
Approximating the Minimum Hub Cover Problem on Planar Graphs

Belma Yelbaya,∗, Ş. İlker Birbila, Kerem B̈ulbüla, Hasan Jamilb

aSabancı University, Manufacturing Systems and IndustrialEngineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey.
bUniversity of Idaho, Department of Computer Science, Moscow, Idaho, USA.

Abstract

We study an approximation algorithm with a performance guarantee to solve a newNP-hard optimization problem on planar
graphs. The problem, which is referred to as the minimum hub cover problem, has recently been introduced to the literature to
improve query processing over large graph databases. Planar graphs also arise in various graph query processing applications,
such as; biometric identification, image classification, object recognition, and so on. Our algorithm is based on a well-known
graph decomposition technique that partitions the graph into a set of outerplanar graphs and provides an approximate solution
with a proven performance ratio. We conduct a comprehensivecomputational experiment to investigate the empirical performance
of the algorithm. Computational results demonstrate that the empirical performance of the algorithm surpasses its guaranteed
performance. We also apply the same decomposition approachto develop a decomposition-based heuristic, which is much more
efficient than the approximation algorithm in terms of computation time. Computational results also indicate that the efficacy of the
decomposition-based heuristic in terms of solution quality is comparable to that of the approximation algorithm.

Keywords: approximation algorithm, query processing, subgraph isomorphism, planar graph decomposition, minimum hub cover
problem

1. Introduction

The optimization problem that we are interested in is called
theminimum hub cover (MHC)problem. This problem has re-
cently originated from a new representation used for query pro-
cessing over large graph databases (Jamil, 2011; Yelbay et al.,
2013). Many graph databases in query processing satisfy pla-
narity condition that is common in diverse applications, such as;
face recognition, fingerprint identification, hand posturerecog-
nition, image classification, object recognition, and so on. As
an example, Figure 1 shows the planar graph representation of
a finger print. Each node in the graph represents a finger ridge
pattern and the edges are constructed according to the orienta-
tion of the ridges.

Figure 1: Graph representation of a fingerprint image (Neuhaus and Bunke,
2005).

A graph database stores a high volume of relational data

∗Corresponding Author
Email addresses:byelbay@sabanciuniv.edu (Belma Yelbay),

sibirbil@sabanciuniv.edu (Ş. İlker Birbil),
bulbul@sabanciuniv.edu (Kerem B̈ulbül), jamil@uidaho.edu (Hasan
Jamil)

coming from various sources including communication, so-
cial and biological networks. For instance, a chemical com-
pound is a graph where each node represents an atom and each
edge represents a chemical bond formed between two atoms.
Graph query processing, also known as graph matching, is
about querying the structural similarity between the nodesof
a query graph and a database graph under a set of label con-
straints. Subgraph isomorphism problem, on the other hand,
is to find whether a database graph includes a subgraph that
is structurally similar to a given query graph. Figure 2 illus-
trates the relationship between graph query processing andsub-
graph isomorphism. Figures 2(a) and 2(b) are query and data
graphs, respectively that capture two hand-drawn images ofhu-
man figures. Figure 2(c) shows all subgraphs of Figure 2(b)
that are isomorphic to Figure 2(a) and thus are embedded in
the data graph. The goal of subgraph matching is to identify
the isomorphic graphs in Figure 2(b) given the query graph in
Figure 2(a) against the data graph in Figure 2(b). The MHC
problem has been recently introduced as an alternate solution
method to increase the efficiency of subgraph matching. Lat-
est studies demonstrate that searching a graph query over the
hubs obtained by solving the MHC problem improves the cur-
rent techniques in graph query processing (Rivero and Jamil,
2014b,a).

The objective of the MHC problem is to cover all edges of a
graph with the minimum number of vertices. Unlike the con-
ventional meaning of covering, here, a selected vertex covers
not only its incident edges but also the edges between its ad-
jacent neighbors. For instance, in Figure 3, the edges that can
be covered by vertexf are (f ,g), (f ,h), (f , k) and (h, k) and the

Preprint submitted to Elsevier November 25, 2014

(a) (b) (c)

Figure 2: Example for subgraph isomorphism between two hand-drawn images
and the resulting solution (Llados et al., 2001).

optimal solution is{a, c, f }. The formal definition of the MHC
problem follows.

b

a

c

d e f

g h

k

Figure 3: A sample graph for the minimum hub cover problem.

Definition 1. Let G(V,E) be an undirected graph, whereV is
the set of vertices andE is the set of edges. Then, for a given
graphG, a subset of the verticesHC ⊆ V is ahub coverof G
if for every edge (i, j) ∈ E, eitheri ∈ HC or j ∈ HC or there
exists a vertexk such that (i, k) ∈ E and (j, k) ∈ E with k ∈ HC.
TheMHC problem is finding a hub cover that has the minimum
number of vertices.

Our previous work (Yelbay et al., 2013) discusses the con-
nection between the MHC concept and query processing and
analyzes the computational cost of solving the MHC problem
on a diverse set of graph databases. It demonstrates that the
graph structure has an impact on the solvability of the problem
and that the performance of exact methods for MHC on large-
scale query graphs would be less than satisfactory in query pro-
cessing. In this paper, we work with planar graphs for they ap-
pear in various graph query processing applications (Neuhaus
and Bunke, 2005; Baloch and Krim, 2010). Our objective is
to make use of an algorithm that gives a good approximation
bound. Then, we aim at deriving fast heuristics from the ap-
proximation algorithm. As for the algorithm, we adapt the well-
known decomposition technique introduced by (Baker, 1994).
This is followed by our discussion on the implementation de-
tails of the algorithm. We also exploit its naturally parallel
structure to improve the computational performance. We con-
duct a comprehensive numerical study to analyze the empirical
performance of our algorithm. This study leads us to propose
a decomposition-based heuristic that is much more efficient in
terms of computation time. Our results indicate that the per-
formance of this fast heuristic in terms of solution qualityis
comparable to that of the approximation algorithm. Thus, the

proposed heuristic demonstrates a potential for practicalappli-
cations of planar graph query processing.

In summary, we make the following research contributions:
(i) a new approximation algorithm with a performance guaran-
tee for solving the MHC problem on planar graphs; (ii) to the
best of our knowledge, the first experimental analysis to test the
empirical performance of Baker’s planar graph decomposition
algorithm; (iii) the first extensive numerical experimentson a
set of planar MHC problems; (iv) a new fast decomposition-
based heuristic inspired by our computational study.

2. Review of Related Literature

There is a dramatic increase in the use of graph databases,
and hence, the need for efficient query processing thrives. How-
ever, the subgraph isomorphism problem is known to beNP-
complete (Cook, 1971). Therefore, researchers aim at devel-
oping approximation methods and fast heuristics. To solve
the subgraph isomorphism problem, graph matching algorithms
look for node structures that are identically connected or have
identical labels. Then, those individual matches are consoli-
dated to answer a query. Ullmann (1976) is one of the earli-
est studies related to subgraph isomorphism in the literature.
The proposed algorithm incrementally constructs a search tree
representing the appropriate mappings between a query and a
database graph. It applies backtracking, if the current partial
solution will not end up with a successful mapping. Since a
search tree grows exponentially when its depth increases, the
subsequent studies focus on developing new methods which
prune the search space and increase the efficiency of query pro-
cessing. Among these, we have studies applying index-based
searching (Shang et al., 2008; Weber et al., 2012), graph de-
composition methods (Lipets et al., 2009) and using new data
structures and graph representations keeping topologicaldata
(Zhu et al., 2010). As an alternate approach, the algorithm pro-
posed in (Yelbay et al., 2013; Rivero and Jamil, 2014b,a) prunes
the search space to a few number of nodes in query graphs by
solving a combinatorial optimization problem, which is coined
by the authors as the MHC problem. They illustrate that solving
the MHC problem in advance yields the least number of candi-
date matches, and hence, a significant reduction in computation
time can be gained.

3. Approximating MHC on Planar Graphs

In this section, we first give the mathematical formulation
of the MHC problem and then discuss a graph decomposition
technique for planar graphs. This technique is used to develop
both an approximation algorithm with a proven performance
ratio and an efficient decomposition-based heuristic.

3.1. Problem Formulation

A careful reader would notice that the definition of the MHC
problem resembles some well-known combinatorial optimiza-
tion problems from the literature. This is indeed the case and

2

the similarity is more evident as we give its integer program-
ming (IP) formulation:

minimize
∑

j∈V

x j , (1)

subject to xi + x j +
∑

k∈K (i, j)

xk ≥ 1, (i, j) ∈ E, (2)

x j ∈ {0,1}, j ∈ V, (3)

where, x j is a binary variable, which is equal to 1, if vertex
j is selected. For (i, j) ∈ E, K (i, j) denotes all those vertices
k ∈ V such that (i, k) ∈ E and (j, k) ∈ E. The objective function
(1) minimizes the number of selected vertices. Constraints(2)
ensure that every edge is covered by at least one hub vertex
in the cover. Finally, constraints (3) impose integrality on the
variables.

The first related problem is theset covering problem(SCP),
which is one of the oldest and the most studied combinatorial
optimization problems. If an edge corresponds to an item, and
a set is defined for each vertex whose elements are the edges
covered by that vertex, then the connection between SCP and
MHC can easily be established. The second related problem is
theminimum vertex cover(MVC) problem, which is one of the
well-knownNP-complete problems in the literature. Yelbay
et al. (2013) use the equivalence of MHC and MVC in triangle-
free graphs to prove theNP-completeness of MHC for gen-
eral graphs. Similarly, we can conclude that MHC on planar
graphs is alsoNP-complete based on the fact that MVC isNP-
complete when restricted to triangle-free planar graphs (Garey
et al., 1976). The following corollary states this observation
formally:

Corollary 3.1. The MHC problem isNP-complete on planar
graphs.

Proof. See Section E, page 7 in (Yelbay et al., 2013).

A natural question at this point could be “Why not use the
approximation algorithms proposed for these similar combina-
torial problems?” Unlike the general algorithms, our algorithm
is specialized for solving the MHC problem on planar graphs.
Moreover, our approximation bound is not constant and can
be improved by decreasing the number of subproblems to be
solved at the expense of an increase in the computation time.

3.2. Approximation Algorithm with a Performance Guarantee

Let us first introduce our notation and the terminology used
in the coming subsections and then introduce our algorithm.A
graphG′ is an induced subgraph ofG if G′ is isomorphic to a
graph whose vertex setV′ is a subset of the vertex setV of G
and whose edge setE′ consists of all those edges of G with both
end vertices inV′. A planar embeddingof a graphG is a special
drawing ofG in such a way that no edges cross each other. A
graph isplanar if and only if it has a planar embedding. Aface
of a planar graph is a region bounded by edges. A vertex of a
planar graph is atlevel1, if it is on the exterior face. A planar
embedding isk-level, if it has no nodes of level greater thank.

A graph isouterplanar, if it is a planar graph such that all of
the vertices belong to the exterior face. A planar embeddingis
said to bek-outerplanar, if removing the vertices on the exterior
face results in a (k− 1)-outerplanar embedding.

In this study, we make use of a general decomposition tech-
nique first proposed by Baker (1994). The technique can be
applied to any planar graph whose planar embedding and the
set of vertices in each level are known. In case they are not
known, one of the algorithms in the literature can be applied
to obtain a planar embedding (Hopcroft and R.Tarjan, 1974;
Bienstock and Monma, 1990). With the proposed technique,
given a planar embedding and a nonnegative numberk, the
planar graph is decomposed into a set of overlapping (k + 1)-
outerplanar graphs such that the union of the optimal solutions
of those graphs gives a feasible solution to the original planar
graph. The algorithm picks the best of these solutions as itsap-
proximation to the optimal hub cover. Figures 5 and 6 illustrate
how the decomposition is applied to the problem shown in Fig-
ure 4 whenk = 2. The unions of the optimal solutions of the
subgraphs in Figure 5 and Figure 6 provide two different hub
covers. The algorithm selects the solution with the minimum
cardinality as an approximate solution. Optimal solutionsmay
be obtained by modifying a dynamic programming algorithm
proposed in (Baker, 1994). Yelbay (2014) discusses those mod-
ifications in detail. The complexity of the algorithm isO(n8k).
If k is taken as⌈c logn⌉, wherec is a constant, then we obtain
a polynomial time approximation algorithm for MHC with a
performance guarantee of (k + 1)/k – see Proposition 3.1. We
refer to Baker (1994) for the details of the complexity analysis.
Optimal solutions may also be obtained by solving the IP for-
mulation (1)-(3) of each subproblem by using an off-the-shelf
solver likeCPLEX. In this paper, we prefer to useCPLEX for ease
of implementation.

Figure 4: An 8-level planar graph embedding. Each level is represented by a
different color and the vertices with the same colors lie in the samelevel.

The steps of the proposed decomposition and the solution
approach are detailed in Algorithm 1. The algorithm takes a
planar embedding of a graph and the decomposition parameter
k as input and returns an approximate hub coverHCapprox. Let
Si

j be a (k + 1)-outerplanar graph induced by levelsjk + i to

(j + 1)k + i andS̄i
j is the optimal solution ofSi

j . For instance,

Figures 5(a)-5(d) demonstrateS1
0,S

1
1,S

1
2,S

1
3 for i = 1. In lines

5 to 13, for each partition, Algorithm 1 iterates as follows:In
line 8, a subgraph lying between boundary levelsjk + i and
(j + 1)k + i is obtained. Then, in lines 9 and 10, the IP for-
mulation of that subgraph is solved and the solution is added

3

(a) 1-3 (b) 3-5

(c) 5-7 (d) 7-8

Figure 5: The overlapping 3-outerplanar graphs wheni = 1 andk = 2.

(a) 1-2 (b) 2-4

(c) 4-6 (d) 6-8

Figure 6: The overlapping 3-outerplanar graphs wheni = 2 andk = 2.

to the current partial feasible solution of partitioni denoted as
HCi . When the algorithm exits the inner loop, a feasible MHC
is obtained for the partitioni. After iterating for all partitions,
in line 14, the solution with minimum cardinality is selected as
an approximate hub cover.

Algorithm 1
1: Input: A planar embedding ofG, the vertices lying in each

level, andk
2: Output: HCapprox

3: HCi ← ∅ for eachi ∈ {1,2, · · · , k}
4: HCapprox← ∅

5: for i := 1 to k do
6: j ← 0
7: while (j + 1)k+ ith level ofG is availabledo
8: ObtainSi

j induced by levelsjk + i to (j + 1)k+ i

9: Solve IP model (1)-(3) forSi
j and obtainS̄i

j

10: HCi = HCi ∪ S̄i
j

11: j ← j + 1
12: end while
13: end for
14: Return HCapprox← HCp = arg min{|HCi | |1 ≤ i ≤ k}

The decomposition technique guarantees a feasible solution
which is within a factor of (k + 1)/k from the optimal solution
for a givenk ≥ 1. Proposition 3.1 gives a formal proof of this
statement.

Proposition 3.1. Algorithm 1 finds an approximate hub cover
for a planar graph which is at most(k+ 1)/k optimal.

Proof. With the decomposition approach, the boundary levels
of the (k + 1)-outerplanar graphs, i.e., the overlapping levels,
partition the graph intok pieces. LetVi be the set of all vertices
in the overlapping levels for eachi, 1 ≤ i ≤ k. Since the decom-
position partitions the graph intok pieces, there exists at least
one partitioni such that at most 1/k of the vertices inHCopt are
included inVi , whereHCopt is the optimal MHC inG. For each
i, the union overj of the solutions gives a hub cover for the
whole graph. Since only the vertices inVi are counted twice,
the cardinality of the solution is at most as follows:

|HCopt| ≤
⋃

j

S̄i
j ≤ |HCopt|+ |HCopt|/k ≤ (k+1)|HCopt|/k. (4)

This completes the proof.

To illustrate the set of verticesVi in the overlapping levels,
observe that in Figure 4,V1 and V2 are the vertices lying in
levels 1, 3, 5, 7 and 2, 4, 6, 8, respectively, whenk = 2.

3.3. Computational Considerations

Notice that the decomposition technique splits the problem
into a set of subproblems that are independent from each other.
This structure of the algorithm enables us to use a parallel im-
plementation to solve the subproblems concurrently. Such an

4

implementation not only saves a considerable amount of com-
putation time but it also allows handling extremely large prob-
lems for which even storing the graph in computer memory is a
big burden.

Algorithm 1 generates feasible solutions that are obtainedby
taking the union of the optimal solutions of the subproblems.
We observe that, if the subproblems have alternate optimal so-
lutions, then the cardinality of the feasible solution set found
by Algorithm 1 may not be unique. Depending on the alternate
optimal solution selected for each subgraph, the union, that is
the cardinality of the solution set, may change. Therefore,we
added a subroutine to decrease the cardinality of the solution
by decreasing the double coverages in the levels between two
neighboring subproblems. The subroutine checks the optimal
solution of the subproblemj and then perturbs the objective
function coefficients of the neighboring subproblem (j + 1) be-
fore solving it. The objective function coefficients of the vari-
ables that are optimal in thejth subproblem are set to 1−ǫ in the
(j + 1)th subproblem, whereǫ is a small non-negative number
between 0 and 1. The subroutine helps neighboring subprob-
lems generate similar optimal solutions, if there exists such an
optimal solution.

Next comes the fast heuristic that we mentioned in Section 1.
The computation time of the approximation algorithm increases
with k. As an alternate approach, we propose adecomposition-
based heuristicwhich selects a partitioni randomly amongk
different partitions. Then, we solve the subproblems result-
ing from partitioni and take the union of the optimal solutions
of those subproblems. The decomposition-based heuristic does
not guarantee a performance ratio but it provides a feasiblesolu-
tion whose computation time is 1/k of that of the approximation
algorithm.

4. Numerical Experiments

Approximation algorithms provide solutions with proven
performance guarantees for computationally intractable prob-
lems. However, the bounds suggested by the theory are usually
quite conservative. In this section, we conduct a set of exper-
iments to compare the theoretical bound (1+ 1/k) against the
empirical performance of Algorithm 1. We also test how well
the decomposition-based heuristic performs.

Before delving into the details, let us define the instances and
the experimental setup. The proposed approximation algorithm
and the decomposition-based heuristic were tested on synthet-
ically generated planar graphs with known planar embeddings.
Our problem set includes 20 planar graphs with different sizes
from small to large. The numbers of vertices and edges range
from several thousands to a million. The number of levels, on
the other hand, ranges from 100 to 5,000. Optimal IP solutions
were obtained byIBM ILOG CPLEX Optimization Studio

12.6 running on a personal computer with Intel Xeon CPU E5-
2630 and 64 GB of RAM. The upper limit on the solution time
is set to 3,600 seconds for theCPLEX solver. The batch pro-
cessing of the instances is carried out through C++ scripts. We
used C++ libraries named Boost Asio and Thread to execute
the algorithm in parallel.

Figure 7 shows how the empirical and theoretical perfor-
mances of the approximation algorithm and the decomposition-
based heuristic change withk. The theoretical performance of
the approximation algorithm improves with increasingk and
the optimality gap approaches 0 ask tends to infinity. It also
demonstrates that the optimality gap of the approximation algo-
rithm is far better than the theoretical gap 1/k. For each value
of k, we plot the minimum, average and maximum optimality
gap observed over all instances versus the theoretical approx-
imation ratio. These figures depict that when we increasek,
both the empirical and theoretical performances of the algo-
rithms get close to each other. Therefore, the rate of overes-
timation decreases considerably for largek. The results also in-
dicate that even though the decomposition-based heuristicdoes
not prove a theoretical performance bound, the optimality gaps
are lower than the theoretical gap provided by the approxima-
tion algorithm. However, the maximum optimality gaps of the
decomposition-based heuristic are slightly larger than that of
the approximation algorithm.

1 2 3 5 7 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

k

P
e

rc
e

n
ta

g
e

 G
a

p

GapThr

MinGapApprox

AverGapApprox

MaxGapApprox

(a) Approximation Algorithm

1 52 3 7 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

k

P
e

rc
e

n
ta

g
e

 G
a

p

GapThr

MinGapRnd

AverGapRnd

MaxGapRnd

(b) Decomposition-based Heuristic

Figure 7: Observed vs. theoretical approximation gaps obtained by both the
approximation algorithm and the decomposition-based heuristic.

Figure 8 compares the performances ofCPLEX and the ap-
proximation algorithm in terms of solution time for different

5

values ofk. The approximation algorithm can return a feasible
solution with much less computational effort for manyk val-
ues compared toCPLEX. Recall thatk determines the number of
levels in each subproblem so it affects the subproblem size. As
expected, the empirical performance of the algorithm in terms
of solution quality increases withk at the expense of high com-
putation times. Therefore, it is very critical to determinethe
best value ofk. The value ofk should be large enough for good
approximation but it should be less than a threshold value not
to exceed the solution time ofCPLEX. Figure 8 indicates that
for small size instances,CPLEX outperforms the approximation
algorithm whenk is larger than 7. Those instances are solved to
optimality within the time limit. Therefore, we especiallyfocus
on large problems for whichCPLEX could not find an optimal
solution within the time limit. Figure 8 demonstrates that for k
values larger than 20, the solution time forCPLEX is less than
that of the approximation algorithm. Overall,k = 20 seems like
a compromise value for this set of instances.

0 2 4 6 8 10 12 14 16 18 20

1

5

2

20

50

100

300

2,000

10,000

Instances

C
o

m
p

u
ta

ti
o

n
 T

im
e

CPLEX
k=1
k=2
k=3
k=5
k=7
k=10
k=15
k=20
k=25
k=30

Figure 8: Computation times of the approximation algorithm andCPLEX.

Figure 9 compares the performances of the approximation al-
gorithm and the decomposition-based heuristic in terms of both
solution quality and time. Despite the fact that our heuristic
does not guarantee a performance bound, the results demon-
strate that the optimality gaps could be lower than the theoreti-
cal gap. As seen in Figure 9(a), the solution quality is compa-
rable to that of the approximation algorithm. Since the num-
ber of feasible solutions computed by the approximation al-
gorithm increases withk, we need to invest much more com-
putational effort for the approximation algorithm than for the
decomposition-based heuristic. Therefore, as seen in Figure
9(b), the approximation algorithm is clearly outperformedby
the decomposition-based heuristic in terms of solution time.
The decomposition-based heuristic returns a feasible solution
whose solution time is 1/k that of the approximation algorithm.

5. Conclusion

In this study, we analyzed the MHC problem on planar
graphs. The problem isNP-hard, and hence, solving the prob-
lem to optimality is computationally intractable especially for

k=1 k=2 k=3 k=5 k=7 k=10 k=15 k=20 k=25 k=30

0.1

0.2

1

3

10

30

100

P
e

rc
e

n
ta

g
e

 G
a

p

GapApprox

GapRnd

(a) Optimality gaps.

k=1 k=2 k=3 k=5 k=7 k=10 k=15 k=20 k=25 k=30
0,01

0.1

1

5

20

100

300

1,000

5,000

20,000

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
lo

g
)

TimeApprox

TimeRnd

(b) Computation time.

Figure 9: Percentage gaps and computation times of the approximation algo-

rithm and the decomposition-based heuristic.

large instances. Therefore, we have proposed a decomposition-
based approximation algorithm to identify heuristic solutions of
certifiable quality. The algorithm uses a planar graph decompo-
sition technique introduced in (Baker, 1994) to partition apla-
nar graph into smaller subgraphs with manageable sizes. This
approach always returns a feasible solution even for large-scale
problems.

We investigated the empirical performance of the algo-
rithm extensively. Our computational results demonstratethat
the empirical performance of the algorithm is far better than
its theoretical performance. Alternatively, we proposed a
decomposition-based heuristic without a proven performance
bound. This heuristic obtains comparable results relativeto the
approximation algorithm in terms of solution quality. More-
over, its solution time is on average several times less thanthat
of the approximation algorithm. We discussed that the solu-
tion quality is affected by the particular optimal solution of a
subproblem selected among various alternate optimal solutions.
Since it is very time consuming to evaluate all combinations
of the optimal solutions, finding a combination that is good
enough for a particular application is an interesting question
that we plan to address in our future research.

In the numerical experiments, we used a set of planar graphs
with given planar embeddings. Alternatively, one can imple-

6

ment the polynomial algorithm discussed in (Kammer, 2007) to
obtain a planar embedding with the minimum number of lev-
els for each planar graph. Since the complexity depends only
on the number of levels (k + 1) in each subproblem and not on
the number of levels of the original problem, starting with a
planar embedding with the smallest number of levels does not
change the theoretical complexity of the algorithm or the ap-
proximation bound. Even so, using a planar embedding with
the minimal number of levels may still affect the computation
time. Clearly, decreasing the number of levels in the original
problem decreases the number of subproblems for a givenk.
However, this is achieved at the expense of an increase in the
number of vertices in each subproblem. Therefore, it is im-
portant to note that we may end up solving fewer but harder
subproblems with more variables.

The decomposition algorithm, by its nature, is amenable to a
parallel implementation. In this study, we have used a straight-
forward shared-memory implementation of the algorithm that
helped us save significant computation time. In fact, it is pos-
sible with the proposed approach to partition a graph and make
use of multiple memory locations in a network. This is of inter-
est to those practitioners, who deal with huge-scale graphsfor
their problems that are difficult to manage on a single computer.
Therefore, obtaining computational results in a distributed com-
puting environment is also in our future research agenda.

References

Baker, B., 1994. Approximation algorithms forNP-complete problems. Jour-

nal of the Association for Computing Machinery 41, 153–180.

Baloch, S., Krim, H., 2010. Object recognition through topo-geometric shape

models using error-tolerant subgraph isomorphisms. IEEE Transactions on

Image Processing 19, 1191–1200.

Bienstock, D., Monma, C., 1990. On the complexity of embedding planar

graphs to minimize certain distance measures. Algorithmica 5, 93–109.

Cook, S., 1971. The complexity of theorem-proving procedures. In: 3rd ACM

Symposium on Theory of Computing. Ohio, pp. 151–158.

Garey, M., Johnson, D., Stockmeyer, L., 1976. Some simplified np-complete

graph problems. Theoretical Computer Science 1, 237–267.

Hopcroft, J., R.Tarjan, 1974. Efficient planarity testing. Journal of the ACM 21,

549–568.

Jamil, H. M., 2011. Computing subgraph isomorphic queries using structural

unification and minimum graph structures. In: SAC. pp. 1053–1058.

Kammer, F., 2007. Determining the smallestk such thatG is k-outerplanar.

Lecture Notes in Computer Science 4698, 359–370.

Lipets, V., Vanetik, N., Gudes, E., 2009. Subsea: an efficient heuristic algorithm

for subgraph isomorphism. Data Min. Knowl. Discov. 19, 320–350.

Llados, J., Marti, E., Villanueva, J., 2001. Symbol recognition by error-tolerant

subgraph matching between region adjacency graphs. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23, 1137–1143.

Neuhaus, M., Bunke, H., 2005. A graph matching based approachto fingerprint

classification using directional variance. Audio-and Video-Based Biometric

Person Authentication, Lecture Notes in Computer Science 3546, 191–200.

Rivero, C., Jamil, H. M., 2014a. On isomorphic matching of largedisk resi-

dent graphs using an xquery engine, international Workshopon Graph Data

Management: Techniques and Applications.

Rivero, C. R., Jamil, H. M., 2014b. Exact subgraph isomorphismusing

graphlets and minimum hub covers, work-in-process.

Shang, H., Zhang, Y., Lin, X., Yu, J., 2008. Taming verification hardness: An

efficient algorithm for testing subgraph isomorphism. In: Journal Proceed-

ings of the VLDB Endowment. Vol. 1. Auckland, New Zealand, pp.364–

375.

Ullmann, J., 1976. An algorithm for subgraph isomorphism. Journal of the

ACM 23, 31–42.

Weber, M., Liwicki, M., Dengel, A., 2012. Faster subgraph isomorphism de-

tection by well-founded total order indexing. Pattern Recognition Letters 33,

2011–2019.

Yelbay, B., 2014. Minimum hub cover problem: Solution methods and applica-

tions. Ph.D. thesis, Sabanci University.

Yelbay, B., Ş. İ. Birbil, Bülbül, K., Jamil, H. M., 2013. Trade-offs com-

puting minimum hub cover toward optimized graph query processing.

http://arxiv.org/abs/1311.1626.

Zhu, K., Zhang, Y., Lin, X., Zhu, G., Wang, W., 2010. A novel and efficient

framework for finding subgraph isomorphism mappings in large graphs. In:

15th International Conference on Database Systems for Advanced Applica-

tions. Tsukuba, Japan, pp. 140–154.

7

