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Abstract

We study an approximation algorithm with a performance gotae to solve a new®-hard optimization problem on planar
graphs. The problem, which is referred to as the minimum hayercproblem, has recently been introduced to the litegator
improve query processing over large graph databases. rRjamshs also arise in various graph query processing atiolics,
such as; biometric identification, image classificationjeobrecognition, and so on. Our algorithm is based on a lwebwn
graph decomposition technique that partitions the grapi anset of outerplanar graphs and provides an approximéaiéso
with a proven performance ratio. We conduct a comprehemsiggutational experiment to investigate the empiricalqrerance
of the algorithm. Computational results demonstrate thatémpirical performance of the algorithm surpasses itsagteed
performance. We also apply the same decomposition apptoaiévelop a decomposition-based heuristic, which is muerem
efficient than the approximation algorithm in terms of compatatime. Computational results also indicate that tfieacy of the
decomposition-based heuristic in terms of solution quadicomparable to that of the approximation algorithm.

Keywords: approximation algorithm, query processing, subgraph @pinism, planar graph decomposition, minimum hub cover
problem

1. Introduction coming from various sources including communication, so-
Th . bl h ) dini I cial and biological networks. For instance, a chemical com-
e optimization problem that we are interested in is called,, nq is a graph where each node represents an atom and each

theminimum hub cover (MHQ)roblem. This problem has re- o446 yepresents a chemical bond formed between two atoms.
cently originated from a new representation used for quesy p Graph query processing, also known as graph matching, is

cessing over large graph databgses (Jamil, 201]_'; Yelbr?iy, et &304t querying the structural similarity between the noafes
2013). Many graph databases in query processing satisfy pla g ery graph and a database graph under a set of label con-
narity condition thatis common in diverse applicationslsas;  gyaints, Subgraph isomorphism problem, on the other hand,
face recognition, fingerprint identification, hand posti€eog-  ig (4 find whether a database graph includes a subgraph that
nition, image gIaSS|f|cat|on, object recognition, and so As. is structurally similar to a given query graph. Figure 2sHu

an example, Figure 1 shows the planar graph representdtion Q,¢as the relationship between graph query processingund

a finger print. Each node in the graph represents a finger ridg&raph isomorphism. Figures 2(a) and 2(b) are query and data
pattern and_ the edges are constructed according to thda}riengraphs, respectively that capture two hand-drawn imaghs-of
tion of the ridges. man figures. Figure 2(c) shows all subgraphs of Figure 2(b)
that are isomorphic to Figure 2(a) and thus are embedded in

“anp . the data graph. The goal of subgraph matching is to identify
‘.‘i?’:é:‘:é “?\f{: the isomorphic graphs in Figure 2(b) given the query graph in
:;; 3 ‘g@}@\}‘i\: Figure 2(a) against the data graph in Figure 2(b). The MHC
!ﬁ: ‘:‘.::?E}::: problem has been recently introduced as an alternate @oluti
: ssssss method to increase thefiency of subgraph matching. Lat-

est studies demonstrate that searching a graph query aver th
Figure 1: Graph representation of a fingerprint image (Nesitemd Bunke, hubs Obtal_ned by solvmg the MHC prObI.em |m_pr0ves the Cur?
2005). rent techniques in graph query processing (Rivero and Jamil
2014b,a).

A graph database stores a high volume of relational data The objective of the MHC problem is to cover all edges of a

graph with the minimum number of vertices. Unlike the con-
“Corresponding Author o ventional meaning of covering, here, a selected vertexrsove
__ Email addressesbyelbayesabanciuniv.edu (Belma Yelbay), not only its incident edges but also the edges between its ad-
sibirbil@sabanciuniv.edu ( S. llker Birbil), . . . X R
bulbul@sabanciuniv.edu ( Kerem Hilbil), jamileuidaho.edu (Hasan  Jacent neighbors. For instance, in Figure 3, the edges trat c

Jamil) be covered by vertex are (f, g), (f, h), (f,k) and f, k) and the
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proposed heuristic demonstrates a potential for practiopli-
cations of planar graph query processing.

In summary, we make the following research contributions:
(i) a new approximation algorithm with a performance guaran
tee for solving the MHC problem on planar graphs; (ii) to the
best of our knowledge, the first experimental analysis tiothes
empirical performance of Baker’s planar graph decompmsiti
algorithm; (iii) the first extensive numerical experiments a
set of planar MHC problems; (iv) a new fast decomposition-
based heuristic inspired by our computational study.

(@ (b) (c)

Figure 2: Example for subgraph isomorphism between two haadsdimages
and the resulting solution (Llados et al., 2001).

2. Review of Related Literature

optimal solution iga, ¢, f}. The formal definition of the MHC

problem follows. There is a dramatic increase in the use of graph databases,
and hence, the need foffieient query processing thrives. How-
ever, the subgraph isomorphism problem is known to\iye-

a d e f k
complete (Cook, 1971). Therefore, researchers aim at devel
oping approximation methods and fast heuristics. To solve
the subgraph isomorphism problem, graph matching algosth
look for node structures that are identically connectedaweh
¢ identical labels. Then, those individual matches are donso
b c g h dated to answer a query. Ullmann (1976) is one of the earli-
est studies related to subgraph isomorphism in the litezatu
Figure 3: A sample graph for the minimum hub cover problem. The proposed algorithm incrementally constructs a seaeeh t

representing the appropriate mappings between a query and a
database graph. It applies backtracking, if the currenigar
solution will not end up with a successful mapping. Since a
search tree grows exponentially when its depth increakes, t
subsequent studies focus on developing new methods which
prune the search space and increasefiing@ency of query pro-
cessing. Among these, we have studies applying index-based
searching (Shang et al., 2008; Weber et al., 2012), graph de-
composition methods (Lipets et al., 2009) and using new data
Our previous work (Yelbay et al., 2013) discusses the conStructures and graph representations keeping topolodatal
nection between the MHC concept and query processing ard U etal., 2010). As an alternate approach, the algoritron p
analyzes the computational cost of solving the MHC problenPS€d in (Yelbay etal., 2013; Rivero and Jamil, 2014b,a)@su
on a diverse set of graph databases. It demonstrates that tHi€ Search space to a few number of nodes in query graphs by
graph structure has an impact on the solvability of the gnobl  SC!Ving @ combinatorial optimization problem, which isred
and that the performance of exact methods for MHC on largeb¥ the authors as the MHC problem. They illustrate that sgivi
scale query graphs would be less than satisfactory in query p the MHC problem in advance yields the least number of candi-
cessing. In this paper, we work with planar graphs for they apd_ate matches, _and hence, a significant reduction in conipuitat
pear in various graph query processing applications (Nesiha ime can be gained.
and Bunke, 2005; Baloch and Krim, 2010). Our objective is
to make use of an algorithm that gives a good approximation, Approximating MHC on Planar Graphs
bound. Then, we aim at deriving fast heuristics from the ap-
proximation algorithm. As for the algorithm, we adaptthélwe | hig section, we first give the mathematical formulation
known decomposition technique introduced by (Baker, 1994) ¢ tha MHC problem and then discuss a graph decomposition
This is followed by our discussion on the implementation de'technique for planar graphs. This technique is used to dpvel

tails of the glgorithm. We also e_xploit its naturally paeall o g approximation algorithm with a proven performance
structure to improve the computational performance. We €on+iq and an ficient decomposition-based heuristic.
duct a comprehensive numerical study to analyze the erapiric

performance of our algorithm. This study leads us to propos .

a decomposition-based heuristic that is much mdiieient in %‘1' Problem Formulation

terms of computation time. Our results indicate that the per A careful reader would notice that the definition of the MHC
formance of this fast heuristic in terms of solution quaigy problem resembles some well-known combinatorial optimiza
comparable to that of the approximation algorithm. Thus, th tion problems from the literature. This is indeed the cas® an
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Definition 1. Let G(V, E) be an undirected graph, wheyeis
the set of vertices anH is the set of edges. Then, for a given
graphG, a subset of the verticadC C V is ahub coverof G

if for every edgef( j) € E, eitheri € HC or j € HC or there
exists a vertek such thati( k) € E and (j, k) € E with k € HC.
TheMHC problem is finding a hub cover that has the minimum
number of vertices.



the similarity is more evident as we give its integer program A graph isouterplanar if it is a planar graph such that all of

ming (IP) formulation: the vertices belong to the exterior face. A planar embediding
said to bek-outerplanar if removing the vertices on the exterior
face results in al(— 1)-outerplanar embedding.

minimize Z Xjs @) In this study, we make use of a general decomposition tech-
jev nique first proposed by Baker (1994). The technique can be
subjectto X + Xj + Z X > 1, (i,))eE, (2) applied to any planar graph whose planar embedding and the
kel set of vertices in each level are known. In case they are not

x; € {0,1}, jeV, (3) known, one of the algorithms in the literature can be applied

to obtain a planar embedding (Hopcroft and R.Tarjan, 1974;
where, x; is a binary variable, which is equal to 1, if vertex Bienstock and Monma, 1990). With the proposed technique,
j is selected. Fori(j) € E, K@) denotes all those vertices given a planar embedding and a nonnegative nunkbehe
k € V such thati, k) € E and (j, k) € E. The objective function planar graph is decomposed into a set of overlapping 1)-

(1) minimizes the number of selected vertices. Constrg®jts outerplanar graphs such that the union of the optimal swisti
ensure that every edge is covered by at least one hub vertex those graphs gives a feasible solution to the originahgla
in the cover. Finally, constraints (3) impose integralitythe  graph. The algorithm picks the best of these solutions agpits
variables. proximation to the optimal hub cover. Figures 5 and 6 illatsr
The first related problem is treet covering problenlSCP),  how the decomposition is applied to the problem shown in Fig-
which is one of the oldest and the most studied combinatorialire 4 wherk = 2. The unions of the optimal solutions of the
optimization problems. If an edge corresponds to an iterd, ansubgraphs in Figure 5 and Figure 6 provide twfiatent hub
a set is defined for each vertex whose elements are the edgesvers. The algorithm selects the solution with the minimum
covered by that vertex, then the connection between SCP arwdrdinality as an approximate solution. Optimal solutioresy
MHC can easily be established. The second related problem ke obtained by modifying a dynamic programming algorithm
theminimum vertex covgiMVC) problem, which is one of the proposed in (Baker, 1994). Yelbay (2014) discusses thosk mo
well-known NP-complete problems in the literature. Yelbay ifications in detail. The complexity of the algorithm@{ng¥).
et al. (2013) use the equivalence of MHC and MVC in triangle-If k is taken agclogn], wherec is a constant, then we obtain
free graphs to prove tha/P-completeness of MHC for gen- a polynomial time approximation algorithm for MHC with a
eral graphs. Similarly, we can conclude that MHC on planamperformance guarantee & € 1)/k — see Proposition 3.1. We
graphs is alsavP-complete based on the fact that MVCN&P- refer to Baker (1994) for the details of the complexity as@y
complete when restricted to triangle-free planar graptes€®  Optimal solutions may also be obtained by solving the IP for-
et al., 1976). The following corollary states this obseiniat  mulation (1)-(3) of each subproblem by using diftthe-shelf
formally: solver likeCPLEX. In this paper, we prefer to uSLEX for ease

. of implementation.
Cororrary 3.1. The MHC problem igvVP-complete on planar

graphs.

Proof. See Section E, page 7 in (Yelbay et al., 2013). [

A natural question at this point could be “Why not use the
approximation algorithms proposed for these similar corabi
torial problems?” Unlike the general algorithms, our aitfon
is specialized for solving the MHC problem on planar graphs.
Moreover, our approximation bound is not constant and can
be improved by decreasing the number of subproblems to be
solved at the expense of an increase in the computation time. gig e 4: An 8-level planar graph embedding. Each level isesanted by a

different color and the vertices with the same colors lie in the daved
3.2. Approximation Algorithm with a Performance Guarantee N )

Let us first introduce our notation and the terminology used The steps of thg prqposed Qecomposmon anq the solution
in the coming subsections and then introduce our algorithm. approach are Qetalled in Algorithm 1. The algo_r!thm takes a
graphG’ is an induced subgraph & if G’ is isomorphic to a planar embedding of a graph and the decomposition parameter

1 i rox
graph whose vertex s&t’ is a subset of the vertex sétof G kias input and returnslan approx;]rn_a;cje hug gmyl@apL ' _Let
and whose edge skt consists of all those edges of G with both S| be ak+ 1)-0_9terp anar graph induce .y evgis+ 1 to
end vertices iv’. A planar embeddingf a graptGis aspecial ~ (j + 1)k +iandS; is the optimal solution o§;. For instance,
drawing ofG in such a way that no edges cross each other. Arigures 5(a)-5(d) demonstra®, S1, S5, S; fori = 1. In lines
graph isplanarif and only if it has a planar embedding.fAce 5 to 13, for each partition, Algorithm 1 iterates as follows:
of a planar graph is a region bounded by edges. A vertex of ine 8, a subgraph lying between boundary levi{s+ i and
planar graph is devell, if it is on the exterior face. A planar (j + 1)k + i is obtained. Then, in lines 9 and 10, the IP for-
embedding ik-level if it has no nodes of level greater thekn  mulation of that subgraph is solved and the solution is added
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Figure 5: The overlapping 3-outerplanar graphs wherl andk = 2.
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Figure 6: The overlapping 3-outerplanar graphs wher2 andk = 2.

to the current partial feasible solution of partitiodenoted as
HC'. When the algorithm exits the inner loop, a feasible MHC
is obtained for the partition After iterating for all partitions,

in line 14, the solution with minimum cardinality is seledtas

an approximate hub cover.

Algorithm 1
1: Input: A planar embedding d&, the vertices lying in each
level, andk
2: Output: HCarprox
3: HC' « @ foreachi € {1,2,--- ,k}
4; HCAaPProX ¢
5: fori:=1tokdo
6: j<0
7: while (j + 1)k + ith level of G is availabledo
8: ObtainSij induced by levelgk +ito (j + L)k +1i
9: Solve IP model (1)-(3) fo| and obtairs}
10: HC' = HC'US]
11: jej+1
12: end while
13: end for _
14: Return HCaPProX . HCP = argmin{|HC'| |1 < i < k}

The decomposition technique guarantees a feasible solutio
which is within a factor of K + 1)/k from the optimal solution
for a givenk > 1. Proposition 3.1 gives a formal proof of this
statement.

ProposiTion 3.1. Algorithm 1 finds an approximate hub cover
for a planar graph which is at mogk + 1)/k optimal.

Proof. With the decomposition approach, the boundary levels
of the k + 1)-outerplanar graphs, i.e., the overlapping levels,
partition the graph inté& pieces. Lev; be the set of all vertices

in the overlapping levels for eachl < i < k. Since the decom-
position partitions the graph intopieces, there exists at least
one partition such that at most/k of the vertices irHC°P are
included inV;, whereHC®P' is the optimal MHC inG. For each

i, the union overj of the solutions gives a hub cover for the
whole graph. Since only the vertices W are counted twice,
the cardinality of the solution is at most as follows:

HCoP) < |_J'S} < HCo+ [HCOP/k < (k+ IHC /K. (4)
j

This completes the proof. O

To illustrate the set of verticeg; in the overlapping levels,
observe that in Figure 4/, andV, are the vertices lying in
levels 1, 3,5, 7 and 2, 4, 6, 8, respectively, whken 2.

3.3. Computational Considerations

Notice that the decomposition technique splits the problem
into a set of subproblems that are independent from each othe
This structure of the algorithm enables us to use a paratiel i
plementation to solve the subproblems concurrently. Suach a



implementation not only saves a considerable amount of com- Figure 7 shows how the empirical and theoretical perfor-
putation time but it also allows handling extremely largelpr ~ mances of the approximation algorithm and the decompasitio
lems for which even storing the graph in computer memory is dased heuristic change wika The theoretical performance of
big burden. the approximation algorithm improves with increasik@nd
Algorithm 1 generates feasible solutions that are obtaiyed the optimality gap approaches 0 lasends to infinity. It also
taking the union of the optimal solutions of the subproblemsdemonstrates that the optimality gap of the approximatigo-a
We observe that, if the subproblems have alternate optioial s rithm is far better than the theoretical gafkl For each value
lutions, then the cardinality of the feasible solution smirfd  of k, we plot the minimum, average and maximum optimality
by Algorithm 1 may not be unique. Depending on the alternategap observed over all instances versus the theoreticabsppr
optimal solution selected for each subgraph, the uniort,isha imation ratio. These figures depict that when we incrdase
the cardinality of the solution set, may change. Therefa®, both the empirical and theoretical performances of the-algo
added a subroutine to decrease the cardinality of the ealuti rithms get close to each other. Therefore, the rate of overes
by decreasing the double coverages in the levels between twiomation decreases considerably for lakgd he results also in-
neighboring subproblems. The subroutine checks the optimalicate that even though the decomposition-based heudistis
solution of the subproblenp and then perturbs the objective not prove a theoretical performance bound, the optimahtysgy
function codficients of the neighboring subproblerj( 1) be-  are lower than the theoretical gap provided by the approxima
fore solving it. The objective function céicients of the vari-  tion algorithm. However, the maximum optimality gaps of the
ables that are optimal in th¢h subproblem are sette-kinthe  decomposition-based heuristic are slightly larger thaat tf
(j + 1)th subproblem, whereis a small non-negative number the approximation algorithm.
between 0 and 1. The subroutine helps neighboring subprob-
lems generate similar optimal solutions, if there existshsan

=+

optimal solution. ] *oa

Next comes the fast heuristic that we mentioned in Section 1. il e
The computation time of the approximation algorithm inse=a o O o™
with k. As an alternate approach, we proposkeaomposition- e

based heuristiavhich selects a partitionrandomly among
different partitions. Then, we solve the subproblems result-
ing from partitioni and take the union of the optimal solutions
of those subproblems. The decomposition-based heuristis d
not guarantee a performance ratio but it provides a feasiible

tion whose computation time igKklof that of the approximation
algorithm.

Percentage Gap
i
=l

4. Numerical Experiments
(a) Approximation Algorithm

Approximation algorithms provide solutions with proven

performance guarantees for computationally intractabddp 00— Trar
lems. However, the bounds suggested by the theory are ysuall af e VinGag™
quite conservative. In this section, we conduct a set of expe a0 ’Z.Q“;f:;’:::
iments to compare the theoretical bound+1/k) against the a9

empirical performance of Algorithm 1. We also test how well
the decomposition-based heuristic performs.

Before delving into the details, let us define the instanoels a
the experimental setup. The proposed approximation akgori 9
and the decomposition-based heuristic were tested onetynth oK
ically generated planar graphs with known planar embedding a
Our problem set includes 20 planar graphs witfiedent sizes -
from small to large. The numbers of vertices and edges range
from several thousands to a million. The number of levels, on
the other hand, ranges from 100 to 5,000. Optimal IP solstion
were obtained byBM ILOG CPLEX Optimization Studio
12.6 running on a personal CompUter_Wl_th intel Xeon (_:PU. E5_Figure 7: Observed vs. theoretical approximation gaps wétaby both the
2630 and 64 GB of RAM. The upper limit on the solution time approximation algorithm and the decomposition-based h@uris
is set to 3,600 seconds for tlPLEX solver. The batch pro-
cessing of the instances is carried out through+Gcripts. We
used G-+ libraries named Boost Asio and Thread to execute Figure 8 compares the performancesCBf.EX and the ap-
the algorithm in parallel. proximation algorithm in terms of solution time forftérent

Percentage Gap
&
=4

(b) Decomposition-based Heuristic



values ofk. The approximation algorithm can return a feasible

solution with much less computationaff@rt for manyk val- ovtin, o L
ues compared toPLEX. Recall thak determines the number of T .

levels in each subproblem so ifects the subproblem size. As T R WW W
expected, the empirical performance of the algorithm imger g4 : : : :W?E%ﬁ%*w*v
of solution quality increases withat the expense of high com- $ | Y W
putation times. Therefore, it is very critical to determihe , , , , , , ™ 25';,:%6‘?:5&&0
best value ok. The value ok should be large enough for good R e
approximation but it should be less than a threshold valie no B IS A R N R R D

to exceed the solution time @PLEX. Figure 8 indicates that e
for small size instanceSPLEX outperforms the approximation TN R Y Y

algorithm wherk is larger than 7. Those instances are solved to

optimality within the time limit. Therefore, we especiaftycus

on large problems for whichPLEX could not find an optimal (a) Optimality gaps.
solution within the time limit. Figure 8 demonstrates thatk

values larger than 20, the solution time f&HLEX is less than N T A N
. . . . ,000F B H H H H B R H B ®
that of the approximation algorithm. Overddl= 20 seems like . : : : : : I B
. . . 1,000 H H H H H ® H H
a compromise value for this set of instances. w :“’ e L
% 100+ : H o & m&e b o # ¢ *
£ Q. % 00: ® m@’fzt oK : e Lo % ©
N T Y
g O I R Rl B o X Tx X %
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(b) Computation time.

Figure 9: Percentage gaps and computation times of the appatign algo-

10
Instances rithm and the decomposition-based heuristic.

Figure 8: Co tation ti of the oximation algorithm ePLEX. . .
our mputation imes approximation aigorithm large instances. Therefore, we have proposed a deconguositi

ased approximation algorithm to identify heuristic swins of

Figure 9 compares the performances of the approximation aEertiﬁable quality. The algorithm uses a planar graph dgesm

gorithm and the decomposition-based heuristic in term®tf b sition technique introduced in (Baker, 1994) to partitiopla:

solution quality and time. Despite the fact that our heigist nar graph into smaller subgraphs with manageable sizes. Thi

does not guarantee a performance bound, the results demon- : :
oo ' ) roach always returns a feasible solution even for |laogde
strate that the optimality gaps could be lower than the #teor é}rjtl)oblems 4

cal gap. As seen in Figure 9(a), the solution quality is compa We investigated the empirical performance of the algo-

rable to that of the approximation algorithm. Since the num- . . .
. ) L rithm extensively. Our computational results demonsttiadd
ber of feasible solutions computed by the approximation al;

. . , . he empirical performan f the algorithm is far mth
gorithm increases witk, we need to invest much more com- the empirical performance of the algorit S far bettemtha

. L . its theoretical performance. Alternatively, we pr
putational €ort for the approximation algorithm than for the ts theo et_c_:a periormance. Fe atively, we proposed a
decomposition-based heuristic. Therefore. as seen ini udecomposmon-based heuristic without a proven perfooean

P o A ! 9Yhound. This heuristic obtains comparable results relatitbe
9(b), the approximation algorithm is clearly outperformad N : : . .
" S . . approximation algorithm in terms of solution quality. Mere
the decomposition-based heuristic in terms of solutioretim . s .
I - L over, its solution time is on average several times lessttan
The decomposition-based heuristic returns a feasibldisolu

whose solution time is/k that of the approximation algorithm of the approximation algorithm. We discussed that the solu-
PP 9 " tion quality is dfected by the particular optimal solution of a

subproblem selected among various alternate optimaligokit
Since it is very time consuming to evaluate all combinations
5. Conclusion of the optimal solutions, finding a combination that is good
enough for a particular application is an interesting goast
In this study, we analyzed the MHC problem on planarthat we plan to address in our future research.
graphs. The problem i&P-hard, and hence, solving the prob-  In the numerical experiments, we used a set of planar graphs
lem to optimality is computationally intractable espelgidbr ~ with given planar embeddings. Alternatively, one can imple



ment the polynomial algorithm discussed in (Kammer, 2007)t  classification using directional variance. Audio-and \didgased Biometric
obtain a planar embedding W'th the mm'mum_number of lev-  person Authentication, Lecture Notes in Computer Sciendé 381-200.
els for each planar graph. Sl_nce the complexity depends Onl%ivero, C., Jamil, H. M., 2014a. On isomorphic matching of ladgsk resi-
on the number of levelk( 1) in each subproblem and not on
the number of levels of the original problem, starting with a
planar embedding with the smallest number of levels does not Management: Techniques and Applications.
change the theoretical complexity of the algorithm or the apRivero, C. R., Jamil, H. M., 2014b. Exact subgraph isomorphissing
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problem decreases the number of subproblems for a given
However, this is achieved at the expense of an increase in the s of the VLDB Endowment. Vol. 1. Auckland, New Zealand, Bf4—
number of vertices in each subproblem. Therefore, it is im- 375.
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parallel implementation. In this study, we have used agtitai
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helped us save significant computation time. In fact, it is-po ~ 2011-2019.
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use of multiple memory locations in a network. This is of inte tions. Ph.D. thesis, Sabanci University.
est to those practitioners, who deal with huge-scale gréghs  ve,.y . s.i. Birbil, Balbil, K., Jamil, H. M., 2013. Tradefts com-
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