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Abstract

The peridynamic theory, proposed by Silling in 2000, is a nonlocal theory of contin-
uum mechanics based on an integro-differential equation without spatial derivatives.
This is seen to be main advantage, because it provides a more general framework than
the classical theory for problems involving discontinuities or other singularities in the
deformation.

In this thesis, we present a survey on the well-posedness of the Cauchy problems for
peridynamic equations with different initial data spaces. These kind of equations can
be also viewed as Banach space valued second order ordinary differential equations.
So, in the first part of this study, we recall the theorems about local well-posedness
of abstract differential equations of second order. Then, nonlinear problems related to
the peridynamic model are reduced to abstract ordinary differential equations so that
the right conditions can be imposed to imply local well-posedness. In the second part,
we study a linear peridynamic problem and discuss the equivalent spaces in which the
solution of the problem can take values. We use a functional analytic setting to show

the well-posedness of the problem.



PERIDINAMIK DENKLEMLER ICIN CAUCHY PROBLEMLER UZERINE BIR
DERLEME
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Tez Danmigmani: Prof. Dr. Albert Kohen Erkip

Anahtar Kelimeler: Peridinamik denklem, Cauchy problemi, Yerel varlik

(")zet

2000 yilinda Silling tarafindan ortaya atilan peridinamik teori, siirekli ortamlar
mekaniginin yerel olmayan bir kuramidir. Peridinamik teorinin belirgin ozelligi, tiiretilen
denklemlerin uzaysal tiirevler igermemesidir. Bu olgu, deformasyonda stireksizlik veya
tekillik igeren problemler i¢in klasik teoriye gore daha genel bir ¢erceve sunar.

Bu tezde, peridinamik denklemler i¢in Cauchy problemlerinin iyi konulmug olmalar
tizerine degisik sonuclar1 iceren bir derleme sunduk. Bu tiir denklemler, Banach
uzayinda deger alan, zamanda ikinci derece adi diferansiyel denklemler olarak da
diigtintilebilir. Dolayisiyla, bu ¢alismanin ilk kisminda, ikinci derece soyut adi difere-
ansiyel denklemlerin yerel olarak iyi konulmusg olmalarina iligkin teoremleri ele aldik.
Sonra, peridinamik modele ait lineer olmayan denklemleri, uygun Banach fonksiyon
uzaylarinda deger alan ikinci derece adi diferansiyel denklemlere indirgeyerek Cauchy
problemlerinin cegitli basglangi¢ verilerine gore iyi konulmusg olmalarini gerektirecek
uygun kosullar1 belirledik. Ikinci kisimda, lineer peridinamik denklemi inceledik ve
fonksiyonel analitik bir kurgu icerisinde, problemin baglangi¢ verileri ile ¢oztimiiniin

yer alabilecegi egdeger uzaylardan bahsettik.
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CHAPTER 1

Introduction and Preliminaries

The peridynamic theory, proposed by Silling [1] in 2000, is a nonlocal theory of
continuum mechanics based on an integro-differential equation without spatial deriva-
tives. This is seen to be main advantage, because it provides a more general framework
than the classical theory for problems involving discontinuities or other singularities in
the deformation. Some applications for problems involving heat conduction in bodies
with discontinuities and damage growth in materials can be found in [13] and [14],
respectively.

The well-posedness of the linearized problem is first studied in [2] whereas the first
results towards the nonlinear model can be found in [3]. The other results for the well-
posedness of linear and nonlinear problems are shown in [4] and [5], respectively. On
the other hand, some numerical approximation methods of the model are illustrated
in [6].

In this thesis, we present a survey on the well-posedness of the Cauchy problems for
peridynamic equations with different initial data spaces. For this purpose, we devote
the rest of the first chapter to the preliminaries and present the main tools and theorems
that will be used throughout this thesis.

Peridynamic equations can be also viewed as Banach space valued second order
ordinary differential equations. So, in the second chapter, we recall the theorems
about local well-posedness of abstract differential equations of second order.

We begin the third chapter by describing the peridynamic model. Then, nonlinear
problems given in [3] and [4] are reduced to abstract ordinary differential equations so
that the right conditions can be imposed to imply local well-posedness.

In the last chapter, we study the linear problem given in [5] and discuss the equiv-
alent spaces in which the solution of the problem can take values. We use the same

functional setting given there to show the well-posedness of the problem.



1.1. Spaces Involving Time

In this section, we present some function spaces that we will use later. We denote the

spaces and the norms by

e Cy(R), the space of continuous, bounded functions on R with sup-norm

[ flloe = suplf ().
z€R

e CF(R), the space of continuous functions whose derivatives up to order k also
belong to Cp(R) with norm

k

e =

=0

df

o0

e LP(R), the set of Lebesgue measurable functions with LP-norm

Il = ( [ 15600 o) "

for 1 <p < .

o L>(R), the space of Lebesgue measurable functions that are essentially bounded
on R, meaning that the complement of the set that f is not bounded has measure
0 with the norm

[ f[|ze = esssupl| f(z)].
z€R

We see that with the chosen norms, the given spaces are Banach Spaces.

Let (X, ||.]|x) be a Banach space. Now, we define the following function spaces.

Definition 1.1.1 The space C([0,T],X) consists of continuous Banach-valued func-

tions over the closed interval [0,T], that is
C([0,7],X) :={u:[0,T] — X| u(t) is continuous in X} .
It is a Banach Space with the following norm

lulleqon.x = max[u(t)x

te[ ’



Example 1.1.1 Let X = Cy(R). Take u € C([0,T],Cyp(R)). This means that u is
continuous in t and takes values in Cy(R). Thus, u(t) is continuous in x. On the other
hand, w € C([0,T] x R) means u is continuous and bounded in both t and x. Then,
u(t) = u(t,x) .

Definition 1.1.2 L*([0,T], X), the space of Banach valued LP functions over [0,T],

becomes a Banach Space with the norm

T 1/p
Il oy ) = ( | o, dt) ,

1 <p<oo.

Notice that the Banach valued functions are denoted in bold font. But as far as it

»,,0

is clear from the context, we use "u” instead of "u”.
1.2. Hilbert Spaces

In this part, we give brief information about Hilbert Spaces [7].

Let H be a vector space over R. A linear map from H to R is called a linear func-
tional on H. If H is a normed space, the space L(H,R) of bounded linear functionals
on H is called a dual space of H and is denoted by H*. An inner product on H is a
map (z,y) — (z,y) from H x H — R such that

i. (ax +by,z) =a(x,z)+ by, 2) for all z,y,z € H and a,b € R.
ii. (y,z) = (x,y) for all z,y € H.

iii. (z,2) € (0,00) for all nonzero x € H.

A vector space H that is equipped with an inner product is called an inner product

space. Moreover, if H is complete with respect to the norm:

|2l = v/ (2, ), (1.1)

then H is said to be Hilbert Space. Let f,g € L*(R), then | fg| < 3(|f]* + |g|?), so that
fg € LY(R). Tt follows that the formula

(f.9) = / f(@)g(x)dz (1.2)

defines an inner product space on L*(R). Now, we will state a well-known theorem

concerning relationship between a Hilbert Space H and its dual H* [12].
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Theorem 1.2.1 (Riesz Representation Theorem [12]) For any f € H*, there
exists a unique element v € H such that f(u) = (u,v). Similarly, every function
f(u) = (u,v) forv e H defines an element of H* with ||f|

there is a natural isomorphism between H and H*.

1 = ||v||%. Consequently,

1.3. Sobolev Spaces

The notion of well-posedness is related to the requirements that can be expected
from solving a differential equation. A given problem for a differential equation is said

to be well-posed if
e the problem in fact has a solution;
e the solution is unique; and
e the solution depends continuously on the data given in the problem.

The third condition indicates that the small changes in the initial data should lead to
small changes in the solution, in the associated space. However, the requirements of
existence and uniqueness for the solution are not clear enough as the exact definition
of the related unique solution is not given. It is reasonable to ask for a solution of a
differential equation of order k£ to be at least k times continuously differentiable. In
this case, all derivatives in the equation must exist and be continuous. This kind of
a solution is call a classical solution. Although some equations can be solved in the
classical sense, many physical problems may admit solutions that are not differentiable
or even not continuous. For this reason, we give different type of solutions that are
called generalized or weak solutions. Such solutions are less smooth. To weaken the
notion of partial derivatives, we give the definition of weak derivatives [8].

Let C°(U) be the space of infinitely differentiable functions ¢ : U — R, with
compact support in U C R. These functions are called as test functions. Assume
ue CYU) and ¢ € C>(U). Then integration by parts formula implies that

/ugbxida: = —/ Uy pdr (1=1,..,n). (1.3)
U U

Let u be k times differentiable function, i.e. v € C*(U), and a = (ay,...,a,) is a
multiindex of order |a| = a3 + ... + a,, = k. By applying the formula || times,
we have

80&1 aﬂén
Or1o " O, on

/ uD®¢pdx = (—1)1 / Du¢dz, with D% = . (1.4)
U U

4



If u is not in C*(U), then it is meaningful to replace the expression ” D" on the right
hand side of (1.4)) by a locally integrable function v:

Definition 1.3.3 Suppose u,v € L} (U), and « is a multiindex. We say that v is the

a-weak derivative of u, and write

D% = v,

provided that

/U uD®¢dx = (—1) /U vodz

for all test functions ¢ € C°(U).

Definition 1.3.4 Let k 1 < p < 0o and let k be a nonnegative integer. The Sobolev
space W*P(U) consists of all integrable functions u : U — R such that for each multi-

index o with |a] < k, D%u exists in the weak sense and belongs to LP(U).

The proof of the following theorem can be found in Section 5.2 of [§].

Theorem 1.3.2 For each k = 1,2, ... and 1 < p < oo, the Sobolev space WFP(U) is a

Banach Space with the usual norm

lullwer@) =D 11D%ul[10.

a<k

Remark 1.3.1 As W*2(U) is a Hilbert Space, we use the notation
H*U)=W"(U) (k=0,1,...).
Moreover, H*(U) = L*(U).

For two Banach Spaces Bi, Bs, we say B; is continuously embedded to By, denoted
by By < B,, if By C B; and the embedding map is continuous, i.e there exists a

nonnegative number C' such that

[lulls, < Cllulls,- (1.5)

Lemma 1.3.3 L*®(R) is continuously embedded in H'(R).

Proof: Let ¢ € C2°. Then, for all z € R,

(6(x))* = / "2 (et < 2 / " Ol6)dt

—00

<9 / T Ol |dr
< [ (10 OF +100P) = ol



Thus ||¢]|7 < [|9l3:, and |[¢]|e < ||@]|m1. But C°(R) is dense in H'(R). Hence
for every f € H'(R) there holds || f||ze < ||f||m- 0

1.4. Fourier Transform

In this part, we give basic properties of Fourier Transform [8]:

Definition 1.4.5 If v € LY(R"), we define the Fourier Transform and the inverse

Fourier Transform of u by

U ':; e"ly(x)dr, and u(x ':; ety
©) = Gy | e ula)dn, and i) = s [ e ue

respectively.

Since |e¥®¢| = 1 and u € L'(R"), the integrals above are well-defined.

Now, we extend these definition to functions u € L?*(R") by the following theorems

(18], [7)-

Theorem 1.4.4 (Plancherel’s Theorem) Assume u € L'(R™) N L?*(R"). Then
i,u € L*(R™) and

o] L2ny = (|| L2ny = |ul]L2@n).-
Theorem 1.4.5 Assume u,v € L*(R™). Then
(i) [gnubde = [g, ddE,

(ii) Dou = (i€)*i,

Next, we use the Fourier Transform to give an alternate characterization of the

spaces H*(R) [8]. From Plancherel’s Theorem, we have

112
e = [ullfee = D 11D%ul[3 = Y || D],

o<k | <k

On the other hand, Theorem [1.4.5| implies that

SN = 3 Ileralls. = 3 [ verice) o

lal<k lal<k <k
= PP a(€)]dg = €[> a(e)[Pde.
> Lz



We let

SUIEP =14 [P+ g + .+ 1 = Pul€)

|| <k

Lemma 1.4.6 Assume that Py(§) is defined as in (1.6). Then
(i) 1+ |6 < Pel8) < k(1 +[¢[*)

(ii) and there exist Cy,Cy > 0 such that
Ci(1+ |67 < Pe(€) < Co(1+ [¢)"

Proof: (i) It is clear that for every k € Z and £ € R, we have

1+ € <THEP+ I + . 4+ €1 = Pe(©).

(1.6)

(1.7)

It remains to show the right hand side of the inequality. For this purpose, we distinguish

two cases:
Case 1. Let || > 1. Then

Pe(&) = TP + €] + o+ [P < T [P + [ 4+ ¢
=1+ k¢
< k(14 [€1%).
Case 2. Let || < 1. Then
Polé) =1+ P4 €] + . F PP <1+1+1+ .+
=k + [¢]**
< k(1 +[€[).
For all £ € R™, — imply that
L+ 6" < Pu&) < k(L +[E[).

(ii) Let (1 +|£*)* = Qr(€). To show ([1.7)), we first expand Q(€):
Case 1. Let |£] > 1. Hence,

Q)= (1 = () + ()il + (5)1ert oot ()i
T Qe

<14 (25 = 1)JEPF < 251+ [¢1*).

(1.9)

(1.10)



Case 2. Let |£] < 1. Then,
k k k
Qr(§) < [1 + (1) + (2) ot (k— 1)} + e
<2 -1 [¢f <251+ ¢, (1.11)

For all £ € R, (1.10)-(1.11)) imply that

1+ (€% < Qu(&) < 281+ [¢1).

Moreover,
0 < lim Pile) _ =1,
e Qi (€)
meaning that § < o ((E)) < 2 for |¢| > 1, On the other hand, Z o (6) is continuous on
|€] < 1. Hence, there exist m > 0, M > 0 so that m < S’;—(é)) < M. Therefore,
s o veer
and hence
Ci(1+ [€°)" < Pu(€) < Co(1+ [€P)F Ve € R"
where C} = min{m, 1/2} and Cy = max{M, 2}. O

Lemma [1.4.6| suggests an alternative definition for Sobolev Spaces:

Definition 1.4.6 Assume s > 0 a real number and v € L*(R™). Then u € H*(R") if
(1+ [£]*)a € L*(R™). For noninteger s, we set

oy 1= I+ &Pl ey = 11+ [€612)Eitll 2y (112)

From Theorem [1.3.2] and ((1.12]), H® is a Hilbert Space with

[lul

(u,0) e = / (1+ €[5 a(€)o(€)de.

Then, (H®)* ~ H® through (.,.)ys
Define
H*={v: (1+[¢P)? e L*}.
Then (H*®)* ~ H* through L? norm. That is, if f € (H*)*, then there exists v € H*
such that

ﬂmzéwm:mmw

That is, v correspons a bounded linear function on H?.



1.5. Relevant Theorems and Inequalities

Lemma 1.5.7 (Gronwall’s Inequality [8]) Let ¢(t) be the nonnegative, continuous

function on [0, T| which satisfies almost everywhere t the integral inequality

o)< [ oloyis+ G
where C7 and Cy are nonnegative constants. Then,
(1) < Coe™*
for almost all 0 <t <T.

Theorem 1.5.8 (Contraction Mapping Principle) Suppose that S is a closed sub-
set of a Banach Space, Y, and that T : S — S is a mapping on S such that

|Tu—Tolly <allu—2lly u,veS
for some constant a < 1. Then T has a unique fized point u € S that satisfies Tu = u.

Lemma 1.5.9 (Young’s Inequality [7]) If f € L' and g € LP(1 < p < o0), then
(f *g)(x) exists for almost every x, (f * g)(x) € L?, and

1+ ally < 1171119l (1.13)

where

(f % g)(x) = / £y — 2)9(y)dy. (1.14)

Lemma 1.5.10 (Minkowski’s Inequality for Integrals) If 1 < p < oo, and u €
LP([0,T], LP(R)) for a.e 0 <t < T, then

‘ /OTU(.,t) dt

T
< [t de.
p 0



CHAPTER 2

Abstract Differential Equation of Second Order

2.1. Introduction

Let (X,]|-]|x) be a Banach Space. Recall that if u € C([0,T], X), then given € > 0
there exists d(¢) > 0 such that ||u(t) — u(ty)||x < € whenever |t — ty| < & for every
to € [0,7]. Furthermore, the differentiability of a function v € C([0,7], X) can be
defined in the following way.

Definition 2.1.1 ( [12]) A function u : [0,T] — X is said to be differentiable in
to € (0,7T), if there exists a linear transformation A € L([0,T], X) such that

L lulto + h) = ulto) = Abllx
h—0 h

~0. (2.1)

We denote A by u'(to) if it exists. Moreover, u is said to be differentiable on (0,T), if
it is differentiable at all points in (0,T).

Then, by u € C*([0,T], X) we mean u : [0,7] — X is continuous at every ¢t € [0, 7]
and differentiable at every ¢ € (0,7). Consider autonomous system of first order

ordinary differential equation

uW=G(u), t€(0,T), u(0)=uy, ¢eX. (2.2)

Remark 2.1.1 There is no loss of generality of taking the initial point ty = 0 since
we deal with system that does not depend explicitly on t. That is to say if u(t) is a
solution, then so is u(t + to).

10



In the study of ordinary differential equations, some functions G : X — X can be

taken to be locally Lipschitz continuous:

Definition 2.1.2 A function G : X — X s said to be locally Lipschitz continuous , if
for every R > 0, there exists Lr > 0 such that

1G(u) = G(W)lIx < Lrllu—vllx  for all u,v € Bx(0, R). (2.3)

It is well-known from Picard-Lindelof Theorem that if G is locally Lipschitz con-
tinuous, then there exists 77 < T such that the initial value problem has a unique
solution u € C*([0, T3], Bx (0, R)).

Remark 2.1.2 If G is continuously differentiable, then the condition ([2.3) is satisfied
by the Mean Value Theorem.

2.2. Abstract Differential Equation of Second Order

In this study, as the equation we have at hand is of second order, we will deal with
the well-posedness of the initial value problem of second order abstract differential
equation:

u'=Gu), te(0,T), u(0)=¢, u(0)=1 (2.4)

with initial data ¢,9 € X.
One can note that if we let u; = u, ups = v/, then the second order differential

equation (2.4 can be converted to a system of first order differential equation :

d
= w0 =¢
d
5 =G, ua(0) =
Therefore,
A
W_ga), H0)=7
where we let @ = “ CH(WY) = = ,and F = 4
Ug g(u1,U2) (0

However, we will state the sufficient conditions for well-posedness of problem in
Theorem and prove it directly rather than converting it to a first order system.

11



Theorem 2.2.1 Let G : X — X be locally Lipschitz continuous. Then, for any ¢, €
X, there exists T > 0 such that the initial value problem (2.4]) has a unique solution
u e C*([0,T], X). The solution u depends continuously on the initial data.

Proof: We first show the existence of the solution of the problem ([2.4). By inte-
grating (2.4 twice, we obtain

u(t):<p+/0tu’(s)d5:go+/0t (w—l—/osg(u(T))dT) ds
:go+t1/1+/0t/osg(u(7'))d7'ds (2.5)

with the initial conditions u(0) = ¢, v'(0) = .

By changing the order of the integration in the right hand side, one can obtain
t ot
u(t) =@+t + / / G(u(r))dsdr
0 T
t
— ottt / (t — )G (u(r)) dr (2.6)
0

If we define S by the right hand side of (2.6). Then, the initial value problem ({2.4)) is
equivalent to finding a fixed point S(u) = u. For some T that will be determined later,

we let X(7T) = C([0,T],X). Let M = sup ||G(u)||x. Notice that M is finite as G
u€Bx (0,R)

is Lipschitz on Bx (0, R) with Lipschitz constant Lg:

1G(W)llx < [IGO0)|lx + [1G(u) = G(0)[|x
< [[GO)lx + Lallullx

<[G(0)|[x + LrR = M.

Claim 2.2.2 §: X(T) — X(T) is well-defined, i.e.
(i) Vt € [0,T] S(u)(t) € X,
(i) t — S(u)(t) is continuous.

Proof: (i) We know that u : [0,7] - X and G : X — X are continuous. Therefore,
Gu : [0,T] — X is continuous. Hence, keeping in mind that ¢, 1 € X we can write

S(u)(t) = o+t + / (t — ) Glu(r))dr

=@+t + lim Y ()G (u(r))Ar.

J=0

12



As each G(u(7;)) and their linear combinations are in X, the sum is in X. So the limit
is in X.

(ii) We show S(u) is continuous in . Let ¢y € [0, 7] be fixed.
S(u)(to + At) = S(u)(to)
to+At to
= Aty + /0 (to + At — 7)G(u(r))dT — /0 (to — 7)G(u(T))dT
to+At to+At to
= Aty + /0 (to — 7)G(u(T))dr + At/o G(u(r))dr — /0 (to — 7)G(u(T))dr
to+At to
= Aty + / (to — 7)G(u(r))dr + At/o G(u(r))dr. (2.7)

to

Therefore,
1S (u)(to + At) — S(u)(to)||x

/ " o — )G ()

to

< Atll9l]x +

—i—At’
X

X

/Oto G(u(r))dr

to+At 0
< Aflgllx + / (to — T)IG(u())|[xdr + At / 1G (u(r)) | xdr
to+At

to
SAt!WHx—i—M/ (tO—T)dT—I—AtM/ dr
¢ 0

0

M M
= At||[Y||x + 7((At)2 — 2toAt) + 7t§At

and AI%mOHS(u) (to + At) — S(u)(to)||x = 0. -

Now, we can go on proving Theorem Fix R > 2||¢||x and choose the set
Y(T) =¢([0,7], Bx(0,R)) = {u € X(T) : ||ullx( < R}.

This implies that if u € Y (T), then u(t) € Bx(0,R) for all ¢t € [0,T]. We begin with
showing that & maps Y (T') into itself for a suitable choice of T"

IS(W)®)lx < llellx +tH[¥llx + /Ot(t = DG (u(r))[|x dr.

Since 7 € [0,t] C [0, 7], we have ||u(7)||x < R and ||G(u(7)||x < M. We continue as:

t
< ||90||X+t|’¢||x+M/ (t—7)dr
0

M
< lellx +tllvllx + 7t2.

Taking supremum over ¢ yields

M
18 (w)llxe < llgllx + Tlllx + 57>

13



Choosing T small enough to satisfy T||¢||x + 2T? < R/2 will give S : Y(T') = Y/(T).
Next, we show that S is contractive. For all u,v € Bx (0, R) and V7 € [0,T], we
have u(7),v(7) € B(0, R), and

80 - SWOx < [ (¢~ DlG(u(r) - Gl dr
< Lo [ ¢ = Dlltr) = o)
Hence
I5() ~ S0)lxce) < Ll vlxcn) [ (6=
S S

For LrT? <1, S becomes contractive.
In fact, it is possible to determine T explicitly. Let P(T) = MT? + 2T||¢||x — R.

— 2 2
Then A = 4/[¢|[% + 4MR. Hence T = —W2VIWIR+ME _ \/—”f}‘;f + & el g

||w||2§< R lWllx 1
M

we choose T" = min S v ﬁ}’ by Contraction Mapping Principle

there exists u € Y/(T') such that u = S(u).

Now, it remains to show the continuous dependence. Assume uq,us are two so-
lutions with the initial data (¢1,%1) and (¢2,15), respectively. Choose R with R >
2max{l|py||x, [|¢2][x}. Then

() —us(®)llx < llor — pallx + #1461 — ol + / (t = T)IG(ur (7)) — Glua(r)) | dr
< ller — gallx + Tlln — allx +LRT/O un(7) — ua(7)]x dr.

Gronwall’s Inequality implies that

ur (t) — ua(B)||x < (|1 — @2llx + T ||11 — o] x)e" "™
and hence
ur () — ua(®)||xcry < (llgr — @allx + T |[tbr — a||x)el=T"

This implies that small changes in the initial data lead to small changes in the solution.
Therefore, the problem (2.4) has a unique local solution which depends continu-

ously on the initial data. O

We can also think about the extension of the solution to the maximal time interval.
If we consider the problem (2.4), we know that there is some 7} > 0 such that the
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solution of (2.4) exists uniquely in [0,7}]. Next, we look for the solution for ¢t > T3.

For this purpose write the shifted version of the problem as follows
v = g(u), ’LL(TI) = 1, U/(T1> = ¢1, t>1T;

where 1,1, are obtained from the solution of problem . Theorem ([2.2.1)) enables
us to say that this shifted problem has a unique solution on [77, T3] for some Ty > T.
Hence, the solution is extended to [0,73]. Keeping on this way, one can extend the
solution to [0, T},] provided that all ¢, 1, are in X. In this way, the maximal interval
will be [0, Thax). If tii%gax(u(t), u'(t)) does not exist, then Th,a, < 00.

Now, by considering the non-homogenous case, we will write a more general abstract

differential equation:
u’ =Gu)+b(t), te(0,T), u0) =gy u'(0)=1v (2.8)

for ¢,1 € X, where b € C([0,7],X). We note that the function b is assumed to be
continuous only for ¢ € [0, T].
Thus, the system will be nonautonomus and the sufficient conditions for the well-

posedness of the initial value problem can be summed up in the next theorem.

Theorem 2.2.3 Let G : X — X be locally Lipschitz continuous and b € C([0,T), X).
Then, for any p, v € X, there exists 0 <T' < T such that the initial value problem
has a unique solution u € C*([0,T],X). The solution u depends continuously on the

matial data.

Proof: The steps of the proof will be similar to the ones in Theorem So, we

only state the main differences.

First of all, the corresponding operator will be

S(u)(#) = ¢+t¢+/0 (- T)g(u(T))dT+/O (t—D)b(r)dr. (29

S : X(T) — X(T) becomes well-defined as both G and b are given to be contin-

uous.

Again for fix R > 2||¢||x, we will choose the same set
Y(T) =¢([0, 7], Bx(0,R)) = {u € X(T) : |Jullxr) < R}.
e However, we will have

sup - [|G(u) +b(1)]|x < sup  [|Gul|x + [[b(t) ||
(t,u)€[0,T]xBx (0,R) (t,u)€[0,T]xBx (0,R)

< |IGullx +[lollx(r) = M.
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e In order to show that S(Y(7)) C Y(7T'), we should choose T small enough to
satisfy

*

M ¢
5 1%+ sup /(t—T)Hb(T)HXdTH
0<t<1 .Jo

IS (W)l x(r) < [lellx + TllYllx +

*

M t
< lellx + Tl + -T2+ [lxeny sup [ (¢~ 7)dr
0<t<T Jo

*

M T?
< llellx + Tlolls + (5 + il ) 5 < 772

2
in addition to R > 2||¢||x.

e While showing that S : Y/(T') — Y(7T') is a contraction mapping, the integral in
the right hand side of will vanish and it will not affect the assumption that
LpT? < 1.

2

e If we choose T' = min {\/((M*J;p'bﬁx(m)) + M*+2ﬁ2bHX(T) — M*ilép\\lllﬁxm’ \/%? , by

Contraction Mapping Principle there exists v € Y(7') such that u = S(u).

e We will follow the same steps in Theorem to show the continuous depen-
dence on the initial data.

O

In [4], one can find the sufficient conditions for the local well-posedness of the

general second order non-homogeneous abstract differential equation
u'(t) =Gt u), u(0)=¢, v(0)=v, 0<t<T. (2.10)

On the other hand, global in time solutions for can be obtained for continuous
functions G : [0, 7] x X — X where G is globally Lipschitz continuous in the second
variable:

Consider the weighted norm

** max [|u(t)]] x

HUHX(T) =€ o)

where K > 0. Then, it is easy to see that the norms ||.|[x(r) and [|u[|¥ , are equivalent:

T ullogumn < ol < o (Ol
Hence (C([0,T1], X), |[-[|x(r)) and (C([0,T], X), |[.[|%(r)) are equivalent Banach Spaces.

Then, for appropriately chosen K = K (L), one can obtain that

defined by is a contraction in case that G is globally Lipschitz continuous. Hence,
there exists a unique v € (C([0,77, X),||.||x(r)) such that Su = u and the Cauchy
problem has a unique global solution v € C([0, 7], X) for ¢,¢ € X. Moreover,
the solution depends continuously on the initial data.

Examples can be found in [4,[11].
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CHAPTER 3

Local Well-posedness of Nonlinear Peridynamic Models

In this chapter, we will study the local well-posedness of peridynamic model. In
the first section we introduce the model. Then, we will consider seperable form in
one-dimensional case. Next, we will study the general case. In each cases, we will

discuss the sufficient conditions to use Theorem 2.2.11
3.1. Peridynamic Model

Let Q@ C R" n € N, be the unbounded domain of an undeformed body and [0, 7] the
time interval under consideration. Let u : Q x [0,T] — R" be the deformation of the
solid body. Then, for (x,t) € Q x (0,T), the nonlinear peridynamic equation of motion

reads
p(x)uy(x,t) = / fly—z,u(y,t) —u(x,t)) dy + bz, t). (3.1)

Here p is the density of the body, b represents external forces and the integration
domain H(z) describes the volume of particles interacting and is the ball of radius
0 centered at x intersected with €). The radius ¢ is called peridynamic horizon. The
integrand f is called pairwise force function and gives the force that the particle y
exerts on particle x. It is considered as 0 beyond the horizon, thus one may consider

the integral in (3.1)) as

f 3 ) H xz
/ Fly—zuly,t) —ulz,t)dy with f= f, y€H)
v 0, y¢H(x)
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The theory is named after the greek words peri (near) and dynamics (force).
Identifying u : R™ x [0,7] — R™ with u : [0,7] — X for a function space X by
u(t)(x) := u(x,t), the problems reduces to (2.4]).

3.2. Seperable Form

In this section, we consider the following Cauchy problem

uy(z,t) = /Roz(y —z)w(u(y,t) —u(x,t))dy, ze€Rt>0 (3.2)

with the initial data
u(z,0) = p(z), w(z,0)="1v(z) (3.3)

given in [3]. This is a one-dimensional peridynamic model where the pairwise force
function is taken to be seperable. That is, f(£,n) = a(§)w(n) where « is an integrable
even function on R and w is a sufficiently smooth odd function satisfying w(0) = 0.
Moreover, it is assumed that p = 1 and that there are no external forces.

Now we will study the local well-posedness of — for initial data spaces
Cy(R), LP(R) N L*>°(R), CY(R) and H'(R), respectively. The preceeding theorem sug-
gests that the solution of the system:

where
G(u)(z) = / oy — yw(uly) — u(z))dy (3.4)

will be of the form

u(t) =+t + /0 (t —7)G(u(T))dr. (3.5)

For each four cases, it remains to find the conditions under which the mapping G :
X = X is

(i) well-defined, and
(ii) locally Lipschitz continuous on X.

Before concentrating on the following theorems, we will introduce a nondecreasing

function D which we will often encounter :

D(R) = max |w'(n)|. (3.6)

In|<2R
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Theorem 3.2.1 Assume that « € L'(R) and w € C'(R) with w(0) = 0. Then there
is some T > 0 such that the Cauchy problem (3.2))-(3.3) is well-posed with solution in
C?([0,T], Cy(R)) for initial data p,vp € Cy(R).

Proof: Let X = Cy(R). We want to show G : C,(R) — C,(R), i.e G(u) is continuous
in x and it is uniformly bounded. Now, assume that {z,} is a Cauchy sequence with
lim z,, = x. Let R > 0 and take u € Bx(0, R). Let’s recall our integral operator:

G(u)(x) = / aly — 2)w(uly) — u(x))dy

and make a substitution y — z = 2. Then dy = dz. Hence

= /Ra(z)w(u(x + 2) —u(x))dz. (3.7)

Now, consider the following integral
G(w)(w) = [ ale)uluta, +2) - u(w)dz
R

and let h,(2) = a(z)w(u(x, + z) — u(z,)). Then Jgrgohn(z) = a(2)w(u(z + 2z) — u(x))

since u, w are both continuous . Moreover,
hn(2)] < la(2)|[w(u(zn 4 2) — u(zy))].

But w(0) =0, and |u(z, + 2) — u(z)| < |u(z, + 2)| + |u(x,)| < 2||ul|eo < 2R. By (3.6)

we have
lw(u(zn + 2) — u(@))| = lw(u(z, + 2) — u(z,)) — w(0)|

< sup  fw'(n)||u(en + 2) = ulwn)]
RIS

< 2D([ul]oo)[ 1] |oo- (3-8)
Since ||u||oo < R and D(||ul|s) < D(R), we conclude that
(2)w(u(zn + 2) —u(@))| < 2D(R)|a(z)]|ul|o

and 2D(R)|a(2)||u|| € L'. Therefore, by Dominated Convergence Theorem, we can

write
Jim (e = Jim, [ 1065 = [ (ot
= /Ra(z)w(u(x + z) —u(x))dz,

and back substitution yields



Hence G(u) is continuous in x. Now, we want to show that G(u) is uniformly bounded.
G(u)(z)] < /R|Oé(y — @)|lw(uly) — u(z))|dy

where |u(y) — u(z)| < |u(y)| + |u(z)| < 2||ullo < 2R, so we can write

fié@@—mﬂ sup | ()|l (u(y) — u(x))|dy

[nl<2]|ulloo
< /RIa(y—w)|D(l|UI|oo)(|U(y)| + u(@)])dy
= D([ul]o0) (/R ey — =)[[uly)ldy + /]R |y — 2)[ju(z)| dy)
= D([[ulloo) [(la] * [ul)(z) + [l |u(@)[] (3.9)
After taking supremum over x, we use definition of D and Lemma to obtain
1G(u)]loo < D(R) [la|h]ulloo + [[ex][1]uloo]
= 2D(R)]|a[1]lullo (3.10)
< 2D(R)R||al]:.

As 2D(R)R||a||1 < oo, we have G : Cp(R) — Cy(R) .
One can note that in the following theorems, we will obtain similar estimates.

Now, our aim is to show that G is locally Lipschitz continuous. Take u,v €

Bx (0, R). Then
G(u)(z) = G(v)(z)] < /R |y = @)[lw(uly) — u(z)) — wlv(y) —v(z))|dy
< [laty=a)|_sup fu/tn)futy) = u(e) — v(y) ~ vle)ldy
R n<2[ul|oo
< D([[ulloo)(laf * [u = v])(2) + [lal[1|u(z) = v(z)]. (3.11)
We take supremum over x and use lemma to obtain

1G(u) = G(v)llee < 2D(R)[[a|h][u = v]]oo- (3.12)

Hence, G is locally Lipschitz on X with Lipschitz constant Lr = 2D(R)||a|;.
Calculations above show that the requirements of Theorem [2.2.1| are fulfilled. Thus,

we can conclude that the Cauchy problem — is well-posed with solution in

C?([0,T], Cy(R)) for initial data ¢, € Cy(R). O

Theorem 3.2.2 Let 1 < p < co. a € L'(R) and w € C'(R) with w(0) = 0. Then
there is some T > 0 such that the Cauchy problem (3.2))-(3.3)) is well-posed with solution
in C([0,T], LP(R) N L>®(R)) for initial data p,v € LP(R) N L>=(R).
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Proof: Take u € Bx (0, R). Then

G(u)(z)] < /Rla(y — @)|lw(uly) — u(z))|dy.

But w(0) = 0, and |u(y) —u(x)| < 2||u||p~ < 2||u||= +2||u||r = 2||ul|x < 2R. Hence
lu(y) — u(x)| < 2R. Analogous to uniform norm estimate, by (3.6) and (3.9), one can

obtain

1G ()] < 2D(R)||al]sful] e (3.13)

We need corresponding LP estimates. Keeping in mind that |u(y) — u(x)| < 2R, we
take p-th norm of both sides of (3.9)) to obtain

1G(W)[r < D(R) ([l * [ull| o + [lecl[1]ul[r) -
Moreover, Lemma [1.5.9] implies that

1G(w)llze < 2D(R)|[e[1]]ul|Lr- (3.14)
Summing up (3.13)) and (3.14)), we get

1G(w)llx < 2D(R)[|alli[lul|x-

Since 2D(R)||c]1]|u||x < oo, we have G : X — X. Now it remains to show Lipschitz
continuity of G. Using the estimate (3.11)) and Lemma [1.5.9] we have L™ estimate as

1G(u) = G(v)l|z < 2D(R)||af ]| — vl[ e (3.15)
Again taking p-th norm of (3.11)), and using the fact that
el s |u = vll|ze < [lafl1]]u —vl|z,

we have

1G(u) = G(v)llr < 2D(R)|elf1][u = v]|zs- (3.16)
Summing up and yields
1G(u) = G()l|x < 2D(R)[|alf:|lu —v]|x.

This gives that G is Lipschitz with Lipschitz constant Lr = 2D(R)||a|;.

Calculations above show that the assumptions of Theorem [2.2.1]are satisfied. Thus,
we can conclude that the Cauchy problem - is well-posed with solution in
C?([0,T], LP(R) N L>=(R)) for initial data o,v € LP(R) N L°(R). O

Theorem 3.2.3 Let X = C}(R). a € L'(R) and w € C*(R) with w(0) = 0. Then
there is some T > 0 such that the Cauchy problem (3.2))-(3.3)) is well-posed with solution
in C*([0,T],CL(R)) for initial data p,v € CL(R).
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Proof: Let X = C}(R). Then ||u||x = ||u|leo + ||¢/||co- As we already have the
supremum norm estimates of G(u) and G(u) — G(v), all we need is supremum norm
estimates of their z derivatives. Take u € B(0, R). Differentiating (3.4) gives

d

d
%g(u)(@ = A

Aaw—xwmmn—uw»@.

Change of variables y = = 4 z yields dy = dz, and the equality becomes

d

:@R

= [ e/ +2) = @)l +2) = usla))d

a(z)w(u(z + z) —u(x))dz.

By back substitution, we continue as

:34a@—xwmww—uw»WAw—uAmwy (3.17)

Since u € Bx (0, R), we get |u(y) —u(z)] < 2||ulloo < 2|u]|so +2[|t'||oo = 2||ul|lx < 2R.
Therefore |u(y) — u(z)| < 2R. Now we can use the definition of D in (3.6) and obtain

——G(u)(x)

d
dx

< Dfull) [ aly = )l(ua(s) ~ wa(e)ldy
< D(|[ulloo) [(lae] * [z} () + [|cel]1 e (2)]] - (3.18)
Taking sup norm of yields

1G)elloe < Dllullo) (Il * htalllo + llallsftel o)

and by Lemma [1.5.9] we get
< 2D(Jfulfoo) el 1]tk ||oo- (3.19)
Hence, summing up and gives

(G (w)ellx < 2D(R)[|ef1]ue] | x,

and G : X — X. Next, we show Lipschitz continuity of G. Take u,v € Bx(0, R).

(G(u)e = (G(0))e] =

[ oty = o) uty) = ue)) ) = o))y
_ /R aly — o) (v(y) — v(@) (0a(y) — va())dy|.  (3.20)

Let u(y) —u(x) = m, v(y) —v(x) = n2, and ua(y) — uz(z) = p1, va(y) — va(z) = 2.
Then |m| < 2||ulle < 2R and || < 2||uglloo < 2||ul|oo + 2||tz]|ee < 2R. Similar
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inequalities hold for 1y and s, respectively. Thus, we have
|w'(m)pn — w' () o] < |’ () — w'(m)p2 + w' () pe — w'(n2) o
< |w'(m)llpn = po] + W' (1) — w'(n2)] | el

< (. mazx |w'(n)|)|p — pe| +2R( maz  |w"(n)])|m — n

— Inl=2flulleo In1<2[|ullo0
< D([[ulloo) |1 = pa| + 2RE([[ul]oo) lm = n2] (3.21)
where E(R) = maz |w”(n)|. By plugging (3.21)) in (3.20]), we obtain

In|<2R

(G (w)a(2) = (G(v))a(2)| SD(IIUIIOO)/Rla(y—$)|Iuw(y) — g () — va(y) + va(2)|dy
+2RE(HUH<><>)/RI&(y—w)HU(y) — u(x) —v(y) +v(z)dy
<D([ful]s) /]R |y — 2)|(ue(y) = ve(Y)] + ue(x) — v2(2) ) dy
+2RE([[ull) /R |y = 2)|(July) — v(y)] + [ulz) = v(z)])dy

=D(|[ulloo) (] * [ue = va[) () + D([|ulloo) ||l 1| (ua — va) ()]

+ 2RE((|ulloo) (o] * [ — v])(@)) + 2RE([[ul|oc) ||| 1| (w — v) (z)].
(3.22)

Taking supnorm of yields
1(G(w)a = (G(0))elloo S2D(R)[er|[1]|ta = valloe + ARE(R)||al[1]lu — v
<2D(R)l|a|h[uz = vallso + 4RE(R)||a] ]|t — v
+ARE(R)Jallllus — vellse + 2D(R)lafli]lu — o]l
=(2D(R) + 4RE(R))||u — v||x (3.23)
Besides this from we have
1G(u) = G(v)||e < 2D(R)|[a]]1]Ju — v]]o
< 2D(R)[|elli]lu = v]loc + 2D(R)||at][1][tir — valloo
= 2D(R)[|al[i[lu —v]|x (3.24)
Summing up and gives
1G(u) = G(v)l[x < 4(D(R) + RE(R))||al1|[u = vl]x.

Therefore, G becomes Lipschitz with Lipschitz constant Lg = 4(D(R) + RE(R))||c|]1-

Calculations above show that G fulfills the assumptions of Theorem [2.2.1 Thus,
we can conclude that the Cauchy problem — is well-posed with solution in
C?([0,T], C}(R)) for initial data ¢, € C}(R). 0
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Theorem 3.2.4 Let 1 < p < oo. a € L'(R) and w € C*(R) with w(0) = 0. Then
there is some T > 0 such that the Cauchy problem (3.2)-(3.3)) is well-posed with solution
in C*([0,T], HY(R)) for initial data p,v € H*(R).

Proof: Let X = H'(R). Then ||u||g = ||u||r2 + ||v/]|z2. In this proof, we will mostly
use results obtained from Theorem m Take u,v € Bx(0, R). Then, we know from

and where ||u||o replaced by [|u||z~ that
|G (u)(2)] < D(|lul|zoe) [(lee] * [ul) (@) + [|at]]1|u(z)]] (3.25)
and
(G (u)a(@)] < D(l[ullz) [l * [us])(x) + [laf[1|ua ()] (3.26)

However, we have ||u||~ < C|lu||zn < CR due to Lemma [1.3.3] Definition of the
non-increasing function D implies that D(||u||r~) < D(CR). Thus, by Lemma [1.5.9]
L? norms of B.25 and B.26] can be estimated as follows

1G(w)||> < 2D(CR)|al1[[u(x)]] (3.27)
and
(G ()2 < 2D(CR)|a 1]t 2. (3.28)
and both imply that
(G (w)al[mr < 2D(CR)||al]y][ue||ar-

Hence G : X — X. Similarly, from (3.11) and (3.22) where ||ul|.~ is replaced by

|||, we have

G(u)(z) = G(v)(@)] < D([|ul[re) (o] * [u — v])(z) + [|af1|u(z) —v(z)|.  (3.29)
and

(G (u)a(@) = (G(v))a(@)] <D(|Jullz=)(la] * [uz = va])(2)) + D(|Ju[ ) [|er][1| (e = v2) ()]
+2RE([[ul[ o) (|l * [u = v[)(2)) + 2RE([|ul| =) |a[[1| (v — v) (z)].

(3.30)
L? norms of (3.29) and ([3.30)) can be found as
1668~ G)ll> < 2DCR) ol vl
< 2D(CR)||es|ju = vl|m (3.31)
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(G (u)e — (G(0))allz2 <2D(CR)|| a1tz — va||22
+4RE(CR)||all1|[u — ]|
< (2D(CR) +4RE(CR))||lu — v||g. (3.32)
Summing up and gives
1G(w) = G(v)[|m < 4D(CR)|e ||tz — vol[r2 + ARE(CR)||e|l1][u — v]| L2
< 4(D(CR) + RE(CR))|all[|u = v]|a-

Thus, G is Lipschitz with Lipschitz constant Lr = 4(D(CR) + RE(CR)).
Calculations above show that assumptions of Theorem [2.2.1] are fulfilled. Thus,
we can conclude that the Cauchy problem - is well-posed with solution in
C?([0,T], H'(R)) for initial data ¢, € H'(R). 0
The above theorems of local well-posedness can be easily adapted to the general
peridynamic equation. The next theorem is the extension of Theorem to the
general peridynamic equation

Uy = /Rf(y —x,u(y) — u(x))dy. (3.33)

Theorem 3.2.5 Assume that f(£,0) =0 and f(&,n) is continuously differentiable in
n for almost all €. Moreover, suppose that for each R > 0, there are integrable functions
AR AR satisfying

|F&m)| < AFE), |6 m)] < AF(E) (3.34)

for almost all & and for all |n| < 2R. Then there is some T > 0 such that the Cauchy
problem (3.33)-(3.3)) is well-posed with solution in C?([0,T],Cy(R)) for initial data
¥ ¢ € CbGR)

Proof: We first show G(u) is continuous in x. Take u € Bx(0,R). Let {z,} be a

Cauchy sequence with lim z,, = z. Consider the following integral
n—oo

G(u)(x) = / f(y — . uly) — u(x))dy.

As we don’t know whether f is continuous in its first argument or not, we again make

a suitable substitution like y = x + 2. Then we have

G(u)(z) = /R Flou(z + 2) — u(z))d=.
Then we consider

G(u)(x,) = /Rf(z,u(xn +2) — u(x,))dz.
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Call h,(2) == f(z,u(x, + 2) —u(xy,)) . Then lim h,(2) = f(z,u(r + 2) — u(z)) since
n—0o0

u € Cp(R) and f is continuous in its second argument. As |u(z, + z) — u(z,)| <

2||ulle < 2R, (3.34) implies that |h,(£)] < AR(€) for almost all £. By Dominated

Convergence Theorem, we can write

lim G(u)(z,) = lim [ f(z,u(z, + 2) — u(x,))dz

n—oo n—oo R

= lim [ h,(2)dz

n—oo R

_ /R Tim b (2)dz

_ / f(zu(e + 2) — u(z))dz
= /Rf(y =z, u(y) — u(z))dy
= G(u)(x).

Hence G(u) is continuous in z. Now we show that G(u) is Lipschitz continuous. Take
u,v € Bx(0, R). Then,

G(u)(z) - G(v)(x)] < / £y — 2, u(y) — u(@)) — fly — 2, v(y) — v())|dy

< / sup |fy(y — 2, ml[u(y) — u(x) — v(y) + v(z)|dy

In|<2R

as |u(y) —u(x)] < 2R, and |v(y) — v(x)| < 2R. So, we continue as

< / sup |fy(y — 2 m)|([u(y) — v(@)| + |u(z) — v(@)|)dy

In|<2R
< /RAé%(y —)|u(y) — v(y)|dy + /RAfL(y — x)|u(z) — v(z)|dy
< (A # lu—v]) (@) + [[AZ][1]u(z) — v(@)]. (3.35)
Taking supremum of gives
1G(w) = Gl < 2/[AS |1 [Ju — vl

and G is Lipschitz with Lg = 2||A||;.

We showed that G fulfills the assumptions of Theorem [2.2.1] Thus, we can conclude
that the Cauchy problem (B.33)-(3.3) is well-posed with solution in C?([0,T], C,(R))
for initial data ¢, € Cy(R). O

Remark 3.2.1 |5/ The calculations above show that similar extensions can be done

for theorems and[3.2.5
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3.3. General Form

In this part, we consider the general peridynamic model given in [4]:
ug(x,t) = / fly =z u(y,t) —u(z,t))dy + b(z,t), z€Q, t>0, (3.36)
H(x)

with the initial data
u(z,0) = @(x), w(r,0)=1p(x) (3.37)

where we additionally assumed that the density of the body 1. It is more general than

as the domain of integration is a ball in R? and there are some external forces.
We will study the local well-posedness of — with initial data spaces

C(Q), L>(Q)4, L>°(Q)4 N LP(2)? and LP(2)?, respectively. But, this time we have

G(u)(x) = /H =) () dy (3.38)

and hence our main goal will be to identify the right conditions so that the assumptions
of Theorem are satisfied. We begin with giving a definition:

Definition 3.3.1 Let By, B, C R%. A continuous function
f : Bl X BQ — Rd

1s said to be Lipschitz continuous in its second argument, if there exists a nonnegative
function Ly € LY(By) such that for all £ € By and all m1,1m9 € By there holds

Theorem 3.3.6 Let X = C(Q)?. Suppose that for some R > 0, the pairwise force
function

f : Bga(0,0) x Bra(0,2R) — R?

1s continuous and Lipschitz continuous in its second arqument. Moreover, if b €
C([0,T],C(Q)), then there is some 0 < T < T such that the Cauchy problem (3.36)-
(3.37) is well-posed with solution in C*([0,T],C(Q)%) for initial data p,1 € C(Q)%.
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Proof: In order to show that G is well-defined, we show that G(u) is continuous for
any u € Bx(0,R). Let z;,75 € Q and € > 0 be given. Then, we have

|G (u) (1) — G(u)(22)] S‘/H( )f(y—%U(y)—U(xl))dy

/H ) ()

<L+L+13
where
I = / Py — 21, u(y) — ulen)) — Fly — o uly) — ule)ldy,
H(x1)NH(z2)
L— / F((y — 1, uly) — u(z))ldy,
H(z1)\H(z2)

I = / [y — 2 uly) — u(zs))dy.
H(z2)\H(x1)

We are given that f is continuous on the closed ball Bga (0, 6) x Bga(0,2R). This means
that f is uniformly continuous on Bga (0, d) x Bra(0,2R). Moreover, there exists M > 0
such that |f(&,n)] < M for every (&,7n) € Bga(0,0) x Bga(0,2R). Now, we let
S=y—x, S=y—x2, m=uly)—ulr), and mn=u(y)—u(zz). (3.39)
We first estimate I;: y € H(x1) N H(xy). Recall that u € Bga(0,2R). Hence, we have
&l =1y —aa[ <6, |ml = Ju(y) —ulz)] <2flullo < 2R, (3.40)
and
(ol =y — w2 <6, || = [uly) — u(z2)| < 2fJulloe < 2R. (3.41)

Moreover, from (3.39), we have & — & = xo — xq, and n; — 1y = u(wg) — u(xy).
Uniform continuity of f implies that for every £; > 0, there exists 6 > 0 such that

|f(&,m) — f(&im2)| < &1 whenever [(&,m) — (&,m2)] < 0. We want |& — &| =

|22 — 21| < 2, and |n — o] = |u(22) — u(z1)] < £. But u is also uniformly continuous.

Then, there exists &, > 0 such that |u(z) —u(zy)| < ¢ whenever |z, — 1| < &;. Choose
|zg — 21| < min{g,gl} = 01. Then |f(&1,m) — f(&,m2)| < €1 and we can estimate [;:

L < / |f(&,m) — f(&,m2)|dy
H(z1)NH(z2)

< g1 vol(H(xy) N H(xs)).

Now, we estimate Io: y € H(xy) \ H(xz). Due to (3.40), f is bounded by M on
H(z1) \ H(zs). For & > 0, there exists 6, > 0 such that vol(H(z1) \ H(zs)) < &

whenever |z — 1] < d5. Now, choose |zg — 21| < min{dy, 52} = 0. Then

I= / F(Em)ldy < Mvol(H(z) \ Hxn)) < Mz,
H(z1)\H(z2)

28



Similarly, f is bounded by M on H(x2) \ H(z1) because of (3.41). For é5 > 0 there
exists 03 > 0 such that vol(H(z;) \ H(x1)) < &3 whenever |z, — x| < d5. Now, choose
’332 — iL‘l| < min{ég,gg} = 53.

L= F((€ma)ldy < M vol(H(z) \ H(a1)) < M,
(z2)\H(21)
If we choose &1, €9, €3 small enough so that |

VOI(H(Il) N H(xg))gl + Méy + Mgg <eg,

we will obtain
G(u)(z1) = G(u)(z2)| <€
)

whenever |r; — 23] < d3. Hence, G(u) is continuous in z. Next, we show that G is
Lipschitz continuous. Let u,v € B(0, R). Then,

|G (u)(x) — G(v)(2)] S/ [f(y =z, uly) —u(z))dy — f(y =z, 0(y) — v(z)|)dy,

H(x)

but |u(y) —u(x)| < 2||ul|e < 2R and |u(y)—u(z)| < 2||ul| < 2R. Lipschitz continuity
of f implies that there exists L; € L'(Bga(0,0)) such that

g/ Ly — 2)|u(y) — ulx) — v(y) + v(@))dy
H(x)

IN
=

Li(y — z)(Ju(y) —o(y)] + |u(z) — v(z)])dy

H(x)

Xs(ly =)Ly — 2)(Juy) — v(y)] + [u(z) — v(z)[)dy

A IA
S— 5—

Xs(ly — ) Ly (y — ) (|uly) — v(y)ldy
+fue) = v(@)| [ xolly =) Loty — 2)dy
<O Ly * [u=v)(@)] + |u(z) = o(@)[[IxsLyllLs (3.42)
After taking supremum over x we use Lemma to obtain
1G(u) = G(V)lleo < 2lIxs Lyl Lr]v = V]l
= 2/ Ll (Byaaplt = vllse (3.43)

Thus, G : C(Q)? — C(Q)? is locally Lipschitz continuous with Lipschitz constant
L = 2||Ly[|L1((Bya(0.5))- Besides this b is given to be in C(Q)%). Hence, we have shown
that the requirements of Theorem [2.2.3] are fulfilled. Thus, we can conclude that the
Cauchy problem (3.36)-(3.37) is well-posed with solution in C*([0, T, C(2)¢) for initial
data @, € C(Q)%. O
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Definition 3.3.2 Let By, B, C R%. A function
f 1 By x BQ — Rd

that is Lebesque measurable in its first argument is said to be Lipschitz continuous in
its second arqument, if there exists a nonnegative function Ly € L'(By) such that for
almost all £ € By and all n1,ny € By there holds

Theorem 3.3.7 Suppose there is some R > 0 such that the pairwise force function
f : Bga(0,0) x Bra(0,2R) — R?

is Lebesgue measurable in its first argument and Lipschitz continuous in its second
argument. If b € C([0,T], L=(Q)%) and f(.,0) € L*((Bga(0,6))?, then there is some
0 < T < T such that the Cauchy problem — 18 well-posed with solution in
C?([0,T], L=(Q)%) for initial data @, € L>®(Q)%

Proof: Take u,v € Bx(0,R). We know that |u(y) — u(x)| < 2|jul|p~ < 2R and
lu(y) — u(z)|] < 2||ul|p~ < 2R. Also, we are given that f is Lipschitz continuous in
its second argument. Then, there exists a nonnegative function L; € L'(Bga(0,9)).

Hence, just replacing the uniform norm by L*> norm, we can follow the same steps in
Theorem and show that G : L>(Q)%) — L>*(Q)?) Lipschitz continuous:

1G(u) = G()l|z < Lallu = v||Le

with Lr = 2[|L¢|[£1((B,4(00))- G is also well-defined. Because Lipschitz continuity of G
implies that

1G (W)l < |G (w) = G(O)[Loe + [|G(0)|[ze < Lilfullzoe + |1 (- 0)l[21(8,400.8)-

where
19(0)(a)] < /H =200y < Ol 0e (3.44)
and
16(0) |se < 17, 0)l |11 ¢50 07 (3.45)

Since we also have b € C([0,T], L°(Q)?). Thus, the requirements of Theorem are
fulfilled. As a conclusion, there is some T' < T such that the Cauchy problem (|3.36f)-
(3.37) is well-posed with solution in C?([0,T], L>=(£2)?) for initial data ¢, € L>®(Q)%.
O
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Theorem 3.3.8 Suppose there is some R > 0 such that the pairwise force function
f: Bga(0,0) x Bra(0,2R) — R?

1s Lebesgue measurable in its first argument and Lipschitz continuous in its second
argument. If b € C([0,T], L®(Q)* N LP(Q)%) and f(.,0) € L*(Bgra(0,0))?, then there is
some 0 < T < T such that the Cauchy problem — 15 well-posed with solution
in C2([0,T], L (Q)%) N LP(Q)¢ for initial data o, € L>(2)% N LP(2)4.

Proof: Let X = L>(Q)4 N LP(Q)¢. Take u,v € Bx(0,R). Then, we know that
u(y) — u(@)| < 2llulli~ < llu—vllx < 2R and Ju(y) — u(@)] < 2full~ < Ju—ovllx <
2R. Also, we are given that f is Lipschitz continuous in its second argument. Then,
there exists a nonnegative function Ly € L'(Bga(0,4)) such that inequality is
satisfied. Also, L* and L? norms of can be calculated as

1G(w) = G()[ze < 2[[LyllLrBa00)]lu = vllze, (3.46)
and
1G(w) = G(v)llr < 2/ L¢l|L1 (B a0 lu = v]|r, (3.47)
respectively. Summing up (3.46)) and (3.47)) yields
1G(u) = G(v)llx < 2/[L¢llrBa00n|lv = vllx (3.48)

Hence G : X — X is locally Lipschitz continuous. On the other hand, we can also
show that that G is well-defined. As G is Lipschitz, from (3.45)), we already know that

GOz < 1FC 022 (Buac0.0)0

From (3.44)), we can obtain

1G(0)[1zo < (vOl (D) VPI] £, )| (50 (0,81 (3.49)
Therefore, from ([3.45) and (3.49) we obtain
1G(0)][x < (14 (vol(@)Y))IF (., 0] 11 (5,4 (0000 (3.50)

Therefore,

1G ()| x < 1G(u) — G(0)]|x + [IG(0)]|x
< Lg|lu—vl[x + (1 + (vol(Q)/P)|| £(., Ol L1(B,4(0.6))

and G : X — X is well-defined. Moreover, we have b € C([0,T], L=(Q)? N L?(Q)%)
and all the requirements of Theorem [2.2.3] are satisfied. In conclusion, there is some
T > 0 such that the Cauchy problem — is well-posed with solution in
C?([0,T], L>=(Q)%) N LP(2)¢ for initial data ¢, € L>()? N LP(2)%. O
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Remark 3.3.2 Instead of C(Q), L>=(Q2)? or L=®(Q)4 N LP(Q)?, if we had taken LP(Q)4
as a function space, we wouldn’t have been able to deduce Lipschitz continuity of G
on Bx(0,R) from local Lipschitz continuity of f in the second argument. This is
because, LP functions need not to be bounded. Therefore, in LP(Q)? space, to overcome
this difficulty, we should consider measurable pairwise force functions that are globally

Lipschitz continuous in their second arqguments:

Definition 3.3.3 Let B C R?. A function
f:BxRY—R?

that is Lebesque measurable in its first argument is said to be Lipschitz continuous in
its second argument, if there exists a nonnegative even function Ly € L'(B) such that
for almost all € € B and all 11,1, € RY there holds

Theorem 3.3.9 Suppose that the pairwise force function

f: Bga(0,6) x R? — R4
is Lebesque measurable in its first argument and Lipschitz continuous in its second ar-
gument. If b € C([0,T],LP(Q)9), and f(.,0) € L'((Bga(0,9))%), then there is some
T < T such that the Cauchy problem (13-2)-(3.3) has a unique global solution in
C?([0,T), LP(2)?) which depends continuously on the initial data p,1p € LP(2)%.

Proof: Let X = LP(Q)? and take u,v € Bx(0, R). Note that G(u) is measurable. We
first show that G : X — X is well-defined. Once we show the Lipschitz continuity of G
for 1 < p < 0o, we will deduce that

G ()l]r < [1G(u) = G(O)[» + [|G(O)]] r-
However, we know from ([3.45)) and (3.49) that ||G(0)||z» is bounded. To show the local

Lipschitz continuity of G, we cannot use the fact imposed on u,v of being a member

of L™ space, namely |u(z)l, |v(z)| < R while estimating the integral
G(u)(x) = G(v)(2)] < / |f(y =z, uly) — uw(@))dy — fly — z,0(y) — v(z)])dy.
H(z)
However, f is given to be uniformly Lipschitz continuous on its second argument.
Hence, for almost all £ € B(0,4) and all 5,7, € R? and in particular for y—z € B(0, ),
and u(y) — u(z), v(y) — v(x) € RY there holds

G(uw)(x) = G(0)(@)] < [OLy * u—v)(@)] + |u(z) = v(@)[[Ixs Lyl

Hence, the estimations (3.46)) and (3.47)) obtained in Theorem remain valid. But
in this case G : X — X becomes globally Lipschitz continuous. Apart from this, we are

given that b € C([0,T], L?(Q)?) . Hence, the assumptions of Theorem are satisfied.
Therefore, the Cauchy problem (3.36)-(3.37) has a local solution in C?([0, T, LP(£2)%)
for p,1 € LP()?. Moreover, the solution depends continuously on the initial data. O

32



CHAPTER 4

Linear Peridynamic Model

4.1. Introduction

In this chapter, we will study peridynamic equation where the pairwise force function

is linear, i.e
fuy, ) —u(z,t),y — =) = Cly — x)u(y, t) — u(x, 1)) (4.1)

where C(z, y) = C(y, =) is the stiffnes tensor given by
Cly —z) = cs(ly —2)(y —2) ® (y — 2) + Fo(ly — 2[)I (4.2)

with I being the identity matrix and ¢ = ¢(|y — z|) being a scalar-valued function. If
Fy(ly — z|) = 0, the equation models a spring network system [1] which is the case Du

and Zhou considered in [5]. In this case, the linear problem will be

uy(t,z) — Lyu(t,x) = b(t,z) Vt € (0,T),Vr € R (4.3)
with initial data
u(z,0) = @(x) w(r,0) =(r) VoeRY (4.4)
where
_ y—2)®@y—a), v o
Lontr) = [ B ) — )y (1.5
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Here, ¢s > 0 is a positive normalization constant, and we call 0 = o(Jy —z|) = m a

kernel function of the peridynamic integral operator. Besides this, we use the notation
Bs(x) instead of H(x) for d = 1.
In this study, we will consider the linear problem in [5] for one dimensional case to

deal with simple calculations. Then the operator defined as in (4.5]) will become

_. y==F N e
Loua) = s [ ol )~ ) (4.6)

Let’s find the Fourier Transform of (4.6). To simplify the expression in (4.6]), we let

aly —x) = M (4.7)

o(ly — =)
Moreover, we let

a(z), z € Bs(x)

0, x ¢ Bs(x)

as(z) =

Then,
Louto) = s ([ asty=oyutsd ~ [ asty = uta)an)

= ((a5 xu)(z) — u(z) /Roz(;(y - x)dy)

= ¢5 ((as x u)(x) — as(0)u(x)) .
Hence

(“Lsu)(€) = ¢5 (a5(0)al€) — ds(€)a(€))
= ¢5 (as(0) — as(§)) a(§) = Ms(§)u(§)

where

B COS(Ey) >
= ¢s /35(0) ly|* dy (4.8)

for any £ € R and 4 > 0. As a conclusion, by performing the Fourier transform, we

could introduce an equivalent definition of peridynamic operator

— Lsu(x) E)a(€)e™ dg. (4.9)
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Using the Fourier Transform, we first rewrite the problem (4.3))-(4.4) as

i (,€) + My(€)a(t, €) = b(t.€), (4.10)
with the initial data

(0,6) = $(€),  @(0,6) = D(¢). (4.11)
The problem (4.10))-(4.11]) can be considered as a non-homogenous ordinary differential

equation where £ is a parameter. Then, the solution of this problem will be of the

following form:

ﬁ<t7 5) = ah(t7 5) + ap(t 5)

where
U (t,€) = f(€) cos(v/ Ms(€)t) + g(&) sin(v/ Ms(&)1). (4.12)
If we use the initial conditions (4.11)), we see that f(£) = ¢(&) and g(§) = f\(f)(g)
$

Then the solution of the homogenous equation is given by

sin(y/Ms(&)t) -
M—5@¢(§) (4.13)

Let us denote wy(t,§) = cos(v/Ms(&)t) and uq(t, &) = sin(y/Ms(€)t). To find the
particular solution 4,(&,t) of (4.10]), we apply Variation of Parameters Method [9]. In

n(t, &) = @(&) cos(v/ Ms(£)t) +

this method, we seek for a particular solution that satisfy both
ﬂp(t7 5) = 7:01(15, §)y1 <t> + ﬂ2<t’ §)y2 (t)
(tip)e(£,€) = (a2)e(t, €)yr(t) + (d2)e(t, §)ya(t) (4.14)

where y;(t) and y5(t) are variable functions. In this case, the functions g} and y} will

assure

i (t, &)y (8) + ta(t, )ys(t) = 0 (4.15)
not to violate the formula for the derivatives of two functions. On the other hand, the

second derivative of the particular solution will be

(Tp)ae(t: §) = (@), )y (t) + (@)t E)yr () + (A2) e, E)ya(t) + (2)e(t, )y ()
from ([£.14). But 4,(t,€) solves the nonhomogenous equation (4.10) whereas @ (t,§)

and di5(t, ) have to satisfy the homogenous equation. Then, we see that
b(t, €) =(in)u(t, )y () + (@)t E)yi (1) + (@2)uu(t, €)ya() + (i2)e(t, )y (t)
+ M5(8) [t (t, )y (1) + Ga(t, €)ya ()]
=[(t)ee(t,§) + Ms (&) (t, )] yr () + [(2)ee(t, &) + M5(&)a(t, €)] y2(t)
+ (@) (t, i (1) + (@)t §)ys(?)
=(a0)e(t, 31 (8) + (t2)e(t, ) (t). (4.16)
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If we solve the system (4.15)-(4.16) for ¢} and y5, we see that

b(t, &)tz (&, 1)
Wi (t,8), aa(t, €)]
b(t, &) (€, 1)
Wi (t,8), da(t, €)]

vi(t) = -

Yo(t) =

where

Wit (t, &), a(t, §)] = 1 (t, §)(U2)e(t,§) — ((@)1):(t, §)Ua(t, §) = / M5(E).

Then

ﬂp(tv g) = ﬂl(t S)yl (t) + Us <t7 g)yQ (t)

[ s R o/ ) st ot D)

b(s, &) ds
Ms(§) (54

I AAGI) T
LT o

Hence, we have

... CVAL (3L PN L VAT PO

(4.17)

Then by taking the inverse Fourier Transform, of (4.17)), we can get

u(, 1) =F (cos(V/ ML) + () + F ( T ) e

o (nOWGE©)
+/0F ( T~ > b(t —s,2)d

= . %G(t, y—x)p(y)dy + /RG(ta y —x)Y(y) dy

+/0 /RG(s,y —2)b(t — s,y)dy ds (4.18)

where F~! <Sin( y Mg(g)ﬂ) =G(t,y).

M;5 (&)
As we have seen the Cauchy Problem (4.3)-(4.4) has a unique solution, so our

main goal will be to determine the proper space that the solution belongs to. By the

equivalent definition of the peridynamic operator in (4.9)), we can define the following

functional space,

My (R) = {u € L*(R) : /1+ Msi € L*}. (4.19)
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Naturally, the associated norm will be

lullse, = IWTF Wil = ( [0+ solace ). @)

For any u,v € M,, we also define the corresponding inner product by

(u, ), = (\/1+ Msit, /1 + M;sd). (4.21)

Lemma 4.1.1 M, (R) is a Hilbert Space corresponding to the inner product (.,.)m, -

Proof: We have to show every Cauchy sequence in M, (R) has limit in M, (R). Let
{u,} be an arbitrary Cauchy sequence in M, (R). Then for every € > 0 there exists
N € Z7 such that ||u, — upm||pm, < € when n,m > N. However, by definition (4.20)),

we have

[lun = wm|lm, = [[V1+ M, m)llez <e

when n,m > N. Then {\/1+ Msi,} is a Cauchy sequence in L*(R). But L*(R) is a
complete Banach space. Then there exists v € L*(R) such that

lim ||/ + Mo, — o]l = 0.
We claim that 4(£)(v/1 + M;s) = v(€) with v € M, (R):
Tim [, — ullag, = Tim ||/ + Ml — )]
= Tim [|v/1+ Myt — /T4 M| 2
= lim ||\/1 + Myt — o[z = 0.
Hence, M, (R) is a Hilbert Space. O

Lemma 4.1.2 The space defined by

1

MY R) = {u: (1+ M;) 24 € L*}. (4.22)
equipped with the norm
ullygr = 111+ My) 2| (4.23)
is the dual space of M, (R).

Proof: Let f = f(u) be a bounded linear functional on M,(R). Then by Riesz

Representation Theorem there exists a unique w € M, (R) such that

flu) = (w,w)nm, and  |[f]lavg = [lwllm,, (4.24)
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for every u € M,(R). Using the inner product given in (4.21]) we have

F(w) = (u, w)pr, = / VIT M) VT M(E)i(E) de
- / A(E)(1 4+ My(€))i(€) de
Let (1+ Ms)w(€) = 8(€). Thus

(1+ My)~26() = /1+ Mg (€) € L?

since w € M, (R). Hence (1 + M;s)~26 € L? and v € M (R). Moreover,

A(€)(1 + My(€))i(€) de (4.25)

%\%\

(€ (4.26)
Thus from (4.24)), we have

11T = I,

:/R‘/l M (€)i(€))/1+ My(€)i(€) de
:/R(1+]\/[5(§)) 0(&)(1 + M;(£))~#0(€) de

— ol

and || f||y-1 = [[v][ 51 Besides this, if v € M_'(R), then for any u € My(R),

JRGLE df‘

/R a() (1 + My(€))(1 + My(€)) 3o(€) de

[f ()] =

= (1 + M), (1 + Ms)"20)|
< |1+ Mya|e||(1 + Ms) 20| 2
= ||l pm, 0] -

from which we conclude that any v € M_!(R) corresponds to a continuous and hence

a bounded linear functional on M, (R). O
Lemma 4.1.3 (i) The peridynamic operator —Ls is self-adjoint on M,(R).

(ii) The operator —Ls + I is also an isometry from My(R) to M *(R).
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(i1i) The norm and inner product in M,(R) can also be formulated as

lull s, = [(u ) pr, ]2

=i+ [ ] e w2
for any u € M,(R).
Proof: (i) Recall that (—Lyu) (&) = Ms(€)a(€). For any u,v € M, (R),

(—Lsu, v)ar, = /R (1+ My(€)) (CTru)(€)o(¢) de

_ / (1+ M;(€))Ms(£)a(€)o(€) dé
_ /R (1+ Ms(€))a(&)Ms(€)o(€) dé
_ / (14 Ms(€))a(€)(~Lav)(€) dé = (u, —Lsv)

(i) We want to show —Ls + I : M,(R) — M_;!(R) is an isometry. Then

(=L + Dl = / (14 My(€) (1 + My(€)a(©)]? = / (1+ Ms())li(©)?

R
= |lull},

and result follows.
(iii) Let u € M,(R). Then u € L? and we have

[ull2, = / (1 + My(£) ae) P de

- / a(e)[? de + / M (€)[a(6) ? de

= (ZLyu, @) + (4, %) = (—Lsu, u) + (u, u) (4.28)
by Plancherel’s Theorem. On the other hand,
—Lsu,u) // ) — u(y))u(z) dy dx
; » ,y - x, (v)u(z)
x) —u(y))u(z) dy dx

() — u(y))u(z) dy du.

+—//
2 Jr B(;(gc)o-(y_

Now, we change the order of integration and switch the variables x, y in the last integral

to obtain
—Lsu, u) / / —u(y))u(x) dy dx
Bs x) |y - JZ|

/ /35 ) O |y - a;| — u(z))u(y) dy dz.
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Combining these last two integrals gives

Cs (y — ) 2
—Lsu,u :—// ————(u(y) — u(z))” dy dx. 4.29
Finally, if we plug (4.29)) in (4.28]), we obtain (4.27)). O

Remark 4.1.1 If Ls is the Laplace operator A , then we have the classical result:

—_—
—Ugy

(CAW)(1E) = (um)(t,€) = E2a(t, €).

So, we have
(A + Du|ff- = /(1 + e+ EPa)f = /(1 + &)@ = [Jullin
R R

and —A +1: H' — H=t. Moreover, —A + I is self adjoint on H'. This is because

(~8u,0)m = [ (L+1EREERNE0E) de
= [+ iepiePaic ds
o CRaSREGIERIGE
— [+ P B d = (1~ o).

To discuss the regularity of the weak solutions, we also need to define the following

space
MER) = {u: (1+ M) € L}, (4.30)
with the dual space

MIFR) = {u: (1 + M) ™" e L*}. (4.31)

Remark 4.1.2 ( [5]) M*(R) and M;*(R) share the similar properties discussed in
Lemma Lemmal[{.1.9 and Lemma[4.1.3

Claim 4.1.4 Let n be a positive integer. Then

—

(i) (L3u)(§) = MF(§)a(s).
(i) [(I = Ls)"ul (§) = [L + M5(E)["a(§)-

Proof: We know that Lsu(¢) = Ms(€)a(€). Then
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—

(1) [Lo(Lou(x))] = M5(&)(Lsu)(&) = MF(&)u(§)-

(ii) We use Binomial expansion:

(I — Ls)"u(z) = (3)u(z) — (}) Lsu(z) + (5) Liu(x) + ... + (=1)"(7) Liu(z).
After taking Fourier Transform of both sides of the latter equation, we use (i) to obtain:

n n

(- o) = ace) + (7 )ansgae) + (5 ) o) +

= [1+ M;s(&)]"u(§).

n

)tz @ace)

n

O
Hence, we have the following lemma:
Lemma 4.1.5 (—Ls + )" : M¥(R) — M~ =2"(R) is an isometry.
Proof: Let u € M%. Then,
(1 = Ls)"ul| a2 = /R(l + M5 (&) 7*M(I + M5(€))™"[a(€)]* de
— [ @+ M Tl de = lull .
O

Corollary 4.1.6 Ifn = k, then we have an isometry between M¥(R) and its dual:
(=Ls + I)* : ME(R) — M *(R).

We have shown that the problem (4.10)-(4.11)) has a representation solution @ in
(4.17)) depending on My(§). In the next theorem, we give the conditions for which the
solution u of Cauchy Problem (4.3))-(4.4) lies in C([0,T], M,(R)).

Theorem 4.1.7 If ¢ € M,(R), v € L*(R), and b € L*([0,T], L*(R)), then the
Cauchy Problem (4.3)-(4.4) has a unique solution u € C([0,T], Ms(R)) for some
T > 0. Moreover, u; € L*([0,T], L*(R)).

Proof: We want to show that (¢, z) is uniformly bounded in C([0, 7], M,(R)). For
this reason, we have to find the M,(R) norm estimation of u(t,z). If we recall the

related norm, we see that it depends on the Fourier Transform of wu:

lulfhe, = [ (14 MR de
As u(t,x) in (4.18]) is the sum of three integrals, we let

u(t,x) = uy(t, x) + us(t, r) + us(t, )

41



with

1 (t, &) = cos(/ M;()t)p(§),

. _ sin(/ Ms(&)t) -
2(t7§) Mé(f) (5)7

; _ Fsin(y/Ms(€)(t — s) - . .
i(t.6) = [ e e

Then
ulm, < Jwalla, + [luellm, + lus]|am, -

We show that each term is uniformly bounded in C'([0,T], M,(R)). We are given that
¢ € M,(R). Then

lualBe, = [ (14 Ma(©))] cos? (v Ma@)H(€)  d
R
g/u+m@wwm&wmm-
R

For the estimate of the second integral

sin? \/ t
M&(f)

we have to be more precise. The reason is that the bound of sin(y/Ms(€)t) depends
on the argument. Notice that 0 < ¢ < T and |sin(y/Ms(&)t)| < |/ Ms(€)t] for small

values of 1/ Mjs(§) whereas |sin(y/Ms(&)t)| < 1 for large values of y/Ms(§). For this
reason, we will follow the same method used in [10] and split the integral into two parts:

We observe that the sets {£ : \/Ms(§) > 1} and {& : \/Ms(§) < 1} are measurable
since Ms(&) defined in (4.8]) is a measurable function. Hence, we have

usl 3, = /R (1+ My(©) (e P,

2 = mn
sl o, = /{& M5<5)21}(1 M5(5>S (VILEI()[2de
sm t
M d
n /{& ) Mvé@ 1(€)|de.

On the set {€ : \/Ms(§) > 1}, we have l—l-ﬁ(@ < 2 and sin®(y/Ms(€)t) < 1. However,

1+ Ms(€) < 2and sin’ M" ](\g( M < Aﬁéfgz =t? on {¢: /Ms(£) < 1}. Thus, we continue

2 ) h(E)|2dE + 2t2 h(E)2d
ualB, < / iy O 2 /{6 iy PO
£)[2de + 282 / 1(€)[2de

R

as

{¢
<2 [ |
R
= (24 2t%) /R [D(E)[2dE = 2(1 + 3)|[P][22 = 2(1 + £2)| || |22
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since ¥ € L*(R).

Similarly, we can evaluate the M, (R) norm of the last term in the following way:

Jus] 30, = / (1 + My())liis(t, )P d = || /T T My o

Therefore,
I/ Mgy = / I in(AE)1 - )i €)
L2
< HM—i\gf)sm( M E)(t — 5))b(s, €) s
/ 1B(s)| 2 ds (4.32)
Now, we estimate
1+ M;s(€)

1B(s)|Iz2 = sin® (v/Ms(€)(t — 9))[b(s, €)[* dé.

R Ms(E)

Similar to what we have done while estimating the M, norm of us (¢, ), we can obtain

) si? (/I 0t — ))[b(s. )P
sin?(y/ M50t — )

, 1
1B (s)]I72 _/{NW@Z” (1 T M)

1+ M, b 24
o g (1 AN T g
<2 b(t — s,8)[2d¢ + 2(t — 5)2|b(s, £)2dE.
/{5:\/M5<£>21}| =2 /{s:\/Mfs(s)zl} (8= &bl 0
But 0 < (t — s5)? < t2. So we continue as
IB(s)[]7: < 2(1 +t7) /\b )[Pdg = 2(1 +¢2)||b(s)|[3> < 2(1 +t)*||b(s)|[72
= 2(1+1)?|[b(s)][72,
and
IB(s)]lz2 < 2(1 + 1)[|b(s)|| 2 (4.33)

If we use (4.33) in (4.32), we get
t
s, < 2/0 (14 6)][b(s) |

<201+ 7) (/ 1ds) (/ 115(s) ||L2ds)

=2(1+ T)\/_||b||L2([0,T],L2(R)) (4.34)
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by Cauchy-Schwartz Inequality. Therefore,
OI%@%IIUIIMU <|lurlleqorm, + [luzlleqom vy + lusllego.r)me)

< Mlellat, + 21+ T2)[9[22 + 2(1 + D)Vl 120,12y < 00
So, u € C([0,T], Ms(R)). Next, we differentiate @ with respect to ¢ to obtain

y(t,€) = — /M;(€) sin (v/ Ms(£)t)(€) + cos (v/Ms(£)t)1(€)
N /0 cos (v/ I, () (¢ — 5))b(s, ) ds

:Ul<t, 5) + 'Ug(t, f) + Ug(t, f)

Then,
or| s = / My (&) sin? (VILED] GO dé < / (1 + Ms() (O dé = [l| o,
(4.35)
luals = [ cos? (VEREIISEL de < / DEP = 10l (436
vauLa—H | cos (VAT - 9)bts, ) }
< [ leos (VA ¢ = 5 )12 ds
and
cos (VILE)(t — 5))b(s. €)| % = / cos® (/A E)(t — s))[b(s. €)Pde
/|b €)[2dg = [1b(s)] %
Then

t
vs]lpe < / ()12 ds < VTNl 22011223 (4.37)
0

On the other hand,

el o1 220 (/ et ||L2dt)=(/ ||at<t>||%zdt>

by Plancherel’s Theorem. Then,

el |2 o,m,22®)) < ||vall 220,11, 2m)) + HU2HL2 (0.77,L2R)) T ||vs||L2(o,m,22(m))

T 3 T 3
:(/ o (2) ||L2dt) (/ ot ||L2dt) +(/ ||v3<t>||%2dt)

T 3

( / ||¢||Mgdt) +( / ||w||mdt) +( / T||b||%2<[o,ﬂ,m®)dt)

= VT|l¢llm, + VT|[©l 22 + T1[bl| z20.17.22®))
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where we use (4.35), and (4.37). Then, u, € L*([0,T], L*(R)). O
Remark 4.1.3 In fact, we can obtain a new result from Theorem[4.1.7
First, we notice that the following holds:
Claim 4.1.8 (Lsu); = Lsuy.
Proof: We use the definition in (4.6)

(Lsu)i(x) =lim Ls(u(z,t + h)) — Ls(u(z, 1))

h—0 h
a2 _ —
:hm%/ ly—af [uly,t+h) —ulz,t+h) —uly,t) +u@b)]
=0 " J sy o(ly — ) h
a2 _
:hm%/ ly—af [ulyt+h) —ulyt)
=0 " )@y o(ly — ) h
22 _
e [ et e —ut),
=0 " gy o(ly — ) h
ly —a?
=c —— [w(y) —w()] dy
g ol ap )= )
=Lsu(x).

O
Similarly, we have (Lsu)y(z) = Lsug(x).
If we apply —Ls + I to the left side of the peridynamic equation given in (4.3)), we
will obtain

(=Ls+ I)(uy — Lsu) = (—Ls + Iuy — (—Ls + I) Lsu
= ((=Ls + D)y — Ls(—Ls + Iu = (—Ls + I)b.
Now, let (—Ls+ I)u = v, and (—Ljs + I)b = b, then we derive a new equation
vy (x,t) — Lyv(x,t) = bz, t) (4.38)
with shifted initial data:
v(z,0) = (=Ls + Dp(x) = ¢(x),  vi(w,0) = (=Ls + )i (x) = 9(z) (4.39)

which also represents a peridynamic equation with different external force b. Because
of Lemma , we know that ¢ € M;1(R), ¥ € M;2(R), and b € L*([0, T], M;%(R))
where n = 1. Moreover, v € C([0,T], M;!(R)). Hence, by using the fact that I — Lj :
M, (R) = M1(R) is an isometry, we could obtain a new theorem:

Theorem 4.1.9 If p € M (R), ¥ € M,*(R), and b € L*([0,T], M;*(R)), then the
Cauchy Problem (4.3)-(*.4) has a unique solution u € C([0,T], M *(R)). Moreover,
w € L0, T), M(R)).
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Now, we want to derive a general result from Theorem [£.1.7, That is, we look for
conditions for which the equation {4.3/ has a solution in C([0, T], M¥*(R)). Calculations
above suggest that applying right power of I — Ls to equation will work. Recall
that we have

(I = Ls)™ : My (R) = M3(R)

is an isometry. Then we solve kK — 2n = 1 for n, and obtain n = k% Hence if we

apply (I — Ls)"% to the equation (.3), we will obtain with (I — Ls)' = u = v.
Thus, the data are swithched. As we already have results in Theorem [£.1.7] we get the

following:

Theorem 4.1.10 If p € ME(R), v € MEY(R), and b € L*([0,T], ME~1(R)), then
the Cauchy Problem ([4.3)-(4.4) has a unique solution u € C([0,T], ME(R)). Moreover,
up € LZ([OaTLMg 1( ))

Here, we give the detailed proof for k£ = 2 to verify the result obtained in Theorem
4. 1. 101

Theorem 4.1.11 If p € M2(R), ¥ € M,(R), and b € L*([0,T], M,(R)), then the
Cauchy Problem (4.3)-([.4) has a unique solution u € C([0,T], M2(R)). Moreover,
u, € L*([0,T], M, (R)).

Proof: This time, we would like to estimate M2(R) norm of w. In this case

Hulwvtg :/R(l—i—M(; |cos vV Ms(&)t)p Pdf
< / (14 My(€)*¢(E)Pde = ||| oz
R

Then, we see that the integrand is multiplied by 1 + M;(£) and this only affect the

norm of . Similarly,

lualie, <2 [ (4 MNP + 2 [ 1+ €O
= 24+20) [ (14 MEIOPdE =21+ Pl
and
luslle < [ 1Bl ds
with

A e aa RIVATA G IS

Similar to what we have done while estimating the M, norm of us(¢, x), we can obtain

|1B(s)[|72 < 2(1+ %) /(1 + M;(€))1b(s, €)7de = 2(1 + )| [b(s)| 3,

R
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with
|B(s)|[r2 < 2(1 4+ )[[b(s)]|am, - (4.40)

Then, we get

t
sl sz/ (14 D11B(3) e,
0

<o) ([ Pds)% ([ bt ds)%

= 2(1 + T)VTI|b| 20,17, (R)-

So, u € C([0,T], M2(R)). Furthermore,

o113, < /R(l +M5(8))*16(§)I* d€ = llollhz.

23, < /R(l + Ms(O)NDEOF = [1¥ll, -

On the other hand,

[oslla, < / cos (v/ALE)(t — £))b(s. )|, ds

and
|| cos (v/Ms(E)(t — 5))b(s,€) |34, < /R(l + M;(€))|b(s, €)1%dE = |[b(3)[ 4,
Then
lesllae, < [ (s}, ds (4.41)
0
< VT b2 0 17.Mm0 )
and

HUSH%U < THbl‘%?([O,T],MU(R))'

On the other hand,
T T
[ ( / \|ut<t>||i4f,dt) _ ( / ||at<t>||%zdt)

[Jwel [ 220,17, Mm0 ®)) = [|8e]| 220,17, M0 (R)

< [l e2qo,my,m0 @) V2] 220,71, M0 ) + (V3] 22(0,77,0, )

<VT|lgllre + VTl am, + TNl 2000 @)
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and u; € L*([0,T], M, (R)). O

Now, we look for the sufficient conditions so that the Cauchy Problem — has
a unique solution u € C*([0, T], M4(R)). Thus, we should have u € C([0,T], M4(R))
and u; € C([0,7], M,(R)). Calculations in Theorem {4.1.7| and [4.1.11| show that the
term v3 determines the space where the function u; lies. On the other hand, it is

controlled by b. Besides this, b and u; lie in the same space.
From Theorem [4.1.11} and equality (4.41)), we have
[o1l[m, < Mlellrmz®), and v € C([0,T], M, (R)),

HUQHMU < HwHMa(R)a and Vg € C([OaTLMO'(R))?
t
osllag, < / 16(5) e, ds

< T[|bleqo,m,m. )

If p € M2(R), v € M,(R), and b € C([0,T], M,(R)), then u; € C([0,T], M,(R)).
On the other hand,
MA(R) € M,(R) C L*(R).

Thus ¢ € M,(R), v € L*(R), b € C([0,T], L*(R)), and b € L*([0,T], L*(R)) and the
assumptions of Theorem |4.1.7] are satisfied.

Keeping all these in mind, we can sum up the sufficient conditions in the following
theorem.

Theorem 4.1.12 If ¢ € MZ(R), ¥ € M,(R), and b € C([0,T], Ms(R)), then the
Cauchy Problem (4.3)-(4.4) has a unique solution u € C*([0,T], M,(R)).

4.2. Embeddings of M*(R)

Next, we focus on some kernel functions with special properties to establish the

relations between M¥(R) for k = —2, —1,1,2 and the more conventional H* Spaces.

Lemma 4.2.13 Let the kernel function o satisfy

Jz*

o(x) >0, Yz € Bs(0), and 75:= 05/ dr < 0. (4.42)
B

5(0) o(|z])
Then,

(i) H'(R) = M,(R) — L*(R),
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(ii) H*(R) = MZ(R) — L*(R),
(iii)) L*(R) — MY (R) — H'(R),
(iv) L*(R) < M;*(R) — H?*(R).

Proof: We first find the relationship between the weights 1 + 2 and 1 + M;(€). For
this purpose we estimate M;(€). From the definition of Ms(€) in (4.8), we have

1 —cos(&y), s £ ly|* 75 +2
M = — T yl°d > dy = — 4.4
&) =cs /35(0) a(lyl) " dy < 2 “ /Bé(o) a(ly]) Y 25 (4.43)

where we use the fact that 1 —cos(&y) < (€2y?)/2 and ([4.42). If we add 1 to both sides
of inequality (4.43)), we obtain

14+ Ms(€) <1+ 252 <O+ (4.44)

where C' = max{1, 3 }. Then, we are ready to show the embeddings:
(i) From (4.44])

[Jul| 2 =/R|ﬂ(§)|2d§ < /R(HM(s(é“))m(f)Pdf: [lul3,
lullig, = /R(l + Ms())a(6)[* dg < C/Rﬂ +Ea(€))?ds = Cllullfn.  (4.45)
(ii) Inequality implies that (1 + Ms(€))* < C*(1 + &%)% Then
lulles < [ (1 M) i) ds = g
lullie = /R(l + Ms(€))?|a(8)[? dg < 02/R<1 +&)?a(§))* ds = C*lJul . (4.46)
(iii) (1+ &)~ < O(1 + Ms(€))™t and
ullyr = / (1+€2) 7 a(€) 2 d¢ < / (14 M;s()) (€)1 dé = [Jull? -
[l —/R(HMa(é))1!ﬁ(£>|2d£§/ﬂg\ﬁ(€>!2dé—||uHL2- (4.47)
(iv) (14 €2)"2 < C2(1 4+ M;s(€))~2. Then

[ / (1+)2a(9) de < C? / (1+ My(€) (&) d€ = C?lull.-
[l e = / (1+ Mj(€) (a6 de < / (&) d€ = |lull 2. (4.48)

Inequalities (4.45]),(4.45) (4.45) and (4.45]) imply what we want to show. O

Calculations above illustrate that once we find an embedding between two function

spaces, the embedding between their duals is straightforward.
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Lemma 4.2.14 Let the kernel function o satisfy

|z

a(lyl)

o(z) >0, Yz € Bs(0), and 75,:= 05/ dy < oo, (4.49)
Bs(0)

we then have

M2(R) = M,(R) = L*(R) = M (R) = M_%(R).

(e o

Proof: Let u € L?2. We only show reverse directions of the embeddings stated in
Lemma {4.2.13| under the condition (4.49)). Howewer,

1 — cos 2
M) = s [ L= coslCy)) 2 g, < o, / WL gy — o,
Bs  o(lyl) Bs(0) O
with
(14 Ms(6)F < (14 275,)" and 1 < (14 275,)"(1 + Ms(€))™" for k=1,2.
(4.50)

Hence,
L*(R) = M*(R), and M '(R)— L*(R), for k=1,2.

Therefore, M2(R) = M,(R) = L*(R) = M;(R) = M, %(R) follows. 0

g e

Inequality (4.50) actually implies that all M¥(R) spaces are equivalent to L*(R)
space since 1 + Ms(&) is uniformly bounded in &.

Lemma 4.2.15 Let the kernel function o = o(|y|) satisfy the condition

a(lyl) < mlyl*?, vyl <4 (4.51)
for some exponent 8 € (0,1) and positive constant ~y,, then we have
(i) Ms(R) — H(R),
(i) M3(R) — H*’(R),
(iii) H P(R) — M (R),
(iv) H-?%(R) — M;2(R).

Proof: For each four cases, we will try to find an estimate for Ms. From (4.53]) we

know that
1 1

> .
o(lyl) = mlyl+*
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Then,

1 —cos(&y), 5 Cs 1 —cos(§y), 1
M =es [ o ypay > 2 [ ey
Bjs(0) a(lyl) T JBs(0) |y|3+26
c 1 — cos c sin? (&2
== 1+2(§y) dy = 5 - 15225) dy.
71 JBs(0) |y 27 Bs(0) Y|
Let z = %y Then %dz = dy. On the other hand, lin%% = 1. Thus
z—r
(1—¢)z<sinz < (e+1)z.
Therefore,
2 9 28 2
/ 281n1+iﬁ|€|1+25_dz - E‘ﬁ / Slr11+2zﬁ dz
Beso 221 ¢ Beso 2
26(1 — )2 2
> K0 Z<F / —
B s0) 2]
€771 — ¢)? 1 26
T E— 2251 dz = |§]7" K
§5(0)
since 0 < < 1 and 26 — 1 < 1. Therefore,
¢
L4 M) 2 (14 72 Kol6) 2 Colt + J) (1.52)
1
where Cs = min{1, 32 K3}. Thus M,(R) is continuously embedded to HP(R).
From (4.52)) and (|1.12)) we have
(1+ Ms(€))* = C3(1 + [¢*)* = C3(L + ¢
(1+M5(8)) ™ < G L+ €)= G5l (L + (€)™
(1+Ms(8)) 7 < G321+ [€%) 2 = G2 (1 + €))7
and the continuous embeddings that are claimed are shown. O
Lemma 4.2.16 Let the kernel function o = o(|y|) satisfy the condition
a(lyl) = relyl**, iyl <o (4.53)

for some exponent a € (0,1) and positive constant 2, then we have
(1) H*(R) = My(R),
(i) H**(R) — MZ(R),
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(i) MZ(R) — H *R),
(iv) M7*(R) — H~2%(R).

Proof: Again, we will try to find an estimate for My. From (4.53|) we know that

L1
a(lyl) = relyl3t2e

1—cos(&y), cs sin” ()
MafZ%/ —Y dyS—/ ——27 (.
©=a ) o ot Yoy e T

By making the same substitution as z = 52?’, we will obtain:

Cs 520‘ 1—¢)? o
Mg < RO [ e < e Sk,
72 Be, |7l 27
§5(0)
since 0 < o < 1. Then
C
L4 as) < (1 72Kl ) < Calt + J62) (4.54)
2

where C;, = max{1, 72 K,}. Thus H*(R) is continuously embedded to M(R). More-
over, from (4.54)) and (|1 12)) we have

(1+ Ms(€))* < Ca(1+[€]*)* ~ Ca(l + [¢*)™

1+ M) ' =l A+ [EP) T = O 1+ €

(1+Ms(€)) ™ = CA(1+ []*) 7 = O (1 + [*) 7

and the continuous embeddings that are claimed are shown. O
Consequently, we see that under suitable conditions on the kernel function, the

space M, (R) is equivalent to some standard fractional Sobolev Spaces:
Lemma 4.2.17 Assume the kernel function satisfy
Ylyl T <o(lyl) <mlylPr?e, Yyl <4 (4.55)
for some exponent o € (0,1) and positive constant v1, and . Then, we have
M,R) = H*, MAiR) = H*.
MYR)=H* M;*R)=H*.

Proof: This is a direct consequence of Lemma and Lemma 4.2.16|
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Corollary 4.2.18 Assume ¢ € L*(R), ¥ € L*(R), and b € L*([0,T], L*(R)),. If the
kernel function o = o(|y|) satisfies the condition (4.49)), then the Cauchy Problem
(4.3)-(@.4) has a unique solution u € C([0,T], L*(R)) and u; € L*([0, T, L*(R)) for
some T > 0.

Remark 4.2.4 v € C([0,T], L*(R)) means v € L*([0,T], L*(R)) and we also have
u; € L*([0,T), L*(R)). Now, recall the definition of H'([0,T], L*(R)) norm:

HuH%ﬂ([O,T],L?(R)) = HUH%?([O,T},LQ(R)) + ’|Ut|’%2([o,T],L2(R))
Then, in fact, uw € C([0,T], L*(R)) N H'([0,T], L*(R)).

Corollary 4.2.19 Assume ¢ € H*(R), v € L*(R), and b € L*([0,T], L*(R)),. If
the kernel function o = o(|y|) satisfies the condition (4.55)), then the Cauchy Problem
(4.3)-([.4) has a unique solution u € C([0,T], H*(R)) and u; € L*([0,T], L*(R)).
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