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Abstract

Proteins perform various functions and tasks imgjvorganisms. The structure of a
protein is essential in identifying the protein ¢tion. Therefore, determining the
protein structure is of upmost importance. Nuclagnetic Resonance (NMR) is one
of the experimental methods used to determine iibieip structure. The key bottleneck
in NMR protein structure determinatias assigning NMR peaks to corresponding
nuclei, which is known as the assignment problehis &ssignment process is manually
performed in many laboratories. In this thesis, hage developed methodologies and

software to automate this process.

The Structure Based Assignment (SBA) is an apprtacolve this computationally
challenging problem by using prior information abthe protein that is obtained from a
template structure. NVR-BIP is an approach thas uke Nuclear Vector Replacement
(NVR) framework to model SBA as a binary integesgmamming problem. NVR-TS is

a tabu search algorithm equipped with a guidedugestion mechanism to handle the
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proteins with larger residue numbers. NVR-ACO is amt colony optimization
approach that is inspired by the behavior of liviagts to minimize peak-nuclei
matching cost. One of the input data utilized irsi approaches is the Nuclear
Overhauser Effect (NOE) data. NOE is an interactibserved between two protons if
the protons are located close in space. Thesenwmatould be amide protons (HN),
protons attached to the alpha-carbon atom in tklmme of the protein (HA), or side
chain protons. NVR only uses backbone protonshénprevious approaches using the
NVR framework, the proton type was not distingugstire the NOEs and only the HN
coordinates were used to incorporate the NOEstimacomputation. In this thesis, we
fix this problem and use both the HA and HN cooatltys and the corresponding
distances in our computations. In addition, inghevious studies within this context the
distance threshold value for the NOEs was manualhed for different proteins.
However, this limits the application of the methtwdyy for novel proteins. In this thesis
we set the threshold value in a standard mannealfqroteins by extracting the NOE
upper bound distances from the data. Furthermordylaltose Binding Protein (MBP),
we extract the NOE upper bound distances from tki&Nbveak intensity values directly

and test this protein on real NMR data.

We tested our approach on NVR-ACO's dath ased compared our new
approaches with NVR-BIP, NVR-TS, and NVR-ACO. Theerimental results show
that the proposed approach improves the assignraecuracies significantly. In
particular, we achieved 100% assignment accuracyEtw and 80% assignment
accuracy on MBP proteins as compared to 83% and @8&4aracies, respectively,

obtained in the previous approaches.



NMR PROTHN YAPI TABANLI ATAMA PROBLEM I iCIN BELIRLI NOELERI
NUKLEER VEKTOR DEGISTIRMEDE KULLANIMINI OTOMAT IKLESTIRME

Murodzhon Akhmedov

Endustri Muhendilgi, YUksek Lisans Tezi, 2013
Tez & Dansmani: Dog. Dr. Bilent Catay
Tez & Dangmani: Yard. Do¢. Dr. Mehmet Serkan Apaydin

Anahtar Kelimeler: Otomatik NMR Atamalari, Tabu Arama (TA), NMR Yagl
Biyoloji, Yapisal Biyoinformatik, Nukleer OverhauseEtkisi, Karinca Kolonisi

Optimizasyonu (KKO), Hesaplamali Biyoloji, Metasesailer.

Ozet

Proteinler canli organizmalarda site islevleri ve gorevleri yerine getirirler.
Protein yapisi proteinin fonksiyonunun belirlenmes gereklidir. Bu nedenle protein
yapisinin belirlenmesi ¢ok o6nemlidir. Nukleer MatiyeRezonans (NMR) protein
yapisini belirlemek icin gafirilmis yontemlerden biridir.Atama problemli olarak
bilinen NMR tepelerine karik gelen amino asitlerin stestirilmesi NMR
calismalarinda 6nemli bir darlgaz olgturmaktadir. Bu atamalemi ¢gzu laboratuarda
otomatiklsmems ve uzun siren bir sire¢ sonucunda elde edilirtéBin amaci bu
sureci hizlandirmak ve otomakiemek icin yeni yontemler ve yazilim programlari
gelistirmektir.

Yapi Tabanli Atama (YTA) bu zor problenarholog protein yapisini kullanarak
¢cbzmek icin gelitirilmi s bir yaklggimdir. NVD-ITP, YTA'yi ikili tamsay! programlama
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(ITP) problemi olarak modelleyen ve ¢ozum icin Nadd Vektor Dgistirme (NVD)
cercevesi kullanan bir yakdandir. NVD-TA ise NVD-ITP'in ¢ozemedi daha bulyuk
proteinlerin NMR rezonans verisini atamak icin retibbir pertiirbasyon mekanizmasi
ile donatilmg tabu aramasi kullanan bir yakilandir. NVD-KKO zirveleri ¢ekirdeklere
eslestirme maliyetini en aza indirmek icin gal karincalardan esinlenerek ggtilmis
bir karinca kolonisi optimizasyonu yakimidir. Bu programlar tarafindan kullanilan
temel veri kaynaklarindan birisi Ntkleer Overhaukgkisidir (NOE). NOE, belli bir
yakinliktaki proton ciftleri arasinda 6lculen bitkiglir. Bu protonlar amid protonlari
(HN), protein omurgasindaki alfa-karbon atomunglibarotonlar (HA) veya yan zincir
protonlari olabilir. NVD sadece omurga protonlarkullanir. Daha 6nce gstirilen
yaklasimlarda NOE’lerde proton tipi ayirt edilmegtii ve sadece HN koordinatlari
NOE’leri hesaplamalara dahil etmek icin kullangtmiBu tezde ise hesaplamalatda
ve HN koordinatlari ve ilgili uzaklklar kullanilgtar. Ayrica, dnceki cajmalarda NOE
etkisinin Olgllebilecgi uzaklik sik degeri her protein igin ayri ayri belirlengti ve bu
degerler belirlenirken pratikte mevcut olmayan verilkallaniimiti. Metodolojinin
uygulama alaninin sinirlayan bu yontem bu tezde N@E&safe st sinirlarinin
hesaplamalara dahil edilerekile degerinin tim proteinler igin standart bgekilde
ayarlandgl bir yaklsgimla daha gedtirilmistir. Ayrica, Maltoz Bglayici Proteini
(MBP) icin dgrudan NMR tepe ygunlugu deserlerinden NOE Ust sinir uzakliklar
elde edilerek gercek NMR verisiyle sinagtmi

Gelistirilen yeni yaklgimlar NVD-KKO verileri kullanarak sinanmive elde
edilen sonucglar NVD-ITP, NVD-TA ve NVD-KKO sonuglgta kasilastiriimistir.
Deneysel sonuclar O©nerilen yaglain atama dgruluklarini  6nemli  6lctde
iyilestirdigini gostermektedir. Onceki yakjanlarla EIN ve MBP icgin sirasiyla 83% ve
73% atama dgruluklar elde edilmgti. Yeni yaklgimlarla EIN protein verisi icin 100%
atama d@rulugu ve MBP protein verisi igin 80% atamagdolugu elde edilmtir.
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Chapter 1

INTRODUCTION

Proteins are large biological molecules that cartdisne or more than one ami
acid combinations in the chain form. Proteins viaoyn one another primarily in the
sequence of amino acids that is dictated by thdentide squence of their gene
There are 20 types of amino acids. amino acid structure includes alj-carbon,
carboxylic group, amino group, and a side chaire (Bgure 1.1). The side chain
specific to each amino acid and determines the iphlyand chencal properties of

amino acid. Ammo acids come together to form peptide bonds ia protein chain.

Amino acid (1) H Amino acid (2) H
H o H ir
H H
R R
 J
Peptide bond - H

Water

Figure 1.1: Peptide bond formation
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The peptide bond is formed between carboxyl grdume molecule (Amino acid
1) and amino group of other molecule (Amino acid &using a release of water

molecule. This process is demonstrated in Figute 1.

The human body consists of 45% proteins and pretbiave large range of
important functions in living organisms. Some oégh functions include building and
repairing the body, water balancing processesspaning the information, replicating
DNA, catalyzing metabolic reactions, respondingstionuli, and helping the immune
system. There is a strong relationship betweerthtee dimensional structure and the
function of the protein. Furthermore, 3D structared surface of protein plays a vital
role in protein-protein interactions and proteigatid binding affinity analysis.
Therefore, identifying the protein structure isesggl to understand and analyze the
functional behavior of proteins as well as theinayics, for protein redesign, diagnosis
and treatment of medical diseases. In Figure 1tB&,backbone fold of ubiquitin is
demonstrated with the secondary structure elem@ifs The surface of ubiquitin is
displayed in Figure 1.2B and it is colored by residype. The color scheme is gray for
non polar, green for polar (uncharged), red fodiaciand blue for basic amino acids.
Clearly, the chemical and physical properties aghtly related to 3D structure and

surface of protein.

A B

i C terminus

C terminus

Hydrophobic
patch

w/p groove

Figure 1.2: Secondary structure and colored surfacef ubiquitin
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There exist two major methods for protein structwetermination in the
literature. The first method is X-Ray Crystallogngp It is a process by which x-rays
are passed through the molecular lattice of a argstid reveal the crystal’s underlying
atomic structure. It was introduced by Von Lauelfil2, and since that time, x-ray
diffraction has grown to encompass crystallographp)NA structure, proteins, various
molecules, and complex structures [10]. This metteapliires crystallized protein form
to obtain the structure. However, it can take @ lome to crystallize some proteins. For
this and other several reasons, the Nuclear Magsonance (NMR) method has
been recently developed in the literature. NMRdsaily suited for detailed studies of
protein-protein and protein-ligand interactions a®ll as dynamics of protein.
Furthermore, it is well suited for probing and aaalg changes to the local electronic
environment of the protein [5]. NMR does not yial@D structure of a protein directly.
Instead, it gives high throughput data relatecheostructure and the 3D structure can be
calculated through intensive data analysis. Theaeprostructure determination steps
using NMR spectroscopy in solution can be dividedadlows (Figure 1.3): preparation
of the protein solution, the NMR experiments andasugements (identification of
conformation constraints, e.g. distances betwealrdgen atoms), the assignment of
NMR signals to individual atoms in the protein, tedculation of 3D structure of the

protein [6].

A) Protein
solution

C) Resonance D) Calculation of
Spectroscopy assignment the 3D structure

Figure 1.3: Protein structure determination by NMR

In the NMR experiment, the protein solution is @eg (Figure 1.3A), the
protein atoms in solutions are irradiated via maigneave frequency, and irradiation is
recorded, and converted to a spectrum (Figure 1.8B)the spectrum, each peak
corresponds to one amino acid in the protein sespi@md it should be assigned to
continue the structure determination process fur{Reggure 1.3C). This process is a
bottleneck in the NMR approach and is still manudibne in many laboratories. Our

efforts are dedicated to resolve this bottleneak tarautomatically assign NMR signals
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to individual atoms by using prior structural infeation from the template structure.

This process is shown in Figure 1.4 and explairedovin
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Figure 1.4: Structure-based assignment of NMR peaki® amino acids

On the right side of Figure 1.4, tHéN—'>N HSQC 2D data of protein is
presented. The horizontal and vertical values detnate the chemical shifts of
hydrogen atoms and nitrogen atoms of the protesidues, respectively. In the
spectrum, each peak corresponds to one residbe iprotein sequence and it should be
assigned. There exist the sequential and the stmibised resonance assignment
methods for assigning NMR peaks to correspondinglenu The Structure-Based
Assignment (SBA) is an approach that uses the hagools structure while making
peak-nuclei assignment. SBA resembles the molecafdacement technique in x-ray
crystallography which determines the structuredigpand accurately with the help of

template structure.
The NMR methodology intensively usN®ESY—'°N — HSQC experiment. NOE

is the effect measured between protons when a qfaprotons close in space is

irradiated. That effect is independent from theeclirconnection of the protons by
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chemical bonds. The NOE is observed from the mircla vicinity roughlyless than 6
A therefore it can be used to determine interiatrd molecular distances.

The molecular size of the protein is very importatst largeness, thus constitutes
a limitation in the NMR technique. It is more ddtilt to analyze NMR experiment data
for proteins larger than 30 kDa due to the huge wrhof signals that overlap each
other. However, a novel technique called TransveRelaxation Optimized
Spectroscopy (TROSY) overcomes this challenge. Tédhnique is enriched with
different types of NMR experiments and reducesdigaal loss. Therefore, it allows
analyzing the molecular data corresponding to prstiarger than 100 kDa [6].

In [18, 20, and 22], the threshold value is maryualhed for NOE relations for
each protein and this threshold is the same folN&Es. However, this limits the
applicability of the approach. The threshold valite NOE relation should be
determined automatically by an approach. We incarjgad the NOE distance upper
bounds into the computations as threshold valueNOE relations for all proteins.
Furthermore, in the previous approaches only HN-NREs were incorporated into
computations. The NOEs between HN-HA and HA-HN @nstwere treated as HN-HN
NOEs. However, this causes a problem in determirdogect distances between
protons since only HN coordinates were used forr-wae proton distance
computations. Thus, the proton type distinctionNOEs becomes necessary. In this
thesis, we overcame these challenges. We distinglésproton types in NOEs and use
both HN and HA protons coordinates, and incorporgesponding distances into
computations. We call our modified approaches a&N@Ware NVR-BIP (NA-NVR-
BIP), NOE aware NVR-TS (NA-NVR-TS) and NOE aware RPMACO (NA-NVR-
ACO).

Our contributions are:
* Formulation of NVR-BIP model to incorporate HN aH#& coordinates and
utilizing the upper bound of NOE relations as &s#old value

e Formulation of NVR-TS algorithm to incorporate HMdaHA coordinates

and utilizing the upper bound of NOE relations aisrashold value

18



* Formulation of NVR-ACO algorithm to incorporate Hid HA coordinates
and utilizing the upper bound of NOE relations alrashold value

» Extraction of NOE upper bound values automaticitiyn the NOE distances

* Testing the NA-NVR-BIP, NA-NVR-TS, and NA-NVR-ACO no NVR-
ACO'’s data set.

» Test on a large protein with real NMR data

The remainder of the thesis is organized as followthe next chapter we present
the literature review. Then, we give problem deiom, NVR framework, NOE usage in
NVR framework and mathematical formulations of greblem. We describe the NA-
NVR-TS and NA-NVR-ACO algorithms under the solutiorethodology in chapter 4.
The next chapter consists of information aboutdat sets and computational results.

Finally, we present the conclusion and future wiarkhapter 6.
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Chapter 2

LITERATURE REVIEW

2.1 Related Work

There are several software programs that perfosan@nce assignments in the
literature. MARS [2] facilitates an automatic baokle assignment of proteins by using
13C and °N labeled protons. MARS simultaneously optimizes kbcal and global
guality of assignment and combines the secondaungtste information from PSIPRED
[27]. However, it uses triple-resonance experimemd makes an exhaustive search
while processing the assignments. The programsigdeon maltose binding protein
with 370 residues and 96% error-free assignmenbiained. In [7], authors target an
enhanced backbone resonance assignment by matkpegimental Residual Dipolar
Coupling (RDC) to back computed values from a kn®ih structure. Furthermore,
RDC is helpful in reducing chemical shift degengran sequential connectivity
experiments. Besides, the combination of sequechiahectivity information and RDC
matching can improve the performance of MARS adgamssing data.

There are several SBA algorithms in the literatseme algorithms require
Residual Dipolar Coupling (RDCs) and triple resarearexperiments as an input.
Nuclear Vector Replacement (NVR) [5] is a molecuigplacement-like approach for
SBA. NVR performs backbone resonance assignmeatasnbinatorial optimization
problem by employing geometric and topological ¢aists of prior 3D homologous
structure, such that all NMR data should satiséyehisting constraints. In [5] the NVR
algorithm is proposed to perform the resonancegassents in polynomial time for
proteins with known structures or homologous stireg. NVR processes an unassigned
NOESY—'°N — HSQC spectra,HN — >N RDCs, and sparse HN-HN NOEs and uses
uniform 15N-labeling of the protein. The algorithm is testedubiquitin (76 residues)
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and lyzosyme (129 residues) proteins and 90% afd 88signment accuracies are
achieved, respectively. Previous algorithms thdizethomologous structure require
13¢C -labeling to perform resonance assignment. Omther hand, NVR uses onf{?N
-labeling which is much less expensive to obtaid does not require triple resonance
experiments.

NVR-EM [4] has a polynomial time complexity and ss& greedy expectation
maximization (EM) algorithm to perform the assigmise RDC data gives a global
orientation about inter molecular bound vectorspace. NVR-EM is an RDC-based
approach to determine alignment tensors and t@perthe resonance assignments by
correlating chemical shifts oHHN—!°N — HSQC peak spectra with homologous
structure. Furthermore, the method can handle thssimg data in RDCs and
resonances.

In [9], the authors propose a fully automated RIxSdd NMR resonance
assignment strategy for rapidly determining th&agy structure of RNA.

In [23], the authors proposed HANA that uses RD@s$ ldausdorff- based pattern
matching technique to analyze the similarity betwerperimental and back-computed
NOE spectra and to assign peaks to pairs of protdhg algorithm is tested on human
ubiquitin, domain of human DNA Y-polymerase Eta l(pp and human Set2-Rpbl

interacting domain (hSRI) and over 90% assignmeciii@acies are obtained.

In general, it is known that two similar proteirgeences are most likely to have a
similar 3D structure and sequence-based struchralology prediction methods could
be used for structure determination. On the othedhit is hard to predict the structural
similarity of two dissimilar protein sequences s@quence-based homology predictors.
[8] addresses the challenge of structural homoldgtection of dissimilar protein
sequences. The authors propose HD algorithm in NngRework for detecting the
structural homology likelihood from sparse and sigiseed NMR data. The advantage
of their method is its independence from sequerediogy and requirement of less
time to acquire the experimental protein NMR dad& is tested on 3 proteins and
successful homology detection is reported, andatse fpositives or false negatives are

reported for sequences with less than 30% siméarit
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2.2 Background

Today in many laboratories, the assignment probienperformed manually
which is a time consuming process. Our aim is teett methods to automatically
solve the assignment problem. The SBA problem wasidlated as a binary integer
programming in NVR-BIP [18], under the scope of N\&nce this problem is the NP-
hard, NVR-TS and NVR-ACO metaheuristic approaches developed to obtain a
solution for large proteins.

Tabu search (TS) is a metaheuristic algorithm wes created by Fred W. Glover
and it is widely used in combinatorial optimizatiproblems. TS uses the neighborhood
search procedure to iteratively move from one smiuto another solution in order to
improve the objective function.

The NVR-TS is a tabu search based approach with egelipped perturbation
mechanism. Starting from an initial solution, TSrastigates the neighbors of the
existing solution at each iteration in an attenopghiprove the incumbent best solution. It
avoids the repetition of the same solutions by taaimg a mechanism called tabu list.
The tabu list keeps the information of the latesives or solutions and prevents the
search from returning to those solutions for a ggecnumber of iterations since they
guide either to local optimal solutions or to smns that have already been explored. TS
accepts a tabu move only if it satisfies a predefiaspiration criterion. NVR-TS allows
the NOE violations by penalizing each of them witkdetermined penalty score in the
objective function.

Ant colony optimization (ACO) is a probabilistic ctenique to solve
computational problems. It is inspired by natdrahavior of ants while they search for
food. Ants find shortest path between their nestthe food source in a reasonable time
by using pheromone level. Greater level of pheroenom the path increases the
probability of following that path by ants. The &vof pheromone on the path is
negatively proportional to the length of the patimuitively, all ants will follow the
shortest path in time. The behavior of real antnsulated by artificial ants in ACO to
solve combinatorial problems. Artificial ants olstaa solution on a graph using
constructive mechanism guided by pheromone updadegeeedy heuristic known as

visibility. Pheromone triat;; intensity values between nodand j are proportional to

quality of generated solution and show the colecthnemory of ants. The visibility; ;
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is heuristic information that represents the ativacess of moving from nodetoj.
Furthermore, the artificial ant can use local dedneuristics in order to improve
solution quality.

NVR-ACO is an ant colony optimization approach abve the SBA problem. It is
inspired by the efficiency of food gathering in doghavior. Ants explore the shortest
path from their nest to food source by using infation known as pheromone. In a
similar fashion, NVR-ACO assigns peaks to amin@sdy minimizing matching cost

and penalizing assignments with NOE violation.
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Chapter 3

PROBLEM DESCRIPTION AND FORMULATION

In this chapter, the definition of the assignmertbtem in the SBA scope is
given. Furthermore, the NVR framework and the NG&ge in the NVR framework are
explained in detail. In addition, we present twotmeanatical formulations to the
assignment problem that are adapted from NVR-B8&}. [Ihese formulations take into
account NOE type distinction and extraction of tNOE upper bound distance
information from the data.

3.1 Problem Definition

In NMR experiment, the protein atoms are irradiaddd magnetic wave
frequency then irradiation is recorded, and com¢etd the spectrum. In the spectrum,
every peak corresponds to one amino acid in a ipratequence and it should be
assigned to further proceed with the structurerdetation process. This problem is
known as the assignment problem and it is a battleim the NMR approach.

One of the experiment types that are extensivedyl s NMR methodology is the
NOESY—15N — HSQC experiment. This experiment yields the NOE wtilobserved
between the nearby pairs of backbone protons. N©OBNi effect that is measured
between protons when a pair of protons close igespmirradiated. The NOE effect is
independent from the direct connection of the prstby chemical bonds. The NOE is
in general observed from nuclei in vicinity lessthé A; therefore it can be used to

determine inter and intra-molecular distances.
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The NOE relation between the protons and the assmgh problem are

demonstrated in Figure 3.1.

NMR Peaks Amino Acids

golEt' n ..... : —’@ Distance
Saons <%> @ :  Relations

.....
......

Figure 3.1: NOE relations and assignment of NMR pde to amino acids

There is a set of NMR peaks that should be assigmedset of amino acids. An
arc between a pair of NMR peaks demonstrates thd& Né€ation between the
corresponding peaks. An arc between a pair of amgids shows that the distance
between corresponding protons is smaller than N@Eanmte threshold (NTH) value
and that the amino acids are located in the vicioiteach other. The peaks associated
with NOE relations should be mapped to amino attids have a distance relation. For
instance, there is an NOE between peak 1 and pdakeak 1 is mapped to amino acid
1 and peak 2 is mapped to amino acid 2, as showigiure 3.1, then this assignment is
feasible, because the distance between amino ad Amino acid 2 is less than NTH.
However, if peak 2 is mapped to amino acid 2 arekpkis mapped to amino acid 3,
then this assignment would be infeasible due ttadce between the corresponding
amino acids. Here, the assignment problem is td Ainmaximum bipartite graph
mapping of peaks and atoms with the minimum matchost by utilizing the NOE and

distance constraints, and penalizing the infeasibggnments.
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3.2 NVR Framework

NVR is a SBA framework where the goal is to finchatching between the peaks
and amino acids. At the same time it minimizesrtregping cost while satisfying the
NOE constraints and distance constraints between ammino acids. Since NOE
constraints are between a pair of peaks, they timitavailable amino acid assignments
to the corresponding peak pairs.

NVR uses the following data typesIN—!°N — HSQC, NOESY—'°N — HSQC
(observed between nearby pairs of backbone prqtéidé)-'>N RDCs in two media
(which provide global orientational restraints amnt vectors),’>N TOCSY (for the
side-chain chemical shifts), and amide exchange G1%Q identify, probabilistically,
solvent exposed amide protons). NVR associatesssigranent probability with each

peak to amino acid match. Interested readers niaytee[18] for detailed information.

3.3 NOE Usage in the NVR Framework

NOE is one of the input data types that are usétMR framework. It is an effect
between a pair protons close in 3D space. Thigeiéehighly related to the distance
between the protons. However, it is independenarof chemical bonding between
protons and it can be observed with or without emgraction between protons. Thus,
NOE is useful to determine inter and intra- molaculistances.

In [18, 20 and 22], the NOE type was not distingat and only HN-HN NOE
type was utilized and incorporated into computaidiN-HA and HA-HN NOE types
were considered as HN-HN, and only HN proton cowth was used to incorporate
these NOEs. However, this could create errors duaismatch of the NOE type and
proton coordinate. Thus, to obtain more realistititsons the distinction of NOE type
and employment of correct proton coordinates isvaitkble. It also improves the
robustness of the models and approaches. The protwdinates and NOE relations are
explained in details in the following figures.
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Figure 3.2A: Structural Formula Figure 3.2B: Ball and Stick

In Figure 32A and Figure3.2B the structural formuland the ba-and-stick
model of alanine is presentedin Figure 3.2A, thehydrogens circled in red are F
protons and thaydrogen circled in blue is HA oton. In Figure 2B, green, red, aqua,

and lime represent ttearbon, oxygen, nitrogen, and hydrogen, respegti
In Figure 3.3he small portion othe protein is demonstrated contain a glycine
in the middle. The green line represents the-HA NOE and the purple line shows t

HN-HN NOE between the residi and residué-1.

(i+1) Glvcine (i) (i-1)

o—0

Figure 3.3: Portion of protein

By examining thee figures, it is easy to recognize that there maw Isignifican
difference between using HN proton coordinateses$tof HA proton coordinates
incorporate NOEs into computations. Furthermores ttan lower the assignme
accuracies and make thenss reliable. To remedy this drawback, the protqme
distinction in NOEs becomes unavoidable for theustbess of the algorithm. In tf
thesis we distinguish HI-HA and HA-HN NOEs from HNHN NOEs and thre
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different intra-proton distance matrices are calted for HN-HN, HA-HN, and HN-

HA NOE relations from the template structure.

3.4 Mathematical Formulations

In NVR-BIP [18], the SBA problem was formulated as binary integer
programming. The formulated problem was implemente¢dLOG OPL environment
which employs a CPLEX solver engine. In NVR-BIPe tiype of NOE input data was
not distinguished and only HN proton coordinate waed in calculations. Also, the
threshold value for NOE was manually set for eaatgin. In order to automate the
assignment process of NMR peaks to amino acidsdigtenction of NOE type and
correct proton coordinate usage is necessary. Utoenatic threshold value selection on
distances among protons is also necessary for atitogrthe assignment process. These
modifications will expand the application of thepapach to novel proteins. Besides, the
distinguished NOE data type may improve the assgimnaccuracies. We obtained a
new formulation of the NVR-BIP problem in this tiees order to achieve these goals.
We incorporated all these changes into the matheahamodel in two steps. As a first
step, we reformulated NVR-BIP to distinguish thetpn types in NOEs. Here, the
correct proton coordinates are employed along W@E input data type distinction.
This approach is considered under the “Distinguighthe type of NOE” model. In the
next step, we reformulated the NVR-BIP to distisfuithe type of NOE and
automatically set the NOE threshold value. In tositext, we utilize the NOE upper
bounds as the threshold values on intra-protomudigts and use the correct proton type
in our calculations. The NOE upper bound distamfermation is extracted directly
from the input data. This approach is consideredeufiUsing the NOE upper bounds
extracted from the data” model.

These reformulated models are named as NA-NVR-BtPthe details regarding

the models are provided in the following sections.
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3.4.1 Distinguishing the type of NOE

Distinguishing the type of NOE is thesfistep to automate the NMR peak
assignment process within our approach. In thisheraatical model the proton type in
NOEs is differentiated and corresponding protorrdimate is employed. However, the
threshold value on distances between protsrabtained manually and is the same for
all NOE constraints. For each tested protein, tineshold value is manually adjusted in
the sense that the solution without NOE violatiould be achieved. The threshold is
determined as a value that is greater than exatardies between protons which are
correctly assigned to pair of peaks that have N@Rtion. The notation and the
formulation of the model are described below.

Notation:
P : set of peaks
A : set of amino acids
s;j : score associated with assigning peak i to amino acid j
N : number of peaks to be assigned (N < |P])
dj;; : distance between amide protons of amino acids j and !
by using t coordinate type,t € T = {HN — HN,HN — HA,HA — HN}
NOE(i) : setof peaks that have an NOE with peak i

NTH : The threshold value for intra — amide proton distances

ifd:,, >
bji; = { 1 if djye = NTH Vj,lEA, VtET
2 otherwise
Decision variables:
Yoo = { 1 if peak i is assigned to amino acid j
Y 0 otherwise

Mathematical model:

Minimize 2 Z SijXij (D

icP jea
s.t. inj <1 VjEA (2)
icp
inj <1 VieP 3)
Tea
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szi,- - N 4)

iEP jEA
xij+xkl Sbjlt VJ,Z EA, Vi,kEP, VtET,Vk ENOE(l) (5)
xij € {0,1} Vi € P, V] eEA (6)

In this model, the objective function (1) minimizée total cost of mapping peaks
to amino acids. Constraint set (2) satisfies tla@heamino acid is assigned to at most
one peak and constraint set (3) ensures that ezaihip mapped to at most one amino
acid. Constraint (4) equalizes the total numbeassignments to the number of peaks to
be assigned. This constraint will be redundanh& humber of peaks is equal to the
number of amino acids and<™ sign is replaced by “=" sign in constraints (2)da
constraints (3). The parametsy;, is determined according tf;, and threshold value.
Constraint set (5) satisfies the NOE relations ketwpeaks and the constraint set (6)

forces the decision variables to be binary.

3.4.2 Using the NOE upper bounds extracted from the data

In addition to distinguishing the proton type, Imst section we also obtain the
NOE upper bound information from the data. Thisumss the number of manually
tuned parameters the system relies on and makeapihi®ach more general. As a
result, it yields more realistic solutions.

In the context of using the NOE upper bound distandhere is a different
threshold for every pair of peaks that have NOBti@h between them. In other words,
the number of threshold values is equal to the rarmb NOE constraints used for the
assignments in the tested proteins. Each NOE oeldtias its own predetermined
threshold value from the data. In this way we geliwezd the method by automatically
determining the threshold values. The notation tedformulation of the model are
expressed below.

1 if dj;y > UBy

b;; ={ vj,le A Vi, keP,VteT
kit 2 otherwise J

Where

UB;; : NOE upper bound distance limit between the peak i and peak k
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xij+xkl Sbijklt Vj,lEA,Vi,kEP,VtET,Vk ENOE(l) (7)

Here, the objective function and some constrainéssame as in distinguishing
the type of NOE model. Minor changes are; the patanb;,, is replaced byb; ;. and
the constraint set (5) is replaced by constraint(8e In using NOE upper bounds
extracted from the data model, the threshold valoes interproton distances are
gathered from the input data. There exists a unitueshold value on each pair of
peaks that has an NOE relation between them. SIgilMOE relations between pair of

peaks are also updated and expressed in conseaifit).
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Chapter 4

SOLUTION METHODOLOGY

In this chapter, two formerly developed metaheigriapproaches are adapted to
the models of NA-NVR-BIP by relaxation of NOE retat constraints. Since the
backbone resonance assignment problem is an NPratdem, NVR-BIP found
results for only small proteins. To fix this drawkaand obtain assignment solutions for
novel proteins NVR-TS [20] and NVR-ACO [22] metahstic algorithms were
developed. In this thesis, we adapted the metateualgorithms to incorporate the
proton type distinctions in NOEs and NOE upper labunformation utilization and we
refer to these approaches as NA-NVR-TS and NA-NVR2A

In these proposed approaches the correct protomlioate is used to incorporate
NOEs into computations and proton type in NOE sidguished. On top of it, the NOE
upper bounds are utilized as a threshold ovemiteggroton distances. We had the NOE
upper bound relations as a distance magnitudelif@rateins except MBP; those are
directly taken from the input data. For the MBP, kna&l the intensity values for NOE
relations between the peak pairs. We convertednteeasity values to the upper bound
distance limits by using the simple protocol in €land Gronenborn work [24, 25, and
26]. The peak intensities are ranked and binnéd the 4 categories. The peak
intensities in the range of 0-20% are considerea @y weak, 20-50% considered as a
weak, 50-80% considered as a medium, 80-100% oceresichs a strong and they have
an upper bound distance limit of 6.0 A, 5.0 A, 8,3and 2.7 A, respectively. 0.5 A is
added to all upper bounds in order to correct tieréxperimental error and intensity of
methyl crosspeaks that are larger than expecte@seltupper bounds are used
throughout calculations.
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4.1 NA-NVR-TS

We adapted NVR-TS [20] for distinguishing the tygfeNOE and utilizing NOE
upper bound distances that are extracted from ripatidata in this approach. The
implementation of the algorithm is based on reliaxabf NOE constraints in NA-NVR-
BIP models. In NA-NVR-BIP, the NOE constraints amnsidered as of hard type and
do not allow NOE violations in solutions. On théhet hand, NOE violations are
allowed in relaxed models by penalizing them inegbye function. Constraint set (5)
in distinguishing the type of NOE model and constraet (7) in using NOE upper
bounds extracted from the data model are removdddded to the objective functions
with corresponding NOE violation penalties. Minimiion models avoid NOE
violations since they have positive multipliersoipjective function. The corresponding
models are adapted in the following sections.

4.1.1 Distinguishing the type of NOE

The NA-NVR-BIP’s distinguishing the type NOE model adaptation is presented

as a quadratic relaxation formulation below.

Minimize 2 Z Sijxij + Z Z 2 z Z DjitXij Xkl 8

iEP jEA IEP kENOE(() jEA lEA teT
P = { ° ifdjc > NTH Vi, lEAVtET 9)
0 otherwise
Where
s’ = max {sij:i €EP,jeA] (10)

The objective function (8) minimizes the total maggpcost of peaks to amino
acids and simultaneously minimizes the number oENGlations. The NOE relation
constraint set (5) is added to the objective funrctEach NOE violation is penalized

with pj;;, constant and plays a vital role in the procedifr@enalty is a very small

number then the model ignores NOE violations anicentrates on mapping cost. In
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contrast, if a big number is chosen then the modglects the matching cost and NOE
violations get higher priority. After serious preinary tests, the penalty is determined
as in (9) and (10). Any NMR peak to amino acid gssient that satisfies the constraint
set (2)-(4) is an initial solution. The algorithntards from an initial solution and
iteratively improves it. The interested readereferred to [20] for detailed information
of the algorithm and its working mechanism.

4.1.2 Using the NOE upper bounds extracted from the data

Using the NOE upper bounds extracted from the naidel adaptation is similar
to distinguishing the type of NOE. The difference®, the objective function (8) is
replaced by (11) and violation penalty coefficiéd) is replaced by (12). The quadratic

relaxation formulation of the model is as follows:

Minimize z Z SijXij + z Z Z z Z DijkitXijXr1 (11)

IEP jEA IEP kENOE(i) jEA LEA tET
Pijite = { s Mdue>UBu e avikepvieT (12)
0 otherwise
Where
s" = max {sij:i EP,jE A} (13)

The objective function (11) minimizes the total ofahg cost of peak to residue
assignments and NOE violation cost. The violatiengity coefficient is updated as in
(12) after using NOE upper bound distance limitthasshold values.

4.2 NA-NVR-ACO

In this approach we modified NVR-ACO by distingurg the proton types in
NOEs and provided the algorithm with the correspogdinput data. The
implementation of the algorithm relies on the NA-RABIP model. The algorithm
became sensitive to NOE types with this modificatio the NA-NVR-ACO algorithm,
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the correct coordinates of protons are used torpurate NOEs into calculations.
Furthermore, NA-NVR-ACO utilizes NOE upper boundstdnce limits that are
obtained from the data as a threshold value. Ttezasted reader may refer to [22] for

detailed information of the algorithm and its meukan.
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Chapter 5

EXPERIMENTAL STUDY

5.1 Data Sets

We tested the performance of NA-NVR-BIP, NA-NVR-B8d NA-NVR-ACO
on the data set used in NVR-BIP since the scor¢aired by solving NVR-BIP are
optimal. NVR-BIP data set includes lysozyme, humaiquitin, hSRI, GB1, ff2, SPG
and poln. Furthermore, we tested the algorithms on twoehpwoteins which were not
included in NVR-BIP’s data set: Amino Terminal Damaof Enzyme | from
Escherichia Coli (EIN) with 243 residues and Madttsnding protein (MBP) with 348
residues. The proteins we tested all have NOE datre the source of the NOE is
distinguished. The remaining proteins in NVR-BIR &ested by means of simulated
NOE data.

For most cases, the templates used correspondetx-tay structures of the
proteins. The NMR backbone resonance assignmeatpexformed for 13 structural
homologous models in lysozyme protein family andtal of 534 NOE constraints are
used, including HN-HN, HN-HA and HA-HN NOE typesorFubiquitin protein family,
the NMR data assignments for five homologous modetscomputed and 270 NOE
constraints are employed in total. The backbonenasce assignments for three
structural homologous models are computed using\NRDE constraints in SPG protein
family. For large proteins, 1021 NOE constraintsEdN and 474 NOE constraints for
MBP are utilized. For the rest of the proteins, ,2860, 234, 156 NOE constraints are
employed for hSRI, GB1, ff2 and pgl respectively.

36



5.2 Computational Results

As stated before, in previous approaches [18, 2(), the proton type was not
distinguished in handling NOE data. In additiore threshold values were manually
tuned on the distances among amide protons whiehobktained from homologous
structures. In this thesis, we distinguished thagn types in NOEs and also utilized
the NOE relation upper bound data as the threshaldes on the distances among
protons.

In this section we compare the results obtaineg@reyious approaches with NA-
NVR-BIP, NA-NVR-TS, and NA-NVR-ACO. First, the relési from [18, 20, 22] are
compared with those obtained by proton type distincin NOEs. Next, we compare
the results from the previous approaches with éselts achieved by the combination of
proton type distinction in NOEs and the automaseage of threshold values obtained
from the data.

The implementation of NA-NVR-BIP is realized in IIBGOOPL whereas NA-
NVR-TS and NA-NVR-ACO are implemented in Java pesgming language
environment. We tested all three algorithms on @el(R) Core (TM)2 Quad CPU
Q8200 machine with 8 2.33GHz processors eachtoitth of 83GB RAM memory. We
performed 10 runs of NA-NVR-TS and NA-NVR-ACO foaeh protein and the best
assignment accuracy obtained with the lowest segoeesented in the section 5.2.1 and

5.2.2. The average accuracy results are providéteidppendix A.

5.2.1 Distinguishing the type of NOE

The assignment accuracies obtained with the forperoaches as well as with
the proposed new approaches are provided in thblegv. These tables contain the best
results obtained from the 10 runs with the propagggloaches having the lowest total
assignment scores for each protein. The assignacentracy is defined as the ratio of
the number of correctly assigned peaks to the totmhber of assigned peaks. In
previous work [18] the results without and with RDBave been provided. RDC is a
type of NMR experiment which NVR can use if it isadable. We provide the results
which are obtained by proton type distinction in B8Jand compare it with the results
of NVR-BIP [18] in Table 5.1 through Table 5.4. tmese tables, the column named
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“NVR-BIP” labels the assignment accuracies obtaibgdNVR-BIP. In NVR-BIP, the
proton type was not distinguished. HN-HA and HA-NIKDEs were considered as HN-
HN NOEs and HN-HN proton coordinates were usedaloutations. The columns with
the names of “NA-NVR-BIP”, “NA-NVR-TS”, and “NA-NVRACQO” refer to the
assignment accuracies obtained by distinguishiagythe of NOE. The threshold value
over the distances among amide protons is mantuedBd for each protein. This means,
for each tested protein, a value is selected ashiofd that is greater than the distances
between amide protons assigned to pair of peakfhitve NOE relations between them.
For example, it is chosen as 7 A for 1AAR protejnamalyzing the distances between
protons assigned to peak pairs with NOE relations.

Table 5.1: Assignment accuracies for ubiquitin whemlistinguishing NOE type

Accuracy
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO
PDB ID Noof [ Without | With | Without | With | Without [ With Without With
Residues| RDC RDC RDC RDC RDC RDC RDC RDC
1AAR 79% 97% 91% 1009 91% 1009 919% 100%
1G6J 87% 97% 100% 100%  100% 10090 100pb 100pb6
1UBI 72 87% 97% 100% 1009 100% 100% 1009 100%
1UBQ 87% 97% 100% 100% 1009 100% 100% 100%6
1UD7 81% 97% 97% 97% 97% 97% 97% 97%

According to the results in Table 5.1, the assigmnaecuracies are improved in
NA-NVR-BIP, NA-NVR-TS and NA-NVR-ACO for all proteis except 1UD7 with
RDC case. The NA-NVR-TS and NA-NVR-ACO achievedimgat solutions for all

tested proteins, and performed equally in ubiqutiotein test.

Table 5.2: Assignment accuracies for SPG when diagguishing NOE type

Accuracy
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO

PDB ID No of Without With Without With Without With Without With
Residue§ RDC RDC RDC RDC RDC RDC RDC RDC

1GB1 100% 100% 100% 100% 100% 1009 100% 1006
1PGB 55 100% 100% 100% 100% 100% 100% 1006 104%
2GB1 96% 100% 100% 100% 1009 100% 100%0 100P0

For SPG protein, NA-NVR-BIP, NA-NVR-TS and NA-NVR&O provided
better accuracies than NVR-BIP. Furthermore, the @g@proaches attained 100%
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accuracy for 2GB1 without RDC. Both NA-NVR-TS andAMIVR-ACO obtained

optimal solutions and demonstrated same accuraceBG protein test.

Table 5.3: Assignment accuracies for lyspme when distinguishing NOE type

Accuracy
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO
PDB ID No_ of | Without | With Without With Without With Without With
Residue§ RDC RDC RDC RDC RDC RDC RDC RDC

193L 78% 100% 92% 100% 92% 100% 92% 100%
1AKI 78% 98% 83% 100% 83% 100% 83% 100%
1AZF 74% 94% 90% 100% 90% 1009 90% 10096
1BGI 75% 97% 90% 100% 90% 1009 90% 10096
1H87 77% 100% 92% 100% 92% 100% 929 10096
1LSC 74% 100% 90% 100% 90% 100% 909 10096
1LSE 126 75% 98% 94% 100% 94% 1009 949 10096
1LYz 79% 82% 94% 100% 94% 100% 94% 100%
2LYZ 75% 91% 92% 100% 92% 100% 92% 100%
3LYZ 79% 90% 94% 100% 94% 100% 94% 100%
4LYZ 75% 91% 94% 98% 94% 98% 94% 98%
5LYZ 75% 91% 94% 98% 94% 98% 94% 98%
6LYZ 75% 96% 92% 100% 92% 100% 92% 100%

The results in Table 5.3 indicate that the assigniraecuracies are higher in NA-
NVR-BIP, NA-NVR-TS, and NA-NVR-ACO compared to NVBIP. The optimal
solutions are obtained by NA-NVR-TS and NA-NVR-ACOr all proteins. The
performance of the NA-NVR-TS and NA-NVR-ACO is teame for lysozyme protein

test.

Table 5.4: Assignment accuracies for other proteing’/hen distinguishing NOE type

Accuracy

NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO

PDB ID No of Without With Without With Without With Without With

Residued RDC RDC RDC RDC RDC RDC RDC RDC
poln, 31 100% 100% 100% 94% 1009 949% 1009 949
GB1 55 96% 100% 100% 100% 100% 1009 100 100
ff2 80 85% 93% 87% 93% 87% 93% 87%) 939
hSRI 96 73% 89% 79% 94% 79% 94% 799 949
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In Table 5.4, we also observe that the assignnaniracies are higher in the new
approaches. Both the NA-NVR-TS and NA-NVR-ACO aegki# identical assignment

accuraciesand the optimal solutions.

The results in the tables clearly show that distisiging the proton types in NOE
relations improves the backbone resonance assigreceuaracies in all proteins. Note
that both the NVR-BIP and NA-NVR-BIP return the iopdl solutions. In all tested
proteins the NA-NVR-TS and the NA-NVR-ACO achievib@ optimal solutions since
the assignment accuracy and total score of théitisns are same as NA-NVR-BIP.
Thus, this will guarantee the robustness of the MMR-TS and NA-NVR-ACO in

testing new proteins.

NVR-BIP could not find a solution in a reasonalahed for large proteins EIN and
MBP because of the exponential time complexityh& problem. For this reason, we
compare NVR-TS [20] with NA-NVR-TS and NVR-ACO [22]ith NA-NVR-ACO in
Table 5.5. The columns named “NVR-TS” and “NVR-ACQibel the assignment
accuracies obtained by NVR-TS [20] and NVR-ACO [2&spectively. In NVR-TS
and NVR-ACO, the proton type is not distinguisheldN-HA and HA-HN NOEs were
considered as HN-HN NOEs and HN-HN proton coordisatere used in calculations.
The columns with the names “NA-NVR-TS” and “NA-NVRZO” demonstrate the

assignment accuracies which are acquired by ptgpmndifferentiation in NOEs.

Table 5.5: Assignment accuracies for large proteinahen distinguishing NOE type

Accuracy
NVR-TS NVR-ACO NA-NVR-TS NA-NVR-ACO
PDB ID No of | Without | With | Without | With Without With Without With
Residues RDC RDC RDC RDC RDC RDC RDC RDC
EIN 243 24% 83% 67% 100% 93% 100% 93% 100pb
MBP 348 49% 63% 49% 73% 65% 749 64% 66%0

In Table 5.5, the assignment accuracies are imgraveNA-NVR-TS and NA-
NVR-ACO compared to NVR-TS and NVR-ACO for EIN. particular, the assignment
accuracy for the case without RDC is increased f2di§ to 93% in NA-NVR-TS and
from 67% to 93% in NA-NVR-ACO. NA-NVR-TS and NA-NVVRCO demonstrated

equal performance in assignment accuracies forgediein.
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All real NOE relations for MBP are HN-HA type. MVR-TS and NVR-ACO,
these NOEs are considered as HN-HN NOEs and HN-ibp coordinates are used.
The distinction in NOE type and correct proton coate usage are strong requirement
to automate the assignment process. It the firas@hvithin our approach and realized
in NA-NVR-TS and NA-NVR-ACO. The falls in assignnteaccuracies for some
proteins are tolerated to automate the proceskisnphase. This is the case in NA-
NVR-ACO for MBP with RDC compared to NVR-ACO.

NA-NVR-TS enhanced the assignment accuracies cadgarNVR-TS for both
with and without RDC in MBP. However, both NVR-T&8ANA-NVR-TS failed to
obtain a solution without NOE violations. On thé@&thand, NA-NVR-ACO obtained a

solution without NOE violation for MBP.

5.2.2 Using the NOE upper bounds extracted from the data

An automatic threshold value determination is penied in this approach. The
NOE upper bounds gathered from the input data @lieed as the threshold value.
Meanwhile, the type of protons in NOEs are distisgad and correct proton types are
used. The NOE upper bound information is direclligen from the input data for all
proteins except MBP. For the MBP, the intensityueal for NOE relations between
peak pairs are converted to the upper bound distariarmation.

The NA-NVR-BIP model that uses NOE upper boundadisé information is
solved in ILOG OPL environment employing CPLEX salhengine. The assignment
problem was infeasible for some protein data §éis infeasibility was originated from
the NOE constraints. When the NOE upper boundsuaesl as threshold over the
distances between protons that are assigned togasesk distance violations may arise
even for the correct assignment. In other words,NIOE upper bound extracted from
the data could be smaller than the exact distart@den the protons assigned to the
corresponding peak pairs that have NOE between.tHarthis case, an NOE violation
occurs which prevents us to find a feasible assegriracheme.

While NA-NVR-BIP cannot find any solutions due t@®H violations, NA-NVR-
TS and NA-NVR-ACO allow the NOE violations duringet search and can provide
assignments. In these approaches, the NOE viotatos penalized during the search
process in an attempt to construct a solution witHéOE violation in the end. The
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higher number of distance violation may cause dgemr assignment accuracies. For
lysozyme family, there are between 29 and 73 degtatolations and total of 534 NOE
constraints. There are between 1 and 3 distandatisies and 270 NOE constraints
present in ubiquitin family. The SPG family hasvibeen 9 and 11 distance violations
and 204 NOE constraints. For the large protein§,di&ance violation and 1021 NOE
constraints exist for EIN and 1 distance violateomd 474 NOE constraints exist for
MBP. For the rest of the proteins, 6, 2, 5 distavicdations and 260, 234, 156 NOE
constraints are present for GB1, ff2 and fpalespectively.

We compare the results obtained by NVR-BIP [18]hwMA-NVR-TS and NA-
NVR-ACO in Tables 5.6 - 5.9. The column “NVR-BIP¢tports the assignment
accuracies obtained by [18]. The columns “NA-NVR*EAd “NA-NVR-ACO” show
the assignment accuracies obtained by using the diper bounds extracted from the
data. In this section, the tables contain the bestlts obtained with the lowest total

score out of the 10 runs for each protein for ttegppsed approaches.

Table 5.6: Assignment accuracies for ubiquitin whemising the NOE upper bounds

Accuracy
NVR-BIP NA-NVR-TS NA-NVR-ACO

PDB ID No_ of Without With Without With Without With

Residues| RDC RDC RDC RDC RDC RDC
1AAR 79% 97% 100% 100% 100% 100%
1G6J 87% 97% 97% 97% 97% 97%
1UBI 72 87% 97% 100% 100% 100% 100%
1UBQ 87% 97% 100% 100% 100% 1009
1UD7 81% 97% 97% 97% 97% 100%

The results clearly show that the assignment acmsaare improved in NA-
NVR-TS and NA-NVR-ACO for all proteins except 1G&dd 1UD7 with RDC case.
The NA-NVR-TS and NA-NVR-ACO show a similar perfoamce in ubiquitin protein

test.
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Table 5.7: Assignment accuracies for SPG when usirtige NOE upper bounds

Accuracy
NVR-BIP NA-NVR-TS NA-NVR-ACO
PDB ID No of Without With Without With Without With
Residues| RDC RDC RDC RDC RDC RDC
1GB1 100% 100% 100% 100% 100% 100%
1PGB 55 100% 100% 100% 100% 100% 100%
2GB1 96% 100% 100% 100% 100% 1009

For SPG protein tests, the NA-NVR-TS and NA-NVR-A®@Otained the same

accuracies.

Table 5.8: Assignment accuracies for lysozyme whersing the NOE upper bounds

Accuracy
NVR-BIP NA-NVR-TS NA-NVR-ACO
PDB ID No_ of Without With Without With Without With
Residues| RDC RDC RDC RDC RDC RDC
193L 78% 100% 100% 100% 100% 100%
1AKI 78% 98% 100% 100% 100% 98%
1AZF 74% 94% 100% 100% 100% 100%
1BGI 75% 97% 100% 100% 100% 100%
1H87 7% 100% 100% 100% 100% 1009
1LSC 74% 100% 100% 100% 100% 1009
1LSE 126 75% 98% 100% 100% 98% 96%
1LYz 79% 82% 100% 100% 85% 85%
2LYZ 75% 91% 100% 100% 98% 98%
3LYZ 79% 90% 100% 100% 98% 98%
4LYZ 75% 91% 100% 100% 97% 95%
5LYZ 75% 91% 100% 100% 97% 95%
6LYZ 75% 96% 100% 100% 100% 100%

According to the results in the Table 5.8, the napproach improved the
assignment accuracies. NA-NVR-TS demonstrated rbatigerformance on lysozyme
protein test since it obtained higher accuraciesniomerous tests compared to NA-
NVR-ACO.
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Table 5.9: Assignment accuracies for other proteingshen using the
NOE upper bounds

Accuracy
NVR-BIP NA-NVR-TS NA-NVR-ACO

PDB ID No of Without With Without With Without With

Residues| RDC RDC RDC RDC RDC RDC
pol n 31 100% 94% 100% 100% 94% 94%
GB1 55 96% 100% 100% 100% 100% 1009
ff2 80 85% 93% 65% 93% 75% 89%
hSRI 96 73% 89% 79% 94% 79% 94%

In Table 5.9 the assignment accuracies are highialif proteins in new approach
compared to NVR-BIP except ff2. This decrease Isréble since the NOE upper

bound distance parameters are automatically oltam#he new approach.

Since NVR-BIP could not find a solution for largeofeins EIN and MBP, we
compare the NVR-TS with NA-NVR-TS and NVR-ACO witA-NVR-ACO in Table
5.10. The columns named “NVR-TS” and “NVR-ACO” shothe assignment
accuracies obtained by NVR-TS [20] and NVR-ACO [2@&spectively. In [20] and
[22], the proton type is not distinguished. HN-HAdaHA-HN NOEs were considered
as HN-HN NOEs and HN-HN proton coordinates wereduse calculations. The
columns with names “NA-NVR-TS” and “NA-NVR-ACO” ref the assignment

accuracies which are acquired by using the NOE nippends extracted from the data.

Table 5.10: Assignment accuracies for large protegwwhen using the

NOE upper bounds

Accuracy
NVR-TS NVR-ACO NA-NVR-TS NA-NVR-ACO
PDB ID No of | Without [ With Without | With Without With Without With
Residued RDC RDC RDC RDC RDC RDC RDC RDC
EIN 243 24% 83% 67% | 100% | 100% 100% 90% 88%
MBP 348 49% 63% 49% 73% 67% 76% 67% 809

By observing the Table 5.10, it easy to monitot tlegult improves in NA- NVR-
TS and NA-NVR-ACO for both proteins. Neverthele$$A-NVR-ACO failed to
exceed NVR-ACO for EIN with RDC. This due to thege number of NOE distance
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violations (126). The NA-NVR-TS outperformed NA-IRVACO according to results
for large protein test.

It can be seen that the new approach which disshgs the proton type and
incorporates both HN and HA coordinates and cooedmg distances into
computations, and determines the threshold valuesstandard manner improved the
backbone resonance assignment accuracies in alipsoln most tested proteins, the
assignment accuracies with and without RDCs arbenigvith the new approach. Note
that the best assignment accuracy is equal tovtbage accuracy for almost all tested
proteins. This emphasizes the robustness andistatfiiNA-NVR-TS and NA-NVR-
ACO algorithms. Besides, the increases in assighraeauracies are not the only
contribution. In addition, we automate the usageN@E data by means of new
approaches. The NVR suite of programs no longed riesd coded parameters for
handling the NOE data. This makes the approach mebisble and gives way to more

realistic solutions on novel proteins.
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Chapter 6

CONCLUSION AND FUTURE WORK

In the previous studies [18, 20, 22], NOE type was$ differentiated and the
threshold values on NOE relations were manually feetall tested proteins. This
approach brings some drawbacks such as the lowEnasent accuracies and restricts
the application range of methods on novel proteinsthis thesis, we reformulated
NVR-BIP and we adapted NVR-TS and NVR-ACO in orttedistinguish the type of
backbone NOEs and set the threshold values inralatd manner. We made these
modifications by reformulating NVR-BIP [18] in twoew mathematical models. In
Model 1, we distinguished the proton types in N@Ed incorporated the correct proton
coordinates into the computations. On top of pratgpe distinction, we utilized the
NOE upper bound distance limits as a thresholdeslno Model 2. We tested the new
approaches on 7 small proteins and two large preteiamely EIN and MBP. The NOE
upper bound distance limits are gathered from thg dor all proteins while it is
automatically extracted from the NOE peak intens#jues for MBP by using simple
protocol.

Our results show that the incorporation of HN an&l ptoton coordinates and
using NOE relation upper bounds as a thresholdevaluboth models improved the
assignment accuracy compared to the previous agiprda particular, we achieved
100% assignment accuracy with the NA-NVR-TS on tame protein EIN by
distinguishing the type of NOE. However, NA-NVR-T8ich takes the distinguished
NOE input data did not find any feasible solutiom BP real data. The NA-NVR-
ACO that was adapted for distinguished NOE inputdgave a feasible solution for
MBP with 67% and 80% assignment accuracies for aumthRDC and with RDC,

respectively.
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According to the outcomes of the two models, ther approaches significantly
improved the solutions compared to the NVR-BIP. BBanhodels had similar
performance in the experiments. However, Model dse reliable and realistic due to
the NOE upper bound usage as a threshold valweddition, the Model 2 has a wider
application scope. Furthermore, NA-NVR-TS displaymdre accurate performance
compared to NA-NVR-ACO. This superiority is moresible in the results obtained by
using the NOE upper bounds extracted from the haidel.

A similar structure such as the one obtained bgyxarystallography is used as
template structure in these tests. It would beréstieng to study the effect of using more
distant templates. All NMR peaks are assigned tireetests. The partial NMR peak
assignment could be modeled and implemented agieefwork in order to assign the
NMR data of a protein to the more distant tempgdtacture. Since the NMR data will
be assigned to more distant template structures thl be a considerable number of
NOE violations and this would be a good test fortiph NMR peak assignment
formulation.

For MBP test, NA-NVR-TS could not succeed to obtaim solution without NOE
violations. We directly used the parameter settirads previous studies in the
experimental study and this could be the main reaBorther studies can focus on fine
tuning the parameters of NA-NVR-TS and NA-NVR-ACO further improve the
quality of the results.

Further studies can focus on improving the TS algaor neighborhood search
where multiple neighborhood search structure cobkl used. Moreover, other
metaheuristic algorithms may be employed to compaeeperformance of NA-NVR-
TS and NA-NVR-ACO algorithms.

Finally, the output of our NA-NVR-TS and NA-NVR-AC@ould be tested in
HADDOCK [28, 29] NMR protein docking software to keafurther analysis of 3D
structure of proteins and protein-ligand bindinfynatfy.
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APPENDIX A

Table A.1: Average accuracies of 10 runs for ubiqtin

D

Accuracy
Using the NOE | Using the NOE
Distinguishing Distinguishing upper bounds upper bounds
NVR-BIP NA-NVR-BIP | the type of NOE| the type of NOE| extracted from | extracted from
NVR-TS NVR-ACO the data the data
NVR-TS NVR-ACO
PDB No(f) Without | With | Without | With | Without | With | Without [ With | Without | With [ Without | With
1D Res RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC
1AAR 79% 97%| 100% | 1009 91% 10096 919 100% 10006  100%  100%©0%
1G6J 87% 97%, 100% 100%6 100% 100% 100p6 190% 91% D798 7% 97%
1UBI | 72 87% 97%| 100% | 100% 10099 100p6 10096 10p%  10Q%  1D0%0D0% | 100%
1UBQ 87% 97%| 100%| 100% 1009 100% 1009 100%  100%  1P0%®0% | 100%
1UD7 81% 97% 97% 97% 97% 97% 979 976 97% 97% 97% 0%l
Table A.2: Average accuracies of 10 runs for lysonye
Accuracy
Using the NOE | Using the NOE
Distinguishing Distinguishing upper bounds upper bounds
NVR-BIP NA-NVR-BIP | the type of NOE| the type of NOE| extracted from | extracted from
NVR-TS NVR-ACO the data the data
NVR-TS NVR-ACO
PDB NO? Without | With | Without | With [ Without | With | Without | With | Without | With | Without | With
1D Res RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC
193L 78% 100% 92% 1009 92% 10096 929 100% 100%  100%  100%©0%
1AKI 78% 98% 83% 1009 83% 10096 839 10Q%  100po 1¢0%00% 98%
1AZF 74% 94% 90% 1009 90% 100pso 909 100%  10Q% 1(|)0%00%1 100%
1BGI 75% 97% 90% 1009 90% 100po 909 100%  10Q% 1(l)0% 0%10 100%
1H87 7% 100% 92% 100% 92% 100% 92% 10Pp% 10(|)% 1P0HD0% 100%
1LSC 74% 100% 90% 100% 90% 100% 90% 10p% 10(i)% 1p0%00% | 100%
1LSE | 126 75% 98% 94% 100% 94% 100p6 94% 10p% 100% 190%8% 9| 96%
1LYZ 79% 82% 94% 1009 94% 100% 94Y% 100% 100P6  1Q0% 5% 8| 85%
2LYZ 75% 91% 92% 1009 92% 100%6 92% 100%  100po 100% 8% 9| 98%
3LYZ 79% 90% 94% 1009 94% 100%6 949% 100%  100po 100% 8% 9| 98%
4LYZ 75% 91% 94% 1009 94% 98% 94% 9806 100|%) 100% 97%95%
5LYZ 75% 91% 94% 1009 94% 98% 944 98V lOOI’o 100% 97%95%
6LYZ 75% 96% 92% 1009 92% 100%6 92% 100%  100po 190%00%. | 100%
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Table A.3: Average accuracies of 10 runs for SPG

Accuracy
Using the NOE | Using the NOE
Distinguishing Distinguishing upper bounds upper bounds
NVR-BIP NA-NVR-BIP | the type of NOE| the type of NOE| extracted from | extracted from
NVR-TS NVR-ACO the data the data
NVR-TS NVR-ACO
PDB NO? Without | With | Without | With | Without | With | Without [ With | Without [ With | Without [ With
1D Res RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC
1GB1 100% 100% 100% 100% 1009 100% 10096 100% 100% 1Pp0%6% 9| 100%
1PGB| 55 100% 1009 100% 100%6 100% 100% 100% 100% 100%90%31 100% 100%
2GB1 96% 10094 100%| 100% 100% 10Q% 100p6  100%  10Pp% 9%100100% | 100%
Table A.4: Average accuracies of 10 runs for othguroteins
Accuracy
Using the NOE | Using the NOE
Distinguishing Distinguishing upper bounds upper bounds
NVR-BIP NA-NVR-BIP | the type of NOE| the type of NOE| extracted from | extracted from
NVR-TS NVR-ACO the data the data
NVR-TS NVR-ACO
PDB '2]9 Without | With | Without | With | Without | With | Without | With | Without | With | Without | With
1D Res RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC
poln, 31 100% 100% 100% 949 100% 946 100%6 94% 100% 1Pp0%4% 94%
GB1 55 96% 1009 100% 100%6 100% 100% 100 190% 10p%00%1 100% 100%
ff2 80 85% 93% 87% 93% 85% 93% 879 93p6 65%0 98% 79%89%
hSRI 96 73% 89% 79% 949 76% 92% 7% 94% 79%% M% 79994%
Table A.5: Average accuracies of 10 runs for largproteins
Accuracy
Using the NOE | Using the NOE
Distinguishing Distinguishing upper bounds upper bounds
NVR-TS NVR-ACO the type of NOE| the type of NOE| extracted from | extracted from
NVR-TS NVR-ACO the data the data
NVR-TS NVR-ACO
PDB %? Without | With | Without | With | Without | With | Without [ With | Without [ With | Without | With
ID Res RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC RDC
EIN | 243 5% 83%| 67% | 100%| 93% 100%| 93% 100%| 100% | 100% | 88% 88%
MBP | 348 49% 63%| 49% 73% 55% 68% 64% 66% 60%9 72% 64% i
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APPENDIX B

Algorithm 1  Tabu Search Algorithm

Initialization: Obtain an initial solution s, §' «— s, 57 — 5, 5% — 5, ctr' < 0, etr’" < 0,
ctr® +—0
while ctr* < Irery do
while ctr’ < Iter; do
while ctr’ < Irer; do
Move from s to 5
if score(s;) <score(s") then
Update tabu list; 5 « s5;
ctr' +0
else
ctr' —ctr'+1
end if
end while
Perturb(s")
if score(s')< score(s") then
SH — SF
ar'’ «—0
else
ar’ «—ar’+1
end if
end while
if score(s”)<score(s*) then
5 &g
ctr® +0
else
ctr®* «—cotr*+1
end if
5 — Perturb(s")
end while
Return s*

Algorithm 2 Ant Colony Optimization

initialize pheromone trails
while (stopping condition not satisfied) do
for all ant do
fori=1— |P| do
select a peak (using constrained peak selection)
assign amino acid (using random selection rule)
end for
end for
elitist (2-opt) local search
elitist pheromone update
end while
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