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Koyaş who accepted to translate the Abstract into Turkish.

In addition, I want to thank my brothers and sisters in Sabancı University
who really makes my staying in the university, in particular, and in Turkey,
in general, meaningful and valuable. They were and are always considered
as my family.

For my parents, thanking is really meaningless in front of their great and
indescribable efforts and support which did not stop until this stage of life.
I ask ALLAH to protect them and give them long and beautiful life.



It is really hard to leave this community, this environment and those peo-
ple after these three years. I hope that, as we met in life once, we meet in
the other life, and for that I ask ALLAH to protect those people and show
them the way that he likes.

Finally, I should mention that, this work was partially supported by Sa-
bancı University under Grant IACF-11-00889, and by the Scientific and Tech-
nological Research Council of Turkey under Grant 11E056.



Contents

List of Tables xii

List of Figures xiv

Abstract xv
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Abstract

ERROR DETECTION AND NEW STIMULUS MECHANISMS IN
BRAIN-COMPUTER INTERFACE

Hamza ALTAKROURY

Electronics Engineering and Computer Science, MS Thesis, 2013

Thesis Supervisor: Associate Prof. Müjdat Çetin

Keywords: Brain Computer Interface, P300 paradigms, Error related
Potentials.

Brain Computer Interfaces (BCIs) constitute a research field whose moti-
vation is to help disabled individuals to communicate with the environment
around them directly through the electrical activity of their brain rather than
by the usual muscular output mechanism of the human body. The idea of
non-invasive BCI is based on collecting brain signals using medical electrodes
placed on the scalp of the patient and then trying to understand what the
patient is trying to do/say by automatically analysing the collected signals.
In other words, BCI can be imagined as a way to compensate the damaged
internal nerves that used to carry signals from the brain, by using external
cables connected with the computer.

Although extensive research continues to be carried out in the field of
BCI, still BCI is working only inside laboratories. This is due to the weak-
ness of the brain signals that are acquired. It is impossible to understand
always the meaning of the signals without error. The existence of errors in
such systems means that it is impossible to depend totally on them to control
the life of disabled individuals.

One of the well-known BCI types is called the P300 paradigm. It provides
individuals with a method to choose any target only by concentrating on this
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target while it is flashing. The flash on the screen is considered as a stimulus
for the brain, and the brain’s response to this stimulus is known as the P300
signal and can be detected in the acquired signals from the brain. P300-BCI
is one of the most well-known paradigms in the BCI field.

One way to reduce the number of errors in any BCI system in general,
and in P300 paradigms in particular, may be by using Error-related Poten-
tials (ErrP). These ErrP signals are generated when the subject detects an
error in the system. Therefore, these signals could be used as a feedback for
the BCI system to verify its last response. If the BCI system, for example,
generates a wrong output, then an ErrP will be generated from the subject’s
brain which could be exploited to generate a message that the last output
generated is not correct. Another way to reduce the number of errors, in
the context of P300 paradigms, may be by making the neighbour non-target
items have the same job of the target item. By using this idea, whether the
subject gives attention to these non-target items or not, the output will be
as the subject expects.

In this research, we have experimentally examined two different scenarios
for generating ErrP signals. Having ErrP signals from two different scenarios
makes it possible for us to see if the ErrP signals have the same characteristics
under different scenarios. In addition, we have implemented a new P300
paradigm motivated by a BCI-based robotic control application, in which
the target’s neighbour items have the same job of the target itself. In this
new implementation, we get better classification performance through an
analysis that compensates for the change in the number of classes.
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Özet

BEYİN-BİLGİSAYAR ARAYÜZÜNDE HATA TESPİTİ VE YENİ
UYARAN MEKANİZMALARI

Hamza ALTAKROURY

Elektronik Mühendisliği, Yüksek Lisans Tezi, 2013

Tez Danışmanı: Doç. Dr. Müjdat Çetin

Anahtar Kelimeler: Beyin Bilgisayar Arayüzü, P300 Paradigmaları, Hata
İle İlgili Potansiyeller

Beyin Bilgisayar Arayüzleri (BBAlar), engelli bireylerin, çevreleri ile in-
san vücudunun normal kas mekanizması tarafından değil de doğrudan beyin-
lerindeki elektrik faaliyeti ile iletişim kurmalarına yardım etme motivasy-
onuna sahip bir araştırma alanıdır. İstilacı olmayan BBA’lar beyin sinyal-
lerini hastanın kafa derisine yerleştirilen tıbbi elektrotlarla ölçmek ve son-
rasında hastanın ne istemeye/söylemeye çalıştığını toplanan sinyalleri analiz
ederek otomatik olarak anlamaya çalışmak üzerine kuruludur. Diğer bir
deyişle, BBA beyinden gelen sinyalleri taşımak için kullanılan hasarlı iç sinir-
lerin yerini bilgisayara bağlı harici kablolar ile doldurmak için bir yol olarak
düşünülebilir.

BBA alanında kapsamlı araştırmalar yapılmasına rağmen, BBA hala sadece
laboratuvarlar içinde çalışıyor. Bunun sebebi elde edilen beyin sinyallerinin
zayıflığıdır. Sinyallerin anlamını her zaman hatasız olarak anlamak mümkün
değildir. Bu gibi hataların sistemlerdeki mevcudiyeti, engelli bireylerin yaşamlarını
tamemen bunlara bağlı kılmamızın mümkün olmadığını gösterir.

İyi bilinen BBA türlerinden biri, P300 paradigmasıdır. Bu paradigma,
bireye kendi belirlediği herhangi bir hedefi yanıp sönerken o hedefe odak-
lanıp seçmesi için bir yöntem sağlamaktadır. Ekrandaki hedefin yanması
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beynin bir uyaranı olarak değerlendirilir ve beynin bu uyarana yanıtı P300
sinyali olarak bilinir ve beyinden elde edilen sinyallerde tespit edilebilir. P300
tabanlı BBA, BBA alanında en tanınmış paradigmalardan biridir.

Genel olarak herhangi bir BBA sistemindeki ve özellikle P300 paradig-
malarındaki hata sayısını azaltmak için hata ile ilgili potansiyelleri (ErrP)
kullanmak bir yol olabilir. ErrP sinyalleri birey sistemde bir hata tespit ed-
erse oluşur. Bu nedenle, bu sinyaller BBA sisteminin son yanıtını doğrulamak
için bir geri besleme olarak kullanılabilir. BBA sistemi, örneğin, yanlış bir
çıktı üretirse, bireyin beyninde oluşan ErrP kullanılarak, yanlış bir çıktı elde
edildiğine dair bir mesaj üretilebilir. P300 paradigmaları bağlamında, hata
sayısını azaltmak için bir başka yol da hedef olmayan komşu öğeleri, hedef
öğe ile aynı işleve sahip yapmak olabilir. Bu fikri kullanarak, birey hedef
olmayan bu öğelere dikkat versin veya vermesin, çıktı bireyin beklediği gibi
olacaktır.

Bu araştırmada, ErrP sinyalleri üretmek için deneysel olarak iki farklı
senaryoyu inceledik. İki farklı senaryodan elde edilen ErrP sinyallerine sahip
olmak, ErrP sinyallerinin farklı senaryolar altında aynı özelliklere sahip olup
olmadığını görebilmemizi mümkün kılar. Buna ek olarak, komşu öğeleri hedef
öğe ile aynı işleve sahip olan ve motivasyonu BBA tabanlı robotik kontrol
uygulaması olan yeni bir P300 paradigması geliştirdik. Bu yeni uygulamada,
sınıf sayısındaki değişikliği telafi eden bir analiz ile daha iyi bir sınıflandırma
başarımı elde ettik.
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Chapter 1

Introduction

This chapter introduces the idea of Brain-Computer Interface, and talks
about some of the problems that it faces. Also it mentions some of the pre-
vious works that have been done to solve these problems. Then, it describes
the contribution that this thesis provides.

1.1 Motivation

Brain-Computer Interface (BCI) is a new and fast-growing field that aims to
help disabled individuals. Around the world there are many research groups
working on this field in its various forms. Although many articles have been
published under this title, still brain computer interface is working only in-
side laboratories. The major barriers that stand in front of bringing the
BCI to work in the real-world are: First, the low signal-to-noise ratio of
the acquired signals. This makes it impossible to have a robust system that
can work without errors. Second is the non-stationarity nature of the brain
signals. This non-stationarity makes it essential to modify the parameters
of the system before each run. This calibration takes time and the subject
should be part of it.

In this research we try to find a way to reduce the number of errors that
occur in the BCI-systems by using the so called Error Related Potentials in
one way, and by modifying the interface of the P300 paradigm in the other
way. In addition we suggest a way to use these potentials in making the
BCI-systems adaptive.
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1.2 Existing Research

One of the well-known BCI applications is the P300 speller, this speller was
found to be one of the most robust applications in the field of BCI [1]. The
first main purpose of this speller was to enable disabled individuals to type
letters just by focusing on a specific letter, Chapter 2 gives the details about
this speller. However the P300 is still slow and training before each use is
required.

To eliminate the operation of training before each use, there exist ongoing
research efforts, under the name of adaptive BCI [2] [3] [4]. Adaptive system
means to have a system that is able to work well without training even if
the time between the first training and the present run is long. Our research
started with the aim of making the P300 speller adaptive using a cognitive
signal called Error Related Potential (ErrP). Using ErrP in the P300 speller
for adaptivity purpose is a new idea.

Several researches have worked on acquiring and detecting ErrP signals
[5] [6] [7]. But results show that there are differences in these signals de-
pending on the scenario in which they are acquired. There is no previous
research that performed a comparison of ErrP signals acquired from two dif-
ferent scenarios. Here, in this research, the results that were found out from
ErrP under P300 speller pushed us to see (before making P300 adaptive as
was the aim) if the pattern of the ErrP acquired in P300 experiment can be
found in ErrP signals that are acquired using another scenario.

On the other hand, the implementation of the first P300 speller [8], urges
the workers in this field to use this idea not just in keyboards and speller.
Many works have been done using the P300 signals in different paradigms to
move wheelchairs, robots or any kind of mechanical devices [9] [10]. In this
research, a new paradigm, which, to the best of our knowledge is original,
has been implemented so that the P300 interface could be used to control a
robot that moves in four different directions. The new paradigm, as it will
be shown, reduces the errors of the P300-paradigm.

2



1.3 Contribution

This thesis makes two contribution in the field of BCI that can be used in
the future to implement a robust and adaptive BCI-system. The first con-
tribution is the implementation of two paradigms that are able to generate
ErrP signals from subjects. The first paradigm has a similar interface with
the P300 speller. The ErrP acquired from this interface can be used to im-
plement an adaptive P300-speller. The first paradigm that was used in this
research to generate ErrP signals is similar to that used in [7]. However to
see if ErrP signals are similar to those that can be generated from another
interface, i.e., to see whether the properties of the ErrP are independent of
the scenario, another paradigm was implemented to generate ErrPs.

The second paradigm that was implemented in this work is similar to that
found in Chavarriaga et al., [6], but the main difference here is having a more
stable paradigm. The cursor in [6] is moving continuously which may cause
an Electrooculography (EOG) contamination. These EOG signals make it
hard to classify the ErrP signals. And also in [6] the steps that the box passes
is only three which may not attract the concentration of the subject. In this
work the cursor on which the subject should concentrate is constant and the
box should walk 10 steps to reach the target.

The second contribution is the implementation of a modified P300-paradigm
for controlling a robot. This paradigm was implemented based on new idea
of having multiple choices for the same target. By having this paradigm
we could decrease the number of errors and at the same time having higher
bit rate compared to the usual P300 speller. To the best of our knowledge,
such a modification has not been considered before. In most previous work
involving the use of P300 for robot control, including, e.g., [11] and [9], a
single choice in the stimulus matrix corresponds to a single target for the
robot. Such systems are prone to too many errors.

1.4 Thesis Outline

The work in this thesis is organized as follows: In the Background Chapter
(Chapter 2), a general picture is shown about the field of BCI, some of the
EEG signals are characterized, and some problems that BCI faces are de-
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scribed. It also talks briefly about one of the most used classifier in the BCI
field.

In the Recognition of EEG signals Chapter (Chapter 3), the idea of de-
tecting EEG signals is discussed, it also mentions some of the methods that
were used in the literature for detecting EEG in general, and ErrPs in par-
ticular. Then it ends describing the methods that were used in this work to
detect the ErrPs.

The Detection of Error Related Potentials Chapter (Chapter 4), describes
first the motivation for detecting ErrP potentials in BCI systems, then it re-
views some of the previous work that has been performed for detecting ErrP
potentials. And finally, it illustrates the work of this thesis for detection and
classification of ErrP.

P300 and Mechanical Devices Chapter (Chapter 5), shows some of the
previous work that was carried to use the P300 paradigm for controlling me-
chanical devices. Then it presents the work that has been carried out in this
thesis to modify the P300 paradigm for using it later to control four-direction
robot.

Finally, the thesis ends summarizing the work that has been performed,
commenting on its results, and proposing some ideas for those who want to
continue in this field.

4



Chapter 2

Background

This chapter explains the idea of Brain-Computer Interface. It also focuses
on P300 speller and how it works. Then it moves on to describe Error Related
Potentials and how they could be used in BCI and how adaptivity could be
achieved using ErrPs.

2.1 Introduction

BCI is a new research field [1]. It aims to help disabled individuals. Research
on BCI is based mainly on the techniques of signal processing and machine
learning. BCI could be defined as an electrical medium that connects the
disabled individual with the environment through the computer, and com-
pensates his damaged neural and/or muscular communication channels.

In general, disability could be due to diseases such as Cerebral Vascular
Accident (CVA), Spinal Cord Injury (SCI), Traumatic Brain Injury (TBI),
Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS) and Parkin-
son’s disease.

The idea of BCI is based on acquiring brain signals, which are related
to specific acts, then using these signals after processing as examples for the
computer (which has a classifier). The role of the computer then is to un-
derstand these acts whenever it notices similar signals.

The history of recording brain signals had begun in 1929 when the Ger-
man scientist Hans Berger recorded the electrical brain activity from the
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human scalp. At that time, the required technologies for measuring and pro-
cessing brain signals were still too limited [1].

The first BCI was described by Dr. Grey Walter in 1964 [1], where he
had succeeded in detecting the action of pressing a button from the brain
signals before the button being actually pressed. (The detection of the brain
signals was faster than the action of moving the hand). Before that all BCI
was just a matter of science fiction.

2.2 Brain Signals

There are three ways to acquire brain signals. In the first one the signals
are acquired from the scalp and no surgery is needed, the signals acquired
by this method are called Electroencephalography (EEG). In the second way
the signals are called Electrocorticogram (ECoG) and they are acquired from
the cortex. This approach necessitates a surgery for opening the skull. The
third way needs the electrodes to penetrate the tissue of the brain. Signals
acquired by this method are called Intracortical Signals.

Acquiring EEG is the safest and most common in the field of BCI re-
search, however it is the most challenging due to the weakness of power of
these acquired signals. On the other hand, Intracortical Signals are stronger
and have better signal-to-noise ratio, but the need for a surgery in the case
of Intracortical Signals is dangerous and it is hard to find volunteers for the
research. Regarding safety and signal-to-noise ratio, ECoG signals are in the
middle.

2.3 Electrodes

The sensors that are used to acquire the medical signals are called electrodes.
These electrodes are made of conductors, and they acquire signals from non-
metallic mediums placed on the skin of the patient. The common electrodes
used for acquiring EEG signals are the Ag/AgCl electrodes. These electrodes
could have many shapes.
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One type of these is called the reusable disk, where it is made from silver
or gold. These disks needs sticks to be fixed on the specified place of the
patient’s skin. Another type of electrodes are designed in a way to match a
special cap that the subject wears. This special cap is designed to facilitate
the procedure of putting the electrodes in its place accurately.

The conductivity between the electrodes and the the scalp of the patient
is reduced by the patient’s hair. Because of that in most types of electrodes,
a conducting gel is used to ensure the conductivity between the skin and the
electrodes. However, when using the new-produced dry electrodes there is
no need to apply any conducting gel.

2.4 Types of BCI

BCI-systems can be classified in many ways. They could be classified ac-
cording to the paradigm under which the signals are acquired; and here
there are many classes, like the P300-BCI, the Steady State Visually Evoked
Potential-BCI (SSVEP-BCI), the motor imagery BCI and so on. In another
classification, BCI-systems can be classified into two classes. The first is the
Synchronous BCI and the second is Asynchronous BCI.

In the first class, i.e., synchronous BCI, there are markers (cues shown to
the subject) for marking the beginning of the signal. For example in the mo-
tor imagery BCI where the subject tries to imagine the movement of his/her
extremities, the marker usually marks the beginning of the imagination of
motion. This marker could be used also to mark the beginning of the event
in the case of Event Related Potential (ERP) paradigms, the event usually is
in the form of sound or visual stimulus. In ERP-BCI, the brain’s responses
to these events are studied.

One of the most robust BCI-based systems is the P300, which is classi-
fied under the ERP-BCI. This paradigm is based on having a low probabil-
ity target stimulus among high probability non-target stimuli to generate a
positive-going signal approximately after 300 ms from a visual or auditory
stimulus [12]. This kind of BCI is explained in detail in the following section.
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Figure 2.1: Farwell and Donchin Matrix.

Another simple and robust BCI system is known as the Steady-State
Visual Evoked Potentials (SSVEP). Under this type of BCI the subject is
asked to focus on a target stimulus with specific frequency among non-target
stimuli with different frequencies. It has been found that the acquired signals’
frequency is equal to the stimulus frequency. In Asynchronous BCI there is no
marker to follow. The process of splitting the signals depends on windowing
technique. This case is used mostly in the motor imagery BCI.

2.5 P300 Stimulus

One of the most common BCI systems is based on the P300 signals. These
signals are named so because they appear as a positive-going component
after 300 ms of a low probability stimulus [12]. The idea of having a distin-
guished signal appearing after a low probability stimulus had urged Farwell
and Donchin to implement a keyboard based on the P300 signals [8]. Fig.
2.1 shows this P300-based keyboard which is known as the P300 speller.

In this matrix, each row and column flashes for a specific period of time
in a random manner. The target letter is located in the junction of the tar-
get row and the target column. The target row and the target column have
low probability; because of this each of them elicit a P300 component. By
knowing the times of the P300 components the system can refer to the times
of the flashes and know where the target letter is.
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Figure 2.2: Classifying of a single signal component: Here the signals of each
trial is first classified as P300 signal (labeled as 1) or non-P300 (labeled as 0),
the other trials then support or oppose the previous ones through the score.

The flashing of the entire matrix is called a trial. Unfortunately, because
the EEG has low signal-to-noise ratio the target signals (P300) can’t be cer-
tainly distinguished from the non-target signals only by depending on one
trial; the system should detect the output of more than one trial so that the
classifier can be more robust.

Combining the results of the flashes could be done in two ways. In the
first, the signals are directly entered to the classifier which classifies each
signal as P300/non-P300. The row and the column that have the highest
probability of being P300 gets 1-score and the others 0-score, after complet-
ing the trials, the comparator decides which is the target letter according to
the scores. Fig. 2.2 summarize the idea in a simple graph.

In the other way, the signals that are generated from all the trials are
averaged, so that the signal-to-noise ratio becomes larger. After that, the

9



Figure 2.3: Classifying the average of the signal components: Here the signals
first are being averaged, then entered to the classifier, the output of the
classifier is normally a posterior probability indicating the likelihood that
the signal is a P300 or not.

average is being used as an input to the classifier which finds the likelihood
for a signal to be P300. The signal that has the highest probability will be
classified as P300, then the target letter is found. Fig. 2.3 shows this tech-
nique. In either case, having to use more than one trial in the P300-speller
is one of its major disadvantages. This repetition of the trials requires time;
and that makes the system slow.

P300 paradigms could be used also to control various mechanical devices.
This can be done by using directions, words, picture or any suitable elements
in the matrix instead of letters. When P300 scenario is used to control me-
chanical devices, the cost of error should be considered. It is easy to notice
that errors in moving mechanical system are much more costly that of those
errors occurs in typing letters.
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2.6 Error Related Potentials

One kind of EEG signals is called Error Related Potentials (ErrP), these
signals are generated when the subject faces an error, and this error could be
due to the subject himself/herself or from the machine. In previous articles
it is stated that the shapes of the ErrP acquired from different experiments
are different, i.e. in the P300 experiment the shape of ErrP signal will be
different than that in the Motor Imagery experiment [5]. Also it is found that
the shape of the error signals that are generated when the subject makes the
error is different from the shape of the signals that are generated when the
error is due to the system, i.e., when the system misinterprets the subject’s
command. [13].

Detection of ErrP could be used to correct the errors, this can be done in
a binary classification problem. For example in the Motor Imagery a classi-
fication of left hand versus right hand could be done. If the system decides
the output to be the left hand and detects ErrP, it can directly change its
decision to right hand. But this cannot be done in a multi-class classification
problem. Here the detection of ErrP can only be used to ignore the erroneous
result (the one that generates the ErrP).

The detection of ErrP under the P300 paradigm could be done in two
ways. First it could be used as the backspace button. In this case, if
the machine displays a letter then the classifier detects ErrP, the machine
will directly delete that choice. Doing so makes the P300 speller faster be-
cause deleting a letter normally requires the subject to concentrate on the
backspace choice and wait one more trial (flashing of all the rows and columns
around 5 to 10 times).

The second way is similar to the first in deleting the choice which is fol-
lowed by ErrP, but also it has the advantage of making the speller faster
by choosing the letter that has the second rank, which could be with high
probability the right letter. In this case the detection of ErrP will force the
system to choose the second high score letter instead of the highest score
letter.

But if the classification is based on the average of the components, the
column that has the highest posterior probability and the row that has the
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highest posterior probability will be chosen. However if an ErrP is detected
the second highest probability row and the second highest probability col-
umn will be compared, and the one that has higher posterior probability of
them will considered.

2.7 Adaptivity

The EEG signals are random and contain stationary components and non-
stationary components. Due to these non-stationary components the BCI
system acts differently on different subjects and even on the same subject on
different sessions [6] [12].

Often this problem is being solved by retraining the classifier of the sig-
nals before each session. Retraining makes the system capture the general
shape of the signals before putting it under work. Repeating the operation of
training is a time-consuming and inconvenient process. Many ideas were pro-
posed to make the system adaptive; i.e., to make the system able to change
its parameters during the test session to keep the classification performance
high without repeating the training session.
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Chapter 3

Recognition of EEG signals

This chapter talks about the idea of signals recognition, also it describes a
number of methods that are used in recognizing EEG signals, in general, and
ErrP in particular. This chapter contains also a description of the methods
that were used in this work to recognize the signals.

3.1 Introduction

As mentioned previously, EEG signals have low signal-to-noise ratio, this
makes the job of detecting such signals hard and requires the use of “clever”
techniques to recognize these signals. The techniques that are used in detect-
ing signals, in generals, and EEG signals, in particular, could be decomposed
in two parts, the first part is known as the Feature Extraction and the second
is the classification part.

In Feature Extraction only the components that are needed to identify
the signal are considered. For example, instead of looking at all the parame-
ters of the signal and analyse them, it is sufficient to know if the amplitude
of a specific frequency crosses a predefined threshold, in this case the feature
is only the amplitude of that frequency, and the Feature Extraction method
could be the Fourier Transform of the signal. Generally speaking, the input
signal is of high dimensionality and can often be summarized by a set of
features, or a feature vector, that capture the essence of the signal and can
help the classification of the signal. For instance, a small number of Fourier
descriptors can represent a time signal efficiently.
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The classification part, is the part in which decisions are made, here the
class of the signal is recognized. In our previous example, the predefined
threshold is considered as the classifier of the signal. The classification part
comes always after the feature extraction part where the classifier looks at
the features of the signal, and according to predefined parameters, the clas-
sifier decides in which class the signal should be placed.

Last thing to note here, that to find the good features of signals and to
determine the parameters of the classifier in a good shape, there should be
a large number of signals that are known to be from different classes. By
having these large number of signals it is easy to find what is common in the
signals that are in one class, and what is different between the signals that
have different classes.

3.2 Methods for Detecting EEG Signals

It can be said that most of the methods and techniques that were developed
in Machine Learning and Pattern Recognition for extracting features and de-
tecting and classifying signals were used in the BCI field. In literature it can
be seen that people have used simple techniques in analysing EEG signals
like using Pearson’s correlation for classifying P300 signals [14] , while others
have used a complex techniques, like Hidden Markov Models and Support
Vector Machines [15].

For detecting ErrPs, Schmidt et al. have used the linear discriminant
analysis [16], and Llera et al. have used the logistic regression model [17].
However Combaz et al. have tested both the Fisher Linear Discriminant
Analysis (FDLA) and the linear Support Vector Machines (linear-SVM) for
detecting the ErrPs. Combaz et al. have found that the FLDA shows more
balanced performances although the linear SVM seems to outperform the
FDLA for the global accuracy [5]. Millan and his group have used the Mix-
ture of Gaussians in most of their research about the ErrPs [13] [6]. It is
important to note that all the previously mentioned research used the sig-
nals as an input to the classifier after down-sampling it without any feature
extraction, the features were the amplitudes of the signal at different sample
points.
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In our analysis, we have used the both the Gaussian classifier and the Mix-
ture of Gaussians with clustering (described next) to classify the ErrP signals
that we have. In general, except when the PCA was used, the features that
we considered are the amplitudes of the signals directly after down-sampling
the signals.

3.3 Gaussian Classifier

The Gaussian classifier is based on the idea of Hypothesis Testing when the
data are assumed to be normally distributed. If the data are to be classified
into only two classes, then the Binary Hypothesis Testing is used. In this
approach it is assumed that there is a null hypothesis and an alternate hy-
pothesis, and each has its own parameters.

If the null hypothesis Ho has a posterior probability Pr[H = Ho|y], and
the alternate hypothesis H1 has a posterior probability Pr[H = H1|y], and
assuming that cost of the two types of errors is equal for simplicity, then

Pr[H = Ho|y] ≷Ho
H1
Pr[H = H1|y] (3.1)

According to Bayes Rule the posteriors can be written as:

Pr[H = Ho|y] =
p(y|Ho)

p(y)
· Pr[Ho] (3.2)

Using Eq. 3.2, Eq. 3.1 could be written as:

p(y|Ho)

p(y|H1)
≷Ho
H1

Pr[H1]

Pr[Ho]
=
p1
po

(3.3)

As mentioned previously, the classifier is called Gaussian because:

Ho : y ∼ N(mo,Λo)

H1 : y ∼ N(m1,Λ1)
(3.4)

Where m is the mean of the distribution and Λ is the covariance matrix,
it should be non-singular, and its dimension is equal to the dimension of the
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data vector.

In general, the Gaussian distribution for N(m,Λ) is written as:

L(y) =
1

(2π)N/2|Λ|1/2
exp[−1

2
(y −m)TΛ−1(y −m)] (3.5)

And because using the assumption in Eq. 3.4, the likelihood of the data
from the null class can be written as in Eq. 3.6 and from alternative class
can be written as in Eq. 3.7:

p(y|Ho) =
1

(2π)N/2|Λo|1/2
exp[−1

2
(y −mo)

TΛ−1o (y −mo)] (3.6)

p(y|H1) =
1

(2π)N/2|Λ1|1/2
exp[−1

2
(y −m1)

TΛ−11 (y −m1)] (3.7)

Finally substituting Eq. 3.6 and Eq. 3.7 into the Eq. 3.3, the resulting
inequality takes the following form:

1/2 ln(
|Λ0|
|Λ1|

)−1/2(y−m1)
′Λ−11 (y−m1)+1/2(y−m0)

′Λ−10 (y−m0) ≷
H1
H0

ln(
p0
p1

)

(3.8)

Special Cases

The first special case appears when the dimensions are assumed to be inde-
pendent, i.e., the covariances between different dimensions are zeros. In this
case the shape of the covariance matrix will be:

σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

· · · · ·
0 0 · · · 0 σ2

N


Where σ2

k is the variance of the kth dimension, and N is the number of
dimensions.

In this special case (the covariance matrix is diagonal), Eq. 3.8 can be
simplified using the following equation:
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ln(|Λ|) = ln(
N∏
i=1

(σi)
2)

= 2
N∑
i=1

ln(σi) (3.9)

To make the equations much simpler, let x be equal to the following:

x = (y −m).× [
1

σ1
· · · 1

σN
] (3.10)

Where .× is the element by element multiplication. Then:

1/2(y −m)′Λ−1(y −m) = xx′ (3.11)

Finally Eq. 3.8 becomes:

ln(p1)− 1/2||x1||22 −
N∑
i=1

ln(σ1i) ≷
H1
H0

ln(p0)− 1/2||x0||22 −
N∑
i=1

ln(σ0i) (3.12)

The second special case of the Gaussian classifier comes when it is as-
sumed that the covariance matrix is equal to identity for both classes, that
is:

Λ1 = Λ2 = I (3.13)

Here, it is assumed that the difference between the classes is the only the
mean. Actually having covariance equal to the identity matrix means that
the variance of each dimension is equal to one and the covariance between
the dimensions are zero, that is, they are uncorrelated.

Using the case of identity matrix, Eq. 3.5 will reduce to:

L(y) =
1

(2π)N/2
exp[−1

2
(||(y −m1)||22)] (3.14)

Where, ||x||2 is the second norm of x. Finally, by substituting Eq. 3.14
into the inequality Eq. 3.3 the result will be:
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1

2
[||y −m1||22 − ||y −mo||22] ≷Ho

H1
ln(

p1
po

) (3.15)

To see the idea of the classifier, let’s assume that the prior probabilities
are equal (p1 = po), by doing so the above Eq. 3.15 becomes:

||y −m1||22 ≷Ho
H1
||y −mo||22 (3.16)

It is clear from Eq. 3.16 that the classifier depends on measuring distance.
In this simplest case the classifier is called the minimum-distance classifier.
This classifier simply determines the distance between any data point and
both the mean of the first class, and the mean of the second class. Then it
assigns the data point to the class which has the nearer mean.

3.4 Mixture of Gaussians

The idea of Mixture of Gaussians is based on the Gaussian classifier described
in Section 3.3. But here instead of assuming that each class has a Gaussian
distribution with a specific mean and covariance matrix, in one class, each
subgroup of data is assumed to be normally distributed with a specific mean
and specific variance. Then the overall distribution of the data within one
class becomes a mixture of such Gaussian components. In this case, in each
class we could have more than one label (indicating the mixture compo-
nent) and if any given data point is classified to any subgroup (i.e., mixture
component) of a class, then this data point is considered to be from this class.

Because the number of data points in one class could be small to estimate
the covariance matrix efficiently, dividing these points into subgroups where
each subgroup has its own covariance matrix makes the estimation of the
covariance more unrealistic. In this case, all the data points from one class,
after defining the mixture component, could be used to estimate a covariance
matrix, and then, this covariance matrix is used as a common covariance ma-
trix for all the subgroups (all the Gaussians) of a specific class.

According to the above, if we let Ck to be the class-conditional proba-
bility density function, then the activity αik of the ith prototype (mixture
component or subgroup) of class Ck for a sample x is given by:
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αik(x) = (π|Λi
k|)−1/2 exp(

−1

2
(x− µik)T (Λi

k)
−1(x− µik)) (3.17)

Where µik and Λi
k is the center and the covariance of the ith prototype

of class Ck respectively. In the case of common covariance matrix for all the
prototypes in class k, Λi

k = Λk. By finding the activity αik, the posterior
probability of x to be in the class Ck is given by:

p(Ck|x) =

∑Np

i=1w
i
kα

i
k(x)∑M

k′=1

∑Np

j=1w
i
kα

j
k′(x)

(3.18)

Where Np is the number of the prototypes in the class k, wik is the weight
of the ith prototype in the k class, and M is the number of classes.

Note that in our work M was equal to two because we have only two
classes (error and correct signals), also for simplification, we did not use the
Expectation Maximization method for finding the mean and the variance
of the clusters, instead, we estimate the mean and the covariance of data
directly after clustering. The weight of each prototype was found using the
amount of data in this prototype from training data.

3.5 Clustering

Clustering is the operation of dividing a group of data points into subgroups,
these subgroups are called clusters. Each cluster is given a label and the
samples that are in the cluster are given the same label. Here instead of
dealing with each data point individually, it is possible to deal with a limited
and manageable number of groups.

Clustering aims to expand the uniqueness of the signal in an efficient
way by transforming the pattern of the signal into a sequence of labels, also
it can be considered as a tool to reduce the size of the data. There are
many theories that perform the clustering operation. In this work both the
K-means clustering and the Fuzzy C-means clustering are considered.

3.5.1 K-means Clustering

K-means clustering is an algorithm used for clustering data. In this algorithm
clustering (grouping) the samples is based on the distance, i.e., any sample
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in the dataset is assigned to the subgroup (or cluster) that it is nearest to.
K-means clustering is a simple algorithm consisting of the following three
steps:

1. Choosing K random samples and considering them as the means of the
clusters.

2. Assigning the other samples to the clusters according the distance. By
using the ||sample−mean|| equation we can find the nearest mean to
the sample.

3. Re-estimate the mean of the cluster considering all the points assigned

to the cluster. This estimation is performed using

∑
i∈n xi

n
where n is

the number of samples in the cluster

4. Return to step 2.

3.5.2 Fuzzy C-means Clustering

What distinguishes Fuzzy C-means is that it assigns gradual memberships of
the data points in the cluster, instead of assigning the data points completely
in one cluster as the Hard C-means theory does. [18]

If the data points are given the following symbols:

X = {x1, x2, x3, ..., xn} (3.19)

And clusters are:

Γ1,Γ2, ...,Γc (3.20)

Then it is possible to define the degree of membership as U , where uij
is a degree of membership of the jth data point into the ith cluster. The
degree of membership is given a value between 0 and 1, where zero degree of
membership means no membership, and 1 means full membership.

Two constrains must be under consideration when studying Fuzzy C-
means. The first states that there must be no empty cluster, this is clarified
by the following equation:
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n∑
j=1

uij > 0, ∀i ∈ {1, ..., c} (3.21)

The second constrain states that each datum receives the same weight in
comparison to all the other data, this appears in the following equation:

c∑
i=1

uij = 1, ∀j ∈ {1, ..., n} (3.22)

The Fuzzy C-means algorithm depends on the Objective Function, this
function is defined as follows:

Jf (X,U,C) =
c∑
i=1

n∑
j=1

umijd
2
ij (3.23)

where dij is the distance between the i center and the j element. m is
the weighting exponent and it is usually equal to 2 for the Fuzzy C-means
Clustering.

Note that the distance is used as a parameter of similarity between the
data and the cluster also note that the membership is inversely proportional
with the distance. It is easy to be aware that the best result of clustering oc-
curs when the highest value of membership uij encounter the smallest value
of distance dij so the objective is to minimize the squared distance of data
points to their cluster centers and to get the maximum degree of member-
ships.

The algorithm that is used to get the best result of Fuzzy C-means Clus-
tering is called the Alternating Optimization (AO) Scheme, the is uij are
optimized for fixed cluster centers, then the cluster centers are optimized for
fixed memberships as the equations clarify

Uτ = JU(Cτ−1) (3.24)

Cτ = JC(Uτ ) (3.25)

The JC and JU are obtained by differentiating the Objective Function Jf
and make it equal to zero. By doing so the following equations evolved:
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uij =
d
−2

m−1

ij∑c
l=1 d

−2
m−1

lj

(3.26)

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(3.27)

Note in Eq. 3.27 that it does not depend only on the distance between
the data points and their center but also it depends on the distance between
data point and the centers of other clusters. Initially cluster centers are de-
termined randomly before the first update of the membership equation Eq.
3.27.

Fuzzy C-means clustering has been used in many publications like [19]
that used the Fuzzy C-means to maximize the separability of different signals
after using the wavelet space to extract the feature of EEG signals.
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Chapter 4

Detection of Error Related
Potentials

Error related Potential (ErrP) is one kind of EEG signals that is generated
due to the subject’s perception of error [20]. Even though it is hard to detect
this “single-trial” signal, its discovery has urged many researchers to work
on it because it could be used as a feedback in the BCI system to show if
the system is working according to the patient’s intention [5]. By having this
feedback the system would be more robust.

This chapter discusses the concept of Error related Potential, what makes
classifying this signal different from other EEG signals , how could it be used
in the environment of Brain-Computer Interface and the advantages of using
it. It also shows the work that was performed in our study to generate ErrP
signals, compares the method that has been chosen with those used in the
literature, mentions the classification techniques that have been applied, and
compares the results with those in the literature.

4.1 Motivation for using ErrP

Despite the significant amount of research carried out in the field of BCI,
still BCI is working mostly within the four walls of the laboratories and hos-
pitals. BCI systems are not reliable enough to be connected to patients for
daily use. One of the main problems is that the BCI systems have - as most
systems - a probability of making errors.
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Having many errors in systems recruited to help patients and disabled
individuals and improve their life could be dangerous and may reach the de-
gree of being fatal, because these systems could be used to control essential
things in the life of the patients. So in such systems the number of errors
should be as small as possible.

As mentioned in Chapter 2, Electroencephalogram-based (EEG-based)
BCI systems depend on low-power EEG signals; this leads the worker in the
field to excavate for finding the best features that are able to perfectly rep-
resent these signals and the best classifiers that can identify them.

Unfortunately, building an error-free classifier is impossible in practice;
having classification errors is inevitable and a normal property of all the
classifiers. So, whatever the researchers do, errors will not be completely
eliminated, they will be just reduced in the best case.

However the BCI system could be joined with another system that mon-
itors the decisions the BCI takes. If the BCI system makes non-logical deci-
sions, the other system will either neglect them or modify them. Here instead
of depending totally on the classifier of EEG signals in making blind deci-
sions, the system becomes more clever by depending on other sensors.
For example a wheelchair that is controlled by a BCI system could be en-
hanced by a sensor to detect the walls. A “Move Right” order will not be
applied as long as there is a block in the right side.

Another idea of combining could be done by depending on another biosig-
nal, in this case the result of EEG classification is combined with a classifica-
tion of another biosignal, like combining the EEG signals with the eye gaze
[21], or combining SSVEP BCI with the heart rate variation [22]. In these
cases the resulting systems are called hybrid BCI [23].

Hybrid BCI systems can also be implemented by combining more than one
type of EEG signals, for example, one kind of EEG signals could be combined
with Error related Potential (ErrP), which is another kind of EEG signals.
To implement a robust classifier capable of classifying ErrP signals with a
high accuracy, experiments should be designed to generate sufficient samples
of these signals. Detecting such signals means errors could potentially be
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corrected, error responses for the system could potentially be neglected, or
the system could learn from these error to avoid them in the future.

4.2 ErrP and Adaptivity

One way to get an adaptive BCI system could be based on using the idea
of ErrP signals. By having ErrP signals in a system based on binary-
classification, all classified signals could be used to update the classifier.

In general, the system which discriminates between two classes, its output
is either 0 or 1. But because it is not guaranteed that the classified signal
is related to the true class (because every classifier has an error rate), this
classified signal cannot be used to update the classifier (we mean by updating
the classifier, changing its parameters according to the new signal) all the
time.

If the ErrP is considered, then the probability that the classified signal
is in its true class is high as long as there is no detection of ErrP (we say
the probability is high, and not necessarily for sure to be in the true class,
because the detection of ErrP is not perfect). Therefore the classified signals
can be used to update the parameters of the classifier. By having this pro-
cedure the classifier can be made adaptive.

For example in the P300 speller case, the signal that is classified as P300
could be used again as an example of P300 signal to update the parameters
of the classifier (retrain the classifier) as long as there is no ErrP signal, on
the other hand, if there is ErrP the same signal could be used as an example
of non-P300 signal to update the classifier. Furthermore, to have an online
adaptive system (in real-time run), the classifier of the main signals should
be simple (like a linear classifier) to be trained on online.

4.3 Review of recent work on ErrPs

Building a dedicated classifier for any kind of signals requires having samples
of these signals to be used as examples for training the classifier. Moreover
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the number of these samples should be large enough to have a robust clas-
sifier [24]. Therefore, to build a classifier for detecting error signals, many
researchers have built experiments to generate these signals. These experi-
ments are based on different interfaces, but their purpose are the same.

In his research Ferrez et al. has implemented a scenario in which the
subject is asked to move a robot toward a specific target[13]. This target
could be to the right or the left of the robot. The experiment was designed
to study ErrP in isolation of other signals, because of that the subject was
sending control commands manually (left/right buttons) not mentally. To
generate a sufficient error signals they added an error probability to the sys-
tem (a probability that the robot will move away from the target). Here they
argued that the error signals that are generated in that experiment is due to
the system and not due to the subject, i.e., if ErrP was generated that are
because system failed to interpret the subject’s command, and they call this
kind of ErrP “Interaction ErrP”.

In [6] Chavarriaga et al. designed an experiment over which the subject
has no control (neither mental nor manual control). In this experiment the
subject has to observe and criticize the performance of an external agent. It
consists of a screen in which a square moves toward a specific target located
three steps away. Each step has a specific probability (which is the prob-
ability of error) of going in the wrong direction (i.e., away from the target
location).

Combaz et al. have depended on their previously implemented P300
speller to generate error signals [5]. Normally the P300 speller works pretty
well when the number of trials is high, so in order to generate a sufficient
amount of error signals, they decreased the number of trials.

In their experiment, Visconti et al. designed a P300 speller over which the
subject has no control [7]. The subjects, at the beginning of the experiment,
were asked to concentrate on a given letter at the beginning of each block, and
they were told that the system was recognizing their attention. But actually,
the system was programmed to choose the given letter with probability of
80% and a different letter (to generate an error signal) with probability of
20%. In their research, they considered the ErrP potentials to be generated
after the screen shows the non-target letter.
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Figure 4.1: The shape of the P300 speller paradigm used to generate ErrP
signals.

4.4 Generation of ErrPs using a P300 sce-

nario

In this thesis, the first approach to error signals was based on the P300
speller. An experiment similar to the one performed in [7] was implemented.

Based on the Presentation Software R© designed by the Neurobehavioral
Systems company, a P300 speller, as shown in Fig. 4.1 consisting of 26 let-
ters, 9 numbers and underscore was designed. The P300 speller was designed
only to monitor generated ErrPs, so it can be called the “ErrP generator”
instead of the P300 speller, because it has nothing to do with P300.

In this experiment, the subject was asked to focus on a given letter so that
the system can understand the subject’s intention and print that letter. But
actually the system was giving the subject a letter to concentrate on, then
showing the matrix with its flashes, and finally, the system was choosing a
letter again without caring about the P300 signals of the subject. The error
signals here could be viewed as “Interaction ErrP” [20], because the subject
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Figure 4.2: After one trial of flashing, the screen displays the correct letter
with probability 75% or a letter next to it with probability 25%. This example
shows the possible results of spelling the first letter.

thinks that he/she is involved in the experiment, and his/her aim is not just
criticizing the system as in [6].

In a session of the experiment, the system shows the nine characters con-
tained in the sentence “I LOVE SU”, where each character is shown at the
beginning of each block. After giving one letter the matrix starts to flash
(each column and row flashes 5 times), then the result appears on the screen.
The result could be the target letter with probability 75% or a different letter
with probability 25% as shown in Fig. 4.2.

To make the experiment realistic and to make the subject trust on the
system, the error letters were not chosen randomly, but most of them were
chosen to be near the target letter. Because the target letters were chosen to
be “I LOVE SU” in order, the error letters were “J9FUUK9MH” in order.
By looking at the paradigm shown in Fig. 4.1, it could be seen that most
error letters are exactly near the target letter.

The P300 speller was designed using the Presentation Software R©. The
experiment starts by showing the target letter for 2000 milliseconds, then the
screen shows the matrix without flashes for 3300 milliseconds, after that the
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matrix starts to flash; the flash period is 125 milliseconds and the off-period
is 300 milliseconds. The matrix flashes for 5 trials (i.e., each column/row
flashes 5 times) after that a letter is displayed to the subject (it could be the
target letter or another letter), on the screen for 2000 milliseconds, finally the
screen goes black for 2000 milliseconds and the experiment continues with a
new letter. It is important to note that the matrix flashes in a random order;
where all the rows/columns have the same probability of being flashed at the
beginning.

Because the aim of this P300 speller was not to analyze the P300 signals,
no more restrictions were made; like avoiding two flashes in series from one
column/row (this happens when the last flash of a trial is x and the first
flash of the next trial is also x). This case was avoided in other pieces of
researches, because they found that two P300 components signals cannot be
generated well from two flashes directly after each other.

4.5 ErrP shape in P300 scenario

In the literature it is common to examine the grand average of the error-
minus-correct, i.e., the difference between the signal after an error response
(or feedback) and the signal after the right response/feedback, to compare
the shape of the error signals with other studies.

Ferrez et al. found that the error signal has a first sharp negativity (Ne)
around 270 ms after the feedback. A latter positive peak appears between
350 and 450 ms after the feedback. Finally a negative peak appears around
550 ms after the feedback. But they suggest that the distinctive feature of
the ErrP is the negative peak that appears around 250 ms after the feedback
[13]. It is important to note that in their experiment the subjects sent control
commands manually.

Chavarriaga et. al. found that when the subjects were just criticizing
the moving square in the screen [6], the ErrP signal has approximately sim-
ilar shape with the experiment mentioned above. It has one negative peak
around 270 ms after the feedback and two positive peaks around 200 ms and
330 ms after the feedback.
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Figure 4.3: Error minus correct for the three subject

Using the P300 speller, Combaz et. al. and Visconti et. al. have found
similar results of having a first negative peak around 300 ms after the feed-
back and positive one around 400 ms after the feedback [5], [7]

In this thesis, as shown in Fig. 4.3, it is found that the similarity the
signals share is the positive peak around 400 ms after the feedback. The
difference in the amplitude could indicate that some subjects have more at-
tention than others. This positive peak around 400 ms is similar to the
results of previous studies about ErrP in P300 speller [5], [7].
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4.6 Processing of ErrP

In this thesis, ErrP signals were generated using the experiment described in
Section 3.3. The signals were acquired using Biosemi R© device according to
the well-known 10/20 international system and saved in files for later off-line
processing.

The signals were acquired from three subjects, and each subject is new to
the idea of BCI, and each subject participates in one session. Each session
lasts around 15 min for typing the sentence “I LOVE SU” only once. The
preparation of the experiment for each session lasts around 15 min.

Signals were acquired using 9 electrodes, but in processing only the sig-
nal form the Cz electrode was used, because most of the approaches in the
literature consider the anterior cingulate cortex (ACC) [6], [13] as a source
of the ErrP signals. To label the error and the correct signals appropriately,
different triggers were used in the experiment after the feedback. In this
work the beginning of the error signals is considered to be the instant in
which the error letter (a letter different than the target letter) is displayed
on the screen of the computer. Showing correct letters (target letters) as a
feedback on the screen is also accompanied by a trigger sent by the system
to the file. Triggers given to error feedback is different than triggers given to
correct feedback.

Before splitting the signals a Common Averaging Reference (CAR) ref-
erencing was applied [6]. Error and correct signals were taken as the signals
recorded in the 1-second interval after the beginning of the corresponding
trigger signal (2048 sample points). Before classification two processes had
considered. First, signal components were filtered between 2Hz and 10Hz.
Then signals were downsampled from 2048 to 256 sample per second.

4.7 Classification and Results of P300-based

ErrP

For classifying the acquired ErrP signals, the generated data were then split
into three parts to apply 3-fold testing, each time a 2/3 portion of the data
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was used for training the feature extractor and the classifier, and the other
1/3 for testing.

The Gaussian classifier mentioned in Chapter 3 was used as a classifier.
The signals were used as an input to the classifier as a time sequence after
being down-sampled. The classifier was tested in three different forms, iden-
tity covariance matrix, diagonal covariance matrix and the general case were
the covariances among the dimensions was estimated. But it is found that
the diagonal case is the best and its results are mentioned in this thesis.

In these problems the global accuracy cannot be considered because the
data are not balanced, i.e., the correct signals are much more than the error
ones. Because of that, to understand the strength of the classification the
confusion matrix showing the True Positive, True Negative, False Positive
and False Negative should be considered. Table 4.1 and Table 4.2 show the
results of the first two subjects. The global accuracy shows that the accuracy
of the classification is 77% for the first subject, this accuracy is approximately
similar to what other people got in their researches [13], [20]. But for the
second it is 66%. However, as shown in Tables 4.1 and 4.2, the accuracy
of classifying error signals is low, and that is due to the small number of
samples used in the classification.

Table 4.1: Confusion Matrix of the first subject

Correct (real) Error (real)

Correct (classified) 4 2
Error (classified) 1 2

Table 4.2: Confusion Matrix of the second subject

Correct (real) Error (real)

Correct (classified) 4 2
Error (classified) 2 1
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Figure 4.4: The beginning of the experiment when the target is to the left.

4.8 Generation of ErrP Signals using the Mov-

ing Box Scenario

The scenario of moving box is a modified version of that found in [6]. In this
thesis it is implemented to compare its results with the classification results
of ErrP in P300 speller. The experiment consists of a box moving toward a
specific target. The subject should imagine to move the box reach its target.
As long as the box is moving toward the target, the acquired signals are
considered as correct, but if the box moves in the opposite direction an ErrP
signal is expected to be generated. This experiment starts showing the mov-
ing box, the cross on which the subject should concentrate, and the target on
the left or on the right. Fig. 4.4 and Fig. 4.5 show the view of the experiment.

The timing of the experiment was designed in such a way to comfort
both the subject and facilitate the process of extracting the signals. First,
the target flashes three times where each flash lasts for 150 ms, the aim of
this flashing is to attract the subject’s attention. Then the view in Fig. 4.4
or Fig. 4.5 stands for 3000 ms. Then the box starts to move, and it stays
in each position for 2000 ms. Each session contains ten runs, when the box
reaches its target a run ends and a new run starts.
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Figure 4.5: The beginning of the experiment when the target is to the right.

4.9 ErrP Shape based on the Moving Box

Scenario

Four subjects accepted to join the experiment. The experiment consists of
two different runs: one with error probability of 20%, i.e., the probability for
the box to move in the opposite direction is 20%, and the other with 40%
probability of error.

Figures Fig. 4.6 and Fig. 4.7 show the error-minus-correct difference for
acquired signals from both runs. The difference of the signals from the run
with 20% error probability is shown in Fig. 4.6, and the one taken from the
run with 40% error probability is shown in Fig. 4.7.

The pattern here is not similar to that of signals acquired under the P300
speller, but, for some subjects, it is possible to see that the difference is large
right after the trigger. After that the signal seems to die out, this is partic-
ularly clear in the first and the fourth subjects’ signals.
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Figure 4.6: Average miss-minus-hit for the four subjects with 20% error
probability

Figure 4.7: Average miss-minus-hit for the four subjects with 40% error
probability
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4.10 Classification and Results of Moving Box-

based ErrP using the Gaussian Classi-

fier

The same techniques that were used to process and classify the ErrP signals
under the P300 speller, were also used to process and classify the signals
under the moving box scenario. Table 4.3 to Table 4.6 show the confusion
matrices of each subject in the first session of the 20% error probability.

In processing these signals, the interval where the correct and error signals
seem to be different were considered. For signals acquired from the scenario
with 20% error probability, the interval from 0 to 300 ms was considered. For
signals acquired from the scenario with 40% error probability, the interval
300 ms to 600 ms after the trigger was considered. The reason for choosing
such intervals is due to the difference between the correct signals and error
signals seems to be larger at these intervals. The average of the error signals
and the correct signals for both the run with 20% and the run with 40%
can be seen clearly in both Fig. 4.8 and Fig. 4.9 respectively. The features
that were entered to the classifier were the time amplitudes of the signal at
different sample points.

Table 4.3: Confusion Matrix of the first subject

Correct (real) Error (real)

Correct (classified) 78 26
Error (classified) 20 4

Table 4.4: Confusion Matrix of the second subject

Correct (real) Error (real)

Correct (classified) 88 30
Error (classified) 26 12

As shown in tables from Table 4.3 to Table 4.8, the classifier’s results
for classifying correct signals are good and trustful, but unfortunately the
classifier fails to classify error signals and that could be due to the unbalance
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Figure 4.8: Average correct signals and average of error signals for the four
subjects with 20% error probability

Figure 4.9: Average correct signals and average of error signals for the four
subjects with 40% error probability
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Table 4.5: Confusion Matrix of the third subject

Correct (real) Error (real)

Correct (classified) 81 35
Error (classified) 25 11

Table 4.6: Confusion Matrix of the fourth subject

Correct (real) Error (real)

Correct (classified) 96 21
Error (classified) 18 19

nature of the data, i.e., the error signals are much smaller than the correct
ones. The best results for error signals can be seen in Subject 4 (slightly
amount above the chance), and this may be due to the concentration of this
subject more than the others.

4.11 Classification and Results of Moving Box-

based ErrP using Mixture of Gaussians

After finding that the Mixture of Gaussians did somehow a good job in clas-
sifying the ErrP data acquired by Chavarriaga et al. in their work [6], we
tried to test this classifier on our data acquired using the moving box scenario
described in Section 4.8. Here it is important to note that we have used the
Fuzzy C-means clustering for finding the prototypes.

For classifying our data we used 5 prototypes (except for the data of
subject 4 20 which did not have results before decreasing the number of pro-
totypes to 4. Table 4.9 shows the results of classifying our data. It can be
shown from the table that the results for the data which were acquired when
the probability of error 20% are biased toward classifying correct signals.
This sounds logical because the number of error samples are small when the
probability of error is small, so the classifier would be biased toward the ma-
jor portion of the data. While when the probability of generating error is
high 40%, the classifier gives somehow balanced results but still the classi-
fier cannot differentiate between the error signals and the correct signals well.
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Table 4.7: General results of the first session with 20% probability

Subject Global Accuracy Error Accuracy Correct Accuracy

1 64 16.7 75
2 64 31.6 74.6
3 60 30.6 69.8
4 75 51.4 82.1

Table 4.8: General results of the first session with 40% probability

Subject Global Accuracy Error Accuracy Correct Accuracy

1 54 34 65.6
2 58 5.7 89.6
3 56 46.4 62.3
4 72 58.8 80.1

Table 4.9 shows the results when classifying depending on making each
prototype have its own diagonal covariance matrix. Classifying the data
based on having a common diagonal covariance matrix for all the prototypes
in the cluster gives similar results. We found that the error rate of the correct
signals is 0.3937 and for the error signals is 0.6170 when the covariance matrix
is common for 1 20.

4.12 Millan’s Group Data

The low accuracy of classifying error signals that we acquired using our sys-
tem urges us to check the classification results on other datasets. We asked
Millan’s group which is working in the field of BCI for the possibility of us-
ing their data in our analysis. A general information about the data that we
got can be found in [6] which describes the way the data were acquired, the
scenario the used, the preprocessing and classification methods, and finally
the results of classifying this data.

Actually, the scenario that we used in generating our error data is similar
to the one that Chavarriaga et al. used [6]. The only difference that we
noticed are the number of electrodes. They used 64 electrodes while we used
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Table 4.9: Results of Classifying the data acquired in our work using the
moving box scenario. The Mixture of Gaussians was used as a classifier, with
the C-means clustering to find the clusters (5 clusters except 4 20 which has
4 clusters) and their samples. Each prototype has its own covariance matrix

Subject Error Probability Error-rate Error-rate
of Correct signals of Error signals

1 20 0.1880 0.7568
2 20 0.19831 0.7500
3 20 0.2881 0.7632
4 20 0.1154 0.7917

1 40 0.3981 0.4656
2 40 0.3182 0.5286
3 40 0.4604 0.4508
4 40 0.4434 0.5957

only 9 electrodes, even they only used 1 or 2 electrodes for classification, the
idea of using Common Averaging Reference (CAR) makes all the electrodes
affect the classification performance.

Having the data of Chavarriaga et al. encouraged us to find a good clas-
sifier for our data, and to check if better classification accuracy on Millan’s
data could be obtained by changing the classifier, adding a feature extraction
method, or by changing the parameters in the preprocessing step.

Chavarriaga et al. have used the Mixture of Gaussians to classify their
signals. They did not use any feature extraction method. They only down-
sampled the signal from 512 Hz to 64 Hz, used a band-pass filter of a range
[1,10] Hz, and used the CAR filter.

The results that Chavarriaga et al. got in their research are shown in
Table 4.10. Note that accuracy of classifying error signals is lower in general
than classifying correct signals; this is because the number of error samples is
less than the number of correct samples, so it seems that the classifier cannot
capture the pattern of the error signals.
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Table 4.10: Chavarriaga et al. results. The first column shows the subject
number and the probability of generating an error stimulus in the interface
(20% or 40%)

Subject error probability Error-rate Error-rate
of correct signals of error signals

S1 20 0.1416 0.2393
S2 20 0.2629 0.3411
S3 20 0.1782 0.3034
S4 20 0.2927 0.4167
S5 20 0.2569 0.4180
S6 20 0.3194 0.4891

S3 40 0.2415 0.3216
S4 40 0.4222 0.4933
S5 40 0.3732 0.3846
S6 40 0.4662 0.4261

Average 0.2955 0.3833

In our method to classify the signals that we got from Millan’s group,
we used the same parameters that were considered in Chavarriaga et al.
work. These parameters are shown in Table 4.11 for each subject. The only
difference in our classifier is the technique that was used to find the centre
of the clusters (or prototypes) for the Mixture of Gaussians classifier. In
their work, Chavarriaga et al. have depended on the Self-Organization Maps
(SOM) to find the clusters and the data that belongs to these clusters. SOM
is considered to be slow in comparison to other algorithms for clustering. In
our work we have used K-means clustering for finding the prototypes and
their data points.

4.13 Classification of the Millan’s Data

As mentioned in the previous section, we performed the techniques that
Chavarriaga et al. used in preprocessing the data. The only difference in
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Table 4.11: The parameters that Chavarriaga et al. used for each subject.
For all the subjects the frequency range is [1,10] Hz. At time 0 the feedback
occurs.

Subject error probability Electrodes Time Interval (seconds)

S1 20 FCz,Cz [0.2,0.45]
S2 20 Cz [0.15,0.6]
S3 20 FCz,Cz [0.2,0.45]
S4 20 FCz [0,0.6]
S5 20 FCz,Cz [0.15,0.6]
S6 20 FCz,Cz [0.15,0.6]

S3 40 FCz,Cz [0.2,0.45]
S4 40 FCz,Cz [0,0.6]
S5 40 FCz,Cz [0.15,0.6]
S6 40 FCz [0.15,0.6]

our work is changing the clustering method used in the classification. At the
beginning we used K-means clustering to find the clusters and their samples.
It is important to note also that we used the number of prototypes that
Chavarriaga et al. have considered which is 6 prototypes. As Millan’s group
did, we entered the signal amplitudes as the features to the classifier after
down-sampling.

Table 4.12 shows the results that we had after the classification. Notice
that for those subjects who have results the classification accuracy is similar
to those shown in Table 4.10. But the problem of having no results when we
try to classify the data of some subjects makes our method worse than the
one of Chavarriaga et al. . Actually, having no results is due to the existence
of empty clusters, i.e., we assumed that we have 6 prototypes and each sam-
ple should be in one cluster, but we found that there are some clusters that
do not have any sample.

Due to the problem of having no results, we try to reduce the number of
clusters so that each cluster would have at least one sample. By doing so
only for those subjects’ data that did not have results in Table 4.12, we have
obtained the results shown in Table 4.13.
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Table 4.12: The results classifying Error signals and Correct signals. Mixture
of Gaussians was used in addition to K-means clustering for finding the centre
of each prototype. Here each prototype has its own covariance matrix. Each
class has 6 prototypes and the used parameters for each subject are shown
in Table 4.11

Subject Error Probability Error-rate Error-rate
of Correct signals of Error signals

S1 20 0.1093 0.3125
S2 20 No results No results
S3 20 0.1641 0.2617
S4 20 No results No results
S5 20 0.2197 0.4286
S6 20 No results No results

S3 40 No results No results
S4 40 0.3540 0.4966
S5 40 0.3752 0.3131
S6 40 0.4524 0.5127

Average 0.2791 0.3875

As it is shown in Table 4.13, reducing the number of prototypes generates
results but the results are not good as compared to those in Table 4.10 except
for S6 20 which gives better results when the number of clusters is equal to
3. Here it is important to notice that S4 20 and S3 40 did not give results
until we set the number of clusters to 1, in this case the classifier becomes a
Gaussian Classifier, in general, the results are reasonable except for subject
S4 20 and S3 40

One of the major problems is the estimation of the covariance matrix in
classifiers such as the Mixture of Gaussians. This is because the number of
samples is small compared to the dimension of the data. So instead of giving
each cluster its own covariance matrix, we can assign a common covariance
matrix for all the prototypes in one class as shown in Eq. 4.1. This is the
idea that was used in [13] to classify correct signals and error signals but
they have used different scenario than the one which was used in [6].
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Table 4.13: The results of classification after reducing the number of proto-
types for those datasets that did not have results in Table 4.12.

Subject Error Probability Error-rate of Error-rate of # of mixtures
Correct signals Error signals

S2 20 0.2202 0.4580 3
S2 20 0.1978 0.4580 2
S4 20 0.9956 0 1
S6 20 0.2244 0.5664 5
S6 20 0.2756 0.5398 4
S6 20 0.2756 0.4336 3
S6 20 0.4231 0.3363 2

S3 40 0.9982 0 1

Λ =
1

n

n∑
i=1

(xi − µ∗)T (xi − µ∗) (4.1)

Where µ∗ is the closest centre to the sample x, and n is the number of
sample in one class.

Using Eq. 4.1 to find the common covariance matrix for all the clusters
belonging to one class, we got the results shown in Table 4.14. In table 4.14
we have used a common covariance matrix to generate the results. As it is
clear from Table 4.12 and Table 4.14, the results of Table 4.14 are better
than the results shown in Table 4.12. Also the results for those data which
have results, in general, outperform the results of Chavarriaga et al. shown
in Table 4.10. However still the data which did not give results in Table 4.12,
they do not have results in Table 4.14. Again this encouraged us to check
if reducing the number of prototypes per each class will give us better results.

Table 4.15 shows the results the we got from the analysis performed in
Table 4.14 but with less the number of clusters There are two things to note
in Table 4.15, first: reducing the number of prototypes did not generate good
results, and second: reducing the number of prototypes in case of each pro-
totype has its own covariance matrix produced better results than reducing
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Table 4.14: The results classifying Error signals and Correct signals. Mixture
of Gaussians was used in addition to K-mean clustering for finding the centre
of each prototype. Here each prototype has its own covariance matrix. The
parameters of each subject are given in Table 4.11.

Subject Error Probability Error-rate of Error-rate of
Correct signals Error signals

S1 20 0.1458 0.2734
S2 20 No results No results
S3 20 0.1752 0.1776
S4 20 No results No results
S5 20 0.2511 0.3643
S6 20 No results No results

S3 40 No results No results
S4 40 0.2938 0.4899
S5 40 0.3371 0.3034
S6 40 0.3238 0.3131

Average 0.2545 0.3203

the number of prototypes while having a common covariance matrix for all
the prototypes in each class.

By decreasing the dimensions it may be possible to decrease the number
of prototypes and at the same time have good accuracy.One way to solve
the problem of the high dimensionality of the data depends on feature ex-
traction methods. Depending on the Principle Component Analysis (PCA)
dimensions are chosen according to the value of the eigenvalues, that is, the
dimensions which has the large eigenvalue is chosen while the other are ne-
glected.

Table 4.16 shows the eigenvalues of the covariance matrix of the first ses-
sion of the second subject’s dataset, we can say that the first 17 dimensions
carry important information about the signals. So the dimension could be
decreased from 48 to 17 using the PCA. To check if the feature extraction
does a good job, we took from the second subject in the second session 80%
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Table 4.15: The results of classification after reducing the number of proto-
types for those subjects that did not have results in Table 4.14

Subject Error Probability Error-rate of Error-rate of # of mixtures
Correct signals Error signals

S2 20 0.9461 0.0534 3
S4 20 0.9956 0 1
S6 20 0.8141 0.0796 4

S3 40 0.9982 0 1

of the data for 10-fold cross validation to find the best parameters (the new
number of dimension and the number of prototypes in each class), after run-
ning this test over 3, 4, 5 and 6 prototypes and the dimensions were chosen
to be around 17. By looking at the results of the 10-fold cross validation
classification, we found that 3 prototypes with 16 dimension gives the best
results which is (0.3346 for correct signals 0.2972 for error signals). Here
the reader should note that the classification does not always give results
sometimes the problems of having empty cluster happens. In our test most
of tests stop in the middle due to empty clusters. Even when we tried to get
the best result by setting the dimensions to 16 and the number of prototypes
to 3, the classification stopped in the middle.

After deciding on the parameters, 16 dimensions and 3 prototypes in
each class. We train the classifier on 80% of the first session from the second
subject data that used previously for the cross-fold validation, then test the
classifier on the remaining 20% of the data to make our classification un-
biased. The error rates were 0.4545 for correct signals and 0.2414 for error
signals. This results cannot be compared with Millan’s results because the
train and test were performed on a different data coming from the same ses-
sion. However it is important to note that the error rate of the error signals is
smaller than the error rate of classifying the correct signals which contradicts
with most of the results shown previously.

After getting the previous results and all of them better than the chance
level, this pushed us to use this technique for all the data to compare it with

46



Millan’s results and our previous results. Again using PCA and for reducing
the dimensions to 16 dimensions for all the subjects, and using the Mixture
of Gaussians for classifying the features, we found that the generated results
are not as good as those found in Table 4.14. The results of classifying the
reduced dimensions by PCA for all the data are summarized in Table 4.17.

It can be seen that the results, in average, outperforms the results that
Millan’s got, and they are pretty well for subjects S1 20, S3 20, S6 20 and
S5 40. Although the number of dimensions were reduced and the number of
prototypes were reduced form 6 to 3, still we could not have results for S4 20
and S3 40. Even though the reduction of dimension was based on S2 20, it
is useful to notice that in Table 4.16 S2 20 and S6 20 have results and the
results of S2 60 are better than those found in Chavarriaga et al. work as
shown in Table 4.10.

4.14 Changing the parameters of Millan’s data

Trying to get better results compared to what we got in Table 4.14, we tried
to change the parameters of the preprocessing stage of the data that we have
instead of using the same parameters that Chavarriaga et al. used. Here we
have concentrated on changing the frequency range and the channels. We
tried many values for each dataset by performing the 3-fold cross validation.
Notice that the three fold cross-validation was performed only on the train
data (80% of the first session) to chose the parameters for each subject.

According to the 3-fold cross-validation test for each subject, Table 4.18
shows the parameters that should be chosen for each subject. Notice that
we focus on two electrodes, FCz and Cz while trying to change the other
parameters, this is because in the literature they have found that the ErrP
is detected from this region [25], [6]. The features that we have used are the
amplitudes of the signal at different sample points.

In order to observe the statistical variability of our results, we run our
approach 10 times, each time on a different random 70% portion of the test
data. We display the average classification accuracy in each of these 10 runs
for the 20% and for the 40% error scenarios in Figs. 4.10 and 4.11, respec-
tively. The overall average performance for these two scenarios can be seen
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Figure 4.10: The results of classifying the random samples of the test session,
each sample contains 0.7 of the test data. The probability of error in this set
is 20%.

in Table 4.19. Based on Figs. 4.10 and 4.11, we observe that the variability
of our results as a function of test data is at a reasonable level.

Although the results of some subject are worse than the results that Mil-
lan’s group found, when we compare Table 4.10 and Table 4.19, still on the
average we are outperforming their results. Also it can be noted that we
have succeeded in getting results for all subjects.

4.15 Conclusion

We found that classifying our data did not give good results compared to
the results that Chavarriaga got in his work, and that is due to two reasons,
the first is the small number of samples, so the classifier could not capture
the shape of the signals. The second could be the small number of electrodes
used in acquiring these signals.

In classifying Chavarriaga’s data, we got faster results, and that is due to
the fast clustering technique that we used. On average our method outper-
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Figure 4.11: The results of classifying the random samples of the test session,
each sample contains 0.7 of the test data. The probability of error in this set
is 40%.

forms the one that Millan’s used in his paper. And we look at Table 4.14, it
is clear that our results for most of the subjects, on which we have results,
outperform the results that Chavarriaga’s got.

It is clear from changing the parameters of the classifier, changing the
feature extraction methods and changing the parameters in the preprocessing
step gives us different results: for some data they are good and for others
they are not. So it is better to have specific parameters one subject instead
of trying to generalize the classification and the preprocessing to all subjects.
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Table 4.16: The eigenvalues of the covariance matrix of the second subject
in the first and the second session, the probability of generating error in a
session is 20%. The values are are multiplied by 103

First session Second session

4.8672 0.1047
3.1804 0.0826
0.0987 0.0603
0.0797 0.0451
0.0622 0.0407
0.0428 0.0385
0.0412 0.0341
0.0303 0.0300
0.0268 0.0241
0.0217 0.0198
0.0161 0.0133
0.0114 0.0093
0.0084 0.0064
0.0071 0.0053
0.0057 0.0042
0.0030 0.0030
0.0011 0.0012
0.0008 0.0007
0.0004 0.0003
0.0003 0.0002
0.0001 0.0001
0.0001 0.0001
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

. .

. .

. .
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Table 4.17: The results that we got from classification of Millan’s data using
PCA as feature extraction and Mixture of Gaussians as classification. Here
the number of dimensions was reduced to 16 and the number of prototypes
in each class was 3. The covariance matrices of the prototypes belonging to
one class are common. The parameters of each subject are shown in Table
4.11.

Subject Error Probability Error-rate Error-rate
of Correct signals of Error signals

S1 20 0.0296 0.3906
S2 20 0.5079 0.1450
S3 20 0.0887 0.3271
S4 20 No results No results
S5 20 0.1614 0.5357
S6 20 0.3803 0.3009

S3 40 No results No results
S4 40 0.2071 0.6577
S5 40 0.2343 0.4053
S6 40 0.8234 0.1303

Average 0.3041 0.3616
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Table 4.18: The chosen parameters for each dataset. Notice that the time
interval starts from the beginning of the trigger.

Subject error probability Electrodes Frequency Time Interval (sec.)

S1 20 FCz,Cz [1,10] [0,1]
S2 20 FCz,Cz [1,20] [0,1]
S3 20 FCz,Cz [1,10] [0.2,0.45]
S4 20 FCz,Cz [1,20] [0,1]
S5 20 Cz [1,20] [0,1]
S6 20 FCz,Cz [1,20] [0,1]

S3 40 FCz,Cz [1,20] [0,1]
S4 40 Cz [1,20] [0,1]
S5 40 FCz,Cz [1,20] [0,1]
S6 40 FCz,Cz [1,20] [0,0.1]

Table 4.19: Classifying results using Mixture of Gaussians and K-means
clustering. Each class has 6 prototypes, each prototype has its own covariance
matrix.

Subject error probability Error-rate Error-rate
of correct signals of error signals

S1 20 0.1055 0.1433
S2 20 0.1888 0.4261
S3 20 0.1661 0.1907
S4 20 0.2388 0.4370
S5 20 0.2435 0.3703
S6 20 0.2120 0.5233

S3 40 0.3554 0.2552
S4 40 0.5621 0.4751
S5 40 0.3706 0.3533
S6 40 0.4402 0.5633

Average 0.2883 0.3738
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Chapter 5

P300 and Mechanical Devices

P300 paradigms can be used in controlling mechanical devices as well as in
typing letters. This is usually carried out by changing the items in the inter-
face, i.e., by placing any suitable items instead of usual characters.

In this chapter, some of the work that has been performed to use the
P300-paradigms to control mechanical devices, will be discussed. Then the
new interface that has been designed in this thesis, is described with its
advantages.

5.1 Review of previous work

After the design that Farwell and Donchin implemented using the idea of
P300 [8], many people working in this field tried to modify the paradigm in
order to get better results and also to use this paradigm in different applica-
tions.

Requiring high accuracy and faster paradigm urges researchers to modify
the paradigm in order to get larger P300 components. In [26], Aloise et al.
implement a new paradigm based on the P300 idea. Instead of having the
characters in the row and columns, they put the characters in vertices of
a regular geometric figure that has a cross in the middle. Each figure con-
tains 6 characters and there are 12 figures. By having this implementation,
they argued that by having the cross on which the subject concentrates, eye
contamination will be reduced and the signal-to-noise ratio of the P300 com-
ponents will be larger.
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Jin et al. have tried to mix between the motion stimulus and changing
color in their P300 speller [27]. In the motion stimulus the flashing technique
is performed by changing the position of the column/row for a specific period
of time. It can be imagined like a vibration of the flashing column/row. In
their research, this motion is performed accompanied with changing of the
color of the moving column/row. They have found that their combined inter-
face outperforms both the interface that depends on motion and the interface
that depends on changing color.

In addition to the enhancement of the P300 paradigms, some people have
used the P300 paradigm to control robots and mechanical devices, and that
could be performed simply by using control commands instead of characters
in the interface.

Blasco et al. have tried many interfaces in their research [10]. In one of
them they specified the interface for controlling a robot. Using their inter-
face the robot can move in four different directions and can have different
orientations. In addition to modifying the interface, they added a confirma-
tion page that appears after choosing the target, the aim of this confirmation
page is to avoid errors. For example if the subject chooses the left direction
the system will show the chosen direction, and then will ask the subject to
confirm again using P300 by choosing YES or NO.

Long et al. used the idea of P300 in their wheelchair application, but they
did not depend totally on their P300 paradigm to control the wheelchair, in-
stead they have used the motor imagery with the P300 to control the speed.
In their research if the foot movement is idle and a P300 is detected, the speed
will decrease, while it will increase if a foot movement is detected while there
is no P300. To generate a high signal-to-noise ratio P300 signal they used a
flashing screen consisting of eight items [11].

Our work in this thesis, shows how it is possible to depend only on P300
to control a robot, and have a high accuracy. The following sections show
the implementation and some results of this P300 paradigm.
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Figure 5.1: The modified P300 paradigm that was proposed to move a robot.

5.2 A new P300 paradigm for robot control

As mentioned previously, the P300 paradigm is used also for moving mechan-
ical devices. Here in our research, we assume that it is required to control a
robotic arm which has four directions; up, down, right and left. Normally,
it is hard to have good P300 signals just by having only four directions in a
paradigm. To have a good P300 signals the probability of the target stimulus
should be low.

In this thesis, to our knowledge, a new idea was implemented in which
the P300 paradigm could have both many items with only four choices. We
mixed them in a way to have both, good P300 components and high accu-
racy. The paradigm is shown in Fig. 5.1.

As shown in the figure, there are only four choices, up “UP”, down “DN”,
right “RH” and left “LF”. The other items are “U”’s, “D”’s, “R”’s, “L”’s
and free spaces stands for “No decision”, i.e., no movement will take place.
Notice that the paradigm has 6 rows and 6 columns, therefore the probability
of the target row is 1/6 and the probability of the target column is also 1/6
as in the P300 speller.
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Figure 5.2: The P300 speller that Amcalar et al. have designed. The P300
paradigm shown in Fig. 5.1 is a result of some modifications in the former
interface.

In this experiment we asked the subjects only to consider the four choices
“UP”, “DN”, “RH” and “LF” for the four different directions. In this case,
the robot will consider the “U” and “UP” as up, “D” and “DN” as down
“R” and “RH” as right and “L” and “LF” as a left. And free space as no
choice.

By knowing that the errors in the P300 speller are normally around the
target letter [28]. It is easy to see that by having this paradigm, we can
reduce the number of errors the P300 paradigms make, and a robust P300
paradigm can be implemented.

5.3 Experiments and Results

The implemented P300 paradigm for moving a robot is a modification of the
P300 speller that Amcalar et al. designed in their work [29]. Fig. 5.2 shows
the P300 speller interface that Amcaler et al. have implemented.

One subject joined the experiment. The experiment consists of online
training, in which the subject is asked to type eight characters chosen by

56



the P300 speller that Amcalar et al. designed. Then an online test is per-
formed on the same paradigm used for training. In the online test the subject
was asked to print 19 characters from his mind. After printing the subject
was asked whether the outputs were similar to those which he wanted to type.

After that a test on the modified paradigm that is shown in Fig. 5.1 was
performed. The parameters of the classifier of the modified paradigm were
also on the training that the subject did. In the online test the subject was
choosing a direction and we were checking the result.

Between the test on the P300 speller and the test on the modified P300
paradigm no re-training was performed, i.e., the parameters of the system
did not change, no pause was given, and the electrodes were not removed
from their places; by doing so, we ensured a good comparison between the
modified P300 interface and the P300 speller used in Amcalar et al.’s research.

As shown in Table 5.1 and Table 5.2, the modified paradigm was able
to reduce the number of errors. Furthermore according to the subject it is
better to have fewer number of errors even if the system offers fewer number
of choices. It is important to note here that the “No decision” is not as costly
as the error decision.

Table 5.1: The results of the test performed on the P300 speller after training

Number of chosen character Correct decision Error decision

19 6 13

Table 5.2: The results of the test performed on the P300 moving-paradigm
after training

Number of Correct decision Error decision No decision
chosen characters

27 15 5 7

From an engineering perspective one way to compare the accuracy of the
two systems could be using Cohen’s kappa coefficient which is given in Eq.
5.1:
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κ =
C · Pcc − 1

C − 1
(5.1)

Where, C is the number of classes, Pcc is the probability of the correct
class.

From the Table 5.1, it is clear that Pcc = 6/19 for the P300 speller. How-
ever, from Table 5.2 Pcc is equal to 22/27 if we consider the “No decision” as
a correct decision, while it will be 15/27 if the “No decision” is considered
as an error.

Substituting the values of Pcc and N = 5 in the Eq. 5.1, it can be seen
that for the P300 speller κ = 0.2962, and for the modified paradigm it is,
in its best case i.e., considering “No decision” as correct, 0.7685, and in its
worst case it is 0.4444 which is still better than the accuracy of the P300
speller. Note that if we are going to neglect the effect of “No decision” in the
accuracy (assuming that it just makes the system slower), then we substitute
N = 4 and Pcc = 15/20. In this case the result is κ = 0.6667.

To make the comparison fair, the Bit-rate should be also considered be-
cause systems with many choices used to have many errors but their Bit-rates
are high. The Bit-rate equation is given in Eq. 5.2.

B = log2N + Plog2P + (1− P )log2
(1− P )

(N − 1)
(5.2)

Where P is the average of the correct classified symbols, and N is the
number of choices.

Again by substituting the values in Eq 5.2, we can see that for the P300
speller B = 0.7607 bit-per-trial group, and for the modified paradigm it is,
considering “No decision” as correct, 1.2603, and when “No decision” is con-
sidered as an error it is 0.4420. It is clear that the modified system, with
“No decision” as correct outperforms the usual P300 speller.

It is important to notice that, assuming the “No decision” as a correct is
too optimistic assumption and assuming it as a wrong is a pessimistic limit.
According to Fig. 5.3 we can see that the “No decision” should be consid-
ered as something between the wrong decision and the correct decision if we
are talking about bit rate, assuming that this “No decision” located in the
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middle between the right and the wrong decision. From Fig. 5.3 it can be
seen that the “No decision” choice makes the system slower.

To estimate the effect of this “No decision” correctly we should find the
bit-rate considering the effect of “No decision” once, while neglecting it in
the other. To find the effect of the “No decision” we should measure the time
of the experiment then we divide the number of spelled symbols on the time
to get the symbol/min (in our experiment we should divide 27 on the time
of the experiment). While neglecting the “No decision” could be achieved by
dividing the number of all except “No decision” on the time of the experi-
ment (in our case we divide 20 on the time of the experiment). Then to have
the bit/min for each case, we use the output Eq. 5.2 considering N = 4, P
= (15/20), and multiply it with the symbol/min of the two cases mentioned
above. In this case The estimated numbers can be used to indicate the effect
of “No decision” in the bit-rate. Note that because we did not estimate the
time of the experiment we could not do the comparison that we mention
above.

However, if we are going to consider the cost of wrong decision and no
decision for a person who wants to cross a street using a wheel chair, it is for
sure that having a no decision as a result of the classification is much much
better than choosing forward instead of stop.

Last thing to say about this topic is that this work could not be compared
to other similar works regarding the accuracy and the bit-rate; this is due
to the fact that for BCI experiments to be compared in a fair way all the
conditions under which one experiment is held should be applied to the other
experiment as well. But it is useful to note that other people proposed many
ideas for dealing with the shape of the speller, in addition to those that were
mentioned in Section 4.1, we mention here that [10] made a confirmation
window after the window of the items to ensure that the subject has chosen
the right item. Also [30] wanted to use only two items in their paradigm but
because the idea of P300 is based on having a low probability of the target
item they was forced to use 4 items. They also used auditory stimulus to
support the visual one so that using four items could be feasible.
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Figure 5.3: The figure shows that the “No decision” could not be considered
as the correct decision which performs the command in one trial, and it could
not be considered as the wrong decision which should be modified by and
additional one trial. “No decision” is something between the correct and the
wrong decision.

5.4 Accuracy, Bit-rate, and Comparison

Different BCI systems are compared by considering the accuracy and/or
speed for specific applications. But this comparison would not be valid al-
ways because there could be different parameters in these different systems
[31]. In the literature, it can be found that people consider both measures
(accuracy and speed) for comparison, but they indicate that the transfer-rate
(the speed) should not overshadow the importance of accuracy, and that the
speed could be sometimes misleading [30].

It is hard to make a comparison between our system and other systems,
and that is due to the nature of the experiment that had been done. The
experiment had been done in an online fashion in which the decision was
taken after a variable number of trials, i.e., normally when talking about
bit-rate it is important to know the time that the system needs to generate a
symbol, but in our case the number of trials were variable for each character,
because it depends on the system certainty that the subject wants to spell a
specific letter. Also, we have not recorded the time of the experiment in the
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preliminary experiment we have presented here. By having both the number
of symbols and the experiment time the average time that the system needs
to generate a symbol could have been estimated.

What we did actually is fixing all the parameters (electrodes, subject,
session time, and so.) of two different interfaces to check the capability of
our new interface to avoid error and the results that we have give us an idea
that the new interface is really a good design in P300 field to avoid error
while having a reasonable bit-rate compared to the normal speller.

5.5 Conclusion

In general most of the errors that occur in the P300 interfaces are due to a
miss in deciding the row or the column that generates the P300 components.
In these cases the chosen character is usually near the target character. Such
errors make it hard to connect the P300 paradigms to mechanical systems
because wrong decisions could cause problems to the patients.

Because most of the errors are due to choosing the neighbour characters
of the target, we decided to surround each target with characters that do the
same job as the target and also place “No decision” items between the differ-
ent control commands. As it is shown in the previous section, the modified
P300 paradigm has the potential to offer a number of benefits in terms of
accuracy and bit-rate as compared to the conventional P300 speller interface.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the work performed in this thesis, discusses the
results of the experiments, and also proposes potential research directions
that may enhance this work if they are considered in the future.

6.1 Summary and Conclusion

In this thesis, we have implemented two different scenarios for generating
ErrP. One of these scenarios is similar to the P300 speller. And the other
consists of a box that moves toward a specific target. We found out that the
first scenario is slow and it is hard to get a lot of ErrP from it. However the
second scenario is faster and it is easy to get more ErrP signals from it in
less amount of time.

We tried to compare the ErrP signals that were generated from different
subjects in each scenario. We found that the ErrP signals generated using
P300 speller have some similar patterns and that they are similar to the sig-
nals generated from P300 speller in previous researches. Even though, the
ErrP signals that were generated from the P300 speller are too few to be used
for building a good classifier, we could compare our signals with other’s, and
we were able to check the feasibility of generating ErrP using this scenario.

On the other hand, we have generated a good number of ErrP signals us-
ing the moving-box scenario, but it was hard for us to find a similarity in the
shape of the signal among the different subjects. Furthermore, the classifier
could classify the correct signals with a good accuracy, but its classification
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to error signals was near the chance level.

Also, we have processed and classified ErrPs data acquired by Millan’s
group. In our work we have used different methods to process and classify the
data and shown that our methods, in general, outperform Millan’s methods
in both accuracy and speed of analysis.

Moreover, we have implemented a new interface based on the P300 the-
ory that has a higher accuracy than the normal P300 speller. We assume
that our new interface is for controlling a four-direction mechanical devices,
and instead of having each item in the interface independent of the other,
we make each group of neighbour items have the same job. By having this
new interface we have shown that we can obtain a higher accuracy than the
conventional P300 speller.

6.2 Future Work

The major motivating idea driving this thesis was the vision of an adaptive
BCI system depending on the idea of ErrP. This adaptivity was to be per-
formed in the P300 speller. To implement this adaptive P300 speller a good
classifier of ErrP potentials should be first found. However to make a good
classifier capable of classifying ErrP potentials in the P300 speller, a suffi-
cient number of ErrP signals should be acquired from an experiment with
P300 speller.

The problem of the P300 experiments is the long time it requires, and it
is hard to keep the concentration of the subject high because the letters are
chosen by the system not by the subject. In addition, if he tries to choose
another character than that asked by the system, he will discover the idea
of having a system which produce results independently from the subject
decision. In this case ErrP signals cannot be considered.

So, rather than using a system in which the system generates errors ran-
domly, it may be a good idea to evaluate ErrP detection on a real P300
system operating based on the EEG signals generated by the subject. In this
scenario to make sure that wrong decisions made by the system are labeled
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correctly, while leaving the subject free to choose what he/she wants to type.
One can ask the subjects to press one of the keyboards’ buttons when they
see an erroneous feedback, but he would need to make sure that the keyboard
command is well separated in time from the display of the system decision
on the screen recording of the EEG data to be used in error classification.

Moreover, in this thesis, we have succeeded in implementing a new P300
paradigm with high accuracy for moving a mechanical device. This new
interface could be connected and tested on a real mechanical device in the
future.
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