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Abstract  

Accurate detection, tracking and classification of micro structures through high speed 

imaging are very important in many biomedical applications. In particular, visualization 

and characterization of hydrodynamic cavity bubbles in breaking kidney stones have 

become a real challenge for researchers. Various micro imaging techniques have been 

used to monitor either an entire bubble cloud or individual bubbles within the cloud.  

The main target of this thesis is to perform an image based characterization of 

hydrodynamic cavity bubbles for kidney stone treatment by designing and constructing 

a new imaging setup and implementing several image processing and computer vision 

algorithms for detecting, tracking and classifying cavity bubbles. A high speed CMOS 

camera with a long distance microscope illuminated by 2 pulsed 198 high performance 

LED arrays is designed. This system and a µ-PIV setup are used for capturing images of 

high speed bubbles. Several image processing algorithms including median and 

morphological filters, segmentation, edge detection and contour extraction algorithms 

are extensively used for the detection of the bubbles. Furthermore, incremental self-

tuning particle filtering (ISPF) method is utilized to track the motion of the high speed 

cavity bubbles. These bubbles are also classified by their geometric features such as 

size, shape and orientation. An extensive visualisation work is conducted on the new 

setup and cavity bubbles are successfully detected, tracked and classified from the 

microscopic images. Despite very low exposure times and high speed motion of the 

bubbles, developed system and methods work in a very robust manner. All the 

algorithms are implemented in Microsoft Visual C++ using OpenCV 2.4.2 library.  

 

  

  

 



  

 

Böbrek Taşı Tedavisi için Hidrodinamik Kavite Kabarcıklarının 

Görüntülenmesi ve Görüntü Tabanlı Karakterizasyonu 

Doğan Üzüşen  

ME, Master Tezi, 2014  

Tez Danışmanı: Prof. Dr. Mustafa Ünel 

Anahtar Kelimeler: Mikroskobik Görüntüler, PIV, Görüntüleme, Medyan Filtre, 

Morfolojik Filtreler, Görüntü Bölütleme, Mikro-akışkanlar, Kabarcık Tespiti, Takip 

Özet 

Birçok biyomedikal uygulamalarda doğru şekilde tesbit, izleme ve yüksek hızda 
görüntüleme yoluyla mikro yapıların sınıflandırılması çok önemlidir. Özellikle, böbrek 
taşlarının parçalanmasında kullanılan hidrodinamik kavite kabarcıklarının 
görüntülenmesi ve karakterizasyonu araştırmacılar için gerçek bir sorun haline 
gelmiştir. Çeşitli mikro görüntüleme teknikleri hem bütün bir kabarcık bulutunu hem de 
bulut içinde bulunan kabarcıkları tek tek izlemek için kullanılmıştır.  

Bu tezin ana hedefi yeni bir görüntüleme düzeneği tasarlayıp, inşa ederek kavite 
kabarcıklarının tespiti, takibi ve sınıflandırması adına çeşitli görüntü işleme ve 
bilgisayar ile görme algoritmaları yardımıyla böbrek taşı tedavisi için hidrodinamik 
kavite kabarcıklarının görüntü tabanlı karakterizasyonunu yapmaktır. 2 adet darbeli 198 
yüksek performanslı LED tarafından aydınlatılan yüksek hızlı bir CMOS kamera ile bir 
uzun mesafe mikroskop tasarlanmıştır. Bu sistem ve μ-PIV kurulumu yüksek hızlı 
kabarcıkların görüntülerini yakalamak için kullanılmıştır. Medyan ve morfolojik 
filtreler, bölütleme, kenar bulma ve kontur çıkarma algoritmaları dahil olmak üzere 
birçok görüntü işleme algoritması kabarcıkların tespiti için yoğun bir şekilde 
kullanılmıştır. Ayrıca, artarak kendini ayarlayan parçacık filtre (ISPF) yöntemi yüksek 
hızlı kavite kabarcıklarının hareketini izlemek için kullanılmıştır. Bu kabarcıklar aynı 
zamanda boyut, şekil ve yön gibi geometrik özelliklere göre sınıflandırılmıştır. Yeni 
kurulum üzerinde kapsamlı bir görüntüleme işlemi gerçekleştirilmiş ve mikroskobik 
görüntülerden kavite kabarcıklarının tespiti, takibi ve sınıflandırılması başarıyla 
gerçekleştirilmiştir. Geliştirilen sistem ve yöntemler, çok düşük pozlandırma sürelerine 
ve kabarcıkların yüksek hızlı hareketine rağmen oldukça dayanıklı bir şekilde 
çalışmaktadır. Tüm algoritmalar Microsoft Visual C++ ve OpenCV 2.4.2 kütüphaneleri 
kullanılarak gerçeklenmiştir. 
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Chapter I  

  

1  Introduction  

With the recent advances in micro/nano technology, various sophisticated microfluidic 

devices such as micro-bioreactors, micro-heat exchangers, µ-TAS (total analysis system), 

Lab-on-a-chip (LOC) and fluidic logic devices have been applied widely in the field of 

biomedical and process engineering [1-3]. These kinds of microfluidic devices, particularly 

bio-chips, have different types of microchannels. The Reynolds numbers for microchannels 

are generally quite low and the character of the flow at microscale is typically laminar. 

However, numerical flow simulations are difficult to accomplish because of complex fluid 

characteristics and flow geometries, surface phenomena such as field gradients, fluid- 

structure interaction, etc. The exhaustive analysis and the reliable experimental 

characterization of the 2D/3D flow inside the micro channels play a key role in their proper 

and effective design and the confirmation of numerical flow simulations. In order to analyze 

the flow phenomena in microfluidics, a convenient experimental technique that can solve 

the volatile and spatial resolutions of the given micro-flow is definitely needed [4-5]. 

For a comprehensive analysis of two-phase flows, uninterrupted optical techniques are 

most proper. This type of measurement techniques should provide the velocity fields of 

both phases and the local particle size distributions throughout the conceived two-phase 

system. Particle image velocimetry (PIV) is a technique that is applied by Santiago et al. [6] 

for the first time in order to measure flow fields in microfluidic systems due to its capability 

to measure whole field, sudden fluid motion. In a typical PIV, a thin sheet of laser light is 

generated from pulse laser for illumination of a single plane within the fluid flow, hence 

determining the measurement region of the PIV system. In micro-PIV (μPIV) which is shown 
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in Figure 1.1 (a), laser sheet generation is not practicable, and the entire volume of the flow 

is illuminated and now the depth of focus of the microscope objective determines the 

measurement section. Because the experimental environment in µPIV is quite distinct to 

larger scale type of PIV, a separate research and definition of LED illumination for µPIV 

applications can be performed. There are a few previous micro-PIV studies where LEDs 

have been used as illumination sources [7-8]. Rather than a typical PIV laser system, a LED 

illumination system has many advantages such as small size, adaptability to different range 

of wavelengths, freely tuning pulse length and repetition rate, low energy requirement and 

very low cost. One of the main disadvantages is the lower light intensity. This problem can 

be solved by regulations in the setup, as will be described in more detail in the next 

sections. Image acquisition, that is record of an image in digital form, is absolutely the first 

step in any image processing system. Particle images of fluid motion are captured by double 

exposure mode CMOS camera; two sequential particle images distinguished by specified 

time interval between two laser pulses are captured. One of the main reasons why high-

speed CMOS cameras are used for recording purpose of microfluids is high resolution 

property under various conditions; thus acquired data from images can be directly 

processed with the existing computer vision techniques for extracting and tracking objects. 

Hydrodynamic cavitation is the generation of vapour bubbles due to the sudden drop in 

pressure when a liquid flows through a constriction [25-27] and limiting only to bubbly 

flows, the application of phase-Doppler anemometry (PDA) is not fully satisfying since 

bubbles are only spherical up to a diameter of about 1.0 mm and thus larger bubbles which 

are most pertinent for technical operations cannot be measured correctly [9-10]. In recent 

years, methods of pulse-light velocimetry (PLV), such as PIV and particle tracking 

velocimetry (PTV) have been applied to bubbly flows [11-21]. Crucial for a robust and 
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simultaneous velocity measurement of both phases (i.e. liquid and bubbles) is the 

separation of images comprised of tracer particles and bubbles. 

Monitoring microscopic images and processing them using several robust vision 

modules in the context of micro-manipulation were carried out in the past [22-24]. In 

particular, visualization and characterization of cavity bubbles in breaking kidney stones 

have become a real challenge for researchers. Various micro imaging techniques have been 

used to monitor either an entire bubble cloud or individual bubbles within the cloud, where 

the shape of the bubbles is also essential so image segmentation is a significant task in 

robust image analysis and a principle process of low-level vision which provide important 

data for further image processing. In many image analysis applications, it is generally the 

first, most fundamental and most difficult step. Also outputs of the computer vision 

algorithms simplify the solution of many difficulties such as low illumination, out of focus 

etc. This fact is one of the main motivations for applying image processing techniques. 
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Figure 1.1 : Micro fluids Visualization Solutions: (a) Particle Image Velocimetry (PIV),           
(b) Phase Doppler Anemometry (PDA), (c) Inteferometric Particle Imaging (IPI), (d) Micro 
Particle Shadow Sizer, (e) Back illumination Setup, (f) Micro Strobe 
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1.1 Objective   

The main target of this thesis is to perform visualization and an image based 

characterization of micro-scale hydrodynamic bubbly cavitation and utilizes image analysis 

algorithms for capturing, extracting and classifying cavitation bubbles that are used in 

kidney stone treatment. An extensive visualisation work is conducted using a high 

resolution planar imaging setups based on both µPIV and background illumination with 

LEDs, only one double image high speed CMOS camera for each setup, a long-distance 

microscope and the associated visualization software, which provide an online 

measurement in high speed bubbly cavitation.  

This thesis focuses on identification of hydrodynamic bubbly cavitation used for kidney 

stone treatment by acquiring the bubble size, shape and orientation on the basis of an 

accurate bubble image recognition algorithm using gradient-based image processing filters. 

This technique should be able to capture and analyze bubbles for all pressure values. 

However, capturing high speed bubbles in high frame rates causes extreme insufficient light 

from environment due to short exposure time so variable iris is employed in the camera 

system in order to ensure sufficient light condition. In addition, the same experimental set-

up should provide the fluid phase velocity field with sub-pixel accuracy within a bubble 

swarm on the basis of PIV. This method needs an appropriate separation between images 

resulting from bubbles and tracer particles. Also, the bubble velocity should be determined 

with an object tracking algorithm. In order to achieve this, a solution consisting of three 

steps is produced: image acquisition, detection and analysis. In the first step a high speed 

CMOS camera system with a long distance microscope illuminated by LEDs is designed and 

a µPIV setup in which another CMOS camera mounted to the body of a microscope is used. 

Thanks to the variable iris the micro-bubbles can be captured despite the insufficient 

environment light. Secondly, image processing algorithms are used for the purpose of 
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object recognition.  Incremental self-tuning particle filtering (ISPF) is exploited in order to 

track cavitating bubbles in the third part. 

 

1.2 Structure of the Thesis and Contributions  

The thesis is organized as follows: 

Chapter 2 reviews the most commonly used PIV and other image acquisition techniques for 

the measuring micro/nano particles velocity field, size and shape. Specific attention is 

dedicated to µPIV and gradient based detection algorithms because they will be applied in 

subsequent chapters. Moreover, most common computer vision methods, tracking 

algorithms used in object tracking and medical application of cavitation types are described. 

Chapter 3 proposes an imaging and detection framework for visualization and analysis of 

high speed cavitating bubbles. LED based illumination system and a long distance 

microscope are integrated to increase the resolution of the recorded image. Moreover, 

hydrodynamic cavitation system optimization of the effects of probe-to specimen distance 

on erosion rate of kidney stones are presented. 

Chapter 4 describes the experimental and computational results obtained from the work 

presented in Chapter 3. 

Chapter 5 presents conclusion of the thesis and discusses possible future works.  

Contributions of the thesis can be listed as follows: 

 A comprehensive high speed visualization method with LED based illumination that 

acquires high speed cavitating bubbles using dedicated image processing software is 

conducted. A variable iris is used for insufficient light conditions. 

 A µPIV setup is customized by Lab-on-a-Chip and used for high level visualization using a 

powerful laser system. 
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 Extensive computer vision analysis is performed by the utilization of several image 

processing algorithms in order to detect the micro bubbles and define their shape, size 

and orientation. 

 Optimization and analysis of the high speed hydrodynamic cavitation system is 

accomplished. 
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Chapter II  

  

2 Background  

Recently, quantitative flow visualization has become an essential tool for investigating 

complex flow structures. Recent advances in laser, computer and digital image processing 

techniques have made it possible to extract velocity field information from visualized flow 

images of tracer particles. Particle image velocimetry (PIV)/particle tracking velocimetry 

(PTV) method has become one of the most useful flow diagnostic technologies in the 

modern history of fluid mechanics. The particle-based velocimetry techniques measure the 

whole velocity field information in a plane by dividing the displacements ∆X and ∆Y of 

tracer particles with the time interval ∆t during which the particles were displaced. Since 

the flow velocity is inferred from the particle displacement, it is important to select 

pertinent tracer particles that follow the flow motion accurately without changing the flow 

properties. 

2.1 Visualization Techniques  

2.1.1 Particle Image Velocimetry       

PIV (Fig. 2.1) is a non-intrusive, whole-field optical technology used to obtain velocity data 

on "seeding" particles in a fluid in motion. It is based on the measurement of particle 

displacement over a known time interval. Thereby (particle) velocity is calculated according 

to the relationship: 

 

𝑆𝑝𝑒𝑒𝑑 [𝑚/𝑠] =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑚]

𝑇𝑖𝑚𝑒[𝑠]
 (2.1) 
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                                Figure 2.1: Particle Image Velocimetry (PIV) Configuration 

 

Figure 2.2 briefly sketches a typical setup for PIV recording. Small tracer particles are added 

to the flow. A plane (light sheet) within the flow is illuminated twice by means of a laser 

(the time delay between pulses depending on the mean flow velocity and the magnification 

at imaging). It is assumed that the tracer particles move with local flow velocity between 

the two illuminations. The light scattered by the tracer particles is recorded “via a high 

quality lens” either on a single frame (e.g. on a high-resolution digital or film camera) or on 

two separate frames on special cross-correlation digital cameras. After development the 

photo-graphical PIV recording is digitized by means of a scanner. The output of the digital 

sensor is transferred to the memory of a computer directly. 
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                                        Figure 2.2: Particle Image Velocimetry (PIV) Principle 

 

The main feature s of PIV indicated by Raffel et al. [44] as follows: 

Non-intrusive velocity measurement. In contrast to techniques for the measurement of 

flow velocities employing probes such as pressure tubes or hot wires, the PIV technique 

being an optical technique works non-intrusively. This allows the application of PIV even in 

high-speed flows with shocks or in boundary layers close to the wall, where the flow may 

be disturbed by the presence of the probes.  

Indirect velocity measurement. In the same way as with laser Doppler velocimetry the PIV 

technique measures the velocity of a fluid element indirectly by means of the measurement 

of the velocity of tracer particles within the flow, which in most applications have been 

added to the flow before the experiment starts. In two phase flows, particles are already 

present in the flow. In such a case it will be possible to measure the velocity of the particles 
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themselves as well as the velocity of the fluid (to be additionally seeded with small tracer 

particles).  

Whole field technique. PIV is a technique which allows to record images of large parts of 

flow fields in a variety of applications in gaseous and liquid media and to extract the 

velocity information out of these images. This feature is unique to the PIV technique. Aside 

from Doppler Global Velocimetry (DGV, also known as  “Planar Doppler Velocimetry”) 

[45],which is a new technique particularly appropriate for medium to high-speed air flows, 

and Molecular Tagging Velocimetry (MTV) all other techniques for velocity measurements 

only allow the measurement of the velocity of the flow at a single point, however in most 

cases with a high temporal resolution. The spatial resolution of PIV is large, whereas the 

temporal resolution (frame rate of recording PIV images) is limited due to current 

technological restrictions. These features must be kept in mind when comparing results 

obtained by PIV with those obtained with traditional techniques. Instantaneous image 

capture and high spatial resolution of PIV allow the detection of spatial structures even in 

unsteady flow fields.  

Velocity lag. The need to employ tracer particles for the measurement of the flow velocity 

requires us to check carefully for each experiment whether the particles will faithfully 

follow the motion of the fluid elements, at least to that extent required by the objectives of 

the investigations. Small particles will follow the flow better.  

Illumination.  For applications in gas flows a high power light source for illumination of the 

tiny tracer particles is required in order to well expose the photographic film or the video 

sensor by scattered light. However, the need to utilize larger particles because of their 

better light scattering efficiency is in contradiction to the demand to have as small particles 

as possible in order to follow the flow faithfully. In most applications a compromise has to 

be found.  
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Duration of illumination pulse. The duration of the illumination light pulse must be short 

enough to “freeze” the motion of the particles during the pulse exposure in order to avoid 

blurring of the image (“no streaks”).  

Time delay between illumination pulses. The time delay between the illumination pulses 

must be long enough to be able to determine the displacement between the images of the 

tracer particles with sufficient resolution and short enough to avoid particles with an out-

of-plane velocity component leaving the light sheet between subsequent illuminations. 

Distribution of tracer particles in the flow. At qualitative flow visualization certain areas of 

the flow are made visible by marking a stream tube in the flow with tracer particles (smoke, 

dye). According to the location of the seeding device the tracers will be entrained in specific 

areas of the flow (boundary layers, wakes behind models, etc.). The structure and the 

temporal evolution of these structures can be studied by means of qualitative flow 

visualization. For PIV the situation is different: a homogeneous distribution of medium 

density is desired for high quality PIV recordings in order to obtain optimal evaluation. No 

structures of the flow field can be detected on a PIV recording of high quality.  

Density of tracer particle images. Qualitatively three different types of image density can 

be distinguished [43]. In the case of low image density, the images of individual particles 

can be detected and images corresponding to the same particle originating from different 

illuminations can be identified. Low image density requires tracking methods for 

evaluation. Therefore, this situation is referred to as “Particle Tracking Velocimetry”, 

abbreviated “PTV”. In the case of medium image density, the images of individual particles 

can be detected as well [72]. 
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2.1.2 Particle Shadow Sizer (PSS) 

High-magnification Shadow Imaging is very suitable for visualizing particles, droplets and 

other structures. The technique is based on high resolution imaging with pulsed backlight 

illumination. The measurement volume is defined by the focal plane and the depth of field 

of the imaging system. This technique is independent of the shape and material (either 

transparent or opaque) of the particles and allows the investigation of sizes down to the 

microscale using an appropriate optical system. 

The light source can be a pulsed laser with special illumination optics or a flash lamp, 

depending on the velocity of the particles. Using a short laser pulse as illumination, it is 

possible to "freeze" motions of more than 100 m/s. A double pulse laser combined with a 

double frame camera allows the investigation of size dependent particle velocities [72]. 

 

                                                            Figure 2.3: PSS Configuration 

 

2.1.3 Phase Doppler Anemometry (PDA) 

In its simplest and most presently used form, LDV crosses two beams of collimated, 

monochromatic, and coherent laser light in the flow of the fluid being measured. The two 

beams are usually obtained by splitting a single beam, thus ensuring coherence between 

http://en.wikipedia.org/wiki/Collimated_light
http://en.wikipedia.org/wiki/Monochromatic_light
http://en.wikipedia.org/wiki/Coherence_%28physics%29
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the two. Lasers with wavelengths in the visible spectrum (390–750 nm) are commonly 

used; these are typically He-Ne, Argon ion, or laser diode, allowing the beam path to be 

observed. A transmitting optics focuses the beams to intersect at their waists (the focal 

point of a laser beam), where they interfere and generate a set of straight fringes. As 

particles (either naturally occurring or induced) entrained in the fluid pass through the 

fringes, they reflect light that is then collected by a receiving optics and focused on a photo 

detector (typically an avalanche photodiode). 

The reflected light fluctuates in intensity, the frequency of which is equivalent to the 

Doppler shift between the incident and scattered light, and is thus proportional to the 

component of particle velocity which lies in the plane of two laser beams. If the sensor is 

aligned to the flow such that the fringes are perpendicular to the flow direction, the 

electrical signal from the photo detector will then be proportional to the full particle 

velocity. By combining three devices (e.g.; He-Ne, Argon ion, and laser diode) with different 

wavelengths, all three flow velocity components can be simultaneously measured [72]. 

http://en.wikipedia.org/wiki/Ion_laser
http://en.wikipedia.org/wiki/Laser_diode
http://en.wikipedia.org/wiki/Interference_%28wave_propagation%29
http://en.wikipedia.org/wiki/Photodetector
http://en.wikipedia.org/wiki/Photodetector
http://en.wikipedia.org/wiki/Photodetector
http://en.wikipedia.org/wiki/Avalanche_photodiode
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                                                  Figure 2.4: PDA Configuration 

 

 

 

2.1.4 Interferometric Particle Imaging (IPI) 

The technique implemented in the FlowMap Particle Sizer (FPS) software utilises the 

interferometric pattern created by a particle illuminated by a laser sheet. This technique 

has been given different names by different authors: Planar Mie Scattering Interferometry; 

Mie Scattering Imaging, Planar Interferometric Imaging, Interferometric light Imaging for 

Droplets Sizing or Interferometric Particle Imaging. In this manual we have selected the last, 

in abbreviated form known as IPI. 
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                               Figure 2.5: Generation of the two Glare points by a transparent particle 

An in-focus image of a transparent particle illuminated by a coherent laser sheet will consist 

of two bright spots. These spots, or glare points, are coming from the reflected light on the 

surface of the particle and from the refracted light inside the particle (Fig. 2.5). For 

perpendicular polarisation, the camera should be located around φ=68 deg, and for the 

parallel polarisation it should be located at φ=90 deg (Fig. 2.6) [72]. 
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             Figure 2.6: IPI Optical Configuration, Φ is the scattering angle or observation angle 

  

 

2.2 Image Processing Techniques  

Images are taken into account as one of the most essential methods of transferring data, in 

the area of computer vision, by comprehending images the data obtained from them can 

be utilized for various tasks for instance: navigation of robots, extracting harmful tissues 

from body scans, recognition of cancerous cells, and identification of an airfield from 

remote sensing information. In order to comprehend images, for example: acquiring 

detailed data such as colour, texture, number, and object recognition, image segmentation 

is the principal method. Therefore, image segmentation is the initial phase in image 

analysis. Occasionally image processing for noise removal is performed before the 

segmentation to avoid from the false contour detection for segmentation to divide the 

image without loss of data in biomedical applications is a challenging task. 
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2.2.1 Image Segmentation  

Nowadays, based on various technologies, image segmentation methods are categorised as 

follows according to two properties of an image: 

 Detecting Discontinuities 

It proposes to divide an image regarding sudden changes in intensity [46], this comprises 

image segmentation algorithms such as edge detection. 

 Detecting Similarities 

It proposes to divide an image into sections that are alike regarding a group of predefined 

criteria [46]; this comprises image segmentation algorithms such as thresholding, region 

growing, region division and merging. 

2.2.1.1 Segmentation Based on Edge Detection  

This technique tries to perform image segmentation by detecting the edges or pixels 

between various sections that have fast alteration in intensity are determined [46, 50] and 

connected to generate closed object boundaries. The output is a binary image [47]. 

According to theory, two main edge based segmentation methods are present; gray 

histogram and gradient based method [49]. 

2.2.1.2 Thresholding Method 

Image segmentation by thresholding is an easy but robust method for the segmentation of 

images that have bright objects on dark background [46]. Thresholding method is based on 

image-space areas i.e. on features of image [49]. Thresholding procedure changes a multi-

level image into a binary image i.e., it determines a accurate threshold T, to partition image 

pixels into several sections and extract objects from background. Any pixel (x, y) is taken 

into account as a part of object if its intensity is greater than or equal to threshold value 

i.e., f(x, y) ≥T, else pixel pertain to background [48, 56]. For each selection of thresholding 

value, two types of thresholding approaches are present [57], global and local thresholding. 
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When T is constant, the method is called global thresholding or else it is called local 

thresholding. Global thresholding techniques can fail when the background illumination is 

irregular. In local thresholding, multiple thresholds are utilized to compensate for irregular 

illumination [53]. Naturally, threshold selection is conducted interactively however, it is 

possible to obtain robust threshold selection algorithms. 

Constraint of thresholding technique is that, only two classes are produced, and it cannot 

be performed to multichannel images. Additionally, thresholding does not consider the 

spatial features of an image because of noise sensitivity [49], as both of these artefacts 

distort the image histogram, causing a more challenging separation. 

2.2.1.3 Region Based Segmentation Method 

In contrast to edge detection approach, segmentation algorithms based on region are 

rather easy and more robust to noise [49, 51]. Edge based techniques segment an image 

based on rapid alterations in intensity in the vicinity of edges whereas region based 

methods, segment an image into sections that are similar regarding a group of predefined 

criteria [55, 46]. 

2.2.1.4 Segmentation Methods Based on PDE (Partial Differential Equation) 

Performing a PDE based method & explaining the PDE equation by a numerical scheme, 

image segmentation can be done. Image segmentation based on PDEs is mostly conducted 

by active contour model or snakes. This technique was first introduced by Kass et al. in 

1987 [58] Kass improve this technique to obtain similar objects in existence of noise and 

other uncertainties. The main idea of snake is transformation of a segmentation problem 

into a PDE framework.  

That is, the development of a given curve, surface or image is processed by PDEs and the 

solution of these PDEs is what we look forward to several techniques for image 

segmentation are - snake, level set and Mumford-shah model[73]. 
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2.2.2 Morphology 

The term morphology indicates the description of the properties of shape and formation of 

any objects. In the perspective of computer vision, this term stands for the description of 

the features of shapes of regions on the image. Procedures of mathematical morphology 

were initially described as procedures on sets, but it quickly became obvious that they are 

also effective in the operating tasks of the set of points in the two-dimensional space [59]. 

Sets in mathematical morphology correspond to objects in the image. It is simple to notice 

that the set of all background pixels of binary image is one of the alternatives for a full 

explanation. First of all mathematical morphology is utilized to extract some features of the 

image, effective for its presentation and identification, for instance; contours, skeletons 

and convex hulls. Moreover morphological techniques are performed in the beginning and 

final image processing, for instance, morphological filtering, thickening or thinning. The 

input data for the mathematical morphology are the two images: processed and particular, 

based on the type of procedures and solve problems. Such a particular image called 

primitive or structural element. Naturally, a structural element is much smaller than the 

processed image. Structural component can be regarded as an identification of the region 

with some form. It is obvious that the shape can be random, on condition that it can be 

represented as a binary image of a given size. 
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2.3 Object Tracking Techniques  

Many methods have been suggested for visual tracking. An exhaustive study is revealed in 

[60]. They try to solve the tracking problem generally from two different aspects: novel 

appearance models, such as [60]–[64], or novel tracking strategies, such as [65]–[67]. Once 

a perfect appearance model (i.e., absolutely distinguishing, computationally effective, 

adaptive, etc.) is accessible, a simple strategy [e.g., standard particle filtering (PF) [65]] will 

result in very good tracking outputs. Although several tracking methods may seem very 

different, they can be roughly divided into two categories: the deterministic model [67–68] 

and the stochastic model [66, 69]. A deterministic model often approximates the position of 

the target straightforwardly from low-level characteristics by a gradient descent search to a 

cost function or by online learning. In contrast to the deterministic model, the stochastic 

model considers the measurement and model uncertainties during tracking procedure. This 

method generally formulates tracking as a problem of Bayesian inference in state space. 

 

2.4 Cavitation Techniques  

2.4.1 Hydrodynamic Cavitation  

While hydrodynamic cavitation has been extensively studies in applications with 

hydromachinery, potential biomedical applications were recently considered as an 

emerging research area particularly in micro scale. Although there are many studies on 

ultrasound cavitation in treatments such kidney stone treatment, side effects of ultrasound 

cavitation motivated researchers to seek for different, local and efficient methods such as 

hydrodynamic cavitation. Kosar et al. [25] investigated the effect bubbly cavitating flows on 

chalk specimens and cell cultures and studied the impact of released bubbles’ on kidney 

chalk specimens and cancerous cells (Fig. 2.7). Their experimental setup did not include any 

moving part, and their experiments were carried out at various inlet pressures while 
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visualizing bubbly cavitating flow patterns. As the exposure times increased, more 

cancerous cells died, and a significant reduction in cell livability occurred after cavitation 

exposure. Perk et al. [27] conducted experiments on 18 kidney stone samples made of 

calcium oxalate and used phosphate buffered saline (PBS) solution as the working fluid. At a 

cavitation number of 0.017 and a probe to specimen distance of 1 mm, their experiments 

resulted in an erosion rate of 0.31 mg/min. Palanker et al. [28] used a two-dimensional 

Rayleigh-type hydrodynamic simulation in order to study the interaction between a jet 

containing bubbles and a soft tissue made of chorioallantoic membrane (CAM). They tried 

to avoid of generating cavitation bubbles, which might have considerable damage on the 

tissue using concave end probes. Their results were obtained under the condition of a 

maximum velocity of 80 m/s and tissue distance up to 1.4 mm. They showed that concave 

endoprobes can be used to prevent the tissue damage by slowing down the bubble back 

boundary diffusion. There are many studies focusing on hydrodynamic interactions among 

bubbles nearby the [29-32]. It was reported that cavitation phenomenon including 

formation, development and finally collapse, increased fragmentation due to tissue damage 

[33]. Itah et al. [26] used the setup of their previous work to investigate the effect of 

hydrodynamic cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. 

The micro-orifice used in this experimental study was a polyether ether ketone (PEEK) with 

an inner diameter of 147 μm , while the pressure at the inlet was varied from 50 to 150 psi 

fro cell culture experiments, and the physiological solution was Phosphate buffered saline 

(PBS). The size of the captured cavitation bubbles was between 60 to 300 μm. Their results 

on Prostate cancer cells PC-3 and DU-145 exposed to bubbly cavitation proved the 

destructive effect of hydrodynamic cavitation on prostate cells. However, there was no 

evidence of the damage in the DNA and activation of programmed cell death mechanisms. 

Their results indicated that cavitation damaged cells instantly and pulverized cells upon 
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exposure. They claimed that hydrodynamic cavitation could be a viable alternative to 

ultrasound cavitation in treatments involving BPH tissues.  

 

 

Figure 2.7: (a) Microchannel configuration with the orifice throat and exit area and 
experimental placement of the kidney stone (b) Experimental setup 

 

2.4.2 Ultrasound Cavitation  

Ultrasound cavitation has many applications in biomedical engineering. Drug delivery 

systems are one of such applications, which exploit ultrasound methods to treat the natural 

barrier function of the skin [34]. Sonophoresis as a feature of the ultrasound method is 

used to enhance the performance of drug delivery systems. It is well-known that the shock 

wave lithotripsy is an effective biomedical treatment especially in stone fragmentation and 

includes two fundamental mechanisms, namely shock wave and cavitation phenomenon. 

Mechanical stresses generated by shock wave lithotripsy lead to stone fragmentation [38].  

There are many studies in the literature on shock wave lithotripsy, and many researchers 

proposed new methods to enhance the effectiveness of shock wave lithotripsy by 

intensifying shock waves. Preliminary studies focused on the capability of SWL and 

ultrasound cavitation for stone combination. Sass et al. [39] used kidney stones and 
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gallstones exposed to shock waves and reported a two-step process in resulting erosion. 

They showed that first slits formed as a result of the interaction between shock wave and 

targets and then the liquid fills small cracks at the first step, and secondly, the collapse with 

cavitation causes significant erosion on the surface of stones, and finally, fragmentation 

takes place. Holmer et al. [40] also showed that acoustic cavitation and streaming had 

significant effects on the disintegration of stones.  

It was proven in many studies that extracorporeal shock wave therapy could affect 

coronary angiogenesis and enhanced myocardial ischemia in patients with intense coronary 

artery disease [41]. This method had a significant impact on medicating ischemic heart 

diseases. The relationship between shock wave lithotripsy and cavitation was investigated 

by Smith et al [42]. They performed several in vitro experiments at the acoustic field of 

electromagnetic SWL with different fluids in order to determine the role of cavitation. Their 

results revealed that the type of the stone (hard or soft) changed the thresholds in average 

peak pressures.   
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Chapter III  

 

  

3 Quantification of Cavity Bubbles Using a High Speed 
Camera System with LED Based Illumination  

  

In this chapter, we propose a comprehensive visualization and image analysis of high speed 

hydrodynamic cavitation work using a high speed imaging system and robust vision 

modules.  In the concept of imaging high speed micro fluids, some undesired phenomena 

such as insufficient light, out of focus bubble or some ergonomically inadequate 

visualization system-experimental setup integration might occur. With the proposed work, 

these problems are eliminated by the usage of a long-distance microscope with a variable 

iris. Long-distance microscope ensures the integration of the setup with high speed CMOS 

camera system without existence of a Lab-on-a-chip.    

 

3.1 Visualization System and Image Acquisition 

In the experiments, the images of the two phase flow are captured by a double shutter 

CMOS camera (Phantom v310, a trademark of Vision RESEARCH), which is a high speed 

camera with 10,000 fps. The speed of the camera is 3 Gpx/second and maximum speed at 

full resolution of 1280 x 800 (20 µm pixel size) is 3,250 fps. The camera has a minimum 

frame rate of 24 fps. Blur can be eliminated and the minutest details can be seen by using 

short exposure times. On the v310, exposure time can be set to the minimum value of 1 

microsecond. The camera supports 8- and 12-bit pixel depth. While smaller bit-depth 

implies more recording time and smaller files, greater bit-depth provides more gray levels 

and finer details. With the greater latitude of 12 bits, one can pull more details out of the 
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image.      

Due to resolution and lighting issues, the camera is used at 3,250 fps, which provides 

reasonably good images. K2 DistaMax special lens, which offers ultimate in long-distance 

microscopy is utilized and positioned at a distance of 158 mm from the imaging plane. This 

optical procedure provides that only the central section of the lens is used where 

eccentricity is neglected.  TX Tube of the lens provides amplification of M = 2 in all cases, 

with all objectives, and with all working distance choices. It should be noted that although 

the Phantom v310 camera has sensitivity needed for even the most challenging lighting 

conditions, throughout our experiments, because of the insufficient lighting in the 

environment we utilized a variable iris in our camera system. Besides the focusing ring, the 

K2 DistaMax has a built-in iris diaphragm for depth of field and light attenuation control. 

The imaging system is equipped with 2 pulsed 198 high performance LED array have a total 

area of 180 mm × 120 mm for a background illumination. The average duration of the light 

pulses is approximately 60 μs and the average time delay between the two consecutive 

images is attuned to the flow velocity 2 ms. 

In order to perform offline evaluation (control and image processing) of the raw images, the 

captures are transferred digitally from the CMOS camera to the work station. The online 

evaluation of the images, which is important for a fully automated analysis at high 

resolution, is performed by the software written by Dantec Dynamics A/S.  As a first step in 

image processing, the captures are changed into 8 bit format grey value image. Moreover, 

auto- optimization of the contrast and normalization of the greyscale values are conducted.  
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3.2 Image Processing of Microscale Bubbly Cavitation 

3.2.1 Background Noise Removal 

In order to reduce the effect of systematic noise and augment image contrast, background 

noise removal is essential. Median filtering is a nonlinear signal processing used to remove 

noise from images and widely performed as it is very effective at eliminating noise while 

preserving edges. It is especially useful at eliminating ‘salt and pepper’ type noise. The 

median filter works by a mask which slides through the image pixel by pixel, replacing the 

noisy value of the digital image with the median value of neighbouring pixels. The median is 

calculated by first sorting all the pixel values from the window into numerical order, and 

then replacing the pixel being considered with the middle (median) pixel value. The noisy 

value of the digital image is replaced by the median value of the mask, which is calculated 

by first sorting all the pixel values from the window into numerical order.  The output of 

median filtering is  𝑥,𝑦 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓 𝑥 − 𝑖,𝑦 − 𝑗 , 𝑖, 𝑗 ∈ 𝑊  where 𝑓 𝑥,𝑦 , (𝑥,𝑦) are 

the original image and the filtered image, W is the 2D mask which has the size of 

(2m+1)*(2m+1) pixels, where m is an integer and generally set to 2.                

    

3.2.2 Image Enhancement 

Cavity flow image with low brightness must be augmented to develop represent of the 

cavity bubble details. The histogram equalization is used to advance image illumination. Let 

f be a given image represented as a mr by mc matrix of integer pixel intensities ranging from 

0 to L−1. L is the number of possible intensity values, often 256. Let p denote the 

normalized histogram of f with a bin for each of possible intensity. So 

 

𝑝𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
     𝑛 = 0,1,… . , 𝐿 − 1. 

(3.1) 
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The histogram equalized image g will be defined by 

 

𝑔𝑖 ,𝑗 = floor  𝐿 − 1   𝑝𝑛

𝑓𝑖,𝑗

𝑛=0

  

 

Where floor() rounds down to the nearest integer. 

Then the contrast of image is improved by nonlinear γ-regulation mapping, in which the 

gray level of image is plotted to the range from 0 to 1, and the low gray level is condensed 

by the γ=0.3. The enhanced image is treated by the smoothing technology subsequently.  

 

                            

 
                     Figure 3.1: (a) Original image, (b) Image after histogram equalization 

  
3.2.3 Morphological Image Processing 

Although the cavity flow image is improved enough to reveal the shapes of bubbles, there 

are also noisy areas and non-cohesive boundary caused by the enhancement process. This 

leads to the cavity bubble recognition and image segmentation very difficult. To acquire 

continues boundary and enhance the quality of segmentation, morphology filtering is 

performed to eliminate the remaining noise and unfilled boundaries of the edge detecting 

(3.2) 
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[46]. In theory, circular operator is much better for obtaining a smooth target boundary. 

But when the filtering operator is more than 4×4, the objects end up with large 

deformation in this research. Consequently, a four zero corner 4x4 operator is utilized to 

perform morphologically filtering with twice erosion and dilation.  

                                         𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 → 𝐷 𝐴,𝐵 = 𝐴⊕ 𝐵 =  (𝐴 + 𝛽)𝛽∈𝐵  

 

𝐸𝑟𝑜𝑠𝑖𝑜𝑛 → 𝐸 𝐴,𝐵 = 𝐴⊖ (−𝐵) =  (𝐴 − 𝛽)

𝛽∈𝐵

 

 

Where –B = {−𝛽|𝛽 ∈ 𝐵}. In order to compare the boundary and original images, the two 

images are combined together. 

 

3.2.4 Extracting Bubble Properties 

3.2.4.1 Bubble Detection 

In order to do a robust bubble detection, the gradient S(x, y) of the grey value distribution 

was computed applying the convolution kernels SX(x, y) and SY (x, y): 

 

𝑆(𝑥,𝑦) =  𝑆𝑥2 𝑥, 𝑦 + 𝑆𝑦2(𝑥,𝑦) 

 

 𝑆𝑥 𝑥,𝑦 ∶   
−1 0 1
−2 0 2
−1 0 1

 ,               𝑆𝑦 𝑥,𝑦 ∶   
−1 −2 −1
0 0 0
1 2 1

   

 

Therefore, in the bubble detection algorithm the gradient of the grey values of the edges of 

the cavity bubbles was employed as a criterion for validation. Edges are only accepted if the 

gradient value was more than a predetermined threshold level, which was optimized for 

(3.4) 

(3.5) 

(3.6) 

(3.3) 
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each calculation performed to generate the maximum bubble detection. After that, the 

recognized edge points were converted to a polar coordinate system with their centre 

points as the origin. Then the cavity bubble contour was discretized with about 33 to 66 

section with an identical angle in order to adjust the computational effort. The existing 

number of contour points is usually much higher and determined by the resolution of the 

cavity bubble, thus the number of pixels positioned on the contour region. Hence, all 

contour points positioned in one contour component were put together to generate only 

one contour reference point for each component. This was reached by weighing all contour 

points (xk,j, yk,j ) with the local gradient S(xk,j, yk,j ). Thus, the contour reference point (xi, yi) 

for each contour component was achieved by 

 

𝑥𝑖 =
 𝑥𝑘 ,𝑗𝑆(𝑥𝑘 ,𝑗𝑦𝑘 ,𝑗 )𝑗

 𝑆(𝑥𝑘 ,𝑗𝑦𝑘 ,𝑗 )𝑗
,              𝑦𝑖 =

 𝑦𝑘 ,𝑗𝑆(𝑥𝑘 ,𝑗𝑦𝑘 ,𝑗 )𝑗

 𝑆(𝑥𝑘 ,𝑗𝑦𝑘 ,𝑗 )𝑗
 

 

The cross-sectional region of the cavity bubble is verified by a summation of the region of the 

triangular elements Ai which are illustrated by the working point (xw, yw) and two neighbouring 

contour points (xi, yi) and (xi+1, yi+1): 

 

𝐴𝐵 =   𝐴𝑖

𝑁−1

𝑖=1

=  
1

2
 

𝑥𝑖 𝑦𝑖 1
𝑥𝑖+1 𝑦𝑖+1 1
𝑥𝑤 𝑦𝑤 1

  

The centroid of the cavity bubble cross-section (xC, yC) was achieved with the centers of gravity 

of the triangular components in the following way: 

 

𝑥𝐶 =
 𝐴𝑖𝑥𝑠,𝑖

 𝐴𝑖
,          𝑦𝐶 =

 𝐴𝑖𝑦𝑠,𝑖

 𝐴𝑖
 

(3.7) 

(3.8) 

(3.9) 



  

31 
 

 

                     

                           Figure 3.2: Segmentation of planar bubble image around a working point 

 

3.2.4.2 Bubble Size Estimation 

In this thesis, only a planar projection of the cavity bubbles is utilized to perform bubble 

characterization on the basis of detection and reconstruction algorithm explained previous 

section. Obviously, the precision of the diameter determination will be better for small firm 

and spherical cavity bubbles than for large ellipsoidal or vibrating cavity bubbles with 

powerful shape oscillations. The easiest technique to approximately calculate the cavity 

bubble volume VB is to determine a bubble diameter DA which is the region equivalent to 

the projection area APro of a identified bubble: 

 

𝐴𝑃𝑟𝑜 =
𝜋

4
𝐴𝐵 =

𝜋

4
𝐷𝐴

2 

 

(3.10) 
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where A and B are the major and minor axes of the spheroid with the eccentricity χ = A/B 

(figure 3.3). Thus, the cavity bubble volume is identical to the volume of a sphere with this 

region-equivalent diameter. Nevertheless, bubbles with region-equivalent diameters larger 

than 200 µm have an eccentricity larger than 100 and differ significantly from a sphere [69]. 

These bubbles can be defined as spheroids and their volume is 

 

𝐴𝑆𝑝𝑒𝑟𝑜𝑖𝑑 =
𝜋

6
𝐴𝐵𝐶 

                                   

                                      
                                       
                      Figure 3.3: Spheroid with main axes (major axes A and C, minor axis B) 
 

 

Both horizontal major axes A and C are approximately equivalent and larger than the 

vertical minor axis B for a spheroid. By a substitution of the major axis C, which was not 

computed, with the longest chord length of the bubble outline A, an prediction of the 

bubble volume VB is proposed by the following equation: 

 

                                                        𝑉𝐵 =
𝜋

6
𝐴2𝐵 =

𝜋

6
𝐷𝐴

2.𝐴 

 

thus the region- and volume-equivalent cavity bubble diameters of a spheroid are 

 

𝐷𝐴 =  𝐴𝐵,         𝐷𝑉 = (𝐴2𝐵)
1
3  

 

(3.11) 

(3.12) 

(3.13) 
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the calculated minor axis of the cavity bubble for a given orientation β is  

 

 

                                                   𝐵′ =  𝐶2sin2𝛽 + 𝐶2cos2𝛽 

 

where C is the major axis corresponding A and B is the correct minor axis of the spheroidal 

cavity bubble. Hence, the predicted region-equivalent cavity bubble diameter is given by 

 

𝐷′𝐴 =  𝐴𝐵′ =  𝐴 𝐴2sin2𝛽 + 𝐵2cos2𝛽 

 

3.3 Bubble Tracking 

Tracking can be expressed as a Bayesian assumption task in a Markov model with hidden 

state variables, in the particle filtering (PF) environment;  

 

                             𝑝(𝐗𝑡|𝐎𝑡) ∝ 𝑝(𝐨𝑡|𝐗𝑡) 𝑝 𝐗𝑡 𝐗𝑡−1 𝑝(𝐗𝑡−1|𝐎𝑡−1)𝑑𝐗𝑡−1 

 

where 𝐗𝑡  identifies the state variable of the target object at time 𝑡  and 𝐎𝑡 =

{𝐨1,𝐨2,… ,𝐨𝑡} is a set of observations. The observation model 𝑝(𝐨𝑡 |𝐗𝑡) and the dynamic 

model 𝑝 𝐗𝑡 𝐗𝑡−1  between two states describe the procedure. State 𝐗 is a 2-D affine 

transformation matrix given as 

 

𝐗 =  
𝐂 𝐞
0 1

  

 

(3.14) 

(3.15) 

(3.17) 

(3.16) 
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where 𝐂 is a nonsingular 2 x 2 matrix and 𝐞 ∈ ℝ2. All affine transformations generate 

the affine group (i.e., the matrix Lie group).  

 

 

                      
                Figure 3.4:  Example of subspace learned by the IPCA method 

 

At frame #0, the initial state 𝐗0  is utilized to perform initial calculations of two 

distributions: target-patch similarity distribution (TSD) and background-patch similarity 

distribution (BSD) form appearance model. The similarity between a patch and learned 

appearance subspace is measured (Fig. 3.4). TSD is the similarity distribution of target 

patches (expressed by the states that contains the tracked target optimally), and BSD is the 

similarity distribution of background patches. TSD and BSD are estimated by Gaussian and 

are described by 𝒩𝑇(𝜇𝑇 ,𝜎𝑇) and 𝒩𝐵(𝜇𝐵 ,𝜎𝐵), respectively. Also, a pose estimator (PE) is 

used with a pose training group formed by making small variations around the initial state. 

At frame #𝑡, the PF procedure incrementally draws/produces random samples on the affine 

group. After that it uses the PE to adjust them to their neighbouring optimal states. 

Sampling will be terminated if the maximum similarity score of all adjusted particles is 

larger than 𝜇𝑇 − 𝜎𝑇  or if the maximum number of particles is acquired. The condition of 

the target 𝐗 𝑡  is approximated by the sample with the maximum similarity score 𝑆 𝑡 . If the 

final maximum similarity score is good enough e.g., 𝑆 𝑡 > 𝜇𝐵 + 𝜎𝐵 , all online-learned 
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models will be updated according to the estimated state 𝐗 𝑡 . Then, a few of particles are 

sampled again from the adjusted particles and utilized as the initial particles for the next 

frame [70]. 

3.4 Hydrodynamic Cavitation Experimental Setup Optimization 

Experimental erosion rate data in this study are used to develop a correlation providing the 

best prediction of the experimental data based on Curve Fitting using Least Squares 

Method. This correlation is based on the approach of Crowe [71], where the erosion rate is 

written in terms of important parameter, which are 𝑅𝑝  (in mm), the particle radius (average 

bubble radius, taken as 90 µm in this study), 𝜎𝑏 (in Pa), the flexural strength, Et (in Pa), the 

Young’s modulus of elasticity, t (in min), time, dis (in mm), probe-specimen distance, and is 

expressed as: 

𝑊  𝑚𝑔 𝑚𝑖𝑛  = 𝐸𝑡
0.8𝜎𝑏

2𝑅𝑝
−1.197074𝑥104  −4.23 𝑥10−11𝑑𝑖𝑠2 +  2.4 𝑥10−10𝑑𝑖𝑠 −

 1.01 𝑥10−9   4.22 𝑥10−12 −  8.61 𝑥10−14𝑡 . 

 

The above correlation can predict the experimental data with an MAE (Mean Absolute 

Error) of 6.09%. All of the experimental data are within 25% of the correlation as shown in 

Fig. 3.5. Spherical particles are considered as bubbles, while it was also assumed that micro 

bubbles emerging from the microprobe have the same velocity as the flow velocity inside 

the probe. 

(3.18) 
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Figure 3.5 : Comparison of experimental erosion rate with predictions of the proposed 

correlation 
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Chapter IV  

 

  

4 Experimental and Image Analysis Results 

In this chapter, experimental results and image analysis, that are performed for Chapter 3 

are provided, respectively. 

4.1 Experimental Results 

4.1.1 Experimental Setup 

In the experiments, high resolution planar imaging system including a µPIV and a CMOS 

camera (Phantom v310, a trademark of Vision RESEARCH), which is a high speed camera 

with 10,000 fps and illuminated by 2 pulsed 198 high performance LED array have a total 

area of 180 mm × 120 mm, is used (Fig. 4.1). The speed of the camera is 3 Gpx/second and 

max. speed at full resolution of 1280 x 800 (20 µm pixel size) is 3,250 fps. The camera has a 

minimum frame rate of 24 fps. Blur can be eliminated and the minutest details can be seen 

by using short exposure times. On the v310, exposure time can be set to the minimum 

value of 1 microsecond. The camera supports 8- and 12-bit pixel depth. While smaller bit-

depth implies more recording time and smaller files, greater bit-depth provides more gray 

levels and finer details. With the greater latitude of 12 bits, one can pull more details out of 

the image.      

Due to resolution and lighting issues, we used the camera at 3,250 fps, which provides 

reasonably good images. We also utilized K2 DistaMax special lens, which offers ultimate in 

long-distance microscopy. TX Tube of the lens provides 2x amplification in all cases, with all 

objectives, and with all working distance choices. It should be noted that although the 

Phantom v310 camera has sensitivity needed for even the most challenging lighting 
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conditions, throughout our experiments, because of the insufficient lighting in the 

environment we utilized a variable iris in our camera system. Besides the focusing ring, the 

K2 DistaMax has a built-in iris diaphragm for depth of field and light attenuation control.  

                

Figure 4.1 : Experimental Setup 
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4.1.2 Results for Image Acquisition 

 

          Figure 4.2 : Bubble cloud emerging from the probe exit at different cavitation intensities  

 

In figure 4.2, it is obvious that different inlet pressures result in different penetration 

lengths (and accordingly different effective volumes), e.g. different maximum vertical 

distances measured from the probe, where cavitation effects can be observed. 
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Figure 4.3 : Bubble cloud emerging that is captured through increasing distance from the probe 
exit, respectively 

 

4.1.3 Results for Image Processing and Characterization of Cavity Bubbles 

Due the low-level illumination, flow image processing is performed as follows; background noise 

removing, image enhancing, morphology filtering, and bubble identifying. 

 

Figure 4.4 : Original flow image 
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Figure 4.5 : Deblurred flow image 

 

Eliminating background noise from original image plays an essential role in diminishing the 

effect of systematic noise significantly and enhancing image contrast. Due to the high 

frequency characteristic of background noise, high-pass filtering is utilized to deduct it from 

original image. First of all, the original image is subjected to FFT. Then, convolution 

operation with high-pass filtering is performed to filter high frequency noise element from 

the image. Finally, the filtered image is reconstructed by an inverse-FFT operation. The 

acquired image is low-intervention high speed bubbly flow image with low illumination. Fig. 

4.4 a shows the original flow image, while Fig. 4.6 shows the noise filtered image. The 

previous image is so much noisy that it is hard to identify bubble from it, while the obtained 

image has a low illumination due to further lower brightness and contrast ratio. 
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Figure 4.6 : Flow image filtered for background noise removal 

 

In order to obtain sharp images for cavity bubble detection, blur, which might occur in such 

microscopic images, must be removed. Blur could be the result of inappropriate imaging 

conditions such as out of focus camera, or relative motion of the camera and the imaged 

object. In order to remove or minimize the effect of the blur existing in the images, one can 

utilize a deblurring algorithm on the blurred images. Deblurring algorithms can be 

developed using either linear or non-linear filtering approaches. In this work, a linear 

deconvolution type deblurring algorithm is implemented. Blurred images are deconvolved 

with a filter (mask), which has the size of (2m+1)*(2m+1) pixels, where m is an integer. In 

our implementations, we set m=2. The resulting enhanced images (Fig. 4.5) have sharper 

boundaries. 
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    Figure 4.7 : The enhanced flow Image 

 

High speed bubbly flow image with low brightness must be advanced to elevate represent 

of the bubble details. First, the histogram equalization is utilized to improve image 

illumination. Then the contrast of image is improved by nonlinear γ-regulation mapping, in 

which the gray level of image is plotted to the range from 0 to 1, and the low gray level is 

condensed by the γ=0.3. The enhanced image is treated by the smoothing technology 

subsequently (Fig. 4.7). 
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Figure 4.8 : The morphological filled cavity bubble shape 

 

Although the cavity flow image is improved enough to reveal the shapes of bubbles, there 

are also noisy areas and non-cohesive boundary caused by the enhancement process. This 

leads to the cavity bubble recognition and image segmentation very difficult. To acquire 

continues boundary and enhance the quality of segmentation, morphology filtering is 

performed to eliminate the remaining noise and unfilled boundaries of the edge detecting. 

In theory, circular operator is much better for obtaining a smooth target boundary. But 

when the filtering operator is more than 4×4, the objects end up with large deformation in 

this research. Consequently, a four zero corner 4x4 operator is utilized to apply 

morphologically filtering with twice erosion and dilation. Fig. 4.8 presents the results of 

morphological filtering. In order to evaluate the applied image processing, the original and 

resultant images are combined together in the Fig. 4.10. It is obvious that the two images 

agree very well, and the deformation of bubble during high speed flow is revealed clearly. 
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Figure 4.9 : The recognized edges of cavity bubbles 

 

 

Figure 4.10 : Results of the processing operations of high speed cavity bubbles  micro-flow 

images 
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Figure 4.11 : Pseudo-colour indexed image 

 

Bubbles Area 
(Unit pixel) 

Area 
(mm2) 

Major Axis 
(mm) 

Minor Axis 
 (mm) 

Eccentricity 

1 2819 0.0211 0.343 0.077 0.96 

2 4338 0.0325 0.408 0.102 0.95 

3 

4 

5 

4809 

1180 

648 

0.036 

0.0088 

0.0048 

0.391 

0.128 

0.087 

0.123 

0.091 

0.071 

0.93 

0.52 

0.19 

Table 4.1 : Detection and classification of individual bubbles 

 

Results of direct recognition include area (calculated both in unit pixel and metric size), 

major axis, minor axis, and eccentricity. These parameters describe the flow status of each 

bubble in the microflow field. The metric calculation of bubble geometries are performed 
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using the real calibration parameters of the experimental setup consisting high speed 

CMOS camera and long distance microscope. 

        

Figure 4.12 : Schematic diagram of the filter operations for phase  discrimination by extracting 

the images of tracer particles from the pictures of the Hydrodynamic cavitation flow 

 

 

The velocities of the continuous phase are determined by the application of particle image 

velocimetry (PIV) to the extracted images of the tracer particles. This extraction process, 

illustrated in Fig. 4.12, starts with an edge filter, which is  called Laplacian of Gaussian (LoG). 

The fundamental characteristics of the LoG edge detector are the combination of a 

smoothing Gaussian filter and an enhancement step which is a Laplacian second derivative 

in two dimensions. The results of this procedure are revealed in Fig. 4.13. 
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Figure 4.13 : (a) Original µPIV Image (b) Filtered only tracer partical Image (c) Velocity vector map of the hydrodynamic 

cavitation (d)Instantaneous flow field of the continuous phase in the bubble column overlapped onto the original image 

containing bubbles and tracer. Mean velocities of the vector field have been subtracted to visualize the fluctuations (the 

colours of the vectors indicate the fluid velocity magnitude. Red: high velocity, blue: low velocity) 
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Figure 4.14 : Cavity bubbles tracking results of the ISPF algorithm 

Tracking results of the µPIV images are revealed in Fig. 4.14. The bubbles are mostly travel 

through the sides of the microchannel.   
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Chapter V  

 

  

5 Conclusion and Future Work  

For the visualization and analysis of hydrodynamic high-speed cavity bubbles, a 

measurement setup was improved which combines planar high resolution imaging using 

only background illumination and PIV procedures. The imaging plane for the bubbles was 

created using a long distance microscope with a very small depth of field and special filter 

operations in the image processing in order to remove out-of-focus objects (i.e. blurred 

bubbles and tracer particles). Therefore, it was possible to compute liquid and bubble 

velocity fields as well as bubble size, shape and orientation. The recognition of the bubble 

contour was based on using an edge detecting filter, which is much more robust than 

threshold methods performed to the grey scale of the images. Algorithms were 

implemented in Microsoft Visual C++ and OpenCV 2.4.2. Both metric and unit pixel size 

area-equivalent bubble diameter from planar images was evaluated. The bubble velocity 

field was determined by applying a tracking algorithm. 

The continuous phase velocity field was determined by seeding the hydrodynamic 

cavitating flow with narrow-sized fluorescent particles and performing an edge detecting 

LoG filter in order to remove only sharply illustrated tracer images positioned within the 

imaging plane. In order to enable on-line evaluation of the double images with reasonable 

speed, Dynamic Studio Software, written by Dantec Dynamics A/S, is utilized to conduct 

measurement operations. With the identified PIV approach, instantaneous velocity fields 

within a bubble cloud as well as average velocity fields could be clarified by averaging 1000 

double images. 
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In order to capture high data images, experiments were conducted in different flow 

pressures for the analysis of the hydrodynamic cavity bubbles in a special Lab-on-a-Chip. In 

that Lab-on-a-Chip, the interaction of two bubble streams in a mixing channel was analysed 

and the velocity fields of bubble and liquid phases were measured. Moreover, the 

experiments in both facilities showed that the bubble geometry mostly becomes ellipsoid 

when the bubble speed increases (by the effect of increasing pressure). Thus, the 

eccentricity as a function of the bubble size increases. 

Furthermore, the effects of changing inlet pressure and changing probe-to-specimen 

distance are filtered out. Experiments showed that the probe-to-specimen distance is an 

important parameter to be optimized, since the maximum erosion rate was not achieved 

neither at the highest (7.75 mm) nor the lowest distance (0.5 mm), but at an optimum 

distance of 2.75 mm. A correlation to predict the erosion rate using probe-to-specimen 

distance, system parameters and material properties as variables was developed, which 

could predict the experimental results with a mean absolute error of 6.09%. 

It was demonstrated that the developed planar imaging setup is a powerful method which 

yields reasonably good results on the visualization of hydrodynamic cavity bubbles as well 

as detailed information on bubble behaviour and their properties (i.e. microstructure of 

bubbles). The collected detailed data will be very useful for further improving the modelling 

of hydrodynamic bubbly cavitation that is used in kidney stone treatment.  
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