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Thesis Supervisor: Assoc. Prof. Cem Giineri

Abstract

In this thesis, we study a Drinfeld modular interpretation due to Elkies of an
asymptotically optimal tower that was constructed by Bezerra and Garcia.

We explain what an asymptotically optimal tower over a finite field I, is and give
the definition of the asymptotically optimal tower given by Bezerra and Garcia.

We give some basic facts about Drinfeld modules. Additionally, we present the
analytical theory of Drinfeld modules using lattices and exponential functions to better
understand the analogy with the classical theory.

We exhibit the Drinfeld modular curves that give the tower of Bezerra and Garcia.

Hence we see a Drinfeld modular interpretation of this tower.



ASIMTOTIK OLARAK OPTIMAL BIR EGRI KULESININ DRINFELD
MODULER YORUMU

Tiirkii Ozliim Celik
Matematik, Yiiksek Lisans Tezi, 2014

Tez Danigmani: Assoc. Prof. Cem Giineri

Ozet

Bu tezde, Bezerra ve Garcia tarafindan verilmis asimptotik olarak optimal bir [Fy-
fonksiyon cisim kulesinin Drinfeld moduler egrilerle ingasini inceledik.

Ik boliimde [F, tizerinde asimptotik olarak optimal bir fonksiyon cismi kulesinin
ne demek oldugunu anlattik. Boliimiin sonunda Drinfeld modiiler egrilerle yorumunu
gorecegimiz, Bezerra ve Garcia tarafindan insa edilmis fonksiyon cisim kulesinin tanimini
verdik.

Ikinci boliimde Drinfeld modiilleri hakkinda ihtiyacimiz olan bilgileri derledik. Ek
olarak, Drinfeld modiillerin, klasik teorideki eliptik egrilerle benzerligini resmettik.

Son boliimde ise, 6zel birtakim Drinfeld modiiler egrilerin hesabini yaptik. Bahsi
gecen fonksiyon cismi kulesinin Drinfeld modiiler egriler kullanarak ingasinin nasil

olacagini anlattik.

Anahtar Kelimeler: asimptotik olarak optimal, fonksiyonel cisim kuleleri, Drinfeld

modiilleri, modiil, modiiler egri.
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CHAPTER 1

Introduction

In this thesis, the main object is an asymptotically optimal tower given by Bezerra—
Garcia. The notion of an asymptotically optimal tower will be introduced in this
chapter.

Let F, be a finite field of characteristic p with ¢ elements. Let F' be an algebraic
function field over IF, of one variable. Suppose that the constant field of F'is F,. Let
N(F) be the number of rational places of F'. The theorem of Hasse-Weil [13] gives the
bound

N(F)<qg+1+2/qg (1.1)

where g denotes the genus of F. Serre [12] improved this upper bound by replacing
2,/q by [2,/q]. Thara [10] realized that over a fixed finite field F,, the Hasse-Weil upper
bound becomes weak when the genus g of F' is large. He introduced the quantity

: N(F)
A(q) = limsup

where I runs over all function fields with constant field F,. By the Hasse-Weil theorem,
we have A(q) < 2,/q. Ihara [10] proved that A(q) < y/2¢ for any ¢. This indicates
that the Hasse-Weil bound can be improved for large genera, as stated above. The

best known upper bound due to Drinfeld and Vladut [4] gives
Alg) < Vg -1

for any prime power g. If ¢ is square then Ihara proved that A(q) > /g — 1 [10].
Hence A(q) = /¢ — 1 when ¢ is square. For any prime power g, Serre [12] showed that
A(q) > clogy(q) for some ¢ > 0. In particular, A(q) > 0 for any q. If ¢ = p3™ for a
positive integer m then we have

2(p"" — 1)

A(q) >
(¢) > o

(1.2)

This lower bound was obtained by Zink [14] in the case where m = 1. Bezerra, Garcia
and Stichtenoth [3] generalized this lower bound for any m by using recursive towers

of function fields.



There are many other lower bounds for A(p"), with a prime p and an odd power

n > 3, however they seem not to be particularly strong. One of them [11] is

4q+4

A(q") >
| BH2V2L ) 419 4 /2 + 3]

where ¢ is an odd prime power and n > 3 is prime. This was given by Li and Maharaj.
With the purpose of investigating A(q) Garcia and Stichtenoth introduced the no-

tion of towers of F,-function fields.

Definition 1.0.1 A tower of over F, is an infinite sequence of function fields F; over
F

q

F=(RCKRCFKC---CFC...)
such that the following hold;
() RC—CRC.;
(i1) each extension Fi 1/ F; is finite and separable;
(ii) the genera satisfy g(F;) — oo for i — oo.

By the Hurwitz genus formula the limit

iy VU
MF) = lig 9(Fy)

exists [6]. Clearly 0 < A\(F) < A(q) for any F,-tower F. Hence towers are useful to
obtain good lower bounds for A(q).

Definition 1.0.2 A tower F over F, is called asymptotically optimal if \(F) = A(q).

Definition 1.0.3 An F,-tower of function fields F = (Fy C F, C--- C F, C...) is
recursively defined by f(X,Y) € F,[X,Y] if

(i) Fy =F,(z1) is the rational function field
(i) Fir1 = Fy(zit1) with f(zi, zi41) =0 for all i > 1.

According to a result by Garcia and Stichtenoth [6], for ¢ = p*™ the F,-tower of function
fields F; recursively defined by

fX,Y) =1+ XP" Dy +v) - x#" (1.3)

is asymptotically optimal i.e. A(Fy) = p™ — 1.

When g = p*™ one can use the polynomial

fXY)=Y"" (X" + X +1) - X(1-Y) € F,[X,Y]



to obtain a tower JFy with
AF) > 200" = 1)/(p™ + 2).

This is how Inequality (1.2) is proved. The case ¢ = 2 reduces to a tower that was
introduced by van der Geer and van der Vlugt [§].

On the other hand, a lower bound given by Bassa, Beelen, Garcia and Stichtenoth [1]
is rather close to the Drinfeld—Vladut upper bound A(p") for large n and small p. It
is obtained by using recursive towers given by explicit polynomials f(X,Y) € F[X,Y].
The lower bound they obtain is

2(pmtl — 1 —1
—(p ) where € = P

A(p) >
U pr—1

for a prime number p and an odd integer n = 2m + 1 > 3.

In my thesis, I study a Drinfeld modular interpretation of a tower that is constructed
by Bezerra and Garcia [2]. The tower is defined over quadratic finite fields Fp2. It is

defined as follow;

Definition 1.0.4 Let the tower F be defined recursively by Fy := Fp(x1). For each
n > 1, we have that F, 1 = F,(z,41) with
Tppp— 1 al—1

= 1.4
Tpiq Tn (14)

This tower over F,. attains the Drinfeld-VIadut bound [2] i.e.
AMF)=q— 1L

In the second chapter, I introduce Drinfeld modules. I present an important ex-
ample of Drinfeld modules, which is the Carlitz module. At the end of that chapter,
I briefly describe the analogy between Drinfeld modules and elliptic curves over com-
plex numbers. In the third chapter, I compute the Drinfeld modular curves that form
the tower in Definition 1.0.4. For this computation, I first compute another Drinfeld

modular tower, from which I obtain the tower (1.4) by using Drinfeld modular curves.



CHAPTER 2

Drinfeld Modules

2.1 Additive Polynomials

Let k be a field of positive characteristic p. Let k be a fixed algebraic closure.
Definition 2.1.1 We say that P(X) € k[X] is additive over k if
Pla+p) = P(a) + P(P)

for all o, B € k. We say that P(X) is absolutely additive if P(X) is additive over k.
Example 2.1.1 The polynomial 7,(X) := X? is absolutely additive.
Proposition 2.1.1 Let P(X), Q(X) be additive polynomials over k. Then

1. P(X)+ Q(X) is additive over k,

2. For all « € k, aP(X) is additive over k,

3. P(Q(X)) is additive over k.

Proof: This follows immediately from the definitions. O

Remark: Let 7/(X) := X7 for i € N. Any element of the set of polynomials
generated by {X P.ieN } over k is absolutely additive by Proposition 2.1.1.

Definition 2.1.2 We define k{7,} as the k vector space that is generated {X?' : i €
N}.

The vector space k{7,} is a ring under usual addition and composition. If k& # F, then

k{r,} is noncommutative. Note that, 7,00 = a?7, for all o € k.

Example 2.1.2 Let k =F5 and
PX)=X+(X°-X)?=X"43X%+ X? 4+ X.

So P(a) =« for all « € k. P(X) is additive over k. But P(X) ¢ k{7,}.

4



Proposition 2.1.2 Suppose that k is an infinite field. A polynomial P(X) € k[X] is
additive over k if and only if P(X) € k{7,}.

Proof: Firstly, by Example 2.1.1 and Proposition 2.1.1 we have seen that if P(X) €
k{7,} then P(X) is additive. For the converse, take a € k. Then
Qu(z) := P(r+a) — P(zr) — P(a) =0

for all x € k. Since k is infinite, Q,(X) is identically zero. Also

L (P(e) + P(a))

Pla) = Prta) =

dx

Again by the infinitude of k,
P(X)=P(0)=c

for some ¢ € k. This means that

k
P(X)=cX+> aX™

1=2

where a; € k and n; = 0(modp) for all i € {2,...,k}. Now we write
P(X) = Ry(X) + Pi(X)

where Py(X) = cX+terms with n;’s that are powers of p
and P;(X) = terms with n,’s that are divisible by a prime # p. We will show that
P (X)=0.

Now, since Py(X) € k{7,}, P(X) = P(X) — Py(X) is additive. It is sufficient
to show that P;(X) = 0 in k[X]. We know that 7, : k — k is an automorphism of
k. Let p° be the largest power of p dividing all powers n;’s of terms of Pj(X). Set
Py(X) := P (X)'"" € k[X]. The mapping a — o'/?" from k to k is additive (although
it is not polynomial). Then P»(X) is also additive. Similarly as above, we see that
Pj(X) is identically zero by using additivity of P»(X) on k. Because of the definition
of P»(X), this means that P5(X) is identically zero. Hence P;(X) = 0. O

Corollary 2.1.3 k{7,} is the set of absolutely additive polynomials over k.

Proof: The algebraic closure of any field is infinite. O

Suppose that ¢ := p™ for a natural number m. Take any extension L of k. Let
L{7} be the ring of polynomials in 7 by setting 7 := 7,". Now, L{7} is a k-algebra
of k-linear polynomials. Any element f = ly + ;7 + - - + [47% represents a k-linear

endomorphism of L which is

xr—>lox+llxq+---—|—ldqu



2.2 Drinfeld Modules

2.2.1 The General Definition of a Drinfeld Module

The theory of Drinfeld modules was developed to use the ideas coming from lattices
and their exponential functions in the function field setting in positive characteristic.
This theory is an extension of Carlitz module to higher rank lattices. The Carlitz
module behaves as the analogue of the multiplicative group G,, over C. In more detail,
Drinfeld modules come from A-lattices of rank r where A is the ring of functions on a
curve over a finite field with poles at most at a fixed place, denoted oo. (This is parallel
to the fact that Z-lattices of rank 2 give rise to elliptic curves over C in the classical
theory.) In analogy to classical modular curves, which are parametrizing elliptic curves
(together with some additional structure), one can consider Drinfeld modular curves,
parametrizing analogous objects, namely Drinfeld modules.

Let k be a finite field with ¢ elements of characteristic p. Let L be any extension of
k. We fix an algebraic closure L of L. Set A := k[T]. Fix a k-algebra homomorphism
t: A — L. We call ker. the characteristic of L. Since L is a field, ker ¢ is a prime ideal.
We say that L has generic characteristic if ker. = (0) i.e. if ¢ is injective. Otherwise
we say that ker: is finite and L has finite characteristic.

Let D : L{r} — L be the k-algebra homomorphism that is given by

D ( zn: lﬂ'z) = lo
1=0

Definition 2.2.1 A Drinfeld A-module over L is a k-algebra homomorphism
¢:A— L{r}
with the following properties,
i. Do¢ =1,
. ¢(a) # 1(a)T® for some a € A.

First, we will use ¢, instead of ¢(a).

Note that, since ¢ is a k-algebra homomorphism, it is determined by ¢7. Also,
because of (i) the constant term of ¢, in 7 is ¢(a) for all a € A.

We get an A-module structure on L by using ¢. The action of A on L is given by

a.l= ¢a<l)

for any a € A, [ € L. We denote this module by ¢(L). Similarly, we get another

A-module structure on L by ¢. The action is given as follows:
a.l :=(a)l.

6



Definition 2.2.1 (i) requires that this second action agrees with the lowest term of the
action defined by ¢. Definition 2.2.1 means (ii) that these two actions above are not
the same. So the action defined by ¢ is a nontrivial deformation of the A-action on L

given by the homomorphism .

Definition 2.2.2 If P:=ag + a17 + - - - + a,7" € L{7} then the degree of P is defined
as the largest exponent of T appearing in P. It is denoted by deg P.

Definition 2.2.3 If P is an additive polynomial over L then the kernel of P is defined
as follows;
ker P={l € L: P(l) = 0}.

Definition 2.2.4 Let ¢ be a Drinfeld module over L as above. Since A is a principal
ideal domain, if v is not injective then ker . = Aaqg for some ag € A. We say that ¢ is

supersingular if
ker ¢,, = {0},

and ordinary otherwise.

Definition 2.2.5 Let ¢ and ¢ be two Drinfeld modules over L. A morphism from ¢

to 1 over L is an element u € L{T} with

uo¢a:¢aou (21)

for all a € A.

A nonzero morphism is called an isogeny.

Note that, since a Drinfeld module is a k-algebra homomorphism, u o ¢, = ¥, o u
holds for all a € A if and only if it holds for a = T.

Definition 2.2.6 We say that ¢ and ¢ are isomorphic over L if there exists \ € "
such that (2.1) holds for u = A.

To define a special isogeny from a Drinfeld module ¢, we need the following propo-

sition:
Proposition 2.2.1 Let o’ € A. Then ¢q is an isogeny from ¢ to itself.
Proof: Since ¢ is a k-algebra homomorphism,
P © P17 = QT = T8t = T © P
Hence the result follows. O

Definition 2.2.7 This isogeny in the Proposition 2.2.7 is called the multiplication by

a’ map. The elements of ker ¢, are called a'-torsion points (a’'-division points) of the
Drinfeld module ¢.



2.2.2 An Example of a Drinfeld Module

Let K = k(T) and K, be the co-adic completion of K. Let K, be a fixed algebraic
closure of K, equipped with the canonical extension of the co-adic valuation. However,
it is not complete. Let Cs be the completion of K. The Carlitz module was defined

by Leonard Carlitz. It is a k-algebra homomorphism
C:A— C{r}

which is defined by Cr := T + 7. So the Carlitz module is a Drinfeld module over C,
of rank 1. Also the ¢ map from A to Cy, is just the inclusion map. It sends T to T
The Carlitz module is the simplest of all Drinfeld modules. The Carlitz module can
be understood in an elemantary way. At the same time, many ideas about Drinfeld
modules already appear in theory of the Carlitz module. So the Carlitz module is
perfect to understand the general theory. It also plays a central role for the class field

theory of the rational function field K.

2.2.3 The Drinfeld Module Associated to a Lattice

At the beginning of this section, I have mentioned the analogy between the classical
theory of elliptic curves and Drinfeld modules. To better understand the analogy with
the classical theory, I try to present the analytical theory of Drinfeld modules using
lattices and exponential functions in a concise and somewhat sketchy form. In that
analytical part, proofs are sketched and references are given. The aim of this section
is to present the similarities of the two theories.

Let k£ be a finite field of characteristic p with ¢ = p™ elements. We set A := k[T].
Let K := k(T'). Put K be the co-adic completion of K. Let | - |, denote the absolute
value on K, that comes from the oo-adic valuation. Fix an algebraic closure of K,
say K. Let Oy be the completion of K, with respect to the unique extension of the

absolute value | - |o to K s, which we will also denote by | - |s.

Definition 2.2.8 An A-submodule A of C, is called A-lattice if A is a discrete, finitely
generated, torsion-free submodule of Cy,. The rank of A is its rank as a finitely gener-

ated torsion-free submodule of C.

Definition 2.2.9 Let A be an A-lattice of C. We define the associated lattice expo-

nential function as follows:

expy(2) ==z H (1 - ;)

0£NEA

The discreteness of A guarantees the convergence of exp, (2) for all z € C,. By con-

sidering partial products of exp, (z) one can see that the Drinfeld exponential function



has an expansion of the form

expy(z) = z + Z a2 for a; € A.
i>1
So we have that

expy (21 + cz2) = expy(21) + cexpy(22)

for all ¢ € F,. In addition,

expea(€2) = cexpy(2).

Moreover, exp, is a group homomorphism from Cy onto itself. The kernel of exp, is
just A. Since the function exp, is nonconstant and entire, it is surjective onto C.
Thus exp, gives rise to an isomorphism from C, /A onto C,. Now take any two A-

lattices Ay C Ay of the same rank. Then Ay/A; is a finite dimensional F -vector space.

Choose a set of coset representatives {\g = 0, A1,...,A\q_1} and set
d—1 ;
PA A (Z) =z 1-—
[A2:Aq] E eXpAl(Az)

Then Pp,:.a,)(2) is an Fy-linear polynomial in z and z is the lowest term of it. Since
expy, (2) and Py,:a,)(2) have the same zeroes and the same derivative, they are equal.

When Aq, Ay are two A-lattices of the same rank,

eprQ(z) = P[AzicAl](echAl (CZ)) = P[A2¢CA1}(C €XPy, (Z))

as both sides have the same zeros and have the same derivatives. In particular, if we
take Ay = Ay = A and a € A then we can write

expy(az) = gala)expa(z) for ¢a(a)(z) = Pa.an)(2)

where ¢, (a) = at® + higher order terms in 7 lies inCy{7}. Thus we have a func-
tion that is defined from A to C,

on A= Co{r}.
We have that,

¢ (a)@a (D) expy(2) = expy(abz) = pa(ab) exp,(2)

for a, b € A. Also a — ¢,(a) is additive. So ¢, is a ring homorphism. Therefore, we
have an A-module structure on Cy, by using ¢,. In addition we know that the degree
of pa(a)(z) in z is [A : aA] = ¢"9°8%. So the degree of ¢, in 7 is r. Thus ¢, is a
Drinfeld A-module of rank r.

Now we we see isogenies between Drinfeld modules in this context.



Definition 2.2.10 Let Ay and Ay be two A-lattices of the same rank. A morphism
from Ay to Ay is an element ¢ of Co with cAy = Ay, If the ranks of Ay and Ay are

different, then we can allow 0 € Cy to be a morphism.

Proposition 2.2.2 Let ¢ and v be two Drinfeld modules associated to lattices Ay and
As, respectively, of the same rank. Let ¢ € Cy be a morphism from Ay to Ay. Then

via the isomorphisms
expy, 1 Cou/A1 = C and expy, : Cso /Ny = O
the element ¢ € Cy, corresponds to a polynomial P(1) := P.(1) € Cy with

Po ¢A1 (CL) - ¢A2(a) oP
for all a € A.
Proof: We have that ¢cA; € Ay. Then ¢ 'A, contains A;. We know that eprQ(cz) is

zero on ¢ ' Ay. Since ¢ 'Ay and A; have the same rank, we get that ¢='Ay /A is finite.

Now set
P(Z) = PC(Z) = CP[c—lAQ:Al}(Z)-
P(z) is Fy-linear. In addition, the function P(exp,,(z)) has a simple zero at each point

of ¢ 'A, with derivative c¢. Therefore

P(eXpAl(Z)) = eXpAQ(CZ)'

O
Remark: Let A be a lattice that is associated to a Drinfeld module ¢. The action

of a € A via ¢, can be expressed by the commutative diagram

Coo/N —— Cy /A

x| Jexn

PA(a
COO#COO

Similarly, if A; and A; are lattices with Drinfeld modules ¢ and v respectively and
if ¢ € C'y, is a morphism from A; to Ay then the morphism from ¢ to 1 associated to

c is expressed by the following commutative diagram

Ooo/Al —C> Ooo/Al

eprll leprQ

., — o

Theorem 2.2.3 (Drinfeld’s Uniformization Theorem) Suppose that ¢ is an A-Drinfeld
module over Cy of rank r. If v map of ¢ is inclusion then there is a unique A-lattice
A such that such that ¢n = ¢. Moreover, tka A =r

Proof: See [9]. O

10



CHAPTER 3

Explicit Towers of Drinfeld Modules

3.1 Some Basic Definitions for Drinfeld Modular

Curves

In this section k is a finite field of size ¢ and k is a fixed algebraic closure of k. Let
k1 be the unique quadratic extension of k in k. Let L be any algebraically closed field
that contains k. We will consider Drinfeld Modules over L of rank 2. Let A = k[T].
Let ¢ be a Drinfeld Module over L of rank 2. We know that ¢ is determined by
or. Let
dr =1lo+ g7 + AT? with A # 0

Note that Iy = ¢(T'), so ly is determined by ¢. We say that ¢ is normalized if A = —1.

Definition 3.1.1 We define the J-invariant of ¢ as

+1
_ g

I6) =L

Proposition 3.1.1 Suppose that p and v are two Drinfeld modules of rank 2 with
the same 1. They are isomorphic over L if and only if their J-invariants are equal.

Moreover, every Drinfeld module p is isomorphic to a normalized one.

Proof: Let us set p and v as follows,
pr = L(T) + 9T+ A17'2 and ¢T = L(T) + g27 + A27'2

where Al, AQ # 0.
Firstly, suppose that p and ¢ are isomorphic. By Definition 2.2.6, there exist an
element \ € L* such that pro A = Ao ¢7. So

WA+ AT + AAT T2 = Mu(T) + Aga + AAo7>.

11



This equality gives that,
GAT =Agy (*) and AN =AA,  (*¥)

By taking (q + 1)-st power of the both sides of the equality (*) and by looking at the
ratio of (*) and (**), one can see that their J-invariants are the same.

Now, suppose that they have the same J-invariants. i.e.

gfﬂ _ gt21+1
Ay Ay

We try to find an element A € L* such that
G = Age and AT = AA,.

Choose A € L* such that 9! = g,/g;. Then by using the equality for the J-invariants,
one can see that A1 = A, /A;. Therefore p and 1 are isomorphic.

For the final part, we will show that we can find a normalized Drinfeld module 1 of
rank 2 with the same ¢ that is isomorphic to p. By the first part of the proposition, this
means that we try to find a normalized Drinfeld module v such that the J-invariants

of ¢y and p are the same. Since L is algebraically closed, we can choose g, such that

gt _ g
AT 1

Proposition 3.1.2 For any j € L, there exists a normalized Drinfeld module p of
rank 2 such that J(p) = j.
Proof: Since L is algebraically closed, one can choose g € L and A € L such that
% = j. Now, take
p:A— L{r}

that is defined by pr = A7? + g7 + «(T). Then this Drinfeld module is the required
one. 0

Note that there is a normalized Drinfeld module in each of these isomorphism classes
by Proposition 3.1.2. In fact all isomorphism classes contain exactly ¢ + 1 normalized
Drinfeld modules, except the class containing the Drinfeld module 72 + g7 + 1 with
g = 0, which contains only one normalized one.

Working with isomorphism classes is very cumbersome, so most of the time we will

work with normalized Drinfeld modules.

From now on, we use Drinfeld modules that send T to —72 + g7 + 1. Note that ¢
is defined by «(T') = 1.

Proposition 3.1.3 Suppose that ¢ is a normalized Drinfeld module such that
¢r = —72 + g7+ 1(T).
where o(T') = 1. Then
ker. = (T — 1).

12



Proof: Firstly; since «(T') = 1,
(T —1)=u(T)— (1) =0.

Also, «((T'—1)P(T')) = 0 for any P(T') € A because ¢ is a k-algebra homomorphism.
Hence kert = (T'— 1) O

Therefore, our Drinfeld modules have finite characteristic 17" — 1.

3.2 Some Important Drinfeld Modular Curves

In this section we define some classical Drinfeld modular curves and exhibit equations
for them. These curves will apriori be defined over the field L (so the function fields

will have constant field L), but in all cases, they can already be defined over k.

3.2.1 X(1):

We have seen that isomorphism classes of Drinfeld modules are determined precisely
by the J-invariant and that every j € L occurs as the J-invariant of an isomorphism
class. We can think of these j € L as points on an affine line over L. So we have a
line with coordinate given as j and each point corresponds to an isomorphism class of
Drinfeld modules. The function field of this line will be given by L(j). This affine line
paramterizing isomorphism classes of Drinfeld modules is usually denoted by Y'(1).
As is done customary, one adds a point at infinity to get a projective curve X (1).
The point at infinity does not really correspond to an isomorphism class, but can be

interpreted as corresponding to some distorted object.

Definition 3.2.1 X(1) := LU {o0o}.

It turns out that there is natural way to identify isomorphism classes of Drinfeld
modules of rank 2 with points on an algebraic curve. X (1) turns out to be a line. The
function field that is associated to X(1) is k(j) where j is transcendental over k. In
analogy with the classical theory of elliptic curves over C, the isomorphism class of
an elliptic curve is uniquely determined by the j-invariant of that elliptic curve. The

function field of X (1) is given by C(j) where j is transcendental over C.

3.2.2 X(1):

The curve X (1) parametrizes normalized Drinfeld module. A normalized Drinfeld
module is uniquely determined by ¢r = —7 + g7 + 1, hence can be determined by
specifying the value of g. Each g corresponds to a unique normalized drinfeld module.

So we can think of an affine line, with coordinate g, that parametrizes normalized

13



Drinfeld modules (each point on the affine line will correspond to a specific value of g
and hence to a particular normalized Drinfeld module). The function field of X (1) is
given by k(g). Since the normalized Drinfeld module ¢, with ¢r = —72 + g7 + 1 has
J-invariant g7t!/(—1), we see that k(g) is a degree (q + 1)-Kummer extension of k(5)
given by ¢4t! = j.

3.2.3 X;(T) and its equation:

X, (T) parametrizes normalized Drinfeld modules of rank 2 together with a T-torsion
point of the Drinfeld module.
If x be a T-torsion point of ¢ then

pr(z) =z + gt — 2% =0,

So

2
x4 —x

9=
Here g determines the Drinfeld module ¢ and g can be written in terms of the T-torsion
point . So ¢ and hence the normalized Drinfeld module is uniquely determined by
the T-torsion point x, i.e. there is a unique normalized Drinfeld module that admits x

as a T-torsion point. Hence,
{(z,9): =7 + g7+ 1 is a Drinfeld module with T-torsion point x}

gives a plane model for the Drinfeld modular curve X, (7). Here x and g satisfy the
relation g = (2¢° — z)/2%. Since z already determines g the function field of X;(T) is

Now, we need a definition before continuing with other Drinfeld modular curves.
For understanding the information that is given by the parametrization of the Drinfeld
modular curve, we need to know the definition of a T"-isogeny from a Drinfeld module

to another. In this manner, we firstly give a proposition.

Proposition 3.2.1 Ifi € L{r} is an isogeny from ¢ to 1 then keri is an A-submodule
of L under the A-module structure given by the Drinfeld module ¢.

Proof: Let a € A. Since 7 is an isogeny from ¢ to 1, we have i o ¢, = 1), 0 7. If
x € keri i.e. i(x) = 0 then

i(a.) = i(Pa()) = i 0 ¢a(x) = Ya 0 i(2) = Pa(0) = 0

So ¢q(z) € keri. Hence keri is a submodule under the A-module structure given by ¢.
O

Proposition 3.2.2 For each n € N, ker ¢rn is a free A/{T™) module of rank 2.

14



Proof: Suppose that n = 2. The idea of the proof in the general case is similar
with this case.

Firstly, by Propostion 2.2.1 the additive polynomial ¢72 is an isogeny from ¢ to
itself. So by Propostion 3.2.1, its kernel is an A-submodule of L under the A-module
structure of ¢. Since all elements of ker ¢= are annihilated by T2, the kernel of ¢z 2

becomes an A/(T?)-module. The module action is naturally defined as follows,

(a+ (T?).x := ¢o(x)

for any = € ker ¢12 and a € A. Since ¢72 is an isogeny from ¢ to itself, this action is
well-defined. Indeed,

T?.6a(7) = ¢12(¢a(x)) = (Pa(dr2()) = ga(w) = 0.

for any = € ker ¢12 and a € A. Note that since A is a principal ideal domain, any ideal
of A/(T?) is generated by one element. So A/(T?) is principal ideal ring.
Let = € ker ¢r2 be nonzero. Suppose that (a + (T?)).x = 0 for some a € A. If
a is relatively prime with 72, then by the Euclidean algorithm, we can find elements
ai,as € A such that
a1 T? + asa = 1.

Then we obtain

r=lx= Cbl(l’) = ¢a1T2+a2a(x) = ¢a1(¢T2<x)) + ¢a2(¢a(1‘)) = ¢a1 (0) + ¢a2(0) =0.

So the only element in the kernel of ¢72, that is annihilated by an element a € A
relatively prime to 7?2 is the zero element. This means that ker ¢p» is torsion free. By
the structure theorem of modules over principal ideal rings, ker ¢72 is free.

Now, if we think of ¢r2 as a linearized polynomial, then its degree is ¢*. Also, since
((T) = 1i.e. kerv = (T —1), this polynomial is separable. This means it has ¢* distinct
roots. So ker ¢ has ¢* elements. Again by using the structure theorem for modules

over principal ideal rings, we see that
ker o2 =2 A/(T?) x A/{T?)
as A/(T?)-module, because it is torsion free. O
Now, we give the following definition.

Definition 3.2.2 We say that the isogeny i is a T"-isogeny, if keri is a free A/{T™)-
submodule of ker ¢ of rank 1.
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3.2.4 X,(T) and its equation:

XO(T) parametrizes normalized Drinfeld modules of rank 2 with a T-isogeny, i.e. an
A-submodule that is generated by T-torsion point x.
Again, let ¢ be a normalized Drinfeld module with «(T") = 1 given by

¢r = —1> + g7 + 1.

A-submodule which is generated by a nonzero T-torsion point x under the action of ¢
is
[P(T).a|P(T) € A} = {6pir) (@) P(T) € K},

Since z is annihilated by T,

{0p@)(2)|P(T) € A} = {¢a(@)|a € k}.

Since ¢ is an k-algebra homomorpism,
{ba(z)]a € k} = {ax|a € k}. (3.1)

We identify the set in the equation (3.1) with the polynomial whose roots are exactly
all elements of the set in Equation (3.1)

[[(T - ax). (3.2)

ack

Lemma 3.2.3
H(T —azx)=T"— 2 'T.
ack

Proof: Firstly,

H(T —az) = z* H(T/:U —a).

ack ack

Say S :=T/x. We know that
[[(s-a)=s5"-5.
ack
Then
[ [(T/x—a) =2 T[(S — a) = 2(S* = §) = 2%(T%/a* — T/x) = T% — 2*'T.
a€k a€k

Hence,
[[(T - ax) =1 —2'T (3.3)

ack
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Proposition 3.2.4 If we set u := x971 for the coefficient of the polynomial in (3.3)
then T — u is a T-isogeny of ¢. i.e. there exists a Drinfeld module 1 of rank 2 such

that T — w s an 1sogeny between ¢ and 1 with
ker(T — u) C ker ¢r. (3.4)
Proof: If we consider the Drinfeld module 1 that is defined by

1
2 =
Yr=-1"+(u- )7 +1

then we see that 7 — u is an isogeny between ¢ and . In fact,

u
and )
vy = (7 —u)(~r — ).
Then .
(T—u)oqu:(T—u)O(—T—a)O(T—u) =ro (T —u).
Note that 7 — w is the right linear factor of ¢7. So ker(7 — u) C ker ¢r. O

If z is a T-torsion point, then the set in (3.1) corresponds to x4~ because of the
stated identification and Lemma 3.2.3. Explicitly, the polynomial in (3.2) correponds
to the set in (3.1) and 297! comes from the polynomial in (3.2) as a coefficient. In fact
it uniquely determines the polynomial . So the function field of X(7) is k(x971).

Hence we have the following picture,

k(x) X1(T) > (¢, ) where x € ker ¢p
k(zt 1) Xo(T) > (¢, k.x)
k(9) X(1) >0

3.2.5 X(T?) and its equations :

XO(TQ) parametrizes normalized Drinfeld modules of rank 2 together with a T2-isogeny
from the Drinfeld module.
Let ¢ be a normalized Drinfeld module of rank 2 defined by

gf) =T +gT+1

for i € {1,2,3}.
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Proposition 3.2.5 If i, and iy are T-isogenies from ¢ to @ and from ¢@ to ¢®
respectively, then iy 0y is a an isogeny from ¢ to ¢ with the property that
. (1)
keriy o1 C ker ¢ .

Proof: Since i; is an isogeny from ¢ to ¢ and i, is an isogeny from ¢ to ¢,

igoilogbg}):iQOgb(Tz)oil:gbg?)oigoil.

This means that i, o 7 is an isogeny from ¢ to ¢®).
Now take any element x € keriy o 4;. Then is(iy(z)) = 0. But i;(z) € keris. Since

iy is a T-isogeny from ¢® to ¢®,
ker iy C ker ¢\
so i1(z) € ker qbg?). Then we get
0= 0% oiy(z) =iy 0 o (2).
So ¢§11)(x) € keri;. We know that
ker; C ker Qﬁ(Tl).
because 7; is a T-isogeny. So (T” (x) € ker gb(Tl). Then we get that

o) = ¢ o ¢l (z) =0,

Therefore,

ker iy 047 C ker (b(TlQ)

Hence iy 04y is an isogeny from ¢ to ¢ whose kernel is annihilated by the multipli-
cation by T2 map given by ¢(!). O

Remark: Note that iy 04, is not necessarily a T%-isogeny, since its kernel might
not be a A/(T?)-module of rank 1. In fact, since i; is a T-isogeny from ¢!), we know
that there is an additive polynomial ¢} such that ¢} oi; = (Tl ). Now it can be seen that
i} is an isogeny from ¢® to a Drinfeld module, which is isomorphic to ¢*). Exactly
in the case that iy = ) we would have that i5 047 is just the multiplication by 7" map
given by ¢() and hence has kernel, which is a free A/(T?)-module of rank 2. It can
be shown that in all other cases (i.e. if iy # #}) we have that iy 04, is a T*-isogeny (so
keriy 04y is a free A/(T?)-module of rank 1).

Now we calculate the equation of Xo(72).

If 2, is a T-torsion point of ¢, then we know that

2 271 -1
2l -z 2P -1 (27 -1
g = q = q—1 = q—1
T 21 1
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By setting u; := 297" we obtain

1
ul™ —1
g1 =

U

By Propostion 3.2.4, 7 — u; is a T-isogeny between ¢ and ¢ where ¢ is a nor-

malized Drinfeld module of rank 2 with

1
¢§?) = T+gpr+l=—7"4 (u — E)T + L. (3-5)
1

On the other hand, if we take a T-torsion point 5 of ¢® then

2
q q+1
Ty — T Uy —1

go = — = (3.6)

by setting us := 22", By using the equations (3.5) and (3.6), we get that

q+1 q+1
up o —1 uy  —1

= - 3.7

U? g2 = Us ( )

However as we have seen above, we need that the isogenies 7 — us and 7 — u; need

to come together in a proper way in order to form a T?-isogeny (i.e. their composite
should not give the multiplication by 7-map)

By Equation (3.7), we see that us satisties

q+1

P(T) :=T"" —1— ul—q_lT € k(uy)[T). (3.8)

Uy
If we substitute ;—11 for us in the expression for g then we see that

1 —1\q+1 1 1
w1 () -1 1 uqJr u?r 1

- -1 - q

This means that ;—11 is a root of P(T). Note that this choice of root corresponds
exactly to the situation where (7 — ug) o (7 — uq) is the multiplication by T-map, since
(T —ug)o (7 —u) = (71— (=1/uy)) o (71 —uy) = —(—=7*+ g17 + 1). Hence for uy we
should take any root of P(7T) but this one. By dividing P(7T") by T + u—ll, we obtain

P(T) = (T + D)3 (1) = — ).

Since ug is a root of P(T) we have,

4q i
Z(_Diﬂ—lﬁi —u; =0 (3.9)

i1 Uy

So Xo(7?) has a plane model given by

U
Ul, (%) ’ Z Z+1 2 — Uy = O}
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The function field of Xo(T?) is given by k(uy,up) with uy, uy satisfying Equation
(3.9).
If one can take . i
g Y) = Y

=1

(3.10)

to recursively define the following tower Xo(T").

3.2.6 The tower Xo(T") :

We have seen above that by composing two T-isogenies we obtain an isogeny with

kernel contained in the kernel of the multiplication by T2-map and that we need to

impose another condition, to ensure that the composition is a 7T?-isogeny. Similarly by

composing n many numbers of T-sogenies and requiring that any two consequtive ones

don’t form together a multiplication by 7" map, we can obtain T"-isogenies. Conversely

any T"-isogeny is obtained in this way. More precisely we have the following,
Remark: Let ¢, ..., ¢ be Drinfeld modules with T-isogenies

i O — p(mHL)
such that the composition of any two consequtive isogenies
b1 © dy ¢(m) N ¢(m+2)
is a T2-isogeny for m = 1,...,n — 2. Then

in 00y s ) — p™

in

is a T"-isogeny. Conversely any T"-isogeny can be written as a composition of T-
isogenies so that the composite of any two consecutive ones is a T%-isogeny.

Now we see the tower Xo(7T") is exactly the tower given by ¢(X,Y) in Equation
(3.10).

Let m € {1,...,n}. Set

= =1+ g +1

If x,, is a T-torsion point of ¢(™ then we know that

2 2
- _ -1 _ g—1yg+1 _
g_xm Ty T L (a2 1
m = q = T = 1

Tm T T

By setting u,, := % we obtain

ultt —1

Im =
Um
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By Propostion 3.2.4, 7 — u,, is a T-isogeny between ¢(™ and ¢+ where ¢(™*1) is a

normalized Drinfeld module of rank 2 with

. 1
A = 4 gt 1= = (1= 1 3.1)

On the other hand, if we take a T-torsion point z,41 of 1 then

2
q q+1
Tl — Tl Uy — 3.12
Im+1 = q - (3.12)
Lin+1 Um+1

by setting w41 := 22|, By using the equations (3.11) and (3.12), we get that

1
ultt — 1 o1

um—i—l -
ugn I+l Um+1 ( )

However as we have seen above, we need that the isogenies (7 — u,,+1) and
(T — uy,) need to come together in a proper way in order to form a T?-isogeny (i.e.
their composite should not give the multiplication by T-map)

By Equation (3.13), we see that w,,,1 satisties

ultt —1

S =27 € k(un)[T). (3.14)

P(T):=T%" —1 -

If we substitute ;—1 for u,,,1 in the expression for g,,.1 then we see that

q+1 —1\g+1 _ 1 1
umH—l_(um) I 1 — gt ulft —1
q

—ud, uh,

=1
Um

Um+1

This means that ﬁ is a root of P(T). Note that this choice of root corresponds
exactly to the situation where (7 — u,11) o (7 — uy,) is the multiplication by T-map,
since (T — Umi1) © (T — Up) = (T — (=1/up)) o (T — Up) = — (=72 + gm7 + 1). Hence
for u,,+1 we should take any root of P(T') but this one. By dividing P(T) by T + ﬁ,

we obtain

P(T) = (T + )3 (1) — ).

Um o1 Um
Since ug is a root of P(T) we have,
q o
Z(—1)Z+1u”;—_+j — Uy, = 0 (3.15)

1=1

Hence the function field of the Drinfeld modular curve Xo(T™) over k is

E(ug, ... tm)(Umir)

where g(wp,, Umy1) = 0.
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3.3 Xo(T") and the tower of Bezerra—Garcia

Alternatively, we can parametrize isomorphism classes rather than working normalized
Drinfeld modules. Propostion 3.1.1 gives that two normalized Drinfeld modules ¢ and

(&
or =T+ g7 +1

and
@ZJT:—T2+QQT+1

are isomorphic if and only if

g+l _ q+1
g1 =92 -

When we have tried to find the equation of Xo(T %), we have obtained that

1
ul™ —1
—g %=

q+1

Since we study with the isomorphism classes now, we have

(! — 1ot ( - 1) i ( - 1) (g™ — 1ot

(uf™)e uf U W ug'!

By denoting u?“ by U; for i = 1,2, we obtain
(Ul _ 1)q+1 (U2 _ 1)q+1

i Uy

where U; and U, generate the functions field of X,(7T?). After some computaions we
get that,

R A s YA S Y S DR SR A R |
U? Uu ' U U? S U U)]

So )
1 1 1N\ /U, 1
) |(1-=—(v,-— 2 _ )= 1
(Ul U2)< Ul (UQ Ul) (U1 w)) ¢ el

Note that the first factor corresponds to the undesired case where the two isogenies

get together to form a multiplication by T-map.

Now, Equation (3.10) can rewritten as

Ui—1 <U1U2 — 1)Q‘1

Uy—1 (U —1
If we define V] as .
—1
V= 2 =
YT -1

then we see that v, — 1)
U =VI' (Vi —1) and U, = ?
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Therefore V; is a generator of the function field of X, (7?).

If we define
S :=W
then U; and U, can be written in terms of &
1-— 1—&)1
v =128 g = 28
&1 &1

If we use the generator V5 of the function field k(Us, Us) where Us coming from the

isomorphism class of the third Drinfeld module then by similar calculations we get that

1—&
LTy
with V5 := 1/&. Therefore,

1—¢f 1—¢&
=Uy= —=.

& o

If we define the polynomial F/(X,Y)
1-X7 1-Y
F(X)Y) .= —
( ) ) X Yq

then F(X,Y) defines recursively the tower of Bezerra—Garcia that attains the Drinfel—
Vladut bound.
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