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Abstract

We study equality in fuzzy clustering algorithms where an equality constraint is added

to the existing model. Equality is being used in various areas, such as districting (either

zonal or political), industries (distribution companies). We focus on wireless sensor

networks problem. Existing protocols do not pay too much attention to the cluster head

selection step and equality of workload of the clusters. These two issues have significant

effect on the consumption of energy in a network where increasing lifetime of network

is critical. A solution approach based on the Lagrangean relaxation is developed. The

proposed algorithm is compared with the popular LEACH protocol. Results show that

in the same simulated environment, our algorithm works better.
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Chapter 1

Introduction

Clustering is identification of natural groups (i.e., clusters) in an environment. The

“natural grouping” has different definitions in various contexts. In demographics, clus-

tering refers to the gathering of various populations based on factors such as ethnicity,

economics or religion. In graph theory, clusters refer to the linked nodes in a network,

measured by the clustering coefficient. On the other hand, in the context of Data Min-

ing (DM), clusters refer to groups of objects that are similar to each other and different

from others in terms of a similarity metric.

Briefly speaking data mining is extracting knowledge (or patterns) from data , i.e., learn-

ing from data.

Learning methods can be categorized as supervised and unsupervised learning. In super-

vised learning one tries to model data based on labelled training data. Bayes Network,

Decision Trees, OneR, IBK and etc are examples of popular supervised learning meth-

ods. On the other hand, in unsupervised learning the task is finding hidden structure

in unlabelled data. This realized by various clustering methods such as hierarchical

clustering, K-means clustering and DSSAN.

10
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Figure 1.1: Clustering of data into four clusters

The objective of clustering is grouping the objects in such a way that the most similar

ones gather in the same group. Furthermore, this similarity should be minimized com-

pared to the objects of the other groups (i.e., dissimilar as much as possible). Figure 1.1

illustrates a simple example of clustering in which given data is grouped to four clusters.

In this example, similarity criterion is distance: two or more objects belong to the same

cluster if they are “close” to each other in the plane with respect to a given distance.

Clustering algorithms can be categorized into two approaches, namely hard clustering

and soft (i.e., fuzzy) clustering. In the case of hard clustering, in any grouping algorithm

a binary assignment variable (ujk) is considered to be 1 if a data point k is assigned

to group or cluster j and 0 otherwise. On the other hand, in fuzzy clustering the as-

signments are no longer crisp (i.e., binary). Instead, the assignments are fuzzy, which

means that the data point k is assigned to cluster j with a membership degree (ujk,

which is usually a function of the distance between data point and the cluster center)

which is a number between zero and one. Generally, in fuzzy clustering, the summation

of memberships of data point to all clusters is required to be one, ([16], [39] and [40]).

A popular exception is possibilistic c-means which we will discuss later.

Fuzzy pattern recognition was introduced by Bill Wee as the first time in his Ph.D. the-

sis. Then Ruspini [21] discussed fuzzy clustering for the first time, in which constraint
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c-partitions of unlabelled data. Dunn [6] and Bezdek [8] published the first paper on

fuzzy c-means clustering.

One of the most important issues that in the recent years is attracting a lot of attentions

is equality. Equality can be defined in various contexts. For example, governments are

trying to assign the equal resources to the different groups of people (budget equality).

Another example is in industries where companies are trying to assign equal workload

among their employees or assign equal resources to the different regions they cover.

Consider a distribution company which is serving a city by use of multiple number of

vehicles. A big concern is such companies is assigning an equal workload to each vehicle.

In some cases, equality is being done in the purpose of fairness as mentioned in either

governmental applications or industries. On the other hand, equality has optimization

advantages in some applications. Wireless Sensor Networks (WSNs) is one of those ap-

plications where equality must be taken into account because of its optimization. Later

we will discuss WSNs in details.

Next in Chapter 2, we will introduce the Theoretical Background. We will discuss clus-

tering, optimization and the infamous fuzzy c-means algorithm in this chapter. Later

in Chapter 3, we will review the relevant literature on fuzzy clustering, in particular,

fuzzy c-means, various problems associated with fuzzy c-means ad solution proposals

available in the literature will be presented. We will also review the literature on clus-

tering with balance constraint, in particular, zoning and districting. In Chapter 4, we

will introduce the mathematical formulation of fuzzy clustering with balance constraint

and propose two solution algorithms, namely FCBC without Repulsion and with Re-

pulsion. In Chapter 5, a application area of the proposed algorithms in the context

of Wireless Sensor Networks will be presented where selecting Cluster Heads (CHs) is

based on the the centrality of the sensor and its residual energy. Experimental analysis
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and comparison of the proposed algorithm with a popular algorithm, LEACH will be

provided in chapter 5 as well. The thesis will be concluded with our concluding remarks

and various future research problems.



Chapter 2

Theoretical Background

2.1 Clustering

As mentioned earlier, objective of clustering is identification of natural groups in collec-

tion of unlabelled data. In the literature abundant number of clustering algorithms are

available. These algorithms often result in different clusters. It is hard to decide which

set of groups yields a better clustering as it depends to the final aim of the clustering.

Therefore, the user who is clustering data must decide the criterion in a way which the

result will satisfy his/her needs. Minimizing within distance (i.e., total distance of the

cluster members to the centers or each other), or maximizing between distance (i.e.,

intra-distance, that is to say distance between different clusters) or minimizing within

distance and maximizing between distance simultaneously are some examples of popular

objectives.

14
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2.1.1 Distance Measure

An important factor in clustering is decision of the distance measure between data

points. In mathematics, distance function or metric is a function that defines a distance

between elements of a set. If the features of the data points are in the same physical

units then it is possible to use Euclidean distance metric to cluster similar data in-

stances. In 2-dimensional space, given a = (x1, x2) and b = (x
′
1, x

′
2), following is the

equation used to show the Euclidean metric:

d =
√

(x1 − x
′
1)

2 + (x2 − x
′
2)

2

If we consider points as vectors then the equation can be written as:

||d|| =
√

(a− b).(b− a)

where distance is the dot product of the differences of two points.

Another distance measure is Taxicab distance or Manhattan distance where Euclidean

geometry is replaced by a new metric in which the distance between two points is the

sum of the absolute differences of their Cartesian coordinates. Given two vectors, a and

b in n-dimensional space, the Taxicap distance equation is as follows:

d =
n∑
i=1

|ai − bi|

Generalization of Euclidean and Taxicap distances is called Minkowski distance which

defined as follows:
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d = (
∑n

i=1 |ai − bi|p)
1
p

where a and b are two vectors in n-dimensional space and p is distance order and

typically being 1 or 2, where latter results in Euclidean distance and former results

Taxicap distance.

Other distance metric such as Kernel-Induced distance is also available in the literature

(See [30] for the details).

2.1.2 Application Areas of Clustering

Clustering algorithms can be applied in various areas. Some examples are as follows:

1- Marketing: Finding groups of costumers with the similar behaviour according to

the historical data.

2- Biology: Grouping the plants and animals according to their features.

3- Insurance: Detecting frauds and abusive behaviour from historical transactions.

4- Earthquake Studies: Grouping observed earthquake epicenters to identify danger-

ous zones.

5- WWW: Clustering web log data to discover groups of similar access patterns.

2.1.3 Hard (i.e., Crisp) vs. Soft (i.e., Fuzzy) Clustering

Clustering algorithms can be classified as Crisp and Fuzzy algorithms. In crisp algo-

rithms, such as K-means, result of clustering is non-overlapping where a data point

belongs to the closest cluster. On the other hand, in fuzzy clustering, a data point can

belong to multiple number of clusters with a membership degree. Let us firstly define

what do we mean by fuzzy.
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Consider two groups of people, namely “Tall” and “Short”. Suppose a person with

height of taller than six feet is considered as tall and rest is consider as short. Then

number of 1 or 0 can be assigned to each person, demonstrating a person’s belonging-

ness to either short or tall. We call this number as membership degree of a person to

a specific group. In the crisp case the membership degrees, denoted by ujk ∈ {0, 1},

indicates assignment of data point k to cluster j. On the other hand in fuzzy sets theory

memberships are not limited to 0 or 1 any more. Rather they are a number in the range

of [0, 1]. Therefore in fuzzy clustering a person is not considered either tall or short but

a person can be both short and tall to a degree. For instance a person with height of 5.9

feet belongs to tall set with a membership degree of 0.95 and set of short people with

0.05.

2.1.4 Popular Hard Clustering Algorithms

K-means, which first used by Macqueen [9], is one of the simplest unsupervised learning

algorithm to solve the hard clustering problems. The idea is fixing some centroids (say

K), one for each cluster. These centroids should be placed in a cunning way because

different locations cause different results. Ideally centroids can be located as far as

possible from each other. In the next step each data point is assigned to the closest

centroid. Once we are done with the initial grouping, we need to recalculate the positions

of the centroids of the resulting clusters. Since the new positions of the centroids are

different from the previous iteration, a reassignment step is required, which assigns each

data point to the closest centroid. This loop continues until there won’t be any change

(or negligible, i.e. ε) in centroids’ locations. K-means algorithm attempts to minimize
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Figure 2.1: Example of Agglomerative Hierarchical Clustering

within distance in objective function:

J =

c∑
j=1

n∑
k=1

||xk − vj ||2

where ||.|| is a chosen distance measure between a data point, xk and cluster center vj

(i.e, the centroid of the jth cluster).

Another popular unsupervised clustering is hierarchical clustering which, seeks to build

a hierarchy of clusters: Each observation starts in its own cluster, and pairs of clusters

are merged as one moves up the hierarchy (in the case of agglomerative hierarchical

clustering). Hierarchical clustering does not require a priory number of clusters. In

other words, hierarchical clustering groups data over a variety of scales by creating a

cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel

hierarchy, where clusters at one level are joined as clusters at the next level. This allows

us to decide the level or scale of clustering that is most appropriate for our application.

Figure 2.1 is s simple example of agglomerative hierarchical clustering
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2.2 Optimization

2.2.1 Convexity

Convexity is a frequently used concept in the context of optimization, both as convex-

ity in sets and convexity of functions. We will next introduce some basic definitions

regarding to convexity, which will be referred to later in this thesis.

Convexity of function of a single variable

A function of a single variable, f(x) is a convex function if for any pair of values x′, x′′,

f [λx′ + (1− λ)x′′] ≤ λf(x′) + (1− λ)f(x′′) 0 < λ < 1 (2.1)

In Equation 2.1, switching to < from ≤ makes the function be a strictly convex function.

Concept of convexity can be interpreted geometrically. As one can see in the Figure 2.2,

x
′

and x
′′

are two points in the domain of the function and λf(x′)+(1−λ)f(x′′) is a line

that connects x′ and x′′, consists of all possible points. In the Figure f [λx′+(1−λ)x′′] is

located above the function for all intermediate point. If the line is above the function as

in the Figure 2.1 then the function is convex. Note that this should be true for any given

pair of points in the domain of the function. The other interpretation which indicates

convexity of a function f(x) is, bending upward if it bends at all.

To be more precise, if f(x) possesses a second derivative everywhere (note that, if it does

not, we can not judge about convexity), then f(x) is convex if and only if d2f(x)/dx2 ≥ 0

for all possible values of x. Again if ≤ changes to < we have a strictly convex function.

On the other hand if d2f(x)/dx2 ≤ 0, for all x, then f(x) is a concave function. In

this case the function should bend downward, if it bends at all. A linear function is
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both convex and concave. Also there are some functions which are neither convex nor

concave. Figure 2.3 illustrates a function which is neither convex nor concave in the

whole domain of the function in the range of [x1, x2], however convexity and concavity

exists locally in some neighbourhood.

Convexity of a Function of Multiple Variables

We can generalize the discussion on convexity (concavity) of single variable functions, for

functions of several variables. Consider a function of multiple variables as f(x1, x2, ..., xn).

Then f(x1, x2, ..., xn) is convex iff :

Figure 2.2: A convex function [45]

Figure 2.3: A neither convex nor concave function [45]
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f(λx
′
1 + (1− λ)x

′′
1 , λx

′
2 + (1− λ)x

′′
2 , ..., λx

′
n + (1− λ)x

′′
n) 6

λf(x
′
1, x

′
2, ..., x

′
n) + (1− λ)f(x

′′
1 , x

′′
2 , ..., x

′′
n) 0 < λ < 1 (2.2)

Geometrically speaking, if the line segment at the right hand side of the Equation 2.2

lies entirely above the function, the function is convex. The same definitions apply to

strictly convex and a concave function as discussed earlier.

Definition Hessian Matrix or Hessian is a square matrix of second-order partial deriva-

tives of a function.

Given f(x1, x2, ..., xn) if all second partial derivatives of f exist and are continuous over

the domain of the function, then the Hessian matrix of f is:

H(f) =



δ2f
δx21

δ2f
δx1δx2

· · · δ2f
δx1δxn

δ2f
δx2δx1

δ2f
δx22

· · · δ2f
δx2δxn

...
...

. . .
...

δ2f
δxnδx1

δ2f
δxnδx2

· · · δ2f
δx2n


If H(f) be positive semi-definite then f(x) is locally convex. Note that a real matrix

H(f) is positive semi-definite if zHzT be non-negative for all non-zero column vector z

of n real numbers.

Mathematically, f(x1, x2, ..., xn) is convex if and only if its n ∗ n Hessian matrix be

positive semi-definite. If Hessian matrix is positive definite then the function is strictly

convex.

Now we can obtain two important results:

1. If f(x1, x2, ..., xn) is convex then g(x1, x2, ..., xn) = −f(x1, x2, ..., xn) is concave.
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2. Sum of some convex functions is convex. [45]

Convex Sets

There are two definitions for a convex set. Firstly, collection of the points lie above or

on a convex function form a convex set. Similarly, collection of the points lie below or

on the concave function form a concave set.

The other way of defining a convex set is a formal mathematical definition. Suppose

that two points belong to a set and then if their strict convex combination also belongs

to the same set, this set is convex.

x1 ∈ S, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S λ ∈ (0, 1)

One important concept associated with convex sets in the context of optimization is

Extreme Points;

Definition Extreme point of a convex set is a point that does not lie on any segment

line. In other words, it can not be represented as strict convex combination of two other

points in the same set or

We can also define extreme point as a point c where f(c) ≤ f(x) or f(c) ≥ f(x) (c is

absolute minimum or absolute maximum respectively). A point is local extreme point

if it is locally minimum or maximum (in an interval in the domain of the function).

Another concept in this discussion is critical point, which is a point c in domain of the

function, where f(c)
′

= 0 or f(c)
′

does not exist. We can conclude that every extreme

point is a critical point but every critical point is not local extreme point. For example

saddle points are critical points but not extreme points.

Note that point is called saddle point if function is convex (concave) immediately before
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that point and concave (convex) after that point.

2.2.2 Optimization

In this section we will be reviewing some classical methods of optimization for uncon-

strained and constrained functions.

Unconstrained optimization of a function of single variable

Suppose that df(x)
dx = 0 at x = x∗, that is to say x is a critical point, and either locally

minimum or maximum. Now this question shows up, is x a global optima? Firstly let

us clarify what do we mean by global optima. If a function is greater or equal than a

specific point in the domain of function, then that point is global minima. On the other

hand, if a function is less than or equal to a point in the domain of function, then that

point is global maxima. In order to find out whether this point is globally minimum or

not in the domain of the function, we need to check if the function is convex or not. If

function is a convex and derivation is zero, then x is a global minimum. Otherwise if

function is concave, then x is a global maximum. on the other hand if the function is

neither convex nor concave we can’t be sure about globality. Figure 2.4 demonstrates

these concepts. Note that inflection point (i.e., saddle point) is another extreme point

which is neither locally minimum nor maximum.

Constrained optimization with equality constraints

Consider the problem of minimization (or maximization) of f(x) = f(x1, x2, ..., xn) sub-

ject to restrictions that x has to satisfy all equations bellow:
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g1(x) = b1

g2(x) = b2

...

gm(x) = bm

where m < n. A classical method of dealing with this problem is Lagrange multipliers.

This procedure begins by formulating the Lagrangian function as follow:

h(x, λ) = f(x)−
m∑
i=1

λ[gi(x)− bi]

where λ = (λ1, λ2, . . . , λm) are called Lagrangian multipliers.

(x, λ) = (x∗, λ∗) is a local ( global if the function is convex) optima for minimization of

the unconstrained function h(x, λ). According to this approach, to obtain the λ and x

derivatives with respect to xj and λi must be set to zero, which results in the following

equations:

Figure 2.4: Global and Local Optima [45]



2.2. OPTIMIZATION 25

δh

δxj
=

δf

δxj
−

m∑
i=1

λj
δgi
δxj

∀j = 1, 2, . . . , n

δh

δλi
= −gi(x) + bi = 0 ∀i = 1, 2, . . . ,m

As one can observe, the last m equations satisfy feasibility of the solutions. From a prac-

tical computational point of view, Lagrange multipliers are not a particularly powerful

procedure. It is often not possible to solve the equations to obtain the critical points.

Furthermore, even when the points can be obtained, the number of critical points may

be so large (often infinite) that it is impractical to attempt to identify a global minimum

or maximum. However, for certain types of small problems (where number of decision

variables and constraints that are being relaxed is not big [45]), this method can be used

successfully.

Constrained optimization with equality constraints and inequality constraints

Consider the problem of minimization or maximization of f(x) subject to restrictions

that x has to satisfy all equations bellow:
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g1(x) = b1

g2(x) = b2

...

gm(x) = bm

k1(x) ≤ d1

k2(x) ≤ d2

...

kp(x) ≤ dp

h(x, λ, γ) = f(x)−
m∑
i=1

λi[gi(x)− bi] +

p∑
j=1

γj [kj(x)− dj ]

where h(x, λ, γ) is unconstrained problem of the original problem.

The Karush-Kuhn-Tucker conditions which will be discussed next, give us candidate

optimal solutions x∗. That is, given x∗ with λ∗ and γ∗ satisfying the KKT conditions,

and the following ensure solution is optimal ([45]):

If f(x) is a convex function (which can be checked from its hessian matrix), and the

feasible region forms a convex set. Note that in order to have a convex feasible region,

gi(x) must be linear and kj(x) must be convex.

Karush-Kuhn-Tucker Conditions for Constrained Programming

Assume that f(x), g1(x), g2(x), . . . , gm(x) are equality and inequality constraints and

are differentiable functions, the x∗ = (x∗1, x
∗
2, . . . , x

∗
n) can be an optimal solution for
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the nonlinear programming problem only if there exist λ1, λ2, . . . , λm such that all the

following KKT conditions are satisfied:

δf

δxj
−

m∑
i=1

λi
δgi
δxj
≤ 0 x = x∗,∀j = 1, 2, . . . , n (2.3)

x∗j

(
δf

δxj
−

m∑
i=1

λi
δgi
δxj

)
= 0 x = x∗,∀j = 1, 2, . . . , n (2.4)

gi(x
∗)− bi ≤ 0 ∀i = 1, 2, . . . ,m (2.5)

λi[gi(x
∗)− bi] = 0 ∀i = 1, 2, . . . ,m (2.6)

x∗j ≥ 0 ∀j = 1, 2, . . . , n (2.7)

λi ≥ 0 ∀i = 1, 2, . . . ,m (2.8)

Note that both 2.4 and 2.6 conditions require that the product of two quantities be zero.

That is to say, at least one of these two quantities need to be zero. Also, condition 2.6

can be combined with 2.5 to express in another for as, gi(x
∗) − bi = 0 or equivalently

gi(x
∗) − bi = 0 when λi = 0 (slack variables are zero). Similarly, condition 2.3 and 2.4

can form, δf
δxj
−
∑m

i=1 λi
δgi
δxj

= 0 and when xj = 0 equality changes to ≤. In conditions

2.4, 2.5, 2.7, and 2.8, the λi correspond to the dual variables of linear programming,

and they have a comparable economic interpretation (shadow prices). If right hand side

bi of constraint i is increased by ∆ then the optimal objective value increases by λ∗i∆.

However, the λi actually arose in the mathematical derivation as lagrange multipliers.

Conditions 2.5 and 2.7 keep the feasibility of the solution and the other conditions elim-

inate most of the feasible solutions as possible candidates for an optimal solution.

Note that satisfying these conditions does not guarantee that the solution is optimal.

There are also other assumptions which are needed to guarantee a point is optimal.

These assumptions can be extracted from the following theorem. Note that KKT con-
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ditions work where both equality and inequality constraints exist, while lagrangean

relaxation approach works when there exist just equality constraints.

Theorem Assume that f(x) is a convex function and that g1(x), g2(x), ..., gm(x)

are convex functions (i.e., this problem is a convex programming problem). Then

x∗ = (x∗1, x
∗
2, ..., x

∗
n) is an optimal solution if and only if all the KKT conditions are

satisfied. [45]

For complicated problems, it may be difficult, if not impossible, to derive an optimal

solution directly from the KKT conditions. Nevertheless, these conditions still provide

valuable clues as to the identity of an optimal solution, and they also permit us to check

whether a proposed solution is optimal or not.

In a nutshell, these conditions become sufficient if the function is convex, and in this

case, the solution point is globally minimum in the domain of the problem.

Also it should be mentioned that a convergent algorithm does not necessarily stop at a

local minimum point. Also, a point satisfying KKT conditions is not necessarily a local

minimum point. To make sure a point is minimum (either local or global), f(x) and

g(x) must be convex.

Now we are able to define necessary and sufficient conditions for a point to be opti-

mal. Table 2.1 and 2.2, contains these conditions for the different minimization and

maximization problems respectively.
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Table 2.1: Optimality conditions for minimization problem [45]

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained df
dx

= 0 f(x) convex

Multivariable unconstrained δ
δxj

for allj f(x) convex

Constrained, non-negativity constraint only δ
δxj

for allj f(x) convex

General constrained problem Karush-Kuhn-Tucker conditions f(x) and gi(x) convex

Table 2.2: Optimality conditions for maximization problem [45]

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained df
dx

= 0 f(x) concave

Multivariable unconstrained δ
δxj

for allj f(x) concave

Constrained, non-negativity constraint only δ
δxj

for allj f(x) concave

General constrained problem Karush-Kuhn-Tucker conditions f(x) concave and gi(x) convex

2.3 Fuzzy C-means Clustering

As discussed in Chapter 2, fuzzy clustering is an unsupervised learning algorithm, where

a data point can be assigned to multiple clusters with a membership degree. General

definition of fuzzy logic is used to define memberships. Fuzzy C-Means clustering (FCM)

is constraint optimization where KKT conditions are applied. But as the objective func-

tion (we will provide the mathematical model next) is not convex, based on the table

2.1, applying KKT conditions do not result in global optima but nearly to local optima.

Given n data points, FCM determine membership degrees ujk of the kth data point to

the jth cluster center, where there are c clusters. Objective is the minimization of the

total between distances of the data points to the center of the clusters where they are

assigned to multiply by their mth power of their membership degrees are used as the

weights (m is known as the fuzzy exponent or fuzzification index or degree of fuzziness)

subject to summation of the memberships over all cluster centers for each data point
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summing up to one. Also membership degrees can be in the range of [0, 1]. Bellow you

can find the mathematical model of the fuzzy clustering problem discussed by Bezdek .

Min
n∑
k=1

c∑
j=1

umjkd
2
jk (2.9)

subject to:

c∑
j=1

ujk = 1 ∀k ∈ {1, . . . , n}, (2.10)

0 6 ujk 6 1 ∀k ∈ {1, . . . , n},∀j ∈ {1, . . . , c} (2.11)

where ujk is membership degree of data point kth to cluster jth. d2jk is Euclidean dis-

tance between the kth data point and the jth cluster center (d2jk = ||xk− vj ||2). Also, as

discussed in Chapter 3, m is degree of fuzziness. The above formulation can be rewritten

with substitution if umjk = ujk as suggested by Stefano Rovetta in [44] in order to ease

the steps of the proof. Alternative formulation is as follows:

Min

n∑
k=1

c∑
j=1

ujkd
2
jk (2.12)

subject to:

c∑
j=1

u
1
m
jk = 1 ∀k ∈ {1, . . . , n}, (2.13)

0 6 u
1
m
jk 6 1 ∀k ∈ {1, . . . , n},∀j ∈ {1, . . . , c} (2.14)

Constraint 2.10 guarantees the sum of membership degrees of a data point over all clus-

ters add up to one. Constraint 2.11 ensures that ujk ∈ [0, 1].
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2.3.1 FCM- Necessary and Sufficient conditions

Bezdek [7] derived the the necessary and sufficiently conditions for the minimum objec-

tive function of the FCM.

Suppose that L be the Lagrangian of the standard fuzzy c-means problem:

L =
n∑
k=1

c∑
j=1

ujkd
2
jk +

n∑
k=1

λk

 c∑
j=1

u
1
m
jk − 1


The solution ∆L = 0 minimizes the standards formulation of the FCM. From the con-

dition
δL

δvj
= 0 we have:

δL

δvj
= 2ujk(vj − xk) = 2vj

n∑
k=1

ujk − 2
c∑
j=1

ujkxk = 0

Which results in:

vj =

∑n
k=1 ujkxk∑n
k=1 ujk

(2.15)

Please note that the cluster centers obtained by Equation 2.12 are similar to the result-

ing cluster centers of Hard C-Means clustering.

From the condition
δL

δujk
= 0 we have:

δL

δujk
= djk + λk

1

m
u

1−m
m

jk

ujk =

(
λk
m

djk

) m
1−m

Now from condition
δL

δλk
= 0 we have:

c∑
j=1

u
1
m
jk =

c∑
j=1

(
λk
m

djk

) 1
m−1

= 1
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Therefore:

λk
m

=

 c∑
j=1

(
1

djk

) 1
m−1

1−m

(2.16)

By substituting last term in ujk he ended up with the following equations as cluster

center and membership degrees.

vj =

∑n
k=1 u

m
jkxk∑n

k=1 u
m
jk

(2.17)

ujk =
1∑c

l=1(
djk
dlk

)
2

m−1

(2.18)

Starting with an initialization in the cluster centers and solving the the equation (2.17)

and (2.18) iteratively we can obtain a good but not necessarily the best solution. Based

on [10] and [11] the solution obtained from the algorithm is not global optimal as objec-

tive function of the relaxed problem is not convex. In [11] it is shown that the result

is strict local minimum.

Objective function (2.9) is minimization of the square of distance of the data points to

their associated cluster centers multiply by the associated membership degrees. Min-

imizing distance squares leads to minimizing the errors (i.e., assigning data points to

the best and closest cluster). If we used distance in the objective function, we would

minimize the total distance (consider a case, where there is a salesman who has to start

from a data point and stop by all data points once in a cluster), which is not desired.

In addition, using distance in objective function, causes the function not to possess a

second derivative, and as discussed in section 2.2, if a function does not possess second

derivative, we are not able to judge about the convexity of the function and this means

we can not keep track of optimality of the result.

The other question is why in the objective function membership is being to the power
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m. As objective function is minimization of the distance error, ideal membership shall

be calculated from an equation which relates membership to the inverse of distances.

Now suppose that there is a point which has distances to three cluster centers as 1, 7

and 12. As the closest cluster center is 1 unit far from the point and the farthest one is

12 units far from that point, we are expecting memberships to be associated with these

distances. However equation 2.18, gives membership as 0.5, 0.3 and 0.2 respectively. To

mitigate this affect, m shows up. As m > 1 so affect of distance on the membership

degree can be more by increasing the m. Now let us consider sensitivity of m. As we

mentioned, m > 1. If m = 1, then we shift to hard or non-fuzzy clustering from fuzzy

clustering. That is to say, ujk is a binary variable which is 1 if data point k is assigned

to cluster j and 0 otherwise. Now assume that m =∞. Then any given data point has

an equal membership degree to each cluster center, means ujk = 1
c .

In the following sections we will be discussing the convergence and optimality (if there

is) of FCM.



Chapter 3

Literature Review

In this thesis we will focus on fuzzy clustering problems with balance constraint and

propose a solution methodology. In this chapter we will review the relevant literature

in detail. We will first start with fuzzy clustering and later extend the discussion to

clustering with constraints. We will discuss various constraints that are introduced as

extensions oto fuzzy clustering in order to over come certain problems associated with

FCM. Next we will present the literature on clustering with balanced constraint. In this

context we will discuss particularly zoning and districting problems as they are closely

related to balance constraint clustering problems and are well studied in operations re-

search.

3.1 FCM and Some Extensions

The most famous fuzzy clustering algorithm is Fuzzy C-Means algorithm [8]. Bill Wee is

the first researcher who worked on fuzzy pattern recognition in his Ph.D. thesis. Ruspini

[21] discusses the first fuzzy clustering. Woodbury and Clive [22] combined fuzziness

34
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and probability in hybrid fuzzy clustering and at the same time, Dunn [41] and Bezdek

[11] published the work on FCM model.

In the classical FCM clustering problem, given a set of data points (n data points) and

their associated coordinates, one is interested in grouping them in a specific number of

clusters (c clusters). Objective is maximizing the compactness of the clusters which leads

us to minimize the total within distances of the data points. This objective function is

considered as least squares model based on [7].

The objective function can be written mathematically as
∑n

k=1

∑c
j=1 u

m
jkd

2
jk where d2jk

is simply the square Euclidean distance between the data point k and centroid of the jth

cluster. A degree of fuzziness (m) is also included in the objective function that controls

the level of the cluster fuzziness. A small m (close to one) leads the clustering to a

non-fuzzy, clustering, i.e., crispy clustering, while a high degree of fuzziness forces all

membership to be equal to 1
c (total or extreme fuzziness). Optimal degree of fuzziness

is an important research area. More interested readers can refer to [19], [20], [23] and

[24] for more details.

Although in the literature m = 2 is the mostly used value as degree of fuzziness, there

is no guarantee that this value is optimal or efficient for all data sets. For example

Veit Schwammle and Jensen in [29] discuss about the degree of fuzziness. In this study

the data set which is used for the experimental studies, is a gene data set with N ×D

attributes (N: Number of objects to be clustered and D: number of dimensions of an

object e.g. 3 for 3-dimensional data set). In this study rather than a prespecified (i.e, a

priory) m determining it as a function of N and D is proposed. The following function

provides a good fit of the curves for all combinations of N and D:

m(D,N) = 1 +

(
1418

N
+ 22.05

)
D−2 +

(
12.33

N
+ 0.243

)
D−0.04061ln(N)−0.1134
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Although FCM is the most popular clustering algorithm in literature, there are some

drawbacks to this algorithm. In order to overcome to these problems, there are several

extension to FCM is suggested in the literature.

Possibilistic C-Means (PCM) is another popular method of fuzzy clustering introduced

by Krishnapuran and Keller [25]. PCM relax the requirement of memberships to all

clusters for each data point summing up to one, which is enforced in FCM ([16], [25]).

The mentioned constraint creates various problems in generating the memberships. For

example in case a data point is far but equidistant from the two cluster centers (noisy

data points), this constraint forces membership degrees to be equal and in some cases

as high as 0.5, however assigning a low or even zero membership degrees to such noisy

data points in some applications makes more sense.

Pal et al. in [16] describe typicality as possibility that a data point belongs to a cluster,

a value between zero and one, similar to the membership degree, with a difference that

it does not necessarily sum up to 1 over any column of typicality matrix (for a specific

data point to all clusters). They proposed a possibilistic-fuzzy c-means algorithm in

which both membership degree and typicality are included in the objective function.

Necessary conditions are determined and the proposed algorithm is tested with several

data sets. It turns out that the new algorithm can mitigate the effect of noisy data

points.

PCM itself has problem which is argued by Barni et.al in [13]. PCM exhibits an unde-

sirable tendency to converge to coincidental cluster. Consider a case where data points

form one cluster, but c = 2. PCM does recognise two coincidental clusters rather than

spiliting data points to two clusters. Krishnapuram and Keller in [25] describe the basic

differences of PCM and FCM. According to the authors PCM’s strength is it’s high

robustness in the presence of noisy data. On the other hand its weakness is that it
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requires a good initialization. Also it needs an appropriate degree of fuzziness. When

the data is not severely contaminated, the FCM can provide a reasonable initialization

and then PCM can be used to improve the results of the FCM.

One of other extensions of FCM is proposed in [30] by S.R. Kannan et al. where a ro-

bust non-euclidean distance measure for the original data space to derive new objective

function is introduced. FCM adopts a new kernel-induced distance in the data space to

replace the original euclidean distance. Also a regularized entropy term is added to the

objective function (E(u) = −
∑c

j=1

∑n
k=1 ujk logujk). In information theory, the Shan-

non entropy is a measure of the uncertainty associated with the random variable. The

entropy term attains its maximum value when all memberships are equal 1
c . Therefore

entropy term is included in clustering algorithms to get the additional information of

the data which provides better partition in the clustering result.

There are more researches that considered the entropy in the objective function. Beni

and Liu [36] consider the entropy as well. Moreover in order to minimize the bias of

centers towards any data point they added
∑n

k=1(
−→x k −−→c j)ujk = 0 ∀j as a constraint

which locates the centers at the middle of the data points in the cluster.

Izakian et.al in [37] use a weighted distance rather than regular distance. Given set of

data points, whose features are coming from p data sources, each data source describes

data point from its point of view. Having xk = [xk(1)|xk(2)| . . . |xk(p)] distance can be

described as:

d2λ1,...,p = λ1||vj(1)− xk(1)||2 + λ2||vj(2)− xk(2)||2 + . . .+ λp||vj(p)− xk(p)||2

where λj denotes the contribution of a data source on the clustering process and∑p
j=1 λj = 1, 0 ≤ λj ≤ 1 and ||.|| denotes euclidean distance.

Another issue regarding to FCM which has to be taken into consideration is local solu-
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tions with empty clusters or clusters having very few points. It usually happens when

either dimension of data or desire number of cluster is big. Bradley et.al in [14] add k

constraints to the underlying clustering optimization problem requiring that each cluster

have at least a minimum number of points in it.

3.2 Clustering with Balance Constraint; Zoning/Districting

Problems

Districting or Zoning is a relevant problem to clustering with balance constraint. Zoning

usually refers to geographical design of an area. Various applications such as distribution

(collection) supply chain subsystems, political districting, public services (e.g., police,

health services) districting and sales territories are available. Various objectives such

as spatial layout (i.e., connectivity of zones), equality (in terms of population or any

specific criterion), interaction (important in transport modelling) and proximity (i.e.,

compactness in terms of a defined distance measure) [26] are considered in zoning. These

objectives (or constraints) differentiate zoning problems from traditional location mod-

els. In the literature mostly a crisp assignment is being adopted in such problems rather

than fuzzy assignments. On the other hand, balancing the zones reduces the applicabil-

ity of fuzzy clustering techniques available in the literature to this problem.

For example in the distribution problem all zones have equal workload. By adding a

balance constraint in to the classical fuzzy clustering it is possible to obtain a result

similar to zoning. Hojjati in [17] deals with a political districting problem. Political

districting problem is dividing a given area into the c districts subject to each district

has almost the same population of voters with a given tolerance and is compact and
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has the minimum number of split population units. He utilizes a Lagrangean relaxation

approach as a solution to the problem. Warehouse Location Model in which objective

function is minimizing the square euclidean distance from centre of a population unit to

the centre of population unit is developed. Hojjati [17] applied the developed algorithm

in the city of the Saskatoon, which had to be partitioned to 11 provincial constituencies

(districts).

Salazar-Aguilar et.al in [14] face with a real life problem arose in Mexico in a bottled

beverage distribution company. Given customers information, they are interested in

clustering them in such a way that number of customers in clusters be equal (balanced).

Pavone et al. in [48] address another application of zoning. They deal with the problem

of dividing a region to a specified number of sub region, and then assigning a responsible

employee to each sub region such that the work load for each responsible employee is

equal.

Such problems can be found in the literature. However in some problems not balancing

but grouping the objects (e.g. customers) is the main purpose. Baron et al. in [46]

model the problem of locating c facilities on the unit square to minimize the maximal

demand faced by each facility such that assignment to the closest facility and coverage

constraints are satisfied. Consider locating cellular phone towers (e.g. facilities) in a

given region. Towers are considered identical. As tower’s capacity is correlated to the

demand it satisfies, demand dictates cost. Hence to minimize cost, minimizing the maxi-

mal demand is targeted. Nikolakopoulou et al. in [43] consider a problem where Routing

is an important issue. Therefore objective is minimizing the total travel distance by ve-

hicles which indicate roust. In this study also balancing workload is considered.
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Fuzzy Clustering with Balance

Constraint

4.1 Problem Statement

Fuzzy clustering with Balance constraint is an extension version of fuzzy clustering prob-

lem which aims to determine fuzzy clusters that are compacted, in which an Equality

Constraint is added to the classical model. Therefore mathematical model is:

Min
n∑
k=1

c∑
j=1

umjkd
2
jk (4.1)

subject to:

c∑
j=1

ujk = 1 ∀k ∈ {1, . . . , n}, (4.2)

n∑
k=1

pkujk =
p

c
∀j ∈ {1, . . . , c}, (4.3)

0 6 ujk 6 1 ∀k ∈ {1, . . . , n},∀j ∈ {1, . . . , c} (4.4)

40
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where pk is population of each data point and p is total population. Objective 4.1 min-

imizes total distance square errors to the cluster centers. Constraint 4.2 forces total

membership of each data point to all cluster centers sum up to one. Note that in the

context of zoning applications summation of membership degrees to 1 is desired for

practical purposes. Constraint 4.3, which is balance constraint, guarantees that total

population with respect to membership degrees within clusters are equal. Objective

function 4.1 is nonlinear as both ujk and djk are decision variables. In addition based

on [11] objective function is not convex. Both sets of constraints (4.2 and 4.3) are linear

as pk is parameter.

In order to solve this problem, there are some possible approaches. We can either solve

this problem, with as exact model, or approximation or by utilizing heuristics or meta

heuristic methods exist in the literature. We adopt a Lagrangean relaxation approach to

deal with this problem. Recall that KKT conditions are a generalization of lagrangean

relaxation approach where there exist inequality constraints. Now to solve this non-

linear program with linear constraints, we shall use Lagrangian relaxation. As in the

relaxed problem, non-negativity of the ujk ensures the feasibility of the solution, La-

grangian relaxation works as KKT condition as we satisfy the feasibility of the solution.

Also we use the same conversion Filippone et al. did in [56] and replace umjk with ujk.

The relaxed problem is as follows:

MinL =

n∑
k=1

c∑
j=1

ujkd
2
jk +

n∑
k=1

λk(1−
c∑
j=1

u
1
m
jk) +

c∑
j=1

γj(
p

c
−

n∑
k=1

pku
1
m
jk) (4.5)
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subject to:

0 6 ujk 6 1 ∀k ∈ {1, . . . , n},∀j ∈ {1, . . . , c} (4.6)

We assumed m = 2 as most of literature allow it. In order to obtain KKT condition we

need to take derivative with respect to all variables.

∂L
∂ujk

=

∂∑n
k=1

∑c
j=1 ujkd

2
jk+

∑n
k=1 λk(1−

∑c
j=1 u

1
m
jk )+

∑c
j=1 γj(

p
c
−
∑n
k=1 pku

1
m
jk )

∂ujk
(4.7)

=
∂∑n

k=1

∑c
j=1 ujkd

2
jk

∂ujk
+

∂∑n
k=1 λk(1−

∑c
j=1 u

1
m
jk )

∂ujk
+

∂∑c
j=1 γj(

p
c
−
∑n
k=1 pku

1
m
jk )

∂ujk

= d2jk −
λk
m
u

1
m
−1

jk − pk
γj
m
u

1
m
−1

jk = 0 (4.8)

∂L
∂vj

=

∂∑n
k=1

∑c
j=1 ujkd

2
jk+

∑n
k=1 λk(1−

∑c
j=1 u

1
m
jk )+

∑c
j=1 γj(

p
c
−
∑n
k=1 pku

1
m
jk )

∂vj
(4.9)

=
∂∑n

k=1

∑c
j=1 ujkd

2
jk

∂vj
=

= u11(v1 − x1)2 + ...+ uj1(vj − x1)2 + ...+ uc1(vc − x1)2

+ u12(v1 − x2)2 + ...+ uj2(vj − x2)2 + ...+ uc2(vc − x2)2 + ...

+ u1k(v1 − xk)2 + ...+ ujk(vj − xk)2 + ...+ ucn(vc − xn)2

= 2vju1j − 2x1u1j + 2vju2j − 2x2u2j + ...+ 2vjunj − 2xnunj (4.10)

= 2vj

n∑
k=1

ujk − 2
n∑
k=1

xkujk = 0

⇒ vj =

∑n
k=1 xkujk∑n
k=1 ujk

(4.11)

∂L
∂λk

=

∂∑n
k=1

∑c
j=1 ujkd

2
jk+

∑n
k=1 λk(1−

∑c
j=1 u

1
m
jk )+

∑c
j=1 γj(

p
c
−
∑n
k=1 pku

1
m
jk )

∂λk
⇒

1−
c∑
j=1

u
1
m
jk = 0⇒

c∑
j=1

u
1
m
jk = 1 (4.12)

∂L
∂γj

=

∂∑n
k=1

∑c
j=1 ujkd

2
jk+

∑n
k=1 λk(1−

∑c
j=1 u

1
m
jk )+

∑c
j=1 γj(

p
c
−
∑n
k=1 pku

1
m
jk )

∂γj

=
n∑
k=1

pku
1
m
jk =

p

c
(4.13)

We can solve the following system of equations:
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d2jk −
λk
m
u

1
m
−1

jk − pk
γj
m
u

1
m
−1

jk = 0 (4.14)∑n
k=1 xkujk∑n
k=1 ujk

− vj = 0 (4.15)

n∑
k=1

pku
1
m
jk −

p

c
= 0 (4.16)

c∑
j=1

u
1
m
jk − 1 = 0 (4.17)

Now from 4.14

d2jk − u
1−m
m

jk

[
λk
m

+
γjpk
m

]
= 0⇒ u

1−m
m

jk =
d2jk

λk
m +

γjpk
m

⇒

u
1
m
jk =

d
2

1−m
jk

(λkm +
γjpk
m )

1
1−m

(4.18)

From 4.17 we have:

c∑
j=1

d
2

1−m
jk

(λkm +
γjpk
m )

1
1−m

= 1 (4.19)

Again from 4.14  d2jk

(u
1
m
jk)1−m

− λk
m

 m
pk

= γj ⇒

γj =

 d2jk.m

(u
1
m
jk)1−m.pk

− λk
pk

 (4.20)

λk =

 d2jk.m

(u
1
m
jk)1−m − γj .pk

 (4.21)

From 4.16

n∑
k=1

pk
d

2
1−m
jk

(λkm +
γjpk
m )

1
1−m

=
p

c
(4.22)
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4.19 can be rewritten explicitly as follows:

d
2

1−m
11

(λ1m + γ1p1
m )

1
1−m
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(4.23)

In which there are n equations. 4.22 can be rewritten as follows:
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(4.24)

In which there are c equations. From latest two sets of equations (4.23,4.24) we have a

system of equations including n + c equations and n + c unknowns (Since m = 2 these

systems are linear). By solving this system we can obtain λk and γj . And then by

substituting these values in the main equation obtained for membership, we are able to

find the memberships. From there we can find cluster centres.
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Algorithm 1 Proposed algorithm to solve fuzzy clustering with equality constraint

1: Define c and ε

2: Initialize Cluster Centers

3: while ||ur+1
jk − u

r
jk ≤ ε|| do

4: Calculate Euclidean Distances

5: Solve the system of equations and determine λk and γj .

6: Use equation 4.18 and find ujk

7: Use equation 4.15 and find vj

8: end while

4.2 Repulsion

In order to avoid very close cluster centers as the result of Algorithm 1 (As it makes ob-

jective function be minimum however the results are not favourable ) we added a penalty

to the objective function as Timm et al did in [15]. The term is
∑c

j=1

∑c
l=1,l 6=i

1
d2il

.

As the penalty term in objective function is a function of the cluster center, derivative

with respect to vj is the only equation which is affected. The resulting new equation for

cluster center is:

vj =

∑n
k=1 xkujk − η

∑c
l=1,l 6=j vl

1
d2lj∑n

k=1 ujk − η
∑c

l=1,l 6=j
1
d2lj

(4.25)

where η is weight of the penalty cost regarding to repulsion.

From the sets of equations (4.23,4.24) we have a system of equations including n+ c

equations and n + c unknowns. By solving this system we can obtain λk and γj . And

then by substituting these value in the main equation obtained for membership, we are

able to find the memberships. From there we can find cluster centres.
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Algorithm 2 Proposed algorithm to solve fuzzy clustering with equality constraint and

Repulsion

Define c and ε

2: Initialize Cluster Center

while ||ur+1
jk − u

r
jk ≤ ε|| do

4: Calculate Euclidean Distances

Solve the system of equations and determine λk and γj .

6: Use equation 4.18 and find ujk

Use equation 4.25 and find vj

8: end while

4.3 Optimality

In FCM with balanced constraint, we deal with the same objective function we face with

in FCM, as it is proven in [37] and [46], this is not a convex function , so any algorithm

does not obtain a global optimal solution, while it is possible to obtain a local optima in

that specific point. To prove the point we obtained is local optimum, we have to check

KKT conditions in that point. And as mentioned before Lagrangean multipliers ap-

proach is a special case of KKT conditions. Therefore applying Lagrangean multiplier

causes finding local optimum.(Note that in a minimization problem, where objective

function is also convex, Lagrangean multiplier leads the solution to be global optimum.)

Hessian matrix of the objective function is as follows:
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2u211 0 0 . . . 0

0 2u212 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 2u21n

4u11d11 0 0 . . . 0

0 4u11d12 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 4ucndcn

4u11d11 0 0 . . . 0

0 4u11d12 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 4ucndcn

2u221 0 0 . . . 0

0 2u222 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 2u2cn



Which is not positive semi-definite (please refer to [11] for the proof) and it is shown hes-

sian matrix associated with this objective function is not positive semi-definite); means

objective function is not convex. Therefore the proposed algorithm finds the local opti-

mum.



Chapter 5

Application in Wireless Sensor

Networks

Wireless sensor networks (WSNs) have been recognised as an important system in va-

riety of areas in recent years. WSN consists of hundreds of thousands of autonomous

sensors to monitor physical or environmental conditions, such as temperature, sound,

pressure, humidity, light, vibration, etc, equipped with data processing and communica-

tion units to pass data to a main location (Base Station). The development of WSNs was

motivated by military applications such as battlefield surveillance. Nowadays, WSNs are

used in many applications such as environmental monitoring, acoustic detection, seismic

detection, inventory tracking, medical monitoring, smart spaces and etc. Advantage of

using WSNs is their independence, i.e. they can work without human’s interference. In

harsh environments where human intervention is risky or infeasible, WSNs can be used

as they are extremely small, low cost and need low power (e.g., 1 joule battery).

Since sensor nodes are powered by limited energy source like battery, energy conserva-

tion is considered to be the most important feature in order to keep the connectivity and
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operation of the network and increase the lifetime of the sensor nodes, especially when

the implemented field is inaccessible and the battery cannot be replaced or recharged

independently; Hence optimization of energy must be taken into consideration.

To this end, grouping sensors to the clusters and assigning a cluster head (CH) to each

cluster can save energy as each single sensor connects with the associated CH and after

processing data, CH transmits information to Base Station (BS). Since transmitting data

to BS by each single sensor is energy costly, clustering helps save energy [31]. There exist

a number of cluster-based protocols that have proposed by variant researcher. Among

them low energy adaptive clustering hierarchy (LEACH), [50] which is a typical cluster-

based protocol using a distributed cluster formation algorithm. The CHs are selected

with a predefined probability, other nodes select the closest cluster to join, based on

the signal strength of the advertisement message they receive from the CHs. The CHs

change over time among all the nodes in the network to save energy of the CHs because

of high-traffic load in CHs.

Bandyopadhyay and Coyle in [15] use Hierarchical Clustering method to cluster sensors.

Ye et al. [26] propose a dynamic algorithm which updates cluster heads in each iteration

with respect to the residual energy which increases the life time of the system. There

are other of protocols which improve the network life time by developing the efficiency

of the data transmission however the structure of the clusters is not optimized yet. PE-

GASIS, TEEN, APTEEN and HEED are examples of such protocols ([51],[52],[53],[54]).

Another issue regarding to WSNs is distance of the sensors specially distances of CHs to

BS. Since there are always some sensors closer to BS rather than the others and must re-

lay data for a large part of the network, they consume battery energy very quickly. Lou

and Hubaux in [3] suggest that BS to be mobile whenever it is possible, therefore close

sensors change over time. Having some degrees of overlap among clusters can facilitate
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many applications, like inter-cluster routing, topology discovery and node localization,

recovery from cluster head failure [5]. As Fuzzy C-Means clustering algorithm always

generates clusters in such a way that data points will be assigned not only to one clus-

ter but to all clusters it gives desired results with respect to overlapping. Evantually

efficient management of WSNs for extending life time of the system is crucial for system

performance. However little attention is paid to the efficiency of energy usage at the

CH. Gupta and Younis in [4] address this issue. They claimed if work load of CHs be

equal over all clusters, life time of the network extends . This is true, since CHs define

the network’s life time upper bound (non-functionality of a CH is considered as bottle

neck of the network). Intuitively, to form the clusters and assigning a CH to each cluster

FCM is used and it is assumed that FCM forms clusters in such a way that the num-

ber sensors in clusters be equal. This assumption is true, for small networks. However

by increasing network size, not only FCM does not take care of the equality, but also,

there can be empty clusters or clusters with small number of sensors. Furthermore even

though FCM is used as a way to determine the CH, the available literature defuzzifies

at each iteration and assigns each node to a cluster head which reduces the robustness

that overlapping clusters might provide to the network. We study clustering of wireless

sensor networks where overlapping is a target and simultaneously generates clusters with

equal workload for each cluster head. Both objectives lead us towards increasing the life

time of the network which cause decreasing cost of the system.

As discussed in chapter 4, we proposed a fuzzy clustering algorithm with balance con-

straint. Our protocol is similar to the one suggested in [56]. Proposed protocol is as

follows:

We firstly initialize energy of the network. Next we use Algorithm 2 to form the clus-

ter. In the next step we shall calculate the centroid of each cluster. Then g closest
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sensors will be recognized. The one with highest residual energy will be selected as CH.

Then by applying Equation 4.18 to the resulting CHs and sensors we can calculate the

membership degrees. As in the proposed algorithm, we do not defuzzify, we use the

the membership degrees as weighs of data packets each sensor sends to CHs. Finally in

order to update energy of the network we use the equations provided in [56].

Algorithm 3 Proposed cluster based protocol to solve WSNs problem

Initialize energy of the network

while Number of rounds is less than maximum number of rounds do

3: Use Algorithm 2 to form clusters

Find 5 closest sensors to the centroids and choose one with the most residual

energy

Update energy of network (both CHs and sensors)

6: end while

5.1 Computational Experiments

In order to test the proposed algorithm, we compared the proposed algorithm, with

LEACH protocol. In LEACH protocol, each node with a predefine probability can be

CH. At the beginning of each round, sensors send an advertisement message to each

other. Then based on minimum distance, each sensor sends data packets to a CH and

CH after data aggregation, sends data to BS.

The computational study is conducted with data sets generated in MATLAB with differ-

ent number of data points n = 100, n = 200, n = 500, and their associated coordination.

Multiple number of test sets were examined with different characteristics. We consid-
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Table 5.1: Experiment set up

Parameters Value

Network Size 300× 300 & 500× 500

Number of sensors 100, 200, 500

Number closest sensors to centroid (g) 2, 3, 4, 5

Base Station location (150, 150) & (250, 250)

Packet Generation rate 1 packet/Sec

Update interval 120 mins

Eelec 50 nj/bits

εfs 10 nj/bits/m2

Initial Energy 0.5 Jules

Data packet size 500 bytes

ered the area that sensors are distributed is 300 × 300, 500 × 500 and base station is

located at (150, 150) and (250, 250). Table 5.1 illustrates all parameters we have used.

As mentioned in section 4.2, we have added a penalty cost to the objective function to

avoid locating cluster centers too close to each other. To this end, we have considered

a constant, η, as penalty cost. To find the best value of η which minimize objective

function and simultaneously locating cluster centers far from each other, we have tried

different values of η, checked the associated objective function, and selected η = 1700

in all of our calculations.

We have implemented the proposed algorithm in chapter 5 in MATLAB. We consider

total remaining energy of network and total number of alive sensor (with positive resid-

ual energy) as two measures for algorithm’s performance. We have tested g as well.

Recall that g is the number of closest sensors to the centroid. We select CHs from this

set of sensors with respect to their residual energy. Figure 5.1 and 5.2 demonstrate
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Figure 5.1: Effect of g on the Remaining Energy of Network, n = 100

performance of proposed algorithm and LEACH where n = 100. Obviously, our algo-

rithm works better than LEACH in both measures. Figure 5.1 and 5.2 also illustrate

sensitivity of total remaining energy of network and number of alive sensors to g. We

expected the energy consumption decrease by increasing g since increasing g results in

selecting a better CH. Figure 5.3 and 5.4 illustrate effect of repulsion. Since repulsion

forces the CHs to be far from each other, it decreases distances to CHs therefore energy

consumption decreases. Figure 5.5 and 5.6 show affect of g on a network of n = 200

sensors. The other parameter which we have examined is number of cluster centers.

We expectet the performance of the algorithm gets better when we increase number of

clusters but we did not see this from the result. Figure 4.14 represent position of CHs

in each round. As you see, after a while when the number of dead sensors is growing

up, distribution of the sensors changes, which has effect on the CH selection.
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Figure 5.2: Effect of g on the Number of Alive Sensors, n = 100

Figure 5.3: Effect of Repulsion on the Number of Alive Sensors
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Figure 5.4: Effect of Repulsion on the Remaining Energy of Network

Figure 5.5: Effect of g on the Remaining Energy of Network
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Figure 5.6: Effect of Repulsion on the Number Alive Sensors

Figure 5.7: Effect of number of clusters on the Total Remaining Energy
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Figure 5.8: Effect of number of clusters on the Number of Alive sensors

Figure 5.9: CHs’ locations over time in a 500 × 500 m space



Chapter 6

Conclusion and Future Research

Equality is a critical issue in various companies and organizations. We study equality in

terms of a balance constraint added to infamous fuzzy c-means algorithm and call new

problem as FCBC. The mentioned constraint forces clusters to have equal population

with respect to their membership degrees.

We developed a heuristic method to solve FCBC problem. The proposed algorithm

was applied to WSNs problem. Next the famous LEACH protocol was developed and

proposed algorithm and LEACH protocol were compared. Results were examined based

on two criteria, namely, remaining energy of network and also number of alive sensors

in each round. Results show that proposed algorithm works better that exist LEACH

algorithm in the simulated environment.

For the future research, we consider a simulated environment where, rather than a small

number of rounds, number of rounds increased and in each round sensors according to

their membership selects a single CH to communicate with. From methodological point

of view, the other cluster based protocols to solve WSNs problem can be investigated.
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