
Explode: An Extensible Platform for Differentially
Private Data Analysis

Emir Esmerdag∗, Mehmet Emre Gursoy†, Ali Inan‡ and Yucel Saygin§
∗Istanbul Technical University. Istanbul, Turkey. Email: emiresmerdag@gmail.com
†Georgia Institute of Technology. Atlanta, GA. Email: memregursoy@gatech.edu

‡Adana Science and Technology University. Adana, Turkey. Email: ainan@adanabtu.edu.tr
§Sabanci University. Istanbul, Turkey. Email: ysaygin@sabanciuniv.edu

Abstract—Differential privacy (DP) has emerged as a popular
standard for privacy protection and received great attention from
the research community. However, practitioners often find DP
cumbersome to implement, since it requires additional protocols
(e.g., for randomized response, noise addition) and changes to
existing database systems. To avoid these issues we introduce
Explode, a platform for differentially private data analysis. The
power of Explode comes from its ease of deployment and use:
The data owner can install Explode on top of an SQL server,
without modifying any existing components. Explode then hosts a
web application that allows users to conveniently perform many
popular data analysis tasks through a graphical user interface,
e.g., issuing statistical queries, classification, correlation analysis.
Explode automatically converts these tasks to collections of SQL
queries, and uses the techniques in [3] to determine the right
amount of noise that should be added to satisfy DP while
producing high utility outputs. This paper describes the current
implementation of Explode, together with potential improvements
and extensions.

Keywords—Differential privacy; privacy protection; data min-
ing; relational databases

I. INTRODUCTION

Vast amounts of data can be collected and stored via
modern computer systems. Although mining this data has
clear benefits, privacy remains a major obstacle. Differential
privacy (DP) is currently considered the state of the art
in privacy protection. Yet, practical deployment of DP has
not been successful due to practitioners’ and data owners’
concerns. Among leading concerns are that: (i) DP is difficult
to understand, and users need to be experts in DP to use a DP
system. (ii) DP is not compatible with existing systems, and
thus implementing it is a burden.

To address these challenges, we propose Explode, a dif-
ferentially private data analysis platform. It appeals to the
data owner because it works on top of SQL databases (still
a widely deployed database standard), is easy to install and
works with no changes to existing infrastructure. It appeals to
the non-expert user because its computation and algorithms are
transparent to the user. The user need not have any background
in DP, and only interacts with Explode through a graphical
web interface. Explode is designed to feel like a high-level
automated data analysis platform.

The development of Explode was fueled by the theoretical
findings in [3]. DP ensures privacy by adding noise to the
outputs of algorithms or queries. A major difficulty in DP is

that computing the noise magnitude for DP is NP-hard, since
calculating the sensitivity of an algorithm or query set is NP-
hard [9]. Therefore, research in DP has focused on writing
or modifying an algorithm so that it has a fixed, well-defined
sensitivity that can be calculated easily. This is in conflict with
the need to implement arbitrary data analysis tasks for which
sensitivity is unknown or unclear in advance. This is where
the theoretical contribution of Explode lies: We efficiently
find a (tight) upper bound on sensitivity using the techniques
presented in [3], which allows Explode to add noise to satisfy
DP in arbitrary tasks - as long as the data accesses of the task
can be expressed as a serial or parallel execution of statistical
queries.

We believe that Explode is beneficial both to researchers
and practitioners. From a researcher’s point of view, Explode
is an extensible platform on which many DP data analysis
tasks can be implemented, their accuracy can be compared
and new datasets can be privately studied. For example, upon
devising a new algorithm, the researcher can implement it on
Explode and compare it to existing algorithms to see if the new
algorithm performs better. In addition, a researcher may run
one algorithm with different privacy levels and parameters, to
observe how the outcome of the algorithm changes according
to the parameters. From a practitioner’s point of view, Explode
can be used as a simple add-on to protect their private data
with DP, while providing users with a platform with various
data analysis capabilities.
Comparison to Related Work. We report the main differ-
ences between Explode and the other works enabling prac-
tical differentially private data analysis, with the purpose of
better clarifying where our work stands. In [5], McSherry
introduces PINQ, a platform that facilitates users’ development
of differentially private programs in the LINQ language. PINQ
provides operators for queries that have fixed sensitivity, and
does not perform sensitivity analysis for complex programs.
Also, while users have to write their own programs in PINQ,
Explode comes with several ready-to-use programs. In [8],
Roy et al. introduce Airavat, a privacy-preserving framework
for MapReduce computation on the cloud. Airavat aims to
bound the information leakage in cloud computation, which
is fundamentally different than our setting (client-server) and
infrastructure. In [6], GUPT is proposed. GUPT’s main con-
tribution is that it allocates a privacy budget to each task



based on the expected accuracy of that task’s output. As such,
it eliminates clients’ budget management. In [7], Reed and
Pierce propose Fuzz, a functional programming language with
a calculus that supports the generation of differentially private
functions. For functions written in Fuzz, sensitivity is always
well-defined and bounded. The use of Fuzz requires the data
owner to get acquainted with the language, while Explode
has no such requirement. Simultaneous to our work, Hay et
al. developed DPComp [1]. DPComp is a web-based system
in which users can assess state of the art DP algorithms on
various datasets, and contribute new algorithms and datasets.
DPComp only considers algorithms that answer 1D and 2D
range-count queries, whereas we consider also more complex
data analysis tasks.

II. SYSTEM OVERVIEW

A. Preliminaries

Differential Privacy. Informally, an algorithm A is differen-
tially private if its behavior is insensitive to a small change in
the input database. Formally, A is ε-differentially private (ε-
DP) if for all neighboring databases D,D′ and for all possible
outcomes S ⊆ Range(A), Pr[A(D) ∈ S] ≤ eε×Pr[A(D′) ∈
S]. Two databases D,D′ are called neighboring databases, if
one can be obtained from the other by changing only one
tuple.

A prominent method in satisfying DP is by perturbing the
output of algorithm A by random noise. The noise depends
on the L1 sensitivity of the algorithm, which measures how
much the output of A can change due to a change in one
data tuple. Upon measuring the sensitivity of A, one can use
the Laplace mechanism to achieve DP: Let SL1

denote the
L1 sensitivity and Lap(λ) denote a random variable sampled
from the Laplace distribution with mean 0 and scale parameter
λ. For a query q : D → R, the algorithm A that answers q by
A(q,D) = q(D) + Lap(λ) is ε-DP if λ ≥ SL1/ε.
λ is often called the noise magnitude, and directly depends

on SL1
. However, computing SL1

for arbitrary query sets
or data analysis tasks is NP-hard. As mentioned earlier, our
theoretical contribution lies in this area: Since we can calculate
an upper bound on SL1

for any query set, as long as the
algorithm A can be expressed as a serial or parallel execution
of several query sets, its ε-DP implementation using Explode
is easy.
Data Model. We assume that data is stored in a central
SQL server. SQL databases are still among the most popular
databases used in practice. We allow databases with multiple
tables, as long as the tables are not connected, and algorithms
and queries are executed on only one table at a time. This is
because a JOIN operation has potentially unbounded sensitiv-
ity [5].

Each table in the database may contain several attributes
(i.e., columns). We make the following assumptions regarding
the attributes: (i) The domain of each attribute is finite. Finite
domains allow bounding the effect of a single record on
the output of domain-specific aggregate functions, such as
SUM. (ii) Attributes are either numeric, categorical or ordinal.

Some attribute types (e.g., binary objects, dates) can be easily
transformed into numeric values. Other attribute types (e.g.,
strings) cannot be supported, due to the difficulty in converting
their domain into a finite, well-defined set of values.
Query Model. Differential privacy allows only statistical
queries. Further, Explode works with statistical range queries
written in SQL (since we assume SQL as our underlying
database). We say that such queries follow the following form:

SELECT AGG
FROM T
WHERE pred(A1) AND ... AND pred(Ad)

where AGG is an aggregate function (e.g., COUNT, SUM, MIN,
MAX) and pred(Ai) is a predicate on attribute Ai of table
T . Example predicates are Ai ≥ x, Ai BETWEEN x AND y
etc. Disjunctive predicates (i.e., predicates involving x OR y)
are not allowed.

In essence, queries in this model build d-dimensional hy-
perrectangles as their range, and retrieve a statistical property
(e.g., COUNT or MIN) of that hyperrectangle. We require
that the data accesses of data analysis tasks conform to this
grammar. Once queries are issued and (noisy) results are
retrieved, the data analysis task may use the results in any
(however complex) way it desires, e.g., calculate conditional
probabilities using COUNTs, find entropy between attributes
etc.

B. System Design

Implementation Details. Explode was developed primarily
in node.js, and runs on 64-bit Linux systems. During
installation, it requires connection parameters to a SQL server.
We tested Explode on 64-bit Ubuntu 14.04, node.js version
4.4.3 and MySQL version 5.5.
Client-Server Setting. Once Explode is successfully installed,
it acts as a server that hosts ε-DP data analysis tasks for its
clients. The clients need to sign up to use Explode. We use
the standard username-password combination to authenticate
clients. Authentication is handled by node.js’s Passport1

middleware.
Budget Management. Each user has a non-negative privacy
budget for each table in the database. While running a task X
on table T , the user specifies how much budget s/he would
like to spend on X . Upon the successful completion of X , the
specified amount is deducted from the user’s budget for T . The
user’s total expenditure cannot exceed their initial budget.

For example, let Alice start with budget εA = 2 for the
Census table. Alice spends budget ε1 = 1 for the first task,
ε2 = 0.3 for the second task and ε3 = 0.7 for the third task.
By the sequential composition property of DP, her access to
Census data is εA differentially private, since εA = 2 ≥ ε1 +
ε2 +ε3. Now, if Alice would like to run a fourth task with ε4,
since the total of her εs exceeds her initial budget εA she will
not be permitted. Similarly, if Alice had tried to set ε3 = 0.8
for her third task, she would not have been permitted.

1http://passportjs.org/



Fig. 1. Profile page

Users’ profile page (i.e., the page they land on after log-
ging in) summarizes their remaining budgets. An excerpt is
provided in Fig. 1. Also, for easier management of users’
budgets, we supply the data owner with simple scripts that
update (e.g., reset, delete) budgets.
Authentication & Security. Since users have privacy budgets
(which are essentially treated as their currency); it is critical
to protect their accounts and the data they retrieve from the
server. For example, if Alice can view or hijack responses
to Bob’s queries, this defeats the purpose of having separate
budgets for Alice and Bob, since Alice can learn private
information without spending any of her budget.

Explode manages users’ security via creating encrypted
sessions between the server and its clients. We use standard
SSL for this purpose. On the client’s side, session-related
information is managed by a cookie. On the server’s side,
Explode creates a job scheduler for maintenance. The job
scheduler runs periodically to check for inactive sessions and
ends them.

C. Current Features

In this section we list the current capabilities and data
analysis tasks supported by Explode.
Statistical Query Sets for Data Analysis. We support an-
swering arbitrary statistical query sets written in SQL. These
are subject to the data and query models given in Section
II-A, e.g., if the user poses a non-statistical query trying to
fetch actual rows from the database, then the query will not
be answered.

To use this functionality, the user types or uploads his query
set and specifies the privacy budget he would like to spend.
Using our sensitivity calculation strategies, a bound on the
noise magnitude is obtained, and answers are returned using
the Laplace mechanism.
Feature Selection. Feature selection is the process of choosing
a subset of relevant features (e.g., predictor attributes) before
constructing a model. Explode performs feature selection by
privately calculating the entropy between attributes. Given a
table, a class attribute, ε and k, it retrieves the top-k attributes
with lowest entropy to the class attribute. These columns are
the most homogeneous with class, and are therefore good
indicators of the class values.

Fig. 2. Visualizing correlation between attributes in the Adult dataset

Correlation Analysis. Another interesting task is to analyze
the correlation between the attributes of a table. For this
purpose, Explode uses χ2 correlation tests. Consider calcu-
lating Pearson’s χ2 test statistic for two categorical attributes
X = {x1, ..., xn} and Y = {y1, ..., ym}:

χ2 =
∑
i

∑
j

(Oij − Eij)
2

Eij

The “observed” values, Oij , are retrieved via COUNT
queries: SELECT COUNT(*) FROM T WHERE X = xi
AND Y = yj . The “expected” values, Eij = a ×
b/t, where a is the answer to SELECT COUNT(*)
FROM T WHERE X = xi, b is the answer to
SELECT COUNT(*) FROM T WHERE Y = yj , and t is
the answer to SELECT COUNT(*) FROM T. t is considered
public knowledge for the given definition of DP, and hence we
could do without adding noise to t. The query set for feature
selection constitutes of queries in the above form. Answering
this query set via DP is the same as answering any arbitrary
query set.

We performed the χ2 test for the Adult dataset retrieved
from the UCI Machine Learning Repository2. Using Explode,
we found the levels of correlation between attributes and
visualized them, as in Fig. 2. Note that even though the
correlation analysis was ε-DP, the correlation levels are consis-
tent with what one would expect without noise. For example,
there appears to be a strong correlation between Relationship
and Marital status, Race and Country, and Education and
Occupation. However, there is a weak correlation between
Race and Education, and Hours Worked and Salary.
Classification. Explode builds Naive Bayes Classifiers (NBC)
to classify instances. The training data sits in the data owner’s
database, and is private. The test data is supplied by the user.
That is, the user has some tuples that he would like to classify,
but the classification process needs to be ε-DP.

Given a table T , class attribute C with domain Ω(C), n
predictor attributes (an appropriate set of predictors can be
chosen via, e.g., feature selection) and their values x1, ..., xn

2http://archive.ics.uci.edu/ml/datasets/Adult



for an instance to be classified, NBC assigns the following
class label:

arg max
Ck∈Ω(C)

[p(Ck)×
n∏

i=1

p(xi|Ck)]

In the above, p(xi|Ck) is simply:

p(xi|Ck) =
Count instances w/ xi and Ck

Count instances w/ Ck

and p(Ck) is:

p(Ck) =
Count instances w/ Ck

Count all instances
Counting instances translate to issuing COUNT queries on

the private database. Thus, the query set for NBC consists of
queries that calculate the probabilities above. After obtaining
(noisy) answers to these queries, an NBC model can be built,
and instances can be classified.
Histogram Publishing. Interestingly, in the last few years a
great focus was placed on accurately answering histogram
and COUNT queries while preserving DP. Many algorithms
were implemented solely for this purpose. We identified a
state of the art algorithm [10] (benchmarked against other
algorithms in [2]) and implemented this algorithm in Explode,
by expressing its data accesses as statistical SQL queries. Our
goals by implementing [10] are: (i) For a fixed privacy budget,
by using a state of the art algorithm we produce histograms
that are more accurate than previous algorithms. (ii) We show
that works/algorithms independent from Explode can be added
to Explode if desired. To make histogram results more user-
friendly, in addition to yielding the private answers in plain
text format, we also visualize the histograms.
Adding New Features. Any data analysis task whose data
accesses can be expressed as a collection of statistical SQL
queries, and relies on the Laplace and exponential mechanisms
[4] of DP can be added to Explode. As we continue to develop
Explode, we plan to add new tasks (e.g., clustering) to make
Explode a more complete data analysis platform.

On the other hand, Explode also has some limitations. These
can be discussed in two categories: (i) Limitations due to DP:
Since we employ DP as our privacy protection standard, we
need to place requirements on our data and query models.
These were given in Section II-A. (ii) Limitations due to SQL:
Not all algorithms can be expressed as a collection of statistical
SQL queries. In addition, Explode’s performance inherently
depends on the number of SQL queries a task will require
(for complex tasks, this can be many) and the SQL server’s
efficiency in answering them.

III. DEMONSTRATION DESCRIPTION

A. Demonstration Plan

Explode is ready to demonstrate. All components and
features described in this paper have been implemented. For
implementation details, we refer the reader to Section II-B.
We will use commercial hardware to host a copy of Explode
at the demo session.

B. Interaction and User Experience
We will prepare a local server and database containing

popular benchmark datasets (e.g., the Adult dataset). We will
encourage participants (i.e., users) to directly interact with
Explode by creating an account or using an existing account.
The participants will therefore be able to test all features and
design components of Explode. We will also prepare sample
inputs (e.g., sample classification instances) in order to quickly
demonstrate some features of our system.

Explode has an easy-to-use graphical user interface, and its
algorithms are transparent to the user. It is designed to feel
like a high-level data analysis suite. Thus, participants need
not be acquainted with DP or any of the theoretical aspects of
our algorithms.

IV. CONCLUSION

We propose to demonstrate Explode, a differentially-private
data analysis platform. Explode provides a convenient service
for clients to analyze private data, while protecting the privacy
of the data. Explode is powered by a sensitivity calculation
technique that determines the required amount of noise for
DP for an arbitrary set of statistical queries. Thus, any data
analysis task whose data accesses can be reduced to a set of
statistical queries can be added to Explode. To demonstrate
this, we added several proof-of-concept tasks, e.g., Naive
Bayes classification, feature selection etc. In addition, we also
added a state of the art algorithm for histogram publishing,
to demonstrate the plausibility of implementing independent,
recent research in DP. As we improve Explode, we plan to add
new components and support for more data analysis tasks.

ACKNOWLEDGMENT

This research was funded by The Scientific and Techno-
logical Research Council of Turkey (TUBITAK) under grant
number 114E261.

REFERENCES

[1] Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., Zhang, D., &
Bissias, G. (2016, June). Exploring Privacy-Accuracy Tradeoffs using
DPComp. In Proceedings of SIGMOD’16 (pp. 2101-2104). ACM.

[2] Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., & Zhang, D.
(2015). Principled Evaluation of Differentially Private Algorithms using
DPBench. arXiv preprint arXiv:1512.04817.

[3] Inan, A., Gursoy, M. E., Esmerdag, E., & Saygin, Y. (2016, July). Graph-
based modelling of query sets for differential privacy. In Proceedings of
SSDBM’16 (p. 3). ACM.

[4] McSherry, F., & Talwar, K. (2007, October). Mechanism design via
differential privacy. In FOCS’07 (pp. 94-103). IEEE.

[5] McSherry, F. D. (2009, June). Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceedings of SIG-
MOD’09 (pp. 19-30). ACM.

[6] Mohan, P., Thakurta, A., Shi, E., Song, D., & Culler, D. (2012, May).
GUPT: privacy preserving data analysis made easy. In Proceedings of
SIGMOD’12 (pp. 349-360). ACM.

[7] Reed, J., & Pierce, B. C. (2010, September). Distance makes the types
grow stronger: a calculus for differential privacy. In ACM SIGPLAN
Notices (Vol. 45, No. 9, pp. 157-168). ACM.

[8] Roy, I., Setty, S. T., Kilzer, A., Shmatikov, V., & Witchel, E. (2010,
April). Airavat: Security and Privacy for MapReduce. In Proceedings of
USENIX NSDI’10 (Vol. 10, pp. 297-312). USENIX Association.

[9] Xiao, X., & Tao, Y. (2008). Output perturbation with query relaxation.
Proceedings of VLDB’08, 1(1), 857-869.

[10] Zhang, X., Chen, R., Xu, J., Meng, X., & Xie, Y. (2014). Towards
Accurate Histogram Publication under Differential Privacy. In SIAM
International Conference on Data Mining (pp. 587-595).


