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Abstract 
 

 
Proteins perform various functions and tasks in living organisms. The structure of a 

protein is essential in identifying the protein function. Therefore, determining the 

protein structure is of upmost importance. Nuclear Magnetic Resonance (NMR) is one 

of the experimental methods used to determine the protein structure. The key bottleneck 

in NMR protein structure determination is assigning NMR peaks to corresponding 

nuclei, which is known as the assignment problem. This assignment process is manually 

performed in many laboratories. In this thesis, we have developed methodologies and 

software to automate this process.  

The Structure Based Assignment (SBA) is an approach to solve this computationally 

challenging problem by using prior information about the protein that is obtained from a 

template structure. NVR-BIP is an approach that uses the Nuclear Vector Replacement 

(NVR) framework to model SBA as a binary integer programming problem. NVR-TS is 

a tabu search algorithm equipped with a guided perturbation mechanism to handle the 
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proteins with larger residue numbers. NVR-ACO is an ant colony optimization 

approach that is inspired by the behavior of living ants to minimize peak-nuclei 

matching cost. One of the input data utilized in these approaches is the Nuclear 

Overhauser Effect (NOE) data. NOE is an interaction observed between two protons if 

the protons are located close in space. These protons could be amide protons (HN), 

protons attached to the alpha-carbon atom in the backbone of the protein (HA), or side 

chain protons. NVR only uses backbone protons. In the previous approaches using the 

NVR framework, the proton type was not distinguished in the NOEs and only the HN 

coordinates were used to incorporate the NOEs into the computation. In this thesis, we 

fix this problem and use both the HA and HN coordinates and the corresponding 

distances in our computations. In addition, in the previous studies within this context the 

distance threshold value for the NOEs was manually tuned for different proteins. 

However, this limits the application of the methodology for novel proteins. In this thesis 

we set the threshold value in a standard manner for all proteins by extracting the NOE 

upper bound distances from the data. Furthermore, for Maltose Binding Protein (MBP), 

we extract the NOE upper bound distances from the NMR peak intensity values directly 

and test this protein on real NMR data. 

        We tested our approach on NVR-ACO's data set and compared our new 

approaches with NVR-BIP, NVR-TS, and NVR-ACO. The experimental results show 

that the proposed approach improves the assignment accuracies significantly. In 

particular, we achieved 100% assignment accuracy on EIN and 80% assignment 

accuracy on MBP proteins as compared to 83% and 73% accuracies, respectively, 

obtained in the previous approaches. 
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Özet 
 

Proteinler canlı organizmalarda çeşitli i şlevleri ve görevleri yerine getirirler. 

Protein yapısı proteinin fonksiyonunun belirlenmesinde gereklidir. Bu nedenle protein 

yapısının belirlenmesi çok önemlidir. Nükleer Manyetik Rezonans (NMR) protein 

yapısını belirlemek için geliştirilmi ş yöntemlerden biridir. Atama problemli olarak 

bilinen NMR tepelerine karşılık gelen amino asitlerin eşleştirilmesi NMR 

çalışmalarında önemli bir darboğaz oluşturmaktadır. Bu atama işlemi çoğu laboratuarda 

otomatikleşmemiş ve uzun süren bir süreç sonucunda elde edilir. Bu tezin amacı bu 

süreci hızlandırmak ve otomakleştirmek için yeni yöntemler ve yazılım programları 

geliştirmektir. 

         Yapı Tabanlı Atama (YTA) bu zor problemi homolog protein yapısını kullanarak 

çözmek için geliştirilmi ş bir yaklaşımdır. NVD-ITP, YTA’yi ikili tamsayı programlama 
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(ITP) problemi olarak modelleyen ve çözüm için Nükleer Vektör Değiştirme (NVD) 

çerçevesi kullanan bir yaklaşımdır. NVD-TA ise NVD-ITP'in çözemediği daha büyük 

proteinlerin NMR rezonans verisini atamak için rehberli bir pertürbasyon mekanizması 

ile donatılmış tabu araması kullanan bir yaklaşımdır. NVD-KKO zirveleri çekirdeklere 

eşleştirme maliyetini en aza indirmek için doğal karıncalardan esinlenerek geliştirilmi ş 

bir karınca kolonisi optimizasyonu yaklaşımıdır. Bu programlar tarafından kullanılan 

temel veri kaynaklarından birisi Nükleer Overhauser Etkisidir (NOE). NOE, belli bir 

yakınlıktaki proton çiftleri arasında ölçülen bir etkidir. Bu protonlar amid protonları 

(HN), protein omurgasındaki alfa-karbon atomuna bağlı protonlar (HA) veya yan zincir 

protonları olabilir. NVD sadece omurga protonlarını kullanır. Daha önce geliştirilen 

yaklaşımlarda NOE’lerde proton tipi ayırt edilmemişti ve sadece HN koordinatları 

NOE’leri hesaplamalara dahil etmek için kullanılmıştı. Bu tezde ise hesaplamalarda HA 

ve HN koordinatları ve ilgili uzaklıklar kullanılmıştır. Ayrıca, önceki çalışmalarda NOE 

etkisinin ölçülebileceği uzaklık eşik değeri her protein için ayrı ayrı belirlenmişti ve bu 

değerler belirlenirken pratikte mevcut olmayan veriler kullanılmıştı. Metodolojinin 

uygulama alanının sınırlayan bu yöntem bu tezde NOE mesafe üst sınırlarının 

hesaplamalara dahil edilerek eşik değerinin tüm proteinler için standart bir şekilde 

ayarlandığı bir yaklaşımla daha geliştirilmi ştir. Ayrıca, Maltoz Bağlayıcı Proteini 

(MBP) için doğrudan NMR tepe yoğunluğu değerlerinden NOE üst sınır uzaklıkları 

elde edilerek gerçek NMR verisiyle sınanmıştır. 

Geliştirilen yeni yaklaşımlar NVD-KKO verileri kullanarak sınanmış ve elde 

edilen sonuçlar NVD-ITP, NVD-TA ve NVD-KKO sonuçlarıyla karşılaştırılmıştır. 

Deneysel sonuçlar önerilen yaklaşımın atama doğruluklarını önemli ölçüde 

iyileştirdiğini göstermektedir. Önceki yaklaşımlarla EIN ve MBP için sırasıyla 83% ve 

73% atama doğrulukları elde edilmişti. Yeni yaklaşımlarla EIN protein verisi için 100% 

atama doğruluğu ve MBP protein verisi için  80% atama doğruluğu elde edilmiştir.  
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Chapter 1 

INTRODUCTION 

Proteins are large biological molecules that consist of one or more than one amino 

acid combinations in the chain form. Proteins vary from one another primarily in their 

sequence of amino acids that is dictated by the nucleotide sequence of their genes. 

There are 20 types of amino acids.  The amino acid structure includes alpha

carboxylic group, amino group, and a side chain (see Figure 1.1). The side chain is 

specific to each amino acid and determines the physical and chemi

no acids come together to form the peptide bonds in 

Figure 1Figure 1.1: Peptide bond formation 

Proteins are large biological molecules that consist of one or more than one amino 

acid combinations in the chain form. Proteins vary from one another primarily in their 

quence of their genes. 

amino acid structure includes alpha-carbon, 

carboxylic group, amino group, and a side chain (see Figure 1.1). The side chain is 

specific to each amino acid and determines the physical and chemical properties of 

peptide bonds in a protein chain.  
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The peptide bond is formed between carboxyl group of one molecule (Amino acid 

1) and amino group of other molecule (Amino acid 2), causing a release of water 

molecule. This process is demonstrated in Figure 1.1. 

 

The human body consists of 45% proteins and proteins have large range of 

important functions in living organisms. Some of these functions include building and 

repairing the body, water balancing processes, transporting the information, replicating 

DNA, catalyzing metabolic reactions, responding to stimuli, and helping the immune 

system. There is a strong relationship between the three dimensional structure and the 

function of the protein. Furthermore, 3D structure and surface of protein plays a vital 

role in protein-protein interactions and protein–ligand binding affinity analysis. 

Therefore, identifying the protein structure is essential to understand and analyze the 

functional behavior of proteins as well as their dynamics, for protein redesign, diagnosis 

and treatment of medical diseases. In Figure 1.2A, the backbone fold of ubiquitin is 

demonstrated with the secondary structure elements [17]. The surface of ubiquitin is 

displayed in Figure 1.2B and it is colored by residue type. The color scheme is gray for 

non polar, green for polar (uncharged), red for acidic, and blue for basic amino acids. 

Clearly, the chemical and physical properties are tightly related to 3D structure and 

surface of protein. 

 

Figure 2Figure 1.2: Secondary structure and colored surface of ubiquitin 
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There exist two major methods for protein structure determination in the 

literature. The first method is X-Ray Crystallography.  It is a process by which x-rays 

are passed through the molecular lattice of a crystal and reveal the crystal’s underlying 

atomic structure. It was introduced by Von Laue in 1912, and since that time, x-ray 

diffraction has grown to encompass crystallography of DNA structure, proteins, various 

molecules, and complex structures [10]. This method requires crystallized protein form 

to obtain the structure. However, it can take a long time to crystallize some proteins. For 

this and other several reasons, the Nuclear Magnetic Resonance (NMR) method has 

been recently developed in the literature. NMR is ideally suited for detailed studies of 

protein-protein and protein-ligand interactions as well as dynamics of protein. 

Furthermore, it is well suited for probing and analyzing changes to the local electronic 

environment of the protein [5]. NMR does not yield a 3D structure of a protein directly. 

Instead, it gives high throughput data related to the structure and the 3D structure can be 

calculated through intensive data analysis. The protein structure determination steps 

using NMR spectroscopy in solution can be divided as follows (Figure 1.3): preparation 

of the protein solution, the NMR experiments and measurements (identification of 

conformation constraints, e.g. distances between hydrogen atoms), the assignment of 

NMR signals to individual atoms in the protein, the calculation of 3D structure of the 

protein [6]. 

 

 

 

 

 

 
 

In the NMR experiment, the protein solution is prepared (Figure 1.3A), the 

protein atoms in solutions are irradiated via magnetic wave frequency, and irradiation is 

recorded, and converted to a spectrum (Figure 1.3B). In the spectrum, each peak 

corresponds to one amino acid in the protein sequence and it should be assigned to 

continue the structure determination process further (Figure 1.3C). This process is a 

bottleneck in the NMR approach and is still manually done in many laboratories. Our 

efforts are dedicated to resolve this bottleneck and to automatically assign NMR signals 

A) Protein  
 solution                       

B) NMR 
Spectroscopy        

C) Resonance  
 assignment      

D)  Calculation of    
the 3D structure 

  Figure 3Figure 1.3: Protein structure determination by NMR 
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to individual atoms by using prior structural information from the template structure.  

This process is shown in Figure 1.4 and explained below. 

 

 

 

Figure 4Figure 1.4: Structure-based assignment of NMR peaks to amino acids 

 

 

On the right side of Figure 1.4, the H�−��N  HSQC  2D  data of protein is 

presented. The horizontal and vertical values demonstrate the chemical shifts of 

hydrogen atoms and nitrogen atoms of the protein residues, respectively. In the 

spectrum, each peak corresponds to one residue in the protein sequence and it should be 

assigned. There exist the sequential and the structure-based resonance assignment 

methods for assigning NMR peaks to corresponding nuclei. The Structure-Based 

Assignment (SBA) is an approach that uses the homologous structure while making 

peak-nuclei assignment. SBA resembles the molecular replacement technique in x-ray 

crystallography which determines the structure rapidly and accurately with the help of 

template structure. 

 

The NMR methodology intensively uses NOESY−��N − HSQC experiment.  NOE 

is the effect measured between protons when a pair of protons close in space is 

irradiated. That effect is independent from the direct connection of the protons by 
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chemical bonds.  The NOE is observed from the nuclei in a vicinity roughly less than 6 

Å; therefore it can be used to determine inter and intra molecular distances. 

 

The molecular size of the protein is very important, its largeness, thus constitutes 

a limitation in the NMR technique. It is more difficult to analyze NMR experiment data 

for proteins larger than 30 kDa due to the huge amount of signals that overlap each 

other. However, a novel technique called Transverse Relaxation Optimized 

Spectroscopy (TROSY) overcomes this challenge. This technique is enriched with 

different types of NMR experiments and reduces the signal loss. Therefore, it allows 

analyzing the molecular data corresponding to proteins larger than 100 kDa [6]. 

 

In [18, 20, and 22], the threshold value is manually tuned for NOE relations for 

each protein and this threshold is the same for all NOEs. However, this limits the 

applicability of the approach. The threshold value for NOE relation should be 

determined automatically by an approach. We incorporated the NOE distance upper 

bounds into the computations as threshold values on NOE relations for all proteins. 

Furthermore, in the previous approaches only HN-HN NOEs were incorporated into 

computations. The NOEs between HN-HA and HA-HN protons were treated as HN-HN 

NOEs. However, this causes a problem in determining correct distances between 

protons since only HN coordinates were used for pair-wise proton distance 

computations. Thus, the proton type distinction in NOEs becomes necessary. In this 

thesis, we overcame these challenges. We distinguish the proton types in NOEs and use 

both HN and HA protons coordinates, and incorporate corresponding distances into 

computations. We call our modified approaches as NOE aware NVR-BIP (NA-NVR-

BIP), NOE aware NVR-TS (NA-NVR-TS) and NOE aware NVR-ACO (NA-NVR-

ACO). 

 

Our contributions are: 

 

• Formulation of NVR-BIP model to incorporate HN and HA coordinates and 

utilizing the upper bound of NOE relations as a threshold value  

• Formulation of NVR-TS algorithm to incorporate HN and HA coordinates  

and utilizing the upper bound of NOE relations as a threshold value 
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• Formulation of NVR-ACO algorithm to incorporate HN and HA coordinates 

and utilizing the upper bound of NOE relations as a threshold value 

• Extraction of NOE upper bound values automatically from the NOE distances 

• Testing the NA-NVR-BIP, NA-NVR-TS, and NA-NVR-ACO on NVR-

ACO’s data set. 

• Test on a large protein with real NMR data 

 

 

The remainder of the thesis is organized as follows: in the next chapter we present 

the literature review. Then, we give problem definition, NVR framework, NOE usage in 

NVR framework and mathematical formulations of the problem. We describe the NA-

NVR-TS and NA-NVR-ACO algorithms under the solution methodology in chapter 4. 

The next chapter consists of information about the data sets and computational results. 

Finally, we present the conclusion and future work in chapter 6. 
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Chapter 2 

LITERATURE REVIEW 

2.1    Related Work 

There are several software programs that perform resonance assignments in the 

literature. MARS [2] facilitates an automatic backbone assignment of proteins by using 

 ��C and  ��N labeled protons.  MARS simultaneously optimizes the local and global 

quality of assignment and combines the secondary structure information from PSIPRED 

[27]. However, it uses triple–resonance experiments and makes an exhaustive search 

while processing the assignments. The program is tested on maltose binding protein 

with 370 residues and 96% error-free assignment is obtained. In [7], authors target an 

enhanced backbone resonance assignment by matching experimental Residual Dipolar 

Coupling (RDC) to back computed values from a known 3D structure. Furthermore, 

RDC is helpful in reducing chemical shift degeneracy in sequential connectivity 

experiments. Besides, the combination of sequential connectivity information and RDC 

matching can improve the performance of MARS against missing data.  

There are several SBA algorithms in the literature. Some algorithms require 

Residual Dipolar Coupling (RDCs) and triple resonance experiments as an input. 

Nuclear Vector Replacement (NVR) [5] is a molecular replacement-like approach for 

SBA.  NVR performs backbone resonance assignment as a combinatorial optimization 

problem by employing geometric and topological constraints of prior 3D homologous 

structure, such that all NMR data should satisfy the existing constraints.  In [5] the NVR 

algorithm is proposed to perform the resonance assignments in polynomial time for 

proteins with known structures or homologous structures. NVR processes an unassigned 

NOESY−��N − HSQC spectra, HN −  ��N RDCs, and sparse HN-HN NOEs and uses 

uniform  ��N-labeling of the protein. The algorithm is tested on ubiquitin (76 residues) 
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and lyzosyme (129 residues) proteins and 90% and 98% assignment accuracies are 

achieved, respectively. Previous algorithms that utilize homologous structure require 

 ��C -labeling to perform resonance assignment. On the other hand, NVR uses only  ��N 

-labeling which is much less expensive to obtain and does not require triple resonance 

experiments. 

NVR-EM [4] has a polynomial time complexity and uses a greedy expectation 

maximization (EM) algorithm to perform the assignments. RDC data gives a global 

orientation about inter molecular bound vectors in space. NVR-EM is an RDC-based 

approach to determine alignment tensors and to perform the resonance assignments by 

correlating chemical shifts of HN−��N − HSQC peak spectra with homologous 

structure. Furthermore, the method can handle the missing data in RDCs and 

resonances. 

In [9], the authors propose a fully automated RDC-based NMR resonance 

assignment strategy for rapidly determining the tertiary structure of RNA.  

In [23], the authors proposed HANA that uses RDCs and Hausdorff- based pattern 

matching technique to analyze the similarity between experimental and back-computed 

NOE spectra and to assign peaks to pairs of protons.  The algorithm is tested on human 

ubiquitin, domain of human DNA Y-polymerase Eta (pol ɳ) and human Set2-Rpbl 

interacting domain (hSRI) and over 90% assignment accuracies are obtained.  

 

In general, it is known that two similar protein sequences are most likely to have a 

similar 3D structure and sequence-based structural homology prediction methods could 

be used for structure determination. On the other hand, it is hard to predict the structural 

similarity of two dissimilar protein sequences for sequence-based homology predictors. 

[8] addresses the challenge of structural homology detection of dissimilar protein 

sequences. The authors propose HD algorithm in NVR framework for detecting the 

structural homology likelihood from sparse and unassigned NMR data. The advantage 

of their method is its independence from sequence homology and requirement of less 

time to acquire the experimental protein NMR data. HD is tested on 3 proteins and 

successful homology detection is reported, and no false positives or false negatives are 

reported for sequences with less than 30% similarities.  
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2.2    Background 

Today in many laboratories, the assignment problem is performed manually 

which is a time consuming process. Our aim is to develop methods to automatically 

solve the assignment problem. The SBA problem was formulated as a binary integer 

programming in NVR-BIP [18], under the scope of NVR. Since this problem is the NP-

hard, NVR-TS and NVR-ACO metaheuristic approaches are developed to obtain a 

solution for large proteins.  

Tabu search (TS) is a metaheuristic algorithm that was created by Fred W. Glover 

and it is widely used in combinatorial optimization problems. TS uses the neighborhood 

search procedure to iteratively move from one solution to another solution in order to 

improve the objective function.  

The NVR-TS is a tabu search based approach with well equipped perturbation 

mechanism. Starting from an initial solution, TS investigates the neighbors of the 

existing solution at each iteration in an attempt to improve the incumbent best solution. It 

avoids the repetition of the same solutions by maintaining a mechanism called tabu list. 

The tabu list keeps the information of the latest moves or solutions and prevents the 

search from returning to those solutions for a specified number of iterations since they 

guide either to local optimal solutions or to solutions that have already been explored. TS 

accepts a tabu move only if it satisfies a predefined aspiration criterion. NVR-TS allows 

the NOE violations by penalizing each of them with predetermined penalty score in the 

objective function.  

Ant colony optimization (ACO) is a probabilistic technique to solve 

computational problems.  It is inspired by natural behavior of ants while they search for 

food. Ants find shortest path between their nest and the food source in a reasonable time 

by using pheromone level. Greater level of pheromone on the path increases the 

probability of following that path by ants. The level of pheromone on the path is 

negatively proportional to the length of the paths. Intuitively, all ants will follow the 

shortest path in time. The behavior of real ants is simulated by artificial ants in ACO to 

solve combinatorial problems. Artificial ants obtain a solution on a graph using 

constructive mechanism guided by pheromone update and greedy heuristic known as 

visibility. Pheromone trial ��� intensity values between node � and  � are proportional to 

quality of generated solution and show the collective memory of ants. The visibility ��� 
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is heuristic information that represents the attractiveness of moving from node � to �. 
Furthermore, the artificial ant can use local search heuristics in order to improve 

solution quality. 

NVR-ACO is an ant colony optimization approach to solve the SBA problem. It is 

inspired by the efficiency of food gathering in ant behavior. Ants explore the shortest 

path from their nest to food source by using information known as pheromone. In a 

similar fashion, NVR-ACO assigns peaks to amino acids by minimizing matching cost 

and penalizing assignments with NOE violation.  

 

 

 



24 
 

Chapter 3 

PROBLEM DESCRIPTION AND FORMULATION 

In this chapter, the definition of the assignment problem in the SBA scope is 

given. Furthermore, the NVR framework and the NOE usage in the NVR framework are 

explained in detail. In addition, we present two mathematical formulations to the 

assignment problem that are adapted from NVR-BIP [18]. These formulations take into 

account NOE type distinction and extraction of the NOE upper bound distance 

information from the data.  

 

3.1    Problem Definition 

In NMR experiment, the protein atoms are irradiated via magnetic wave 

frequency then irradiation is recorded, and converted to the spectrum. In the spectrum, 

every peak corresponds to one amino acid in a protein sequence and it should be 

assigned to further proceed with the structure determination process. This problem is 

known as the assignment problem and it is a bottleneck in the NMR approach. 

One of the experiment types that are extensively used in NMR methodology is the 

NOESY−��N − HSQC experiment.  This experiment yields the NOE which is observed 

between the nearby pairs of backbone protons. NOE is an effect that is measured 

between protons when a pair of protons close in space is irradiated. The NOE effect is 

independent from the direct connection of the protons by chemical bonds.  The NOE is 

in general observed from nuclei in vicinity less than 6 Å; therefore it can be used to 

determine inter and intra-molecular distances. 
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The NOE relation between the protons and the assignment problem are 

demonstrated in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

There is a set of NMR peaks that should be assigned to a set of amino acids. An 

arc between a pair of NMR peaks demonstrates the NOE relation between the 

corresponding peaks. An arc between a pair of amino acids shows that the distance 

between corresponding protons is smaller than NOE distance threshold (NTH) value 

and that the amino acids are located in the vicinity of each other. The peaks associated 

with NOE relations should be mapped to amino acids that have a distance relation. For 

instance, there is an NOE between peak 1 and peak 2. If peak 1 is mapped to amino acid 

1 and peak 2 is mapped to amino acid 2, as shown in Figure 3.1, then this assignment is 

feasible, because the distance between amino acid 1 and amino acid 2 is less than NTH. 

However, if peak 2 is mapped to amino acid 2 and peak 4 is mapped to amino acid 3, 

then this assignment would be infeasible due to distance between the corresponding 

amino acids. Here, the assignment problem is to find a maximum bipartite graph 

mapping of peaks and atoms with the minimum matching cost by utilizing the NOE and 

distance constraints, and penalizing the infeasible assignments. 

 

 

1 
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2 
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4 

NMR Peaks Amino Acids 

Distance 
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 Figure 5Figure 3.1: NOE relations and assignment of NMR peaks to amino acids 
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3.2    NVR Framework 

NVR is a SBA framework where the goal is to find a matching between the peaks 

and amino acids. At the same time it minimizes the mapping cost while satisfying the 

NOE constraints and distance constraints between the amino acids. Since NOE 

constraints are between a pair of peaks, they limit the available amino acid assignments 

to the corresponding peak pairs.  

NVR uses the following data types:  HN−��N − HSQC, NOESY−��N − HSQC 

(observed between nearby pairs of backbone protons), HN−��N RDCs in two media 

(which provide global orientational restraints on bond vectors),  ��N  TOCSY (for the 

side-chain chemical shifts), and amide exchange HSQC (to identify, probabilistically, 

solvent exposed amide protons). NVR associates an assignment probability with each 

peak to amino acid match. Interested readers may refer to [18] for detailed information. 

3.3    NOE Usage in the NVR Framework 

NOE is one of the input data types that are used in NVR framework. It is an effect 

between a pair protons close in 3D space. This effect is highly related to the distance 

between the protons. However, it is independent of any chemical bonding between 

protons and it can be observed with or without any interaction between protons. Thus, 

NOE is useful to determine inter and intra- molecular distances.  

In [18, 20 and 22], the NOE type was not distinguished and only HN-HN NOE 

type was utilized and incorporated into computations. HN-HA and HA-HN NOE types 

were considered as HN-HN, and only HN proton coordinate was used to incorporate 

these NOEs. However, this could create errors due to mismatch of the NOE type and 

proton coordinate. Thus, to obtain more realistic solutions the distinction of NOE type 

and employment of correct proton coordinates is unavoidable. It also improves the 

robustness of the models and approaches. The proton coordinates and NOE relations are 

explained in details in the following figures. 
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.2A and Figure 3.2B the structural formula and the ball

of alanine is presented.  In Figure 3.2A, the hydrogens circled in red are HN 

hydrogen circled in blue is HA proton. In Figure 3.2B

carbon, oxygen, nitrogen, and hydrogen, respectively. 

the small portion of the protein is demonstrated containing

in the middle. The green line represents the HN-HA NOE and the purple line shows the 

HN NOE between the residue i and residue i-1. 

 

Figure 8Figure 3.3: Portion of protein 

 

By examining these figures, it is easy to recognize that there may be a significant 

difference between using HN proton coordinates instead of HA proton coordinates to 

incorporate NOEs into computations. Furthermore, this can lower the assignment 

accuracies and make them less reliable. To remedy this drawback, the proton type 

distinction in NOEs becomes unavoidable for the robustness of the algorithm. In this 

, we distinguish HN-HA and HA-HN NOEs from HN-HN NOEs and three 

Figure 7Figure 3.2B: Ball and StickFigure 3.2A: Structural Formula  
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different intra-proton distance matrices are calculated for HN-HN, HA-HN, and HN-

HA NOE relations from the template structure. 

 

3.4    Mathematical Formulations 

In NVR-BIP [18], the SBA problem was formulated as a binary integer 

programming. The formulated problem was implemented in ILOG OPL environment 

which employs a CPLEX solver engine. In NVR-BIP, the type of NOE input data was 

not distinguished and only HN proton coordinate was used in calculations. Also, the 

threshold value for NOE was manually set for each protein. In order to automate the 

assignment process of NMR peaks to amino acids, the distinction of NOE type and 

correct proton coordinate usage is necessary. The automatic threshold value selection on 

distances among protons is also necessary for automating the assignment process. These 

modifications will expand the application of the approach to novel proteins. Besides, the 

distinguished NOE data type may improve the assignment accuracies. We obtained a 

new formulation of the NVR-BIP problem in this thesis in order to achieve these goals. 

We incorporated all these changes into the mathematical model in two steps. As a first 

step, we reformulated NVR-BIP to distinguish the proton types in NOEs. Here, the 

correct proton coordinates are employed along with NOE input data type distinction. 

This approach is considered under the “Distinguishing the type of NOE” model. In the 

next step, we reformulated the NVR-BIP to distinguish the type of NOE and 

automatically set the NOE threshold value. In this context, we utilize the NOE upper 

bounds as the threshold values on intra-proton distances and use the correct proton type 

in our calculations. The NOE upper bound distance information is extracted directly 

from the input data. This approach is considered under “Using the NOE upper bounds 

extracted from the data” model. 

These reformulated models are named as NA-NVR-BIP and the details regarding 

the models are provided in the following sections. 
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3.4.1    Distinguishing the type of NOE  

 

           Distinguishing the type of NOE is the first step to automate the NMR peak 

assignment process within our approach. In this mathematical model the proton type in 

NOEs is differentiated and corresponding proton coordinate is employed. However, the 

threshold value on distances between protons is obtained manually and is the same for 

all NOE constraints. For each tested protein, the threshold value is manually adjusted in 

the sense that the solution without NOE violation could be achieved. The threshold is 

determined as a value that is greater than exact distances between protons which are 

correctly assigned to pair of peaks that have NOE relation. The notation and the 

formulation of the model are described below. 

 

Notation: 
� ∶ set of peaks 

$ ∶ set of amino acids 

(�� : score associated with assigning peak � to amino acid � 
- ∶ number of peaks to be assigned (- ≤ |�|) 

4�56 ∶  distance between amide protons of amino acids � and 7 
          by using 9 coordinate type, 9 ∈ < = {?- − ?-, ?- − ?$, ?$ − ?-} 
-AB(�) ∶  set of peaks that have an NOE with peak �  
-<? ∶  The threshold value for intra − amide proton distances   

 

                                  F�56 = G  1             if 4�56  ≥ -<?
 2              otherwise       

J            ∀�, 7 ∈ $,   ∀9 ∈ <                              
 

 Decision variables: 
       L�� = M 1         if peak � is assigned to amino acid �

   0         otherwise                                                   J 
 

 Mathematical model: 
      Minimize        Q Q (��L��                                                                                                                 (1)

�∈R�∈S
 

                   (. 9.        Q L��  ≤ 1         ∀� ∈ $                                                                                           (2)
�∈S

 

                                 Q L��  ≤ 1           ∀� ∈ �                                                                                          (3)
�∈R
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                                  Q Q L��  =  -  
�∈R�∈S

                                                                                                     (4) 

                      L�� + LX5 ≤ F�56       ∀�, 7 ∈ $, ∀�, Y ∈ �, ∀9 ∈ <, ∀Y ∈ -AB(�)                 (5)                                               
                                  L��  ∈ {0,1}        ∀� ∈ �, ∀� ∈ $                                                                             (6) 

 

In this model, the objective function (1) minimizes the total cost of mapping peaks 

to amino acids. Constraint set (2) satisfies that each amino acid is assigned to at most 

one peak and constraint set (3) ensures that each peak is mapped to at most one amino 

acid. Constraint (4) equalizes the total number of assignments to the number of peaks to 

be assigned. This constraint will be redundant if the number of peaks is equal to the 

number of amino acids and “≤” sign is replaced by “=” sign in constraints (2) and 

constraints (3). The parameter  F�56   is determined according to 4�56 and threshold value. 

Constraint set (5) satisfies the NOE relations between peaks and the constraint set (6) 

forces the decision variables to be binary.   

 

3.4.2    Using the NOE upper bounds extracted from the data 

 

In addition to distinguishing the proton type, in this section we also obtain the 

NOE upper bound information from the data. This reduces the number of manually 

tuned parameters the system relies on and makes the approach more general. As a 

result, it yields more realistic solutions.  

In the context of using the NOE upper bound distances, there is a different 

threshold for every pair of peaks that have NOE relation between them.  In other words, 

the number of threshold values is equal to the number of NOE constraints used for the 

assignments in the tested proteins. Each NOE relation has its own predetermined 

threshold value from the data. In this way we generalized the method by automatically 

determining the threshold values.  The notation and the formulation of the model are 

expressed below. 

 

                                 F��X56 = G  1             if 4�56  ≥ \]�X
 2              otherwise       

J           ∀�, 7 ∈ $, ∀�, Y ∈ �, ∀9 ∈ <             
              Where  
                                 \]�X ∶  NOE upper bound distance limit between the peak � and peak Y  
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                                  L�� + LX5 ≤ F��X56       ∀�, 7 ∈ $, ∀�, Y ∈ �, ∀9 ∈ <, ∀Y ∈ -AB(�)                 (7) 

 

 

Here, the objective function and some constraints the same as in distinguishing 

the type of NOE model. Minor changes are; the parameter  F�56 is replaced by  F��X56 and 

the constraint set (5) is replaced by constraint set (7).  In using NOE upper bounds 

extracted from the data model, the threshold values over interproton distances are 

gathered from the input data. There exists a unique threshold value on each pair of 

peaks that has an NOE relation between them. Similarly, NOE relations between pair of 

peaks are also updated and expressed in constraint set (7). 
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Chapter 4 

SOLUTION METHODOLOGY 

In this chapter, two formerly developed metaheuristic approaches are adapted to 

the models of NA-NVR-BIP by relaxation of NOE relation constraints. Since the 

backbone resonance assignment problem is an NP-hard problem, NVR-BIP found 

results for only small proteins. To fix this drawback and obtain assignment solutions for 

novel proteins NVR-TS [20] and NVR-ACO [22] metaheuristic algorithms were 

developed. In this thesis, we adapted the metaheuristic algorithms to incorporate the 

proton type distinctions in NOEs and NOE upper bound information utilization and we 

refer to these approaches as NA-NVR-TS and NA-NVR-ACO.  

In these proposed approaches the correct proton coordinate is used to incorporate 

NOEs into computations and proton type in NOE is distinguished. On top of it, the NOE 

upper bounds are utilized as a threshold over the interproton distances. We had the NOE 

upper bound relations as a distance magnitude for all proteins except MBP; those are 

directly taken from the input data. For the MBP, we had the intensity values for NOE 

relations between the peak pairs. We converted the intensity values to the upper bound 

distance limits by using the simple protocol in Clore and Gronenborn work [24, 25, and 

26].  The peak intensities are ranked and binned into the 4 categories.  The peak 

intensities in the range of 0-20% are considered as a very weak, 20-50% considered as a 

weak, 50-80% considered as a medium, 80-100% considered as a strong and they have 

an upper bound distance limit of 6.0 Å, 5.0 Å, 3.3 Å, and 2.7 Å, respectively. 0.5 Å is 

added to all upper bounds in order to correct for the experimental error and intensity of 

methyl crosspeaks that are larger than expected. These upper bounds are used 

throughout calculations. 
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4.1    NA-NVR-TS     

 

We adapted NVR-TS [20] for distinguishing the type of NOE and utilizing NOE 

upper bound distances that are extracted from the input data in this approach. The 

implementation of the algorithm is based on relaxation of NOE constraints in NA-NVR-

BIP models. In NA-NVR-BIP, the NOE constraints are considered as of hard type and 

do not allow NOE violations in solutions. On the other hand, NOE violations are 

allowed in relaxed models by penalizing them in objective function. Constraint set (5) 

in distinguishing the type of NOE model and constraint set (7) in using NOE upper 

bounds extracted from the data model are removed and added to the objective functions 

with corresponding NOE violation penalties. Minimization models avoid NOE 

violations since they have positive multipliers in objective function.  The corresponding 

models are adapted in the following sections. 

 

 

4.1.1   Distinguishing the type of NOE  

            

        The NA-NVR-BIP’s distinguishing the type of NOE model adaptation is presented 

as a quadratic relaxation formulation below.  

  

   Minimize             Q Q (��L�� + Q Q Q Q Q `�56L��LX5
6∈a5∈R�∈RX∈bcd(�)�∈S�∈R�∈S

                                         (8) 

 

                                        `�56 =  G  (f           if 4�56 > NTH
 0               otherwise     

J          ∀�, 7 ∈ $, ∀9 ∈ <                          (9) 

              Where  
                                        (f = max  j(��: � ∈ �, � ∈ $k                                                             (10)  

 

The objective function (8) minimizes the total mapping cost of peaks to amino 

acids and simultaneously minimizes the number of NOE violations. The NOE relation 

constraint set (5) is added to the objective function. Each NOE violation is penalized 

with `�56 constant and plays a vital role in the procedure. If penalty is a very small 

number then the model ignores NOE violations and concentrates on mapping cost. In 
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contrast, if a big number is chosen then the model neglects the matching cost and NOE 

violations get higher priority. After serious preliminary tests, the penalty is determined 

as in (9) and (10). Any NMR peak to amino acid assignment that satisfies the constraint 

set (2)-(4) is an initial solution. The algorithm starts from an initial solution and 

iteratively improves it. The interested reader is referred to [20] for detailed information 

of the algorithm and its working mechanism. 

 

4.1.2    Using the NOE upper bounds extracted from the data  

 

Using the NOE upper bounds extracted from the data model adaptation is similar 

to distinguishing the type of NOE. The differences are, the objective function (8) is 

replaced by (11) and violation penalty coefficient (9) is replaced by (12). The quadratic 

relaxation formulation of the model is as follows:  

 

 

       Minimize             Q Q (��L�� + Q Q Q Q Q `��X56L��LX5
6∈a5∈R�∈RX∈bcd(�)�∈S�∈R�∈S

                                (11) 

                                      `��X56 =  G  (ff          if 4�56 > \]�X
 0              otherwise     

J         ∀�, 7 ∈ $, ∀�, Y ∈ �, ∀9 ∈ <      (12) 

              Where  
                                       (ff = max  j(��: � ∈ �, � ∈ $k                                                              (13)  

 

 

The objective function (11) minimizes the total matching cost of peak to residue 

assignments and NOE violation cost. The violation penalty coefficient is updated as in 

(12) after using NOE upper bound distance limits as threshold values. 

4.2 NA- NVR-ACO 

In this approach we modified NVR-ACO by distinguishing the proton types in 

NOEs and provided the algorithm with the corresponding input data. The 

implementation of the algorithm relies on the NA-NVR-BIP model. The algorithm 

became sensitive to NOE types with this modification. In the NA-NVR-ACO algorithm, 
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the correct coordinates of protons are used to incorporate NOEs into calculations. 

Furthermore, NA-NVR-ACO utilizes NOE upper bound distance limits that are 

obtained from the data as a threshold value. The interested reader may refer to [22] for 

detailed information of the algorithm and its mechanism.     
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Chapter 5 

EXPERIMENTAL STUDY 

5.1 Data Sets 

We tested the performance of NA-NVR-BIP, NA-NVR-TS and NA-NVR-ACO 

on the data set used in NVR-BIP since the scores obtained by solving NVR-BIP are 

optimal. NVR-BIP data set includes lysozyme, human ubiquitin, hSRI, GB1, ff2, SPG 

and pol ɳ.  Furthermore, we tested the algorithms on two novel proteins which were not 

included in NVR-BIP’s data set: Amino Terminal Domain of Enzyme I from 

Escherichia Coli (EIN) with 243 residues and Maltose-binding protein (MBP) with 348 

residues. The proteins we tested all have NOE data where the source of the NOE is 

distinguished. The remaining proteins in NVR-BIP are tested by means of simulated 

NOE data. 

For most cases, the templates used correspond to the x-ray structures of the 

proteins.  The NMR backbone resonance assignments are performed for 13 structural 

homologous models in lysozyme protein family and a total of 534 NOE constraints are 

used, including HN-HN, HN-HA and HA-HN NOE types. For ubiquitin protein family, 

the NMR data assignments for five homologous models are computed and 270 NOE 

constraints are employed in total. The backbone resonance assignments for three 

structural homologous models are computed using 204 NOE constraints in SPG protein 

family. For large proteins, 1021 NOE constraints for EIN and 474 NOE constraints for 

MBP are utilized. For the rest of the proteins, 266, 260, 234, 156 NOE constraints are 

employed for hSRI, GB1, ff2 and pol ɳ, respectively. 
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5.2 Computational Results 

As stated before, in previous approaches [18, 20, 22], the proton type was not 

distinguished in handling NOE data. In addition, the threshold values were manually 

tuned on the distances among amide protons which are obtained from homologous 

structures.  In this thesis, we distinguished the proton types in NOEs and also utilized 

the NOE relation upper bound data as the threshold values on the distances among 

protons.  

In this section we compare the results obtained by previous approaches with NA-

NVR-BIP, NA-NVR-TS, and NA-NVR-ACO. First, the results from [18, 20, 22] are 

compared with those obtained by proton type distinction in NOEs. Next, we compare 

the results from the previous approaches with the results achieved by the combination of 

proton type distinction in NOEs and the automatic usage of threshold values obtained 

from the data. 

The implementation of NA-NVR-BIP is realized in ILOG OPL whereas NA-

NVR-TS and NA-NVR-ACO are implemented in Java programming language 

environment. We tested all three algorithms on an Intel(R) Core (TM)2 Quad CPU 

Q8200 machine with 8 2.33GHz   processors each with total of 8GB RAM memory. We 

performed 10 runs of NA-NVR-TS and NA-NVR-ACO for each protein and the best 

assignment accuracy obtained with the lowest score is presented in the section 5.2.1 and 

5.2.2. The average accuracy results are provided in the Appendix A.  

 

5.2.1    Distinguishing the type of NOE  

 

The assignment accuracies obtained with the former approaches as well as with 

the proposed new approaches are provided in tables below. These tables contain the best 

results obtained from the 10 runs with the proposed approaches having the lowest total 

assignment scores for each protein. The assignment accuracy is defined as the ratio of 

the number of correctly assigned peaks to the total number of assigned peaks. In 

previous work [18] the results without and with RDCs have been provided. RDC is a 

type of NMR experiment which NVR can use if it is available. We provide the results 

which are obtained by proton type distinction in NOEs and compare it with the results 

of NVR-BIP [18] in Table 5.1 through Table 5.4. In these tables, the column named 
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“NVR-BIP” labels the assignment accuracies obtained by NVR-BIP. In NVR-BIP, the 

proton type was not distinguished. HN-HA and HA-HN NOEs were considered as HN-

HN NOEs and HN-HN proton coordinates were used in calculations. The columns with 

the names of “NA-NVR-BIP”, “NA-NVR-TS”, and “NA-NVR-ACO” refer to the 

assignment accuracies obtained by distinguishing the type of NOE. The threshold value 

over the distances among amide protons is manually tuned for each protein. This means, 

for each tested protein, a value is selected as threshold that is greater than the distances 

between amide protons assigned to pair of peaks that have NOE relations between them. 

For example, it is chosen as 7 Å for 1AAR protein by analyzing the distances between 

protons assigned to peak pairs with NOE relations. 

 

Table 5.1: Assignment accuracies for ubiquitin when distinguishing NOE type 

  
Accuracy 

  
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1AAR 

72 

79% 97% 91% 100% 91% 100% 91% 100% 

1G6J 87% 97% 100% 100% 100% 100% 100% 100% 

1UBI 87% 97% 100% 100% 100% 100% 100% 100% 

1UBQ 87% 97% 100% 100% 100% 100% 100% 100% 

1UD7 81% 97% 97% 97% 97% 97% 97% 97% 

 

According to the results in Table 5.1, the assignment accuracies are improved in 

NA-NVR-BIP, NA-NVR-TS and NA-NVR-ACO for all proteins except 1UD7 with 

RDC case. The NA-NVR-TS and NA-NVR-ACO achieved optimal solutions for all 

tested proteins, and performed equally in ubiquitin protein test. 

 

Table 5.2: Assignment accuracies for SPG when distinguishing NOE type 

  
Accuracy 

  
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1GB1 

55 

100% 100% 100% 100% 100% 100% 100% 100% 

1PGB 100% 100% 100% 100% 100% 100% 100% 100% 

2GB1 96% 100% 100% 100% 100% 100% 100% 100% 

For SPG protein, NA-NVR-BIP, NA-NVR-TS and NA-NVR-ACO provided 

better accuracies than NVR-BIP. Furthermore, the new approaches attained 100% 
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accuracy for 2GB1 without RDC. Both NA-NVR-TS and NA-NVR-ACO obtained 

optimal solutions and demonstrated same accuracies in SPG protein test.   

 

         Table 5.3: Assignment accuracies for lysozyme when distinguishing NOE type 

  Accuracy 

  
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

193L 

126 

78% 100% 92% 100% 92% 100% 92% 100% 

1AKI 78% 98% 83% 100% 83% 100% 83% 100% 

1AZF 74% 94% 90% 100% 90% 100% 90% 100% 

1BGI 75% 97% 90% 100% 90% 100% 90% 100% 

1H87 77% 100% 92% 100% 92% 100% 92% 100% 

1LSC 74% 100% 90% 100% 90% 100% 90% 100% 

1LSE 75% 98% 94% 100% 94% 100% 94% 100% 

1LYZ 79% 82% 94% 100% 94% 100% 94% 100% 

2LYZ 75% 91% 92% 100% 92% 100% 92% 100% 

3LYZ 79% 90% 94% 100% 94% 100% 94% 100% 

4LYZ 75% 91% 94% 98% 94% 98% 94% 98% 

5LYZ 75% 91% 94% 98% 94% 98% 94% 98% 

6LYZ 75% 96% 92% 100% 92% 100% 92% 100% 

 

The results in Table 5.3 indicate that the assignment accuracies are higher in NA-

NVR-BIP, NA-NVR-TS, and NA-NVR-ACO compared to NVR-BIP. The optimal 

solutions are obtained by NA-NVR-TS and NA-NVR-ACO for all proteins. The 

performance of the NA-NVR-TS and NA-NVR-ACO is the same for lysozyme protein 

test.  

 

Table 5.4: Assignment accuracies for other proteins when distinguishing NOE type 

  Accuracy 

  
NVR-BIP NA-NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

pol ɳ 31 100% 100% 100% 94% 100% 94% 100% 94% 

GB1 55 96% 100% 100% 100% 100% 100% 100% 100% 

ff2 80 85% 93% 87% 93% 87% 93% 87% 93% 

hSRI 96 73% 89% 79% 94% 79% 94% 79% 94% 



40 
 

In Table 5.4, we also observe that the assignment accuracies are higher in the new 

approaches. Both the NA-NVR-TS and NA-NVR-ACO achieved identical assignment 

accuracies and the optimal solutions.  

 

The results in the tables clearly show that distinguishing the proton types in NOE 

relations improves the backbone resonance assignment accuracies in all proteins. Note 

that both the NVR-BIP and NA-NVR-BIP return the optimal solutions.  In all tested 

proteins the NA-NVR-TS and the NA-NVR-ACO achieved the optimal solutions since 

the assignment accuracy and total score of their solutions are same as NA-NVR-BIP. 

Thus, this will guarantee the robustness of the NA-NVR-TS and NA-NVR-ACO in 

testing new proteins.   

 

NVR-BIP could not find a solution in a reasonable time for large proteins EIN and 

MBP because of the exponential time complexity of the problem. For this reason, we 

compare NVR-TS [20] with NA-NVR-TS and NVR-ACO [22] with NA-NVR-ACO in 

Table 5.5. The columns named “NVR-TS” and “NVR-ACO” label the assignment 

accuracies obtained by NVR-TS [20] and NVR-ACO [22], respectively.  In NVR-TS 

and NVR-ACO, the proton type is not distinguished. HN-HA and HA-HN NOEs were 

considered as HN-HN NOEs and HN-HN proton coordinates were used in calculations. 

The columns with the names “NA-NVR-TS” and “NA-NVR-ACO” demonstrate the 

assignment accuracies which are acquired by proton type differentiation in NOEs.  

 

Table 5.5: Assignment accuracies for large proteins when distinguishing NOE type 

  
Accuracy 

  
NVR-TS NVR-ACO NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

EIN 243 24% 83% 67% 100% 93% 100% 93% 100% 

MBP 348 49% 63% 49% 73% 65% 74% 64% 66% 

 

In Table 5.5, the assignment accuracies are improved in NA-NVR-TS and NA-

NVR-ACO compared to NVR-TS and NVR-ACO for EIN. In particular, the assignment 

accuracy for the case without RDC is increased from 24% to 93% in NA-NVR-TS and 

from 67% to 93% in NA-NVR-ACO. NA-NVR-TS and NA-NVR-ACO demonstrated 

equal performance in assignment accuracies for EIN protein. 
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All real NOE relations for MBP are HN-HA type.  In NVR-TS and NVR-ACO, 

these NOEs are considered as HN-HN NOEs and HN-HN proton coordinates are used. 

The distinction in NOE type and correct proton coordinate usage are strong requirement 

to automate the assignment process. It the first phase within our approach and realized 

in NA-NVR-TS and NA-NVR-ACO. The falls in assignment accuracies for some 

proteins are tolerated to automate the process in this phase. This is the case in NA-

NVR-ACO for MBP with RDC compared to NVR-ACO.     

NA-NVR-TS enhanced the assignment accuracies compared to NVR-TS for both 

with and without RDC in MBP. However, both NVR-TS and NA-NVR-TS failed to 

obtain a solution without NOE violations. On the other hand, NA-NVR-ACO obtained a 

solution without NOE violation for MBP. 

 

5.2.2    Using the NOE upper bounds extracted from the data 

 

An automatic threshold value determination is performed in this approach. The 

NOE upper bounds gathered from the input data are utilized as the threshold value. 

Meanwhile, the type of protons in NOEs are distinguished and correct proton types are 

used. The NOE upper bound information is directly taken from the input data for all 

proteins except MBP. For the MBP, the intensity values for NOE relations between 

peak pairs are converted to the upper bound distance information.  

The NA-NVR-BIP model that uses NOE upper bound distance information is 

solved in ILOG OPL environment employing CPLEX solver engine. The assignment 

problem was infeasible for some protein data sets. This infeasibility was originated from 

the NOE constraints. When the NOE upper bounds are used as threshold over the 

distances between protons that are assigned to peak pairs, distance violations may arise 

even for the correct assignment. In other words, the NOE upper bound extracted from 

the data could be smaller than the exact distance between the protons assigned to the 

corresponding peak pairs that have NOE between them.  In this case, an NOE violation 

occurs which prevents us to find a feasible assignment scheme.  

While NA-NVR-BIP cannot find any solutions due to NOE violations, NA-NVR-

TS and NA-NVR-ACO allow the NOE violations during the search and can provide 

assignments. In these approaches, the NOE violations are penalized during the search 

process in an attempt to construct a solution without NOE violation in the end. The 
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higher number of distance violation may cause even lower assignment accuracies. For 

lysozyme family, there are between 29 and 73 distance violations and total of 534 NOE 

constraints. There are between 1 and 3 distance violations and 270 NOE constraints 

present in ubiquitin family.  The SPG family has between 9 and 11 distance violations 

and 204 NOE constraints. For the large proteins, 126 distance violation and 1021 NOE 

constraints exist for EIN and 1 distance violation and 474 NOE constraints exist for 

MBP. For the rest of the proteins, 6, 2, 5 distance violations and 260, 234, 156 NOE 

constraints are present for GB1, ff2 and pol ɳ, respectively.     

We compare the results obtained by NVR-BIP [18] with NA-NVR-TS and NA-

NVR-ACO in Tables 5.6 - 5.9. The column “NVR-BIP” reports the assignment 

accuracies obtained by [18]. The columns “NA-NVR-TS” and “NA-NVR-ACO” show 

the assignment accuracies obtained by using the NOE upper bounds extracted from the 

data. In this section, the tables contain the best results obtained with the lowest total 

score out of the 10 runs for each protein for the proposed approaches. 

 

Table 5.6: Assignment accuracies for ubiquitin when using the NOE upper bounds 

  Accuracy 

  
NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1AAR 

72 

79% 97% 100% 100% 100% 100% 

1G6J 87% 97% 97% 97% 97% 97% 

1UBI 87% 97% 100% 100% 100% 100% 

1UBQ 87% 97% 100% 100% 100% 100% 

1UD7 81% 97% 97% 97% 97% 100% 

 

The results clearly show that the assignment accuracies are improved in NA-

NVR-TS and NA-NVR-ACO for all proteins except 1G6J and 1UD7 with RDC case. 

The NA-NVR-TS and NA-NVR-ACO show a similar performance in ubiquitin protein 

test. 
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Table 5.7: Assignment accuracies for SPG when using the NOE upper bounds 

  
Accuracy 

  
NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1GB1 

55 

100% 100% 100% 100% 100% 100% 

1PGB 100% 100% 100% 100% 100% 100% 

2GB1 96% 100% 100% 100% 100% 100% 

 

For SPG protein tests, the NA-NVR-TS and NA-NVR-ACO obtained the same 

accuracies. 

 

 

Table 5.8: Assignment accuracies for lysozyme when using the NOE upper bounds 

  Accuracy 

  
NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

193L 

126 

78% 100% 100% 100% 100% 100% 

1AKI 78% 98% 100% 100% 100% 98% 

1AZF 74% 94% 100% 100% 100% 100% 

1BGI 75% 97% 100% 100% 100% 100% 

1H87 77% 100% 100% 100% 100% 100% 

1LSC 74% 100% 100% 100% 100% 100% 

1LSE 75% 98% 100% 100% 98% 96% 

1LYZ 79% 82% 100% 100% 85% 85% 

2LYZ 75% 91% 100% 100% 98% 98% 

3LYZ 79% 90% 100% 100% 98% 98% 

4LYZ 75% 91% 100% 100% 97% 95% 

5LYZ 75% 91% 100% 100% 97% 95% 

6LYZ 75% 96% 100% 100% 100% 100% 

 

According to the results in the Table 5.8, the new approach improved the 

assignment accuracies. NA-NVR-TS demonstrated better a performance on lysozyme 

protein test since it obtained higher accuracies for numerous tests compared to NA-

NVR-ACO. 
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Table 5.9: Assignment accuracies for other proteins when using the                     

NOE upper bounds 

  
Accuracy 

  
NVR-BIP NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

pol ɳ 31 100% 94% 100% 100% 94% 94% 

GB1 55 96% 100% 100% 100% 100% 100% 

ff2 80 85% 93% 65% 93% 75% 89% 

hSRI 96 73% 89% 79% 94% 79% 94% 

 

In Table 5.9 the assignment accuracies are higher for all proteins in new approach 

compared to NVR-BIP except ff2. This decrease is tolerable since the NOE upper 

bound distance parameters are automatically obtained in the new approach.  

 

Since NVR-BIP could not find a solution for large proteins EIN and MBP, we 

compare the NVR-TS with NA-NVR-TS and NVR-ACO with NA-NVR-ACO in Table 

5.10. The columns named “NVR-TS” and “NVR-ACO” show the assignment 

accuracies obtained by NVR-TS [20] and NVR-ACO [22], respectively.  In [20] and 

[22], the proton type is not distinguished. HN-HA and HA-HN NOEs were considered 

as HN-HN NOEs and HN-HN proton coordinates were used in calculations. The 

columns with names “NA-NVR-TS” and “NA-NVR-ACO” refer the assignment 

accuracies which are acquired by using the NOE upper bounds extracted from the data. 

 

Table 5.10: Assignment accuracies for large proteins when using the                      

NOE upper bounds 

  Accuracy 

  
NVR-TS NVR-ACO NA-NVR-TS NA-NVR-ACO 

PDB ID 
No of 

Residues 
Without 

RDC 
With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

EIN 243 24% 83% 67% 100% 100% 100% 90% 88% 

MBP 348 49% 63% 49% 73% 67% 76% 67% 80% 

 

By observing the Table 5.10, it easy to monitor that result improves in NA- NVR-

TS and NA-NVR-ACO for both proteins. Nevertheless, NA-NVR-ACO failed to 

exceed NVR-ACO for EIN with RDC. This due to the large number of NOE distance 
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violations (126).  The NA-NVR-TS outperformed NA-NVR-ACO according to results 

for large protein test. 

It can be seen that the new approach which distinguishes the proton type and 

incorporates both HN and HA coordinates and corresponding distances into 

computations, and determines the threshold values in a standard manner improved the 

backbone resonance assignment accuracies in all proteins. In most tested proteins, the 

assignment accuracies with and without RDCs are higher with the new approach. Note 

that the best assignment accuracy is equal to the average accuracy for almost all tested 

proteins. This emphasizes the robustness and stability of NA-NVR-TS and NA-NVR-

ACO algorithms. Besides, the increases in assignment accuracies are not the only 

contribution. In addition, we automate the usage of NOE data by means of new 

approaches. The NVR suite of programs no longer need hand coded parameters for 

handling the NOE data. This makes the approach more reliable and gives way to more 

realistic solutions on novel proteins. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

 

In the previous studies [18, 20, 22], NOE type was not differentiated and the 

threshold values on NOE relations were manually set for all tested proteins. This 

approach brings some drawbacks such as the lower assignment accuracies and restricts 

the application range of methods on novel proteins. In this thesis, we reformulated 

NVR-BIP and we adapted NVR-TS and NVR-ACO in order to distinguish the type of 

backbone NOEs and set the threshold values in a standard manner. We made these 

modifications by reformulating NVR-BIP [18] in two new mathematical models. In 

Model 1, we distinguished the proton types in NOEs and incorporated the correct proton 

coordinates into the computations. On top of proton type distinction, we utilized the 

NOE upper bound distance limits as a threshold values in Model 2. We tested the new 

approaches on 7 small proteins and two large proteins, namely EIN and MBP. The NOE 

upper bound distance limits are gathered from the data for all proteins while it is 

automatically extracted from the NOE peak intensity values for MBP by using simple 

protocol. 

Our results show that the incorporation of HN and HA proton coordinates and 

using NOE relation upper bounds as a threshold value in both models improved the 

assignment accuracy compared to the previous approach. In particular, we achieved 

100% assignment accuracy with the NA-NVR-TS on the large protein EIN by 

distinguishing the type of NOE. However, NA-NVR-TS which takes the distinguished 

NOE input data did not find any feasible solution on MBP real data. The NA-NVR-

ACO that was adapted for distinguished NOE input data gave a feasible solution for 

MBP with 67% and 80% assignment accuracies for without RDC and with RDC, 

respectively.  
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According to the outcomes of the two models, the new approaches significantly 

improved the solutions compared to the NVR-BIP. Both models had similar 

performance in the experiments. However, Model 2 is more reliable and realistic due to 

the NOE upper bound usage as a threshold value. In addition, the Model 2 has a wider 

application scope. Furthermore, NA-NVR-TS displayed more accurate performance 

compared to NA-NVR-ACO. This superiority is more visible in the results obtained by 

using the NOE upper bounds extracted from the data model. 

A similar structure such as the one obtained by x-ray crystallography is used as 

template structure in these tests. It would be interesting to study the effect of using more 

distant templates. All NMR peaks are assigned in entire tests. The partial NMR peak 

assignment could be modeled and implemented as a future work in order to assign the 

NMR data of a protein to the more distant template structure. Since the NMR data will 

be assigned to more distant template structure there will be a considerable number of 

NOE violations and this would be a good test for partial NMR peak assignment 

formulation.   

For MBP test, NA-NVR-TS could not succeed to obtain the solution without NOE 

violations. We directly used the parameter settings of previous studies in the 

experimental study and this could be the main reason. Further studies can focus on fine 

tuning the parameters of NA-NVR-TS and NA-NVR-ACO to further improve the 

quality of the results.  

Further studies can focus on improving the TS algorithm neighborhood search 

where multiple neighborhood search structure could be used. Moreover, other 

metaheuristic algorithms may be employed to compare the performance of NA-NVR-

TS and NA-NVR-ACO algorithms.  

Finally, the output of our NA-NVR-TS and NA-NVR-ACO could be tested in 

HADDOCK [28, 29] NMR protein docking software to make further analysis of 3D 

structure of proteins and protein-ligand binding affinity. 
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APPENDIX A 

Table A.1: Average accuracies of 10 runs for ubiquitin 

  Accuracy 

  
NVR-BIP NA-NVR-BIP 

Distinguishing 
the type of NOE 

NVR-TS 

Distinguishing 
the type of NOE 

NVR-ACO 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-TS 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-ACO 

PDB 
ID 

No 
of 

Res. 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1AAR 

72 

79% 97% 100% 100% 91% 100% 91% 100% 100% 100% 100% 100% 

1G6J 87% 97% 100% 100% 100% 100% 100% 100% 97% 97% 97% 97% 

1UBI 87% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

1UBQ 87% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

1UD7 81% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 100% 

 

Table A.2: Average accuracies of 10 runs for lysozyme 

  Accuracy 

  
NVR-BIP NA-NVR-BIP 

Distinguishing 
the type of NOE 

NVR-TS 

Distinguishing 
the type of NOE 

NVR-ACO 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-TS 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-ACO 

PDB 
ID 

No 
of 

Res. 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

193L 

126 

78% 100% 92% 100% 92% 100% 92% 100% 100% 100% 100% 100% 

1AKI 78% 98% 83% 100% 83% 100% 83% 100% 100% 100% 100% 98% 

1AZF 74% 94% 90% 100% 90% 100% 90% 100% 100% 100% 100% 100% 

1BGI 75% 97% 90% 100% 90% 100% 90% 100% 100% 100% 100% 100% 

1H87 77% 100% 92% 100% 92% 100% 92% 100% 100% 100% 100% 100% 

1LSC 74% 100% 90% 100% 90% 100% 90% 100% 100% 100% 100% 100% 

1LSE 75% 98% 94% 100% 94% 100% 94% 100% 100% 100% 98% 96% 

1LYZ 79% 82% 94% 100% 94% 100% 94% 100% 100% 100% 85% 85% 

2LYZ 75% 91% 92% 100% 92% 100% 92% 100% 100% 100% 98% 98% 

3LYZ 79% 90% 94% 100% 94% 100% 94% 100% 100% 100% 98% 98% 

4LYZ 75% 91% 94% 100% 94% 98% 94% 98% 100% 100% 97% 95% 

5LYZ 75% 91% 94% 100% 94% 98% 94% 98% 100% 100% 97% 95% 

6LYZ 75% 96% 92% 100% 92% 100% 92% 100% 100% 100% 100% 100% 
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Table A.3: Average accuracies of 10 runs for SPG 

  Accuracy 

  
NVR-BIP NA-NVR-BIP 

Distinguishing 
the type of NOE 

NVR-TS 

Distinguishing 
the type of NOE 

NVR-ACO 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-TS 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-ACO 

PDB 
ID 

No 
of 

Res. 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

1GB1 

55 

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 100% 

1PGB 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

2GB1 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

Table A.4: Average accuracies of 10 runs for other proteins 

  
Accuracy 

  
NVR-BIP NA-NVR-BIP 

Distinguishing 
the type of NOE 

NVR-TS 

Distinguishing 
the type of NOE 

NVR-ACO 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-TS 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-ACO 

PDB 
ID 

No 
of 

Res. 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

pol ɳ 31 100% 100% 100% 94% 100% 94% 100% 94% 100% 100% 94% 94% 

GB1 55 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

ff2 80 85% 93% 87% 93% 85% 93% 87% 93% 65% 93% 75% 89% 

hSRI 96 73% 89% 79% 94% 76% 92% 77% 94% 79% 94% 79% 94% 

 

 

Table A.5: Average accuracies of 10 runs for large proteins 

  Accuracy 

  
NVR-TS NVR-ACO 

Distinguishing 
the type of NOE 

NVR-TS 

Distinguishing 
the type of NOE 

NVR-ACO 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-TS 

Using the NOE 
upper bounds 
extracted from 

the data      
NVR-ACO 

PDB 
ID 

No 
of 

Res. 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

Without 
RDC 

With  
RDC 

EIN 243 5% 83% 67% 100% 93% 100% 93% 100% 100% 100% 88% 88% 

MBP 348 49% 63% 49% 73% 55% 68% 64% 66% 60% 72% 64% 77% 
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