title   
  

Designing progressive and interactive analytics processes for high-dimensional data analysis

Turkay, Çagatay and Kaya, Erdem and Balcısoy, Selim and Hauser, Helwig (2016) Designing progressive and interactive analytics processes for high-dimensional data analysis. IEEE Transactions on Visualization and Computer Graphics . ISSN 1077-2626 (Print) 1941-0506 (Online) Published Online First http://dx.doi.org/10.1109/TVCG.2016.2598470

WarningThere is a more recent version of this item available.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/TVCG.2016.2598470

Abstract

In interactive data analysis processes, the dialogue between the human and the computer is the enabling mechanism that can lead to actionable observations about the phenomena being investigated. It is of paramount importance that this dialogue is not interrupted by slow computational mechanisms that do not consider any known temporal human-computer interaction characteristics that prioritize the perceptual and cognitive capabilities of the users. In cases where the analysis involves an integrated computational method, for instance to reduce the dimensionality of the data or to perform clustering, such non-optimal processes are often likely. To remedy this, progressive computations, where results are iteratively improved, are getting increasing interest in visual analytics. In this paper, we present techniques and design considerations to incorporate progressive methods within interactive analysis processes that involve high-dimensional data. We define methodologies to facilitate processes that adhere to the perceptual characteristics of users and describe how online algorithms can be incorporated within these. A set of design recommendations and according methods to support analysts in accomplishing high-dimensional data analysis tasks are then presented. Our arguments and decisions here are informed by observations gathered over a series of analysis sessions with analysts from finance. We document observations and recommendations from this study and present evidence on how our approach contribute to the efficiency and productivity of interactive visual analysis sessions involving high-dimensional data.

Item Type:Article
Uncontrolled Keywords:visual analytics, Progressive analytics, high dimensional data, iterative refinement
Subjects:UNSPECIFIED
ID Code:30679
Deposited By:Selim Balcısoy
Deposited On:08 Nov 2016 14:58
Last Modified:11 Aug 2017 12:31

Available Versions of this Item

Repository Staff Only: item control page