title   
  

Detection of motor task difficulty level from EEG data (EEG verisinden motor hareketi zorluk seviyesinin tespiti)

Günay, Sezen Yağmur and Hocaoğlu, Elif and Patoğlu, Volkan and Çetin, Müjdat (2016) Detection of motor task difficulty level from EEG data (EEG verisinden motor hareketi zorluk seviyesinin tespiti). In: 24th Signal Processing and Communication Application Conference (SIU 2016), Zonguldak, Turkey

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3281Kb

Official URL: http://dx.doi.org/10.1109/SIU.2016.7495903

Abstract

Rehabilitation protocols are used to increase daily life activities of locked-in patients. There are ongoing efforts to use brain-computer interfaces (BCI) in various ways to increase the benefits of such rehabilitation protocols to patients. An interesting claim is that if a system can detect the intention level of a patient and update the daily program according to this patient's motivation, the gain from these rehabilitation protocol can be increased. In this study, a system that records the electroencephalography (EEG) signals of healthy users performing arm movements against two levels of force has been designed based on the assumption that intention level is proportional to the level of motor task difficulty. EEG signals from 7 healthy subjects and 3 channels were recorded while subjects were performing work against two different levels of force. We calculated frequency bands of these channels and applied linear discriminant analysis (LDA) for classification of two environments corresponding to two motor task difficulty levels and resting state.

Item Type:Papers in Conference Proceedings
Uncontrolled Keywords:LDA, BCI, EEG, intention level, robotic rehabilitation
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Q Science > QP Physiology
ID Code:30352
Deposited By:Müjdat Çetin
Deposited On:13 Nov 2016 15:10
Last Modified:13 Nov 2016 15:10

Repository Staff Only: item control page