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Abstract

Computer-mediated communication, CMC, is a type of communication that occurs through
use of two or more electronic devices. With the advancement of technology, CMC has
started to become a more preferred type of communication between humans. Through
computer-mediated technologies, news portals, search engines and social media platforms
such as Facebook, Twitter, Reddit and many other platforms are created. In social media
platforms, a user can post and discuss his/her own opinion and also read and share other
users’ opinions. This generates a significant amount of data which, if filtered and analyzed,
can give researchers important insights about public opinion and culture.

Twitter is a social networking service founded in 2006 and became widespread throughout
the world in a very short time frame. The service has more than 310 million monthly active
users and throughout these users more than 500 million tweets are generated daily as of
2016. Due the volume, velocity and variety of Twitter data, it cannot be analyzed by using
conventional methods. A clustering or sampling method is necessary to reduce the amount
of data for analysis.

To cluster documents, in a very broad sense two similarity measures can be used: Lexical
similarity and semantic similarity. Lexical similarity looks for syntactic similarity between
documents. It is usually computationally light to compute lexical similarity, however for
clustering purposes it may not be very accurate as it disregards the semantic value of words.
On the other hand, semantic similarity looks for semantic value and relations between words
to calculate the similarity and while it is generally more accurate than lexical similarity, it
is computationally difficult to calculate semantic similarity.

In our work we aim to create computationally light and accurate clustering of short
documents which have the characteristics of big data. We propose a hybrid approach of
clustering where lexical and semantic similarity is combined together. In our approach,
we use string similarity to create clusters and semantic vector representations of words to
interactively merge clusters.

Keywords: clustering, twitter, summarization, suffix tree, semantic relatedness, data
mining
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1. Introduction

Data mining is the subject of extracting useful information from a set of data by using
filtering, clustering and classification methods. In recent years, big data analysis has become
a popular research area in the field of data analysis. A set of data can be classified as big
data if it has enormous volume, a continuous influx of data and contains varied content.
Due to its volume and velocity, big data cannot be analyzed by using conventional data
processing methods as these methods usually have high time complexities.

Twitter is a social networking service founded with the intention of sharing news and
opinions of people across the world in a summarized way. A registered user can send a
text message with a maximum length of 140 characters and this message is called a tweet.
Depending on the user’s preferences, a tweet can be read globally by anyone or by users
which are approved by sender to read his/her tweets.

Twitter has more than 310 million monthly active users [1] and generates 500 million
daily tweets [2]. By looking at the volume of tweets and daily influx, Twitter is one of the
big data sources. The data Twitter contains varies greatly from news, political debates,
popular culture to daily conversations, personal complaints, spam and advertising messages.
Although the voluminous and varied data can contain significant insights about society
which may be very beneficial to the research of social scientists and other related fields, the
same characteristics make it impossible to accurately analyze the data manually or even
automatically with conventional data processing methods. The reason for this situation is
that; aside from the volume, the velocity that tweets come is simply too fast and conventional
data processing methods do not scale well with this volume and velocity.

The data Twitter contains is user-generated and has varied content. The data contains
distinct tweets, but it can also contain duplicate tweets which do not contribute much
to analysis. One way of eliminating duplicate, similar tweets and reducing the number
of tweets necessary for analysis is clustering. Clustering is the task of grouping a set of
data together based on a similarity metric. By clustering tweets, it is possible to obtain
a more refined and distinct data and reduce the volume which in return reduces the time
consumed by data processing methods. However, not all document clustering algorithms
can be applied to tweets. Tweets have two distinct characteristics which differ them from
documents. First, they are very short and many document clustering algorithms which use
word-based similarity metrics will not work well with tweets since a tweet has a very small
number of words. Secondly, Twitter has no writing format, users can use informal language,
emoticons and abbreviations in their tweets and it makes semantic-based similarity metrics
behave poorly as they cannot find the word and therefore the semantic. In addition to that,
some document clustering algorithms cannot be used on Twitter data due to having high
computational complexity.

In our work, we propose a new tweet clustering algorithm which takes note of the char-
acteristics of Twitter data and uses them to obtain efficient and accurate clusters. Our
algorithm has two steps: In the first step we use lexical clustering based on string similarity
to cluster duplicate and similar tweets. The clustering technique is based on generalized
suffix trees and has a low time and space complexity. The first step eliminates excess data
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and creates representatives for clusters which we use in the second step with the combination
of word embedding to determine semantic relatedness between clusters. The second step has
a high time complexity; however, it can capture relations missed in the first step. Due to
informal language and abbreviations, semantic relatedness may not be accurate, therefore
we also present an interactive system based on semantic relatedness for users to improve the
clustering.

1.1. Motivation

Due to its enormous volume, it is difficult to obtain any useful information from Twitter
data without any processing or analysis. However, data processing algorithms, more specif-
ically clustering algorithms, generally have high time complexities which do not scale well
with big data.

Twitter is a hot topic in data analysis communities; the research in Twitter is mostly
focused on classification and topic detection. These fields have numerous publications, how-
ever there is little research on summarization and representation of data on Twitter [3] [4]
[5]. The publications about tweet clustering either miss semantic relations between tweets
or are not suitable for big data.

Despite the limited attention, summarization and representation of data is a topic equally
important to classification and topic detection as they provide significant insights about dis-
tribution and significance of topics. Another implicit advantage of a data summarization
algorithm is its ability to act as a preprocessing step for more complex data analysis al-
gorithms. Thanks to the reduction of data, data summarization algorithms allow complex
data analysis algorithms to run faster.

The motivation of this work is to develop a clustering methodology for short documents
which is able to create summarization and representation of Twitter data in a fast and
efficient manner. For this purpose, we propose a lexical clustering approach based on suffix
trees and complement it with word embedding, a semantic relatedness approach. The lexical
clustering part of our algorithm has linear time and space complexity and is able to create
clusters with representative labels, while the semantic relatedness part of the algorithms
merges clusters which are related but are not caught by lexical clustering.

1.2. Contribution

In this work, we provide a new hybrid algorithm for clustering tweets. The clustering
algorithm leads to reduction of data by creating clusters and representative labels for each
cluster. This reduction gives a summarization and general overview of data. Using this
overview and cluster distribution, topics mentioned in the data and the popularity of these
topics can be inferred. Another advantage of this reduction is that it can be used for
preprocessing step for more complex data analysis algorithms.

In the literature, the corporation of suffix trees into Twitter is a rarely studied topic. To
the best our knowledge, there are only two publications which incorporate suffix trees into
Twitter [6] [7]. Authors in [7] uses a different approach compared to our work and focus
on hot topic detection by using temporal and regional features, while authors in [6] propose
an adaptation of Suffix Tree Clustering algorithm [8] in Thai language. However, the direct
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adaptations of STC such as [6] is not suitable for English language as tweets are not suitable
for clustering word-by-word. In this work, our main contribution is to provide an adaptation
of a character-based suffix tree algorithm with a new heuristic function for optimization and
merging of clusters for Twitter domain. Our suffix tree clustering algorithm provides the
most common phrase for each cluster and these phrases generally consist of short and have
few words. We also use recently developed methodologies used in deep learning which are
called word embedding to improve the clustering results. Basic word embedding methods
adapt well to short phrases and this makes word embedding compatible with our suffix tree
clustering algorithm. Therefore, our work uses the benefits of semantics provided by word
embedding as well as syntactics provided by suffix trees.

2. Preliminaries and Background Information

In this section, we formally introduce required background knowledge which we use to
solve the problem of tweet clustering. Firstly, we introduce the concept of big data and its
characteristics. Secondly, we introduce suffix trees as we make use of this data structure
to create a lexical clustering method with a linear time and space complexity. We discuss
the construction, space and time-complexity of suffix trees and introduce Ukkonen’s Algo-
rithm, a suffix tree construction algorithm for constant-sized alphabets. Then, we introduce
word embedding which we use to find semantic relatedness between two clusters. Lastly,
we introduce the problem of Longest Common Subsequence which we use for evaluation
purposes.

2.1. Big Data
With the advance of technology, the ability to collect data from various sources has

increased tremendously. The size of the collected data has started to pass beyond the
capabilities of conventional data processing algorithms and a need for a new field where
suitable methods for data with huge volume and velocity is studied has arisen. The term
big data is pronounced firstly in 1998 [9] and the term became coined quickly for the research
of processing methods which handles large amount of data.

Big data generally represents a large volume of data with real-time flow and variety.
For this reason, the characteristics of big data is represented as 3Vs: Volume, velocity and
variety. The data of many social media platforms such as Facebook, Twitter are examples
of big data.

Due to its characteristics, the processing methods for big data require to have low time
complexities. The algorithms for big data can be classified in three sections: One-pass
algorithms, sampling algorithms and distributed clustering algorithms [10]. Our algorithm,
having linear time and space complexity, is a sub-member of one-pass algorithms

One-pass algorithms read input only once and process it immediately. They have O(n)
time complexity and generally require O(1) space. For example, CURE [11] is a one-pass
hierarchical clustering algorithm which uses random sampling for large databases.

Sampling algorithms use statistical methods to retrieve and shrink the data. The purpose
of sampling algorithms is to summarize the data by selecting a subset of points from the
data set. An analysis of sampling algorithms in Twitter can be found in [12].
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Distributed clustering algorithms use distributed systems and parallelization for com-
putation. The high complexity of clustering algorithms is compensated by high processing
power.

2.2. Suffix Tree

Suffix tree is a data structure which represents the suffixes of a given string. Suffix trees
provide linear time and space complexity for many string operations such as pattern and
regular expression matching, longest common, repeated and palindromic substring finding.
They are also used in the field of biology which requires pattern searching in sequences [13]
[14].

A suffix tree, as the name indicates, is a tree data structure. It has a root and each node
is connected to the root with a unique path using edges. Given a suffix tree constructed by
string S, each edge contains a non-empty substring of S. Given that |S| = n, the suffix tree
has n leaves and each path from root to a leaf represents a suffix of S.

Description of suffix trees can be made best alongside with suffix tries. A suffix trie is
also a tree data structure which stores all suffixes of a given string. A suffix trie and a
suffix tree has similar structures, however in comparison to a suffix tree, the edge of a suffix
trie contains a character of the string S, while an edge of a suffix tree can contain multiple
characters. A suffix tree is a compressed version of a suffix trie where only root, leaves and
internal nodes of the suffix trie which have branching (nodes which have more than one
child) are displayed.

Figure 1: A suffix trie and tree representation using string “vivid”

Figure 1 gives an illustration of a suffix trie and suffix tree with the same string vivid.
In both data structures paths from root to leaves form the suffixes of vivid. The branching
nodes in suffix trie are nodes which represent the prefixes vi and i. Suffix tree also has
these nodes, however other internal nodes of the suffix trie, the nodes with no branches, are
merged with the branching nodes or leaves of the suffix tree.

Other than the root and the leaves, each node on a suffix tree needs to have at least two
children. In a suffix tree there are a total of n leaves for |S| = n. This means there can be
at most n− 1 internal nodes and a suffix tree can have a maximum of 2n nodes. Therefore,
suffix trees have linear space complexity.
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The concept of suffix trees is firstly introduced in 1973 by Weiner [15]. Weiner proposed a
tree structure with linear-time and linear-space complexity for pattern matching. Later on,
various linear-time algorithms are proposed for suffix trees, [16], [17] and [18] being some
of the more important and prominent algorithms. McCreight’s algorithm [16] provides a
simplified construction algorithm, while Ukkonen’s algorithm [17] has an on-line property
and Farach’s algorithm [18] is the first suffix tree algorithm which is linear time for integer
alphabets.

In our work we use generalized suffix trees, a variety of suffix trees which accepts a set
of strings. Our dataset contains Twitter messages. We use Twitter messages which have a
fixed-sized alphabet and length. We use Ukkonen’s algorithm, because the algorithm can be
easily modified to construct generalized suffix trees and is optimal for fixed-sized alphabets.

2.2.1. Ukkonen’s Algorithm

Ukkonen’s Algorithm is a left-to-right suffix tree construction algorithm. The algorithm
reads the input from left-to-right and inserts the characters once at a time. In Ukkonen’s
algorithm, the suffix tree is constructed by adding on top of the suffix tree of prefixes: Let
S = t1t2...tn and Si = t1t2...ti where 0 ≤ i ≤ n and Si be a prefix of S. In the initial state
the algorithm has the suffix tree of S0 where only root exists. At each step, the algorithm
inserts tj to the suffix tree of Sj−1 to construct the suffix tree of Sj. The algorithm finishes
when symbol tn is inserted to the suffix tree of Sn−1 and when suffix tree of Sn, in other
words S, is constructed.

To describe Ukkonen’s algorithm, it is first necessary to introduce some notions and
explain the terminology in the paper. We will stick to terminology described in the original
paper [17], which explains the construction of suffix tree using a state-machine, to avoid any
confusion with other sources.

A suffix tree is a compressed suffix trie. All of the nodes in a suffix trie can also be found
in a suffix tree. The nodes in suffix trie, called states in original paper, can be present in the
suffix tree implicitly or explicitly. Root, leaves and internal nodes with more than one child
are presented explicitly in the suffix tree and these are called explicit states. Other internal
nodes are not present in the suffix tree, but they can be reached by using explicit states and
the information provided by edges. These nodes are called implicit states. An edge or edges
that are necessary to go from one state to another are called transitions. Boundary path of
a suffix tree is defined as the set of states which represent suffixes of the current tree such
as s1 = t1t2...ti, s2 = t2t3...ti, s3 ... si+1 = root for the suffix tree of Si.

In the light of given terminology, we define two functions: Transition function g and
suffix function f . Given state x, the transition function g is defined as g(x, a) = y for all
y = xa and the suffix function f is defined as f(x) = y for all x = ay where y and x are
states and a is a sequence of symbols of the alphabet.

Ukkonen’s algorithm is a left-to-right algorithm, it creates the suffix tree of Sj by adding
a new symbol to Sj−1. A naive approach is to find all states in the boundary path and update
them. However, Ukkonen’s algorithm defines two special states in the boundary path and
uses them for update: The smallest index in the boundary path which has a transition is
called active point and the smallest index in the boundary path which has the necessary
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transition for the newly added symbol is called end point.
The states until the active point are leaves in the suffix tree. Because leaves always

represent the suffixes of the string, the algorithm makes the transition to leaves an open
transition: A transition which grows automatically as a new symbol is added. This can be
done because Ukkonen’s algorithm uses pointers to represent strings and it gives the option
to assign the end pointer to an open value.

The states between active point and end point are the states in which a transition needs
to be added. These states can be explicit or implicit states. If a state is explicit, then a
new transition for the added symbol is created and a new state connected to the transition
is created. This newly created state is a leaf; therefore, suffix links are updated accordingly.
If a state is implicit, then it is first made explicit by creating a new state and then the same
steps are applied.

The states after end point already have a transition for the new symbol, therefore there is
no need for an action. These states are taken care of when a new symbol with no transition
is added and the end point is pushed back. To handle these states correctly, a symbol outside
of the alphabet is usually appended at the end of the input string.

The algorithm uses active points and suffix links to achieve linear time complexity. Active
points are represented by a reference pair which consists of an explicit state and the string of
the transition which leads to active point. To avoid unnecessary traversals and achieve liner
time, active points are updated using a method called canonize which makes the explicit
state in the reference pair as closest as possible to the active point.

Figure 2: Suffix tree construction using Ukkonen’s Algorithm for string “vivid”

Figure 2 gives an illustration of Ukkonen’s algorithm using string “vivid”. In the bound-
ary path, end points are represented by red and active points are represented by blue when-
ever they do not overlap with end points. The pseudo-code of Ukkonen’s algorithm can be
found in Appendix Appendix A.
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2.2.2. Generalized Suffix Tree

Generalized suffix tree is a suffix tree which is able to process multiple documents. In
general suffix trees, a unique and identifying symbol outside of the alphabet is devoted to
each document and these symbols are used as end symbols for the documents. In our work
we use an open-source generalized suffix tree implementation based on Ukkonen’s algorithm
[19]. In this implementation, each document has a unique id. Because a path from root to
a leaf represents a suffix, each leaf stores a set of ids. These ids belong to the documents
which contain the suffix that the path represents.

2.3. Word Embeddings

Word embedding is a technique used in natural language processing where words or
phrases are represented as a vector of real numbers. The technique of using vector repre-
sentation of words has been used since 2000s [20], however it has gained popularity 10 years
later, when word2vec [21], a toolkit for training and using word embedding is created.

Word embedding is an unsupervised learning technique over a large corpus of text. The
main idea is to create similar vector representations for words which are in a similar context.
Before 2010, it was achieved by using neural network architectures which had an expensive
computational cost of training over a large corpus. Later on, two new techniques which
have lower computational costs compared to neural network architectures are proposed. In
recent years, these two techniques became more predominant and popular in the field of
word embedding.

The first proposed technique is word2vec method. In this method, the vector represen-
tation of each word is learned by looking at the neighbor words. The algorithm updates
the vector representations of a word by looking at neighbor words in a window, making
the vector representations of words within the window more similar and of words outside
the window more distant. After many iterations, words with similar context start to have
similar vectors.

The second proposed method is Glove method [22]. The end result of Glove is similar to
word2vec in the sense that both create similar vector representations of words with similar
context. However, instead of learning, Glove uses dimensionality reduction to create vector
representations. It creates a co-occurrence matrix of word counts in each window and selects
features which best represent these co-occurrences in a lower dimension.

Word embedding represents the words in a lower dimension and also retain the semantic
relatedness between words. The arithmetic operations between vector representations give
semantic information about words. A famous example is that the arithmetic operation king
- man + woman gives a vector which is very similar to the vector representation of queen.

2.4. Longest Common Subsequence Problem

The longest common subsequence (LCS) is a long studied computer science problem.
Given a set of sequences, LCS is the longest sequence which exists in all sequences. It is
used as a similarity measure[23][24] and is used to determine and display differences between
documents.
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Finding LCS of arbitrary number of sequences is a NP-hard problem. However, LCS of
two sequences can be found in O(m ∗ n) time and space using dynamic programming where
m and n are the length of the sequences.

In our work we use LCS for evaluation purposes. Our work uses string similarity to
cluster the dataset and sequence similarity is an important criterion for determining the
quality of clusters for us. For this purpose, we design a similarity function between two
documents which uses the length of LCS.

2.4.1. Computing the length of LCS for two sequences

The problem of finding the length of LCS can be divided in overlapping subproblems:
Let X and Y be two strings and Xi = x1x2...xi be the prefix of X until ith character and
Yj = y1y2...yj be the prefix of Y until jth character, then the length of the LCS for X and
Y can be found with the following function:

LCS(Xi, Yj) =


0 if i = 0 or j = 0

LCS(Xi−1, Yj−1) + 1 if xi = ji

max(LCS(Xi−1, Yj), LCS(Xi, Yj−1)) if xi 6= ji
In order to find LCS for X and Y , it is necessary to compute LCS of the prefixes of X

and Y which breaks the original problem down to subproblems. From the LCS function it
can be seen evidently that the solution of subproblems is used more than once. All of these
properties makes the LCS problem a perfect candidate for dynamic programming approach:

Algorithm 1 Longest Common Subsequence Length Algorithm (X[1..m], Y[1..n])

1: C ← array(0..m, 0..n)
2: for i := 0 to m do
3: C[i, 0]← 0

4: for j := 0 to n do
5: C[0, j]← 0

6: for i := 1 to m do
7: for j := 1 to n do
8: if X[i] = Y[j] then
9: C[i, j] := C[i− 1, j − 1] + 1

10: else
11: C[i, j] = max(C[i, j − 1], C[i− 1, j])

Algorithm 1 computes the LCS for prefixes of X and Y and then stores the solution in
a table which can access later on when computing the LCS for (other prefixes of) X and Y .
The complexity of the algorithm is O(m× n) in both space and time domain which makes
it impractical while working on big data.

9



3. Related Work

Twitter is a social networking service which became the focus of many researchers since its
launch. With its launch, Twitter provided a new form of communication by microblogging,
gaining popularity quickly. Initially, the rising popularity and the new form of communi-
cation caught the attention of researchers, leading them to make publications about the
definition of Twitter in social media and its use cases [25] [26]. However, the real focus of
research circles in Twitter has quickly become the data Twitter possesses. With the rise of
its popularity, Twitter data contains a variety of information, making it a good source for
data and opinion mining. The research on Twitter has reached excessive amount and even
though we are unable to show all of them, we make an extensive literature review on topics
that are related to our work by showing prominent and state-of-the-art works.

The aim of our work is to create a representation of Twitter data by clustering. Our
work is directly connected to clustering, but it also has indirect connections to event detec-
tion, classification and spam detection algorithms. With statistical analysis, results of our
algorithm can be used for event detection. In classification algorithms, tweets are classified
depending on their polarity or pre-set labels and although our algorithm cannot make clas-
sification, the intra-cluster purity of clusters our algorithm generates is high in respect to
pre-set labels. Our algorithm is also able to create high purity spam clusters as a side-effect.

Event detection is the task of detecting and at times predicting events or topics using
Twitter. The research on this subject [27] [28] [29] [30] [31] [32] [33], differ from each other
in terms of the topics and methods they choose. As an example, the authors in [28], [29]
and [32] use topology between users for detection of disasters and political predisposition
in community, while the authors in [30] [31] use cluster-based methods to find event-based
information. On the other hand, the publication [33] is aimed to detect communities and
trend topics in Twitter.

Spam detection is the common research area amongst many social media platforms such
as Twitter, Reddit, Facebook and message exchange services such as forums and e-mails.
With its enormous volume, Twitter also contains messages from automated agents, whose
purpose is to advertise, promote or manage perception about specific topics. In academics,
spam detection in Twitter is generally seen as a binary classification problem where a tweet is
either a spam or not a spam and the spam detection algorithms originate generally from clas-
sification methods [34] [35] [36] [37] [38]. Spam detection aims to either identify automated
users by using features such as user creation date, username selection and posting patterns
or it aims to detect spam tweet by alienating spams based on content [39]. Our work is
able to collect most spam messages by using string similarity as an unintended consequence,
however it is not comparable to the state-of-the-art spam detection algorithms.

Classification is a very active topic in Twitter. Twitter has no classification system
which means that users do not select under which category their tweet falls to. The class
labels and classification tasks are defined by researches. A popular classification approach is
sentiment classification where a tweet is labelled as positive, neutral or negative. Sentiment
classification is a popular research topic in Twitter, there has been a lot of research on it;
[40], [41], [42], [43] and [44] being more known works. In addition to sentiment classification,
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there also works which pre-define labels and make classification accordingly [45].
Clustering is a task of grouping similar documents in a document set. Traditional clus-

tering algorithms such as K-means, DBScan or hierarchical clustering do not work very well
in large datasets which contain undetermined number of clusters such as Twitter. However,
in Twitter, users may talk about similar topics, give similar responses or retweet each other,
making Twitter data a good platform for clustering. Because of that, clustering algorithms
specialized for Twitter are developed. Like classification, clustering is also a popular research
area in Twitter. Twitter clustering algorithms can be categorized in many aspects such as
methodology, complexity or cluster definition. In our work, we differentiate clustering algo-
rithms by using their similarity metrics and roughly divide in two parts: Lexical similarity
and semantic similarity.

Although there are slight variations on the scope of the definition of lexical similarity,
we define lexical similarity as a degree which measures how syntactically similar the words
between two documents are. Lexical similarity between documents in Twitter is usually ex-
amined by using Named Entity Recognition (NER) [46] [47] [48]. There are other clustering
approaches which use genetic algorithms [49] or word occurrences as a similarity measure
[6]. The purpose of lexical similarity is to find similarities between documents without using
the semantic context of words.

Semantic similarity is a measure of degree which calculates the similarity of documents
by looking at the context of each word and their contextual relations to each other. In
semantic similarity, words which can be interchanged with each other are close to each
other. Semantic similarity is usually used in short-document clustering along with lexical
similarity [50] [51]. Semantic similarity is also used in Twitter in conjunction with lexical
similarity at both classification [52] [53] and clustering tasks [7].

For tweet clustering, NER-based approaches require training in a domain to correctly
recognize entities, however because of informality and abbreviations, general NER models
have problems recognizing tweets using informal language. They require domain-based semi-
supervised training in Twitter, however Twitter is a changing and evolving platform where
everyday different topics are discussed, making domain-based NER models substandard.

Calculation of semantic similarity between documents is usually a non-linear operation,
which makes semantic clustering unsuitable for large amounts of data. In Twitter, semantic
similarity and semantic relatedness is usually used in conjunction with other processing
methods. In the field of clustering and topic retrieval, [7] is one of the hybrid approaches
in Twitter domain. [7] also uses suffix tree as a basis for clustering. The difference between
our work is that they are interested in the first k popular topics generated in Twitter and
use other features such as temporal and tag data to enhance their clustering, while we are
interested in all clusters in data as we aim to obtain a summarized representation of data
and use semantic relatedness to enhance our clustering.

A part of our algorithm, lexical clustering, is based on suffix trees. There has been a
lot of research on suffix trees and clustering, Zamir’s Suffix Tree Cluster algorithm [8] being
the center of them. Zamir’s STC algorithm is a linear time clustering algorithm which is
based on phrases that are common in a group of documents. There are many variations of
STC algorithm [54] [55] [56] [57], including semantic variations [58] [59]. These clustering
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algorithms are generally used for clustering web documents on search engines. They do
not work very well with Twitter data, because they use phrase similarity for clustering and
Twitter data is too short for word-by-word clustering analysis. There is currently only one
study in Twitter using suffix trees and it uses Zamir’s algorithm as basis and employs a
merging algorithm for Thai tweets [6].

One of our main contributions in this work is our adaptation of suffix tree clustering for
Twitter, therefore it is significant to stress out the differences between state-of-the-art suffix
tree algorithms and ours. Current suffix tree clustering algorithms use Zamir’s STC and
constructs the suffix tree using words as the smallest unit, treats nodes as a cluster, rank
the nodes, take the top k of nodes and merge with other nodes to obtain top clusters. The
constraint of retrieving k clusters is to keep the algorithm in linear time. In our algorithm,
we aim to retrieve every cluster which suffix tree can generate. We can do it in linear time
thanks to the property of our document-set having fixed size. Although the base of our
algorithms show similarity because both algorithms see nodes as cluster representatives, we
construct our suffix tree using characters to capture word variations and employ specific
heuristics for character-based analysis. Due to this, our constraints for cluster membership
and our overlapping algorithms differ compared to Zamir’s algorithm, creating a new suffix
tree clustering algorithm specifically designed for Twitter.

With its rising popularity, word embeddings is also a method which is used in Twitter
tasks. In Twitter, word embeddings are generally used for classification tasks which focuses
on sentiment classification such as [60], [61] and also other classification tasks like [62], [63].
Among the research which uses word embeddings, [64] has the most similar approach to
our work, as it uses a hybrid approach using tf-idf and word embeddings. [64] is evaluated
with Wikipedia and Twitter data. It performs well on Wikipedia, however the error rate on
Twitter is very high due to insufficient number of words in each tweet necessary for tf-idf.

4. Methodology and Problem Definition

In this section we explain and discuss our method for tweet clustering. Our algorithm
is a hybrid approach which clusters large data sets of tweets using string similarity and
merges them using semantic relatedness. We divide the section in three subsections: First,
we make a formal problem definition for our work. Then, we explain lexical clustering and
lastly, we talk about interactive merging part of our algorithm which is based on semantic
relatedness. We discuss optimizations, space and time complexity of each part in their
respective subsections.

4.1. Preliminaries and Problem Definition

It is impossible to manually analyze Twitter data due to its enormous volume and ve-
locity. Twitter contains significant amount of information about multitude of topics. In
order to reveal these insights, there is a need for reduction and summarization of data for
representation and further processing. Clustering is a suitable method for this task.

In this work, we are interested in the textual representations of tweets. We define a
tweet, t, as a sequence of characters that a user sends where |t| is the length of the sequence
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of the characters. Given two tweets ti and tj, we define common substrings of ti and tj as a
string which occurs in both tweets. We use common substrings in our similarity calculations
for cluster creation. We find common substring of tweets with the help of a suffix tree. The
path from root to each node in a suffix tree represents a unique substring and we define this
substring as the pathString of a node where |pathString| is the length of the substring.

Formally, given a set of tweets T = {t1, t2, ..., tn}, we would like to create a set of clusters
C = {c1, c2, ..., ck} such that the length of the common substring of tweets inside a cluster
is above a threshold. We define the common substring of all tweets in the cluster as the
cluster label and this label represents the cluster. With the condition that k << n, we aim
to obtain a summarization of data which allows us to gain insights easier about Twitter
data.

4.2. Lexical clustering

In lexical clustering, we use a string-based similarity to cluster duplicate or similar en-
tries. We propose an algorithm with linear space and time complexity which determines the
similarity based on common substrings between tweets. In our algorithm, initially we do
preprocessing to reduce the noise in tweets. Then, we create a generalized suffix tree and
create clusters using the nodes of the suffix tree. We eliminate clusters with high correlations
and eliminate overlapping. At the end, we create representative labels for clusters and finish
lexical clustering.

4.2.1. Preprocessing

Twitter data is a data generated by users all around the world without any specifications.
The structure of the data varies greatly and is depended on user: It could be written in
perfect English, all in lower cases or upper cases, different punctuation marks or different
spacings could be used in tweets. We use string similarity for lexical clustering and these
variations may cause the algorithm to fail to recognize similar tweets with different vari-
ations; therefore, there is a need to standardize the Twitter data as much as possible to
obtain best results.

Tweets often contain many words which have no clear semantic context. Links, user-
names, retweet tags and hashtags are some of the examples of such words. Our method
relies on string clustering and these words, when present in large quantities, may skew the
clustering to center around them as tweets have a short length. These words are removed
during the preprocessing phase. In addition to them, words with high document frequencies
in the data set we are clustering are also removed from documents, because they skew the
clustering to from big clusters, overshadowing more distinct and meaningful clusters.

The preprocessing phase for Twitter data has the following steps:

• We find the document frequency of each word and remove words which are above a
certain threshold from tweets

• We remove usernames, hashtags, retweet tags, punctuation marks and links from
tweets as they have no semantic value and influence cluster selection process nega-
tively.
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• We transform all tweets to lower case and adjust white spaces

• We remove tweets which have less than 5 characters after removing words with no
semantic

4.2.2. Suffix tree Construction

After preprocessing, the next step is to create a structure which represents all common
substrings between tweets. For this purpose, we use a generalized suffix tree. Each node in
the suffix tree represents a substring of a tweet or multiple tweets and each leaf contains the
ids of tweets which contain the string the leaf represents. The set of tweet ids of each node
can be found by aggregating the tweet ids from descendant leaves.

For efficient clustering, we need to store two more variables in suffix tree nodes. Firstly,
we need to use the string each node represents, however node strings are not stored in nodes
for space efficiency. In order find a node string, we can try every possible path from root
to every node until the node we are looking for is found, or we can traverse in a bottom-up
manner starting from node until root. The first option is costly, while second one is not
possible in a one-directional suffix tree. Therefore, during construction process, we add a
link from each node to its parent and make the suffix-tree bi-directional. Secondly, we will
also need to access the length of node strings frequently. It is not efficient to recreate node
string each time the length is required, therefore we create a variable to store the length
of the string and calculate it during the suffix tree construction phase. The calculation is
trivial, as a node string is a combination of the parent node string and the string of the edge
which connects the parent to the node.

4.2.3. Cluster Creation

We define a tweet to be similar to another tweet, if the ratio of their common substring
to their length is over a certain threshold. Each node in the suffix tree represents a string
and a set of tweets contains this string which makes it a common substring between the
tweets in the set. Therefore, each node is actually a candidate for a cluster. Given the node
n, let the cluster created by n be cn, then a tweet is a member of the cluster cn if:

• Tweet contains the pathString of node n

• |n.pathString| / |tweet| > thrCluster, where thrCluster is a user-defined threshold.

We create clusters by traversing each node, finding their id sets and checking their ratios
against thrCluster.

4.2.4. Overlapping Cluster Elimination and Merging

In the suffix tree, the id of a tweet can exist in multiple nodes. This situation implies that
a tweet can exist in multiple clusters. In clustering, if an object belongs to multiple clusters,
it is called overlapping. The clusters we obtain after last step are overlapping clusters.

Overlapping clusters are not inherently bad, however clusters created by nodes of suffix
tree have high correlation and this causes many clusters with similar contents. In order to
reduce the amount of clusters and achieve data compression, we eliminate overlapping.
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To remove overlapping, we initially sort clusters by their size. We flag the tweets starting
from the biggest clusters. Then, we proceed to the smaller clusters and if a tweet is flagged,
then we remove the tweet from the smaller cluster.

During the overlapping elimination process, there are two special cases. Our observations
show that if the majority of tweets in a cluster is flagged and removed by a single cluster,
then the remaining tweets in the first cluster is most likely similar to the tweets in the second
cluster and can be merged into the second cluster. For this reason, if a cluster contains more
than 80% of the tweets of the other cluster, we merge these two clusters together.

The second case is more elementary. If a cluster is not merged with another cluster and
has only one tweet as an element, then this cluster is removed, since a cluster with only one
element in not a cluster anymore.

Algorithm 2 Overlapping Elimination and Merging (clusters[0 ... m]))

Require: clusters is the list of clusters and are sorted based on their size
Require: n is the total number of tweet ids

1: flagMask ← array(0...n)
2: for i := 0 to n do
3: flagMask[i]← −1

4: for i := 0 to m do
5: indexMap← array(0...n)
6: clusterSize← |clusters[i]|
7: for index in clusters[i] do
8: if flagMask[index] = −1 then
9: flagMask[index]← i

10: else
11: cluster[i]← cluster[i] \ index
12: cIndex← flagMask[index]
13: indexMap[cIndex]← indexMap[cIndex] + 1

14: (cIndex, count)← Retrieve the index with the most occurrence from indexMap
15: if count > clusterSize ∗ 0.8 then
16: clusters[cIndex]← clusters[cIndex] ∪ clusters[i]
17: else if |cluster| < 2 then
18: clusters← clusters \ clusters[i]
19: Mark indices left in cluster as -1 in flagMask

4.2.5. Cluster Labeling

At the end of lexical clustering process, we create representatives for clusters. Originally,
clusters do not have labels, however our clustering method groups tweets with a common
substring together, making the substring a perfect representative for cluster. We use bi-
directional suffix tree to traverse from the node of the cluster to root and assign the node
text as the label of cluster.

In the next phase of the clustering, we use word embeddings to find semantic relatedness
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between clusters. For this purpose, we use cluster labels to represent clusters, however the
start and end of the cluster labels may contain incomplete words and word embeddings may
not recognize incomplete words. To complete incomplete words, we take a sample tweet
from cluster which contains the label and complete the beginning and end of the label.

4.2.6. Complexity Analysis

Our algorithm is proposed with the intention of clustering tweet sets. Therefore, when
analyzing the space and time complexity, we assume that the maximum length of documents
which are being clustered is fixed and can have a maximum of 140 characters. Our complexity
analysis is based on the total number of characters in the dataset.

We first start with the space complexity. Our algorithm is based on a generalized suffix
tree. Suffix trees have linear space complexity. Given a string with length n, a suffix tree
created by this string can at most have 2n nodes and 2n−1 edges. In case of the generalized
suffix tree, given a set of documents S = {s1, s2, ..., sn}, the tree can have at most 2∗

∑n
i=0 |si|

nodes.
In comparison with suffix trees, generalized suffix tree stores the indices of it documents

in its leaves. A document can have multiple suffixes and accordingly the index of a document
can be in multiple leaves. This situation may create an overhead for the tree. In our input
set, length of documents is limited to 140 characters; therefore, a document can have a
maximum of 140 suffixes. This implies an index can be present at most in 140 leaves, making
the overhead of storing indices at most 140n, given that n is the size of the document set.
Thus, the complexity of storing indices is linear.

Aside from generalized suffix tree, we also create clusters and store indices of documents
inside clusters. Indices in clusters come from nodes and at worst-case, each node is going to
be represented by one cluster and each index in a node will be stored in a cluster. Therefore,
in order to compute the space complexity of clusters, we have to find the total number of
indices of documents in the suffix tree. For this purpose, we will dissect the tree level by
level: At the level of leaves, there can be at most 140n indices. As we go up, the overlapping
of indices will increase and each level will contain less indices. At the top level, root, there
are exactly n indices. The total number of indices in each level can be formulated as:
140n+

∑h−1
i=1 min+n, where 1 ≤ m1 ... mh−1 ≤ 140, mi is the overlapping constant in level

i and h is the height of the tree. The height of a suffix tree is determined by the longest
length of a suffix and with the length constraint, the height can be at most 140. By relaxing
our summation formula, we obtain:

∑140
i=1 140n + n = 19461n which is linear, albeit with a

high coefficient.
We analyze the time complexity of the algorithm step by step. In the first phase, pre-

processing, two iterations over the set of documents are made: In the first iteration we
remove words with no semantic significance, make documents lower case, arrange white-
spaces and create a term frequency list. In the second pass, terms with high frequencies are
removed from tweets. Operations in both iterations are constant time operations and the
preprocessing phase has linear time complexity.

In the second phase, generalized suffix tree is constructed based on Ukkonen’s algorithm
which has linear time complexity.
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In cluster creation phase, we retrieve the index set of each node and make a threshold
check for each document in the index set for cluster membership. The thresholding check is
a constant time operation and the number of times the check is done is equal to the total
number of indices in each node. As the total number of indices in each node has linear space
complexity, the total number of checks is done in linear time. The retrieval of indices of a
node is done by traversing from the node to its descendant leaves. At root, the retrieval is
done by traversing all nodes, while at leaves the retrieval is done instantly. To calculate the
complexity, we analyze the tree again level by level. Let ki be the number of edges going
from height i to i− 1, then the recurrence function for retrieval of nodes at height h is:

T (h) = kh ∗ T (h− 1) and T (1) = 1
Telescoping the recurrence function, we obtain: T (h) =

∏h
j=2 kj which represents all of

the nodes in the tree when h is equal to height of the tree.
We can calculate the number of nodes at each level by using edges. Let h be the height

of the tree, then at height h−1 there are kh nodes, at height h−2 there are kh ∗kh−1 nodes.
Using edge information, we define a function to calculate the number of nodes at each level:
n(i) =

∏h
j=i+1 kj

Using n(i) and T (h), the complexity of retrieval of indexes of each node is:

R(n) =
h∑

i=1

n(i) ∗ T (i)

=
h∑

i=1

h∏
j=i+1

kj ∗
i∏

j=2

kj

=
h∑

i=1

h∏
j=2

kj, where
h∏

j=2

kj is at-worst case 2n, which leads to:

=
h∑

i=1

2n

= 2hn and because h ≤ 140→ R(n) ⊂ O(n)

The overlapping elimination phase makes one iteration over clusters. In each iteration,
indices inside a cluster is taken and checked whether it is flagged. The flagging operation
is a constant time operation and the amount of times it takes is equal to total number
of indices. As discussed before in space complexity analysis, at the worst-case, the total
number of indices in the set of clusters 19461n, which is linear.

Cluster labeling is an operation where the text a node represents is constructed from
suffix tree. The operation is string-length based and because length is limited to 140, it is
a constant-time operation. At the worst-case, the operation is done for each node, which
makes this phase linear.

17



4.2.7. Optimizations

The complexity analysis subsection demonstrates us that with limited document-length,
the algorithm has both linear space and time complexity. The linearity, however, comes with
very high coefficients. This makes the algorithm slow and non-interactive in practice. We
make two observations about the algorithm: Firstly, our experimental evaluations show that
critical steps of the algorithm are the cluster creation and overlapping elimination phases
which depend on the size of the processing nodes and secondly, we create many redundant
clusters in the cluster creation phase which are removed during overlapping elimination
phase. To reduce the redundancy, we use a heuristic to detect overlapping clusters and
reduce the number of nodes which are processed during cluster creation and overlapping
elimination phase, making the algorithm run faster. To achieve this, we offer a new phase,
elimination of redundant nodes which operates after preprocessing phase and a couple of
optimizations which lead to the decrease of the number processing nodes and make both
cluster creation and overlapping elimination phase run faster.

4.2.8. Duplicate Elimination

Twitter data, even after preprocessing, is a data with many variations for string simi-
larity detection. These variations come from users who post the same content with slight
differences or users who retweet other users. The variations cause different substrings and
all of these substrings are represented at a node in a suffix tree. From these nodes similar
clusters are created and these clusters are eliminated and merged in the overlapping phase.
In our algorithm, we define these nodes as duplicate nodes. Our observations show that,
most of the duplicate nodes have similar patterns which can be used for early detection
and elimination. Elimination of duplicate nodes leads to a faster clustering and overlapping
process.

Duplicate nodes can be observed mostly between nodes with ancestry relations. An
example would be the node which has the string “palin asks why muslims hate peanuts”
and its parent node which has the string “palin asks why muslims hate pea”. Both nodes
target the tweets with similar content: the questioning of palin about muslims and peanuts.
The branching from parent node occurs due to retweeting, the sibling node of the node has
the string “palin asks why muslims hate pea...” which comes from a retweet and is the
truncated version of the content due to character limitation.

At occurrences where branching occurs due to retweet or small variations, mostly one of
the child nodes contains the majority of the tweets and other nodes represent the variations
which are the minority. We use this pattern to determine duplicate nodes: We define a
threshold thrSize and check a node and its ancestors. If there is a burst on the size of index
sets between a node and its ancestor over the threshold, then they are likely not duplicates.
If the burst is under the threshold, then they are labelled as duplicates. It has to be noted
that on ancestors where tweets with two different contents are merged, the burst is usually
large and differentiable.

In the duplication elimination phase, we traverse the suffix tree in a reverse breadth-first
manner starting from leaves. We use prefix and suffix ancestry to label a node as duplicate.
Using thrSize, we check the ancestors of the node until a satisfying burst is observed. When
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we observe the burst and find the non-duplicate ancestor, we label all nodes between the
node and that ancestor as duplicate nodes as the burst is not enough for these nodes. To
determine whether the node is duplicate, we check string length between the node and its
non-duplicate ancestor, if the ratio is below a threshold, then the node is also labeled as
duplicate.

Each ancestor node contains the tweets contained in its descendants. Therefore, when
a node is labeled as duplicate, as long as it has a non-duplicate ancestor, the tweets in the
duplicate node can be represented in its ancestor. However, as we visit ancestors of a node,
the length of the string of ancestor nodes decreases which may make the threshold check
in cluster creation phase fail for tweets in the duplicate nodes. Therefore, we create new
variable and store the maximum string length of the descendant node in the non-duplicate
node and use this variable for threshold check.

Algorithm 3 Duplicate Elimination based on suffix ancestry(nodes[0 ... m]))

Require: nodes is the list of nodes in suffix tree traversed in breadth-first
1: for i := m to 0 do
2: suffix← nodes[i].suffix
3: indexThreshold← nodes[i].indexSize ∗ thrSize
4: while suffix.indexSize < indexThreshold do
5: suffix.suffixDuplicate = true
6: suffix← next suffix ancestor

7: if nodes[i].suffixLength is not initialized then
8: nodes[i].suffixLength← |nodes[i]|
9: suffix← first suffix ancestor which is not suffixDuplicate

10: stringThreshold← nodes[i].suffixLength ∗ thrString
11: if |suffix.text| > stringThreshold then
12: nodes[i].suffixDuplicate = true
13: suffix.suffixLength← max(nodes[i].suffixLength, suffix.suffixLength)

Algorithm 3 is the base algorithm for duplicate elimination based on suffix ancestry. The
same algorithm with different variables is also used for prefix ancestry duplicate elimination.

Experimentation results show that a threshold value around 1.2 is a good choice for
thrSize and a threshold value around 0.8 is a good choice for thrString.

4.2.9. Optimized Cluster Creation

With the addition of duplicate elimination phase, we update the process of selecting
nodes for each cluster. Instead of looking at each node, we look at nodes which are not
marked duplicate by their prefix or suffix ancestry. In addition to that, we also make small
optimizations in this phase: If the index set of a node is completely added to a cluster, then
the descendant nodes of this node does not need to be investigated, as the clusters created
by these nodes will be eliminated in the overlapping elimination phase. Because of that,
we traverse the suffix tree in a breadth-first manner, check for such nodes and mark their
descendants.
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Algorithm 4 Cluster Creation(nodes[0 ... m], tweets[0...n]))

Require: nodes is the list of nodes in suffix tree traversed in breadth-first
Require: tweets is the list of preprocessed tweets

1: clusters ← ()
2: for i := 0 to m do
3: if parent or suffix is inACluster then
4: nodes[i].inACluster ← true
5: else
6: if !(nodes[i].prefixDuplicate && nodes[i].suffixDuplicate) then
7: cluster ← ()
8: nodeLength = max(nodes[i].suffixLength, nodes[i].prefixLength)
9: for index in nodes[i] do

10: if nodeLength > |tweets[index]| * thrCluster then
11: cluster ← cluster ∪ index
12: if |cluster| > 1 then
13: clusters ← clusters ∪ cluster
14: if |cluster| ≥ |nodes[i]|-1 then
15: nodes[i].inACluster ← true

4.3. Interactive Merging

After lexical clustering we obtain clusters of tweets which have similar contents, however
there may be tweets which can convey the same content with different words. These tweets
may be assigned in different clusters, because in lexical clustering, tweets are clustered based
on their string similarity, disregarding their semantic meanings. If these clusters share similar
contents, they have to be merged together and lexical clustering is not sufficient for this task.
Therefore, we introduce a new step after lexical clustering where users can merge clusters
based on semantic relatedness.

In interactive merging, we use semantic relatedness to determine clusters which can be
possible candidates for merging. For this purpose, we use cluster labels. We calculate the
pairwise semantic relatedness of clusters by using average word embeddings of each cluster
label and display the score to user for reference. Depending on the content of cluster labels
and relatedness score, the user makes as decision for merging of clusters. The process of
displaying clusters continues until the user stops or no new cluster is found for merging.

4.3.1. Semantic Relatedness Calculation

Semantic relatedness is a degree which measures how related the meaning of two or more
words are. It is generally calculated by investigating how often words are used together
in a large corpus. An example for semantic relatedness would be “bus” and “road” or
“driver”.

Due to its window training method, the vector representations obtained by word embed-
dings retain their semantic relatedness. To compute semantic relatedness between labels,
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we use word embeddings. To obtain a normalized score, we take the average of word em-
beddings of each label and use cosine similarity to obtain a relatedness score. Given two
clusters ci and cj, the relatedness score is:

rScore(ci, cj) = cosinesimilarity(
li
|li|

,
lj
|lj|

) =
1

|li||lj|
∗

∑d
k=0 likljk√∑d

k=0 l
2
ik

√∑d
k=0 l

2
jk

For word embeddings model, we use Google’s pre-trained model [65]. The model is
trained over for 3 million words and phrases using the data obtained by Google News. The
dimensionality of each vector in the pre-trained model is 300.

4.3.2. Complexity Analysis

In the interactive design phase, we select k clusters from all clusters and calculate pairwise
relatedness score. The pairwise calculation and storage of the relatedness score require
quadratic time and space complexity, making the complexity O(k2). On default, we set k
to 100 which is the average number of clusters which can be shown to user without having
visual crowdedness. This makes the time and space complexity negligible, despite being
quadratic.

5. Interactive System Design

For the purpose of interactive merging, we design a graphical user interface using JavaScript
and Java Servlets. Our implementation is divided in two sections: Client and server side.
In the client side, the user can upload the data, adjust threshold parameters, display and
download cluster results, while in the server side the algorithm is run using Java and the
communication is done using Servlets.

5.1. Client Side Implementation

The interface in the client side has two pages: Lexical clustering and interactive merging
pages. In the lexical clustering page, the result of the lexical clustering is shown along with
a bubble and bar histogram. In addition to histograms, the user can adjust parameters for
lexical clustering send into server for re-clustering.

In the interactive merging phase, the semantic relatedness of clusters is shown on a wheel.
It is not possible to display all clusters on the wheel; therefore, we select k clusters which
has a certain amount of words for meaningful relatedness calculation.
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Figure 3: Lexical clustering GUI when Charlie Hebdo data is used

Each cluster is represented on the wheel by its label and the connection between clusters is
presented as a path between the labels around the wheel. It is possible to adjust the threshold
for displaying connections which is a masking operation on the semantic relatedness matrix.
It is also possible to change parameters for cluster display which results to the recalculation
of semantic matrix in server.

Figure 4: Interactive merging GUI when merging a cluster, using Charlie Hebdo data

5.2. Server Side Implementation
We make the main computations of the algorithm such as lexical clustering and semantic

relatedness calculation in the server side. As we have a client-server system where multiple
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clients can connect to server, we assign each client a session id which is valid during the
duration of his/her usage. When a client uploads data to the server for clustering, the server
processes the data on memory and sends back the cluster results. However, the data may
be necessary for re-clustering or parameter adjustment, for further processing it needs to
stay in a persistent state. In file system, we open a temporary folder associated with the
clients session id and serialize the suffix tree inside the folder. When a further processing is
required, the suffix tree is deserialized and the lexical clustering process is rerun starting at
cluster creation phase.

The time required for the calculation of semantic relatedness matrix is too long for inter-
active systems. Therefore, we calculate semantic relatedness matrix using an asynchronous
thread and serialize the matrix. Another thread waits for this serialization when it is done,
it deserializes the matrix and sends it to client side. The mutual exclusion between threads
is done by mutexes.

Figure 5: Design of server side implementation

6. Experimental Evaluation

In this section we will talk about experimental evaluations done on our algorithm. We
evaluate our algorithm using four different datasets taken from Twitter Streaming API which
are about Charlie Hebdo, Christmas, NBA and Trump. Each dataset contains more than
15.000 tweets.

Given a dataset D = {t1, t2, ..., tk}, we create a set of clusters C = {c1, c2, ...cn} such that
every cluster ci contains at least two tweets. During the lexical clustering, we set thrSize
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to 1.2 and thrString to 0.8 use these values for evaluation. In the experimental evaluation,
we measure the quality of clusters by using intra-cluster similarity, class validation and
compression ratio. We use intra-cluster similarity for lexical clustering, class validation for
interactive merging and compression ratio to measure the summarization rate of the data.
We perform several experiments to find the optimum intra-cluster similarity, class validation
and compression ratio values.

6.1. Intra-cluster Similarity

Intra-cluster similarity is a degree which measures how similar tweets inside a cluster
are. We use Longest Common Subsequence (LCS) as the basis for intra-cluster similarity
and calculate pairwise similarity between cluster elements using the following equation:

pairwiseSim(ti, tj) =
2 ∗ |LCS(ti, tj)|
|ti|+ |tj|

(1)

intraCSim(c) =
2

|c| ∗ (|c| − 1)
∗
|c|∑
i=0

|c|∑
j=i+1

pairwiseSim(ti, tj) (2)

We calculate a pairwise similarity for each item in the cluster using equation 1 and use
equation 2 to find the intra-cluster similarity. Each cluster ci has an intra-cluster similarity.
To find the average intra-cluster similarity of all clusters in set C, we use the following
equations:

avgISim(C) =
1

n
∗

n∑
i=0

intraCSim(ci) (3)

wAvgIntraSim(C) =
1∑n

i=0 |ci|
∗

n∑
i=0

|ci| ∗ intraCSim(ci) (4)

Equation 3 calculates the average intra-cluster similarity, while equation 4 uses weighted
average intra-cluster similarity where the size of clusters are used as weights. Equation 4
is a significant measure, because it shows the distribution of intra-cluster scores with the
combination of equation 3.

6.2. Compression Ratio

One of the purposes of lexical clustering is to create a summarized data by creating
clusters and cluster representatives. We use compression ratio to measure to compression of
data obtained by lexical clustering:

compR(C) =
n∑n

i=0 |ci|
(5)

uCompR(C) =
n + |# of unclustered tweets|∑n

i=0 |ci|+ |# of unclustered tweets| (6)
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For compression ratio, we have two equations: Equation 5 looks at the compression
on clusters and leaves unclustered tweets out of the calculation. Equation 6 treats the
unclustered tweets as single-element clusters and includes to the calculation. Both equations
are significant in their own aspects: Equation 5 displays the compression ratio of clusters and
it is a logical measure as not all tweets can possibly belong to a cluster and the unclustered
tweets are negligible compared to clusters. On the other hand, in practice the unclustered
tweets may contain a significant amount of data and they may have to be represented.
Equation 6 and the difference between it and equation 5 displays this representation.

6.3. Class Validation

In order to measure the effectiveness of interactive merging, we use class validation. For
interactive merging, we use a combination of 4 datasets; Each dataset has its own topic and
we define these topics as the class label of the tweets in the dataset. Ideally, each cluster
should consist of only one class label, we use the following equation the measure the class
purity of each cluster:

classV alS(ci) =
|maxclass|
|ci|

(7)

Equation 7 finds the most occurring class label in the elements of a cluster and takes the
ratio of it with the cluster size.

6.4. Lexical Clustering Evaluation

In this subsection, we will evaluate lexical clustering by using 4 datasets. We will use
intra-cluster similarity and compression ratio for evaluation. In our experiments we try to
maximize the intra-cluster similarity and minimize the compression ratio. For this reason,
we make experiments with the different thresholds to find the optimum threshold. Our
experiments start with the threshold 0.1 until 0.8 with incremental steps of 0.1.

For our experiments, we use a computer which has an i3 3.7 GHz processor and 16 GB
RAM. In all threshold and dataset combinations, the experiment takes less than 1 minute.
The table 1 demonstrates that suffix tree creation and cluster creation phases take most of
the time in the lexical clustering phase.

Table 1: Timing of experimental evaluations with threshold 0.3 (in secs)

Charlie Hebdo Christmas NBA Trump Combined
Preprocessing 0.76 1.42 0.19 0.61 0.61
Suffix tree construction 3.24 16.73 0.96 5.24 7.51
Index size population 1.12 3.58 0.57 2.24 2.09
Duplicate node elimination 0.29 0.67 0.15 0.34 0.39
Cluster creation 3.82 17.76 2.49 8.53 8.63
Overlapping Elimination 0.53 3.02 0.09 1.01 1.01
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6.4.1. Charlie Hebdo

Charlie Hebdo dataset is a set of tweets collected by Twitter Streaming API during
Charlie Hebdo events in 2015. The dataset is collected using hashtags #CharlieHebdo and
#JeSuisCharlie and contains 32.883 tweets. In the dataset, after processing, 15 tweets are
found which are too short or have no content.

(a) Intra-Cluster Similarities (b) Compression Ratios

Figure 6: Experimental evaluations on Charlie Hebdo dataset

Figure 6(a) shows a natural increase in intra-cluster similarity as the threshold increases.
Starting with threshold value 0.3, the intra-cluster similarity is above 0.7, which shows that
the elements in the clusters are highly similar and pure. After the threshold 0.5, weighted
average intra-cluster similarity passes over average intra-cluster similarity which indicates
that the similarity is higher on larger clusters compared to small clusters.

Figure 6(b) shows a natural increase in compression ratio as the threshold increases.
Compression ratios rise sharply until 0.3, then the rise slows down. The difference between
compR and uCompR shows the ratio of unclustered tweets and it becomes over 10% of the
whole dataset after 0.4.

We aim to obtain a high intra-cluster similarity with a low compression and unclustered
tweets ratio and for this purpose, threshold values between 0.3-0.4 applies well to the Charlie
Hebdo dataset. This interval gives clusters with a high intra-cluster similarity and 10-15%
compression ratio with 5-10% unclustered tweets.

6.4.2. Christmas

Christmas dataset is a set of tweets collected by Twitter Streaming API before Christmas.
The dataset is collected using hashtag #Christmas and contains 120.864 tweets. In the
dataset, 3269 tweets have little or no content and removed from clustering process.

Figure 7(a) shows similarity to the intra-cluster similarity graphs in Charlie Hebdo, hav-
ing a natural increase. Starting with threshold value 0.3, the above intra-cluster similarity
between clusters becomes above 0.7 and at the threshold value 0.5, weighted average intra-
cluster similarity passes over average intra-cluster similarity. On the other hand, figure 7(b)
demonstrates that unclustered tweet ratio increases sharply after the threshold value 0.3.
The optimal thresholding value for intra-cluster similarity is above 0.3, while it is below 0.3
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(a) Intra-Cluster Similarities (b) Compression Ratios

Figure 7: Experimental evaluations on Christmas dataset

for compression ratios, making the optimal threshold value for Christmas dataset around
0.3.

6.4.3. NBA

NBA dataset is a set of tweets collected by Twitter API. The dataset is collected using
hashtag #NBA and contains 17.554 tweets. In the dataset, 5 tweets are removed due to not
having content.

(a) Intra-Cluster Similarities (b) Compression Ratios

Figure 8: Experimental evaluations on NBA dataset

Figure 8(a) shows high intra-cluster similarity starting from 0.2 and at 0.3 the weighted
average intra-cluster similarity passes over average intra-cluster similarity around 0.75. Fig-
ure 8(b) shows that compression ratio is below 15% at almost every threshold and the
unclustered tweet ratio rises after 0.3, making the optimal threshold for the dataset around
0.3.

6.4.4. Trump

Trump dataset is a set of tweets collected by Twitter API. The dataset is collected using
hashtag #Trump and contains 55.223 tweets. There are 135 tweets in the dataset which
have little or no content.
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(a) Intra-Cluster Similarities (b) Compression Ratios

Figure 9: Experimental evaluations on Trump dataset

The Trump dataset has a high intra-cluster similarity from low thresholds, evident in
figure 9(a). Starting from 0.2, the intra-cluster similarity rises from 0.7 and weighted intra-
cluster similarity passes over intra-cluster similarity at 0.3. Figure 9(b) demonstrates similar
compression ratio characteristics as the other datasets. The unclustered tweet ratio rises
sharply starting from 0.3, making the optimum threshold for Trump dataset between 0.2
and 0.3.

6.5. Interactive Merging

In this subsection we will make evaluations for interactive merging. In order to evaluate
merging, we will use a combined dataset which consists of Charlie Hebdo, Christmas, NBA
and Trump dataset. From each dataset, 15000 tweets are retrieved.

(a) Intra-Cluster Similarities (b) Compression Ratios

Figure 10: Experimental evaluations on the combined dataset

In order to evaluate interactive merging, we first need to select a suitable threshold for
lexical clustering. For this purpose, we use figures 10(a) and 10(b).The combined dataset
reaches a high intra-cluster similarity at threshold 0.3. At this threshold the compression
ratio is around 10% which is a good ratio. As the other datasets also have their optimal
thresholds at 0.3, we select 0.3 for interactive merging.
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(a) Histogram based on cluster sizes (b) Class Validation scores

Figure 11: Histogram and class val. scores on the top 500 of the combined dataset

Figure 11(a) demonstrates the histogram at threshold 0.3. 47% of the combined dataset
is represented by top 500 clusters, becoming a good representation for the whole data.

Figure 11(b) shows the class validation scores for first 500 clusters. Lexical clustering
has a very high class validation score, at the threshold 0.3 the weighted class validation score
is 0.92 and average class validation score is 0.94. As long as merging is done between the
same classes, we expect class validation scores to remain constant or rise, while the average
compression ratio decreases for clusters.

Interactive merging process demonstrates that there are content-wise similar clusters
which are constructed by different words. These clusters could not be merged by lexical
clustering, however they can be detected and merged with semantic relatedness. By using
our user interface, human agents were able to merge 47 clusters which have the exact same
context with different wordings.

6.6. Results and Discussion

In this work, we use 4 different datasets to perform experimentation and evaluate our
algorithm. Each dataset contains at least 15.000 tweets and collected using Twitter API.
We perform thresholding experiments on each dataset and evaluate the lexical clustering
part of our algorithm and we perform an experiment on a dataset combined from these 4
datasets to measure the effectiveness of interactive merging.

Our evaluations show that the lexical clustering part of our algorithm works well in
Twitter datasets. We observe that there is a trade-off between cluster similarity and com-
pression of data alongside with the size of unclustered tweets. As the threshold increases,
the cluster similarity and the size of unclustered tweets increase, while the compression of
data decreases.

Our experiments show that the optimum threshold for the 4 datasets is between 0.3 and
0.4. At this interval we obtain an average intra-cluster similarity higher than 0.7, while
the compression ratio stays around 10% and the ratio of uncompressed tweets is around
10-15%. Considering linear time and space complexity of the algorithm, lexical clustering
gives outstanding results as a data representation and summarization tool. The results can
further be utilized by using other data processing algorithms with high time complexities:
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With the reduction of data these data processing algorithms will run faster by the order of
their time complexities.

We use a combined dataset of 4 different topics for evaluation of interactive merging.
The interactive merging phase demonstrates that there are clusters with similar contexts
and different wordings. In this phase, the human agent is the key for successful merging.
Our experiment shows that a further reduction and compression in data is possible with
interactive merging.

7. Conclusion and Future Work

With the advancement of technology and change of communication forms towards digital
medium, social media platforms become a valuable source of data for analysis. Twitter is
such a social media platform which grows continuously and offers public data for researchers.
In contrary to the widely researched fields such as tweet classification and topic detection,
summarization and representation of Twitter data is also a less researched field which require
recognition of equal size.

In this work, we propose a hybrid tweet clustering algorithm for summarization of Twit-
ter data. As part of our clustering algorithm, we propose a new character-based suffix
tree clustering algorithm tailored for short-document sets. The new suffix tree clustering
algorithm is linear in space and time for document sets with fixed maximum length. The
algorithm matches well with Twitter data and obtains average and weighted average intra-
cluster similarity over 0.7 with 10% compression rate. For further refinement of clusters, we
propose an interactive merging method based on semantic relatedness. The quality of the
interactive merging is dependent on the human agent; however, it is able to find clusters
with similar contexts but different phrases.

The main use case of the algorithm is summarization of representation of Twitter data
using clusters. Knowledge and the distribution of topics about a firm or a politician in
Twitter is very valuable for information management departments and we can obtain this
knowledge by using our algorithm. Another use case for our algorithm lies in its compression
rate and linear time: It can swiftly compress the data and the resulting clusters can be used
for other data processing algorithms.

For future work, our algorithm has many aspects which can be improved and evaluated.
Our algorithm is a variant one-pass algorithm with linear time and space, however with its
decoupled structure of clustering and with the current research on the parallel construction
of suffix trees, it can be tuned to work in distributed systems. The suffix tree construction
of our algorithm is based on Ukkonen’s algorithm which has an on-line property; therefore,
another possible future work for our algorithm is to convert it to an on-line algorithm. As
for interactive merging part, a research can be done to find better heuristics for semantic
relatedness between words and a semi-automated or automated system can be designed to
reduce the dependency on human agents.
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Appendix A. Ukkonen’s Algorithm: Pseudocode

Below is the complete pseudo-code of the Ukkonen’s algorithm. To keep consistency at
the root state, an invisible state ⊥ before root is created. This state is connected to the
root with all possible transitions from alphabet.

Algorithm 5 Construction of STree(T) for string T = t1t2...# in alphabet
∑

= {t1, ..., tm}
1: create states root and ⊥
2: for j ← 1, ...,m do create transition g′(⊥, (−j,−j)) = root

3: create suffix link f ′(root) = ⊥;
4: s← root; k ← 1; i← 0;
5: while ti+1 6= # do
6: i← i + 1;
7: (s, k)← update(s, (k, i));
8: (s, k)← canonize(s, (k, i));

The functions of the algorithm update, test-and-split and canonize are:

1: function update(s,(k,i))
2: oldr ← root; (end-point, r)← test-and-split(s, (k, i− 1), ti);
3: while not end-point do
4: create new transition g′(r, (i,∞)) = r′ where r′ is a new state;
5: if oldr 6= root then create new suffix link f ′(oldr) = r;

6: oldr ← r;
7: (s, k)← canonize(f ′(s), (k, i− 1));
8: (end-point, r)← test-and-split(s, (k, i− 1), ti);

9: if oldr 6= root then create new suffix link f ′(oldr) = s;

10: return (s,k);
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1: function test-and-split(s,(k,i),t)
2: if k ≤ p then
3: let g′(s, (k′, p′)) = s′ be the tk-transition from s;
4: if t = tk′+p−k+1 then return (true, s);
5: else
6: replace the tk-transition above by transitions g′(s, (k′, k′ + p− k)) = r
7: and g′(r, (k′ + p− k + 1, p′)) = s′ where r is a new state;
8: return (false,r);

9: else
10: if there is no t-transition from s then return (false,s);
11: else return (true,s);

1: function canonize((s,(k,p))
2: if p < k then return (s,k);
3: else
4: find the tk-transition g′(s, (k′, p′)) = s′ from s;
5: while p′ − k′ ≤ p− k do
6: k ← k + p′ − k′ + 1;
7: s← s′;
8: if k ≤ p then find the tk-transition g′(s, (k′, p′)) = s′ from s;

9: return (s,k);
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Appendix B. Tabular results of evaluations on each dataset

Table B.2: Evaluations of Charlie Hebdo dataset
Threshold avgISim wAvgIntraSim compR uCompR Cluster Size Unclustered Tweets Total Size
0,1 0,625 0,463 0,015 0,015 497 7 32883
0,2 0,770 0,640 0,054 0,086 1715 1115 32883
0,3 0,823 0,755 0,094 0,161 2850 2443 32883
0,4 0,847 0,824 0,120 0,208 3535 3311 32883
0,5 0,861 0,856 0,132 0,234 3831 3858 32883
0,6 0,871 0,876 0,141 0,254 4029 4327 32883
0,7 0,879 0,888 0,147 0,275 4105 4928 32883
0,8 0,890 0,903 0,152 0,302 4117 5864 32883

Table B.3: Evaluations of Christmas dataset
avgISim wAvgIntraSim compR uCompR Cluster Size Unclustered Tweets Total Size

0,1 0,610 0,515 0,010 0,010 1136 13 120846
0,2 0,702 0,622 0,039 0,060 4537 2526 120846
0,3 0,795 0,748 0,080 0,186 8293 13624 120846
0,4 0,845 0,834 0,106 0,287 9943 23854 120846
0,5 0,876 0,886 0,120 0,349 10474 30555 120846
0,6 0,894 0,914 0,127 0,382 10574 34374 120846
0,7 0,909 0,929 0,129 0,402 10450 36848 120846
0,8 0,916 0,938 0,131 0,414 10361 38372 120846
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Table B.4: Evaluations of NBA dataset
avgISim wAvgIntraSim compR uCompR Cluster Size Unclustered Tweets Total Size

0,1 0,547 0,507 0,019 0,020 337 17 17554
0,2 0,662 0,620 0,048 0,091 798 802 17554
0,3 0,745 0,741 0,089 0,198 1372 2109 17554
0,4 0,792 0,814 0,121 0,285 1721 3276 17554
0,5 0,822 0,857 0,139 0,339 1878 4077 17554
0,6 0,839 0,873 0,143 0,369 1846 4640 17554
0,7 0,849 0,882 0,144 0,390 1795 5057 17554
0,8 0,867 0,894 0,159 0,434 1872 5742 17554

Table B.5: Evaluations of Trump dataset
avgISim wAvgIntraSim compR uCompR Cluster Size Unclustered Tweets Total Size

0,1 0,561 0,500 0,014 0,014 764 30 55223
0,2 0,747 0,708 0,055 0,120 2797 3836 55223
0,3 0,837 0,840 0,091 0,228 4245 8320 55223
0,4 0,869 0,899 0,109 0,283 4844 10795 55223
0,5 0,892 0,930 0,119 0,314 5095 12268 55223
0,6 0,906 0,944 0,122 0,331 5131 13163 55223
0,7 0,916 0,953 0,124 0,343 5116 13846 55223
0,8 0,923 0,959 0,125 0,354 5084 14488 55223

Table B.6: Evaluations of combined dataset
avgISim wAvgIntraSim compR uCompR Cluster Size Unclustered Tweets Total Size

0,1 0,566 0,472 0,020 0,020 1195 26 60000
0,2 0,705 0,633 0,064 0,128 3561 4132 60000
0,3 0,793 0,763 0,108 0,268 5255 10844 60000
0,4 0,838 0,843 0,136 0,356 6031 15316 60000
0,5 0,870 0,891 0,151 0,406 6241 18130 60000
0,6 0,890 0,911 0,155 0,431 6185 19689 60000
0,7 0,904 0,924 0,157 0,449 6080 20851 60000
0,8 0,904 0,924 0,157 0,470 6091 22103 60000
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graph for sentiment polarity classification in twitter, Computer Speech & Language 28 (1) (2014)
93–107.

[42] L. Barbosa, J. Feng, Robust sentiment detection on twitter from biased and noisy data, in: Pro-
ceedings of the 23rd International Conference on Computational Linguistics: Posters, Association for
Computational Linguistics, 2010, pp. 36–44.

[43] L. Jiang, M. Yu, M. Zhou, X. Liu, T. Zhao, Target-dependent twitter sentiment classification, in:
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, Association for Computational Linguistics, 2011, pp. 151–160.

[44] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, R. Passonneau, Sentiment analysis of twitter data, in:
Proceedings of the workshop on languages in social media, Association for Computational Linguistics,
2011, pp. 30–38.

[45] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, M. Demirbas, Short text classification in twitter
to improve information filtering, in: Proceedings of the 33rd international ACM SIGIR conference on
Research and development in information retrieval, ACM, 2010, pp. 841–842.

36



[46] L. Derczynski, D. Maynard, G. Rizzo, M. van Erp, G. Gorrell, R. Troncy, J. Petrak, K. Bontcheva,
Analysis of named entity recognition and linking for tweets, Information Processing & Management
51 (2) (2015) 32–49.

[47] J. J. Jung, Online named entity recognition method for microtexts in social networking services: A
case study of twitter, Expert Systems with Applications 39 (9) (2012) 8066–8070.

[48] X. Liu, M. Zhou, Two-stage ner for tweets with clustering, Information Processing & Management
49 (1) (2013) 264–273.

[49] A. Adel, E. Elfakharany, A. Badr, Clustering tweets using cellular genetic algorithm.
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