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ABSTRACT 

 

IDENTIFICATION OF SIRT1 AS A NOVEL REGULATOR OF NFAT5 DEPENDENT 

ALDOSE REDUCTASE EXPRESSION UNDER OSMOTIC STRESS  

AHMET CAN TİMUÇİN 

Biological Sciences and Bioengineering, PhD Dissertation, July 2015 

Thesis Supervisor: Prof. Dr. Hüveyda BAŞAĞA 

Keywords: NFAT5, SIRT1, aldose reductase, osmotic stress, deacetylation 

 

Until now, numerous diverse molecules modulating NFAT5 and its targets have been 

characterized. Among these widespread NFAT5 modifiers, SIRT1 has been proposed to be 

a promising candidate to play a role in NFAT5 dependent events, yet the exact machinery 

still remains inconclusive. Hence, in this thesis, we aimed to delineate the link between 

SIRT1 and NFAT5-Aldose Reductase (AR) axis under osmotic stress. A unique osmotic 

stress model was generated and its mechanistic components were deciphered in U937 

monocytes. By utilization of pharmacological modulators in this model, we showed that AR 

expression and stabilization of nuclear NFAT5, were revealed to be positively regulated by 

SIRT1. Overexpression and co-transfection studies of NFAT5 and SIRT1, further validated 

contribution of SIRT1 on NFAT5 dependent AR expression. Involvement of SIRT1 activity 

in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. 

Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic 

conditions and this interaction was disrupted by osmotic stress. Subsequently, in silico 

experiments were conducted for investigating if SIRT1 directly targets NFAT5. In this 

regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute 

to its DNA binding and SIRT1 was shown to target acetylated lysine 282 of NFAT5. Based 

on in vitro and in silico findings, we identified SIRT1, for the first time, as a novel contributor 

to NFAT5 dependent AR expression under osmotic stress. 
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ÖZET 

 

OZMOTİK STRES ALTINDA, SIRT1`İN NFAT5 BAĞIMLI ALDOZ REDÜKTAZ 

ANLATIMININ YENİ DÜZENLEYİCİSİ OLARAK TANIMLANMASI 

AHMET CAN TİMUÇİN 

Biyoloji Bilimleri ve Biyomühendislik, Doktora Tezi, Temmuz 2015 

Tez Danışmanı: Prof. Dr. Hüveyda BAŞAĞA 

Anahtar Kelimeler: NFAT5, SIRT1, aldoz redüktaz, ozmotik stres, deasetilasyon 

 

Bugüne kadar, çeşitli moleküllerin NFAT5`i ve hedeflerini düzenlendiği tanımlanmıştır. Bu 

yaygın NFAT5 düzenleyicileri arasından, NFAT5 bağımlı olaylarda rol almak üzere, SIRT1, 

umut verici bir aday olarak önerilmiş fakat bunun kesin mekanizması ortaya konmamıştır. 

Bu nedenle, bu tezde, ozmotik stress altında, SIRT1 ve NFAT5-Aldoz Redüktaz (AR) ekseni 

ilişkisinin açıklanması hedeflenmiştir. Özgün ozmotik stress modeli oluşturulmuş ve bu 

modelin mekanizmasının bileşenleri U937 monositlerinde araştırılmıştır. Bu modelde, 

SIRT1 düzenleyicileri kullanılarak, AR anlatımının ve nükleer NFAT5 stabilizasyonunun, 

SIRT1 tarafından pozitif yönde etkilendiği gösterilmiştir. NFAT5 ve SIRT1`in aşırı anlatım 

ve ko-transfeksiyon çalışmaları ile SIRT1`in NFAT5 bağımlı AR anlatımı üzerindeki etkisi 

doğrulanmıştır. SIRT1`in bu olaylara, NFAT5`in AR geninin ORE bölgesine bağlanmasını 

sağlayarak katıldığı ortaya konmuştur. Öte yandan, izozmotik koşullarda, NFAT5 ve SIRT1 

ko-immunopresipitasyonu gösterilmiş ve bu ilişkinin ozmotik stress altında bozulduğu 

gözlemlenmiştir. Bunları takiben, in siliko deneyler ile, NFAT5`in SIRT1 tarafından 

doğrudan etkilenmesi araştırılmıştır. Bu bağlamda, belli NFAT5 lizinlerinin, deasetilasyon 

durumunda iken, NFAT5`in DNA`ya bağlanmasına katkıda bulunduğu ve SIRT1`in 

asetillenmiş lizin 282`yi hedeflediği gösterilmiştir. Bu in vitro ve in siliko gözlemler ışığında, 

SIRT1`in, ilk defa, NFAT5 bağımlı AR anlatımına, ozmotik stress altında, katkıda 

bulunduğu belirlenmiştir. 
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1. INTRODUCTION 

 

 

1.1. Osmosis 
 

Movement of water across a semi-permeable membrane is defined as osmosis. In an 

ideal case, only water can pass through a semipermeable membrane. For instance, if there 

are two different concentrations of NaCl in water, separated by a semipermeable membrane, 

the direction of water will be towards to the compartment, with higher NaCl concentration 

(Figure 1.1). This is due to the condition called “concentration gradient of water” in which 

solution with the low NaCl concentration has higher concentration of water compared to the 

high NaCl containing solution. This phenomena can be prevented by applying a hydrostatic 

pressure, for example using a hypothetical piston applied from high NaCl compartment 

(Figure 1.1). In line with these, osmotic pressure is defined as the total pressure to prevent 

the water flow through this membrane, assuming no kinetic barrier for water flow through 

the membrane is present (Figure 1.1, right). Total concentration of solute particles in the 

solvent is what generates osmotic pressure.  
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Figure 1.1. Flow of water across a semipermeable membrane and directions of hydrostatic 

and osmotic pressure. 

Under steady state conditions, intracellular and extracellular concentrations of solutes 

are similar. Any perturbation of these concentrations results in an osmotic gradient between 

membrane and extracellular fluid. In response, cells try to go back to their steady state 

condition, via flowing water in or out of the cell. Nonetheless, unlike plant cells with a cell 

wall, mammalian cells cannot generate enough hydrostatic pressure to overcome such 

gradients and they swell or shrink, depending on the case. 

 

1.2. Regulation of cell volume 

 

 Modifications of cellular volume are categorized in mainly two groups. Anisosmotic 

volume changes are the ones, generated via changes in extracellular solute concentrations. In 

healthy state, almost all mammalian cells, except the ones in renal medulla and 

gastrointestinal tract, are sheltered from anisosmotic perturbations via control of solute 

concentration of plasma by kidney. On the other hand, isosmotic volume changes are defined 

by the perturbations on intracellular solute concentrations. Cells protect themselves from 

such a threat by solute transport to inside or to outside of the cell and also by synthesizing 

osmotically active compounds.  

Amount of water inside the cell, thus, cellular volume is regulated by concentrations 

of intracellular osmotically active compounds and extracellular solute. Membrane of the 
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animal cells are generally accepted to be permeable to water. The permeability of water into 

animal cells is much higher than the permeability of Na+ and Cl-. In this regard, presence of 

AQPs has been shown to increase intracellular water content upon exposure to hypotonicity 

(King et al., 2004, Liu et al., 2006, Galizia et al., 2008). Moreover, the “pump and leak” 

hypothesis states that, cells protect themselves from swelling induced lysis via both 

constituting low Na+ mobility across membrane and via active pumping of Na+ out of the cell 

by Na+-K+-ATPase (Leaf, 1959, Tosteson et al., 1960). Nevertheless, almost all cells are 

exposed to volume changes due to changes in environmental or intracellular osmolarity. 

When swollen, cells extrude water and KCl via activation of K+ and Cl- channels, as well as 

KCl cotransporter, thus try to minimize their volume, in process called regulatory volume 

decrease (RVD) (Figure 1.2, right). On the contrary, shrunken cells, try to increase their 

volume by taking up more KCl, NaCl and water through employing Na+-H+ and Cl-/HCO3
- 

exchangers, as well as, Na-K-2Cl cotransporter, which has been widely known as regulatory 

volume increase (RVI) (Figure 1.2, left). These two well established phenomenon of cell 

volume regulation happens within seconds to minutes after exposure of the cell, hence they 

can be considered as first line of defense mechanism against osmotic perturbations (Strange, 

2004, Hoffmann et al., 2009).  

 

 

Figure 1.2. Regulation of cell volume is maintained through electrolyte accumulation. 
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1.2.1. Accumulation of compatible osmolytes 
 

 Shrinkage is often counteracted by cells through maintaining RVI (Wehner et al., 

2003). While this volume increasing modification provides advantage for cell survival within 

minutes, main disadvantage of RVI is the abnormal increase in concentration of ions within 

the cell. This condition has deleterious effects on intracellular macromolecules (Figure 1.3, 

left) (Yancey et al., 1982). 

 After several hours, instead, compatible organic osmolytes begin to be synthesized 

(Figures 1.4 and 1.5). Structures of glucose, as well as, major compatible organic osmolytes 

found in animal cells are shown in Figure 1.4. One major advantage of accumulation these 

osmolytes is that they do stabilize the native conformation of proteins, unlike perturbing 

inorganic ions (Figure 1.3, right) (Yancey et al., 1982, Street et al., 2006). Sorbitol, betaine 

and myo-inositol are widely used osmolytes by kidney for osmoregulation (Bagnasco et al., 

1986, Garcia-Perez et al., 1991, Nakanishi et al., 1991).   

 

 

Figure 1.3. Illustration of the difference between the impacts of a perturbing (P) and 

compatible (C) solute on the native conformation of a protein. Compatible osmolytes tend to 

be away from protein surface. Sorbitol is produced from glucose, via AR based reduction 

and sorbitol is converted to glucose by SDH (Figures 1.4 and 1.5) (Garcia-Perez et al., 1991). 

Cell shrinkage upon osmotic stimuli increases AR enzymatic activity as well as, its mRNA 

and protein levels. This increase is mainly mediated by the transcription factor NFAT5, also 
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called TonEBP/OREBP. (See heading 1.4. The transcription factor, NFAT5 and its activation 

under osmotic stress) Betaine (Figures 1.4 and 1.5) is produced from choline both in liver 

and kidney (Garcia-Perez et al., 1991). Osmotic stimuli does not affect the rate of production 

of betaine, but upregulates betaine carrying transporters, such as BGT1 and betaine 

transporter which increase its intracellular concentration (Figure 1.5) (Yamauchi et al., 

1992). Betaine transporter works with symporting NaCl and also regulates BGT1 in osmotic 

stimuli dependent manner (Figure 1.5) (Strange, 2004, Burg et al., 2007). The transcriptional 

regulation of BGT1 is also enhanced by the transcription factor  NFAT5, under hypertonicity 

(Uchida et al., 1993, Burg et al., 2007). BGT1 is also controlled by insertion into plasma 

membrane (Kempson et al., 2004). Upon osmotic stimuli, BGT1 tend to locate to basolateral 

plasma membrane. This localization of BGT1 is regulated by microtubules and calcium 

(Kempson et al., 2004, Kempson et al., 2006).  

 

Figure 1.4. Glucose and some of the main compatible osmolytes found in animal cells. 

Glucose is reduced to sorbitol by AR. 

 Inositol (Figures 1.4 and 1.5) is produced by renal cells (Garcia-Perez et al., 1991). 

Nonetheless, its concentration is not dependent on synthesis, but only on its transport upon 

osmotic stimuli (Figure 1.5). Thus, its presence outside cell is the major determinant for its 
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accumulation. Hypertonic environment increases its transporter SMIT, which works similar 

to BGT1, through utilization Na gradient coupling (Kwon et al., 1992, Hager et al., 1995). 

Osmotic stimuli increases the SMIT gene expression, through employing NFAT5 (Yamauchi 

et al., 1993).  

 

 

Figure 1.5. Regulation of accumulation and loss of compatible organic osmolytes. 

Accumulation of compatible osmolytes are interceded mainly by Na+ coupled membrane 

transporters or by direct synthesis. This process is relatively slow compared to RVI, and takes 

several hours from beginning to end. One main reason of this lengthy process is that cells 

need several hours to complete of transcription and translation of genes, whose products are 

osmolyte transporters and osmolyte synthesis enzymes. On the contrary, loss of these 

osmolytes are handled in order of seconds after swelling is sensed by the cell. 

 

1.3. Creating a hypertonicity with high NaCl  
 

 Hypertonicity occurs of when solute concentration in extracellular environment is 

hyperosmotic, which results in the water loss, hence cellular volume decreases. Loss of water 

results in macromolecular crowding and related increased activity of intracellular molecules 

(Garner et al., 1994). In parallel, intracellular ionic strength and cytoskeletal changes are 

6 
 



accompanied with macromolecular crowding, all of which are primary effects of 

hypertonicity. 

 Hypertonic environment for cells can be generated by employing high NaCl which is 

the main element of osmotic actions of the extracellular fluid. This property of NaCl led us 

to investigate its impact in this thesis. Nevertheless, Na+ and Cl- has specific effects other 

than osmotic stress on the cells. For instance, elevated Cl- upregulates the α-Na+- K+-ATPase 

(Capasso et al., 2003). In this sense, while NaCl is widely used to create hyperosmotic 

environment, its impact on the cell may not be just due to generation of hypertonicity. 

Because of this, other solutes that have relatively low permeability to cells should be utilized 

in parallel to NaCl treatment, such as mannitol, to differentiate the osmotic stress based 

effects from other specific effects the agents. In turn, those low permeability solutes like 

mannitol, may have other specific effects to the cells. Therefore, the concrete approach, when 

studying osmotic stress generation with high NaCl, is utilization osmotic controls. In our 

case, we used mannitol, as the osmotic control of NaCl, and mannitol and NaCl, as the 

osmotic controls of glucose. It is also worth noting that increasing osmolality over 300 

mosmol/kgH2O may end up with abnormal increase in apoptotic rate in some cells, so 

viability of the cells should examined carefully, before any analysis (Santos et al., 1998, 

Michea et al., 2000).  

 Hyperosmotic environment causes wide variety of changes in many cellular 

components (Figure 1.9). These changes can be categorized in two categories: a) changes 

induced as cellular osmoprotection mechanism, b) changes due hypertonicity induced 

dysfunctions.  

 

1.3.1. Hyperosmotic environment induced modifications of cytoskeleton 

 

 Environmental hyperosmotic milieu causes polymerization of microfilament and 

exerts changes in actin cytoskeleton (Di Ciano et al., 2002, Bustamante et al., 2003, 

Yamamoto et al., 2006). Nevertheless, mechanism of actin remodeling is handled differently 

in each cell type. For instance, in glial cells, osmotic stress causes microfilaments from 
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cortical ring to turn into diffuse actin bundles (Mountain et al., 1998). On the other hand, in 

fibroblasts, only cortical ring is condensed (Di Ciano et al., 2002). This alterations in 

cytoskeleton are regulated by GTPases, Rac and Cdc42, F-actin nucleation regulator, actin 

binding protein (Di Ciano et al., 2002). Rho kinase and p38 also, in part, mediate the osmotic 

stress dependent localization myosin IIB to cortical region (Pedersen et al., 2002). 

 Exposure of cells to hyperosmotic stress also induces changes on integrins, which are 

responsible for interaction of the cell with extracellular matrix. Osmotic stress has been 

shown to upregulate integrin β mRNA and protein in Madin-Darby canine kidney cells, in 

NFAT5 dependent manner (Sheikh-Hamad et al., 1997). 

 Overall, the role of cytoskeleton modifications in cells under hyperosmotic milieu is 

still unclear (Eggermont, 2003). It is speculated to regulate sensing of cell volume, stabilizing 

against shrinkage or carrying osmotic stress related signals within the cell. Within these 

possibilities, cytoskeleton based transmittance of osmotic signals is highly likely due to 

presence of supportive data. Hyperosmotic stress induces formation of actin interacting 

complex through assembly of OSM, Rac, MEKK3, MKK3 and p38 (Uhlik et al., 2003). In 

turn, p38 can contribute to the activation of NFAT5 and experimental evidence suggests that 

alterations of OSM complex causes inhibition of p38 dependent NFAT5 activation, 

suggesting that role of cytoskeleton in osmotic signal transmittance (Uhlik et al., 2003). 

While this data suggests the involvement of p38, more recently, Brx (a guanine nucleotide 

exchange factor)-JIP4 complex has been shown to regulate activation of p38 under 

hyperosmotic conditions (Figure 1.6) (Aramburu et al., 2009). 
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Figure 1.6. Brx dependent regulation of p38 and NFAT5 under hyperosmotic environment. 

Specifically, Brx-JIP4 complex is a necessary component of Cdc42 and Rac1 based p38 

activation. p38, as well other kinases, have the capability of activating NFAT5. Fyn, a kinase 

of Src family, acts as an upstream effector of Rac1 and Cdc42, hence may also augment them 

for p38 activation. Brx and JIP4 interacts with Cdc42 or Rac1 for their activation. OSM is 

required for the actin interacting assembly, thus, also for p38 activation. Sensing of osmotic 

stress is initiated in the plasma membrane and may be mediated by cytoskeletal change 

induced Brx activation or by yet undetermined osmosensor molecules, orthologous to the 

yeast Sln1 and Sho1. 
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1.3.2. Hyperosmotic environment induced oxidative stress 
  

 High NaCl causes oxidative stress, accompanied by increase in ROS (Zou et al., 2001, 

Zhang et al., 2004, Yang et al., 2005, Zhou et al., 2005, Zhou et al., 2006). DNA bases can 

be altered by ROS through formation 8-oxoguanine and proteins are also targets for 

carbonylation by ROS (Levine et al., 2000, Greenberg, 2004). In particular, carbonylation 

has deleterious effects on stability and function of the proteins (Stadtman et al., 2000). No 

repair mechanism for carbonylated proteins are present in cells, therefore for protection cell 

should degrade and resynthesize such proteins (Levine, 2002). In renal medullary cells 

exposed to high NaCl, oxygen is low compared to other parts of the cells in the body, so they 

can handle miniscule amounts of ROS and its deleterious effect (Bagnasco et al., 1985) (Burg 

et al., 2007). Therefore, cells that have higher supply of oxygen, may be prone to 

hyperosmotic stress driven ROS in highly noticeable amounts.  

 On the contrary, ROS has been also suggested to be involved in osmoprotection. In 

line with this notion, antioxidants have been shown to inhibit high NaCl induced NFAT5 

transcriptional activity and BGT1 mRNA (Zhou et al., 2005, Zhou et al., 2006). Furthermore, 

NAC have been shown to suppress high NaCl dependent phosphorylation of ERK1/2 and 

p38 (Yang et al., 2005). 

 

1.3.3. Hyperosmotic environment induced DNA damage 

 

 High NaCl based hyperosmotic stress induces DNA breaks in mIMCD3 cells (Kultz 

et al., 2001, Dmitrieva et al., 2003). Many DNA breaks exist and kept in cells adapted to long 

term high NaCl concentrations, interestingly these breaks are not repaired and cells continue 

to proliferate (Capasso et al., 2001, Santos et al., 2003, Dmitrieva et al., 2004). At normal 

conditions, DNA damage sites are direct targets for DNA repair complexes. If this repair 

mechanism cannot be completed, cells initiate the apoptotic machinery. Hence, cells without 

DNA repair complexes are accepted to be not viable upon DNA damage (Xiao et al., 1997, 

Luo et al., 1999, Liu et al., 2000, Zhu et al., 2001). Extraordinarily, DNA damage kept as it 
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is during high NaCl treatment and apoptosis due to these DNA breaks is not initiated 

(Dmitrieva et al., 2004). In addition, elimination of NaCl from environment activates DNA 

repair mechanism again, indicating that high NaCl suppresses DNA repair (Dmitrieva et al., 

2003, Dmitrieva et al., 2004). This remarkable link between high NaCl and DNA damage, 

may be explained by the fact that gene rich regions are not subjected to DNA breaks during 

high NaCl exposure, as suggested previously (Dmitrieva et al., 2011). 

 High NaCl upregulates and activates several DNA damage response proteins such as 

Gadd45, p53, ATM and chk2 (Sheen et al., 2006). Other than these DNA damage response 

related proteins, PARP1, a DNA repair enzyme, has been suggested to negatively involved 

in high NaCl induced activation of NFAT5 (Malanga et al., 2005, Chen et al., 2007). (See 

heading 1.4.7. Inhibition of NFAT5) 

 

1.3.4. Hyperosmotic environment induced apoptosis 
 

 When timing of hyperosmotic environment generated hypertonicity is prolonged, 

cellular death happens. The tolerance of each cell line to hypertonicity greatly varies, but the 

characteristics of it, are generally same for all cells. Hypertonic cell death demonstrates 

typical markers of apoptosis (Bortner et al., 1996, Santos et al., 1998, Michea et al., 2000, 

Galvez et al., 2001). Condensation of DNA, appearance of apoptotic bodies, fragmentation 

of DNA and increased phosphatidylserine on cell membrane, are some of the apoptotic 

hallmarks, observed for hypertonic cell death. Both of the two basic cascades of apoptosis, 

intrinsic and extrinsic pathways have shown to be involved during osmotic stress dependent 

cell death (Jin et al., 2005). Elevation of osmolality to 700 mosmol/kgH2O using NaCl in 

mIMCD3 cells have shown to cause depolarization of mitochondria, reduced Bcl2/Bax ratio 

and increased ratio of ADP/ATP (Michea et al., 2002). Elevation of osmolality to 900 

mosmol/kgH2O using sorbitol in HeLa cells, induced the extrinsic apoptotic machinery and 

displayed clustering and internalization of TNF- α receptors (Rosette et al., 1996).  Moreover, 

using NaCl to raise osmolality to 500 mosmol/kgH2O in U937 cells have been presented to 

upregulate TNF-α, raising the possibility that this cell line induces cell death on its own (Lang 

et al., 2002). Employing TNF-α antibody also has shown to inhibit apoptosis in U937 cells, 
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indicating that internal accumulation of TNF-α, is responsible for initiation of apoptosis in 

this cell line. It is apparent that hyperosmotic environment induced hypertonicity results 

initiation of both intrinsic and extrinsic mechanisms of apoptosis, however the selection of 

the mechanism, depends on the cell line being studied. In our case, we have chosen to work 

with U937 and HeLa cells, in light of these previous observations. 

 

1.4. The transcription factor, NFAT5 and its activation under osmotic stress 

  

 NFAT5, also called TonEBP/OREBP, belongs to Rel family member of proteins 

which also includes NFκB. Targets of NFAT5 contain at least one DNA binding region, 

which is named as ORE or TonE (Ferraris et al., 1994, Takenaka et al., 1994, Ferraris et al., 

1996, Mallee et al., 1997, Rim et al., 1997, Ferraris et al., 1999, Miyakawa et al., 1999a, Ito 

et al., 2004). 

 Transactivation of NFAT5 results in transcription and translation of genes that induce 

upregulation of compatible organic osmolytes, including sorbitol, betaine and inositol 

(Figures 1.4 and 1.5) (Burg et al., 1997, Gallazzini et al., 2006).  Knocking out NFAT5 

expression or dominant-negative expression of NFAT5 has several kidney and non-kidney 

related consequences. If both alleles of NFAT5 is deleted, mice generally die at embryonic 

stage (Go et al., 2004, Lopez-Rodriguez et al., 2004). Among these NFAT5 knockout mice, 

few survive and display characteristic downregulation of NFAT5 target genes (Lopez-

Rodriguez et al., 2004). On the other hand, heterozygous deletion of NFAT5 results in 

diminished number of lymphoid cells and suppressed antigen-specific antibody production 

(Go et al., 2004). Dominant negative overexpression of inactive NFAT5 results in cataract 

formation in lenses of mice after birth and fiber cells in these lenses show the characteristics 

of hyperosmotic stress (Wang et al., 2005). 
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1.4.1. Structure of NFAT5 
 

 NFAT5 is found as homodimer on its target DNA (Figures 1.7 and 1.8) (Stroud et al., 

2002). Binding mode of each immunoglobulin like monomer to DNA, is very close to those 

of that of RHR of NFAT and NFκB families (Muller et al., 1995, Chen et al., 1998b, 

Miyakawa et al., 1999b). In this similarity, NFAT5 is more like NFAT than NFκB, based on 

backbone superposition and sequence identity (Cramer et al., 1997). Nonetheless, the 

orientation of N-terminal and C-terminal of NFAT5 differs significantly from those of 

NFAT1 and has increased similarity to the binding mode of NFκB to DNA (Ghosh et al., 

1995, Cramer et al., 1997, Chen et al., 1998a, Chen et al., 1998b, Chen et al., 1998c, 

Miyakawa et al., 1999b) . Moreover, NFAT5 has two dimer interfaces unlike NFκB-DNA 

complexes, which have only one (Figures 1.7 and 1.8). 

 NFAT5 homodimer binds to DNA through interaction of N-terminal of one monomer 

(Stroud et al., 2002). AB loop region in N-terminal, which contain amino acid residues of 

Arg217, Arg226, Glu223, Tyr 220, as well as, Gln364 from the linker region between N and 

C-terminals are responsible for binding to DNA in sequence specific manner (Stroud et al., 

2002). AB loop is also conserved in NFAT and NFκB family of transcription factors (Stroud 

et al., 2002). 

 NFAT5 homodimer is maintained through two dimer interfaces located in between N 

and C-terminal regions (Stroud et al., 2002). For C-terminal dimer interface, hydrophobic 

residues, Leu372, Ile390, Leu422, Ile429 and Phe388 of each monomer resides at the center 

of the interface and polar residues Asn426, His424, His427, Lys373, Glu 386 and Ser375 

makes the necessary hydrogen bonding and electrostatic interactions (Stroud et al., 2002). 

Among these, in this thesis, Lys 373 has been proposed to be potential SIRT1 target, when 

acetylated, hence SIRT1 may have important implications in NFAT5 dimerization (See 

heading 3.7. In silico prediction of lysine 282 of NFAT5 as a potential SIRT1 target site). 

For N-terminal interface, α-helix loop from each monomer, including Arg315, Ala317, 

Asp318 and Glu320 makes up the dimerization interface. Dimerization of NFAT5 is 

independent of hyperosmotic stress, and is essential for DNA binding, phosphorylation and 
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transactivation of the osmotic stress related genes (Lopez-Rodriguez et al., 2001, Lee et al., 

2002, Lopez-Rodriguez et al., 2004). 

 

Figure 1.7. Structure of NFAT5. NES: Nuclear export sequence, TAD: Transactivation 

domain, AED: Auxillary export sequence, NLS: Nuclear export sequence, RHD: Rel 

homology domain, DD: Dimerization domain 

 

1.4.2. Regulation of NFAT5 mRNA and protein 

  

 Hyperosmotic stress upregulates NFAT5 mRNA in several cell types in a transient 

manner, peaking in between 4th and 12th (Ko et al., 1997, Woo et al., 2000a, Cai et al., 2005). 

This increase in NFAT5 mRNA is due stabilization of the 5’-UTR, thus, this condition clearly 

explains the increase in NFAT5 mRNA without any change in its transcriptional rate (Cai et 

al., 2005). Parallel to the stabilization of NFAT5 mRNA, NFAT5 protein accumulates and 

translocates to the nucleus, upon exposure to hyperosmotic stress (Woo et al., 2000a). 
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Figure 1.8. Structure of NFAT5-DNA complex, depicted from PDB ID: 1IMH. C-terminal 

(RHR-N) and N-terminal domains of NFAT5 and their residue number in 1IMH structure is 

shown. NFAT5 binds to the DNA as homodimer. Chain identifiers and residue numbers are 

kept as in 1IMH. 

 

1.4.3. Regulation of NFAT5 phosphorylation and other post translational modifications 

  

 NFAT5 is phosphorylated within 30 minutes of hyperosmotic exposure from serine 

and tyrosine residues (Dahl et al., 2001). Role of this phosphorylation is still unconvincing 

due to the fact that no amino acids of NFAT5, are identified to be directly phosphorylated. 

However, it is likely that, as in other transcription factors, NFAT5 and its dependent events 

may be regulated by this post translational modification. 

 DNA binding of NFAT5 may be regulated by serine/threonine phosphorylation since 

CIP and PP1 phosphatases, suppresses DNA binding of this transcription factor (Aida et al., 

1999). However, this effect is not maintained by immunoprecipitated NFAT5, since at this 

level, it does not respond to enzymatic activity of CIP, and kept its DNA binding intact (Dahl 
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et al., 2001). Moreover, hyperosmotic stress has displayed increased phosphorylation in 

NFAT5 residues 548 to 1531 (NFAT5, isoform C), which contains residues 872 to 1271 

(NFAT5, isoform C), responsible for its transactivation (Ferraris et al., 2002b). Inhibitors of 

serine/threonine kinases has been shown to suppress this phosphorylation, however if it is a 

direct or indirect effect, is still a matter of debate (Ferraris et al., 2002b). Moreover, it has 

been suggested to be indirect, since NFAT5 transactivation domain has been presented to 

have no changes in phosphorylation upon hyperosmotic exposure (Lee et al., 2003). 

Nevertheless, there are other site directed mutagenesis studies, proposing direct 

phosphorylation of NFAT5 (Irarrazabal et al., 2004). 

 Other than phosphorylation, NFAT5 was proposed to be palmitoylated in which 

depalmitoylation was shown to accelerate its nuclear translocation (Eisenhaber et al., 2011). 

In addition, sumoylation of NFAT5 was revealed to inhibit its transactivation (Kim et al., 

2014a). 

  

1.4.4. Regulation of intracellular localization of NFAT5 
 

 Transcription factors above 50 kDa cannot directly translocate to nucleus for DNA 

binding. Therefore, high molecular weight proteins such as NFAT5 contain a NLS to bind 

importin. Importin carries such molecules into nucleus via actively transporting them through 

nuclear pores. On the contrary, high molecular weight proteins are translocated to cytoplasm 

from nucleus, via binding to exportin, through employing their NES containing residues.  

 Under isosmotic conditions, NFAT5 is in both cytoplasm and nucleus but 

hyperosmotic stress causes its translocation to nucleus (Miyakawa et al., 1999b, Ko et al., 

2000, Lopez-Rodriguez et al., 2001, Tong et al., 2006). Under hypotonic conditions, NFAT5 

mainly resides in cytoplasm (Woo et al., 2000a, Tong et al., 2006). Moreover, NFAT5 

translocation to nucleus is suppressed by utilization of a widely known, proteasome inhibitor, 

MG132, proposing the possibility of the presence of an inhibitor of NFAT5, residing in 

cytoplasm, just like NFκB – IκB interaction (Woo et al., 2000b, Cyert, 2001). 
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 Recombinant NFAT5 containing residues 1 to 547 of N-terminal region (NFAT5, 

isoform C) translocates to nucleus under hyperosmotic stress, indicating that C-terminal of 

NFAT5 is not required for nuclear translocation event, under such circumstances (Zhang et 

al., 2005). NLS also resides within N-terminal amino acids of NFAT5 (Lopez-Rodriguez et 

al., 1999, Ko et al., 2000). NES is also located in N-terminal of NFAT5, and composes a 

domain that can be targeted by CRM1 (Tong et al., 2006). In this regard, leptomycin1, a 

CRM1 inhibitor, has been shown to suppress NFAT5 nuclear export under isomotic 

conditions (Tong et al., 2006). However, CRM1 is not responsible for nuclear export for 

NFAT5 under hypoosmotic stress, since mutations in NES did not altered export under this 

condition (Tong et al., 2006). On the other hand, AED, auxiliary export domain in N-terminal 

of NFAT5, maintains the nuclear export under both isosmotic and hypoosmotic conditions 

(Tong et al., 2006).  

 Among NFAT5 modulating kinases, ATM has been shown to induce nuclear 

translocation of NFAT5 under hyperosmotic stress (Zhang et al., 2005). Non-functional 

ATM causes diminished nuclear translocation of NFAT5 and only N-terminal containing 

construct of NFAT5 (Zhang et al., 2005). This effect of ATM could be directly on N-terminal 

of NFAT5 or could be mediated from the TAD domain of NFAT5, since this domain can 

also control localization of NFAT5 and contains consensus ATM sites for phosphorylation 

(Ferraris et al., 2002b, Irarrazabal et al., 2004, Ramadoss et al., 2005).  

 

1.4.5. Regulation of NFAT5 transactivational activity  

 

 TADs, the transactivation domains of transcription factors, are the sites of interaction 

with other proteins for the purpose of enhancement of transcription. In this regard, at basal 

level, RNA polymerase recruitment is a necessary event for TAD activation. Transactivation 

of genes is mediated by transcription factors through DNA binding, interaction with other 

proteins or factors or by modifications at the post translational level. NFAT5 has a 

hyperosmotic stress responsive TAD in residues between 1039 and 1249 (NFAT5, isoform 

C) (Ferraris et al., 2002b, Lee et al., 2003). There is also a hyperosmotic stress dependent 

modulation domain in between residues 618 to 820 of NFAT5 (NFAT5, isoform C), which 
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acts in synergy with TAD for proper hyperosmotic stress response (Lee et al., 2003). NFAT5 

interacts with many protein for transactivation such PKA, p38, Fyn, ATM and PI3K. 

 PKA, cyclic AMP dependent serine-threonine kinase, transfers phosphate groups to 

other proteins under high intracellular cyclic AMP concentrations. Nevertheless, this rise in 

cyclic AMP is not necessary for PKA activation under hyperosmotic stress (Ferraris et al., 

2002a). PKA positively regulates NFAT5 under hyperosmotic milieu via increasing its 

transactivation and results in increased in AR and BGT1 transcription (Ferraris et al., 2002a). 

In line with these findings, NFAT5 and PKA co-immunoprecipitate (Ferraris et al., 2002a). 

 p38 is a MAPK that is also activated under hyperosmotic stress. It positively regulates 

NFAT5 transactivation and increases NFAT5 targets as presented by pharmacological 

modulator and dominant negative constructs of p38 (Han et al., 1994, Sheikh-Hamad et al., 

1998, Nadkarni et al., 1999, Ko et al., 2002). Hyperosmotic stress activates MEKK3 and 

MAPK kinases, MKK3 and MKK6, which in turn can activate p38 (Cuenda et al., 1996, 

Meier et al., 1996, Uhlik et al., 2003, Kang et al., 2006). TAB1 also mediates autoactivation 

of p38 under hyperosmotic stress (Kang et al., 2006). Moreover, some of the p38 population 

within the cell interacts with OSM, which also interacts with actin, GTPase Rac, MEKK3 

and MKK3 under hyperosmotic stress (See heading 1.3.1. Hyperosmotic environment 

induced modifications of cytoskeleton).  

 Fyn is a member of Src family of tyrosine kinases which are regulated via 

phosphorylation and dephosphorylation events. Phosphorylation from C-terminal tyrosine 

renders Src family kinases inactive, whereas dephophorylation events on this tyrosine causes 

a conformational change and activates these enzymes. Fyn is activated under hyperosmotic 

stress via mainly via cell shrinkage (Kapus et al., 1999, Reinehr et al., 2004). Several 

observations indicate the involvement of Fyn for NFAT5 transactivation such that Fyn 

knockout cells have lower NFAT5 transcriptional activity towards AR gene and 

pharmacological inhibition or dominant negative expression of Fyn diminish NFAT5 

dependent transcription (Ko et al., 2002).  
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Figure 1.9. High NaCl causes NFAT5 transcriptional activity via several mechanisms and 

upregulates osmoprotective gene expression, including AR, SMIT and BGT1. 

  

ATM, is a DNA backbone breakage sensitive serine threonine kinase, phosphorylates several 

intracellular targets such as p53 and BRCA1 upon DNA damage, and induce DNA repair for 

cell survival. ATM is also activated under hyperosmotic stress and positively regulates 

NFAT5 transactivation (Irarrazabal et al., 2004). In this regard, pharmacological modulators 

of ATM and experiments done on ATM knockout cells has shown findings that loss of ATM 

results in suppressed NFAT5 transactivation, decreased NFAT5 dependent transcription and 

downregulated NFAT5 targets (Irarrazabal et al., 2004). ATM also interacts with NFAT5 

and have been found acting together with NFAT5 on ORE sites (Irarrazabal et al., 2004). C-

terminal region of NFAT5 contains three serine residues, which are ATM consensus 

phosphorylation sites (Irarrazabal et al., 2004) Among these serines, mutation of serine at 

position 1247 has been suggested to be phosphorylated by ATM for proper NFAT5 

transcriptional activity, however direct evidence for phosphorylation of this site is still 

lacking (Irarrazabal et al., 2004). 

 PI3Ks are lipid kinases that transfers phosphate groups to 3’ hydroxyl groups of 

phosphatidylinositol and phosphoinositides. PI3KIA, a class IA PI3K, converts PIP3 to PIP2 
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and is involved in NFAT5 activation (Engelman et al., 2006). These effects of PI3KIA on 

NFAT5 are mediated by ATM (Irarrazabal et al., 2006). 

 

1.4.6. Interactions of NFAT5 

  

 To date, NFAT5 was documented to be part of a bulky complex, which consist of 

several other partners, such as catalytic subunit of PKA (Ferraris et al., 2002a), ATM 

(Irarrazabal et al., 2004), RNA Helicase A (Colla et al., 2006), TAZ (Jang et al., 2012), FSP27 

(Ueno et al., 2013), B-catenin (Wang et al., 2013), AP-1 (Irarrazabal et al., 2008), HSP-90 

(Chen et al., 2007) and PARP1 (Chen et al., 2007).  

 

1.4.7. Inhibition of NFAT5 

 

 RNA Helicase A is nuclear protein that is involved in unwinding of DNA and RNA. 

Independent of this activity, it suppresses NFAT5 activation (Colla et al., 2006). It interacts 

with dimerization interface at the N terminal of NFAT5 through its N and C-terminals. 

NFAT5-RNA Helicase A interaction is disrupted upon hyperosmotic exposure.  

 PARP1, an also inhibitor of transcriptional activity of NFAT5 (Chen et al., 2007), 

catalyzes poly (ADP-ribosyl)ation of proteins, as well as takes role in DNA repair mechanism 

using NAD+ as cofactor (Schreiber et al., 2006). PARP1 expression under hyperosmotic 

stress has been shown to suppress both transcriptional activity and activity of transactivation 

residues of NFAT5 (Chen et al., 2007). This inhibitory effect of PARP1 was suggested to be 

independent of its activity (Chen et al., 2007). 

 

1.5. NFAT5, AR and diabetic vascular complications 

 

 During the course diabetes, diabetic patients develop vascular complications of 

diabetes such as such as atherosclerosis, nephropathy, neuropathy and retinopathy 
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(Vikramadithyan et al., 2005, Oates, 2008, Kim et al., 2014b, Wei et al., 2014).  

Hyperglycemia induced by diabetes, increases hyperosmolality of the plasma up to 350 

mosmol/kgH2O and more frequently, diabetes patients have hyperglycemia at every post-

prandial stage, even under good metabolic control (Reaven et al., 1988, Campos et al., 2003, 

Monnier et al., 2003). During the course of diabetes, the oscillatory increases in plasma 

concentrations of glucose causes acute upregulations of IL-6, IL-18 and TNF-α (Ceriello et 

al., 2004). The possible link between hyperosmotic stress and increased cytokine expression 

have been previously shown in human peripheral blood monocytic cells, which had increased 

levels of IL-1 and IL-8 under hyperosmotic milieu in the range of 330 to 410 mosmol/kgH2O 

(Shapiro et al., 1997). Moreover, increased NFAT5 at TonE sites have been presented in 

peripheral blood monocytic cells of diabetic patients (Yang et al., 2006). Remarkably, a 

hyperosmotic stress dependent target of NFAT5, AR has also been linked to diabetic 

atherosclerosis (Vikramadithyan et al., 2005). Since AR gene has NFAT5 binding sites in its 

promoter region, one can deduce that NFAT5 also plays a role in AR dependent axis of 

diabetic vascular complications. In line with this background studies, we have investigated 

the regulation of NFAT5 dependent AR expression in U937 monocytes under hyperosmotic 

stress in this thesis. 

 

1.5.1. Diabetic vascular complications 
 

 There are mainly four different hypothesis regarding how microvascular and 

macrovascular complications of diabetes are mediated by hyperglycemia, as summarized in 

Figure 1.10; 

1) Increased polyol pathway, which includes the target of NFAT5, AR  

2) Increased flux through hexosamine pathway 

3) Increased activation of Protein Kinase C isoforms 

4) Increased production of advanced glycation end (AGE) products 
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 With this background, focus will on polyol pathway due to investigation of AR 

expression in this thesis. 

 

 

Figure 1.10. Mechanisms of diabetic vascular complications. Excess superoxide from 

mitochondria inhibits GAPDH, therefore upstream glycolytic intermediates are diverted to 

glucose overutilization cascades. As a result, excess DHAP is converted to protein kinase C 

activator, DAG and to methylglyoxal which generates advanced glycation end (AGE) 

products. On the other hand, increased fructose-6-phosphate concentration causes more 

proteins to be modified due to overproduction of UDP-N-acetylglucosamine (UDP-

GLcNAc). Meanwhile, excess glucose is converted to sorbitol, which depletes NADPH, 

within the polyol pathway. 
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1.5.2. Role of AR under diabetic vascular complications 
 

 AR (E.C: 1.1.1.21), is rate limiting enzyme of the polyol pathway (Figures 1.10 and 

1.11). It mainly resides in cytoplasm and catalyzes NADPH dependent reduction of the 

glucose to sorbitol, along with reduction of atherogenic aldehydes, steroids, phospholipids 

lipid aldehydes and their glutathione conjugates (Srivastava et al., 2005, Ramana et al., 2010, 

Vedantham et al., 2012). AR has low affinity to glucose under normal circumstances, but in 

hyperglycemic environment, this affinity substantially increases (Brownlee, 2001).  The 

product of AR enzymatic activity, sorbitol, is then converted to fructose via SDH, which 

results in increased NADH/NAD+ ratio in cytoplasm (Brownlee, 2001). The diabetic vascular 

complications exacerbated by AR has been reported to be mediated in part, by excess AR 

activity dependent depletion of NADPH, which is utilized in cellular protection against 

oxidative stress by glutathione reductase/glutathione peroxidase system (Cheng et al., 1986, 

Srivastava et al., 2005, Vedantham et al., 2012). 

  

 

Figure 1.11. Involvement of AR in polyol pathway. Toxic aldehydes generated through ROS 

formation, and glucose, are utilized by AR. This enzyme converts toxic aldehydes to inactive 

alcohols and glucose to sorbitol, via employing NADPH as a cofactor. When excess AR flux 

is present, GSH is depleted leading to oxidative stress, due to overutilization of NADPH by 

AR. SDH converts sorbitol to fructose. 
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1.6. Protein acetylation and deacetylation 
 

Proteins are frequently modified by acylations which is the attachment of functional 

groups such as acetylation, formylation, butyrylation, propionylation, succinylation, 

malonylation, myristoylation, glutarylation and crotonylation through acyl linkages (Figure 

1.12) (Zeidman et al., 2009). Among post-translational modifications, acetylation is one of 

the most abundant modification as nearly 85% of eukaryotic proteins are acetylated 

(Kouzarides, 2000, Polevoda et al., 2002, Polevoda et al., 2003, Yang, 2004a, Glozak et al., 

2005). Several types of amino acids such serine and alanine can be acetylated in a co-

translational manner from their Nα-terminal (Polevoda et al., 2002). Although less common 

than Nα type acetlyation, Nε-acetylation of internal lysines is still an important type of post-

translational modification (Polevoda et al., 2003). Essentially this process is highly reversible 

and involves in mediating several types of cellular process including transcription regulation 

(Brunet et al., 2004, Faiola et al., 2005), DNA repair (Murr et al., 2006), apoptosis (Cohen et 

al., 2004, Subramanian et al., 2005), cytokine signaling (Yuan et al., 2005), and nuclear 

import (Bannister et al., 2000). 

 

 

Figure 1.12. Acylation of proteins. 
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1.6.1. Reaction mechanisms of acetylation and deacetylation 
 

Protein acetylation is the enzymatic process of transferring acetyl groups from acetyl 

coenzyme A (acetyl CoA) to either α-amino (Nα) group of amino-terminal residues or to the 

ε-amino group (Nε) of specific internal lysines. Figure 1.13 shows the mechanism of Nε 

acetylation of an internal lysine that is catalyzed by a histone lysine acetylase.  

 

 

Figure 1.13. Mechanism of lysine acetylation. 

 

In this reaction, acetyl CoA which is the source of the acetyl group is converted to 

coenzyme A (CoASH). A conserved glutamate residue in acetylase enzymes acts as a general 

base and activates the lysine ε-amino group for nucleophilic attack on the carbonyl group of 

acetyl CoA. Next, an unstable tetrahedral intermediate forms and collapses. The reaction is 

terminated by the release of acetyl lysine (Ace-Lys) and coenzyme A (CoASH). 

This reaction can be reversed by histone deacetylases (HDACs). There are four 

classes of histone deacetylases (I-IV) that catalyze deacetylation of acetyl lysine. The 

reaction mechanisms of these deacetylation reactions involve nucleophilic attack of water on 

the acetyl carbonyl. However the mechanism of activation of water is different for different 

classes of HDACs. As such, HDAC classes I, II and IV use an active-site metal-dependent 

mechanism (Figure 1.14), while class III HDACs such as sirtuins operate using a NAD+ 
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dependent catalytic mechanism (Hallows et al., 2012, Feldman et al., 2013, Hebert et al., 

2013) (Figure 1.15).  

 

 

Figure 1.14. Deacetylation by class I, II and IV HDACs. 

 

 

Figure 1.15. Deacetylation by class III HDACs. 
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1.6.2. Roles acetylation and deacetylation in cellular processes 
 

Hitherto several acetylated proteins along with their selective deacetylases such as 

sirtuins have been targeted to explain the intricate link between lysine acetylation and cellular 

metabolism (Finkemeier et al., 2011, Konig et al., 2014). Nε-acetylation changes the 

electrostatic properties of lysine as it neutralizes the positive charge of the lysine. This change 

would significantly disrupt the hydrogen bonding potential of the positively charged lysine 

and thus may lead to loss of protein function (Yang, 2004a, Yang, 2004b). On the other hand 

acetylation of a surface lysine residue might lead to formation a novel interface for protein 

binding and thus a gain of function will be also proposed in acetylated proteins (Yang, 2004a, 

Yang, 2004b). Overall such kind of alterations was used to explain the roles played by Nε-

acetylation of proteins in protein-protein interaction, DNA binding, enzymatic activity, 

stability and subcellular localization (Bannister et al., 2000, Polevoda et al., 2002, Brunet et 

al., 2004, Yang, 2004a, Yang, 2004b, Faiola et al., 2005, Glozak et al., 2005, Yuan et al., 

2005). 

 

1.6.3. NAD+ dependent deacetylase SIRT1 
 

 Acetylation of proteins is regulated by acetyltransferases, which transfer acetyl 

groups from acetyl CoA to the ε amino groups of lysines. After discovery of 

acetyltransferases, their activity has been long thought to be exerted just on histones, which 

is also countered by histone deacetylases. It is now established histone deacetylases can also 

target non-histone proteins (Kwon et al., 2008). There are three classes of histone 

deacetylases in cells, which are divided according to their homologies to repressors of 

transcription in yeast: 1) Reduced potassium dependency gene 3, 2) A subunit of histone 

deacetylase A complex 3) Silent information regulator 2 (Cress et al., 2000, North et al., 

2004). In humans, there are seven silent information regulator 2 homologues, named as 

Sirtuins (Frye, 2000).  

SIRT1, the closest homologue of silent information regulator 2 of yeast, is a NAD+ 

dependent histone/protein deacetylase which has been implicated in wide array of cellular 
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events including starvation, inflammation, oxidative stress and senescence (Kwon et al., 

2008). In part, SIRT1 mediates these cellular events through directly deacetylating several 

diverse transcription factors including p53 (Vaziri et al., 2001), FOXOs (Motta et al., 2004), 

Egr-1 (Pardo et al., 2012), p65 (Yeung et al., 2004), NFATc3 (Jia et al., 2014). Due to its 

control on replicative senescence, it has been proposed to function as a longevity factor, since 

its overexpression has been shown to suppress p53 through deacetylation (Kaeberlein et al., 

1999, Haigis et al., 2006). This role of SIRT1 in longevity has been supported by several 

lines of evidence on caloric restriction, an inducer of SIRT1 such that caloric restriction 

increases lifespan several organisms (Lin et al., 2000, Tissenbaum et al., 2001, Rogina et al., 

2004, Chen et al., 2005a, Baur et al., 2006, Wang et al., 2006, Milne et al., 2007). 

Other than p53, important for the subject of this thesis, SIRT1 deacetylates, Rel 

family members, p65 and NFATc3, which have been suggested to be negatively regulated 

directly by SIRT1 (Yeung et al., 2004, Jia et al., 2014). Nevertheless, existence of a similar 

machinery and its significance on NFAT5 as another Rel family member, still remains as a 

question. Other than this Rel family linked possibility of NFAT5-SIRT1 axis, in a study 

exploring SIRT1 substrates through utilization of stable isotope labeling with amino acids in 

cell culture (SILAC) method stated that NFAT5 could be a possible catalytic target of SIRT1. 

(Peng et al., 2012). However, the mechanism was not elucidated. More recently, NFAT5 and 

SIRT1 has been shown to work in synergy under osmotic stress in suppression of prorenin 

receptor, supporting the probability of an inducement of SIRT1 on NFAT5 (Quadri et al., 

2014).  

 

Figure 1.16. Structure of SIRT1.U: Unstructured regions. 
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1.6.4. Structure of SIRT1 
 

 The residues responsible from SIRT1 catalytic activity consists of NAD+ binding 

domain, which has a Rossmann fold and other two smaller modules, helical and  Zn2+ binding 

modules (Figures 1.16 and 1.17) (Davenport et al., 2014). Helical and Zn2+ binding modules 

are held together via hydrophobic interface and generates the catalytic core (Davenport et al., 

2014). C-terminal regulatory segment complements the Rossmann fold that is responsible 

for nucleotide binding and this complementation does not affect the structure of catalytic 

domain (Davenport et al., 2014). Ser265, Asn346, Ile247 and Asp348 are responsible from 

NAM binding after the deacetylation reaction is completed (Davenport et al., 2014).  F414 is 

responsible from substrate binding (Davenport et al., 2014).  H363 is responsible from 

removal a proton from NAD+ cofactor (Davenport et al., 2014). 

 

 

Figure 1.17. Structure of SIRT1, depicted from PDB ID: 4IG9 Chain A. NAD+ binding 

domain, Zn2+ binding module, helical module and C-terminal regulatory segment is shown. 

Chain identifiers and residue numbers are kept as in 4IG9. 
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Figure 1.18. Mechanism of SIRT1 based deacetylation of the acetylated protein. In a twostep 

reaction, SIRT1 uses NAD+ and releases NAM and AADPR, together with the deacetylated 

protein. NAD+ hydrolysis generates the necessary force for the SIRT1 reaction. 

 

1.6.5. Enzymatic mechanism of SIRT1 

 

 The first reaction which has been identified for sirtuins is the ribosyl transfer reaction 

in bacteria (Tsang et al., 1998). Through this observation, sirtuins are identified as NAD+ 
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dependent deacetylases (Imai et al., 2000, Landry et al., 2000, Tanner et al., 2000, North et 

al., 2003).  In particular, SIRT1 and SIRT6 are involved both in auto-ADP-ribosyltransferase 

and substrate specific deacetylation reactions (Michishita et al., 2008) 

 The deacetylation reaction is initiated with amide cleavage from NAD+ and followed 

by formation of NAM and ADP-ribose peptide intermediate (Haigis et al., 2010). Then, the 

intermediates are used for formation of O-AADPR and substrate is deacetylated (Figure 1.18) 

(Haigis et al., 2010). Amide to ester acyltransfer transfer reactions are not a preferred due to 

energetics, however hydrolysis of NAD+ can supply the necessary force for this deacetylation 

reaction (Sauve et al., 2006, Smith et al., 2008, Sauve, 2009). It has also been proposed that 

substrate binding induces a conformational change in the enzyme structure that induces a 

nucleophile of sirtuin to react with NAD+, which results in stabilization of ADPR intermediate 

by the enzyme (Sauve et al., 2006). 

 

1.6.6. Interplay of SIRT1 with NAD+ dependent poly (ADP-ribose) polymerase, PARP1 

 

 PARP1 is a DNA break sensor and acts upon those breaks spatially and temporally.  

Moreover, through interacting with other proteins or poly (ADP-ribosyl)ating them, it 

controls the structure of the chromatin and maintain the integrity of DNA as shown by the 

studies with inhibition of PARP1 or with PARP1 knockout  mice (de Murcia et al., 1997, 

Wang et al., 1997, Masutani et al., 1999). PARP1 interacts with several DNA related proteins 

such as histones, topoisomerases, and helicases as well as with NFAT5 for its inhibition (See 

heading 1.4.7. Inhibition of NFAT5). 

 PARP1 and SIRT1 both utilize NAD+ for their catalytic activity. Under physiological, 

hence, in situations where no DNA damage exist, low PARP1 activity inhibits SIRT1, 

leading to chromatin decondensation though inducing histone acetylation (Zhang, 2003, 

Kruszewski et al., 2005). At this level, such an interplay results in activation of gene 

expression and genomic stability. However under pathological conditions, PARP1 rapidly 

depletes intracellular NAD+ for the purpose of DNA repair and results in complete 

abolishment of SIRT1 activity (Zhang, 2003, Matsushita et al., 2005). This condition leads 
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to p53 acetylation and results extensively in cell death (Araki et al., 2004, Pillai et al., 2005). 

Moreover, under such stress condition, PARP1 activity has been shown to be induced by 

SIRT6 (Mao et al., 2011). 

 

1.7. Scope and aim of thesis 

 

NFAT5, a member of Rel family proteins, is a transcription factor activated upon 

osmotic stimuli (Aramburu et al., 2006). When cells are exposed to osmotic stress, NFAT5 

activates transcription of several osmoadaptive factors that are responsible for accumulation 

compatible osmolytes including betaine via BGT1, myo-inositol by SMIT and sorbitol by 

AR (Burg et al., 1996, Aramburu et al., 2006). Osmotic stress dependent activation of NFAT5 

was suggested to be mediated by a number of different mechanisms. Osmotic stress increases 

expressions of NFAT5 protein and mRNA levels (Miyakawa et al., 1999b, Ko et al., 2000), 

causes translocation of NFAT5 from cytoplasm to nucleus (Miyakawa et al., 1999b, Ko et 

al., 2000), activates transactivation domain of NFAT5 (Ferraris et al., 2002b) and increases 

phosphorylation of NFAT5 (Dahl et al., 2001). Other than phosphorylation, NFAT5 was 

proposed to be palmitoylated in which depalmitoylation was shown to accelerate its nuclear 

translocation (Eisenhaber et al., 2011). In addition, sumoylation of NFAT5 was revealed to 

inhibit its transactivation (Kim et al., 2014a). NFAT5 was also documented to be part of a 

bulky complex, which consist of several other partners, such as catalytic subunit of PKA 

(Ferraris et al., 2002a), ATM (Irarrazabal et al., 2004), RNA Helicase A (Colla et al., 2006), 

TAZ (Jang et al., 2012), FSP27 (Ueno et al., 2013), B-catenin (Wang et al., 2013), AP-1 

(Irarrazabal et al., 2008), HSP-90 (Chen et al., 2007) and PARP1 (Chen et al., 2007). Among 

these interacting partners, PARP1, an inhibitor of transcriptional activity of NFAT5 (Chen et 

al., 2007), catalyzes poly (ADP-ribosyl)ation of proteins, as well as plays a role in DNA 

repair mechanism using NAD+ as cofactor (Schreiber et al., 2006). In this regard, PARP1 has 

also been shown to influence several intracellular pathways, reciprocally with a deacetylase, 

SIRT1 due to utilization of common cofactor NAD+ (Kauppinen et al., 2013, Luna et al., 

2013, Walko Iii et al., 2015). Despite these evidences, likelihood of SIRT1 regulating NFAT5 

is still a question to be resolved. Other than previously identified post translational 
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modifications, impact of possible SIRT1 based deacetylation of NFAT5, also remains 

unclear. 

SIRT1 is a NAD+ dependent histone/protein deacetylase which has been implicated 

in wide array of cellular events including starvation, inflammation, oxidative stress and 

senescence (Kwon et al., 2008). SIRT1 mediates these cellular events in part through directly 

deacetylating several diverse transcription factors including p53 (Vaziri et al., 2001), FOXOs 

(Motta et al., 2004), Egr-1 (Pardo et al., 2012), p65 (Yeung et al., 2004), NFATc3 (Jia et al., 

2014). Among these transcription factors, Rel family members, p65 and NFATc3 were 

identified to be negatively regulated by direct SIRT1 dependent deacetylation (Yeung et al., 

2004, Jia et al., 2014). Yet, presence of such mechanism and its consequence in another Rel 

family member, NFAT5, still remains unsettled. Likewise, in a study investigating enzymatic 

substrates of SIRT1 using SILAC method stated that NFAT5 was a candidate enzymatic 

target of SIRT1 (Peng et al., 2012). Nonetheless, the intracellular machinery of such targeting 

has also not been considered until now. More recently, NFAT5 and SIRT1 has been 

anticipated to work synergistically under osmotic stress towards downregulation of prorenin 

receptor expression, supporting an influence of SIRT1 activity towards NFAT5 (Quadri et 

al., 2014). Based on these previous findings, the possibility of SIRT1 based regulation 

NFAT5 has warranted further studies. 

As one of the canonical targets of NFAT5, AR (E.C: 1.1.1.21), the rate limiting enzyme 

of polyol pathway, catalyzes reduction of the glucose to sorbitol, along with reduction of 

atherogenic aldehydes, steroids, phospholipids lipid aldehydes and their glutathione 

conjugates (Srivastava et al., 2005, Ramana et al., 2010, Vedantham et al., 2012). Reduction 

of glucose to sorbitol by AR, has been established to be osmoprotective in the cells of inner 

medulla of kidney (Bagnasco et al., 1987, Burg, 1988, Ramasamy et al., 2010). Excess 

glucose flux through AR was also linked to secondary complications of diabetes such as 

atherosclerosis, nephropathy, neuropathy and retinopathy (Vikramadithyan et al., 2005, 

Oates, 2008, Kim et al., 2014b, Wei et al., 2014). These complications has been reported to 

be mediated in part, by excess AR activity dependent depletion of NADPH, which is utilized 

in cellular protection against oxidative stress by glutathione reductase/glutathione peroxidase 

system (Cheng et al., 1986, Srivastava et al., 2005, Vedantham et al., 2012). Besides to these 
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well-recognized consequences of AR activity in progression of diabetic complications, 

SIRT1 has been suggested to act as a protective element against these complications (Orimo 

et al., 2009, He et al., 2010, Kitada et al., 2011, Yang et al., 2011). In a recent study on 

diabetic human AR overexpressing mice, excess AR flux was also proposed to diminish 

SIRT1 activity, providing presence of a metabolic link between these proteins (Vedantham 

et al., 2014). Regardless of these evidences, involvement of SIRT1 in AR expression in 

monocytes under osmotic stress remains ambiguous, which also prompted this study.  

Based on all these findings, in this thesis, we hypothesized that SIRT1 regulates NFAT5 

dependent AR expression under hyperosmotic stress.  

Specific aims of this theses are indicated as below: 

• An osmotic stress model with concurrent expressions of NFAT5 and SIRT1, was 

generated in U937 monocytes.  

• Essential mechanistic details of the model were established by analyzing intracellular 

localizations of NFAT5 and SIRT1, AR expression and oxidative stress.  

• In this model, contribution of SIRT1 activity on AR expression, as well as, 

stabilization of nuclear NFAT5, were explored using pharmacological modulators.  

• By utilizing overexpression and co-transfection of NFAT5 and SIRT1 in HeLa cells, 

impact of SIRT1 activity on AR and NFAT5 were validated, while its role on DNA 

binding activity of NFAT5 was demonstrated.  

• Using co-immunoprecipitation method, the influence of osmotic stress on NFAT5-

SIRT1 interaction was deciphered to comprehend the model more thoroughly.  

• Possibility of direct interaction between NFAT5 and SIRT1 was also investigated via 

in silico analysis. In this regard, deacetylation favored lysine residues of NFAT5 and 

their binding to SIRT1 substrate binding site were evaluated. Among these lysines, 

K282 was proposed as the most plausible candidate for SIRT1 activity.  

 

To best of our knowledge, this is the first report investigating the contribution of SIRT1 

on NFAT5 dependent AR expression in monocytes under osmotic stress. Overall, here, for 
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the first time, evidence on identification of novel intracellular SIRT1 target, NFAT5 

dependent AR expression, was described.  
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2. MATERIALS AND METHODS 

 

 

2.1. Materials 
 

2.1.1. Summary of the materials used in this thesis 

 

RPMI-1640, DMEM, FBS and antibiotics were purchased from Pan Biotech GmbH 

(Aidenbach, Germany). MTT Cell Proliferation Kit I, X-tremeGENE 9 DNA transfection 

reagent, positively charged nylon membranes, protease and phosphatase inhibitor cocktails 

were purchased from Roche (F. Hoffman-La Roche Ltd., Basel, Switzerland). FITC tagged 

Annexin V was purchased from Alexis Biochemicals (Enzo Life Sciences Inc., Farmingdale, 

NY, USA). NFAT5 (H-300), SIRT1 (H-300) and AR (G-1) antibodies were purchased from 

Santa Cruz Biotechnology Inc. (Dallas, Texas, USA). SIRT1 (1F3), PARP1, myc, Lamin 

A/C, Beta-Actin, acetyl-lysine, HRP-conjugated anti-rabbit and anti-mouse secondary 

antibodies were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA). 

Dynabeads Protein G and chemiluminescent nucleic acid detection module kit were 

purchased from Life Technologies (Thermo Fisher Scientific Inc., Waltham, MA USA). AR 

ORE probe was purchased from Integrated DNA Technologies (Coralville, Iowa, USA). 

NaCl, glucose, mannitol, tris, glycine, and tween-20 were purchased from Molekula Ltd. 

(Newcastle Upon Tyne, UK).  
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2.1.2. Chemicals and Media 
 

 All chemicals and cell culture media used in this thesis are listed in Appendix A. 

 

2.1.3. Antibodies 

 

 All antibodies used in immunoblotting, EMSA, co-immunoprecipitation and 

enzymes are listed in Appendix B. 

 

2.1.4. Molecular biology kits and reagents 
 

 All molecular biology kits used for gene transfection, plasmid isolation, protein 

analysis, EMSA and co-immunoprecipitation are listed in Appendix C. 

 

2.1.5. Expression vectors 

 

The maps each vector used in overexpression studies are shown in Appendix D. 

 

2.1.6. Oligonucleotides 

 

 AR ORE oligonucleotide is listed in Appendix E. 

 

2.1.7. Buffers and solutions 
 

 All buffers and solutions, prepared manually are listed in Appendix F. 
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2.1.8. Equipment and computer software 
 

 Equipment, computer software and topology final generated for acetyllysine insertion 

are listed in Appendix G. 

 

2.2. Methods 
 

2.2.1. Cell Culture and Treatments 

 

U937, human histiocytic lymphoma cell line, was obtained from Professor Giuseppe 

Poli, cultured in RPMI-1640 with 5 mM glucose, 10% FBS, 2 mM glutamine and 100 IU/ml 

penicillin/streptomycin. Cultures were maintained at 37°C in a humidified incubator at an 

atmosphere of 5% CO2. Before each experiment, cells we collected by centrifugation at 300g 

for 5 minutes, resuspended in serum free medium (SFM) and seeded (1,000,000 cells/ml) in 

96-well, 6-well, 12-well, 60 mm or 100 mm culture plates depending on the experiment. In 

all U937 experiments, osmotic agents were applied to cells from main stocks prepared in 

SFM and an equal amount of SFM were added to the control group. Actual rise in osmolality 

of the medium was validated using an osmometer (Figure 3.1) (Osmomat 030, Gonatech, 

Berlin, Germany). Pretreatment with activators and inhibitors were done 1 hour prior to 

applying osmotic stress agent. For each pretreatment experiments, DMSO (max 0.5 %, v/v) 

was added to all controls. HeLa cells were cultured in DMEM supplemented with 5 mM 

glucose, 10%FBS and 100 IU/ml penicillin/streptomycin, maintained in a humidified 

incubator similar to U937 cells. In all HeLa experiments, osmotic agent was applied to cells 

from main stock prepared in culture medium. 

 

2.2.2. Metabolic activity, cell death and oxidative stress assays 

 

For metabolic activity assay, U937 cells were seeded in 96-well plates, treated as 

indicated and analyzed by MTT Cell Proliferation Kit I according to the manufacturer`s 
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instructions. For cell death assay, U937 cells were seeded in 12-well plates, treated as 

indicated and FITC tagged Annexin V staining was performed according to the 

manufacturer`s protocol. Cells were then quantified by FACS (FACSCanto, Becton 

Dickinson, Franklin Lakes, NJ, USA) and analyzed by Flowjo software. For oxidative stress 

assay, U937 cells were seeded in 12 well plates, treated as indicated and stained with 10 μM 

2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) for 30 minutes at 37°C. Cells were 

then collected into flow cytometry tubes, pelleted, washed and resuspended in PBS, analyzed 

by flow cytometry similar to the analysis of cell death assay. 

 

2.2.3. Protein extraction and immunoblotting 
 

For total protein extraction, cells were treated as indicated in 6-well, 60 mm or 100 

mm culture plates and harvested by centrifugation at 300g for 5 min. Cells were then 

resuspended in 1 ml of ice-cold PBS and transferred into 1.5 ml microcentrifuge tubes and 

spun at 13200 rpm for 30 seconds. Pellet was lysed by incubation in total cell lysis buffer 

containing 50 mM Tris-HCl (pH:8.0), 150 mM NaCl, 1% Nonidet P-40 (v/v), 1 mM  

phenylmethylsulfonyl fluoride (PMSF), protease and phosphatase inhibitors for 30 minutes, 

followed by centrifugation at 13200 rpm for 10 minutes. Supernatant was collected as total 

protein extract and stored in -80°C for immunoblotting analysis. For cytoplasmic-nuclear 

extraction, cells were treated as indicated in 6-well, 60 mm or 100 mm culture plates and 

harvested by centrifugation at 300g for 5 min. Cells were then resuspended in 1 ml of ice-

cold PBS and transferred into 1.5 ml microcentrifuge tubes and spun at 13200 rpm for 30 

seconds. For cytoplasmic extraction, pellet was first lysed by incubation in T1 buffer 

containing 10 mM Hepes-KOH, 2 mM MgCl2, 0.1 mM EDTA, 10 mM KCl, 1% Nonidet P-

40 (v/v), 1 mM DTT, 0.5 mM PMSF, protease and phosphatase inhibitors for 10 minutes, 

followed by centrifugation at 13200 rpm for 10 minutes. Supernatant was collected as 

cytoplasmic extract and stored in -80°C for immunoblotting analysis. For nuclear extraction, 

remaining pellet was resuspended in T2 buffer containing 50 mM Hepes-KOH, 2mM MgCl2, 

0.1 mM EDTA, 50 mM KCl, 400 mM NaCl, 10% Glycerol, 1 mM DTT, 0.5 mM PMSF, 

protease and phosphatase inhibitors for 30 minutes, followed by centrifugation at 13200 rpm 
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for 20 minutes. Supernatant was collected as nuclear extract and stored in -80°C for 

immunoblotting analysis. Proteins (30-100 μg) were mixed with loading buffer (62.5 mM 

Tris-HCl pH:6.8, 2% SDS, 10% glycerol, 0.005% bromophenol blue, 5% 2-mercaptoethanol) 

and separated on 6-12% SDS-PAGE and blotted onto PVDF membranes. Membranes were 

then blocked with 5% non-fat dry milk (AppliChem GmbH, Darmstadt, Germany) in PBS-

Tween20, incubated with primary antibody overnight, followed by washing in PBS-Tween20 

and incubation with HRP-conjugated secondary antibody. After the final wash with PBS-

Tween20, proteins were analyzed ECL Advance (GE Healthcare Bio-Sciences, Pittsburgh, 

PA, USA) and exposed to Hyperfilm-ECL (GE Healthcare Bio-Sciences, Pittsburgh, PA, 

USA). 

 

2.2.4 Measurement of protein concentration 
 

 Protein concentrations were determined by Bio-Rad Protein Assay (Bio-Rad, 

Munich, Germany) based on Bradford method. Bovine serum albumin (BSA) was used as 

the protein standard. 5 μg of BSA was diluted 1:1 in 96-well plates for generation of protein 

standard curve. Samples were diluted 1:100, were also added to 96-well, for protein 

concentration determination. Absorbance was measured at 595 nm using a spectrophometer. 

Protein concentrations were determined using linear fit of BSA based standard curve. For 

each new protein extraction, a new standard curve was generated from a new assay, was used. 

 

2.2.5. Transfections 
 

Flag tagged wildtype SIRT1 and flag tagged SIRT1 H363Y were gifts from Michael 

Greenberg (Addgene plasmid # 1791, # 1792) (Brunet et al., 2004). 6x myc tagged pEGFP 

NFAT5 (no EGFP) plasmid was a gift from Anjana Rao (Addgene plasmid # 13627) (Lopez-

Rodriguez et al., 1999). HeLa cells were transfected either with wildtype flag tagged SIRT1 

or catalytically inactive flag tagged SIRT1 H363Y. In co-transfection studies, these SIRT1 

plasmids were cotransfected with 6x myc tagged NFAT5. All transfection experiments were 

done using X-tremeGENE 9 DNA transfection reagent, according to the manufacturer`s 
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instructions. Depending on the experiment, empty backbone plasmids were also transfected 

as negative transfection control and indicated as mock. Transfections were confirmed by 

immunoblotting of the tag or protein itself. 

 

2.2.6. Electrophoretic mobility shift assay (EMSA) 

 

 HeLa cells were co-transfected with 6x myc tagged NFAT5 alone or either with 

wildtype flag tagged SIRT1 or with catalytically inactive flag tagged SIRT1. 5’ biotinylated 

and double stranded osmotic response element (ORE) DNA probe which contains bp -1,238 

to -1,104 of human aldose reductase gene, were used as previously described [15, 47]. 

Briefly, 5 μg of total protein extract were combined with 50 fmol of labeled ORE probe in 

20 μl of reaction mixture, containing 1 ug of poly (dA-dT). After 30 minutes of incubation 

at room temperature, products were separated on 0.4% SeaKem Gold agarose (Lonza Group 

Ltd, Basel, Switzerland) gels in 0.5X TBE buffer at 4°C. Then, products were transferred to 

positively charged nylon membranes and crosslinked. Probe was detected by 

chemiluminescent nucleic acid detection module kit, according to the manufacturer`s 

instructions. For supershift analysis, 1 μg of NFAT5 antibody was added to reaction mixture 

and incubated 1 hour at 4°C prior to the addition of ORE probe. 

 

2.2.7. Co-immunoprecipitation 

 

U937 cells were treated as indicated and total cell lysates of 500-1000 μg were first 

precleared with 25 μl of Dynabeads Protein G for 30 minutes at room temperature and 

remaining supernatants were then immunoprecipitated with 1 ug NFAT5 (H-300) or 3 ug 

SIRT1 (H-300) primary antibodies at 4°C overnight on a rocking platform. Next, immune 

complexes containing NFAT5 and SIRT1 interacting proteins, were captured with 25 μl of 

Dynabeads Protein G for 30 minutes at room temperature. Immunoprecipitates then were 

washed three times with total cell lysis buffer and were analyzed by immunoblotting. 
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2.2.8. Prediction of acetylated lysines of NFAT5 
    

The primary amino acid sequence of the available NFAT5 structure (PDB entry: 

1IMH Chain C) was used in prediction of lysine acetylation sites. 10 different algorithms 

were used; KacePred (Suo et al., 2013b), PAIL (Li et al., 2006), ASEB (Li et al., 2012b, 

Wang et al., 2012), Predmod (Basu et al., 2009), BRABSB-PHKA (Shao et al., 2012), 

PSKAcePred (Suo et al., 2012), PLMLA (Shi et al., 2012), PHOSIDA (Gnad et al., 2010), 

EnsemblePail (Xu et al., 2010) and Lys Acet (Li et al., 2009), which are, to our knowledge, 

the most frequently and widely used/cited methods for prediction of lysine acetylation sites. 

Threshold values were taken as stringent as possible for all predictions (Table 3.1). The 

lysines were selected if they were predicted by at least one algorithm. Overall 21 out of 22 

lysine residues in NFAT5 were predicted to be acetylated at least by one algorithm. 

Identification of site-specific acetylated substrates is fundamental for deciphering the 

molecular mechanism and dynamics of acetylation process (Hartl et al., 2015). Such efforts 

are critical to comprehend the interplay between lysine acetylation and cellular metabolism. 

Experimental methods such as mass spectroscopy that provide strong evidence regarding the 

position of acetylated lysine have been traditionally used to for identification of specific 

internal lysine residues that are acetylated (Lundby et al., Bizzozero, 1995). However the 

cost associated with such kind of experimental methods bears a burden to these studies (Li 

et al., 2014).  Due to the difficulties faced in identification of lysine-acetyl-transferase 

substrates, experimental determination of acetylated internal lysine sites remains as also a 

challenge to molecular biologist (Sadoul et al., 2011, Suo et al., 2013a). Nevertheless, with 

the current advancements in computational approaches, a number of in silico methods for 

prediction of acetylation sites have been developed. These methods have attracted great 

attention for their convenience and fast-speed, along with their reasonable prediction 

accuracy (Li et al., 2014). Here a summarization of the computational resources for 

prediction of lysine acetylation and also acetylation databases will be made. These algorithms 

and databases could be used to predict internal lysine residues that are to be Nε-acetylated in 

a given protein, representing alternative and easier methods than experimentation to identify 

acetyl lysine sites in proteins.    
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2.2.8.1. Detailed methodology of algorithms for acetyllysine prediction 

 

KAcePred (Lysine-K acetylation prediction) is one of the most recent algorithm for 

prediction of acetylation states of a human protein by inputting only the amino acid sequence 

(Kim et al., Yip et al., 2004, Li et al., 2014). For each protein, KAcePred web server uses the 

constructed lysine acetylation prediction model by which the model assigns a score for each 

lysine residue. To get a finer predictive performance and decrease computational costs, the 

developers combined position specific scoring matrix profiles along with the best nine 

physicochemical properties to be used as an optimal sequence encoding scheme. 

PAIL (Prediction of Acetylation on Internal Lysines) is another method that uses 

empirical data from 249 experimentally proven acetylated lysines on 92 different proteins 

(Li et al., 2006). For prediction, they used Bayesian discriminant method and obtained 

accuracies as high as 89.21% at the highest threshold. PAIL algorithm has been validated by 

Jack-knife validation and n-fold (6-, 8-, and 10-fold) cross-validations, confirming its 

accuracy and robustness for predicting Nε-acetylation on lysines.  

ASEB (acetylation set enrichment based), available as a computer program and 

webserver also uses experimentally validated 280 CBP/p300 and 84 GCN5/PCAF family of 

proteins with acetylated lysine sites (Li et al., 2012b, Wang et al., 2012). ASEB can predict 

novel acetylated sites based on their similarity with the known acetyl lysine in given protein 

sets. The method has also been both computationally and experimentally validated, 

suggesting it as a reliable method for prediction of acetyl lysine sites (Li et al., 2012a). 

Moreover, the webserver of ASEB provides additional features such as integration of protein–

protein interaction information to enhance prediction accuracy (Li et al., 2014).  

BRABSB-PHKA is another in silico online tool for Prediction of potential Human 

Lysine (K) Acetylation (PHKA) sites from protein sequences (Li et al., 2009). The 

bioinformatics approach is based on Bi-Relative Binomial Score Bayes (BRBSB) combined 

with support vector machines (SVMs). BRBSB-PHKA yields, on average, an accuracy of 

85.58% in the case of 5-fold cross validation.  

In a similar approach, EnsemblePail also predicts acetylation on internal lysines using 

SVM methodology (Xu et al., 2010). Its accuracy is 93.66% which is higher than BRBSB-

PHKA in the case of 10-fold cross validation. 
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PLMLA is an online platform designed for prediction of potential lysine methylation 

and acetylation from protein sequences (Shi et al., 2012). In this method an encoding scheme 

based on grouped weight and position weight amino acid composition are applied to extract 

sequence information and physicochemical properties around lysine sites. PLMLA 

incorporates protein sequence information, secondary structure and amino acid properties. 

The prediction accuracy for acetyl lysine is 83.08%.  

Another algorithm, Predmod, combines experimental methods with clustering 

analysis of protein sequences to predict acetylation based on the sequence characteristics of 

acetylated lysines within histones (Basu et al., 2009). NetAcet (Kiemer et al., 2005) and N-

Ace (Lee et al., 2010) can also be used for prediction of acetylation sites. In particular NetAcet 

predicts N-terminal sites while N-Ace uses SVM algorithm to predict internal lysine 

acetylation. 

Lastly, LysAcet (Li et al., 2009), which is possibly the most comprehensive algoritms 

for prediction acetyl lysine sites incorporates almost all currently available lysine acetylation 

data and uses SVM method. When compared with other methods or existing tools, LysAcet 

is the best predictor of lysine acetylation, with the highest K-fold (5- and 10-) and jackknife 

cross-validation accuracies.  

 

2.2.9. FoldX calculations 

 

Protein design tool FoldX (version 3b51) was used to assess the impact of acetylation 

and deacetylation mimicry mutations on the stability of NFAT5-DNA complex (PDB entry: 

1IMH) (Guerois et al., 2002, Schymkowitz et al., 2005a, Schymkowitz et al., 2005b). This 

tool predicts stability change in protein-DNA complex based on unfolding free energy 

difference (ΔΔG) between wild type and mutant structures. The 21 lysine residues predicted 

to be acetylated in the NFAT5-DNA complex (1IMH) were individually mutated to 

glutamine for acetylation mimicry and to arginine for deacetylation mimicry to reveal the 

impact of the acetylation/deacetylation on the intermolecular interactions. During 

calculations, the temperature was set to 310K and average of nine runs was used to compute 

the ΔΔG. This method suggests that ΔΔG values >0.5 kcal/mol may be accepted as 

destabilizing mutations, whereas values <-0.5 kcal/mol may be accepted as stabilizing 
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mutations. ΔΔG values in between 0.5 and –0.5 kcal/mol were suggested as insignificant 

change due to mutations. In line with these thresholds of the method, threshold of +0.5 

kcal/mol was used for selection of deacetylation favored lysines since ΔΔG values lower than 

+0.5 kcal/mol either had no effect or more stabilizing for NFAT5-DNA complex. Lysine to 

glutamine and lysine to arginine mutations has been previously used to mimic acetylated and 

deacetylated forms of lysine residues, respectively (Matsuzaki et al., 2005, Schwer et al., 

2006). 

 

2.2.10. Structure Preparation and Docking 

 

The crystal structures of NFAT5 (PDB entry: 1IMH Chain C), of p65 (PDB entry: 

1NFI Chain A) and of SIRT1 (PDB entry: 4IG9 Chain A) were used for docking. First, acetyl 

group was inserted to lysine 200, 230, 241, 282, 373, and 431 of NFAT5 and lysine 310 of 

p65. Next, all NFAT5, p65 as well as SIRT1 structures were individually energy minimized 

in 20000 steps. The crystal waters and the metal ions found in the crystal structures were kept 

during docking. NFAT5 and p65 were used as the ligand while SIRT1 was kept as the 

receptor. Acetylated lysines and substrate binding site of SIRT1, phenylalanine 414 were 

defined as active residues. The initial poses for the NFAT5-SIRT1 and p65-SIRT1 

complexes were determined using HADDOCK (version 2.1). This method predicts the 

dominant complexes of proteins with known 3D structures with support for a wide range of 

experimental data (de Vries et al., 2010).  HADDOCK was used here because it can deal with 

side-chain and backbone flexibility, and thus performs better compared with other protein-

protein docking algorithms (Moreira et al., 2010). The complex configurations obtained from 

docking were analyzed according to their clusters and HADDOCK scores. In choosing the 

final configuration of the complex, the structure in the top cluster with the highest 

HADDOCK score was selected, in which any atom of the acetylated lysines of NFAT5 and 

p65 resided within 3 Å of any atom of F414 of SIRT1.   
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2.2.11. Molecular dynamics simulations 
 

Molecular dynamics (MD) simulations were performed using seven complex 

structures obtained from docking step. As the positive control, p65-SIRT1 complex was used 

in MD simulations. The NFAT5-SIRT1 complexes and p65-SIRT1 complex composed of 

8722 and 9058 atoms were placed in water boxes with dimensions of 150x150x100 and 

155x75x80 Å3 respectively. Then the systems were ionized with a 100 mM NaCl solution to 

a neutral state. The resulting systems were used in MD simulations using the NAMD program 

(Phillips et al., 2005) with the CHARMM22 parameters (MacKerell et al., 1998, Brooks et 

al., 2009) which included correction map (CMAP) for backbone atoms (Feig et al., 2003, 

MacKerell et al., 2004). Water molecules within the system were treated explicitly using the 

TIP3P model (Jorgensen et al., 1983). An NpT ensemble was used in MD simulations with 

periodic boundary conditions, and the long-range Coulomb interactions were computed using 

the particle-mesh Ewald algorithm. Pressure was maintained at 1 atm and temperature was 

maintained at 310 K using the Langevin pressure and temperature coupling. A time step of 2 

fs was used in all MD simulations. The systems were fully energy minimized in 20,000 steps 

and carefully equilibrated under constant temperature and volume for 0.5 ns. Then they were 

heated slowly from 10 K to 310 K in 30 ps before production runs. The production were 

lasted for 10 ns and repeated twice. Visual molecular dynamics (VMD) (Humphrey et al., 

1996) was used for the analysis of trajectories and the visualization of structures. Root mean 

square displacements (RMSD) for the backbone atoms (C, N, Cα) and residue-wise root 

mean square fluctuations (RMSF) of Cα atoms were measured and shown in Figures 3.15, 

3.16 and 3.17. 

 

2.2.12. Statistical Analysis 

 

 All in vitro results were representative of at least three independent experiments. All 

numerical data were shown as mean ± SEM. Statistical significance was analyzed with 

student’s t-test. P values of <0.05 and <0.01 were shown as * or **, respectively. 
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2.2.13. Densitometric analysis 
 

 Densitometric values for immunoblotting and EMSA analysis were calculated using 

Image J. 

 

2.2.14. Illustrations 
 

 All illustrations in all sections including Introduction, Results, Discussion and 

Conclusion were designed using Adobe Photoshop CS5 & CS6, Adobe illustrator CS5 & 

CS6, VMD and MS Office 2007 and 2010. 
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3. RESULTS 

 

 

3.1. Osmotic stress model to study the role of SIRT1 on NFAT5 

 

3.1.1. 16 hours of 100 mM NaCl treatment generates osmotic stress dependent 

intracellular stress 
 

Medium osmolality of RPMI 1640 was measured using an osmometer to validate the 

generation of hyperosmotic environment by addition of osmotic agents (Figure. 3.1). Results 

indicated that hyperosmotic environment can be generated using glucose, NaCl and mannitol. 

An osmotic stress model that can simultaneously induce high expressions of intrinsic 

NFAT5 and SIRT1, was generated. To achieve this goal, two different agents, revealed to 

upregulate NFAT5 expression, 25 mM glucose and 100 mM NaCl, have been employed on 

U937 cells (Figures 3.2 and 3.3) (Yang et al., 2006, Hernandez-Ochoa et al., 2012, Kuper et 

al., 2012, Park et al., 2014, Quadri et al., 2014). The selection criteria were set as follows; a) 

osmotic stress dependent intracellular stress was present (Figure 3.2), b) osmotic stress 

dependent increased expressions of NFAT5 and SIRT1 were present (Figure 3.3). To 

differentiate for osmotic stress independent effects of the agents, osmotic control treatments 

were included in analysis (Figures 3.2 and 3.3).  

Metabolic activity and cell death were examined at the 48th hour of osmotic stress in 

U937 cells for assessing osmotic stress dependent intracellular stress (Figure 3.2). 25 mM 

48 
 



glucose, but not its osmotic controls 12.5 mM NaCl and 25 mM mannitol, designated 

significantly higher metabolic activity (~30%) indicating that increased metabolic activity 

was independent of osmotic stress (Figure 3.2). 25 mM glucose or its osmotic controls 

demonstrated no significant change to cell death, as expected (Figure 3.2). 100 mM NaCl 

and its osmotic control, 200 mM mannitol displayed decreased metabolic activity, ~75% and 

~22%, respectively (Figure 3.2). Cell death were also increased to ~22% in 100 mM NaCl 

treatment and to ~45% in its osmotic control group (Figure 3.2). Thus, exposing U937 cells 

to 100 mM NaCl for 48 hours, but not to 25 mM glucose, induced intracellular stress, in part 

due to osmotic stress. 

 

 

Figure 3.1. Measurement of osmolality of RPMI 1640 for validation of generation of 

hyperosmotic environment. Each solute was added to RPMI-1640 as in treatments and 

osmolality was measured using an osmometer. (G: Glucose; N: Sodium Chloride; M: 

Mannitol). Basal medium of RPMI 1640 without glucose had an osmolality of 282 mOsm/kg. 

Each solute added should have risen this osmolality to a predicted level (x-axis and black 
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bars). If the predicted osmolality matched the measured osmolality (gray), than it is 

concluded that the solute added medium is hyperosmotic to the basal medium. Addition of 

each solute is shown in x-axis. Y-axis shows the osmolality in mOsm/kg. 

 

Figure 3.2. 48 hours of 100 mM NaCl treatment generates osmotic stress dependent 

intracellular stress. Control (C) refers to U937 cells treated with low glucose, serum free 

medium for 48 hours. Rest of the groups refers U937 cells treated with additional amount of 

the osmotic stress agent for 48 hours. (G: Glucose; N: Sodium Chloride; M: Mannitol). To 

differentiate osmotic stress independent effects of the osmotic stress inducers, 12.5 mM N 

and 25 mM M were used as osmotic controls for 25 mM G, whereas 200 mM M was used as 

osmotic control for 100 mM N. Data were expressed as mean ± SEM, n=3, *p<0.05; 

**p<0.01; compared to control group. (Upper panel) 100 mM N, but not 25 mM G, 

diminished metabolic activity partly due to osmotic stress. Metabolic activity status was 

analyzed by MTT based colorimetric assay. Average absorbance values of the control were 
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set as 100%. (Lower panel) 100 mM N, but not 25 mM G, caused increased cell death partly 

due to osmotic stress. Cell death was analyzed by Annexin-V staining followed by flow 

cytometry.  

3.1.2. 16 hours of 100 mM NaCl treatment simultaneously upregulates NFAT5 and 

SIRT1 in osmotic stress dependent manner 

 

For the second step of selection, NFAT5 and SIRT1 expressions were examined at 

the 48th hour after addition of each agent to U937 cells for assessing whether if osmotic stress 

dependent increased expressions of these proteins were present (Figure 3.3). 25 mM glucose, 

but not its osmotic controls induced NFAT5 expression, indicating this increase was 

independent of osmotic stress (Figure 3.3). Moreover, SIRT1 expression was undetectable 

after addition of 25 mM glucose or its osmotic controls (Figure 3.3) On the contrary, 100 

mM NaCl or its osmotic control, increased expressions of NFAT5 and SIRT1, indicating that 

accumulation of these proteins was partly due to osmotic stress (Figure 3.3). As a result, 100 

mM NaCl was selected as a convenient osmotic stress model for studying the role of SIRT1 

on NFAT5. 

Time dependent analysis for the osmotic stress model was conducted in U937 cells 

to select a time point in which peak expressions of NFAT5 and SIRT1 simultaneously took 

place (Figure 3.3). Since PARP1 was previously known to negatively regulate NFAT5 and 

SIRT1, expressions of PARP1 and its activator, SIRT6 were analyzed during this step to 

control our system against PARP-SIRT1 crosstalk (Chen et al., 2007, Mao et al., 2011, 

Kauppinen et al., 2013, Luna et al., 2013, Walko Iii et al., 2015). NFAT5 and SIRT1 bands 

were peaked at 16th hour, while at earlier time points of osmotic stress, they were faintly 

detectable (Figure 3.3). Upregulation of PARP1 and SIRT6 expressions coincided with that 

of NFAT5 and SIRT1 at 16th hour (Figure 3.3). Osmotic stress model induced similar 

expression trends for NFAT5, SIRT1, SIRT6 and PARP1, which all peaked at 16th hour. 

These trends indicated the possibility that NFAT5 dependent events may be under interplay 

of SIRT1 and PARP1 in this model. Nevertheless, 16th hour was selected for further studies 

due to simultaneous upregulation of NFAT5 and SIRT1.  
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Figure 3.3. 16 hours of 100 mM NaCl treatment simultaneously upregulates NFAT5 and 

SIRT1 in osmotic stress dependent manner. Control (C) refers to U937 cells treated with low 

glucose, serum free medium for 48 hours in upper panel and for 0 hour in lower panel. Rest 

of the groups refers U937 cells treated with additional amount of the osmotic stress agent for 

48 hours in upper panel and at indicated time points in lower pnael (G: Glucose; N:Sodium 

Chloride; M:Mannitol). To differentiate osmotic stress independent effects of the osmotic 

stress inducers, 12.5 mM N and 25 mM M were used as osmotic controls for 25 mM G, 

whereas 200 mM M was used as osmotic control for 100 mM N. (Upper panel) 100 mM N 

was a suitable osmotic stress agent, but not 25 mM G, due to simultaneous upregulation of 

NFAT5 and SIRT1. Expressions were analyzed via immunoblotting of total protein extracts. 

(Lower panel) 16 hours of 100 mM N treatment increased expressions of NFAT5, SIRT1, 

SIRT6 and PARP1 simultaneously. Expressions were analyzed via immunoblotting of total 

proteins extracts. 
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3.2. SIRT1 activity contributes to AR expression during osmotic stress in U937 and 

HeLa cells 

 

3.2.1. Osmotic stress model dependent changes on intracellular NFAT5 and SIRT1 

localizations, AR expression and oxidative stress generation 

 

After selection of type and timing of osmotic stress model, functionality of the model 

was questioned in terms of intracellular NFAT5 and SIRT1 localizations, AR expression and 

oxidative stress generation, as a downstream event of AR activity (Figures 3.4 and 3.5). In 

order to get more detailed insight on functionality; first, time course of intracellular 

localizations of NFAT5 and SIRT1 during osmotic stress in U937 cells were investigated. 

After 4 hours, NFAT5 expression was almost completely nuclear, whereas at later time 

points, it was concentrated more in cytoplasm, with declining trend in nucleus (Figure 3.4). 

Interestingly, SIRT1 was completely cytoplasmic at all-time points, with peaking at 16th hour, 

parallel to NFAT5 (Figure 3.4). Based on these data, it was clear that after 16 hours of 

osmotic stress, simultaneously increased but cytoplasmic expressions of NFAT5 and SIRT1 

could be achieved (Figure 3.4). 

Although, common intracellular localization may maximize the possibility of 

interaction between these proteins, it raised the question whether if NFAT5 was functional 

at this timing of osmotic stress. In order to elaborate the functionality of NFAT5, expression 

of its target protein, AR was examined at 4th and 16th hour of osmotic stress in U937 cells 

(Figure 3.5). AR expression increased at 4th hour compared to untreated control when NFAT5 

was almost completely nuclear, whereas it was downregulated at 16th hour, parallel to 

increased cytoplasmic NFAT5 (Figures 3.4 and 3.5). To confirm downregulation of AR at 

16th hour, oxidative stress levels were checked at 4th and 16th hour of osmotic stress in U937 

cells (Figure 3.5). Parallel to expression patterns of AR, oxidative stress has increased at 4th 

hour compared to untreated control but declined at 16th hour of osmotic stress (Figure 3.5). 

Henceforth, our osmotic stress model consisted of increased cytoplasmic NFAT5 and SIRT1, 

decreased AR expression and decreased oxidative stress in U937 cells (Figures 3.4 and 3.5). 
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Figure 3.4. Osmotic stress dependent changes on intracellular NFAT5 and SIRT1 

localizations. Control (C) group refers U937 cells treated with low glucose, serum free 

medium at indicated time points. 100 mM N refers to U937 cells treated with 100 mM NaCl 

(N), at indicated time points. Increased cytoplasmic NFAT5 and SIRT1 expression could be 

achieved after 16 hours of 100 mM N treatment. Expressions were analyzed via 

immunoblotting of cytoplasmic and nuclear extracts. Beta-Actin was used as cytoplasmic, 

whereas Lamin A/C was used as nuclear loading control.  

 

3.2.2. SIRT1 activity promotes AR expression during 16 hours of 100 mM NaCl 

treatment in U937 cells 

 

After functionality of the model was deciphered, the role of SIRT1 activity on AR 

expression was investigated. AR expressions under osmotic stress were examined using 

pharmacological inhibitor and activator of SIRT1 (Figure 3.6). AR expression was also 

studied using PARP1 inhibitor to check out crosstalk of PARP1 on this model (Figure 3.6). 

SIRT1 specific inhibitor, Ex-527 (10 μM), downregulated, but SIRT1 activator, resveratrol 

(5 and 50 μM) and PARP1 inhibitor, 3-aminobenzamide (1 mM), upregulated AR expression 

compared to the osmotic stress only control (Figure 3.6). It was apparent that SIRT1 activity 

promoted but PARP1 activity was inhibitory on the expression of AR in osmotic stress 

model. 
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Figure 3.5. Osmotic stress dependent changes on AR expression and oxidative stress 

generation. Control (C) group refers U937 cells treated with low glucose, serum free medium 

at indicated time points. 100 mM N refers to U937 cells treated with 100 mM NaCl (N), at 

indicated time points. Data were expressed as mean ± SEM, n=3, *p<0.05; **p<0.01 

compared to control group in lower panel.  (Upper panel) AR expression was downregulated 

after 16 hours of 100 mM N treatment. Expressions were analyzed via immunoblotting in 

total protein extracts. (Lower panel) Oxidative stress, downstream event of AR activity, was 

diminished after 16 hours of 100 mM N treatment. Oxidative stress was analyzed by DCFH-

DA staining, followed by flow cytometry.  
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Figure 3.6. SIRT1 activity promotes AR expression during 16 hours of 100 mM NaCl 

treatment in U937 cells. 100 mM N refers to U937 cells treated with 100 mM NaCl for 16 

hours. SIRT1 inhibitor (Ex-527), downregulated, but SIRT1 activator (Resveratrol: Res) and 

PARP1 inhibitor (3-aminobenzamide: 3AB) upregulated AR expression during 16 hours of 

100 mM N treatment. U937 cells were pretreated with solvent or the pharmacological agent 

for 1 hour, followed by 16 hours of 100 mM N treatment. Expressions were analyzed via 

immunoblotting in total protein extracts.  
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Figure 3.7. SIRT1 activity promotes AR expression during 16 hours of 100 mM NaCl 

treatment in Hela cells. Control (C) group refers HeLa cells treated with low glucose, serum 

containing medium. 100 mM N refers to HeLa cells treated with 100 mM NaCl (N) for 16 

hours. Overexpression of SIRT1 catalytic mutant (H363Y) downregulated, whereas 

overexpression of wild type SIRT1 upregulated AR expression in HeLa cells during 16 hours 

of 100 mM N treatment. HeLa cells were left untransfected or transfected either with mock 

(backbone plasmid) or with flag tagged SIRT1 (flag-SIRT1 H363Y in (upper panel) or with 

wild type flag-SIRT1 in (lower panel)). 24 hours post-transfection, these cells were either 

left untreated or treated further with 100 mM N for 16 hours. Expressions were analyzed via 

immunoblotting in total protein extracts. Expressions of SIRT1 and flag were used for 

confirmation of overexpression. 
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3.2.3. SIRT1 activity promotes AR expression during 16 hours of 100 mM NaCl 

treatment in Hela cells 

 

For the purpose of validating the role SIRT1 activity on AR, analysis of AR 

expression was conducted during 16 hours of 100 mM NaCl treatment in HeLa cells 

overexpressing SIRT1 catalytic mutant (H363Y), as well as, its wildtype counterpart (Figure 

3.7). In this cell line, 16 hours of osmotic stress displayed increased AR expression compared 

to untreated, untransfected control, unlike the response of U937 cells (Figure 3.7). Analogous 

to SIRT1 inhibition in U937 cells, overexpression of SIRT1 catalytic mutant under osmotic 

stress caused less AR expression compared to mock under osmotic stress. Comparable to the 

response of U937 cells to SIRT1 activation, overexpression of wildtype SIRT1 under osmotic 

stress resulted in even higher AR expression compared to mock under osmotic stress (Figure 

3.7). This outcome was not apparent in HeLa cells under isosmotic conditions, indicating 

osmotic stress dependent modulation of AR expression by SIRT1 catalytic activity (Figure 

3.7). Based on these findings, it was concluded that enzymatic activity of SIRT1 enhances 

AR expression in U937 and HeLa cells under osmotic stress.  

 

3.3. SIRT1 activity enhances nuclear NFAT5 stabilization during osmotic stress in 

U937 and HeLa cells 

 

3.3.1. SIRT1 activity augments stabilization of nuclear NFAT5 in U937 cells 

 

Given the observation that AR expression was regulated by pharmacological 

modulation of SIRT1 activity in the osmotic stress model, underlying mechanism of this 

regulation was explored by analyzing intracellular localization of NFAT5. Expression of 

nuclear NFAT5 was reduced in osmotic stress only group compared to untreated control in 

U937 cells, confirming the reduction of AR expression in this model (Figures. 3.5, 3.8 and 

3.9). While low dose (1 μM) Ex527, a specific SIRT1 inhibitor, lowered cytoplasmic and 

nuclear levels of NFAT5, high dose (10 μM) of Ex527 further decreased cytoplasmic NFAT5 

with completely abolishing nuclear NFAT5 (Figure 3.8). Low dose (5 μM) or high dose (50 
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μM) of resveratrol, a widely accepted SIRT1 activator, decreased cytoplasmic NFAT5, while 

increasing nuclear NFAT5 stabilization (Figure 3.8). Inhibiting PARP1 via 3-

aminobenzamide (3AB) with low (1mM) or high (2 mM) doses also induced almost complete 

translocation of NFAT5 to nucleus in this model (Figure 3.9). These observations clearly 

indicated that SIRT1 activity promotes, while PARP1 activity suppresses nuclear 

accumulation of NFAT5 in osmotic stress model, confirming the AR expression patterns 

obtained with these agents (Figures. 3.6, 3.8 and 3.9).  

Inhibiting SIRT1 with Ex527 caused higher SIRT1 expression, but activating SIRT1 

with resveratrol, or inhibiting PARP1 resulted in lower SIRT1 expression (Figures 3.8 and 

3.9). This findings also indicated that the possibility that SIRT1 activity may regulate its own 

expression within the osmotic stress model. 

 

3.3.2. SIRT1 activity augments stabilization of nuclear NFAT5 in Hela cells 

  

For confirming of the role of SIRT1 activity on stabilization of nuclear NFAT5, 

localization of NFAT5 was also examined under 16 hours of osmotic stress in HeLa cells 

overexpressing SIRT1 catalytic mutant (H363Y), as well as, its wildtype counterpart (Figure 

3.9). Osmotic stress increased nuclear NFAT5 expression compared to untreated mock 

control in HeLa cells, confirming the upregulation of AR expression in this cell line (Figures 

3.7 and 3.9). Overexpression of SIRT1 catalytic mutant under osmotic stress showed less 

NFAT5 expression in nucleus compared to mock under osmotic stress (Figure 3.9). On 

contrary, overexpression of wildtype SIRT1 under osmotic stress displayed similar nuclear 

NFAT5 expression compared to mock under osmotic stress (Figure 3.9). These results clearly 

validated the AR expression patterns observed with these overexpression plasmids under 

osmotic stress (Figure 3.7). Hence, it was established that enzymatic activity of SIRT1 

contributed to nuclear stabilization of NFAT5 in U937 and HeLa cells under 16 hours of 

osmotic stress.  
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Figure 3.8. SIRT1 activity augments stabilization of nuclear NFAT5 in U937 during 16 hours 

100 mM N treatment. Control (C) refers U937 cells treated with low glucose, serum free 

medium for 16 hours. 100 mM N refers to U937 cells treated with 100 mM NaCl (N) for 16 

hours. U937 cells were pretreated either with solvent or pharmacological agent for 1 hour, 

followed by 16 hours of 100 mM N treatment. Expressions were analyzed via 

immunoblotting in cytoplasmic and nuclear extracts. Each NFAT5 band was analyzed by 

densitometry and normalized using Beta-Actin bands for cytoplasmic and Lamin A/C band 

for nuclear expressions. Normalized intensity of control NFAT5 bands in cytoplasm or 

nucleus were set to 1 for comparison to other groups. (Upper panel) Specific SIRT1 inhibitor, 

Ex-527 suppressed nuclear NFAT5 stabilization, while upregulating SIRT1 expression under 

osmotic stress. (Lower panel) SIRT1 activator, resveratrol, induced higher nuclear NFAT5 

expression, while decreasing SIRT1 expression under osmotic stress.  
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Figure 3.9. Validation of SIRT1 based stabilization of nuclear NFAT5 in U937 and Hela cells 

during 16 hours 100 mM N treatment. Control (C) refers U937 cells treated with low glucose, 

serum free medium for 16 hours in upper panel. 100 mM N refers to U937 cells treated with 

100 mM NaCl (N) for 16 hours in upper panel. U937 cells were pretreated either with solvent 

or pharmacological agent for 1 hour, followed by 16 hours of 100 mM N treatment in upper 

panel. Expressions were analyzed via immunoblotting in cytoplasmic and nuclear extracts. 

Each NFAT5 band was analyzed by densitometry and normalized using Beta-Actin bands 

for cytoplasmic and Lamin A/C band for nuclear expressions. Normalized intensity of control 

NFAT5 bands in cytoplasm or nucleus were set to 1 for comparison to other groups. (Upper 

panel) Inhibition of PARP1 with 3-aminobenzamide (3AB) promotes translocation of 

NFAT5 to nucleus, while decreasing SIRT1 expression. Control (C) group refers HeLa cells 

treated with low glucose, serum containing medium in lower panel. 100 mM N refers HeLa 

cells treated with 100 mM NaCl (N) for 16 hours in lower panel. (Lower panel) 

Overexpression of SIRT1 catalytic mutant (H363Y) suppressed, whereas overexpression of 

wild type SIRT1 displayed similar nuclear NFAT5 expression in HeLa cells during 16 hours 
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of 100 mM N treatment. HeLa cells were transfected either with mock or with flag-SIRT1 

H363Y or with wild type flag-SIRT1. 24 hours post-transfection, these cells were treated 

further with 100 mM N for 16 hours. Control group was also mock transfected, left untreated 

and was used as negative control of 16 hours of 100 mM N treatment in lower panel. 

Expressions were analyzed via immunoblotting in cytoplasmic and nuclear extracts. 

Expression of SIRT1 was used for confirmation of overexpression. 

 

3.4. Enzymatic activity of SIRT1 regulates myc-NFAT5 induced AR expression through 

stabilizing nuclear NFAT5 and allowing more NFAT5 to bind AR ORE in HeLa cells 
 

3.4.1. myc-NFAT5 induced AR expression was regulated by SIRT1 activity in HeLa 

cells 

 

 In order to confirm the role of SIRT1 activity on AR expression, myc-NFAT5 alone 

or either with wildtype SIRT1 or with catalytic mutant of SIRT1 (H363Y) were 

overexpressed in HeLa cells and AR expression was inspected (Figure 3.10). Overexpression 

of myc-NFAT5 induced higher AR expression compared to mock only control (Figure 3.10). 

Overexpression myc-NFAT5 with wildtype SIRT1 had higher AR expression compared to 

overexpression of myc-NFAT5 with catalytically inactive SIRT1 (Figure 3.10). In the light 

of these results, contribution of SIRT1 activity to AR expression was validated. 

 

3.4.2. Stabilization nuclear of myc-NFAT5 expression was regulated by SIRT1 activity 

in HeLa cells 
 

Subsequently, with the purpose of confirming the role of SIRT1 on nuclear 

stabilization of NFAT5, myc-NFAT5 alone or either with wildtype SIRT1 or with catalytic 

mutant of SIRT1 were overexpressed in HeLa cells and intracellular NFAT5 localization was 

examined (Figure 3.11). Overexpression of NFAT5 alone or with wildtype SIRT1 had higher 

NFAT5 accumulation in nucleus compared to mock control (Figure 3.11). Overexpression 

of myc-NFAT5 with catalytically inactive SIRT1 displayed diminished NFAT5 expression 
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in nucleus compared to overexpression of NFAT5 alone or to overexpression of NFAT5 with 

wildtype SIRT1, validating that SIRT1 activity acts as a stabilizer for nuclear of NFAT5 

expression (Figure 3.11). 

 

3.4.3. DNA binding of myc-NFAT5 to AR ORE was regulated by SIRT1 activity in 

HeLa cells 
 

In order to directly link the role of SIRT1 activity to AR expression and to 

stabilization of nuclear NFAT5, EMSA was performed to examine myc-NFAT5 binding to 

AR ORE using co-transfection of NFAT5 and SIRT1 in HeLa cells. Specific band that 

corresponds to myc-NFAT5-ORE complex was identified by using overexpression of myc-

NFAT5, supershift analysis and specific competitor (Figure 3.12). This band displayed 

higher intensity when myc-NFAT5 was overexpressed with wildtype flag SIRT1 compared 

to overexpression of myc-NFAT5 alone (Figure 3.12, lower panel, lane 2 and 3). 

Overexpression of myc-NFAT5 with catalytically inactive SIRT1 showed lower intensity 

band compared to the overexpression of NFAT5 alone (Figure 3.12, lower panel, lane 2 and 

4). It was evident that SIRT1 activity stabilized nuclear of NFAT5 and allowed for more 

NFAT5 to bind to AR ORE region, which ended up with higher AR expression. 
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Figure 3.10. myc-NFAT5 induced AR expression was regulated by SIRT1 activity in HeLa 

cells. Control (C) refers HeLa cells treated with low glucose, serum containing medium. 

Mock 1 refers to the backbone plasmid of myc-NFAT5, whereas mock 2 refers to the 

backbone plasmid of flag-SIRT1 (wildtype) and flag-SIRT1 H363Y (catalytically inactive 

mutant). (Left panel) Overexpression of myc-NFAT5 induced higher AR expression 

compared to mock. HeLa cells were co-transfected either with mock 1 and mock2 or with 

myc-NFAT5 with mock 2. 24 hours post transfection, cells were lysed into total protein 

extracts and expression were via immunoblotting. Expression of myc was used for 

confirmation of overexpression. Lack of flag expression was shown to confirm that no flag 

tagged SIRT1 was present in these groups. (Right panel) Overexpression of myc-NFAT with 

catalytically inactive SIRT1 displayed diminished AR expression compared to 

overexpression of myc-NFAT5 with wildtype SIRT1. HeLa cells were co-transfected with 

myc-NFAT5 and wildtype flag SIRT1 or with myc-NFAT5 and flag SIRT1 H363Y. 24 hours 

post transfection, cells were lysed into total protein extracts and expressions were analyzed 

via immunoblotting. Expression of myc and flag was used for confirmation of 

overexpression. 
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Figure 3.11. Stabilization nuclear of myc-NFAT5 expression was regulated by SIRT1 

activity in HeLa cells. Control (C) refers HeLa cells treated with low glucose, serum 

containing medium. Mock 1 refers to the backbone plasmid of myc-NFAT5, whereas mock 

2 refers to the backbone plasmid of flag-SIRT1 (wildtype) and flag-SIRT1 H363Y 

(catalytically inactive mutant). Overexpression myc-NFAT5 with catalytically inactive 

SIRT1 showed less nuclear of myc-NFAT5 expression compared to overexpression of myc-

NFAT5 alone or to overexpression of myc-NFAT5 with wildtype SIRT1. HeLa cells were 

transfected with mock 1 and mock 2 (lanes 1 and 5) or with myc-NFAT5 and mock 2 (lanes 

2 and 6) or with myc-NFAT5 and flag-SIRT1 (lanes 3 and 7) or with myc-NFAT5 and flag-

SIRT1 H363Y (lanes 4 and 8). 24 hours post transfection, cells were lysed into cytoplasmic 

and nuclear fractions and expressions were analyzed via immunoblotting. Beta-Actin and 

Lamin A/C were used as loading controls. Expression of myc and SIRT1 were used for 

confirmation of overexpression.  
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Figure 3.12. DNA binding of myc-NFAT5 to AR ORE was regulated by SIRT1 activity in 

HeLa cells. Control (C) refers HeLa cells treated with low glucose, serum containing 

medium. Mock 1 refers to the backbone plasmid of myc-NFAT5, whereas mock 2 refers to 

the backbone plasmid of flag-SIRT1 (wildtype) and flag-SIRT1 H363Y (catalytically 

inactive mutant). (Upper panel) myc-NFAT5 binds specifically to AR ORE probe. HeLa cells 

were transfected with mock 1 and mock 2 (lane 2) or with myc-NFAT5 and mock 2 (lanes 3, 

4 and 5). 24 hours post transfection, cells were lysed into total protein extracts and analyzed 

by EMSA for NFAT5-ORE complex formation. Specificity of the band was assessed by 

increased intensity due to overexpression of NFAT5 (shown by shift: S) (lane 2), by increased 

supershift (SS) caused by NFAT5 antibody and elimination of the shift by 40X unlabeled 
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specific competitor. (Lower panel) Overexpression of myc-NFAT5 with wildtype flag-

SIRT1 increased myc-NFAT5-ORE binding, whereas overexpression of myc-NFAT5 with 

inactive flag-SIRT1 H363Y diminished it. HeLa cells were transfected as in Figure 3.11. 24 

hours post transfection, cell were lysed into total protein extracts and analyzed by EMSA for 

NFAT5-ORE complex formation. For binding analysis, intensities of each specific band were 

calculated compared to mock control, which was set to 1. Relative intensities were shown 

below each band. 

 

3.5. 16 hours of osmotic stress disrupts the interaction of NFAT5 with SIRT1, but 

enhances its acetylated lysine status and interaction with PARP1 in U937 cells 

 

Acetylated lysine status and interactions of NFAT5 containing complex with SIRT1 

and PARP1 were examined using co-immunoprecipitation experiments in order to define the 

underlying mechanism of osmotic stress model of U937 cells. Osmotic stress model 

disrupted the interaction of NFAT5 containing complex with SIRT1, increased its acetylated 

lysine status and its interaction with PARP1, indicating that SIRT1 activity was reduced on 

NFAT5 containing complex (Figure 3.13). In order to confirm that interaction of NFAT5 

containing complex with SIRT1 was disrupted, reciprocal co-immunoprecipitation was 

conducted with SIRT1 antibody, which in turn also displayed diminished NFAT5-SIRT1 

interaction (Figure 3.13). This data validated that reduced of AR expression and decreased 

stabilization of nuclear NFAT5 observed after 16 hours of osmotic stress treatment in U937 

cells was due to reduced availability of SIRT1 in NFAT5 containing complex. Moreover, 

since NFAT5 interaction with PARP1 increased in the osmotic stress model, nuclear 

translocation of NFAT5 might be regulated by poly-ADP-ribosylation. 

Following in vitro experiments, in silico analysis was conducted to understand if 

NFAT5 is a direct target of SIRT1. Acetylated lysines of NFAT5 were predicted using ten 

different algorithms. Using Foldx based stability analysis, the deacetylation favored lysines 

of NFAT5 that increase the stability of NFAT5-DNA complex, were selected. MD 

simulations were employed to comprehend if these deacetylation favored lysines could be 

targeted by SIRT1 substrate binding site. 
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Figure 3.13. 16 hours of osmotic stress weakened the interaction of NFAT5 containing 

complex with SIRT1, but increased its acetylated lysine status and its interaction with 

PARP1. Control (C) refers U937 cells treated with low glucose, serum free medium for 16 

hours. 100 mM N refers to U937 cells treated with 100 mM NaCl (N) for 16 hours. Input 

refers to pre-ip immunoblots in which 20% of protein used for immunoprecipitation was 

analyzed for presence of the interacting partners. (Upper panel) 16 hours of osmotic stress 

diminished NFAT5-SIRT1 interaction but enhanced acetylated lysine status of NFAT5 and 

NFAT5-PARP1 interaction. Cells were either left untreated or treated 16 hours with 100 mM 

N, followed by lysis into total protein extracts. 1 μg of NFAT5 antibody was used to 

immunoprecipitate NFAT5 containing complexes from 500 μg of total protein lysate (IP: 

NFAT5). Immunoprecitates were then immunoblotted for presence of the targets (IB), using 

SIRT1, Acetyl-lysine, PARP1 and NFAT5 antibodies. (Lower panel) Reciprocal co-

immunoprecipitation confirmed that 16 hours of osmotic stress diminished SIRT1-NFAT5 

interaction. Cells were either left untreated or treated 16 hours with 100 mM N, followed by 

lysis into total protein extracts. 3 μg of SIRT1 antibody was used to immunoprecipitate 

SIRT1 containing complexes from 1000 μg of total protein lysate (IP: SIRT1). 

Immunoprecitates were then immunoblotted for presence of the targets (IB), using NFAT5 

and SIRT1 antibodies. “Bead only” was used to indicate negative control, in which only 
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beads were used for immunoprecipitation. “IgG” was used to indicate negative control, in 

which beads and irrelevant antibody was used for immunoprecipitation. 

 

3.6. In silico prediction of deacetylated lysines of NFAT5 that stabilize NFAT5-DNA 

complex 
 

Since NFAT5 containing complex was identified as a target of SIRT1`s deacetylation 

activity, lysine residues that contribute to stability of NFAT5-DNA complex were 

investigated. Because only acetylated lysine residues were substrates for deacetylation 

reaction, possible acetylated lysine residues of NFAT5 were predicted (Table 3.1). Using 10 

different algorithms that has been previously developed, 21 of 22 lysine residues of NFAT5 

(PDB ID: 1IMH Chain C sequence) were identified to be prone to acetylation (Table 3.1). 

Acetylation status of these 21 lysine residues were examined in terms of their contribution to 

the stability of NFAT5-DNA complex. In order to inspect this contribution, these lysines 

were mutated to glutamine for acetylated lysine mimicry or to arginine for deacetylated lysine 

mimicry in both monomers of NFAT5 that were bound to target DNA (PDB ID: 1IMH). 

Stability change of NFAT5-DNA complex due to these mutations was calculated using Foldx 

method (Figure 3.14). Lysine residues that showed higher ΔΔG values than +0.5 kcal/mol 

when converted to glutamine and lower ΔΔG values than +0.5 kcal/mol when converted to 

arginine in both NFAT5 monomers were accepted as deacetylation favorable lysine residues 

(Figure 3.14.). These residues, when kept as deacetylated, maintained or enhanced stability 

of NFAT5-DNA complex. Given this threshold, lysines at positions 200, 230, 241, 282, 373, 

and 431 were selected as deacetylation favored lysines of NFAT5 (Figure 3.14). 

With the purpose of revealing if these selected lysines were direct targets of SIRT1`s 

deacetylation activity, acetylated lysines were inserted to these selected sites of NFAT5. 

These acetylated structures were docked to SIRT1 substrate binding site and MD simulations 

were performed. 
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1IMH Position # 188 189 200 204 207 230 241 263 282 313 329 330 331 346 373 374 382 392 396 399 431 

Algorithm                      
KacePred1     +      +  +       +  

PAIL2 + + + + + + +  +  + + +  + + +  +   
ASEB (CBP/p300)3  +    +     +           

ASEB (GCN5/PCAF)3      +     +           
ASEB (HDAC)3      +     +           

Predmod4    +  +  +    + +     +    
BRABSB-PHKA5     +    +     + + +  + +   

PSKAcePred6    + +  + +   + + + + + + +  + +  
PLMLA7    +    +  +    +   + + + +  

PHOSIDA8   + +  +    +       + + +   
EnsemblePail9   + +       +    + +    +  

Lys Acet10   + +  +    + + + + + + +     + 
 

Table 3. 1. Results of acetylated lysine predictions. Possible acetylated lysines of NFAT5 were predicted using ten different algorithms, 

which names were given in the first column. For prediction, primary amino acid sequence of chain C of NFAT5 structure (PDB ID: 

1IMH) were used. The numbers in the first row were used to represent the positions of lysine residues found in NFAT5. The superscripts 

given as below indicate the threshold values used for prediction algorithms. 

1 Specificity cutoff of 70% was used. 2, 5, 6, 7 Threshold of 0.5 was used. 3 Threshold of <10% was used. 4, 9 High threshold setting was 

used. 8 Precision (75%) and recall (80%) was used for selection. 10 Linear function and couple features coding scheme was used for 

selection.
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Figure 3.14. Acetylation and deacetylation mimicry mutations of NFAT5 lysine residues 

regulate the stability of NFAT5-DNA complex. After prediction of possible acetylated 

lysines of NFAT5 (Table 3.1), each of these predicted lysine residues were converted to 

glutamine or arginine in both NFAT5 monomers of available NFAT5-DNA complex 

structure (PDB ID: 1IMH Chain C and Chain D). Lysine (K) to glutamine (Q) mutations 

were used for acetylated lysine mimicry, whereas lysine to arginine (R) mutations were used 

for deacetylated lysine mimicry. After each mutation, stability change of NFAT5-DNA 

complex was calculated using Foldx method, to obtain ΔΔG values between mutant and wild 

type structures. Dotted lines at 0.5 and -0.5 kcal/mol ΔΔG values were used to represent error 

margins of Foldx method. Lysine residues 200, 230, 241, 282, 373, and 431 showed values 

higher than +0.5 kcal/mol when mutated to glutamine, whereas they designated values less 

than +0.5 kcal/mole when converted to arginine, in both monomers of NFAT5 indicating 

these lysine were more favorable for stability of NFAT5-DNA complex, when kept as 
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deacetylated. X-axis in all plots indicates position of each lysine in NFAT5-DNA complex 

structure (PDB ID: 1IMH). 

 

3.7. In silico prediction of lysine 282 of NFAT5 as a potential SIRT1 target site 
 

After identification of lysine sites that were favored in deacetylated status, these sites 

were investigated as possible targets of SIRT1 substrate binding site, using docking and MD 

simulations (Figures 3.15, 3.16, 3.17, 3.18, 3.19 and 3.20). The selected lysines of NFAT5 

(200, 230, 241, 282, 373 and 431) were first acetylated in silico. Next, to obtain NFAT5-

SIRT1 complexes, these acetylated lysine (AK) containing NFAT5 structures were docked 

to SIRT1 phenylalanine (F) 414, which has been previously shown for its substrate binding 

function (Cosgrove et al., 2006, Davenport et al., 2014). For positive control, p65, a 

previously known SIRT1 target from its K310 were utilized and similarly, AK310 of p65 

was docked to F414 of SIRT1 (Yeung et al., 2004). For all these complexes, MD simulations 

for 10 ns were used and RMSD and RMSF of backbone atoms for stability and flexibility 

analysis were calculated, respectively (Figures 3.15, 3.16, 3.17). The distance between AK 

to F414 and RMSF of AK and F414 atoms for in silico assessment of binding of AKs in 

NFAT5 to SIRT1`s substrate binding site, were also investigated (Figures 3.18, 3.19, 3.20).  

RMSD of backbone atoms converged to a plateau in all simulations, which oscillated 

in between 2-3 Å range of p65-SIRT1 complex, suggesting that these complexes were stable 

throughout simulations and were acceptable for data collection (Figure 3.15). According to 

Cα atom fluctuations, AK230, AK241, AK282 and AK373 containing NFAT5-SIRT1 

complexes displayed similar flexibility (<6 Å) to p65-SIRT1 complex (Figure 3.16). This 

similarity in Cα atom fluctuations was less pronounced in AK200 and AK431 containing 

NFAT5-SIRT1 complexes, which have shown higher RMSF values for Cα atoms (>6 Å) in 

residues distant from AK, compared to that of p65 (Figure 3.16). RMSF of Cα atoms of 

SIRT1 in all complexes were almost similar to each other, indicating similar SIRT1 

flexibility in all simulations (Figure 3.17). In particular, docked residues (AK200, AK230, 

AK241, AK282, AK373, AK431 of NFAT5, AK310 of p65 and F414 of SIRT1) showed 

fluctuations only within limits of 3 Å, implying less mobility in these residues (Figures 3.16 
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and 3.17). RMSF analysis pointed out that SIRT1 binding decreased mobility of AK residues 

both in NFAT5 and positive control p65, indicating that the docked residues stay bound to 

SIRT1 for 10 ns of MD simulations. 

 

 

 

 

 

 

Figure 3.15. RMSD of backbone atoms of p65(AK)-SIRT1(F414) and all NFAT5(AK)-

SIRT1 (F414) complexes were calculated from 10 ns of MD simulations, depicted in legend. 
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Figure 3.16. RMSF of Cα atoms of p65 in p65(AK)-SIRT1(F414) complex and NFAT5 in 

all NFAT5(AK)-SIRT1(F414) complexes were calculated from 10 ns of MD simulations, 

depicted in legends. 

 

 

 

 

74 
 



 

Figure 3.17. RMSF of Cα atoms of SIRT1 in p65(AK)-SIRT1(F414) complex and in all 

NFAT5(AK)-SIRT1(F414) complexes were calculated from 10 ns of MD simulations, 

depicted in legend. 

For in silico ranking of AKs of NFAT5 as targets of SIRT1 binding site, distance 

between AK of NFAT5 to F414 of SIRT1, all atom RMSF of AK and RMSF of F414 of 

SIRT1 were calculated (Figures 3.18 and 3.19). Only distances between AK373-F414 and 

AK282-F414 were similar to the distance formed in positive control (~ 6 Å), proposing these 

sites as possible targets of SIRT1 binding (Figure 3.18). All atom fluctuations of AK373 and 

AK282 were also very similar to those observed for AK310 of p65 (Figure 3.19). Among 

these AK residues, AK 282 had even lower flexibility than the AK of the positive control 

(Figure 3.19). F414 of SIRT1 in AK282 containing complex also displayed lower 

fluctuations compared to those observed in positive control (Figure 3.19). The orientation of 

AK282 to F414 were comparable to that observed for AK 310 of p65 (Figure 3.20). These 

observations suggested that AK 282 followed by AK 373 as potential substrates for 

deacetylation reaction catalyzed by SIRT1. 

Overall, AK282 of NFAT5 could be considered as a potential SIRT1 target site, since 

its distance, flexibility and orientation to SIRT1 substrate binding residue was almost 

completely similar to that of AK 310 of p65 (Figures 3.18, 3.19 and 3.20). Hence, given this 

in silico evidence it is considered that SIRT1 induces a stable DNA binding activity for target 
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gene expression, possibly through deacetylating one or several lysine in NFAT5, with K282 

being the most plausible candidate. 

 

 

 

 

 

 

Figure 3.18. AK282 and AK373 of NFAT5 docked to SIRT1 substrate binding site F414 

showed similar AK to F414 (gray, magenta and black) distance compared to p65 (AK310)-

SIRT1 (F414) complex during 10 ns MD simulations. 
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Figure 3.19. AK282 of NFAT5 docked to SIRT1 substrate binding site F414 showed lower 

RMSF values for AK and F414 atoms, compared to p65 (AK310)-SIRT1 (F414) complex 

during 10 ns MD simulations. (Upper panel) RMSF of all atoms of AK were calculated 

during 10 ns of MD simulations in all complexes, depicted in legend. RMSF of AK282 atoms 

of NFAT5 displayed lower flexibility compared to AK310 of p65. (Lower panel) RMSF of 

all atoms of SIRT1`s F414 were calculated during 10 ns of MD simulations in all complexes, 

depicted in legend. RMSF of F414 atoms of SIRT1 in NFAT5(AK282)-SIRT1(F414) 

complex displayed lower flexibility compared to F414 of p65(AK310)-SIRT1(F414) 

complex. For both panels representatives of AK and F414 with atom names were given near 

the graphs. 
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Figure 3.20. Representative snapshots of whole complexes taken from the last 1 ns of 

simulations were shown in upper panels, while AK282, AK310 and SIRT1 substrate binding 

site (F414) were shown in lower panels. H363 of SIRT1 was shown for enzymatic cleft 

positioning. AK282 of NFAT5 approaching close proximity of F414 of SIRT1 (right panel) 

showed similar orientation to AK310 of p65 approaching to F414 of SIRT1 (left panel) at 

10th ns of MD simulations. 
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4. DISCUSSION AND CONCLUSION 

 

4.1. A unique osmotic stress model 

 

Generation of osmotic stress model was the fundamental step of this study due to 

selecting osmotic stress specific contribution of the agent to intracellular stress and to 

expressions of NFAT5 and SIRT1. In order to avoid other specific effects of these agents 

that might interfere with osmotic stress signaling, osmotic controls were utilized within 

selection procedure (Figures 3.2 and 3.3) (Burg et al., 2007, Kuper et al., 2012). When 

compared to its osmotic controls, high glucose treatment increased NFAT5 independent of 

osmotic stress with lack of SIRT1 expression. Although previous findings suggested similar 

results such that high glucose increases DNA binding activity of NFAT5 and downregulates 

SIRT1 expression in monocytes, high glucose was omitted at this step due lack of SIRT1 

expression (Yang et al., 2006, de Kreutzenberg et al., 2010, Yun et al., 2012). Similar to our 

observations, high salt treatment has been recently shown to simultaneously increase 

expressions of NFAT5 and SIRT1, which led us to utilization of high NaCl in osmotic stress 

model (Quadri et al., 2014).  

Hyperosmotic environment has been shown to be encountered in many diseases, 

including diabetes, sodium sensitive hypertension and inflammatory bowel disease 

(Neuhofer, 2010). The functionality of NFAT5 and SIRT1 in terms of AR expression during 

time course of high salt treatment, which mimics osmotic stress related diseases, holds novel 

insights for understanding our model. At the initial hours of osmotic challenge, NFAT5 

expression was slightly detectable, whereas SIRT1 expression significantly declined, though 

they both peaked at the 16th hour of the osmotic stress (Figure 3.3). Observation of increased 

NFAT5 expression at 16th hour is concordant with previous findings by Woo et al. in which 

they obtained peak NFAT5 expression between 12th and 18th hours of osmotic challenge 

(Woo et al., 2000a). Although peaked expression of NFAT5 was achieved after 16 hours, it 

became more cytoplasmic, which resulted in less AR expression (Figures 3.4 and 3.5). 

Interestingly, compared to highly cytoplasmic NFAT5 and SIRT1 expressions at 16 hours, 

almost completely nucleus localized NFAT5 expression and increased AR expression 

79 
 



coincided with less SIRT1 expression at 4 hours (Figures 3.4 and 3.5). Since SIRT1 activity 

was identified as a contributing element for NFAT5 dependent AR expression, it was inferred 

that the fluctuation observed in SIRT1 expression during time course may be explained by 

the paradigm that SIRT1 activity negatively regulates its own expression (Chen et al., 2005b, 

Kwon et al., 2008, Yuan et al., 2009, Pardo et al., 2012). In line with this paradigm, in U937 

cells under osmotic stress, pharmacological activator of SIRT1, resveratrol and PARP1 

inhibitor, 3-aminobenzamide decreased SIRT1 expression, whereas SIRT1 inhibitor, Ex-527 

increased it (Figures 3.8 and 3.9). In negative controls of osmotic stress, nuclear NFAT5 and 

AR expressions were also higher but SIRT1 expressions were either undetectable or less than 

16 hours of osmotic stress only group (Figures 3.5, 3.8 and 3.9). Overall, it was apparent that 

osmotic stress model simultaneously increased expressions of NFAT5 and SIRT1, but 

increase in expression of SIRT1 was likely to be due to reduction in its activity. This enabled 

us to study a novel osmotic stress model in which suppression of NFAT5 dependent AR 

expression was in part due to loss of SIRT1 activity. 

 

4.2. Functional interplay of SIRT1 and PARP1 under osmotic stress 

 

Our motivation towards investigating the role of SIRT1 on NFAT5 dependent AR 

expression, was developed due to the fact that previously PARP1, which has documented to 

work reciprocally with SIRT1, has also been revealed to inhibit NFAT5 transcriptional 

activity (Chen et al., 2007, Luna et al., 2013). PARP1 and SIRT1 compete for intracellular 

NAD+, hence, these enzymes has been considered to work as antagonists of each other 

(Rajamohan et al., 2009, Bai et al., 2011). In particular, PARP1 activity has been shown to 

act on several SIRT1 targets such as p65 and High Mobility Group Box 1 by diminishing 

SIRT1 activity (Kauppinen et al., 2013, Walko Iii et al., 2015). Based on these previous 

observations, it was reasoned that possible presence of PARP1 activity could also interfere 

with our osmotic stress model via lowering SIRT1 activity. Therefore, expressions of PARP1 

and its activator SIRT6 were analyzed in time course expression analysis (Figure 3.3). Since 

peaked expression of PARP1, as well as its activator SIRT6 were found to coincide with 

those of NFAT5 and SIRT1, it was deduced that our model was vulnerable to a possible 
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crosstalk from PARP1 activity. In line with this deduction, inhibiting PARP1 with 3AB 

caused higher nuclear NFAT5 stabilization and AR expression, yielding results parallel to 

SIRT1 activation by resveratrol (Figures 3.6, 3.8 and 3.9). Co-immuoprecipitation 

experiments also provided evidence that osmotic stress model of U937 monocytes decreases 

SIRT1 interaction with NFAT5, increases NFAT5 acetylation status and increases NFAT5-

PARP1 interaction (Figure 3.13). These interactions were clearly confirming the presence of 

PARP1 activity. Crosstalk of PARP1 in the osmotic stress model explains why NFAT5 

dependent AR expression could be induced to a certain extent when only SIRT1 was 

activated. Evidently, it was concluded that NFAT5 dependent AR expression could be under 

control of PARP1-SIRT1 interplay in osmotic stress model. 

 

4.3. Complementary in vitro and in silico data for NFAT5 as direct target of SIRT1 

enzymatic activity 

 

Until now, SIRT1 was shown to positively regulate many intracellular targets via 

direct deacetylation of acetylated lysine residues. It has been previously found that SIRT1 

deacetylated Foxo1, which allowed auto transcription of SIRT1 (Xiong et al., 2011). SIRT1 

has also displayed deacetylation activity on Tat of human immunodeficiency virus, which 

resulted in Tat transactivation (Pagans et al., 2005). In another study, deacetylation of the 

eukaryotic DNA replication initiation factor, Mcm10 by SIRT1, resulted in increased 

stability and DNA binding of this factor (Fatoba et al., 2013). Parallel to these systems, 

NFAT5 has been suggested to be a direct SIRT1 deacetylation target using SILAC method 

(Peng et al., 2012). In line with these previous studies, our in vitro and in silico approaches 

shared novel and complementary observations towards understanding of SIRT1 based 

regulation of NFAT5 in our osmotic stress model. NFAT5 containing complex was identified 

to be acetylated under osmotic stress, parallel to decrease in its interaction with SIRT1 

(Figure 3.13). This observation was validated using 10 different acetylation prediction 

algorithms in which almost all lysine residues were predicted to be acetylated via at least by 

one algorithm (Table 3.1). Using co-transfection of NFAT5 and SIRT1 in HeLa cells, it was 

shown that SIRT1 catalytic activity contributes to the stability of nuclear NFAT5 and its 
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binding AR ORE probe (Figures 3.11 and 3.12). This in vitro finding was also validated using 

a computational approach, Foldx algorithm, in which six lysine residues, when kept 

deacetylated, may contribute to the stability NFAT5-DNA complex (Figure 3.14). Among 

these six residues, at least one lysine residue of NFAT5, K282 has also shown similar 

distance and even lower flexibility, compared to experimentally proven positive control in 

MD simulations (Figure 3.18, 3.19 and 3.20). While experimental verification of this residue 

is necessary, here complimentary in vitro and in silico evidences were provided such that 

NFAT5 could be directly deacetylated from at least one residue by SIRT1 and this 

deacetylation event may contribute to the stabilization of nuclear NFAT5, leading to 

increased AR expression. 

 

4.4. Proposed Mechanism 

 

Finally, here a unique mechanism was proposed regulating NFAT5 dependent AR 

expression in U937 cells under osmotic stress (Figure 4.1). Under 16 hours of osmotic stress, 

U937 cells tended to display increased cytoplasmic NFAT5 expression, disrupted NFAT5-

SIRT1 interaction and decreased AR expression. During this cellular response, inhibiting 

SIRT1 via its specific inhibitor, EX-527, caused even less NFAT5 expression both in 

cytoplasm and in nucleus, resulting in decreased AR expression levels. Overexpression of 

SIRT1 H363Y, catalytically inactive form of SIRT1, in HeLa cells validated the findings of 

EX-527 and have displayed decreased stabilization of nuclear NFAT5, diminished binding 

of NFAT5 to AR ORE and decreased AR expression. Activation of SIRT1 via resveratrol 

displayed increased cytoplasmic to nuclear translocation of NFAT5, leading to increased AR 

expression in osmotic stress model. Overexpression of wildtype SIRT1 in HeLa cells, kept 

nuclear NFAT5 stable, while increasing its binding to AR ORE and AR expression. This 

SIRT1 based regulation could be mediated via direct deacetylation of at least one lysine 

residue, K282 of NFAT5, based on the in silico findings. 

 

 

82 
 



 

 

Figure 4.1. Proposed mechanism of SIRT1 based regulation of NFAT5 dependent AR 

expression in U937 cells under 16 hours of osmotic stress. 

 

4.5. Conclusions 

 

In this study, for the first time, SIRT1 was identified as a novel contributor of NFAT5 

dependent AR expression in U937 monocytes under osmotic stress.  

• Evidence on SIRT1 based modulation of nuclear NFAT5 stabilization and AR 

expression in U937 cells under osmotic stress, was provided. 

•  Key features of this modulation was validated in HeLa cells under osmotic stress.  

• NFAT5 and SIRT1 were also discovered to be interacting partners under isosmotic 

conditions but osmotic stress disrupted this interaction, leading to decreased NFAT5 

dependent AR expression in osmotic stress model.  

• Using several bioinformatics and computational tools, K282, as a candidate target 

site of NFAT5, was predicted in silico for SIRT1 activity.  
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4.6. Future Studies 

 

Hyperosmotic environment has been shown to be encountered in many diseases, 

including diabetes, sodium sensitive hypertension and inflammatory bowel disease. In 

particular, AR has been shown to mediate micro and macrovascular complications of 

diabetes. In line with these observations, several AR inhibitors have been developed and 

tested in clinical trials. Nevertheless, many of these AR inhibitors have been withdrawn from 

human use due to side effects. Hence, targeting NFAT5, the transcription factor of AR, could 

stand as a treatment option for AR related diseases. Therefore, our approach, modulation of 

SIRT1, could be tested to for fine tuning NFAT5 dependent AR expression in future studies. 

K282, as a candidate target site of NFAT5, was predicted in silico for SIRT1 activity. 

Based on this result, site-directed mutagenesis studies, followed by luciferase reporter assays 

for the impact of this mutation on NFAT5 transcriptional activity, could be conducted for in 

vitro verification of this residue. Moreover, K373, which was shown to be involved in 

NFAT5 dimerization, has also shown properties close to K282. Mutations in K282 may also 

change solvent exposure of K373 and following accessibility of this residue for SIRT1 

activity, therefore K282 may have indirect role on K373 for regulation of NFAT5 

dimerization.  Further studies using both of these sites will also unravel more detailed 

mechanism of SIRT1 based regulation of NFAT5 dependent events. 
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APPENDIX A 

 

Name of Chemical     Supplier Company  Catalog # 

2-Mercaptoethanol     Fluka, Switzerland   63700 

2-7-DCFDA     Sigma, Germany  D6883 

3-Aminobenzamide    Sigma, Germany  A0788 

Acrylamide/Bis-acrylamide    Sigma, Germany   A3699 

Sea Kem Gold Agarose    Lonza, USA    50152 

Ammonium persulfate    Sigma, Germany   A3678 

Antibiotic solution     Sigma, Germany  P3539 

Boric acid      Sigma, Germany   B6768 

Bradford solution    Biorad, USA    500-0006 

BSA       Amresco, USA  0332 

Coomassie Brilliant Blue    Merck, Germany  115444 

Developer/Replenisher    Agfa, Belgium   G150 

Dulbecco’s MEM (DMEM)   Pan, Germany    P04-02500 

DMSO      Sigma, Germany   D2650 

DTT       Sigma, Germany   D9779 

EDTA       Riedel-de Haén, Germany  27248 

Ethanol      Riedel-de Haén, Germany  32221 

Ethidium Bromide     Merck, Germany   OCO28942 

Ex-527      Sigma, Germany  E7034 

Fixer       E.O.S. Agfa, Belgium  EKSSH 
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Name of Chemical     Supplier Company  Catalog # 

Fetal Bovine Serum    Pan, Germany    P30-1902 

Glucose     Sigma, Germany  G8270 

Glycerol      Riedel-de Haén, Germany 15523 

Glycine      Molekula,    UK M10795755 

HCl       Merck, Germany   100314 

HEPES     Molekula, UK   M55704197 

Hyperfilm ECL     Amersham, UK  RPN2114K 

Isopropanol      Riedel-de Haén, Germany  24137 

Kanamycin-sulfate     Applichem, Germany   A1493 

KCl       Amresco, USA  0395 

KH2PO4      Riedel-de Haén, Germany  04243 

KOH       Riedel-de Haén, Germany  06005 

Liquid nitrogen     Karbogaz, Turkey 

Luria Agar      Sigma, Germany   L-3147 

Luria Broth      Sigma, Germany  L-3022 

Methanol      Riedel-de Haén, Germany 24229 

MgCl2       Sigma, Germany   M9272 

Mannitol     Sigma, Germany  M4125 

Milk Diluent concentrate    KPL, USA    50-82-00 

Na2HPO4      Merck, Germany   7558-79-4 

NaCl       Duchefa Biochemie, NL S05205000 

NaOH       Merck, Germany   106462 
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Name of Chemical     Supplier Company  Catalog # 

NaPO4H2      Riedel-de Haén, Germany  04269 

NP-40       Sigma, Germany  I3021 

Penicilin/Streptomycin    PAN, Germany   P06-07100 

phoSTOP phosphatase inhibitor   Roche, Germany   4906837001 

PMSF       Sigma, Germany  P7629 

Poly dA-dT      Sigma, Germany  P0883    

Protease inhibitor cocktail tablet   Roche, Germany   4693124001 

PVDF membrane     Roche, Germany   03010040001 

Resveratrol     Sigma, Germany  R5010  

Sodium Dodecyl Sulphate    Sigma, Germany   L4390 

TEMED      Sigma, Germany   T7024 

Tris       Molekula, UK   M11946779 

Tween® 20      Molekula, UK   18945167 
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APPENDIX B 
 

Name       Supplier Company   Catalog # 

Anti-β-Actin      Cell Signaling, USA  4967 

Anti-Flag      Sigma, Germany   F3165 

Anti-Lamin A/C     Cell Signaling, USA   2032 

Anti-mouse HRP     Cell Signaling, USA   7076 

Anti-myc     Cell Signaling, USA  2272 

Anti-NFAT5     Santa Cruz, USA  sc-13035 

Anti-PARP1     Cell Signaling, USA  9542   

Anti-rabbit HRP     Cell Signaling, USA   7074 

Anti-SIRT1     Cell Signaling, USA  8469 

Anti-SIRT1     Santa Cruz, USA  sc-15404 

Anti-SIRT6     Sigma, Germany  SAB4200254 

RNase A      Roche, Germany  119915 

Trypsin-EDTA     Pan, Germany    P10-0231SP 
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APPENDIX C 
 

Name       Supplier Company   Catalog # 

AnnexinV-FITC     Alexis, USA    ALX-209-250 

ECL Advance      Amersham,UK   RPN2209 

Genopure plasmid midi kit    Roche, Germany   03143414001 

X-TremeGene9    Roche, Germany  06365809001 

MTT (Cell Proliferation Kit I)   Roche, Germany   11485007001 

PageRuler plus, protein ladder   Fermentas, Lithuania   SM1812 

Dynabeads Protein G    Thermo Fisher, USA  10003D 

Nucleic acid detection module kit  Thermo Fisher, USA  89880 
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APPENDIX D 
 

6x myc tagged NFAT5 (Addgene plasmid # 13627) (upper) Vector backbone (lower) 
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Flag tagged wildtype SIRT1 and flag tagged SIRT1 H363Y (Addgene plasmid # 1791, # 
1792) 
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APPENDIX E 
 

Osmotic Response Element (ORE) of Human Aldose Reductase Gene (AKR1B1) 

5' to 3' Sequence: 

AAA GTT ACA TGG AAA AAT ATC TGG GCT AGT CTG TTC TGT ATA AAT TTT 

TCC AGG AGG GAG CAC TTT TAA AGA AAG CAC CAA ATG GAA AAT CAC CGG 

CAT GGA GTT TAG AGA GAC CTG GTG CTT GAG TCA CTA CCA 
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APPENDIX F 
 

Annealing buffer 

100 mM KAcetate 

30 mM HEPES (pH: 7.4) 

2 mM MgAcetate 

 

Annexin-V staining buffer 

100 μl cell suspension in FACS incubation buffer 

2 μl Annexin-V (Alexis) 

 

Blocking solution 

5 g nonfat dried milk 

100 ml washing solution 

 

Complete lysis buffer 

20 mM Tris-HCl (pH 7.5) 

150mM NaCl 

NP-40 0.5% (v/v) 

0.5 mM PMSF 

Protease and phosphatase inhibitor mix 
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EMSA binding buffer (5X) 

100 mM HEPES-KOH (pH: 7.9) 

5 mM EDTA (pH 7.9) 

25% (v/v) glycerol 

25 mM MgCl2 

0,5 M KCl 

10 mM DTT (Freshly added) 

 

EMSA incubation buffer (20μl/sample) 

4 μl EMSA binding buffer 

1 μl NP-40 

3.45 μl Glycerol (100%) 

1 μl BSA (stock: 1mg/ml) 

1 μl poly (dA-dT) (stock: 1μg/μl) 

Add 5 μg total protein extract and adjust to 20 μl 

 

FACS incubation buffer 

10 mM HEPES 

140 mM NaCl 

2.5 mM CaCl2 

pH: 7.4 
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Immunoblotting washing solution 

100 ml PBS (10X) 

900 ml ddH2O 

2ml Tween20 (final: 0.2%) 

 

Primary antibody incubation solution 

3 ml 5% (w/v) milk blocking solution and 1.5 μg primary antibody 

 

Running buffer (10X) 

144.1 g glycine 

30.3 g Tris 

10g SDS 

Adjust to 1000ml with ddH2O 

 

Secondary antibody incubation solution 

5ml 5% (w/v) milk blocking solution 

1 μg secondary antibody 

 

T1 Buffer 

10 mM HEPES-KOH (pH: 7.9) 

2 mM MgCl2.6H2O 

0.1 mM EDTA 

10 mM KCl 
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1% NP-40 

1 mM DTT (freshly added) 

0.5 mM PMSF (freshly added) 

Complete protease inhibitors (freshly added) 

 

T2 Buffer 

50 mM HEPES-KOH (pH: 7.9) 

2 mM MgCl2.6H2O 

0.1 mM EDTA 

50 mM KCl 

400mM NaCl 

10% (v/v) Glycerol 

1 mM DTT (freshly added) 

0.5 mM PMSF (freshly added) 

Complete protease inhibitors (freshly added) 

 

TBE (10X) 

108 g Tris 

55 g Boric acid 

40 ml EDTA (pH: 8.0) 
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Transfer buffer (stock: 10X) 

144 g glycine 

30.3 g Tris 

Adjust to 1000ml with ddH2O 

 

Transfer buffer (working: 1X) 

100ml Transfer buffer (10X) 

700ml ddH2O 

200ml Methanol 
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APPENDIX G 
 

Equipments 

Autoclave:    Hirayama, Hiclave HV-110, Japan 

Balance:    Sartorius, BP211D, Germany 

Centrifuge:    Eppendorf, 5415C, Germany 

Eppendorf, 5415D, Germany 

Eppendorf, 5415R, Germany 

Kendro Lab. Prod., Heraeus Multifuge 3L, Germany 

Hitachi, Sorvall RC5C Plus, USA 

Hitachi, Sorvall Discovery 100 SE, USA 

Computer Software: FlowJo V10 

Image J 1.48 

Photoshop CS5, CS6 

Quantity One 4.6.1 

MS Office 2007, 2010 

Deepfreezer:    -80°C, Kendro Lab. Prod., Heraeus Hfu486 Basic, Germany 

-20°C, Bosch, Turkey 

Distilled water:   Millipore, MilliQ Academic, France 

Electrophoresis:   Biorad, USA 

Flow cytometer:   BD FACS Conto, USA 

Ice Machine:    Scotsman Inc., AF20, USA 

Incubator:    Memmert Modell 300 and 600, Germany 
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Laminar Flow:   Kendro Lab. Prod., Heraeus, HeraSafe HS12, Germany 

Magnetic Stirrer:   VELP Scientifica, ARE Heating Magnetic Stirrer, Italy 

Microliter Pipette:   Gilson, Pipetman, France 

Mettler Toledo Volumate, USA 

Eppendorf, Germany 

pH meter:    WTW, pH540 GLP MultiCal, Germany 

Osmometer   Osmomat 030 Gonatech, Germany 

Power supply:   Biorad, PowerPac 300, USA 

Wealtec, Elite 300, USA 

Refrigerator:    4°C, Bosch, Turkey 

Shakers/ mixers:  Forma Scientific, Orbital Shaker 4520, USA 

GFL Shaker 3011, USA 

New Brunswick Sci., Innova 4330, USA 

C25HC Incubator shaker, New Brunswick Scientific, USA 

Gyro rocker SSL3, Stuart, UK 

Thermomixer comfort, Eppendorf, Germany 

Spectrophotometer:   Biorad iMark Microplate Absorbance Reader, USA 

ND-1000, Nanodrop, USA 

Water bath:    Huber, Polystat cc1, Germany 
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Topology for acetyllysine: 

PATCHING FIRS LYSA   

RESI LYSA         0.00 

GROUP    

ATOM N    NH1    -0.47 

ATOM HN   H       0.31 

ATOM CA   CT1     0.07 

ATOM HA   HB      0.09 

GROUP                  

ATOM CB   CT2    -0.18 

ATOM HB1  HA      0.09 

ATOM HB2  HA      0.09 

GROUP                  

ATOM CG   CT2    -0.18 

ATOM HG1  HA      0.09 

ATOM HG2  HA      0.09 

GROUP                  

ATOM CD   CT2    -0.18 

ATOM HD1  HA      0.09 

ATOM HD2  HA      0.09 

GROUP                  

ATOM CE   CT2     0.21 

ATOM HE1  HA      0.05 
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ATOM HE2  HA      0.05 

ATOM NZ   NH1    -0.61 

ATOM HZ   H       0.30 

GROUP                  

ATOM CY   C       0.51 

ATOM OY   O      -0.51 

GROUP 

ATOM CAY  CT3    -0.27 

ATOM HY1  HA      0.09 

ATOM HY2  HA      0.09 

ATOM HY3  HA      0.09 

GROUP                                                                         

ATOM C    C       0.51                                                        

ATOM O    O      -0.51                                                        

BOND CB CA   CG CB   CD CG   CE CD   NZ CE 

BOND CY CAY  CY NZ  CAY HY1  CAY HY2  CAY HY3                             

BOND N  HN   N  CA    C  CA                                                   

BOND C  +N   CA HA   CB HB1  CB HB2  CG HG1    

BOND CG HG2  CD HD1  CD HD2  CE HE1  CE HE2  

DOUBLE  O  C    

DOUBLE OY  CY 

BOND NZ  HZ 

IMPR N -C CA HN  C CA +N O    
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IMPR CY CAY NZ OY 

IMPR NZ CY CA HZ 

CMAP -C  N  CA  C   N  CA  C  +N 

DONOR HN N    

DONOR HZ NZ      

ACCEPTOR O C    

ACCEPTOR OY CY 

!!IC for lysine 

IC -C   CA   *N   HN    1.3482 123.5700  180.0000 115.1100  0.9988 

IC -C   N    CA   C     1.3482 123.5700  180.0000 107.2900  1.5187 

IC N    CA   C    +N    1.4504 107.2900  180.0000 117.2700  1.3478 

IC +N   CA   *C   O     1.3478 117.2700  180.0000 120.7900  1.2277 

IC CA   C    +N   +CA   1.5187 117.2700  180.0000 124.9100  1.4487 

IC N    C    *CA  CB    1.4504 107.2900  122.2300 111.3600  1.5568 

IC N    C    *CA  HA    1.4504 107.2900 -116.8800 107.3600  1.0833 

IC N    CA   CB   CG    1.4504 111.4700  180.0000 115.7600  1.5435 

IC CG   CA   *CB  HB1   1.5435 115.7600  120.9000 107.1100  1.1146 

IC CG   CA   *CB  HB2   1.5435 115.7600 -124.4800 108.9900  1.1131 

IC CA   CB   CG   CD    1.5568 115.7600  180.0000 113.2800  1.5397 

IC CD   CB   *CG  HG1   1.5397 113.2800  120.7400 109.1000  1.1138 

IC CD   CB   *CG  HG2   1.5397 113.2800 -122.3400 108.9900  1.1143 

IC CB   CG   CD   CE    1.5435 113.2800  180.0000 112.3300  1.5350 

IC CE   CG   *CD  HD1   1.5350 112.3300  122.2500 108.4100  1.1141 
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IC CE   CG   *CD  HD2   1.5350 112.3300 -121.5900 108.1300  1.1146 

IC CG   CD   CE   NZ    1.5397 112.3300  180.0000 110.4600  1.4604 

IC NZ   CD   *CE  HE1   1.4604 110.4600  119.9100 110.5100  1.1128 

IC NZ   CD   *CE  HE2   1.4604 110.4600 -120.0200 110.5700  1.1123 

IC CD   CE   NZ   HZ    1.5350 110.4600  179.9200 113.1400  1.0065 

!IC HZ1  CE   *NZ  HZ2  1.0404 110.0200  120.2700 109.5000  1.0402 

!IC HZ1  CE   *NZ  HZ3  1.0404 110.0200 -120.1300 109.4000  1.0401 

!!IC for aceytl 

IC CY   NZ   CE   CD    1.3482 123.5700  -60.0000  110.4600  1.5350 

IC CY   CE   *NZ  HZ    1.4604 110.02    180.0000   45.00    0.9988 

IC CAY  CY   NZ   CE    1.5397 120.00    180.0000  110.02    1.4604 

IC NZ   CAY  *CY  OY    1.5350 120.00    180.0000  120.00    1.2277 

IC OY   CY   CAY  HY1   1.2277 120.790   180.0000  120.00    1.5435 

IC OY   CY   CAY  HY2   1.2277 120.7900   60.0000  120.00    1.5435 

IC OY   CY   CAY  HY3   1.2277 120.7900  -60.0000  120.00    1.5435 
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