s

j be its complement set for all
j ∈ J (2), s ∈ S. Then, constraints (3.37) and (3.38) ensure that ws

kj ≤ ϑs
j for all

k ∈ B̄s
j , and ϑs

j ≤ ws
kj for all k ∈ Bs

j . These orderings imply that ws
kj ≥ ws

k′j for any
pair of k ∈ Bs

j and k′ ∈ B̄s
j . In addition, by (3.39) and (3.40), we have |Bs

j | = αj .
Therefore, ζskj takes the value of 1 if ws

kj is among the αj largest values, and so the set Bs
j

corresponds to the αj largest of the delivery amounts ws
kj, k ∈ N

(1)
js , i.e., Bs

j = N̂
(1)
js for

all j ∈ J (2), s ∈ S. Consequently,
∑

k∈N(1)
js

ν
(1)
kjsζ

s
kj/αj is equivalent to (3.34), and (3.35)

can be rewritten as∑
i∈I

∑
j∈N(2)

is

∑
k∈N(1)

js

1

αj

ν
(1)
kjsζ

s
kjx

s
ijd

s
i +
∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsx

s
ijd

s
i .

We can linearize the quadratic terms ζskjx
s
ij by introducing the non-negative variables

qskji, i ∈ I, j ∈ N
(2)
is , k ∈ N

(1)
js , and the additional constraints (3.41)-(3.43). It is easy to

see that constraints (3.41)-(3.43) guarantee that qskji = ζskjx
s
ij for all i ∈ I, j ∈ N (2)

is , k ∈
N

(1)
js , which proves our claim.

It is well-known that the choice of the Big-M coefficients is crucial in obtaining
stronger formulations. In our implementations, observing that for any feasible solution
ws

kj ≤
∑

i∈M(2)
js
dsi (1 − ρ) and ws

kj ≤ Kj , we setMs
jk = Ms

j
def
= min {

∑
i∈M(2)

js
dsi (1 −
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ρ), Kj} for all j ∈ J (2), k ∈ N
(1)
js , s ∈ S. One can also consider the capacity of the

LDCs while setting these parameters:Ms
jk = min {

∑
i∈M(2)

js

dsi (1− ρ), Kj,
∑

l∈Lk
zklδkl}

(observe that for a given first-stage decision vector
∑

l∈Lk
zklδkl is a well-defined param-

eter).

Corollary 2 According to approach based on the second alternative way of approximat-

ing (3.30), the second-stage problem is formulated as

min
∑
i∈I

∑
j∈N(2)

is

∑
k∈N(1)

js

1

αj

ν
(1)
kjsq

s
kjid

s
i +
∑
i∈I

∑
j∈N(2)

is

ν
(2)
ijsd

s
ix

s
ij + ε

∑
j∈J

βs
j (3.44)

s.t. (3.10)− (3.26)

ϑs
j ≥ ws

kj − ζskjMs
jk, j ∈ J (2), k ∈ N (1)

js , (3.45)

ϑs
j ≤ ws

kj + (1− ζskj)Ms
jk, j ∈ J (2), k ∈ N (1)

js , (3.46)∑
k∈N(1)

js

ζskj = αj, j ∈ J (2), (3.47)

qskji ≤ ζskj, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js , (3.48)

qskji ≤ xsij, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js , (3.49)

qskji ≥ ζskj + xsij − 1, i ∈ I, j ∈ N (2)
js , k ∈ N

(1)
js , (3.50)

qskji ≥ 0, i ∈ I, j ∈ N (2)
is , k ∈ N

(1)
js (3.51)

ϑs
j ≥ 0, j ∈ J (2), (3.52)

ζskj ∈ {0, 1}, j ∈ J (2), k ∈ N (1)
js . (3.53)

Remark 1 (Related to the Alternative 2) Here we discuss two weaknesses of the second

modeling approach.

• When αj > 1, we cannot guarantee that all of the αj largest delivery amounts

are positive. This implies that, we can incorporate the accessibility score of an

unused links (with zero delivery) into the estimation of the accessibility score as-

sociated with the links between POD j and the LDCs that deliver supplies to that

POD. To deal with this issue, one can update αj as αj := min(αj,mins∈S |{k ∈
N

(1)
js : ws

kj > 0}|) (or, even can consider a scenario-dependent version αs
j =

min(αj, |{k ∈ N (1)
js : ws

kj > 0}|). However, in such an approach, αj would be a

decision variable, and we would end up with fractional terms in the objective func-

tion, as the ideal one based on the desired form (3.31). Observe that, there is no
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such a concern when αj = 1, since |{k ∈ N (1)
js : ws

kj > 0}| ≥ 1 for an open POD

j. Therefore, in our implementation, we generally use αj = 1 for all j ∈ J . On the

other hand, one can also use the following ad-hoc approach. Solve the model with

αj = 1, j ∈ J , and according to the obtained results, update αj parameters and

resolve the model. More specifically, the αj parameter can take larger values for

POD j that are more likely to be assigned to multiple LDCs.

• The second approach gives more importance to the accessibility scores associated

with the links between the PODs and LDCs that deliver more supplies to the open

PODs. However, it gives equal importance to the selected links by using the average

of their associated accessibility scores. Thus, it intends to take into consideration

the delivery amounts but still does not incorporate their exact values into the esti-

mation of the accessibility of PODs from LDCs.

Remark 2 (Related to Accessibility Metrics) We follow the characterization of the acces-

sibility proposed in Noyan et al. (2013) to obtain the accessibility scores. In particular,

they describe methods to estimate the weighted travel times associated with each link, and

then, they use a decreasing function of the weighted travel times to obtain the accessibility

scores. Thus, in their setting, higher the accessibility score higher the accessibility. In

our study, we directly use the weighted travel times as the accessibility scores, since it

seems more natural for our metrics defined in accordance with (3.30).
Observe that the summation of the weighted travel times in (3.30) would still corre-

spond to a weighted travel time. Then, one can use a decreasing function of the resulting

weighted travel times to assess the accessibility to supplies all the way from demand

points. It seems more natural than taking a decreasing function of each weighted travel

time separately and then sum them. According to this approach, we do not even need

to specify a decreasing function, we just focus on minimizing aggregated accessibility

metrics based on the weighted travel terms.

Remark 3 (Related to an Alternative Model). If we assume that each POD is served by

exactly one open LDC, then we can express the desired objective function (3.30) without

using an approximation. More precisely, we would introduce the binary variables γsjk to

identify the assignments of PODs to the LDCs: γskj = 1 if POD j ∈ J (2) is served by LDC

k ∈ N
(1)
js under scenario s ∈ S, γskj = 0 otherwise. Then, the ideal expression (3.31)

takes the form

ν̂js =
∑

k∈N(1)
js

γskjν
(1)
kjs,
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which can be easily incorporated into our optimization model. In our study, we do not

make this simplifying assumption because it is rather restrictive for practical settings.

Here we describe some simplifying modifications made in the mathematical formula-
tions of the two-stage models to be able to develop a computationally effective solution
algorithm, which is applicable only to the models with pure binary decision variables in
the first-stage. More specifically, we drop the continuous decision variables Rj from the
first-stage problem, and replace it by Kjyj in the second-stage problem. Then, constraint
(3.15) becomes ∑

k∈N(1)
js

ws
kj ≤ Kjyj, j ∈ J (2). (3.54)

It is easy to see that if any of our proposed models are feasible, then there exist an optimal
solution with

Rj = max
s∈S

∑
k∈N(1)

js

ws
kj, j ∈ J (2). (3.55)

In fact, from the relief organization’s point of view, a rational decision-maker would set
the POD capacity values as in (3.55). Then, the equivalence of the modified models and
the original ones trivially follows. For the modified models, with some abuse of notation,
the first-stage decision vector η represents (z,y) instead of (z,y,R). In the rest of the
study, we regard modified versions of the proposed models.

We can combine our first-stage problem and our second-stage problem into a single
large-scale mixed-binary linear program, which is known as the deterministic equivalent
formulation (DEF). For ease of reference, we provide the compact DEFs of the proposed
stochastic optimization models in Table 3.1.

Large-scale Deterministic Equivalent Formulations

Model 1
minimize{

∑
s∈S

psf(xs,ws, rs) : (3.2)− (3.4), (3.6)− (3.7), (3.10)− (3.14),

(3.16)− (3.26), (3.54) for all s ∈ S}, where f(xs,ws, rs) given by (3.33)

Model 2
minimize{

∑
s∈S

psf(xs,ws, rs) : (3.2)− (3.4), (3.6)− (3.7), (3.10)− (3.14),

(3.16)− (3.26), (3.45)− (3.54) for all s ∈ S} where f(xs,ws, rs) given by (3.36)

Table 3.1: Compact DEFs of our proposed stochastic programming models
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Chapter 4

Solution Methods

Stochastic mixed-integer programming models are generally known to be computation-
ally challenging, which can partially be attributed to the potentially large number of
scenario-dependent variables and constraints (see, e.g., Birge and Louveaux, 1997; Sen,
2005). The studies that focus on developing solution methods for stochastic integer pro-
grams mainly consider the two-stage framework, and propose decomposition-based al-
gorithms. The integer L-shaped algorithm proposed by Laporte and Louveaux (1993)
is the first decomposition method for stochastic programs with integer decisions in the
second-stage. It is a Benders decomposition-based branch-and-cut algorithm, and relies
on the assumption that there exist only binary decision variables in the first-stage. For
other types of decomposition-based algorithms developed to solve two-stage stochastic
mixed-integer programming models, we refer to the overviews by Birge and Louveaux
(1997), Klein Haneveld and van der Vlerk (1999), Louveaux and Schultz (2003), and Sen
(2005), and a comprehensive bibliography (van der Vlerk, 2007).

Among the existing solution methods, we mention here the disjunctive decomposition-
based branch-and-cut algorithms which rely on value function convexification and set
convexification of the second-stage (Sen and Higle, 2005; Yuan and Sen, 2009). These
studies consider a special setting with binary variables in the first-stage and mixed-binary
variables in the second-stage, and therefore, they can benefit from the theory of disjunctive
programming. In fact, these disjunctive decomposition-based branch-and-cut algorithms
are in general very effective (for an illustrative computational study we refer the reader to
Ntaimo and Sen (2008)). However, they assume to have a deterministic recourse matrix

(representing the coefficients associated with the second-stage decisions in the constraints
of the second-stage problem). In addition, for ease of implementation, they assume rel-
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atively complete recourse; a two-stage stochastic program has relative complete recourse
when for each first-stage feasible solution the second-stage problem is feasible. In con-
trast, our models do not have relative complete recourse, and all the parameters including
the recourse matrix are random in the second-stage problems; specifically, the recourse
matrix is random due to scenario-dependent coverage sets. We observe that we can re-
formulate our models to guarantee the relative complete recourse and avoid randomness
in the recourse matrix, but it requires introducing additional variables and a large number
of Big-M type constraints and Big-M type penalty terms in the objective function. These
modifications would result in computationally even more challenging formulations. In
addition, the integer L-shaped method appears to be more easy to implement. Along
these lines, we opt to develop an algorithm based on the integer L-shaped method, which
is applicable to our models due to their equivalent reformulations involving pure binary
variables in the first-stage (for details, see the end of Chapter 3).

Following the line of research of Noyan et al. (2013), we implement an enhanced ver-
sion of the classical integer L-shaped method by employing state-of-the-art computational
features, such as the lazy constraint callback of IBM ILOG CPLEX and a parallelization
of the Benders subproblems via the Boost C++ Libraries. The lazy constraint callback
feature is the key to remove the burden of implementing a full-fledged branch-and-cut
algorithm procedure (Rubin, 2011). Exploiting the special structure of their model Noyan
et al. (2013) prove that the number of opened PODs is always equal to the correspond-
ing upper bound value, and consequently, they obtain slightly stronger Benders (feasibil-
ity and optimality) cuts (compared to those presented in Laporte and Louveaux (1993)).
These stronger cuts are not valid in our setting, since similar claims – related to the num-
ber of open facilities – do not hold in general due to the additional logistics cost issues.
Furthermore, our models are harder to solve than those presented in Noyan et al. (2013).
Considering these challenges, we incorporate three additional features into the enhanced
integer L-shaped algorithm described in Noyan et al. (2013): (i) starting solutions, (ii)
alternating cuts, and (iii) scenario prioritization (for second-stage infeasibility detection).
We next explain the proposed Benders decomposition-based branch-and-cut algorithm in
detail.

In both proposed models the first-stage problems are identical and the structures of the
second-stage problems are similar from an algorithmic point of view. Therefore, we con-
sider the following general representation of the second-stage problem while explaining
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the details of the solution algorithm:

Q(η, ξs) = max
u
{(qs)Tu : W su = hs − T sη, u ∈ Rn1 × {0, 1}n2}. (4.1)

At a given iteration of the multi-cut integer L-shaped algorithm, we consider the fol-
lowing relaxed master problem (RMP):

(RMP) max
∑
s∈S

psϑ
s (4.2)

subject to: (3.2)− (3.4), (3.6)− (3.7), (4.3)

Dlη ≤ dl, l = 1, . . . , r, (4.4)

Es
l η + ϑs ≤ esl , l = 1, . . . , t, s ∈ S, (4.5)

η ∈ [0, 1]n, ϑ ∈ R|S|, (4.6)

where n denotes the size of the binary first-stage decision vector η, i.e., n =
∑

k∈J̄(1)

|Lk|+

|J (2)|.
In this RMP, the second-stage feasibility requirements are relaxed, and the so-called

feasibility cuts (4.4) are used to represent the conditions that ensure the second-stage
feasibility given the first-stage decisions. In addition, the exact calculation of the second-
stage objective values is relaxed, and the auxiliary ϑs variables, along with optimality

cuts (4.5), are employed to obtain appropriate approximations of the scenario-dependent
second-stage objective values. Valid feasibility and optimality cuts are added to the RMP
if necessary during the course of the algorithm, and r and t denote the number of feasi-
bility and optimality cuts generated so far, respectively. The final relaxation concerns the
integrality restrictions as in any branch-and-cut algorithm. We also note that relaxation
of the exact calculation of Q(η, ξs), s ∈ S, using a polyhedral representation is the key
point of a Benders decomposition based L-shaped method. We next present the feasibility
and optimality cuts that are valid for our proposed two-stage models.

In order to cut a candidate incumbent (best available feasible) solution, for which there
exists an infeasible second-stage subproblem, we use the combinatorial benders (CB) cuts
of the form: ∑

j∈Gr

ηj −
∑
j 6∈Gr

ηj ≤ |Gr| − 1. (4.7)

Here Gr = {j ∈ {1, . . . , n} : ηj = 1} corresponds to the r-th first-stage feasible solution.
Observe that the left-hand side of (4.7) is always less than or equal to the cardinality of
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the set Gr, and it is equal to its upper bound of |Gr| only at the r-th first-stage feasible
solution. This implies that (4.7) solely eliminates further consideration of the r-th first-
stage feasible solution, which leads to an infeasible second-stage problem. It is common
to use such CB cuts for two-stage models with pure binary decisions in the first-stage (see,
e.g., Sen, 2005; Codato and Fischetti, 2006). However, such valid inequalities tighten
the set of first-stage feasible solutions by cutting only a particular candidate solution.
Thus, they do not provide much information about the conditions for the second-stage
feasibility, and consequently, a large number of candidate solutions can be enumerated by
the branch-and-cut algorithm. In order to mitigate the inefficiency caused by the CB cuts,
we also employ the continuous L-shaped feasibility cuts, which will be presented later in
this chapter.

We adapt the optimality cuts proposed in Laporte and Louveaux (1993), and use their
multi-cut versions while approximating the expected second-stage objective values. Let
%sr denote the optimal objective function value of the second-stage problem for the r-th
first-stage feasible solution and scenario s ∈ S. Then, the following set of optimality cuts
is valid for our models:

ϑs ≥ (%sr − Ls)(
∑
j∈Gr

ηj −
∑
j /∈Gr

ηj)− (%sr − Ls)(|Gr| − 1) + Ls, s ∈ S, (4.8)

where Ls denotes a valid lower bound on the second-stage objective value for scenario
s ∈ S. Note that there always exist finite lower bounds on Q(η, ξs), s ∈ S, due to
the boundedness of our second-stage problems. In Section 4.1, we present optimization
models to obtain the lower bound values used in (4.8).

Let us now consider the (LP) relaxation of a two-stage stochastic integer program,
which is obtained by dropping the integrality restrictions in the second-stage problem. It
is well-known that any feasibility or optimality cut that is valid for such a relaxed two-
stage model is also valid for the original model with integer variables in the second-stage
(see, e.g., Laporte and Louveaux, 1993). For the relaxed two-stage model, we can derive
the Benders cuts using the duality theory; this Bender decomposition-based approach is
known as the continuous L-Shaped method (Van Slyke and Wets, 1969). In line with these
discussions, in our implementation we use both the continuous feasibility and optimality
cuts (as in the continuous L-shaped method) to obtain stronger formulations of the RMP.
For details of the continuous L-shaped cuts, we refer to Prékopa (1995) and Birge and
Louveaux (1997). According to the representation in (4.1), the continuous feasibility cuts
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are of the form
(υrs)T (hs − T sη) ≤ 0, (4.9)

and the continuous optimality cuts are given by

ϑs ≥ (πrs)T (hs − T sη), s ∈ S. (4.10)

Given the r-th first-stage feasible solution, υrs in (4.9) denotes an extreme ray of the dual
feasible region of the continuous relaxation of the second-stage problem under scenario
s, whereas πls in (4.10) denotes an optimal solution of the corresponding dual problem.
Note that these continuous cuts are not sufficient for the convergence of our Benders
decomposition-based algorithm to the correct optimal solution, but we observe that they
notably improve the performance of the algorithm.

We note that in the classical implementation of the Benders decomposition with multi-
cuts, adding a large number of cuts at each iteration may degrade the computational per-
formance (even if such disaggregated cuts in general provide better approximations by
capturing more information). Fortunately, the lazy constraint callback feature in our en-
hanced L-shaped method addresses this only obstacle of the multi-cut approach.

4.1 Computing Lower Bounds on the Second-Stage Ob-
jective Values

It is clear that the choice of the lower bounds in (4.8) is crucial in obtaining stronger
formulations of the RMP, and consequently, in enhancing the computational performance
of the integer L-shaped algorithm. However, computing tighter lower bounds becomes
expensive as the problem size gets larger. To this end, we solve the following two types
of initialization problems (one for each alternative model) under each scenario:
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Initialization Problem (InitPs)
Model 1 minimize

z,y,xs,ws,βs
{(3.33) : (3.2)− (3.4), (3.6), (3.7), (3.13), (3.14)∗, (3.16)− (3.20),

(3.22)− (3.24), (3.54)}

Model 2 minimize
z,y,xs,ws,βs,qs,ϑs,ζs

{(3.36) : (3.2)− (3.4), (3.6), (3.7), (3.13), (3.14)∗, (3.16)− (3.20),

(3.22)− (3.24), (3.45)− (3.52), (3.53)†, (3.54)}

Table 4.1: Compact formulations of the initialization problems (for obtaining the initial lower bound
values)

†: Binary restriction is relaxed.
∗: NSs

k is replaced by
∑

l∈Lk
zklδkl.

It is easy to see that the optimal objective function values of the above optimization
problems provide valid lower bounds for each model, since we consider a relaxed version
of the corresponding second-stage problem by excluding the decisions and constraints
related to the amounts of supplies delivered to the LDCs. Moreover, for further com-
putational enhancement, we update these lower bounds during the course of algorithm
according to the bounding scheme presented in Laporte and Louveaux (1993). In partic-
ular, we determine new bounds for any finite value t ≥ 1 as follows:

Ls = minimize
ϑs,y,z

{ϑs : (3.2)− (3.4), (3.6)†, (3.7)†, and (ϑs,η)

satisfies the continuous optimality cuts (4.10) for l = 1, . . . , t}. (4.11)

We update the current lower bounds if they are smaller than the corresponding values in
(4.11). Note that this bound updating scheme captures additional information about the
second-stage optimality without spending too much computational time. In fact, it can
provide tighter lower bounds than the initial ones, although the binary restrictions on the
first-stage decisions are relaxed.

4.2 Outline of the Algorithm

The outline of the solution algorithm is similar to the one presented in Noyan et al. (2013).
However, our models are computationally more challenging, and therefore, we employ
three additional methods that significantly impact the computational performance. To
keep our presentation self-contained, we provide the description of the whole algorithm
but elaborate only on the new enhancements, which prove to be very essential for solving
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the proposed models.

1. Starting solutions. One can use a heuristic approach to obtain an initial first-stage
solution, which is not necessarily feasible for the original second-stage model. We
note that finding a first-stage solution for which all the second-stage subproblems
are feasible may require more elaborative approaches. Since our main goal is to
provide a better start, we only focus on obtaining a reasonably good candidate first-
stage solution. Along these lines, we propose the heuristic approach described
below.

We solve InitPs to retrieve the optimal LDC and POD location decisions under each
scenario s, denoted by zs and ys, respectively. Then, we assign a frequency score
to each POD and each LDC based on their total occurrence as an open facility over
all scenarios. More specifically, the frequency scores of the PODs are given by

cj =
∣∣{s ∈ S : ysj = 1}

∣∣ , j ∈ J (2),

while the frequency scores of LDCs are obtained as follows:

ckl = |{s ∈ S : zskl = 1}| , k ∈ J̄ (1), l ∈ Lk.

Let us first focus on the y decisions and consider a permutation σ describing a
non-increasing order of c1, c2, · · · , c|J(2)|, i.e.,

cσ(1) ≥ cσ(2) ≥ · · · ≥ cσ(|J(2)|). (4.12)

Given these notation, our heuristic sets the initial values of yj, j ∈ J̄ (2), denoted by
ȳj, j ∈ J̄ (2), as follows: ȳj = 1 for j ∈ {σ(1), ..,σ(κ(2))}, and ȳj = 0 otherwise.
In other words, we select the most frequently opened κ(2) of the PODs.

A very similar approach is applied for the decision vector z. Recall that we consider
random coverage sets, and incorporating the coverage sets in the second echelon
ensures to open at least one LDC belonging to the coverage set of each open POD.
In order to obtain scenario-independent z decisions – given the open PODs (initial
values of y decisions) – we solve a set covering type problem, which ignores the
randomness of the coverage sets in the second echelon. To this end, we consider
fixed coverage sets, denoted by N̂ (1)

j , j ∈ J (2); these sets are defined based on the
worst-case scenario, i.e., N̂ (1)

j =
⋂
s∈S
N

(1)
js for all j ∈ J (2). We aim to maximize the
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sum of the frequency scores while selecting the LDCs to be opened, and solve the
following set covering (SC) type problem:

maximize
∑

k∈N(1)
js

∑
l∈Lk

cklzkl − ε
∑
j∈J(2)

βj (4.13)

subject to:
∑
l∈Lk

zkl ≤ 1, k ∈ J̄ (1), (4.14)∑
k∈J̄(1)

∑
l∈Lk

zkl ≤ κ(1), (4.15)

βj +
∑

k∈N̂(1)
j

∑
l∈Lk

zkl ≥ ȳj, j ∈ J (2), (4.16)

0 ≤ βj ≤ 1, j ∈ J (2). (4.17)

As in SLMRNDR, constraints (4.14) and (4.15) enforce at most one and single
type of LDC at any node and limit the number of LDCs to be opened, respectively.
If POD j is decided to be open, constraint (4.16) aims to open at least one LDC
which can serve POD j in the worst-case scenario. If this is not possible, βj would
take value 1, and such occurrences are penalized in the objective function. The
existence of βj variables guarantees the feasibility of (4.13)-(4.17). Denoting the
optimal solution of this problem by z̄, we feed (ȳ, z̄) as an initial solution to the
branch-and-cut algorithm.

2. Alternating cuts. In the enhanced integer L-shaped algorithm, whenever the second-
stage feasibility of a candidate incumbent solution is certified, the lazy constraint
callback routine checks whether there is a missing optimality cut. Identifying an
optimality cut is computationally very expensive, since it requires solving all the
mixed-integer second-stage problems to optimality. A natural approach is to avoid
or postpone solving these problems to optimality, if possible. Angulo et al. (2014)
have recently proposed a simple cut strategy, which postpones generating the reg-
ular optimality cuts of the form (4.8) as long as there are missing continuous opti-
mality cuts. Thus, instead of regular optimality cuts, continuous optimality cuts are
introduced as lazy constraints if possible, and this strategy is referred to as alternat-

ing cuts.

Recall that the lazy constraint callback routine checks whether there is any missing
optimality cut only after it ensures that all the second-stage problems are feasible
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for the candidate incumbent solution. In this case, we have to solve the LP re-
laxations of all the second-stage problems to optimality, and therefore, there is no
additional computational burden while we append the continuous optimality cuts, if
necessary. Furthermore, we avoid solving our computationally challenging mixed-
integer second-stage problems as long as there is a violated continuous optimality
cut. Due to these benefits, the alternating cut strategy is effective in significantly
improving the computational performance of the algorithm.

3. Scenario prioritization. In the feasibility check procedure of an integer L-shaped
algorithm, the second-stage problems are not solved in a particular order to detect
the first infeasible scenario. That may lead to solving a large number of second-
stage problems until an infeasible scenario is detected. Therefore, a fast discovery
of the first infeasible second-stage problem can save computational effort. In this
spirit, we propose a scoring scheme for prioritizing the scenarios while checking the
feasibility of the second-stage problems. Given a candidate solution, we assign an
infeasibility score for each second-stage problem and solve the feasibility problems
in a specific order based on these scores. We next describe the steps we follow
to calculate the infeasibility score. We keep a counter, denoted by os, throughout
the algorithm to record the total number of occurrences where a missing feasibility
cut is identified for s ∈ S. We also calculate an additional score, denoted by ĉs,
considering the impact of the coverage sets on the second-stage infeasibility. In
particular, we define ĉs as follows:

ĉs =
∑
i∈I

∣∣∣N (2)
is ∩ J̄

∣∣∣ , (4.18)

where J̄ is the set of open PODs at the given candidate solution. It is evident that for
smaller values of ĉs the second-stage problem under scenario s is more likely to be
infeasible. In this spirit, given a candidate solution the infeasibility score, indicated
by infeass, is calculated as follows:

infeass = −ĉsos, s ∈ S. (4.19)

Intuitively, the second-stage problems with higher infeasibility scores are more
likely to turn out to be infeasible. Hence, we sort the scenarios in descending order
with respect to their infeasibility scores at the beginning of the feasibility check
procedure, and evaluate the feasibility of the corresponding second-stage problems
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in this order during the feasibility check procedure.

We next give a brief description of our algorithm in order to keep it self-contained.
Before invoking the branch-and-cut algorithm, we solve InitPs for all s ∈ S in order to
provide appropriate lower bounds on the second-stage objective values, and to obtain an
initial solution (as outlined in Algorithm 1). We next initiate the branch-and cut algorithm
by feeding the obtained initial solution to CPLEX. Whenever a candidate incumbent so-
lution is found in the search tree, the callback routine checks whether there is a missing
feasibility cut. We utilize the proposed scenario prioritization feature, and the 3-phase
feasibility procedure presented in Noyan et al. (2013) for early detection of a violated
feasibility cut. If second-stage infeasibility for a scenario is certified at one of the phases,
we add the corresponding feasibility cuts of types (4.9) and (4.7) as lazy constraints. Note
that identifying the first infeasible scenario is sufficient to generate (4.9). If all the second-
stage problems turn out to be feasible, the lazy callback callback routine inquires about
any missing continuous optimality cuts. If any detected, the corresponding continuous
optimality cuts (4.10) are generated. Note that the continuous second-stage problems are
already solved to optimality in the 3-phase feasibility procedure, hence generating (4.9)
becomes a quite fast procedure in the overall algorithm. Unless a missing continuous op-
timality cut is identified, the second-stage problems are solved to optimality, and for any
second-stage problem with an optimal objective value larger than the approximated value
ϑs we append the optimality cuts (4.8). Finally, at each candidate incumbent solution that
leads to feasible second-stage problems, we solve the problem (4.11) in order to update
the lower bounds Ls, s ∈ S. The callback routine certifies the candidate solution as the
incumbent once all types of appended lazy constraints are satisfied in the RMP. The al-
gorithm terminates when the incumbent is proved to be optimal. The pseudocodes of our
heuristic method to obtain starting solutions, and our exact branch-and-cut algorithm are
presented in Algorithms 1 and 2, respectively.

4.3 Parallel Computing

We utilize parallel computing techniques similar to Noyan et al. (2013) in order to im-
prove the computational performance of the algorithm. In order to benefit from our de-
composition approach, our strategy is to distribute independent operations (such as the
initialization problems and solving the second-stage problems) over a fixed number of
available threads. To this end, we utilize the Boost C++ Libraries. Note that one can also
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Algorithm 1: Procedure starting solution
1 for j ∈ J (2) do
2 Given the optimal ysj , s ∈ S, calculate the frequency score cj ;
3 end
4 Sort cj in a non-increasing order and let σ be the permutation that satisfies (4.12);
5 Set ȳj = 1 for all j ∈ {σ(1), ..σ(κ(2))}, and 0 otherwise;
6 for k ∈ J̄ (1), l ∈ Lk do
7 Calculate the frequency score ckl;
8 end
9 Given ȳ and the ckl values, solve the set covering problem (4.13)-(4.17);

10 Retrieve z̄ values;
11 Set the initial solution to (ȳ, z̄).

use built-in parallel programming features of CPLEX to solve a single problem by tuning
the threads parameter of CPLEX. We next give the details of allocation of threads to each
operation in our implementation.

The maximum number of threads that can be utilized simultaneously is 4, whereas
we allocate 1 thread to CPLEX. Furthermore, we set the parallelization mode as oppor-

tunistic, in which CPLEX utilize all opportunities for parallelism in order to provide better
performance at the expense of non-deterministic solution times and solution vectors (IBM
ILOG CPLEX (2010)). Since the initialization and second-stage problems are not compu-
tationally demanding compared to RMP, we distribute these problems among the multiple
threads and disable the parallelization features of CPLEX. To this end, we allow concur-
rent usage of maximum 4 threads while solving the second-stage problems as well as the
initialization problems.
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Algorithm 2: Enhanced Integer L-shaped Algorithm
// Initialization

1 Set r = t = 0. Solve InitPs and set an appropriate lower bound on ϑs for all s ∈ S.
2 Use starting solutions procedure to retrieve an initial solution;

// Main loop
3 Provide the initial solution to CPLEX. Invoke CPLEX to solve the RMP and initiate branch-and-cut

procedure;
4 while CPLEX determines that both the relative and absolute optimality gaps of the current

incumbent are greater than the specified thresholds do
5 Identify a new candidate incumbent solution (η̂, ϑ̂);
6 Check the second-stage feasibility for η̂;
7 if the second-stage problem is feasible for all the scenarios then
8 violation = false;
9 for s ∈ S do

10 if (%̂s − ϑ̂s)/ϑ̂s ≥ ε then // η̂ violates some of the missing
continuous optimality cuts

11 Add the corresponding continuous optimality cuts of the form (4.10) to the RMP
as lazy constraints, violation = true;

12 end
13 end
14 if violation = false then //If η̂ does not violate any continuous

cuts
15 for s ∈ S do
16 Solve the second-stage problem under scenario s to optimality and let ϑ̂s, s ∈ S,

denote the optimal second-stage objective values;
17 if (%̂s − ϑ̂s)/ϑ̂s ≥ ε then // η̂ violates some of the missing

optimality cuts
18 Add the corresponding optimality cuts of the form (4.8) to the RMP as lazy

constraints;
19 end
20 end
21 end
22 Solve the problem (4.11) for all s ∈ S to calculate the new bounds, and update the current

bounds if possible;
23 else // η̂ violates some of the missing feasibility cuts
24 Solve the continuous relaxation of the first infeasible second-stage problem without

presolve, retrieve υls utilized in (4.9);
25 Add the corresponding feasibility cuts of the form (4.7) and (4.9) to the RMP as lazy

constraints;
26 end
27 end
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Chapter 5

Computational Analysis

We apply our models on a case study developed based on real-world data from the 2011
Van earthquake, which is an extension of the case study presented in Noyan et al. (2013).
First, we provide the details of the data set which we utilize in this study. We next
present our extensive numerical analysis in order to compare the performances of the
proposed models in terms of the desired accessibility metrics. Additionally, we evaluate
the trade-off between accessibility and equity metrics by analysing alternate supply allo-
cation policies (PD, TD, and hybrid policies) given in Noyan et al. (2013). In section 5.3,
we demonstrate the computational performance of our solution approach.

5.1 Data Set

We mainly use the data structure of the case study in Noyan et al. (2013), however, we
incorporate additional parameters relevant to our proposed models into the case study.
Furthermore, as stressed in Remark 2, we define the accessibility scores as the weighted
travel times. Therefore, in this section, we emphasize more on the additional parameters
and accessibility metrics.

Here we briefly indicate the key points of the case study in Noyan et al. (2013) and
refer the reader to this study for further details. The authors consider a network consists
of 94-settlements affected by the 2011 Van Earthquake. They cluster this network with
30 and 60 nodes through a p-median model which minimizes the demand-weighted travel
times. Based on the intensity of the earthquake, one of three possible damage states is
associated with each cluster. According to the damage state of a cluster, the number of
affected people are estimated. In order to represent the post-disaster relief network con-
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ditions, they construct the random realizations of demand and accessibility for a set of
scenarios (|S| = 50, 100, 200, 500) given the base values for demands and accessibility
metrics. Specifically, the realizations of the demands and accessibility metrics for each
scenario are obtained by multiplying their corresponding estimated base values by speci-
fied deviation factors. For each node and link, a separate deviation factor is independently
sampled from particular uniform distributions depending on the damage level of the area
in consideration, which is determined based on the proximity to the epicenter of the earth-
quake. Note that a link may span multiple damage areas, then the proportion of the link
length in different damage areas are considered while sampling the deviation factor.

We next elaborate on the additional and modified model parameters. Different from
the network structure in Noyan et al. (2013), we allow multiple LDC locations in the
network where either existing LDCs or additional LDCs can be set up. In total, there
are 9 LDC locations in the network, consisting of 5 pre-position LDC locations and 4

candidate LDC locations. Below we describe how we choose both existing and additional
candidate LDC locations.

I. Existing LDC locations.

In the report of the Van Earthquake 2011, Kizilay lists the particular disaster management
centers which sent relief supplies to the affected region (Turkish Red Crescent Disaster
Management (2012)). Indeed, the action plan of Disaster and Emergency Management
Presidency of Turkey proclaims these disaster management centers as the liable group of
disaster management centers particularly for the Van city in case of a disaster ( Disaster
and Emergency Management Presidency (AFAD) (2013)). According to this action plan,
each city is assigned to a specified group of disaster management centers in Turkey for
the purpose of disaster preparedness. These disaster management centers preposition a
specific amount of relief supply. In case of a disaster, they store the additional supplies
rushing in the country, and transfer both additional and existing relief supplies to the
affected region that they are in charge of. In this spirit, we choose the liable disaster
management centers of the Van region located at Muş, Van, Ağrı and Diyarbakır as the
existing LDCs in the network.

II. Additional LDC locations.

In practice, relief organizations set up additional LDCs close to the locations wither high
demand values, if necessary. In this spirit, we select the demand nodes with higher base
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demand values as the candidate LDC locations, therefore we identify the most populated
4 demand nodes also as the candidate LDC locations, namely Bostaniçi, Erçek, Bardakçı
and Güvençli. Furthermore, relief supplies were also received by a center close to the
Van airport in the Van 2011 Earthquake. Hence, we add the Van airport to the last mile
network and allow it to be a candidate LDC location.

III. The central depot.

The relief organizations usually stage the relief items which are supplied by international
and national organizations at a substantially large depot. It is located at a convenient place
in terms of accessibility particularly for the international relief organizations. Therefore,
an airport near the affected region is generally preferred as the central depot. In the
Van Earthquake 2011, the Erzurum Airport is preferred as the central depot over the Van
Airport. That is because, the operational capacity of the Erzurum airport is larger than
the one in Van. Furthermore, the Erzurum airport is much safer from aftershocks. In this
spirit, we choose the central depot as the Erzurum Airport.

IV. Computing the accessibility metric.

We define the accessibility metric in a similar fashion to Noyan et al. (2013). However,
while obtaining the accessibility scores, we directly use the weighted travel times instead
of using an inverse function of it, since this approach is more natural while characterizing
the proposed aggregated accessibility metrics in our context. Thus, a link with a lower
accessibility score indicates higher accessibility. In order to stress the difference between
our accessibility metric and the one in Noyan et al. (2013), we give a complete list of
steps to calculate the values of accessibility metrics both at the first and second echelon
for each test instance:

1. The travel time in hours between each pair of nodes in the network is obtained from
Google Maps.

2. Each node in the graph is associated with a risk score based on the distance from
the Lake of Van. The flooding risks are attached to all links in the network via this
metric, and the risk score is higher in some areas of the affected regions, which are
closer to the Lake of Van.

3. To calculate the accessibility metric between LDCs and PODs, we simply multiply
the travel time by the risk score of the link between the pairs.
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4. To calculate the accessibility metric between PODs and demand nodes , we addi-
tionally multiply the metric described in item 2 with a mobility score βi of each
demand node i. Particularly, the mobility score of a demand node is calculated by
taking the weighted sum of proportions of elderly, disabled and women with child
at that node.

We remark that the mobility score is not considered while calculating the accessibility
scores for the first echelon. That is because, the mobility of individuals between LDCs and
PODs is inapplicable. We also note that the the travel times between each pair of nodes has
been slightly changed since 2013 due to new road constructions in the region. Therefore,
while calculating the accessibility metrics, we utilize the travel time data retrieved from
Google Maps in 2014 rather than the given travel times in the case study of Noyan et al.
(2013).

V. Other input parameters

In order to implement the proposed models, we need to specify the values of other input
parameters as well. We describe how we set the values for these parameters (particularly,
θ̄, θk, δkl, Kj , τ (1), τ (2), κ(1), κ(2), ρ, cshk, fkl, B, αj) below:

• The amount of total available supply in the network is denoted by θ̃ = θ̄ +
∑
k∈H

θk,

which corresponds 90% of the expected total demand. We calculate the expected
total demand as in the study of Noyan et al. (2013). We set θ̄ = 0.6θ̃ and

∑
k∈H

θk =

0.4θ̃.

• The relief organizations generally establish LDCs with different capacities consid-
ering the needs and available sources in the post-disaster environment. We assume
that three size categories for LDCs, specifically small, medium, and large, are ad-
equate to capture the real life practices of relief organizations. Along these lines,
we determine the capacities as 20%, 40% and 60% of θ̃ for the LDCs with small,
medium and large sizes, respectively. Recall that each existing LDC has a prespec-
ified capacity, thus it is associated with a particular size category. We identify the
size categories of the existing LDCs by considering their areas and the ratio be-
tween the specified size categories. (we retrieve the areas of the existing LDCs via
a personnel contact at Kizilay). According to this approach, the size category of the
LDC in Mus is identified as large, whereas the others are identified as small.

40



• We set the pre-stocked supply amount at each existing LDC to a certain propor-
tion of

∑
k∈H

θk with respect to its capacity. More specifically, we distribute
∑
k∈H

θk

among the existing LDCs proportional to the storage capacity ratios between size
categories.

• The upper bounds on the capacities of the PODs denoted byKj impact the decisions
of both models significantly. Following the study of Noyan et al. (2013), we set
Kj = cd̂j , where d̂j indicates the estimated base value of the demand node j. We
select c from the following set {2, 2.5, 3}.

• Recall that τ (1) and τ (2) are the upper bounds on the accessibility thresholds used
for defining the coverage sets at the first and second echelons of the last-mile relief
network, whereas κ(1) and κ(2) denote the upper bounds on the number of LDCs
and PODs to be opened, respectively. If both upper bounds (specifically, on the ac-
cessibility threshold and the number of open facilities) at any of the echelon are not
sufficiently large enough, then it might not be possible to identify feasible assign-
ment decisions while meeting the accessibility threshold. Particularly, assigning a
POD to a LDC and/or each demand point to a POD might not be achieved. There-
fore, we consider the number of demand points (i.e., the demand nodes with small
|N (2)

is |) and PODs (i.e., the PODs with small |N (1)
js |) that are challenging to be cov-

ered at the first and second echelon, respectively. For instance, in order to determine
the value of parameter τ (1), we restrict the number of candidate PODs for which the
coverage set includes less than a certain number of candidate LDCs. Thus, we con-
sider the worst (largest) possible values of the realizations of the accessibility metric
(denoted by v̂(2)

ij at the second echelon and v̂(1)
kj at the first echelon). Consequently,

we set the values of τ (1) and τ (2) based on the following conditions:∣∣∣{i ∈ I :
∣∣∣N (2)

i

∣∣∣ =
∣∣∣{j ∈ J (2) | v̂(2)

ij ≤ τ (2)}
∣∣∣ ≤ dγ1 |I|e}

∣∣∣ < dγ2 |I|e, (5.1)

∣∣∣{j ∈ J (2) :
∣∣∣N (1)

j

∣∣∣ =
∣∣∣{k ∈ J̄ (1) | v̂(1)

kj ≤ τ (1)}
∣∣∣ ≤ dγ1

∣∣J (2)
∣∣e}∣∣∣ < dγ2

∣∣J (2)
∣∣e.
(5.2)

For our 30-node case study network, we set γ1 = 0.05 and γ2 = 0.15, and observe
that the above condition is satisfied for τ (1) ∈ [1.96, 2.26], whereas for τ (2) ∈
[14.49, 1076].

• In real-world, the decision makers can limit the κ(1) and κ(2) parameters based on

41



available resources (i.e., budget, personnel, etc.). In this case study, we set κ(1) = 6,
κ(2) = 8.

• Recall that ρ is the proportion of unsatisfied demand at POD level and we enforce
the same proportion for all PODs in our models. For our case study, we set ρ =

0.30.

• We consider the unit shipment cost from the existing LDCs/central depot to all
LDCs. In order to calculate the unit shipment costs between two nodes, we first
calculate the distance between them by using the Vincent algorithm, then we scale
it by a constant (0.001). We generate the realizations of the random cost parameter
through following the same approach for accessibility metric described in Noyan
et al. (2013), since the unit shipment cost between two nodes also depends on the
damage level of the link between them. Specifically, we obtain the realizations of
the random cost parameter for a particular link through multiplying its base unit
shipment cost by a particular deviation factor (see section 6 in Noyan et al. (2013)
for a more detailed explanation).

• We assume that the fixed cost of opening a LDC increases proportional to its size.
A study in the pre-disaster literature by Rawls and Turnquist (2010b) defines the
size categories (small, medium and large as in our case study) of facilities that
are used for pre-positioning relief supplies and exhibits their respective storage ca-
pacities and fixed costs. By using the given storage capacities and fixed costs of
facilities in this study, we deduce the corresponding proportional increase in fixed
cost against the proportional increase in storage capacity between different facility
sizes. In this spirit, we assume the fixed cost of opening a small LDC to 50000 and
considering both the ratios drawn from Rawls and Turnquist (2010b) and storage
capacity ratios between different size categories in our setting, we set the fixed costs
as 85000, 110000 for medium and large size LDCs, respectively. Recall that the ex-
isting facilities can also be expanded at a certain cost into upper size categories.
We set the expansion cost of an existing LDC into a larger size category by simply
taking the difference between the fixed costs of opening a LDC at its existing size
and enlarged size. For instance, a small size existing LDC can be upgraded to a
large size category at a cost of 60000.

• We set B = aB, where B denotes the minimum required budget in the best-case
scenario where a ∈ {1.3, 1.5, 1.7}. Here the best-case scenario indicates the least
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demand values for each demand node, and the least accessibility scores and cost
parameters between each pair of nodes in a test network. By using the best-case
scenario parameters, we replace the objective function (3.9) by the left hand side of
constraint (3.21), and solve the modified two-stage problem in order to obtain B.
We observe that the budget slightly impact the location decisions where a = 1.7.
Hence, it is appropriate to categorize the budget as low, medium, and high where
a = 1.3, 1.5, 1.7, respectively.

• Recall that the αj parameter is used to estimate the average accessibility between
LDCs and PODs in (3.36). αj determines to which extent the links with higher
delivery amounts should be considered in the estimation of average accessibility of
a POD. For instance, given αj = 1, the link which has the highest delivery amount
to POD j is solely considered while calculating νsj for all s ∈ S. Note that the
smallest cardinality of N̂ (1)

j among all PODs is the upper bound on the value of αj .
In this case study, we set the value of parameter αj = 1 due to the drawback of the
second model as addressed in Remark 1.

5.2 Comparison of Models

We conduct numerical experiments to compare the performances of the proposed models
with respect to accessibility metrics. Observe that, the proposed models employ different
approaches to approximate the ideal objective function (3.30). It follows that the com-
parison of the models based on their optimal function values would not be fair, thus this
may arise misleading conclusions. However, we can fairly compare the two models based
on their corresponding ideal objective function values given their optimal solutions. In
particular, we can simply calculate the ideal aggregated accessibility metrics that both
models achieve with their optimal decisions.

The results for the ideal aggregated accessibility metrics for different instances of
Model 1 and Model 2 appear in Table 5.1. (i.e, metric IOFV (the sum of IOFV-I+IOFV-
II) in the table), where the metrics (IOFV-I) and (IOFV-II) stand for the ideal aggregated
accessibility in the first and second echelon, respectively. Recall that both models min-
imize the expected value of a particular aggregated accessibility (see (3.33) and (3.36)).
We also present the model-specific accessibility metrics in the first and second echelon in
this table, denoted by (I) and (II), respectively. Particularly, the metric (I) stands for the
expected total weighted accessibility of the PODs from the LDCs, whereas the metric (II)
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denotes the expected total weighted accessibility of the PODs from the demand locations
as given in the objective functions of Model 1 (3.33) and Model 2 (3.33).

In the presented instances, we alter the values of the parameters τ (1), τ (2), c, and B,
while we set ρ = 0.3, κ(1) = 6, κ(2) = 8, αj = 1 for all j ∈ J (2).

Observation 1 Model 1 performs better than Model 2 in terms of IOFV. In particular,

IOFV-I notably contributes to the gap between the two models in terms of IOFV, whereas

IOFV-II are quite similar in both models.

We can see from Table 5.1 that the gap with respect to IOFV is always larger than 6%,
which leads to the fact that the two models are not comparable. The numerical results
for Model 2 in Table 5.1 support the weaknesses addressed in Remark 1. We propose an
elaborate approach to approximate the ideal objective function in Model 2. Unfortunately,
we observe that a simpler modeling approach (presented in Model 1) performs better
than the elaborate modelling approach in terms of accessibility metrics; particularly the
accessibility of the PODs from the LDCs. Although Model 2 focuses more on the links
with higher delivery amounts, it fails to differentiate the selected links with respect to
their delivery amounts by simply taking the average of the corresponding accessibility
scores. That is to say, Model 2 is indifferent between the delivery supply amounts among
the selected links. As stressed in Remark 1, when αj > 1, it is possible to incorporate
the accessibility scores of the links with zero delivery amounts. Model 2 with the ad-hoc
approach usually achieves better IOFV than Model 2; however, it does not obtain better
IOFV than Model 1. The superiority of Model 1 stems from the fact that it incorporates
the w decisions weighted by the accessibility scores of the selected links; it is a simple
but effective approach to approximate the ideal objective function. As opposed to the
simple version, Model 2 gives more importance to the accessibility scores associated with
higher amounts of delivery, but neglects the significance of delivery amounts among the
selected links. Furthermore, Model 2 is computationally hard to solve due to its complex
formulation as shown in Table 5.4. Considering these results, we emphasize more on
the computational analysis of Model 2, yet we address the settings where the difference
between two models is relatively high.

Observation 2 When we focus more on ensuring equitable accessibility in the second

echelon, the relative gap between Model 1 and Model 2 decreases in terms of IOFV.

In particular, for Model 2, the impacts of higher levels of equitable accessibility in the

second echelon are more prominent in the first echelon (IOFV-I) compared to the second-

echelon (IOFV-II).
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Due to the structure of the objective function of Model 2, enforcing equitable accessi-
bility in the second echelon can also impact the optimal delivery decisions along the first
echelon (i.e., the optimal delivery amounts sent from the LDCs to PODs). For instance,
a tighter upper bound on the accessibility threshold (such as reducing the threshold to
22 from 44 in the second echelon) when c = 2.5, B = M , and τ (1) = 2.18 results in
higher alterations in IOFV-I (the relative change smaller than 5.58%) value than IOFV-II
(the relative change smaller than 0.0008%) for Model 2. On the other hand, both the rel-
ative changes in IOFV-I and IOFV-II are less than 0.004% for Model 1. Furthermore, we
observe that Model 1 performs in a similar manner in terms of IOFV, even though it is
confined with a more restrictive accessibility threshold in the second echelon. Similarly,
for c = 2.5, B = M , and τ (1) = 2.20, when τ (2) is decreased from 60 to 44, the rela-
tive change in IOFV-II of Model 2 is quite bigger than that of Model 1 (i.e., the relative
changes in IOFV-II for Model 1 and Model 2 are 2.53% and 0.001%, respectively).

Observation 3 As the capacity limitations of the PODs decrease, the relative gap be-

tween the proposed models also decreases. Furthermore, we observe that IOFV-II of

Model 2 is further sensitive to the changes in the capacity limitations of the PODs com-

pared to Model 1.

We can see from Table 5.1 that the relative difference between two proposed models
is easily noticed when more restrictive limitations are applied to the POD capacities. In
other words, Model 1 performs much better than Model 2 in settings where the upper
bounds on the POD capacities are much tighter. For instance, the relative gap between
two models is 6.06%, for c = 3, τ (1) = 2.18, τ (2) = 44, and B = M . For c = 2.5, the
relative gap becomes 8.85%, and when c = 2, it further increases to 9.19%. Additionally,
we observe that ideal accessibility metrics of both models (e.g., IOFV-I, IOFV-II, IOFV)
increase as the capacity limitations on the PODs are more restrictive. Similarly, the indi-
vidual accessibility metrics (e.g., I, II, (I+II)) of the proposed models increase as the POD
capacities get smaller.

Observation 4 When the available budget gets tighter, the relative gap between the pro-

posed models becomes even larger.

As observed from Table 5.1, the budget significantly impacts IOFV for both models
as it limits the logistics costs associated with supply delivery between depots (from the
global depot and/or reallocation between LDCs), and opening new LDCs. For instance,
for c = 2, τ (1) = 2.18, τ (2) = 44, and B = L, the relative difference between Model 1
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and Model 2 becomes 13.99%. By the same parameter settings except the medium bud-
get category, we observe that the relative gap between two models decreases to 8.42%.
Furthermore, IOFV-II of Model 2 is the most affected accessibility metric by a limited
budget. We also note that enforcing limited capacities on the PODs as well as limited
budget for the relief operations cause a more discernible relative gap between two mod-
els.

Observation 5 While the focus on ensuring more equitable accessibility in the first ech-

elon increases, the relative gap between the proposed models generally increases. How-

ever, we also detect few problem instances which indicate the otherwise.

The impacts of imposing more demanding equity threshold for accessibility in the first
echelon are ambiguous in terms of the relative gap between the models, as we observe
changes in different directions in IOFVs of both models (increase/decrease in IOFV). For
instance, for c = 2.5, τ (1) = 2.40, τ (2) = 44, and B = M , the relative gap between
Model 1 and Model 2 is 8.23%. When only the value of the parameter τ (1) is set to
2.20, the relative gap becomes 10%. On the contrary, from the latter to the setting where
τ (1) = 2.18, the relative gap is decreased to 9%. Thus, we cannot conclude a pattern in
the relative gap in terms of IOFV for comparison purposes while conducting sensitivity
analysis for the parameter τ (1).

The results in Table 5.1 implies that Model 1 always performs better than Model 1 in
terms of IOFV, particularly when α takes value of 1 for all PODs. As suggested in Re-
mark 1, there are few remedies to resolve this problem. However, both suggestions have
their own shortcomings. The first suggestion causes non-convex optimization problem,
whereas the latter does not guarantee a better solution in terms of IOFV. Therefore, we
discuss the performance of Model 1 based on the model-specific accessibility and equity
metrics for the rest of this section. Furthermore, we present the computational perfor-
mance of Model 1 in more detail, whereas we illustrate few samples of the computational
performance for Model 2.

Here we analyze Model 1 with respect to its model-specific accessibility metrics (e.g.,
(I), (II), (I+II) in Table 5.1), and list the observations related to this particular model.

Observation 6 Model 1 is generally robust to alterations in the parameter τ (1) in terms

of the metrics I, II, and (I+II). Particularly, the metric II increases as the focus on ensuring

equitable accessibility in the first echelon increases.
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The impacts of smaller values for τ (1) with respect to the accessibility metrics I, II,
and (I+II) of Model 1 are not evident in Table 5.1. In fact, we do not observe any in-
crease/decrease in the metric I for the given problem instances. However, the impacts
of the parameter τ (1) on the metric II reflect on the total aggregated accessibility metric
(I+II), although the fluctuations in the metric II as well as the metric (I+II) are minor.
For instance, given c = 2.5, τ (2) = 44, and B = M , if the value of τ (2) decreases to
2.10 from 2.40, the metric I stays the same, while the metric II increases. Therefore, we
conclude that imposing more equitable accessibility in the second echelon directly affects
the accessibility in that echelon for Model 1.

Observation 7 For Model 1, the parameter τ (2) affects the metric II in different direc-

tions; however, it does not incline any alterations in the metric I.

We observe that focusing more on equitable accessibility in the second echelon im-
pacts the expected total weighted accessibility of the demand points from PODs, yet a
decrease in the parameter τ (2) does not necessarily trigger an increase in the metric II.
Furthermore, the problem instances in Table 5.1 indicate no effect on the metric I. For
instance, for τ (1) = 2.18, c = 2.5, and B = M , when τ (2) is decreased to 22 from 44,
only the metric II contributes to the difference in the expected total weighted accessibility
(the metric (I+II)) between two problem settings. Similarly, for τ (1) = 2.20, c = 3, and
B = M , when τ (2) is decreased to 44 from 60, the metric I does not change, whereas the
metric II decreases.

Observation 8 A more restrictive setting for the capacity limitations of PODs and the

available budget usually give rise to an increase in the metric (I+II).

As expected, we observe from Table 5.1 that the expected total weighted accessibility
metric defined particularly for Model 1 (i.e., the metric (I+II)) increases as tight capacities
for the PODs and limited budget are enforced. For instance, the largest value for the metric
(I+II) appears for the problem instance where c = 2 and B = M . We also observe that
as the capacity limitations get more restrictive and/or the budget becomes insufficient, the
metric (I+II) increases.

As discussed in the introduction, Noyan et al. (2013) study three alternate supply al-
locations, which focus on i) proportional distribution at the POD level (Model PD), ii)

maximum proportion of unsatisfied demand at the model (Model TD), and iii) the hybrid
approach that we utilize in both models (Model Hybrid). In the study of Noyan et al.
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(2013), it is analytically and empirically shown that Model Hybrid achieves higher lev-
els of accessibility and equity simultaneously (see Noyan et al. (2013) for more details).
Motivated by this result, we opt for Model Hybrid for computational analysis and perfor-
mance. Nevertheless, we carry out the other supply allocation approaches for Model 1
for a particular problem instance in order to demonstrate the effectiveness of the selected
policy. Note that we can easily modify SLMNRDR in order to model the other supply
allocation policies discussed in i and ii. Model PD is obtained by enforcing the decision
variables βs

j ≤ 0, whereas we simply set the parameter ε = 0 to attain the formulation of
Model TD.

Here we describe the performance metrics in terms of unsatisfied demand in order
to compare the performances of three alternate supply allocation policies. Following the
study of Noyan et al. (2013), we compare the proposed models with respect to the pro-
portion of unsatisfied demand (PUD). We evaluate equity in supply chain based on the
maximum proportion of unsatisfied demand over PODs (MPUD). Furthermore, we mea-
sure the average proportion of unsatisfied demand across PODs (APUD) while evaluating
the PUD in the network. In order to compare the proposed models, we illustrate the em-
pirical cumulative distribution functions (CDFs) of the random APUD and MPUD for a
particular problem instance for each model in Figure 5.1 and 5.2, respectively. Further-
more, for this problem instance, Figure 5.3 and 5.4 show the expected and maximum PUD
at each selected POD, respectively.
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Figure 5.1: Empirical cumulative distribution function of APUD
(τ (1) = 2.10, τ (1) = 22, c = 2.5, B = M )
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Figure 5.2: Empirical cumulative distribution function of MPUD
(τ (1) = 2.10, τ (1) = 22, c = 2.5, B = M )
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Figure 5.3: Expected PUD for each selected POD; selected PODs are listed in the legend and x-axis
(τ (1) = 2.10, τ (1) = 22, c = 2.5, B = M ).
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Figure 5.4: Maximum PUD for each selected POD; selected PODs are listed in the legend and x-axis
(τ (1) = 2.10, τ (1) = 22, c = 2.5, B = M ).

Figure 5.2 shows that the random MPUD for Model PD is the dominating one among
the other models. In addition, Model PD also generally performs better than Model TD
with respect to APUD, yet in Figure 5.1 the stochastic dominance of Model PD over
Model TD is not observed. Figure 5.3 and 5.4 demonstrate that Model PD is also the
superior model in contrast to other models in terms of the PUD. We generally observe
smaller values for the expected and maximum PUD at selected PODs as opposed to other
models. However, there are also some PODs which indicate the otherwise.

5.3 Computational Performance of the Proposed Algo-
rithm

We perform a computational study on larger instances, particularly |I| = 30 and |S| =

50, 100, 200, 500, in order to illustrate the effectiveness of the proposed integer L-shaped
algorithm. In this computational study, we only focus on Model Hybrid, which performs
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better in terms of both proposed metrics. Following the schemes (5.1) and (5.2) in Section
5.1; we select low, medium and high values for the τ (1) and τ (2) parameters, respectively.
Likewise, we choose a set of c parameter values which associate with low, medium and
high capacity limitations for PODs. Additionally, low, medium and high values of the
budget parameterB are considered in this computational study. We set κ(1) = 6, κ(2) = 8,
whereas ρ = 0.30 for all problem instances presented in Table 5.3 and 5.4.

We benchmark our solution approach against the mixed-integer solver CPLEX. All
the optimization problems are modeled with the AMPL mathematical programming lan-
guage. The DEFs of Model 1 and Model 2 were solved by IBM ILOG CPLEX 12.6.0

within the absolute optimality gap of 0.00001, and the relative optimality gap of 0.004
and 0.005 as the stopping criteria, respectively. The algorithm IntLS was implemented
in C++ through using the Concert Technology component library of IBM ILOG CPLEX

12.6.0, and the parallelization were carried out by the Boost C++ Libraries (Version
1.55.0). All runs were executed on 4 threads of a Lenovo(R) workstation with two Intel®
Xeon® 2.30 GHz CE5-2630 CPUs and 64 GB memory running on Microsoft Windows
Server 8.1 Pro x64 Edition. All reported times are elapsed times, and the time limit is set
to 7200 seconds.

As the problem instances get larger, solving the large-scaled DEFs by a standard
mixed integer programming solver becomes more difficult. Even though we experiment
on a smaller network (|I| = 30), we observe that CPLEX could not provide optimal so-
lutions within the prescribed time for larger scenarios. In particular, the weakness of
CPLEX is more pronounced for larger instances of Model 2 as seen from Table 5.4. In
such cases, we calculate the relative optimality gap by using the best known upper bound
on the objective value found by CPLEX. Let Ōbf denote the best lower bound on the
first-stage objective function value provided by CPLEX, when the prescribed time limit is
reached. Obf∗ denotes the best available objective function value within the time limit,
which defines a lower bound on the objective value. Then, we define an upper bound on
the relative optimality gap as follows:

UBROG =
Obf∗−Ōbf

Ōbf
.

We refer to the enhanced integer L-shaped algorithm with additional features (e.g.,
starting solutions, alternating cuts, scenario prioritization) as IntLS*, whereas we denote
the simple version of the integer L-shaped algorithm (in particular, without the listed
features) as IntLS. Table 5.3 and 5.4 exhibit the results related to the computational per-
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formances of IntLS* and CPLEX, whereas the computational results related to IntLS are
illustrated only in Table 5.3. More specifically, these tables show the elapsed solution
times, the UBROG values that are greater than the prescribed relative optimality gaps
particular to the proposed models, the relative reductions in the elapsed solution times by
IntLS* with respect to CPLEX and by IntLS* with respect to IntLS, if available. From
Table 5.3 and 5.4, it is evident that CPLEX finds high-quality solutions when it terminates
within the prescribed time limit. In such cases, UBROG values associated with those
solutions are smaller than the relative optimality gap specific to the model in consider-
ation. However, CPLEX terminates with no feasible solution within the specified time
limit for larger instances. Specifically, the performance of CPLEX for Model 2 is poor for
the majority of the problem instances compared to Model 1, since the mathematical pro-
gramming formulation of this problem is more complex. In these cases, we find the best
available upper bound on the optimal objective value to calculate a valid upper bound on
the optimality gap; however, these upper bounds are quite high. Unlike CPLEX, our solu-
tion algorithm (both versions; enhanced and simple) usually obtained optimal solutions in
shorter times. When our algorithm terminates due to the specified time limit, in general,
CPLEX was not able to find a feasible solution. We also demonstrate the superiority of
IntLS* in Table 5.3. In most of the problem instances, IntLS* showed better performance
in terms of the elapsed solution times. Therefore, we only provide IntLS*-related com-
putational performance metrics for Model 2 (excluding the computational performance
of IntLS) in Table 5.4. Furthermore, as discussed in Section 5.2, we only present a few
samples of the computational analysis for Model 2. We also present the individual con-
tributions of the additional features, particularly for Model 1 in Table 5.2. This table
illustrates the relative decrease in the elapsed solution times achieved by each feature
through adding the features one by one to the simple version of the integer L-shaped al-
gorithm, which is IntLS. For instance, in Table 5.2 Alternating Cuts column indicates the
relative improvements in the elapsed solution times, when this particular feature is added
to the integer L-shaped algorithm where only starting solutions feature is enabled. We
remark that the listed features are added in the particular order of the columns as in Ta-
ble 5.2. The results for Model 1 in Table 5.3 indicate that the parameters c and B have
also significant impacts on the computational performance. The smaller values of τ (1)

and τ (2) usually lead to a decrease in the elapsed solution times, since such alterations
reduce the size of the feasible region. Moreover, the impacts of these parameters on the
computational performance increase with large number of scenarios.

In summary, the computational study demonstrates that in general our enhanced inte-
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(τ (1), τ (2), c, B) |S| Starting Solutions Alternating Cuts Scenario Prioritization

(2.18,44,2,Medium)

50 2.3% 48.2% -
100 - - 19.4%
200 14.0% - 27.2%
500 - 11.7% -

(2.18,22,2.5,Medium)

50 20.0% 42.8% -
100 - - 97.2%
200 - 16.5% 78.5%
500 - - 94.6%

(2.10,44,2.5,Medium)

50 39.4% 1.4% -
100 56.1% - -
200 30.1% - 35.6%
500 12.9% 36.7% -

(2.18,44,2.5,Low)

50 17.1% 16.0% 38.5%
100 28.0% - 95.2%
200 - 56.5% 21.3%
500 1.1% 9.9% -

(2.20,60,3,High)

50 67.5% - -
100 64.1% 9.3% 15.0%
200 - 57.6% 6.4%
500 35.2% 8.5% 46.8%

(2.18,44,2.5,Medium)

50 34.6% 0.8% 42.1%
100 95.2% - 95.2%
200 - 57.6% 12.7%
500 39.1% 12.4% -

Table 5.2: Improvement percentages in the elapsed solution times by the additional features for Model 1

-: No relative improvement with respect to the elapsed solution time.
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ger L-shaped algorithm produces better computational performance compared to CPLEX,
especially for larger scenarios. Additionally, the enhanced version of the integer L-shaped
method performs better than its simpler version for the majority of the problem instances.
However, we note that the computational performance presented in this study is not con-
clusive. That is, we cannot assert that our solution algorithm is superior than the bench-
mark solver CPLEX, since we are not able to provide results on the computational perfor-
mance for larger number of nodes (i.e., |I| = 60, 94). That is because, we encountered
infeasibility for a few problem instances where |I| = 60. For the other problem instances,
our solution algorithm reached to its prescribed time limit. Furthermore, we note that
the additional features which are proposed to improve the performance of the enhanced
integer L-shaped algorithm as discussed in Section 4.2 do not perform better than the
simple version of the solution algorithm for all test instances. Along these lines, we in-
tend to test our solution algorithm on a more reasonable parameter setting (also including
the larger networks for the computational performance), and improve the computational
performance of the proposed solution algorithm as a future work. Accordingly, we can
evaluate the computational performance of the proposed integer L-shaped algorithm more
comprehensively.
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(τ (1), τ (2), c, B) |S| IntLS IntLS* CPLEX Rel. Reduc.

(2.18,44,2,Medium)

50 31.41 17.71 43.73 59.5
100 1033.67 901.62 102.54 -
200 104.29 79.19 1070.6 92.6
500 1482 7201.574 7218.45 ?[N] 0.2

(2.18,22,2.5,Medium)

50 30.09 18.12 35.89 49.5
100 29.06 32.36 77.51 58.3
200 154.5 33.89 204.96 83.5
500 4427.18 385.8 2623.06 85.3

(2.10,44,2.5,Medium)

50 28.45 18.3 46.05 60.3
100 88.38 42.54 100.82 57.8
200 63.68 42.01 584.77 92.8
500 311.09 247.01 4388.28 94.4

(2.18,44,2.5,Low)

50 28.95 12.4 45.05 72.5
100 61.51 39.63 186.07 78.7
200 103.5 38.38 291.54 86.8
500 200.67 184.78 4067.92 95.5

(2.20,60,3,High)

50 41.95 18.03 34.61 47.9
100 88.44 24.51 82.53 70.3
200 42.73 24.52 307.28 92.0
500 226.61 71.4 2061.95 96.5

(2.18,44,2.5,Medium)

50 33.91 12.74 46.58 72.6
100 911.82 39.58 235.44 83.2
200 95.87 43.59 298.81 85.4
500 342.18 320.31 4027.07 92.0

Table 5.3: Model 1- Elapsed solution times, the UBROG values (%), and the relative reduction in IntLS*
solution times with respect to CPLEX (%), |I| = 30, ρ = 0.3.

UBROG values are reported in [ ]; the values above 5000% are indicated with N and the
values below 1% are not reported. The elapsed solution times of IntLS* which are higher
than those of IntLS are indicated with4.
†: Time limit with integer feasible solution.
?: Time limit with no integer feasible solution.
-: No Relative Reduction in the elapsed solution times.
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(τ (1), τ (2), c, B) |S| IntLS* CPLEX Rel. Reduc.

(2.18,44,2.5,Medium)

50 1204.19 1789.99 32.7
100 7200.37 † 7200.26 † -
200 3307.86 7226.63 † [N] 54.2
500 7225.24 † 7200 ? [N] -

(2.18,22,2.5,Medium)

50 7135.63 1784 -
100 7205.06 † 4806.99 -
200 7205.28 † 7221.85 ? [N] -
500 7232.83 † 7228.52 ? [N] -

(2.10,44,2.5,Medium)

50 603.51 1590.23 62.0
100 7200.08 † 7087.95 † -
200 4023.06 7222.95 ? [N] 44.3
500 7228.37 † 7237.08 ? [N] -

Table 5.4: Model 2- Elapsed solution times, the UBROG values (%), and the relative reduction in IntLS*
solution times with respect to CPLEX (%), |I| = 30, ρ = 0.3.

UBROG values are reported in [ ]; the values above 5000% are indicated with N and the
values below 1% are not reported. The elapsed solution times of IntLS* which are higher
than those of IntLS are indicated with4.
†: Time limit with integer feasible solution.
?: Time limit with no integer feasible solution.
-: No Relative Reduction in the elapsed solution times.
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Chapter 6

Conclusion and Future Work

We have introduced a new last mile relief network design problem with resource real-
location, which addresses the critical concerns of relief organizations. In particular, the
proposed corresponding optimization models capture the uncertain aspects of the post-
disaster environment, and address accessibility, equity, and budget issues. In terms of in-
corporating equity, we use the concept of coverage sets based on the accessibility scores,
and enforce a previously proposed hybrid supply allocation policy that can achieve high
levels of equity and accessibility simultaneously. In addition, we introduce new acces-
sibility metrics considering the multi-echelon network structure. More specifically, we
develop two types of aggregated accessibility metrics. The first one is based on a direct
weighted summation of the accessibility scores associated with the used links. Alterna-
tively, the second one involves a more elaborate expression for the accessibility of the
PODs from the LDCs. Unfortunately, according to our computational study, the second
and more elaborate modeling approach turns out to be less effective in terms of our way
of quantifying accessibility compared to the simpler version.

As part of our ongoing research, we investigate how to improve the proposed modeling
approaches for incorporating accessibility into optimization models. In particular, we
intend to enhance the second model to mitigate its drawbacks. In addition, developing
risk-averse versions of the proposed models is a topic of future research. Such models
would incorporate the decision makers’ risk preferences, and provide them with risk-
averse decisions that would perform better in the presence of high variability compared
to their risk-neutral versions.
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