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Abstract

In this thesis, we study a Drinfeld modular interpretation due to Elkies of an

asymptotically optimal tower that was constructed by Bezerra and Garcia.

We explain what an asymptotically optimal tower over a finite field Fq is and give

the definition of the asymptotically optimal tower given by Bezerra and Garcia.

We give some basic facts about Drinfeld modules. Additionally, we present the

analytical theory of Drinfeld modules using lattices and exponential functions to better

understand the analogy with the classical theory.

We exhibit the Drinfeld modular curves that give the tower of Bezerra and Garcia.

Hence we see a Drinfeld modular interpretation of this tower.



ASİMTOTİK OLARAK OPTİMAL BİR EǦRİ KULESİNİN DRINFELD

MODÜLER YORUMU

Türkü Özlüm Çelik

Matematik, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Assoc. Prof. Cem Güneri

Özet

Bu tezde, Bezerra ve Garcia tarafından verilmiş asimptotik olarak optimal bir Fq-
fonksiyon cisim kulesinin Drinfeld moduler eǧrilerle inşasını inceledik.

İlk bölümde Fq üzerinde asimptotik olarak optimal bir fonksiyon cismi kulesinin

ne demek olduǧunu anlattık. Bölümün sonunda Drinfeld modüler eǧrilerle yorumunu

göreceǧimiz, Bezerra ve Garcia tarafından inşa edilmiş fonksiyon cisim kulesinin tanımını

verdik.

İkinci bölümde Drinfeld modülleri hakkında ihtiyacımız olan bilgileri derledik. Ek

olarak, Drinfeld modüllerin, klasik teorideki eliptik eǧrilerle benzerliǧini resmettik.

Son bölümde ise, özel birtakım Drinfeld modüler eǧrilerin hesabını yaptık. Bahsi

geçen fonksiyon cismi kulesinin Drinfeld modüler eǧriler kullanarak inşasının nasıl

olacaǧını anlattık.

Anahtar Kelimeler: asimptotik olarak optimal, fonksiyonel cisim kuleleri, Drinfeld

modülleri, modül, modüler eǧri.
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CHAPTER 1

Introduction

In this thesis, the main object is an asymptotically optimal tower given by Bezerra–

Garcia. The notion of an asymptotically optimal tower will be introduced in this

chapter.

Let Fq be a finite field of characteristic p with q elements. Let F be an algebraic

function field over Fq of one variable. Suppose that the constant field of F is Fq. Let

N(F ) be the number of rational places of F . The theorem of Hasse–Weil [13] gives the

bound

N(F ) ≤ q + 1 + 2
√
qg (1.1)

where g denotes the genus of F . Serre [12] improved this upper bound by replacing

2
√
q by b2√qc. Ihara [10] realized that over a fixed finite field Fq, the Hasse–Weil upper

bound becomes weak when the genus g of F is large. He introduced the quantity

A(q) = lim sup
g(F )→∞

N(F )

g(F )

where F runs over all function fields with constant field Fq. By the Hasse–Weil theorem,

we have A(q) ≤ 2
√
q. Ihara [10] proved that A(q) ≤

√
2q for any q. This indicates

that the Hasse–Weil bound can be improved for large genera, as stated above. The

best known upper bound due to Drinfeld and Vlăduţ [4] gives

A(q) ≤ √q − 1

for any prime power q. If q is square then Ihara proved that A(q) ≥ √q − 1 [10].

Hence A(q) =
√
q− 1 when q is square. For any prime power q, Serre [12] showed that

A(q) > c log2(q) for some c > 0. In particular, A(q) > 0 for any q. If q = p3m for a

positive integer m then we have

A(q) ≥ 2(p2m − 1)

pm + 2
. (1.2)

This lower bound was obtained by Zink [14] in the case where m = 1. Bezerra, Garcia

and Stichtenoth [3] generalized this lower bound for any m by using recursive towers

of function fields.
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There are many other lower bounds for A(pn), with a prime p and an odd power

n > 3, however they seem not to be particularly strong. One of them [11] is

A(qn) ≥ 4q + 4

b3+b2
√

2q+2c
n−2

c+ b2 +
√

2q + 3c

where q is an odd prime power and n ≥ 3 is prime. This was given by Li and Maharaj.

With the purpose of investigating A(q) Garcia and Stichtenoth introduced the no-

tion of towers of Fq-function fields.

Definition 1.0.1 A tower of over Fq is an infinite sequence of function fields Fi over

Fq
F = (F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ Fi ⊆ . . . )

such that the following hold;

(i) F1 ( · · · ( Fi ( . . . ;

(ii) each extension Fi+1/Fi is finite and separable;

(iii) the genera satisfy g(Fi)→∞ for i→∞.

By the Hurwitz genus formula the limit

λ(F) := lim
i→∞

N(Fi)

g(Fi)

exists [6]. Clearly 0 ≤ λ(F) ≤ A(q) for any Fq-tower F . Hence towers are useful to

obtain good lower bounds for A(q).

Definition 1.0.2 A tower F over Fq is called asymptotically optimal if λ(F) = A(q).

Definition 1.0.3 An Fq-tower of function fields F = (F1 ⊆ F2 ⊆ · · · ⊆ Fi ⊆ . . . ) is

recursively defined by f(X, Y ) ∈ Fq[X, Y ] if

(i) F1 = Fq(x1) is the rational function field

(ii) Fi+1 = Fi(xi+1) with f(xi, xi+1) = 0 for all i ≥ 1.

According to a result by Garcia and Stichtenoth [6], for q = p2m the Fq-tower of function

fields F1 recursively defined by

f(X, Y ) = (1 +Xpm−1)(Y pm + Y )−Xpm (1.3)

is asymptotically optimal i.e. λ(F1) = pm − 1.

When q = p3m one can use the polynomial

f(X, Y ) = Y pm(Xpm +X + 1)−X(1− Y ) ∈ Fq[X, Y ]
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to obtain a tower F2 with

λ(F) ≥ 2(p2m − 1)/(pm + 2).

This is how Inequality (1.2) is proved. The case q = 2 reduces to a tower that was

introduced by van der Geer and van der Vlugt [8].

On the other hand, a lower bound given by Bassa, Beelen, Garcia and Stichtenoth [1]

is rather close to the Drinfeld–Vlăduţ upper bound A(pn) for large n and small p. It

is obtained by using recursive towers given by explicit polynomials f(X, Y ) ∈ F[X, Y ].

The lower bound they obtain is

A(pn) ≥ 2(pm+1 − 1)

p+ 1 + ε
where ε =

p− 1

pm − 1

for a prime number p and an odd integer n = 2m+ 1 ≥ 3.

In my thesis, I study a Drinfeld modular interpretation of a tower that is constructed

by Bezerra and Garcia [2]. The tower is defined over quadratic finite fields Fq2 . It is

defined as follow;

Definition 1.0.4 Let the tower F be defined recursively by F1 := Fq2(x1). For each

n ≥ 1, we have that Fn+1 := Fn(xn+1) with

xn+1 − 1

xqn+1

=
xqn − 1

xn
. (1.4)

This tower over Fq2 attains the Drinfeld–Vlăduţ bound [2] i.e.

λ(F) = q − 1.

In the second chapter, I introduce Drinfeld modules. I present an important ex-

ample of Drinfeld modules, which is the Carlitz module. At the end of that chapter,

I briefly describe the analogy between Drinfeld modules and elliptic curves over com-

plex numbers. In the third chapter, I compute the Drinfeld modular curves that form

the tower in Definition 1.0.4. For this computation, I first compute another Drinfeld

modular tower, from which I obtain the tower (1.4) by using Drinfeld modular curves.
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CHAPTER 2

Drinfeld Modules

2.1 Additive Polynomials

Let k be a field of positive characteristic p. Let k̄ be a fixed algebraic closure.

Definition 2.1.1 We say that P (X) ∈ k[X] is additive over k if

P (α + β) = P (α) + P (β)

for all α, β ∈ k. We say that P (X) is absolutely additive if P (X) is additive over k̄.

Example 2.1.1 The polynomial τp(X) := Xp is absolutely additive.

Proposition 2.1.1 Let P (X), Q(X) be additive polynomials over k. Then

1. P (X) +Q(X) is additive over k,

2. For all α ∈ k, αP (X) is additive over k,

3. P (Q(X)) is additive over k.

Proof : This follows immediately from the definitions. 2

Remark: Let τ ip(X) := Xpi for i ∈ N. Any element of the set of polynomials

generated by {Xpi : i ∈ N} over k is absolutely additive by Proposition 2.1.1.

Definition 2.1.2 We define k{τp} as the k vector space that is generated {Xpi : i ∈
N}.

The vector space k{τp} is a ring under usual addition and composition. If k 6= Fp then

k{τp} is noncommutative. Note that, τpα = αpτp for all α ∈ k.

Example 2.1.2 Let k = F5 and

P (X) = X + (X5 −X)2 = X10 + 3X3 +X2 +X.

So P (α) = α for all α ∈ k. P (X) is additive over k. But P (X) /∈ k{τp}.
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Proposition 2.1.2 Suppose that k is an infinite field. A polynomial P (X) ∈ k[X] is

additive over k if and only if P (X) ∈ k{τp}.

Proof : Firstly, by Example 2.1.1 and Proposition 2.1.1 we have seen that if P (X) ∈
k{τp} then P (X) is additive. For the converse, take α ∈ k. Then

Qα(x) := P (x+ α)− P (x)− P (α) = 0

for all x ∈ k. Since k is infinite, Qα(X) is identically zero. Also

P ′(α) =
d

dx
P (x+ α)

∣∣∣∣
x=0

=
d

dx
(P (x) + P (α))

∣∣∣∣
x=0

= P ′(0).

Again by the infinitude of k,

P ′(X) ≡ P ′(0) ≡ c

for some c ∈ k. This means that

P (X) = cX +
k∑
i=2

aiX
ni

where ai ∈ k and ni ≡ 0(modp) for all i ∈ {2, . . . , k}. Now we write

P (X) = P0(X) + P1(X)

where P0(X) = cX+terms with ni’s that are powers of p

and P1(X) = terms with ni’s that are divisible by a prime 6= p. We will show that

P1(X) ≡ 0.

Now, since P0(X) ∈ k{τp}, P1(X) = P (X) − P0(X) is additive. It is sufficient

to show that P1(X) ≡ 0 in k[X]. We know that τp : k → k is an automorphism of

k. Let pe be the largest power of p dividing all powers ni’s of terms of P1(X). Set

P2(X) := P1(X)1/pe ∈ k[X]. The mapping α 7→ α1/pe from k to k is additive (although

it is not polynomial). Then P2(X) is also additive. Similarly as above, we see that

P ′2(X) is identically zero by using additivity of P2(X) on k. Because of the definition

of P2(X), this means that P2(X) is identically zero. Hence P1(X) ≡ 0. 2

Corollary 2.1.3 k{τp} is the set of absolutely additive polynomials over k.

Proof : The algebraic closure of any field is infinite. 2

Suppose that q := pm for a natural number m. Take any extension L of k. Let

L{τ} be the ring of polynomials in τ by setting τ := τmp . Now, L{τ} is a k-algebra

of k-linear polynomials. Any element f = l0 + l1τ + · · · + ldτ
d represents a k-linear

endomorphism of L which is

x 7→ l0x+ l1x
q + · · ·+ ldx

qd
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2.2 Drinfeld Modules

2.2.1 The General Definition of a Drinfeld Module

The theory of Drinfeld modules was developed to use the ideas coming from lattices

and their exponential functions in the function field setting in positive characteristic.

This theory is an extension of Carlitz module to higher rank lattices. The Carlitz

module behaves as the analogue of the multiplicative group Gm over C. In more detail,

Drinfeld modules come from A-lattices of rank r where A is the ring of functions on a

curve over a finite field with poles at most at a fixed place, denoted∞. (This is parallel

to the fact that Z-lattices of rank 2 give rise to elliptic curves over C in the classical

theory.) In analogy to classical modular curves, which are parametrizing elliptic curves

(together with some additional structure), one can consider Drinfeld modular curves,

parametrizing analogous objects, namely Drinfeld modules.

Let k be a finite field with q elements of characteristic p. Let L be any extension of

k. We fix an algebraic closure L of L. Set A := k[T ]. Fix a k-algebra homomorphism

ι : A→ L. We call ker ι the characteristic of L. Since L is a field, ker ι is a prime ideal.

We say that L has generic characteristic if ker ι = (0) i.e. if ι is injective. Otherwise

we say that ker ι is finite and L has finite characteristic.

Let D : L{τ} → L be the k-algebra homomorphism that is given by

D

( n∑
i=0

liτ
i

)
= l0

Definition 2.2.1 A Drinfeld A-module over L is a k-algebra homomorphism

φ : A→ L{τ}

with the following properties,

i. D ◦ φ = ι,

ii. φ(a) 6= ι(a)τ 0 for some a ∈ A.

First, we will use φa instead of φ(a).

Note that, since φ is a k-algebra homomorphism, it is determined by φT . Also,

because of (i) the constant term of φa in τ is ι(a) for all a ∈ A.

We get an A-module structure on L by using φ. The action of A on L is given by

a.l = φa(l)

for any a ∈ A, l ∈ L. We denote this module by φ(L). Similarly, we get another

A-module structure on L by ι. The action is given as follows:

a.l := ι(a)l.

6



Definition 2.2.1 (i) requires that this second action agrees with the lowest term of the

action defined by φ. Definition 2.2.1 means (ii) that these two actions above are not

the same. So the action defined by φ is a nontrivial deformation of the A-action on L

given by the homomorphism ι.

Definition 2.2.2 If P:=a0 + a1τ + · · ·+ anτ
n ∈ L{τ} then the degree of P is defined

as the largest exponent of τ appearing in P . It is denoted by degP .

Definition 2.2.3 If P is an additive polynomial over L then the kernel of P is defined

as follows;

kerP = {l ∈ L : P (l) = 0}.

Definition 2.2.4 Let φ be a Drinfeld module over L as above. Since A is a principal

ideal domain, if ι is not injective then ker ι = Aa0 for some a0 ∈ A. We say that φ is

supersingular if

kerφa0 = {0},

and ordinary otherwise.

Definition 2.2.5 Let φ and ψ be two Drinfeld modules over L. A morphism from φ

to ψ over L is an element u ∈ L{τ} with

u ◦ φa = ψa ◦ u (2.1)

for all a ∈ A.

A nonzero morphism is called an isogeny.

Note that, since a Drinfeld module is a k-algebra homomorphism, u ◦ φa = ψa ◦ u
holds for all a ∈ A if and only if it holds for a = T .

Definition 2.2.6 We say that φ and ψ are isomorphic over L if there exists λ ∈ L×

such that (2.1) holds for u = λ.

To define a special isogeny from a Drinfeld module φ, we need the following propo-

sition:

Proposition 2.2.1 Let a′ ∈ A. Then φa′ is an isogeny from φ to itself.

Proof : Since φ is a k-algebra homomorphism,

φa′ ◦ φT = φa′T = φTa′ = φT ◦ φa′ .

Hence the result follows. 2

Definition 2.2.7 This isogeny in the Proposition 2.2.7 is called the multiplication by

a′ map. The elements of kerφa′ are called a′-torsion points (a′-division points) of the

Drinfeld module φ.
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2.2.2 An Example of a Drinfeld Module

Let K = k(T ) and K∞ be the ∞-adic completion of K. Let K∞ be a fixed algebraic

closure of K∞ equipped with the canonical extension of the∞-adic valuation. However,

it is not complete. Let C∞ be the completion of K∞. The Carlitz module was defined

by Leonard Carlitz. It is a k-algebra homomorphism

C : A→ C∞{τ}

which is defined by CT := T + τ . So the Carlitz module is a Drinfeld module over C∞

of rank 1. Also the ι map from A to C∞ is just the inclusion map. It sends T to T .

The Carlitz module is the simplest of all Drinfeld modules. The Carlitz module can

be understood in an elemantary way. At the same time, many ideas about Drinfeld

modules already appear in theory of the Carlitz module. So the Carlitz module is

perfect to understand the general theory. It also plays a central role for the class field

theory of the rational function field K.

2.2.3 The Drinfeld Module Associated to a Lattice

At the beginning of this section, I have mentioned the analogy between the classical

theory of elliptic curves and Drinfeld modules. To better understand the analogy with

the classical theory, I try to present the analytical theory of Drinfeld modules using

lattices and exponential functions in a concise and somewhat sketchy form. In that

analytical part, proofs are sketched and references are given. The aim of this section

is to present the similarities of the two theories.

Let k be a finite field of characteristic p with q = pm elements. We set A := k[T ].

Let K := k(T ). Put K∞ be the∞-adic completion of K. Let | · |∞ denote the absolute

value on K∞ that comes from the ∞-adic valuation. Fix an algebraic closure of K∞,

say K∞. Let C∞ be the completion of K∞ with respect to the unique extension of the

absolute value | · |∞ to K∞, which we will also denote by | · |∞.

Definition 2.2.8 An A-submodule Λ of C∞ is called A-lattice if Λ is a discrete, finitely

generated, torsion-free submodule of C∞. The rank of Λ is its rank as a finitely gener-

ated torsion-free submodule of C∞.

Definition 2.2.9 Let Λ be an A-lattice of C∞. We define the associated lattice expo-

nential function as follows:

expΛ(z) := z
∏

06=λ∈Λ

(
1− z

λ

)
.

The discreteness of Λ guarantees the convergence of expΛ(z) for all z ∈ C∞. By con-

sidering partial products of expΛ(z) one can see that the Drinfeld exponential function

8



has an expansion of the form

expΛ(z) = z +
∑
i≥1

aiz
qi for ai ∈ A.

So we have that

expΛ(z1 + cz2) = expΛ(z1) + c expΛ(z2)

for all c ∈ Fq. In addition,

expcΛ(cz) = c expΛ(z).

Moreover, expΛ is a group homomorphism from C∞ onto itself. The kernel of expΛ is

just Λ. Since the function expΛ is nonconstant and entire, it is surjective onto C∞.

Thus expΛ gives rise to an isomorphism from C∞/Λ onto C∞. Now take any two A-

lattices Λ1 ⊆ Λ2 of the same rank. Then Λ2/Λ1 is a finite dimensional Fq-vector space.

Choose a set of coset representatives {λ0 = 0, λ1, . . . , λd−1} and set

P[Λ2:Λ1](z) := z

d−1∏
i=1

(
1− z

expΛ1
(λi)

)
.

Then P[Λ2:Λ1](z) is an Fq-linear polynomial in z and z is the lowest term of it. Since

expΛ2
(z) and P[Λ2:Λ1](z) have the same zeroes and the same derivative, they are equal.

When Λ1, Λ2 are two A-lattices of the same rank,

expΛ2
(z) = P[Λ2:cΛ1](expcΛ1

(cz)) = P[Λ2:cΛ1](c expΛ1
(z))

as both sides have the same zeros and have the same derivatives. In particular, if we

take Λ1 = Λ2 = Λ and a ∈ A then we can write

expΛ(az) = φΛ(a)expΛ(z) for φΛ(a)(z) = P[Λ:aΛ](z)

where φΛ(a) = aτ 0 + higher order terms in τ lies inC∞{τ}. Thus we have a func-

tion that is defined from A to C∞,

φΛ : A→ C∞{τ}.

We have that,

φΛ(a)φΛ(b) expΛ(z) = expΛ(abz) = φΛ(ab) expΛ(z)

for a, b ∈ A. Also a 7→ φλ(a) is additive. So φΛ is a ring homorphism. Therefore, we

have an A-module structure on C∞ by using φΛ. In addition we know that the degree

of φΛ(a)(z) in z is [Λ : aΛ] = qr deg a. So the degree of φΛ in τ is r. Thus φΛ is a

Drinfeld A-module of rank r.

Now we we see isogenies between Drinfeld modules in this context.
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Definition 2.2.10 Let Λ1 and Λ2 be two A-lattices of the same rank. A morphism

from Λ1 to Λ2 is an element c of C∞ with cΛ1 = Λ2. If the ranks of Λ1 and Λ2 are

different, then we can allow 0 ∈ C∞ to be a morphism.

Proposition 2.2.2 Let φ and ψ be two Drinfeld modules associated to lattices Λ1 and

Λ2, respectively, of the same rank. Let c ∈ C∞ be a morphism from Λ1 to Λ2. Then

via the isomorphisms

expΛ1
: C∞/Λ1 → C∞ and expΛ2

: C∞/Λ2 → C∞

the element c ∈ C∞ corresponds to a polynomial P (τ) := Pc(τ) ∈ C∞ with

P ◦ φΛ1(a) = ψΛ2(a) ◦ P

for all a ∈ A.

Proof : We have that cΛ1 ⊆ Λ2. Then c−1Λ2 contains Λ1. We know that expΛ2
(cz) is

zero on c−1Λ2. Since c−1Λ2 and Λ1 have the same rank, we get that c−1Λ2/Λ1 is finite.

Now set

P (z) := Pc(z) = cP[c−1Λ2:Λ1](z).

P (z) is Fq-linear. In addition, the function P (expΛ1
(z)) has a simple zero at each point

of c−1Λ2 with derivative c. Therefore

P (expΛ1
(z)) = expΛ2

(cz).

2

Remark: Let Λ be a lattice that is associated to a Drinfeld module φ. The action

of a ∈ A via φa can be expressed by the commutative diagram

C∞/Λ C∞/Λ

C∞ C∞

a

expΛ expΛ

φΛ(a)

Similarly, if Λ1 and Λ1 are lattices with Drinfeld modules φ and ψ respectively and

if c ∈ C∞ is a morphism from Λ1 to Λ2 then the morphism from φ to ψ associated to

c is expressed by the following commutative diagram

C∞/Λ1 C∞/Λ1

C∞ C∞

c

expΛ1
expΛ2

Pc

Theorem 2.2.3 (Drinfeld’s Uniformization Theorem) Suppose that φ is an A-Drinfeld

module over C∞ of rank r. If ι map of φ is inclusion then there is a unique A-lattice

Λ such that such that φΛ = φ. Moreover, rkA Λ = r

Proof : See [9]. 2
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CHAPTER 3

Explicit Towers of Drinfeld Modules

3.1 Some Basic Definitions for Drinfeld Modular

Curves

In this section k is a finite field of size q and k is a fixed algebraic closure of k. Let

k1 be the unique quadratic extension of k in k. Let L be any algebraically closed field

that contains k. We will consider Drinfeld Modules over L of rank 2. Let A = k[T ].

Let φ be a Drinfeld Module over L of rank 2. We know that φ is determined by

φT . Let

φT = l0 + gτ + ∆τ 2 with ∆ 6= 0

Note that l0 = ι(T ), so l0 is determined by ι. We say that φ is normalized if ∆ = −1.

Definition 3.1.1 We define the J-invariant of φ as

J(φ) =
gq+1

∆
.

Proposition 3.1.1 Suppose that ρ and ψ are two Drinfeld modules of rank 2 with

the same ι. They are isomorphic over L if and only if their J-invariants are equal.

Moreover, every Drinfeld module ρ is isomorphic to a normalized one.

Proof : Let us set ρ and ψ as follows,

ρT = ι(T ) + g1τ + ∆1τ
2 and ψT = ι(T ) + g2τ + ∆2τ

2

where ∆1,∆2 6= 0 .

Firstly, suppose that ρ and ψ are isomorphic. By Definition 2.2.6, there exist an

element λ ∈ L× such that ρT ◦ λ = λ ◦ ψT . So

ι(T )λ+ g1λ
qτ + ∆1λ

q2

τ 2 = λι(T ) + λg2τ + λ∆2τ
2.
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This equality gives that,

g1λ
q = λg2 (*) and ∆1λ

q2

= λ∆2 (**)

By taking (q + 1)-st power of the both sides of the equality (*) and by looking at the

ratio of (*) and (**), one can see that their J-invariants are the same.

Now, suppose that they have the same J-invariants. i.e.

gq+1
1

∆1

=
gq+1

2

∆2

.

We try to find an element λ ∈ L× such that

g1λ
q = λg2 and ∆1λ

q2

= λ∆2.

Choose λ ∈ L× such that λq−1 = g2/g1. Then by using the equality for the J-invariants,

one can see that λq
2−1 = ∆2/∆1. Therefore ρ and ψ are isomorphic.

For the final part, we will show that we can find a normalized Drinfeld module ψ of

rank 2 with the same ι that is isomorphic to ρ. By the first part of the proposition, this

means that we try to find a normalized Drinfeld module ψ such that the J-invariants

of ψ and ρ are the same. Since L is algebraically closed, we can choose g2 such that

gq+1
1

∆1

=
gq+1

2

−1
.

Proposition 3.1.2 For any j ∈ L, there exists a normalized Drinfeld module ρ of

rank 2 such that J(ρ) = j.

Proof : Since L is algebraically closed, one can choose g ∈ L and ∆ ∈ L such that
gq+1

∆
= j. Now, take

ρ : A→ L{τ}

that is defined by ρT = ∆τ 2 + gτ + ι(T ). Then this Drinfeld module is the required

one. 2

Note that there is a normalized Drinfeld module in each of these isomorphism classes

by Proposition 3.1.2. In fact all isomorphism classes contain exactly q + 1 normalized

Drinfeld modules, except the class containing the Drinfeld module τ 2 + gτ + 1 with

g = 0, which contains only one normalized one.

Working with isomorphism classes is very cumbersome, so most of the time we will

work with normalized Drinfeld modules.

From now on, we use Drinfeld modules that send T to −τ 2 + gτ + 1. Note that ι

is defined by ι(T ) = 1.

Proposition 3.1.3 Suppose that φ is a normalized Drinfeld module such that

φT = −τ 2 + gτ + ι(T ).

where ι(T ) = 1. Then

ker ι = 〈T − 1〉.

12



Proof : Firstly; since ι(T ) = 1,

ι(T − 1) = ι(T )− ι(1) = 0.

Also, ι((T − 1)P (T )) = 0 for any P (T ) ∈ A because ι is a k-algebra homomorphism.

Hence ker ι = 〈T − 1〉 2

Therefore, our Drinfeld modules have finite characteristic T − 1.

3.2 Some Important Drinfeld Modular Curves

In this section we define some classical Drinfeld modular curves and exhibit equations

for them. These curves will apriori be defined over the field L (so the function fields

will have constant field L), but in all cases, they can already be defined over k.

3.2.1 X(1):

We have seen that isomorphism classes of Drinfeld modules are determined precisely

by the J-invariant and that every j ∈ L occurs as the J-invariant of an isomorphism

class. We can think of these j ∈ L as points on an affine line over L. So we have a

line with coordinate given as j and each point corresponds to an isomorphism class of

Drinfeld modules. The function field of this line will be given by L(j). This affine line

paramterizing isomorphism classes of Drinfeld modules is usually denoted by Y (1).

As is done customary, one adds a point at infinity to get a projective curve X(1).

The point at infinity does not really correspond to an isomorphism class, but can be

interpreted as corresponding to some distorted object.

Definition 3.2.1 X(1) := L ∪ {∞}.

It turns out that there is natural way to identify isomorphism classes of Drinfeld

modules of rank 2 with points on an algebraic curve. X(1) turns out to be a line. The

function field that is associated to X(1) is k(j) where j is transcendental over k. In

analogy with the classical theory of elliptic curves over C, the isomorphism class of

an elliptic curve is uniquely determined by the j-invariant of that elliptic curve. The

function field of X(1) is given by C(j) where j is transcendental over C.

3.2.2 Ẋ(1):

The curve Ẋ(1) parametrizes normalized Drinfeld module. A normalized Drinfeld

module is uniquely determined by φT = −τ + gτ + 1, hence can be determined by

specifying the value of g. Each g corresponds to a unique normalized drinfeld module.

So we can think of an affine line, with coordinate g, that parametrizes normalized

13



Drinfeld modules (each point on the affine line will correspond to a specific value of g

and hence to a particular normalized Drinfeld module). The function field of Ẋ(1) is

given by k(g). Since the normalized Drinfeld module φ, with φT = −τ 2 + gτ + 1 has

J-invariant gq+1/(−1), we see that k(g) is a degree (q + 1)-Kummer extension of k(j)

given by gq+1 = j.

3.2.3 Ẋ1(T) and its equation:

Ẋ1(T ) parametrizes normalized Drinfeld modules of rank 2 together with a T -torsion

point of the Drinfeld module.

If x be a T -torsion point of φ then

φT (x) = x+ gxq − xq2

= 0.

So

g =
xq

2 − x
xq

.

Here g determines the Drinfeld module φ and g can be written in terms of the T -torsion

point x. So g and hence the normalized Drinfeld module is uniquely determined by

the T -torsion point x, i.e. there is a unique normalized Drinfeld module that admits x

as a T -torsion point. Hence,

{(x, g) : −τ 2 + gτ + 1 is a Drinfeld module with T -torsion point x}

gives a plane model for the Drinfeld modular curve Ẋ1(T ). Here x and g satisfy the

relation g = (xq
2 − x)/xq. Since x already determines g the function field of Ẋ1(T ) is

k(x).

Now, we need a definition before continuing with other Drinfeld modular curves.

For understanding the information that is given by the parametrization of the Drinfeld

modular curve, we need to know the definition of a T n-isogeny from a Drinfeld module

to another. In this manner, we firstly give a proposition.

Proposition 3.2.1 If i ∈ L{τ} is an isogeny from φ to ψ then ker i is an A-submodule

of L under the A-module structure given by the Drinfeld module φ.

Proof : Let a ∈ A. Since i is an isogeny from φ to ψ, we have i ◦ φa = ψa ◦ i. If

x ∈ ker i i.e. i(x) = 0 then

i(a.x) = i(φa(x)) = i ◦ φa(x) = ψa ◦ i(x) = ψa(0) = 0

So φa(x) ∈ ker i. Hence ker i is a submodule under the A-module structure given by φ.

2

Proposition 3.2.2 For each n ∈ N, kerφTn is a free A/〈T n〉 module of rank 2.

14



Proof : Suppose that n = 2. The idea of the proof in the general case is similar

with this case.

Firstly, by Propostion 2.2.1 the additive polynomial φT 2 is an isogeny from φ to

itself. So by Propostion 3.2.1, its kernel is an A-submodule of L under the A-module

structure of φ. Since all elements of kerφT 2 are annihilated by T 2, the kernel of φT 2

becomes an A/〈T 2〉-module. The module action is naturally defined as follows,

(a+ 〈T 2〉).x := φa(x)

for any x ∈ kerφT 2 and a ∈ A. Since φT 2 is an isogeny from φ to itself, this action is

well-defined. Indeed,

T 2.φa(x) = φT 2(φa(x)) = (φa(φT 2(x)) = φa(x) = 0.

for any x ∈ kerφT 2 and a ∈ A. Note that since A is a principal ideal domain, any ideal

of A/〈T 2〉 is generated by one element. So A/〈T 2〉 is principal ideal ring.

Let x ∈ kerφT 2 be nonzero. Suppose that (a + 〈T 2〉).x = 0 for some a ∈ A. If

a is relatively prime with T 2, then by the Euclidean algorithm, we can find elements

a1, a2 ∈ A such that

a1T
2 + a2a = 1.

Then we obtain

x = 1.x = φ1(x) = φa1T 2+a2a(x) = φa1(φT 2(x)) + φa2(φa(x)) = φa1(0) + φa2(0) = 0.

So the only element in the kernel of φT 2 , that is annihilated by an element a ∈ A

relatively prime to T 2 is the zero element. This means that kerφT 2 is torsion free. By

the structure theorem of modules over principal ideal rings, kerφT 2 is free.

Now, if we think of φT 2 as a linearized polynomial, then its degree is q4. Also, since

ι(T ) = 1 i.e. ker ι = 〈T −1〉, this polynomial is separable. This means it has q4 distinct

roots. So kerφT 2 has q4 elements. Again by using the structure theorem for modules

over principal ideal rings, we see that

kerφT 2
∼= A/〈T 2〉 × A/〈T 2〉

as A/〈T 2〉-module, because it is torsion free. 2

Now, we give the following definition.

Definition 3.2.2 We say that the isogeny i is a T n-isogeny, if ker i is a free A/〈T n〉-
submodule of kerφTn of rank 1.
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3.2.4 Ẋ0(T) and its equation:

Ẋ0(T ) parametrizes normalized Drinfeld modules of rank 2 with a T -isogeny, i.e. an

A-submodule that is generated by T -torsion point x.

Again, let φ be a normalized Drinfeld module with ι(T ) = 1 given by

φT := −τ 2 + gτ + 1.

A-submodule which is generated by a nonzero T -torsion point x under the action of φ

is

{P (T ).x|P (T ) ∈ A} = {φP (T )(x)|P (T ) ∈ k}.

Since x is annihilated by T ,

{φP (T )(x)|P (T ) ∈ A} = {φa(x)|a ∈ k}.

Since φ is an k-algebra homomorpism,

{φa(x)|a ∈ k} = {ax|a ∈ k}. (3.1)

We identify the set in the equation (3.1) with the polynomial whose roots are exactly

all elements of the set in Equation (3.1)∏
a∈k

(T − ax). (3.2)

Lemma 3.2.3 ∏
a∈k

(T − ax) = T q − xq−1T.

Proof : Firstly, ∏
a∈k

(T − ax) = xq
∏
a∈k

(T/x− a).

Say S := T/x. We know that ∏
a∈k

(S − a) = Sq − S.

Then

xq
∏
a∈k

(T/x− a) = xq
∏
a∈k

(S − a) = xq(Sq − S) = xq(T q/xq − T/x) = T q − xq−1T.

Hence, ∏
a∈k

(T − ax) = T q − xq−1T (3.3)

2
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Proposition 3.2.4 If we set u := xq−1 for the coefficient of the polynomial in (3.3)

then τ − u is a T -isogeny of φ. i.e. there exists a Drinfeld module ψ of rank 2 such

that τ − u is an isogeny between φ and ψ with

ker(τ − u) ⊆ kerφT . (3.4)

Proof : If we consider the Drinfeld module ψ that is defined by

ψT = −τ 2 + (u− 1

uq
)τ + 1

then we see that τ − u is an isogeny between φ and ψ. In fact,

φT = (−τ − 1

u
) ◦ (τ − u)

and

ψT = (τ − u)(−τ − 1

u
).

Then

(τ − u) ◦ φT = (τ − u) ◦ (−τ − 1

u
) ◦ (τ − u) = ψT ◦ (τ − u).

Note that τ − u is the right linear factor of φT . So ker(τ − u) ⊆ kerφT . 2

If x is a T -torsion point, then the set in (3.1) corresponds to xq−1 because of the

stated identification and Lemma 3.2.3. Explicitly, the polynomial in (3.2) correponds

to the set in (3.1) and xq−1 comes from the polynomial in (3.2) as a coefficient. In fact

it uniquely determines the polynomial . So the function field of X0(T ) is k(xq−1).

Hence we have the following picture,

k(x) Ẋ1(T ) 3 (φ, x) where x ∈ kerφT

k(xq−1) Ẋ0(T ) 3 (φ, k.x)

k(g) Ẋ(1) 3 φ

3.2.5 Ẋ0(T2) and its equations :

Ẋ0(T 2) parametrizes normalized Drinfeld modules of rank 2 together with a T 2-isogeny

from the Drinfeld module.

Let φ(i) be a normalized Drinfeld module of rank 2 defined by

φ
(i)
T = −τ 2 + giτ + 1

for i ∈ {1, 2, 3}.
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Proposition 3.2.5 If i1 and i2 are T -isogenies from φ(1) to φ(2) and from φ(2) to φ(3)

respectively, then i2 ◦ i1 is a an isogeny from φ(1) to φ(3) with the property that

ker i2 ◦ i1 ⊆ kerφ
(1)

T 2 .

Proof : Since i1 is an isogeny from φ(1) to φ(2) and i2 is an isogeny from φ(2) to φ(3),

i2 ◦ i1 ◦ φ(1)
T = i2 ◦ φ(2)

T ◦ i1 = φ
(3)
T ◦ i2 ◦ i1.

This means that i2 ◦ i1 is an isogeny from φ(1) to φ(3).

Now take any element x ∈ ker i2 ◦ i1. Then i2(i1(x)) = 0. But i1(x) ∈ ker i2. Since

i2 is a T -isogeny from φ(2) to φ(3),

ker i2 ⊆ kerφ
(2)
T ,

so i1(x) ∈ kerφ
(2)
T . Then we get

0 = φ
(2)
T ◦ i1(x) = i1 ◦ φ(1)

T (x).

So φ
(1)
T (x) ∈ ker i1. We know that

ker i1 ⊆ kerφ
(1)
T .

because i1 is a T -isogeny. So φ
(1)
T (x) ∈ kerφ

(1)
T . Then we get that

φ
(1)

T 2 = φ
(1)
T ◦ φ

(1)
T (x) = 0.

Therefore,

ker i2 ◦ i1 ⊆ kerφ
(1)

T 2 .

Hence i2 ◦ i1 is an isogeny from φ(1) to φ(3) whose kernel is annihilated by the multipli-

cation by T 2 map given by φ(1). 2

Remark: Note that i2 ◦ i1 is not necessarily a T 2-isogeny, since its kernel might

not be a A/〈T 2〉-module of rank 1. In fact, since i1 is a T -isogeny from φ(1), we know

that there is an additive polynomial i′1 such that i′1 ◦ i1 = φ
(1)
T . Now it can be seen that

i′1 is an isogeny from φ(2) to a Drinfeld module, which is isomorphic to φ(1). Exactly

in the case that i2 = i′1 we would have that i2 ◦ i1 is just the multiplication by T map

given by φ(1) and hence has kernel, which is a free A/〈T 2〉-module of rank 2. It can

be shown that in all other cases (i.e. if i2 6= i′1) we have that i2 ◦ i1 is a T 2-isogeny (so

ker i2 ◦ i1 is a free A/〈T 2〉-module of rank 1).

Now we calculate the equation of Ẋ0(T 2).

If x1 is a T -torsion point of φ, then we know that

g1 =
xq

2

1 − x1

xq1
=
xq

2−1
1 − 1

xq−1
1

=
(xq−1

1 )q+1 − 1

xq−1
1

.
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By setting u1 := xq−1
1 we obtain

g1 =
uq+1

1 − 1

u1

.

By Propostion 3.2.4, τ − u1 is a T -isogeny between φ(1) and φ(2) where φ(2) is a nor-

malized Drinfeld module of rank 2 with

φ
(2)
T = −τ + g2τ + 1 = −τ 2 + (u1 −

1

uq1
)τ + 1. (3.5)

On the other hand, if we take a T -torsion point x2 of φ(2) then

g2 =
xq

2

2 − x2

xq2
=
uq+1

2 − 1

u2

(3.6)

by setting u2 := xq−1
2 . By using the equations (3.5) and (3.6), we get that

uq+1
1 − 1

uq1
= g2 =

uq+1
2 − 1

u2

. (3.7)

However as we have seen above, we need that the isogenies τ − u2 and τ − u1 need

to come together in a proper way in order to form a T 2-isogeny (i.e. their composite

should not give the multiplication by T -map)

By Equation (3.7), we see that u2 satisties

P (T ) := T q+1 − 1− uq+1
1 − 1

uq1
T ∈ k(u1)[T ]. (3.8)

If we substitute −1
u1

for u2 in the expression for g2 then we see that

uq+1
2 − 1

u2

=
(−1
u1

)q+1 − 1
−1
u1

=
1− uq+1

1

−uq1
=
uq+1

1 − 1

uq1

This means that −1
u1

is a root of P (T ). Note that this choice of root corresponds

exactly to the situation where (τ − u2) ◦ (τ − u1) is the multiplication by T -map, since

(τ − u2) ◦ (τ − u1) = (τ − (−1/u1)) ◦ (τ − u1) = −(−τ 2 + g1τ + 1). Hence for u2 we

should take any root of P (T ) but this one. By dividing P (T ) by T + 1
u1

, we obtain

P (T ) = (T +
1

u1

)(

q∑
i=1

(−1)i+1 T i

uq−i1

− u1).

Since u2 is a root of P (T ) we have,

q∑
i=1

(−1)i+1 ui2
uq−i1

− u1 = 0 (3.9)

So Ẋ0(T 2) has a plane model given by

{(u1, u2)|
q∑
i=1

(−1)i+1 ui2
uq−i1

− u1 = 0}
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The function field of Ẋ0(T 2) is given by k(u1, u2) with u1, u2 satisfying Equation

(3.9).

If one can take

g(X, Y ) :=

q∑
i=1

(−1)i+1 Y i

Xq−i −X (3.10)

to recursively define the following tower Ẋ0(T n).

3.2.6 The tower Ẋ0(Tn) :

We have seen above that by composing two T -isogenies we obtain an isogeny with

kernel contained in the kernel of the multiplication by T 2-map and that we need to

impose another condition, to ensure that the composition is a T 2-isogeny. Similarly by

composing n many numbers of T -sogenies and requiring that any two consequtive ones

don’t form together a multiplication by T map, we can obtain T n-isogenies. Conversely

any T n-isogeny is obtained in this way. More precisely we have the following,

Remark: Let φ(1), . . . , φ(n+1) be Drinfeld modules with T -isogenies

im : φ(m) → φ(m+1)

such that the composition of any two consequtive isogenies

im+1 ◦ im : φ(m) → φ(m+2)

is a T 2-isogeny for m = 1, . . . , n− 2. Then

in ◦ · · · ◦ i1 : φ(1) → φ(n)

is a T n-isogeny. Conversely any T n-isogeny can be written as a composition of T -

isogenies so that the composite of any two consecutive ones is a T 2-isogeny.

Now we see the tower Ẋ0(T n) is exactly the tower given by g(X, Y ) in Equation

(3.10).

Let m ∈ {1, . . . , n}. Set

φ
(m)
T := −τ 2 + gmτ + 1

If xm is a T -torsion point of φ(m), then we know that

gm =
xq

2

m − xm
xqm

=
xq

2−1
m − 1

xq−1
m

=
(xq−1

m )q+1 − 1

xq−1
m

.

By setting um := xq−1
m we obtain

gm =
uq+1
m − 1

um
.
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By Propostion 3.2.4, τ − um is a T -isogeny between φ(m) and φ(m+1) where φ(m+1) is a

normalized Drinfeld module of rank 2 with

φ
(m+1)
T = −τ 2 + gm+1τ + 1 = −τ 2 + (um −

1

uqm
)τ + 1. (3.11)

On the other hand, if we take a T -torsion point xm+1 of φ(m+1) then

gm+1 =
xq

2

m+1 − xm+1

xqm+1

=
uq+1
m+1 − 1

um+1

(3.12)

by setting um+1 := xq−1
m+1. By using the equations (3.11) and (3.12), we get that

uq+1
m − 1

uqm
= gm+1 =

uq+1
m+1 − 1

um+1

. (3.13)

However as we have seen above, we need that the isogenies (τ − um+1) and

(τ − um) need to come together in a proper way in order to form a T 2-isogeny (i.e.

their composite should not give the multiplication by T -map)

By Equation (3.13), we see that um+1 satisties

P (T ) := T q+1 − 1− uq+1
m − 1

uqm
T ∈ k(um)[T ]. (3.14)

If we substitute −1
um

for um+1 in the expression for gm+1 then we see that

uq+1
m+1 − 1

um+1

=
(−1
um

)q+1 − 1
−1
um

=
1− uq+1

m

−uqm
=
uq+1
m − 1

uqm

This means that −1
um

is a root of P (T ). Note that this choice of root corresponds

exactly to the situation where (τ − um+1) ◦ (τ − um) is the multiplication by T -map,

since (τ − um+1) ◦ (τ − um) = (τ − (−1/um)) ◦ (τ − um) = −(−τ 2 + gmτ + 1). Hence

for um+1 we should take any root of P (T ) but this one. By dividing P (T ) by T + 1
um

,

we obtain

P (T ) = (T +
1

um
)(

q∑
i=1

(−1)i+1 T i

uq−im

− um).

Since u2 is a root of P (T ) we have,

q∑
i=1

(−1)i+1u
i
m+1

uq−im

− um = 0 (3.15)

Hence the function field of the Drinfeld modular curve Ẋ0(Tm) over k is

k(u1, . . . , um)(um+1)

where g(um, um+1) = 0.
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3.3 X0(T
n) and the tower of Bezerra–Garcia

Alternatively, we can parametrize isomorphism classes rather than working normalized

Drinfeld modules. Propostion 3.1.1 gives that two normalized Drinfeld modules φ and

ψ

φT = −τ 2 + g1τ + 1

and

ψT = −τ 2 + g2τ + 1

are isomorphic if and only if

gq+1
1 = gq+1

2 .

When we have tried to find the equation of Ẋ0(T 2), we have obtained that

uq+1
1 − 1

uq1
= g2 =

uq+1
2 − 1

u2

.

Since we study with the isomorphism classes now, we have

(uq+1
1 − 1)q+1

(uq+1
1 )q

=

(
uq+1

1 − 1

uq1

)q+1

= gq+1
2 =

(
uq+1

2 − 1

u2

)q+1

=
(uq+1

2 − 1)q+1

uq+1
2

.

By denoting uq+1
i by Ui for i = 1, 2, we obtain

(U1 − 1)q+1

U q
1

=
(U2 − 1)q+1

U2

.

where U1 and U2 generate the functions field of X0(T 2). After some computaions we

get that,

(U1 − 1)q+1

U q
1

− (U2 − 1)q+1

U2

=

(
U1 −

1

U2

)(
1− 1

U q
1

−
(
U2 −

1

U1

)q−1(
U2

U1

− 1

U1

))
.

So (
U1 −

1

U2

)(
1− 1

U q
1

−
(
U2 −

1

U1

)q−1(
U2

U1

− 1

U1

))
= 0 (3.16)

Note that the first factor corresponds to the undesired case where the two isogenies

get together to form a multiplication by T -map.

Now, Equation (3.10) can rewritten as

U1 − 1

U2 − 1
=

(
U1U2 − 1

U1 − 1

)q−1

.

If we define V1 as

V1 :=
U1U2 − 1

U1 − 1

then we see that

U1 = V q−1
1 (V1 − 1) and U2 =

(V1 − 1)q

V q−1
1

.
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Therefore V1 is a generator of the function field of X0(T 2).

If we define

ξ1 := V1

then U1 and U2 can be written in terms of ξ1

U1 =
1− ξ1

ξq1
and U2 =

(1− ξ1)q

ξ1

.

If we use the generator V2 of the function field k(U2, U3) where U3 coming from the

isomorphism class of the third Drinfeld module then by similar calculations we get that

U2 =
1− ξ2

ξq2

with V2 := 1/ξ2. Therefore,

1− ξq1
ξ1

= U2 =
1− ξ2

ξq2
.

If we define the polynomial F (X, Y )

F (X, Y ) :=
1−Xq

X
− 1− Y

Y q

then F (X, Y ) defines recursively the tower of Bezerra–Garcia that attains the Drinfel–

Vlăduţ bound.
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