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Abstract

In this thesis study, we consider Poletsky-Stessin Hardy (PS-Hardy) spaces

that are generated by continuous, plurisubharmonic exhaustion functions on

hyperconvex domains.

In the first part of this study we examine these spaces on domains in the com-

plex plane that are bounded by an analytic Jordan curve. In this setting we

focus on PS-Hardy spaces generated by exhaustion functions that have finite

Monge-Ampre mass but are not necessarily maximal outside of a compact

set. This choice gives us new Banach spaces strictly contained in classical

Hardy spaces. We characterize PS-Hardy spaces through their boundary

values and we show factorization results analogous to unit disc case. Using

functional analysis techniques we prove that the algebra of holomorphic func-

tions which are continuous on the boundary are dense in PS-Hardy spaces.

Moreover, we consider the composition operators with holomorphic symbols

acting on PS-Hardy spaces and show that contrary to classical case, not all

composition operators are bounded on PS-Hardy spaces.



In the second part, we study PS-Hardy spaces on polydisc, complex ellipsoid

and on strongly convex domains. On complex ellipsoid case, we prove the

existence of radial boundary values and then by applying a classical method

given by Stein we show the existence of boundary values along admissible

approach regions. As an application of this method , we also obtain that

polynomials are dense in PS-Hardy spaces on complex ellipsoids. Lastly, we

examine the boundedness of composition operators on PS-Hardy spaces on

hyperconvex domains in several variables.
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Monge-Ampère Ölçümleri ve Sınırlı Hiperkonveks Bölgelerde

Poletsky-Stessin Hardy Uzayları

Sibel Şahin

Matematik, Doktora Tezi, 2014

Tez Danışmanı: Prof. Dr. Aydın Aytuna

Anahtar Kelimeler: Monge-Ampère Ölçümü, tükeniş fonksiyonu, Hardy

uzayı, hiperkonveks bölge.

Özet

Bu tez çalışmasında, hiperkonveks bölgelerde sürekli ve çoklualtharmonik

tükeniş fonksiyonlarınca üretilmiş Poletsky-Stessin Hardy (PS-Hardy) uzay-

ları ele alınmıştır.

Çalışmanın ilk kısmında bu uzaylar karmaşık düzlemde analitik bir Jordan

eǧrisi ile sınırlanmış bölgelerde incelenmiştir. Bu baǧlamda sınırlı Monge-

Ampère aǧırlıǧı olan ancak bir kompakt küme dışında maksimal olması gerek-

meyen tükeniş fonksiyonları tarafından üretilmiş PS-Hardy uzaylarına odak-

lanılmıştır. Bu seçim klasik Hardy uzaylarının içinde yeni Banach uza-

yları vermektedir. PS-Hardy uzayları sınır deǧerleri üzerinden karakter-

ize edilip, birim disk durumuna benzer şekilde çarpanlara ayırma sonuçları

elde edilmiştir. Fonksiyonel analiz teknikleri kullanılarak sınırda sürekli

holomorf fonksiyonlar cebirinin PS-Hardy uzayları içerisinde yoǧun olduǧu

kanıtlanmıştır. Buna ek olarak PS-Hardy uzayları üzerinde tanımlı holomorf

sembollü bileşke operatörleri incelenmiş ve klasik durumdan farklı olarak PS-

Hardy uzayları üzerinde tüm bileşke operatörlerinin sınırlı olmadıǧı görülmüştür.



İkinci kısımda PS-Hardy uzayları polidisk, karmaşık elipsoit ve mutlak kon-

veks bölgelerde çalışılmıştır. Karmaşık elipsoit durumunda ışınsal sınır deǧerlerinin

varlıǧı kanıtlanmış ve sonrasında Stein’a ait klasik bir metot kullanılarak sınır

deǧerlerinin makbul yaklaşım bölgelerindeki varlıǧı gösterilmiştir. Bu meto-

dun bir uygulaması olarak polinomların elipsoit üzerindeki PS-Hardy uzay-

larında yoǧun olduǧu gösterilmiştir. Son olarak çok deǧişkende hiperkonveks

bölgelerde PS-Hardy uzayları üzerindeki bileşke operatörleri incelenmiştir.
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Introduction

The theory of Hardy Spaces has its origins in the works of G.H.Hardy and

J.E.Littlewood in 1920’s. The theory was improved and widened by the

discoveries of I.I.Privalov, F.and M.Riesz, V.Smirnov and G.Szegö. Most

of the initial work was on the unit disc of C , and later the theory was

generalized to other classes of domains such as simply connected domains

in C, Smirnov domains and multiply connected domains in C ([17]). Fur-

ther generalizations are then given in the polydisc ([39]), ball of Cn ([40])

and strictly pseudoconvex domains with C2 boundaries ([44]). The unit disc

D ⊂ C has two natural generalizations, namely polydisc and unit ball, and

one can define Hardy classes by means of integral growth or by means of

harmonic majorants on these two. However these two definitions do not co-

incide even for these classical domains because in the case of unit ball having

an M -harmonic majorant is sufficient (a function is M -harmonic iff 4̃f = 0

where 4̃f(a) = 4(f ◦ ϕa)(0) and ϕa is the automorphism of the ball that

interchanges the point a with 0, [40],pg:47) for being in Hardy class Hp(B)

of holomorphic functions but in the case of polydisc having a harmonic n-

majorant is needed ([39],pg:16).

In 2008, Poletsky and Stessin introduced Poletsky-Stessin Hardy spaces,

Hp
u(Ω), on hyperconvex domains ([34]) to get a “meaningful and uniform

theory of Hp spaces” which unifies the different definitions made for various

domains. In this setting Ω is a hyperconvex domain and u is a continuous,

negative, plurisubharmonic exhaustion function for Ω which has finite Monge-
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Ampère mass and the growth condition is constructed using integrals with

Monge-Ampère measures defined in ([13]). The general framework of ([34]) is

based on the examination of the Poletsky-Stessin Hardy spaces when the ex-

haustion function u belongs to a special class E0, i.e the measure (ddcu)n has

compact support. In this thesis we will consider the Poletsky-Stessin Hardy

classes in a broader perspective where most of the work will be done using

exhaustion functions belong to a wider class, i.e. the exhaustion functions

that have finite Monge-Ampère mass but not necessarily maximal outside of

a compact set. Now let us mention the structure of this thesis:

In the first part of this study we will examine the Poletsky-Stessin Hardy

spaces in a setting where Ω is a domain in C containing 0, bounded by an

analytic Jordan curve and u is a continuous subharmonic exhaustion func-

tion for Ω which has finite Monge-Ampère mass but different from Poletsky

& Stessin’s work the exhaustion u is not necessarily harmonic outside of a

compact set. One of the main consequences of this choice of exhaustion func-

tion is that the Poletsky-Stessin Hardy spaces and the classical ones do not

always coincide so we have new Banach spaces to be explored inside the clas-

sical Hardy spaces. First we will characterize Poletsky-Stessin Hardy classes

Hp
u(Ω) through their boundary values and the corresponding Monge-Ampère

boundary measure. This boundary value characterization will enable us to

prove factorization properties analogous to classical case and next we will

show the algebra A(Ω) is dense in these spaces. Finally we will examine the

composition operators induced by holomorphic self maps and we will see that

even on the simplest of such domains , namely the unit disc, not all composi-

tion operators are bounded contrary to the classical Hardy space case. Then

we will explore the necessary conditions needed for composition operators to

be bounded on Poletsky-Stessin Hardy classes.

In the second part we will focus on multidimensional case and we will examine

the Poletsky-Stessin Hardy spaces on hyperconvex domains in Cn, n > 1.

We start this chapter with a complete comparison between different Hardy

2



classes in the most general setting. Then we will continue with the Poletsky-

Stessin Hardy spaces on polydisc in Cn and we will see the immediate tran-

sitions of some important characterization results from the unit disc case.

Next we will consider the Poletsky-Stessin Hardy spaces on complex ellip-

soids which are the basic examples of domains of finite type in Cn. For

Poletsky-Stessin Hardy spaces on complex ellipsoids we will show the exis-

tence of boundary values and then we will obtain boundary values along ad-

missible approach regions. In order to examine the boundary behavior on the

admissible approach regions we will apply a classical method given by Stein

in ([44]) however different from the classical approach we will use Cauchy-

Fantappie kernel. Next we will use this general method on strongly convex

domains which will provide us an alternative approach through Poletsky-

Stessin Hardy spaces, to the boundary behavior of classical Hardy spaces

on strictly pseudoconvex domains by localizing the procedures. Lastly we

will consider the boundedness of composition operators acting on Poletsky-

Stessin Hardy spaces on hyperconvex domains in Cn.
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Chapter 1

Preliminaries

In this chapter, we will give the preliminary definitions and some important

results that we will use throughout this study.

1.1 Differential Forms and Currents

Let Ω be a domain in Cn and let C∞0 (Ω) be the space of all smooth functions

on Ω with compact supports. A sequence {ϕj} ⊂ C∞0 (Ω) converges to 0 if

the supports of all ϕj belong to a compact K ⊂ Ω and the functions ϕj with

all derivatives converge uniformly to 0.

We denote by Dp,q(Ω) the space of all differential forms

ω =
∑

|I|=p,|J |=q

ωIJdzIdzJ

of bidegree (p, q) where I = (i1, ..., ip) and J = (j1, ..., jq) are subsets of

{1, 2, ...n}, dzI = dzi1 ...dzip , dzJ = dzj1 ...dzjq and ωIJ ∈ C∞0 (Ω). Equipped

with the topology of uniform convergence on compacta with all derivatives,

Dp,q(Ω) has a structure of a linear topological space.

The space D′p,q(Ω) of continuous linear functionals on Dp,q(Ω) is called the

space of currents of bidimension (p, q) or of bidegree (n − p, n − q). If φ ∈
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D′p,q(Ω) then

φ =
∑

|I|=n−p,|J |=n−q

φIJdzIdzJ

where φIJ are distributions and the pairing 〈φ, ω〉 is given by

〈φ, ω〉 =
∑

|I|=n−p,|J |=n−q

〈φIJ , ωIJ〉

A current φ ∈ D′p,q(Ω)is positive if 〈φ, ω〉 ≥ 0 for every test form ω =

iω1 ∧ ω1 ∧ ...iωp ∧ ωp, ωj ∈ D1,0(Ω). In this case the coefficients φIJ are

positive measures.

The differential of ω is defined by dω = ∂ω + ∂ω where

∂ω =
∑ ∂ωIJ

∂zk
dzk ∧ dzI ∧ dzJ

∂ω =
∑ ∂ωIJ

∂zk
dzk ∧ dzI ∧ dzJ

The operator dc is defined by dc = i(∂ − ∂). For φ ∈ C2(Ω) we have

ddcφ = 2i
∑ ∂2φ

∂zi∂zj
dzi ∧ dzj

Given a current T , we define dT by the formula 〈dT, ω〉 = 〈T, dω〉 and ddcT

by the formula 〈ddcT, ω〉 = 〈T, ddcω〉. A current is closed if dT = 0. The

following result and a detailed treatment of differential forms and currents

can be found in ([15]):

Proposition 1.1.1. Every plurisubharmonic function generates a closed,

positive (1, 1)-current.

5



1.2 Hyperconvex Domains and Maximal

Plurisubharmonic Functions

Definition 1. A connected open subset Ω of Cn is called hyperconvex if

there exists a plurisubharmonic function g : Ω → [−∞, 0) such that {z ∈
Ω : g(z) < c} is relatively compact for each c < 0. Here g is called a an

exhaustion for Ω.

In C, hyperconvex domains are in fact the regular domains for the Dirichlet

problem.([37],pg:88).

Definition 2. A connected open subset Ω of Cn is called strictly pseudocon-

vex if there exists a smooth, strictly plurisubharmonic defining function for

Ω. i.e. There exists a smooth defining function ρ such that

n∑
j,k=1

∂2ρ

∂zj∂zk
(P )wjwk > 0 (1.2.1)

is positive definite for all P ∈ ∂Ω and for all w ∈ TP (∂Ω) where TP (∂Ω) is

the tangent space at P . The form given in (1.2.1) is called the Levi form of

the domain Ω.

Definition 3. Let Ω be an open subset of Cn and let u : Ω → R be a

plurisubharmonic function. Then u is maximal if for every relatively compact

open subset G of Ω, and for each upper semicontinuous function v on G such

that v ∈ PSH(G) and v ≤ u on ∂G, we have v ≤ u in G.

For the maximal plurisubharmonic functions we also have the following

characterization by ([25],pg:93):

Theorem 1.2.1. Let Ω be an open subset of Cn, and let u ∈ C2 ∩PSH(Ω).

Then u is maximal if and only if (ddcu)n = 0 in Ω.

Remark 1. Since ddcu = 1
4
4udzdz by this theorem we see that in C the

maximal subharmonic functions are exactly the harmonic functions.
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Definition 4. Pluricomplex Green function of Ω ⊂ Cn is defined as:

gΩ(z, w) = supu(z)

where u ∈ PSH(Ω) (including u ≡ −∞), u is non-positive and the function

t→ u(t)− log |t− w| is bounded from above in a neighborhood of w. Pluri-

complex Green function gΩ(z, w) is a negative plurisubharmonic function

with a logarithmic pole at w ([25], pg:222).

When Ω is hyperconvex, gΩ(z, w) is a continuous function ([14]) and by

the previous theorem gΩ(z, w) is maximal in Ω \ {w}.
An important tool that we will use throughout this study is the following

comparison principle for the continuous, plurisubharmonic, exhaustion func-

tions on a hyperconvex domain Ω ∈ Cn ([14]):

Theorem 1.2.2. Let ϕ, ψ : Ω → [−∞, 0) be continuous, plurisubharmonic,

exhaustion functions such that ϕ ≤ ψ ≤ 0 and
∫

Ω
(ddcϕ)n <∞. Then∫

Ω

(ddcψ)n ≤
∫

Ω

(ddcϕ)n

1.3 Classical Hardy and Hardy-Smirnov Spaces

Definition 5. Hardy Spaces on the unit disc are defined for 1 ≤ p ≤ ∞ as

[38] :

Hp(D) = {f ∈ O(D) : sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p <∞} (1.3.1)

and

H∞(D) = {f ∈ O(D) : sup
z∈D
|f(z)| <∞} (1.3.2)

7



For 1 ≤ p <∞ we equip Hp(D) spaces with the following norms :

‖f‖p = sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p

and for H∞(D)

‖f‖∞ = sup
z∈D
|f(z)|

An important tool in the study of Hp(D) spaces and its applications is

the factorization of the holomorphic functions in these classes. For the class

Hp(D) we have the following canonical factorization theorem ([17],pg:24):

Theorem 1.3.1. Every function f 6≡ 0 of class Hp(D) has a unique factor-

ization of the form f = BSF where B is a Blaschke product, S is a singular

inner function and F is an outer function for the class Hp(D).

Definition 6. Hardy spaces on the unit ball of Cn are defined for 1 ≤ p ≤ ∞
as [40] :

Hp(B) = {f ∈ O(B) : sup
0<r<1

∫
S(r)

|f(z)|pdµ <∞}

where S(r) is the sphere with center 0 and radius r and µ is the usual surface

area measure on the sphere. As usual we define

H∞(B) = {f ∈ O(B) : sup
z∈B
|f(z)| <∞}

Definition 7. Hardy spaces on the unit polydisc of Cn are defined for 1 ≤
p ≤ ∞ as [39] :

Hp(Dn) = {f ∈ O(Dn) : sup
0<r<1

(
1

(2π)n

∫
Tn
|f(rz)|pdµ)

1
p <∞}

where Tn is torus and µ is the usual product measure on the torus. And

H∞(Dn) = {f ∈ O(Dn) : sup
z∈Dn
|f(z)| <∞}

8



Definition 8. Let Ω be a smoothly bounded domain and λ be a character-

izing function for Ω which is defined in a neighborhood of Ω i.e. λ is smooth

, λ(x) < 0 iff x ∈ Ω, ∂Ω = {λ(x) = 0} and |∇λ(x)| > 0 if x ∈ ∂Ω. (The last

condition is equivalent to ∂λ
∂νx

> 0 where νx is the outward normal at x.). Let

Ωr = {z : λ(z) < r : r < 0} and ∂Ωr = {z : λ(z) = r}.
In ([44]), E.M. Stein defines the class Hp

λ as:

Hp
λ

.
= {f | f holomorphic in Ω, sup

r<0

∫
∂Ωr

|f |pdσr <∞}

where dσr is the induced surface area measure on ∂Ωr. This space is equipped

with the norm

‖f‖pp = sup
r<0

∫
∂Ωr

|f |pdσr

Remark 2. The space Hp
λ(Ω) does not depend on the characterizing function

used to define Ω and one gets equivalent norms for different characterizing

functions.

Definition 9. Let Ω be a domain in C containing 0 and bounded by an

analytic Jordan curve. The classical Hardy space Hp(Ω) is defined as follows:

Hp(Ω) = {f ∈ O(Ω) | |f |phas a harmonic majorant in Ω} (1.3.3)

Definition 10. Let Ω be a domain in C containing 0 and bounded by an

analytic Jordan curve. The Hardy-Smirnov class Ep(Ω) is defined as follows:

A holomorphic function f on Ω is said to be of class Ep(Ω) if there exists a

sequence of rectifiable Jordan curves C1, C2, .. in Ω tending to boundary in

the sense that Cn eventually surrounds each compact subdomain of Ω such

that ∫
Cn

|f(z)|pds ≤M <∞

Remark 3. The spaces Hp(D), Hp(Dn), Hp(B), Hp
λ(Ω), Hp(Ω) and Ep(Ω) are

Banach spaces for 1 ≤ p ≤ ∞.

9



An important point examined in the study of Hardy spaces is the existence

of non-tangential limits which determines the boundary behavior of the given

classes. About the existence of non-tangential limits we have the following

results ([38], [39], [40], [44]) :

Theorem 1.3.2. Let f ∈ Hp(D),1 ≤ p ≤ ∞ then for almost all θ radial

limits of f exists, i.e.

f ∗(θ)
.
= lim

r→1
fr(θ) = lim

r→1
f(reiθ) (1.3.4)

exists almost everywhere with respect to the usual Lebesgue measure on the

unit circle.

Remark 4. It should also be noted that Hp classes can also be considered as

the normed linear spaces where the norm is defined as the Lp norm of the

boundary function, i.e. for f ∈ Hp(D) we have ‖f‖Hp = ‖f ∗‖Lp ([17], pg:23).

Theorem 1.3.3. Let f be in Hp(Dn) then f ∗(w) exists for almost all w ∈ T n

with respect to the product measure on the torus.

Theorem 1.3.4. If f is in Hp(B), for 1 ≤ p ≤ ∞, then for almost all w ∈ S,

f ∗(w) exists with respect to the usual surface area measure

Theorem 1.3.5. If f is in Hp
λ(Ω), for p ≥ 1 the non-tangential limits

f ∗(y) = lim
x→y

x∈Γα(y)

f(x)

exists for almost every y ∈ ∂Ω where

Γα(y) = {x ∈ Ω : |x− y| < (1 + α)δ(x), α > 0}

where δ is the distance from ∂Ω

10



1.4 Monge-Ampère Measures and Poletsky-

Stessin Hardy Spaces

Let Ω be a hyperconvex domain in Cn and ϕ : Ω → [−∞, 0) be a negative,

continuous, plurisubharmonic exhaustion for Ω. Define pseudoball:

Bϕ(r) = {z ∈ Ω : ϕ(z) < r} , r ∈ [−∞, 0),

and pseudosphere:

Sϕ(r) = {z ∈ Ω : ϕ(z) = r} , r ∈ [−∞, 0),

and set

ϕr = max{ϕ, r} , r ∈ (−∞, 0).

In 1985, Demailly introduced the Monge-Ampère measures in the sense of

currents as :

µr = (ddcϕr)
n − χΩ\Bϕ(r)(dd

cϕ)n r ∈ (−∞, 0)

which is supported on Sϕ(r). We can define the mass of an exhaustion

function using the mass of Monge-Ampère measure generated by it as follows:

Definition 11. The Monge-Ampère mass of an exhaustion function u on

Ω ⊂ Cn is defined as:

MA(u) =

∫
Ω

(ddcu)n

The following result by ([34]) gives us the relation between the decay

rate of exhaustion functions near the boundary of Ω and the dominating

measures:

Theorem 1.4.1. Let u and v be continuous, plurisubharmonic exhaustion

functions for Ω and let F be a compact set in Ω such that F ⊂ Bu(r0) for

11



some r0 < 0 and v(z) ≤ u(z) for all z ∈ Ω \ F . Then for any c > 1 and any

a < 1− c−1 we have

µu,r(ψ) ≤ cnµv,ar(ψ)

when r ≥ r0 and ψ is a nonnegative plurisubharmonic function on Ω.

Now let us mention so called Lelong-Jensen Formula which will be used

in most of the results in this study as a powerful tool ([14]):

Theorem 1.4.2. Let r < 0 and φ be a plurisubharmonic function on Ω then

for any negative, continuous, plurisubharmonic exhaustion function u∫
Su(r)

φdµu,r −
∫
Bu(r)

φ(ddcu)n =

∫
Bu(r)

(r − u)ddcφ(ddcu)n−1 (1.4.1)

Inspired by Demailly’s work, Muhammed Ali Alan defined Hardy Spaces

on hyperconvex domains in terms of Monge-Ampère measures associated

with gΩ(z, a) in his MSc thesis (2003) in the following manner:

Hp
a(Ω)

.
= {f ∈ O(Ω) : sup

r<0

∫
S(r)

|f(z)|pdµr,a <∞} , 1 ≤ p <∞

and we know that these classes Hp
a(Ω) are independent of the pole point a

([34],pg:13).

In 2008, Poletsky & Stessin introduced new Hardy type classes of holomor-

phic functions on hyperconvex domains in Cn as follows ([34]) :

Hp
ϕ(Ω), p > 0, is the space of all holomorphic functions f on Ω such that

lim sup
r→0−

∫
Ω

|f |pdµϕ,r <∞

The norm on these spaces is given by:

‖f‖Hp
ϕ

=

(
lim
r→0−

∫
Ω

|f |pdµϕ,r
) 1

p

12



and with respect to these norm the spacesHp
ϕ(Ω) are Banach spaces ([34],pg:16).

Moreover on these Banach spaces point evaluations are continuous ([34], The-

orem 3.6).

Now let us see the correspondence between the classical Hardy spaces and

the Poletsky-Stessin Hardy classes :

In the case of the unit disc in C using ϕ1(z) = log |z| as the exhaustion

function we get

µϕ1,r,0 = dθ (1.4.2)

where dθ is the usual Lebesgue measure on the circle with radius r.

For the unit ball of Cn when we use ϕ2(z) = log ‖z‖ as the defining function

we obtain

µϕ2,r,0 =
1

σ(S(r))
dσr (1.4.3)

which is the normalized surface area measure on the sphere with radius r.

Now consider the polydisc Dn ⊂ Cn with ϕ3(z) = log(max |zj|) as the defining

function, we have

µϕ3,r,0 =
1

(2π)n
dθ1dθ2 . . . dθn (1.4.4)

which is the usual product measure on the torus. Therefore, the classical

Hardy spaces Hp(D), Hp(B) and Hp(Dn) correspond to the classes Hp
ϕ1

(D),

Hp
ϕ2

(B) and Hp
ϕ3

(Dn) respectively.

Lastly let us give an explicit formula for the norms of holomorphic functions

in the Poletsky-Stessin Hardy spaces ([34], Theorem 6.2) :

Theorem 1.4.3. Let Ω be a hyperconvex domain in Cn with an exhaustion

function u such that the set L(u) = {z ∈ Ω| u(z) = −∞} is finite. If f is

a holomorphic function on Ω then

‖f‖p
Hp
u(Ω)

=

∫
Ω

|f |p(ddcu)n +

∫
Ω

(−u)ddc|f |p ∧ (ddcu)n−1

13



Chapter 2

Poletsky-Stessin Hardy Spaces

on Domains Bounded by An

Analytic Jordan Curve in C

2.1 Comparison Between Hardy Type Classes

of Holomorphic Functions in C

In this section we will compare the Poletsky-Stessin Hardy spaces with the

classical Hardy and Hardy-Smirnov classes over a hyperconvex domain Ω in

C. Let us start with the first comparison:

Theorem 2.1.1. Let Ω be a domain in C containing 0 and bounded by an

analytic Jordan curve. Suppose ϕ is a continuous, negative, subharmonic

exhaustion function for Ω such that ϕ is harmonic out of a compact set

K ⊂ Ω. Then for a holomorphic function f ∈ O(Ω), f ∈ Hp
ϕ(Ω) if and only

if |f |p has a harmonic majorant.

14



Proof. Let |f |p has a harmonic majorant u on Ω. Then∫
S(r)

|f |pdµϕ,r ≤
∫
S(r)

udµϕ,r =

∫
B(r)

u(ddcϕ) (2.1.1)

by Lelong-Jensen formula and we know that ϕ is harmonic outside of the

compact set K so∫
B(r)

u(ddcϕ) ≤
∫
K

u(ddcϕ) ≤ CK‖u‖L∞(K) (2.1.2)

for some constant CK and this bound is independent of r. Hence

sup
r<0

∫
S(r)

|f |pdµϕ,r ≤M <∞ (2.1.3)

for some M

⇒ f ∈ Hp
ϕ(Ω). For the converse, suppose f ∈ Hp

ϕ(Ω) and |f |p has no

harmonic majorant. Then by ([37], Theorem 4.5.4) we have that

1

2π

∫
Ω

(−gΩ(z, w))∆|f |p =∞ (2.1.4)

where gΩ(z, w) is the Green function of the domain Ω ([37]). Then from

Lelong-Jensen formula

1

2π

∫
S(r)

|f |pdµϕ,r ≥
1

2π

∫
B(r)

(r − ϕ)∆|f |p

Note that left hand side is bounded independent from r since f ∈ Hp
ϕ(Ω).

Let us take a compact set F ⊂ Ω containing the support of4ϕ and {w} such

that both ϕ and gΩ(z, w) are bounded on ∂F and bgΩ(z, w) ≤ ϕ ≤ cgΩ(z, w)

holds on ∂F for some numbers b, c > 0. By the maximality of both ϕ and

gΩ(z, w) on Ω \ F this inequality holds on Ω \ F . Hence near boundary we

15



have

ϕ ≤ cgΩ(z, w)

Then by ([34], Theorem 3.1) for a positive constant a > 0 we have the

following

1

2π

∫
B(ar)

(ar − gΩ(z, w))∆|f |p ≤ 1

2π

∫
S(ar)

|f |pdµg,r ≤
1

2π

∫
S(r)

|f |pdµϕ,r

and as r → 0 by Fatou lemma we have∫
D
(−gΩ(z, w))∆|f |p ≤ lim

r→0

1

2π

∫
B(ar)

(ar − gΩ(z, w))∆|f |p

≤ lim
r→0

1

2π

∫
S(r)

|f |pdµϕ,r

the last limit is bounded since f ∈ Hp
ϕ(Ω) but the first integral goes to

infinity by (2.1.4). From this contradiction it follows that |f |p has a harmonic

majorant.

Remark 5. We would like to give a direct proof for the previous result in

our study however, alternatively one can deduce this result by combining

(Lemma 3.4, [34]) and (Theorem 5.2.2, [2]). The first one gives us that the

exhaustion functions which are maximal outside of a compact set generate

the same Poletsky-Stessin Hardy space. Hence, all of them generates the

same space that is generated by the Green function and the second one gives

us that a holomorphic function f belongs to Poletsky-Stessin Hardy space

generated by the Green function if and only if |f |p has a harmonic majorant.

Thus, we obtain the previous result.

Remark 6. This result is not true in general for n > 1 if we take harmonic

functions as solutions to the equation 4u = 0 in Cn. As we have seen in the

cases of the unit polydisc and the unit ball in Cn, if we take our exhaustions

to be Green functions then Poletsky-Stessin Hardy classes coincide with the

16



classical Hardy spaces on the ball and polydisc. In the case of unit ball,

having an M -harmonic majorant is sufficient (a function is M -harmonic iff

4̃f = 0 where 4̃f(a) = 4(f ◦ϕa)(0) and ϕa is the automorphism of the ball

that interchanges the point a with 0, [40],pg:47) for being in the defined class

of functions, however in the case of polydisc having a harmonic n-majorant

is needed ([39],pg:16).

Corollary 2.1.1. Let Ω be a domain in C containing 0 and bounded by an

analytic Jordan curve. Suppose gΩ(z, w) is the Green function of Ω with the

logarithmic pole at w ∈ Ω. Then Hp(Ω) = Hp
gΩ

(Ω) for p ≥ 1.

Proof. The Green function gΩ(z, w) is harmonic outside of the compact set

{w} by definition so by previous theorem we have f ∈ Hp
gΩ

(Ω) is equivalent

to the condition that |f |p has a harmonic majorant which is by definition

means f ∈ Hp(Ω).

Now we would like to compare Poletsky-Stessin Hardy classes with the

classical Hardy and Hardy-Smirnov spaces when Ω is a domain in C that is

bounded by an analytic Jordan curve. First of all on Ω we have Ep(Ω) =

Hp(Ω) by (Theorem 10.2,[17]) and using the previous theorem we see that

for any exhaustion function ϕ which is harmonic outside of a compact set

we have Ep(Ω) = Hp(Ω) = Hp
ϕ(Ω). However this need not be the case when

our exhaustion function u has finite Monge-Ampère mass yet not harmonic

outside of a compact set. When an exhaustion function u has finite Monge-

Ampère mass then by (Theorem 3.1, [34]) we have Hp
u(Ω) ⊂ Hp

gΩ
(Ω) = Hp(Ω)

where the last equality is given in the previous corollary however by explicitly

constructing an exhaustion function u on the unit disc D, we will show that

Hp
u(Ω) need not be equal to Hp(Ω) :

Theorem 2.1.2. There exists an exhaustion function u with finite Monge-

Ampère mass such that the Hardy space Hp
u(D) $ Hp(D).

Proof. (Without loss of generality assume p=1) In order to prove this result

we will first construct an exhaustion function u with finite mass:

17



Let D be the unit disc in C, and let ρ be the solution of the Dirichlet problem

in the unit disc such that 4ρ = 0 in D and ρ = f on ∂D where f(z) =

−(1− x)
3
4 . Then define u = f − ρ. We will first show that u is a continuous,

subharmonic, exhaustion function for D:

u is continuous: u(z) = f(z) +
∫
∂D P (z, eiθ)(1− cos θ)

3
4dθ and both parts on

the right hand side are in C2(D) ∩ C(D) hence u is a continuous function.

u is subharmonic: u is a C2(D) function and 4u = 4(−(1 − x)
3
4 ) = (1 −

x)
−5
4 ≥ 0 hence u is subharmonic.

u is an exhaustion: For this we should show that Ac = {x | u(x) < c} is

relatively compact in D for all c < 0. Suppose not then there exists a sequence

xn in Ac such that it has a subsequence xnk converging to boundary of D. Now

suppose that xnk → x, |x| = 1 and since u is continuous so u(xnk)→ u(x) but

u(xnk) < c so u(x) < c. This contradicts the fact that u = 0 on the boundary.

Hence Ac is relatively compact in D for all c and u is an exhaustion.

Since we have a negative, continuous, subharmonic exhaustion function in D
we can define the Monge-Ampère measure µu associated with u and we will

show that total mass ,‖µu‖, of µu is finite :

‖µu‖ =

∫
D
ddcu =

∫ 1

−1

∫ √(1−x)(1+x)

−
√

(1−x)(1+x)

(1−x)−
5
4dydx =

∫ 1

−1

2(1+x)
1
2 (1−x)−

3
4dx

≤ 2
√

2

∫ 1

−1

(1− x)−
3
4dx

say t = 1− x then

= 2
√

2

∫ 2

0

1

t
3
4

dt <∞

Hence µu has finite mass.

We know that for any continuous, negative, subharmonic exhaustion function

u the Poletsky-Stessin Hardy space Hp
u(D) ⊂ H1(D) ([34],pg:13) but now we

will show that the inclusion is strict by using the exhaustion function u

that we constructed above. Now consider the holomorphic function F (z) =
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1
(1−z)2q for q < 1

2

First of all we want to show that F (z) ∈ H1(D), so we will show the following

growth condition is satisfied:

sup
0<r<1

∫ 2π

0

|F (reiθ|dθ <∞ for 2q < 1

|F (z)| = 1

|1− reiθ|2q
=

1

(1 + r2 − 2Re(reiθ))q
=

1

(1 + r2 − 2r cos(θ))q

Now, ∫ 2π

0

1

(1 + r2 − 2r cos(θ))q
dθ =

∫ 2π

0

1

(sin2 θ + (cos θ − r)2)q
dθ

≤
∫ 2π

0

1

(cos θ − r)2q
dθ

and as r → 1 this integral converges for 2q < 1 and

sup
0<r<1

∫ 2π

0

|F (reiθ|dθ <∞ for q <
1

2

Now we will show that F (z) /∈ H1
u(D) :

|F (z)| = 1

|1− z|2q
=

1

((1− x)2 + y2)q
= ((1− x)2 + y2)−q

from the Lelong-Jensen formula,∫
S(r)

|F (z)|dµu,r =

∫
B(r)

|F (z)|4u+

∫
B(r)

(r − u)4|F (z)|

second integral on the right hand side is non-negative so∫
S(r)

|F (z)|dµu,r ≥
∫
B(r)

|F (z)|4u
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now as r → 0

‖F (z)‖H1
u
≥ lim

r→0

∫
B(r)

|F (z)|4u ≥
∫
D
|F (z)|4u

where the last inequality is due to Fatou Lemma. On D, y2 ≤ 1−x2 ≤ 2(1−x)

so

‖F (z)‖H1
u
≥
∫
D
|F (z)|4u =

∫ 1

−1

∫ √(1−x)(1+x)

−
√

(1−x)(1+x)

((1− x)2 + y2)−q(1− x)−
5
4dydx

≥
∫ 1

−1

∫ √(1−x)(1+x)

−
√

(1−x)(1+x)

((1− x)2 + 2(1− x))−q(1− x)−
5
4dydx

≥
∫ 1

−1

(1− x)
1
2 (1− x)−q(3− x)−q(1− x)−

5
4dx

≥
∫ 1

−1

1

(1− x)q+
3
4

dx

so for q > 1
4

this integral diverges. Hence for 1
4
< q < 1

2
F (z) ∈ H1(D) but

F (z) /∈ H1
u(D)

Remark 7. Moreover from this result we also deduce that if u is an arbitrary

exhaustion function with finite Monge-Ampère mass Hp
u(Ω)’s are not always

closed subspaces of Hp(Ω) because as Banach spaces, the inclusion Hp
u(Ω) ↪→

Hp(Ω) is continuous which can be deduced from Closed Graph Theorem and

the fact that point evaluations are continuous ([34]). However the range is

not closed because range includes all bounded functions (hence polynomials)

and polynomials are dense in Hp(Ω) but Hp(Ω) 6= Hp
u(Ω) in general.
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2.2 Boundary Monge-Ampère Measure and

Boundary Value Characterization of Poletsky-

Stessin Hardy Spaces

2.2.1 Boundary Monge-Ampère Measures

In [14], Demailly gave the following definition for the boundary Monge-

Ampère measures :

Definition 12. Let ϕ : Ω → [−∞, 0) be a continuous plurisubharmonic

exhaustion function for Ω. Suppose that the total Monge-Ampère mass of ϕ

is finite, i.e. ∫
Ω

(ddcϕ)n <∞ (2.2.1)

Then as r tends to 0, the measures µr converge to a positive measure µ

weak*-ly on Ω with total mass
∫

Ω
(ddcϕ)n and supported on ∂Ω. This limit

measure µ is called the boundary Monge-Ampère measure associated with

the exhaustion ϕ.

In certain cases we can explicitly calculate the boundary Monge-Ampère

measure :

Proposition 2.2.1. Let Ω be a bounded, simply connected domain bounded

by an analytic Jordan curve and µga,r be the boundary Monge-Ampère mea-

sure associated with the Green function with a logarithmic pole at a ∈ Ω.

Then µga,r converges to the boundary Monge-Ampère measure µg which is

given by

µg =
1

4π
‖∇(|f(z)|2)‖ds (2.2.2)

where ‖.‖ denotes the Euclidean norm, f is the conformal map given by

Riemann mapping with f(a) = 0, f ′(a) > 0 and ds is the arclength measure.

Moreover, µ has finite mass and ds� µ (absolutely continuous) on ∂Ω.
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Proof. Let a be a point in Ω and f be the conformal mapping given by

Riemann mapping theorem which maps Ω conformally onto the unit disk D
such that f(a) = 0. Then the Green function of Ω is

gΩ(z, a) = g(z) = − log |f(z)|

and let f(x + iy) = u(x, y) + iv(x, y). Now Monge-Ampère measure on Ω

reduces to dcg|S(r) and

dc(− log |f(z)|) =
1

2π
[
uuy + vvy
u2 + v2

dx− uux + vvx
u2 + v2

dy]

but since on S(r), g(z) = r we have u2 + v2 = e−r and hence

1

2π
[
uuy + vvy
u2 + v2

dx− uux + vvx
u2 + v2

dy]

=
e2r

2π
[
1

2
(
∂

∂y
(u2 + v2)dx− ∂

∂x
(u2 + v2)dy)]

=
e2r

4π

∂

∂η
(|f(z)|2)ds

=
e2r

4π
‖∇(|f(z)|2)‖ds

where η is the unit outward pointing normal.So

µga,r =
e2r

4π
‖∇(|f(z)|2)‖ds

Now since Ω is bounded by an analytic curve f conformally extends to the

boundary ([18]) and hence as r → 0, we have

µg =
1

4π
‖∇(|f(z)|2)‖ds

In order to see that ds is absolutely continuous to µg, it is enough to show
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that ∇|f(z)|2 6= 0 on the boundary. Assume the contrary, then

∇(u2 + v2) = 0⇔ (uux + vvx, uuy + vvy) = (0, 0)

⇔ uux = −vvx and uuy = −vvy

Now let z = (x, y) be a point on ∂Ω then since − log |f(z)| = 0 on the

boundary we have |f(z)| = 1 so u(x, y) and v(x, y) can not be both zero.

CASE 1:(u(x, y) and v(x, y) are both non-zero)

Combining the above equalities with the Cauchy-Riemann equations we get

uu2
x = −vvxux = vuyvy = −uu2

y = −uv2
x

⇒ u2
x = −v2

x since u(x, y) is non-zero

⇒ ux = vx = 0

⇒ f ′(z) = ux + ivx = 0

but this contradicts with f being conformal so there is no such case.

CASE 2:(one of u(x, y) and v(x, y) is zero)

Without loss of generality suppose u(x, y) = 0 then since they cannot be

both zero v(x, y) 6= 0

uux(x, y) = −vvx(x, y)⇒ vvx(x, y) = 0

but v(x, y) 6= 0⇒ vx(x, y) = 0

uuy(x, y) = −vvy(x, y)⇒ vvy(x, y) = 0

but v(x, y) 6= 0⇒ vy(x, y) = ux(x, y) = 0

⇒ f ′(z) = ux + ivx = 0

but this contradicts with f being conformal so there is no such case either.

Hence ds is absolutely continuous to µg.

In order to show that µg has finite mass we will first show that ‖∇(|f(z)|2)‖
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is bounded:

‖∇(|f(z)|2)‖ = 2‖(uux + vvx, uuy + vvy)‖

= 2
√

(uux + vvx)2 + (uuy + vvy)2

= 2
√
u2u2

x + 2uvuxvx + v2v2
x + u2u2

y + 2uvuyvy + v2v2
y

= 2
√
u2u2

x + v2u2
x + v2v2

x + u2v2
x

= 2
√

(u2 + v2)(u2
x + v2

x)

≤ 2
√
u2
x + v2

x = 2|f ′(z)| ≤ C1

from Cauchy estimate. Now

‖µg‖ =

∫
Ω

dµg ≤
C1

4π

∫
Ω

ds ≤M

since Ω is a bounded domain. Hence µg has finite mass.

Corollary 2.2.1. Suppose Ω is a bounded domain whose boundary is a

Jordan curve Γ which is a union of k analytic arcs Γj. Let h ∈ Hp(Ω)

then h has boundary values h∗ a.e.(dµg) on Γ in the normal direction and

h∗ ∈ Lp(Γ, dµg)

Proof. Let f be the Riemann mapping of Ω onto unit disc ∆. Then f extends

to be analytic and conformal on a neighborhood of Ω ∪ Γj for each j since

Γj’s are all analytic. Further g = h◦f−1 lies in Hp(∆) and so g has boundary

values a.e. dθ on ∂∆ and g∗ ∈ Lp(∂Ω, dθ). Then h = g ◦ f has boundary

values a.e. ds on Γ hence we have that h has boundary values h∗ = g∗ ◦ f
µg-a.e. from the previous result. Also h∗ = g∗ ◦ f ∈ Lp(Γ, ds) and hence

h∗ ∈ Lp(Γ, dµg)

Remark 8. The above result can be generalized to compact bordered Rie-

mann surfaces by means of a procedure called Schottky Doubling. The double

of a multiply connected domain of the plane was first introduced by Schot-

tky and it was generalized to general Riemann surfaces by Picard. When
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we study the classes of functions given on the border of a compact bordered

Riemann surface by means of Schottky Doubling, we can assume that our

compact bordered Riemann surface is the closure of a region Ω of a compact

Riemann surface S such that Γ = ∂Ω is the union of a finite number (> 0) of

disjoint, regular, analytic Jordan curves. The double S of a Riemann surface

R may be defined as follows. Two points of S are associated with, or lie over,

each interior point of R and one point of S is associated with each boundary

point of R. Two disjoint neighborhoods of S lie over each neighborhood of

an interior point of R.

To obtain a more complete description of S consider the Riemann surface

(R,Φ) where Φ is the complex structure on R and replace each h ∈ Φ by

h∗ : p → −h(p) and consider the conjugate Riemann surface (R,Φ∗). The

new structure is conformal since h∗1◦(h∗2)−1 is explicitly z → −(h1 ◦ h−1
2 )(−z)

which is conformal. On boundary, identify the boundary points of (R,Φ)

and (R,Φ∗) by identity mapping. Now S is the topological sum of (R,Φ)

and (R,Φ∗) i.e. S is obtained topologically from two copies of R by gluing

the conjugate parts at the boundary and identifying the boundary points

by identity mapping. As well-known examples, the double of a simply con-

nected domain with boundary is the sphere, while the double of a multiply

connected domain with m-boundaries is the sphere with m− 1 handles, the

double of the Mobius strip is the torus.

Remark 9. A function u : R→ R is harmonic if for some chart hα : Uα → Vα

the functions uα = u ◦ h−1
α are harmonic in the usual sense.

A function is harmonic on a bordered Riemann surface R only if it has a

harmonic extension to an open set on the double S.([1])

Now using doubling argument we have the following generalization:

Proposition 2.2.2. Let R be a compact bordered Riemann surface whose

border is denoted by Γ. Let f ∈ Hp(R) (i.e |f |p has a harmonic majorant)

then f has boundary values f ∗ a.e. (dµg) on Γ and f ∗ ∈ Lp(dµg).
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Proof. First of all due to Schottky doubling we take R as the closure of a

region Ω of a compact Riemann surface S such that Γ = ∂Ω is the union

of k analytic arcs, Γj. Now we can introduce a univalent conformal map η

of an annulus A = {ρ < |z| < ρ−1} into S, mapping the unit circle onto a

component of Γ and mapping points in its domain of modulus less than 1 into

points of Ω([21], pg:208) and by this we conclude that a member, f of Hp(Ω),

composed with η restricted to A1 = {ρ < |z| < 1} belongs to Hp(A1) i.e.

f ◦η = g ∈ Hp(A1). And since g ∈ Hp(A1) has Fatou boundary function g∗ ∈
Lp(A1, dθ) on ∂A1, f has Fatou boundary function f ∗ = g∗◦η−1 ∈ Lp(∂Ω, ds)

([23], pg:70). Also we can conformally map Ω into unit disc by a map ψ(z)

and then the Green function of Ω, gΩ(z, a) = − log |ψ(z)| and by (2.2.2) we

have boundary Monge-Ampère measure on ∂Ω as µg = 1
4π
‖∇(|ψ(z)|2)‖ds so

f ∗ ∈ Lp(∂Ω, dµg).

2.2.2 Boundary Value Characterization of Poletsky-

Stessin Hardy Spaces

Let Ω be a domain in C containing 0 and bounded by an analytic Jordan

curve and u be a continuous, negative, subharmonic exhaustion function for

Ω with finite Monge-Ampère mass. In the classical Hardy space theory on the

unit disc D we can characterize the Hp spaces through their boundary values

inside the Lp spaces of the unit circle and since we have Hp
u(Ω) ⊂ Hp(Ω), any

holomorphic function f ∈ Hp
u(Ω) has the boundary value function f ∗ from

the classical theory (Theorem 10, [44]). In this section we will give an anal-

ogous characterization of the Poletsky-Stessin Hardy spaces through these

boundary value functions and boundary Monge-Ampère measure. First, we

will show the relation between boundary Monge-Ampère measure and Eu-

clidean measure on the boundary ∂Ω.

Proposition 2.2.3. Let u be a continuous, negative, subharmonic exhaustion

function for Ω with finite Monge-Ampère mass. Then the boundary Monge-
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Ampère measure µu and the Euclidean measure on ∂Ω are mutually absolutely

continuous.

Proof. Let ϕ be a continuous function on ∂Ω and let the Poisson integral of

ϕ be

H(z) =

∫
∂Ω

P (z, ξ)ϕ(ξ)dσ(ξ)

then by Lelong-Jensen formula we have∫
∂Ω

ϕdµu =

∫
Ω

H(z)ddcu =

∫
Ω

∫
∂Ω

P (z, ξ)ϕ(ξ)dσ(ξ)ddcu

and since ϕ is a continuous function on the boundary and µu has finite mass

we can use Fubini theorem to get∫
∂Ω

ϕdµu =

∫
Ω

∫
∂Ω

P (z, ξ)ϕ(ξ)dσ(ξ)ddcu =

∫
∂Ω

ϕ(ξ)

(∫
Ω

P (z, ξ)ddcu(z)

)
dσ(ξ)

Now define

β(ξ) =

∫
Ω

P (z, ξ)ddcu(z)

We will show that β(ξ) is dσ-integrable: First we see that β(ξ) ≥ 0 and∫
∂Ω

|β(ξ)|dσ(ξ) =

∫
∂Ω

β(ξ)dσ(ξ) =

∫
∂Ω

∫
Ω

P (z, ξ)ddcu(z)dσ(ξ) =

∫
Ω

∫
∂Ω

P (z, ξ)dσ(ξ)ddcu(z)

and since ∫
∂Ω

P (z, ξ)dσ(ξ) = 1

we have ∫
∂Ω

|β(ξ)|dσ(ξ) =

∫
Ω

ddcu = MA(u) <∞

Hence β ∈ L1(dσ) and we have∫
∂Ω

ϕdµu =

∫
∂Ω

ϕβdσ
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⇒ dµu = βdσ. Now we will also show that 1/β ∈ L1
u(∂Ω). In fact, near ∂Ω

we have u ≤ CgΩ(z, 0) for some positive constant C > 0, therefore we have

dσ ≤ Cdµu = βdσ. Thus, 1/β ≤ C and since bounded functions belong to

L1
u(∂Ω) we have 1/β ∈ L1

u(∂Ω). Hence, the result follows.

Remark 10. From the previous proof we see that for a fixed ξ ∈ ∂Ω, βr̃(ξ)

which is defined as

βr̃(ξ) =

∫
Bu(r̃)

P (z, ξ)ddcu =

∫
Su(r̃)

P (z, ξ)dµu,r̃

converges to β(ξ) =
∫

Ω
P (z, ξ)ddcu(z) by Monotone Convergence Theorem

since βr̃ ≥ 0 for all r̃, and βr̃ is increasing with respect to r̃.

Now we will give the characterization of Poletsky-Stessin Hardy spaces

Hp
u(Ω) through boundary value functions:

Theorem 2.2.1. Let f ∈ Hp(Ω) be a holomorphic function and u be a

continuous, negative, subharmonic exhaustion function for Ω. Then f ∈
Hp
u(Ω) if and only if f ∗ ∈ Lp(dµu) for 1 ≤ p < ∞. Moreover ‖f ∗‖Lp(dµu) =

‖f‖Hp
u(Ω).

Proof. Let f ∈ Hp
u(Ω) ⊂ Hp(Ω) we want to show that f ∗ ∈ Lp(dµu). First

of all let p > 1,∫
∂Ω

|f ∗(ξ)|pdµu =

∫
∂Ω

|f ∗(ξ)|p
(∫

Ω

P (z, ξ)ddcu(z)

)
dσ(ξ)

and using Fubini-Tonelli theorem we change the order of integration and get

∫
Ω


∫
∂Ω

|f ∗(ξ)|pP (z, ξ)dσ(ξ)︸ ︷︷ ︸
H(z)

 ddcu(z)

Then the harmonic function being the Poisson integral of |f ∗|p is the least
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harmonic majorant of |f |p so by ([37], Theorem 4.5.4) we have

H(z) = |f(z)|p −
∫

Ω

gΩ(w, z)ddc|f(w)|p

where gΩ(w, z) is the Green function of Ω with the logarithmic pole at the

point z. By ([14],Theorem 4.14), gΩ(w, z) is continuous on Ω and subhar-

monic in Ω hence we have∫
Ω

H(z)ddcu =

∫
Ω

|f(z)|pddcu−
∫

Ω

(∫
Ω

gΩ(w, z)ddcu

)
ddc|f(w)|p

Now using the boundary version of Lelong- Jensen formula ([14],Theorem

3.3) we get ∫
Ω

gΩ(w, z)ddcu(z) =

∫
Ω

u(z)ddcgΩ(w, z) = u(w)

therefore∫
∂Ω

|f ∗(ξ)|pdµu =

∫
Ω

H(z)ddcu =

∫
Ω

|f(z)|pddcu−
∫

Ω

u(z)ddc|f |p = ‖f‖Hp
u(Ω) <∞

so we have f ∗ ∈ Lp(dµu).
For the converse since f ∈ Hp(Ω) we have

f(z) =

∫
Ω

P (z, ξ)f ∗(ξ)dσ(ξ)

now ∫
Su(r)

|f(z)|pdµu,r =

∫
Su(r)

∣∣∣∣∫
Ω

P (z, ξ)f ∗(ξ)dσ(ξ)

∣∣∣∣p dµu,r
then by using Hölder inequality we have,

≤
∫

Ω

(∫
Su(r)

P (z, ξ)dµu,r

)
|f ∗(ξ)|pdσ(ξ)
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by Remark 2 we know
∫
Su(r)

P (z, ξ)dµu,r is increasing and using Monotone

Convergence Theorem as r → 0 we get

‖f‖Hp
u(Ω) ≤

∫
∂Ω

|f ∗(ξ)|pdµu(ξ) <∞

so f ∈ Hp
u(Ω). The case p = 1 is just a straightforward application of the

above procedure.

2.2.3 Weak and Strong Limit Values

The existence of boundary values for holomorphic functions depends on the

geometry of the domain and the growth of the functions. However through-

out this section we have made use of the fact that Poletsky-Stessin Hardy

classes are inside the classical ones so we already have the non tangential

boundary values. In his 2011 paper ([35])in order to look at the boundary

value problem without any boundary smoothness condition, Poletsky gave

definitions for two types of boundary values namely, strong and weak limit

values for sequences of functions in an abstract setting as follows:

Definition 13. Let K be a compact metric space and M = µj be a sequence

of regular Borel measures on K converging weak-∗ in C∗(K) to a finite mea-

sure µ. We denote the set suppµj by Kj and suppµ by K0. Let φ = {φj} be

a sequence of Borel functions φj on Kj. We let

‖φ‖Lp(M) = lim sup
j→∞

‖φj‖Lp(Kj ,µj)

If the measures {φjµj} converge weak-∗ to a measure φ∗µ then the function

φ∗ will be called the weak limit values of φ. We will denote by A(M) the

space of all sequences φ of Borel functions φj on Kj which have weak limit

values and by Ap(M) those sequences φ in A(M) for ‖φ‖Lp(M) <∞.

We say that a sequence φ ∈ A(M) has the strong limit values on K0

with respect to M if there is a µ-measurable function φ∗ on K0 such that for
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any b > a and any ε, δ > 0 there is a j0 and an open set O ⊂ K containing

G(a, b) = {x ∈ K0 : a ≤ φ∗(x) ≤ b} such that

µj({φj < a− ε} ∩O) + µj({φj > b+ ε} ∩O) < δ

when j ≥ j0. The function φ∗ is called the strong limit values of φ.

Now we will show the relation of weak and strong limit values with the

boundary values of the functions in the Poletsky-Stessin Hardy classes H1
u(D)

where u is a continuous, negative, subharmonic exhaustion function with

finite mass:

Theorem 2.2.2. Let f ∈ H1
u(D) and f ∗ be the boundary value of f . Then

the sequence {fµu,r} has f ∗µu as its weak limit value.

Proof. First define P(z, ξ) = P (z,ξ)∫
D P (w,ξ)ddcu(w)

we see that
∫
∂DP(z, ξ)dµ(ξ) = 1.

Now define

pr(ξ) =

∫
S(r)

P(z, ξ)dµu,r

Step 1: We will show that pr’s are uniformly bounded and converge weak-∗
to 1 on ∂D:

pr(ξ) =

∫
S(r)

P(z, ξ)dµu,r =
1∫

D P (w, ξ)ddcu(w)

∫
S(r)

P (z, ξ)dµu,r(z)

and using Lelong-Jensen formula we get

=
1∫

D P (w, ξ)ddcu(w)

∫
B(r)

P (z, ξ)ddcu(z)

Hence ‖pr‖ ≤ 1 for all r, ξ.

Let ϕ ∈ C(D) then

lim
r→0

∫
∂D
ϕ(ξ)pr(ξ)dµu(ξ) = lim

r→0

∫
∂D
ϕ(ξ)

(∫
S(r)

P(z, ξ)dµu,r

)
dµu(ξ)
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lim
r→0

∫
S(r)

(∫
∂D
ϕ(ξ)P (z, ξ)dσ(ξ)

)
dµu,r

lim
r→0

∫
S(r)

ϕ(z)dµu,r(z) =

∫
∂D
ϕ(ξ)dµu(ξ)

the last equality is true since dµu,r weak-∗ converges to dµu.Hence pr’s weak-

∗ converge to 1 on ∂D.

Step 2: For z ∈ S(r) define ψr(z) =
∫
∂DP(z, ξ)f ∗(ξ)dµu(ξ) then∫

S(r)

ψr(z)dµu,r(z) =

∫
∂D
f ∗(ξ)

(∫
S(r)

P(z, ξ)dµu,r(z)

)
dµu(ξ)

=

∫
∂D
f ∗(ξ)pr(ξ)dµu(ξ)

and ∫
S(r)

|ψr(z)|dµu,r(z) ≤
∫
∂D
|f ∗(ξ)|

(∫
S(r)

P(z, ξ)dµu,r(z)

)
dµu(ξ)

=

∫
∂D
|f ∗(ξ)|pr(ξ)dµu(ξ)

Hence ‖ψr‖L1(S(r)) are uniformly bounded and we can take a subsequence

{ψrjµu,rj} converging weak-∗ to a measure ν then∫
∂D
dν = lim

j→∞

∫
S(rj)

ψrjdµu,rj = lim
j→∞

∫
∂D
f ∗prjdµu =

∫
∂D
f ∗dµu

by ([35],Lemma 4.1). Thus ν = f ∗µu and the sequence {ψrµu,r} converges

weak-∗ to f ∗µu. Hence,

lim
r→0

∫
D
ψr(z)dµu,r = lim

r→0

∫
D

∫
∂D
P(z, ξ)f ∗(ξ)dµu(ξ)dµu,r

= lim
r→0

∫
D
f(z)dµu,r =

∫
D
f ∗dµu
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Therefore f ∗ is the weak limit value.

Corollary 2.2.2. Let f ∈ H1
u(D) and f ∗ be the boundary value of f . Then

the sequence {|f |µu,r} has |f ∗|µu as its both weak and strong limit value.

Proof. For z ∈ S(r) define ψr(z) =
∫
∂DP(z, ξ)|f ∗(ξ)|dµu(ξ) then

|f(z)| =
∣∣∣∣∫
∂D
f ∗(ξ)P (z, ξ)dσ(ξ)

∣∣∣∣ ≤ ∫
∂D
|f ∗(ξ)|P(z, ξ)dµu(ξ) = ψr(z)

Now using the same argument in the previous result we get that the sequence

ψrµu,r converges weak-∗ to |f ∗|µu, therefore the non-negative sequence ψr −
|f | has zero weak-∗ limit value hence we have |f |µu,r → |f ∗|µu weak-∗. By

([35],Theorem 3.6) we also have |f ∗| as strong limit value.

2.3 Factorization

Let Ω be a domain in C containing 0 and bounded by an analytic Jordan

curve. Suppose ψ : D → Ω is the conformal map such that ψ(0) = 0 and

ϕ = ψ−1. By Carathéodory theorem for a domain like Ω we have 0 < m ≤
|ψ′| ≤ M < ∞ for some m,M > 0. Following the definition given in ([3]),

we have that :

Definition 14. A holomorphic function h on Ω is Ω-inner if h ◦ψ is inner in

the classical sense i.e. |h ◦ ψ| = 1 for almost all ξ ∈ ∂D and Ω-outer if h ◦ ψ
is outer in the classical sense i.e.

log |h ◦ ψ(0)| =
∫
∂D

log |h ◦ ψ|dσ

For the classical Hardy space on the unit disc D we have the following

canonical factorization theorem ([17],pg:24):

Theorem 2.3.1. Every function f 6≡ 0 of class Hp(D) has a unique factor-

ization of the form f = BSF where B is a Blaschke product, S is a singular
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inner function and F is an outer function for the class Hp(D).

Using this result and the conformal mapping the following is shown in

([3]):

Proposition 2.3.1. Every f ∈ Hp(Ω) can be factored uniquely up to a uni-

modular constant as f = IF where I is Ω-inner and F is Ω-outer.

Inspired by this result we have the following corollary

Corollary 2.3.1. Let f ∈ Hp
u(Ω), 1 ≤ p < ∞, where u is a continuous

exhaustion function with finite Monge-Ampère mass. Then f can be factored

as f = IF where I is Ω-inner and F is Ω-outer. Moreover I ∈ Hp
u(Ω) and

F ∈ Hp
u(Ω).

Proof. First of all, since Hp
u(Ω) ⊂ Hp(Ω) by the above proposition it is

obvious that f can be factored as f = IF where I is Ω-inner and F is

Ω-outer. Now define the measure µ̂ on ∂D as µ̂(E) = µu(ψ(E)) for any

measurable set E ⊂ ∂D then it is clear from the change of variables formula

that |I ◦ ψ| = 1 dµ̂-a.e. so∫
∂Ω

|I|pdµu =

∫
∂D
|I ◦ ψ|pdµ̂ =

∫
∂D
dµ̂ =

∫
∂Ω

dµu = MA(u) <∞

since u has finite Monge-Ampère mass and for the outer part∫
∂Ω

|F |pdµu =

∫
∂D
|F ◦ ψ|pdµ̂ =

∫
∂D
|f ∗ ◦ ψ|pdµ̂ =

∫
∂Ω

|f ∗|pdµu <∞

since f ∈ Hp
u(Ω). Hence we have I ∈ Hp

u(Ω) and F ∈ Hp
u(Ω).

In fact in the particular case of unit disc D we can say more about this

factorization :

Theorem 2.3.2. Let f be analytic function in D such that f ∈ Hp
u(D). Then

f can be factored into a Blaschke product B, a singular inner function S and

an outer function F such that B, S, F ∈ Hp
u(D) for 1 ≤ p <∞.
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Proof. Let f ∈ Hp
u(D) then f ∈ Hp(D) so f has canonical decomposition

f = BSF where B is a Blaschke product, S is a singular inner function

and F is an outer function. The exhaustion u has finite mass so bounded

functions belong to class Hp
u(D). Since B and S are bounded ([17],pg:24),

B, S ∈ Hp
u(D). As the outer function F (z) is concerned , we know F ∈ H1(D)

so we have

F (z) =
1

2π

∫ 2π

0

P (r, θ − t)F ∗(eit)dt

Now ∫
S(r̂)

|F (z)|pdµu,r̂ =
1

2π

∫
S(r̂)

∣∣∣∣∫ 2π

0

P (r, θ − t)F ∗(eit)dt
∣∣∣∣p dµu,r̂

≤ 1

2π

∫ 2π

0

(∫
S(r̂)

P (r, θ − t)dµu,r̂
)
|F ∗(eit)|pdt

=
1

2π

∫ 2π

0

(∫
S(r̂)

P (r, θ − t)dµu,r̂
)
|f ∗(eit)|pdt

and using the previous result, monotone convergence theorem and the fact

that |f ∗| = |F ∗| (dt)- a.e. we get as r̂ → 0:

‖F (z)‖Hp
u(D) ≤

∫
∂D
|f ∗(eit)|pdµu(t) <∞

⇒ F (z) ∈ Hp
u(D)

In the classical Hp space theory a useful tool for the proofs is that any

holomorphic function f ∈ H1(D) can be expressed as a product of two func-

tions , f = gh where both factors g and h ∈ H2(D). Now we will show that

there is a similar factorization in the spaces Hp
u(Ω).

Corollary 2.3.2. Suppose 1 ≤ p < ∞, f ∈ Hp
u(Ω), f 6≡ 0. Then there

is a zero-free function h ∈ H2
u(Ω) such that f = Ih

2
p . In particular every

f ∈ H1
u(Ω) is a product of f = gh in which both factors are in H2

u(Ω).
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Proof. By the previous theorem f/I ∈ Hp
u(Ω). Since f/I has no zero in Ω

and Ω is simply connected , there exists ϕ ∈ O(Ω) such that exp(ϕ) = f/I.

Define h = exp(pϕ/2) then h ∈ O(Ω) and |h|2 = |f/I|p and h ∈ H2
u(Ω)

and f = Ih
2
p . To obtain f = gh for f ∈ H1

u(Ω) write f = Ih2 in the form

f = (Ih)h.

2.4 Approximation

Let A(Ω) denote the algebra of holomorphic functions on Ω which are con-

tinuous on ∂Ω. We know that the algebra of holomorphic functions A(Ω) is

dense in the classical Hardy spaces when Ω is a domain bounded by an an-

alytic Jordan curve and we will show an analogous approximation result on

Hp
u(Ω) where u is a negative, continuous, subharmonic exhaustion function

on Ω with finite Monge-Ampère mass but before this result we should first

mention some classes of holomorphic functions from the classical theory on

the unit disc which will help us in the proof of approximation result:

Definition 15. An analytic function f ∈ O(D) is said to be of class N if

the integrals ∫ 2π

0

log+ |f(reiθ)|dθ

are bounded for r < 1.

Definition 16. An analytic function f ∈ O(D) is in class N+ if it has the

form f = BSF where B is a Blaschke product, S is a singular inner function

and F is an outer function for the class N

It is clear that N ⊃ N+ ⊃ Hp(D) for all p > 0, (For details see [17]). We

will also use the following result (Theorem 2.11, [17]), which plays a crucial

role in our approximation result:

Theorem 2.4.1. If a holomorphic function f ∈ N+ and f ∗ ∈ Lp for some

p > 0, then f ∈ Hp(D).
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Now we can give the approximation result for the Poletsky-Stessin Hardy

classes Hp
u(Ω):

Theorem 2.4.2. The algebra A(Ω) is dense in Hp
u(Ω), 1 ≤ p <∞.

Proof. (Case 1: p > 1)Let L be a linear functional on Hp
u(Ω) such that L

vanishes on A(Ω). Then L(f) =
∫
∂Ω
f ∗g∗dµu for some non-zero g ∈ Lq(dµu)

hence
∫
∂Ω
γg∗dµu = 0 for all γ ∈ A(Ω) (*). Now we need the following

lemma:

Lemma 2.4.1. Let µ be a measure on the boundary ∂Ω of Ω which is orthog-

onal to A(Ω). Then µ is absolutely continuous with respect to dµgΩ,0
which

is the boundary Monge-Ampère measure with respect to the Green function

with pole at 0.

Proof. The homomorphism “evaluation at 0” of A(Ω) has the representing

measure dµgΩ,0
on ∂Ω. Then by generalized F. and M. Riesz Theorem (The-

orem 7.6, [19]) the singular part µs of µ with respect to dµgΩ,0
is orthogonal

to A(Ω) that is
∫
∂Ω
fdµs = 0 for all f ∈ A(Ω) but on a domain like Ω, A(Ω)

is dense in C(∂Ω) (Theorem 2.7, [19]) so
∫
∂Ω
gdµs = 0 for all g ∈ C(∂Ω).

Hence dµs = 0 and dµ << dµgΩ,0
.

Now by the above lemma and (*) we have g∗dµu << dµgΩ,0
so by Radon-

Nikodym Theorem we have g∗dµu = h∗dµgΩ,0
for some h∗ ∈ L1(dµgΩ,0

) and

on a domain Ω which is bounded by an analytic Jordan curve, we have

c1dµgΩ,0
≤ dσ ≤ c2dµgΩ,0

, so we have h∗ ∈ L1(dσ). Let ϕ be the conformal

mapping between the unit disc and Ω and ψ = ϕ−1. Now consider the

function H∗ = h∗ ◦ ψ on ∂D then since h∗ ∈ L1(dσ) we have h∗ ∈ L1(∂D),

and since ψ(0) = 0 and µgΩ,0
is in fact the harmonic measure, we have

dµgD,0(eiθ) = dµgΩ,0
(ψ(eiθ)) and using ϕ = ψ−1 we get∫

∂D
einθ(h∗ ◦ ψ(eiθ))dθ =

∫
∂Ω

(ϕ(z))nh∗(z)dµgΩ,0
(z) =

∫
∂Ω

(ϕ(z))ng∗dµu = 0
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for all n as a consequence of (*). Hence H∗ is the boundary value of an

H1(D) function H, then h which is defined as H = h◦ψ is in the class E1(Ω)

by the corollary of (Theorem 10.1, [17]). Moreover since E1(Ω) = H1(Ω) we

have h ∈ H1(Ω) and since ψ(0) = 0 we have h(0) = 0.

Now take α ∈ Hp
u(Ω) and consider the analytic function αh

∫
∂Ω

|α∗h∗|
1
2dσ ≤

(∫
∂Ω

|α∗|dσ
) 1

2
(∫

∂Ω

|h∗|dσ
) 1

2

≤ ‖α‖
1
2

H1‖h‖
1
2

H1

since h ∈ H1(Ω) and α ∈ Hp
u(Ω) ⊂ Hp(Ω) ⊂ H1(Ω) so αh ∈ H 1

2 (Ω). On the

other hand∫
∂Ω

|α∗h∗|dσ ≤ c2

∫
∂Ω

|α∗||h∗|dµgΩ,0
= c2

∫
∂Ω

|α∗||g∗|dµu

≤
(∫

∂Ω

|α∗|pdµu
) 1

p
(∫

∂Ω

|g∗|qdµu
) 1

q

<∞

since α ∈ Hp
u(Ω) and g∗ ∈ Lq(dµu). Hence we have α∗h∗ ∈ L1(∂Ω). Now

since αh ∈ H 1
2 (Ω) by the corollary of (Theorem 10.1, [17]) the function AH =

αh(ψ(w))[ψ′(w)]2 ∈ H 1
2 (D) ⊂ N+ but since α∗h∗ ∈ L1(∂Ω) , AH∗ ∈ L1(∂D)

hence again by the corollary of (Theorem 10.1, [17]) we have αh ∈ H1(Ω).

Finally

0 = αh(0) =

∫
∂Ω

αhdµgΩ,0
=

∫
∂Ω

αg∗dµu = L(α)

for all α ∈ Hp
u(Ω) hence A(Ω) is dense in Hp

u(Ω).

(Case 2: p = 1): By the previous corollary we know that if f ∈ H1
u(Ω)

then we can factor it out like f = gh where g, h ∈ H2
u(Ω) and from the first

part of the proof we know there exist sequences {gn}, {hn} ∈ A(Ω) such that

{gn} → g and {hn} → h in H2
u(Ω). Now for f consider the sequence {gnhn}

then,∫
∂Ω

|f − gnhn|dµu =

∫
∂Ω

|gh− gnhn|dµu =

∫
∂Ω

|gh− ghn + ghn − gnhn|dµu
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≤
(∫

∂Ω

|g|2dµu
) 1

2
(∫

∂Ω

|h− hn|2dµu
) 1

2

+

(∫
∂Ω

|hn|2dµu
) 1

2
(∫

∂Ω

|g − gn|2dµu
) 1

2

But right hand side goes to 0 since {gn} → g and {hn} → h in H2
u(Ω) hence

{gnhn} ∈ A(Ω) converges to f in H1
u(Ω).

Combining these two cases we see that A(Ω) is dense in Hp
u(Ω) for 1 ≤ p <∞.

Moreover, we know from Mergelyan’s Approximation Theorem ([31]) that

the algebra A(Ω) can be uniformly approximated by polynomials therefore,

we have the following corollary:

Corollary 2.4.1. Polynomials are dense in Hp
u(Ω), 1 ≤ p <∞.

2.5 Composition Operators With Analytic

Symbols

Let φ : Ω → Ω be a holomorphic self map of Ω. The linear composition

operator induced by the symbol φ is defined by Cφ(f) = f ◦φ, f ∈ O(Ω). In

2003, Shapiro and Smith ([42]) showed that on a domain Ω which is bounded

by an analytic Jordan curve, every holomorphic self map φ of Ω induces a

bounded composition operator on the classical Hardy space Hp(Ω). More-

over we know that being in the class Hp
v (Ω) where v is harmonic outside of a

compact set is equivalent to having a harmonic majorant hence any composi-

tion operator on a Hardy class generated by this sort of exhaustion function

is also bounded. As a consequence of Closed Graph Theorem continuity of

a composition operator on Hp
u(Ω) is in fact determined by whether it takes

functions from Hp
u(Ω) to Hp

u(Ω) or not. However this does not always hold

when exhaustion function has finite Monge-Ampère mass but not harmonic

outside of a compact set as we see from the following example :

Example 1. Suppose u is the exhaustion function that we constructed in

Theorem 2.1.2 then we know again from the proof of Theorem 2.1.2 that the
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function 1

(z−1)
3
4
/∈ H1

u(D). Now consider the operator with symbol φ(z) =

zei
π
2 , and take the function f(z) = 1

(z−i)
3
4

, then

‖f‖H1
u(D) =

∫
∂D

1

(ξ − i) 3
4

β(ξ)dσ(ξ) <∞

since the singularities of β(ξ) and f ∗(ξ) do not overlap and they are both

integrable functions on the boundary so f(z) ∈ H1
u(D) but

Cφ(f) = f ◦ φ =
1

ei
3π
8 (z − 1)

3
4

and Cφ(f) /∈ H1
u(D). Therefore not every composition operator is bounded

on Poletsky-Stessin Hardy classes even though the symbol function is a nice

and simple one like in our example, namely a rotation.

In the next result we will examine the necessary and sufficient conditions

for the composition operator Cϕ to be bounded on this rather interesting

space Hp
u(D) where u is the exhaustion function constructed in the proof of

Theorem 2.1.2 and ϕ is an automorphism of the unit disc:

Theorem 2.5.1. Let ϕ be a Mobius transformation such that ϕ(z) = eiθ z−a
1−az

where a ∈ D and u is the exhaustion function constructed in the proof of

Theorem 1.3. Then the following are equivalent:

(i) Cϕ is a bounded operator on the space Hp
u(D)

(ii) There exists a constant K > 0 such that
∫
E
β(ϕ∗−1(η))dσ(η) ≤ K

∫
E
β(η)dσ(η)

for all measurable E ⊂ ∂D where dµu = βdσ

(iii) ϕ(1) = 1

Proof. (It is sufficient to prove the result for p = 1)

(i⇔ ii) Let f ∈ H1
u(D) and ϕ be a Mobius transformation then

‖f ◦ ϕ‖H1
u(D) =

∫
∂D
|f ∗ ◦ ϕ∗|β(ξ)dσ(ξ) =

∫
∂D
|f ∗(η)|β(ϕ∗−1(η))|(ϕ∗−1)′|dσ(η)
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Suppose Cϕ is bounded on H1
u(D) then ‖f ◦ ϕ‖H1

u(D) ≤ M‖f‖H1
u(D) for all

f ∈ H1
u(D). Now since bounded functions are in Hp

u(D), we have f(z) ≡
1 ∈ H1

u(D) and we will write the above inequality for f(z) ≡ 1. Since

|(ϕ∗−1)′| < N <∞ on ∂D we get∫
∂D
β(ϕ∗−1(η))|(ϕ∗−1)′|dσ(η) ≤ N

∫
∂D
β(ϕ∗−1(η))dσ(η) ≤ NM

∫
∂D
β(η)dσ(η)

For the converse direction, suppose that there exists a constant K > 0 such

that
∫
∂D β(ϕ∗−1(η))dσ(η) ≤ K

∫
∂D β(η)dσ(η) for all measurable E ⊂ ∂D.

Then for any characteristic function χE, E ⊂ ∂D we have∫
∂D
χEβ(ϕ∗−1(η))|(ϕ∗−1)′|dσ(η) =

∫
E

β(ϕ∗−1(η))dσ(η) ≤ K

∫
E

β(η)dσ(η)

= K

∫
∂D
χEβ(η)dσ(η)

Hence by monotone convergence theorem for any positive integrable function

g we have∫
∂D
g(η)β(ϕ∗−1(η))|(ϕ∗−1)′|dσ(η) ≤ K

∫
∂D
g(η)β(η)dσ(η)

so

‖f◦ϕ‖Hp
u(D) =

∫
∂D
|f ∗|pβ(ϕ∗−1(η))|(ϕ∗−1)′|dσ(η) ≤ N

∫
∂D
|f ∗|pβ(ϕ∗−1(η))dσ(η)

≤ C

∫
∂D
|f ∗|pβ(η)dσ(η) = C‖f‖Hp

u(D)

Hence Cϕ is bounded.

(i ⇔ iii) Suppose Cϕ is bounded and ϕ(1) 6= 1 then ∃ξ ∈ ∂D , ξ 6= 1

such that ϕ(ξ) = 1 and take the function f(z) = 1

(1−z)
3
4

then we know that
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f(z) /∈ H1
u(D). Now consider the function F (z) = f ◦ ϕ−1(z) then

‖F (z)‖H1
u(D) =

∫
∂D

1

|1− ϕ−1(η)| 34
dµu(η)

=

∫
∂D\Bγ(1)

1

|1− ϕ−1(η)| 34
dµu(η) +

∫
Bγ(1)

1

|1− ϕ−1(η)| 34
dµu(η) <∞

for some γ > 0. The first integral in the last line is bounded because on

∂D \Bγ(1), dµu and dσ are mutually absolutely continuous and 1

|1−ϕ−1(η)|
3
4

is

dσ integrable and the second integral is bounded because on Bγ(1), 1

|1−ϕ−1(η)|
3
4

is a bounded function and hence it is dµu integrable.

Hence F (z) ∈ H1
u(D) but F ◦ ϕ = f /∈ H1

u(D) but this contradicts with the

boundedness of Cϕ.

Suppose now ϕ(1) = 1 from the (i ⇔ ii) part of the proof we know that if
β(ϕ−1(η))
β(η)

< M < ∞ then Cϕ is bounded and for the case ϕ(1) = 1 we have
β(ϕ−1(η))
β(η)

bounded hence the result follows.

We can generalize these arguments to a slightly wider class of symbols as

follows:

Proposition 2.5.1. Let ϕ : D → D be a locally univalent self map of D
such that ϕ is differentiable in a neighborhood of D. Then Cϕ is bounded on

H1
u(D) if and only if ϕ(1) = 1 and Nϕ

β (η) ≤ Kβ(η) for some K > 0 and all

η ∈ ∂D where Nϕ
β (η) =

∑
j≥1 β(ξj(η)) and {ξj(η)} are the zeros of ϕ(z)− η.

Proof. (⇒) Suppose Cϕ is bounded and ϕ(1) 6= 1 then there exists a ξ ∈ ∂D
such that ϕ(1) = ξ, now consider the function f(z) = 1

(ξ−z)
3
4

, f(z) ∈ H1
u(D)

and

‖f ◦ ϕ‖H1
u(D) =

∫
∂D
|f ∗ ◦ ϕ|dµu =

∫
∂D\Bγ(1)

|f ∗ ◦ ϕ|dµu +

∫
Bγ(1)

|f ∗ ◦ ϕ|dµu

where Bγ(1) = ∂D ∩ Bγ(1) for some small γ > 0. The first integral in

the sum is bounded since over ∂D \ Bγ(1), dµu = Cdσ for some C > 0
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and f ∈ H1
u(D) ⊂ H1(D) so boundedness over this region is guaranteed by

classical Hp theory but∫
Bγ(1)

|f ∗ ◦ ϕ|dµu =

∫
Bγ(1)

1

|ξ − ϕ| 34
dµu

and ϕ has finite derivative near {1} so∫
Bγ(1)

1

|ξ − ϕ| 34
dµu ≥M

∫
Bγ(1)

1

|1− η| 34
dµu →∞

contradicting Cϕ being bounded. Hence ϕ(1) = 1.

The inequality Nϕ
β (η) ≤ Kβ(η) is trivially true for η = 1, so we will consider

the case where η 6= 1 and assume for a contradiction that Nϕ
β (η0) > Kβ(η0)

for all K, for some η0 6= 1. Then from the definition of Nϕ
β (η0) we see

that β(ϕ(η0)) → ∞ which gives ϕ(η0) = 1. Then consider the function

f(z) = 1

(η0−z)
3
4

then by the same argument above f ◦ϕ /∈ H1
u(D) contradicting

Cϕ being bounded hence Nϕ
β (η) ≤ Kβ(η) for all η ∈ ∂D for some K > 0.

(⇐) Since ϕ is locally univalent we can find a countable collection of disjoint

open arcs Ωj with σ(∂D \
⋃

Ωj) = 0 and the restriction of ϕ to each Ωj

is univalent. Write ψj(w) for the inverse of ϕ taking ϕ(Ωj) onto Ωj. Then

change of variables formula gives∫
Ωj

|f ∗ ◦ ϕ||ϕ′(ξ)|β(ξ)dσ(ξ) =

∫
ϕ(Ωj)

|f ∗(w)|β(ψj(w))dσ(w)

where ξ = ψj(w). Now denoting the characteristic function of ϕ(Ωj) by χj

we get

∫
∂D
|f ∗ ◦ ϕ||ϕ′(ξ)|β(ξ)dσ(ξ) =

∫
ϕ(∂D)

|f ∗(w)|

(∑
j≥1

χj(w)β(ψj(w))

)
dσ(w)
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=

∫
ϕ(∂D)

|f ∗(w)|

(∑
j≥1

β(ξj(w))

)
dσ(w)

so ∫
∂D
|f ∗ ◦ ϕ|dµu ≤M

∫
∂D
|f ∗ ◦ ϕ||ϕ′(ξ)|β(ξ)dσ(ξ)

= M

∫
ϕ(∂D)

|f ∗(w)|Nϕ
β (w)dσ(w) ≤ KM

∫
∂D
|f ∗(w)|β(w)dσ(w)

hence Cϕ is a bounded operator.

Now we will examine the most general case where we will give a suffi-

ciency condition for the boundedness of composition operators with arbitrary

holomorphic symbols on the Poletsky-Stessin Hardy Spaces generated by an

exhaustion function with finite Monge-Ampère mass:

Notation: Let ψ be a continuous, subharmonic, exhaustion function for D
and ϕ : D → D be a holomorphic function then the generalized Nevanlinna

function is given as

Nϕ
ψ (w) =

∫
D
(−ψ)ddc log |ϕ− w|

Proposition 2.5.2. Let ϕ : D→ D be a holomorphic function with ϕ(0) = 0

and suppose that ψ is a continuous, subharmonic exhaustion function for D.

If
∫
D

1

(1−|ϕ|2)
p
2
ddcψ < ∞ and lim sup|w|→1

Nϕ
ψ (w)

−ψ(w)
< ∞ then Cϕ is bounded on

Hp
ψ(D), p ≥ 1.

Proof. Suppose f ∈ Hp
ψ(D), then f ∈ Hp(D) and f can be factored as

f = Bg where B is a Blaschke product and g is a non-vanishing function in

Hp(D) such that ‖f‖Hp(D) = ‖g‖Hp(D) and clearly g
p
2 ∈ H2(D). Now suppose

g
p
2 (z) =

∑
anz

n then using Hölder inequality and Schwarz Lemma we get∫
D
|f ◦ ϕ|pddcψ ≤

∫
D
(|g ◦ ϕ|

p
2 )2ddcψ =

∫
D

(∣∣∣∑ anϕ
n
∣∣∣ p2)2

ddcψ
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≤
∫
D

[(∑
|an|2

)(∑
|ϕn|2

)] p
2
ddcψ ≤ ‖g‖pHp(D)

(∫
D

1

(1− |ϕ|2)
p
2

ddcψ

)
= ‖f‖pHp(D)

(∫
D

1

(1− |ϕ|2)
p
2

ddcψ

)
≤M‖f‖p

Hp
ψ(D)

By ([34], Theorem 9.2) we know that

‖f ◦ ϕ‖p
Hp
ψ(D)

=

∫
D
|f ◦ ϕ|pddcψ +

∫
D

(∫
D
(−ψ)ddc log |ϕ− w|

)
ddc|f |p

now define Nϕ,f
ψ (w, r) =

∫
T (r)

(−ψ)ddc log |f ◦ ϕ − w| where T (r) = {z ∈

D|ψ(ϕ(z)) > r}. Let γ(r) = sup
Nϕ,f
ψ (w,r)

Nf
ψ(w)

where supremum is taken over

all f ∈ Hp
ψ(D) and w ∈ D. Then by ([34], Theorem 8.3), if for some r0,

γ(r0) < ∞ then
∫
D

(∫
D(−ψ)ddc log |ϕ− w|

)
ddc|f |p ≤ N‖f‖Hp

ψ(D) so if we

show that γ(r) is finite then the result follows. Take the set of all points

{wi} ∈ D such that f(wi) = w and ψ(wi) > r. Let ∪jAij = ϕ−1(wi) be

the decomposition of the preimage of wi under ϕ. The multiplicity of f ◦ ϕ
on Aij is equal to mimij where mij is the multiplicity of ϕ on Aij and mi

is the multiplicity of f at wi, then Nϕ,f
ψ (w, r) =

∑
imiN

ϕ
ψ (wi) and also

N f
ψ(w) ≥

∑
imi(−ψ(wi)) hence

Nϕ,f
ψ (w, r)

N f
ψ(w)

≤
∑

imiN
ϕ
ψ (wi)∑

imi(−ψ(wi))
≤ max

i

{
Nϕ
ψ (wi)

(−ψ(wi))

}

Thus γ(r) ≤ supr<|w|
Nϕ
ψ (w)

(−ψ(w))
on the other hand if f(w) = w then

Nϕ,f
ψ (w,r)

Nf
ψ(w)

=

Nϕ
ψ (w)

(−ψ(w))
Hence γ(r) = supr<|w|

Nϕ
ψ (w)

(−ψ(w))
now since lim sup|w|→1

Nϕ
ψ (w)

−ψ(w)
< ∞ we

have γ(r) <∞ and the result follows.
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2.6 Duality for Hp
u(D)

Let u be a continuous, negative, subharmonic exhaustion function such that

ddcu has finite mass i.e.
∫
D dd

cu <∞. In this section we will examine what

the dual space of Hp
u(D) will be for p > 1. First of all let us remind that

the Monge-Ampère boundary measure dµu is given by dµu = βdσ where

β(ξ) =
∫
D P (z, ξ)ddcu(z) and β ∈ L1(dσ). Now let us state our result on the

dual of the Banach space Hp
u(D) as follows :

Proposition 2.6.1. For 1 < p <∞ the space (Hp
u(D))∗ = Lqu/β

−1Hq
0(β−qdµu)

where Hq
0(β−qdµu) is the space of all H1(D) functions f such that the bound-

ary value function f ∗ ∈ Lq(β−qdµu) and 1
p

+ 1
q

= 1.

Proof. In order to describe the dual of Hp
u(D) we should find the annihilator

of Hp
u(D) in (Lpu)

∗ = Lqu. (Here by annihilator we mean all linear functionals

φ ∈ (Lpu)
∗ such that φ(f) = 0 for all f ∈ Hp

u(D)). Now let φ be a bounded

linear functional on Lpu then by Riesz Representation Theorem it has a unique

representation

φ(f ∗) =

∫
∂D
f ∗gdµu , g ∈ Lqu

Now suppose φ is an element of annihilator of Hp
u(D) then since dµu = βdσ

we have

φ(f ∗) =

∫
∂D
f ∗gdµu = 0 ∀f ∈ Hp

u(D)

Call gβ = ψ then since β > 0, using Hölder inequality we have

∫
∂D
|ψ|dσ =

∫
∂D
|g|βdσ =

∫
∂D
|g|dµu ≤

(∫
∂D
|g|qdµu

) 1
q
(∫

∂D
1dµu

) 1
p

<∞

since g ∈ Lqu and mass of dµu is finite. Hence ψ ∈ L1(dσ) and since∫
∂D f

∗ψdσ = 0 ∀f ∈ Hp
u(D), surely

∫ 2π

0
einθψ(eiθ)dθ = 0 for n = 0, 1, 2....

Therefore ψ is a holomorphic function with boundary value in L1(dσ) so

ψ ∈ H1(D) and ψ(0) = 0. Now consider the space β−1Hq
0(β−qdµu), then
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g ∈ β−1Hq
0(β−qdµu) since βg = ψ ∈ H1(D), ψ(0) = 0 and∫

∂D
|ψ|qβ−qdµu =

∫
∂D
|g|qβqβ−qdµu =

∫
∂D
|g|qdµu <∞

So annihilator of Hp
u(D) ⊆ β−1Hq

0(β−qdµu).

For the inverse inclusion take h ∈ β−1Hq
0(β−qdµu) then βh is the bound-

ary value of an H1(D) function f such that f(0) = 0, f ∗ = βh and f ∈
Hq

0(β−qdµu), now take an arbitrary α ∈ Hp
u(D) then∫

∂D
αhdµu =

∫
∂D
αhβdσ =

∫
∂D
αf ∗dσ = 0

since f(0) = 0. Hence annihilator ofHp
u(D) in Lqu is the space β−1Hq

0(β−qdµu),

then by ([17], Theorem 7.1) we have (Hp
u(D))∗ = Lqu/β

−1Hq
0(β−qdµu).

47



Chapter 3

Poletsky-Stessin Hardy Spaces

in Hyperconvex Domains on

Cn, n > 1

In this chapter we will examine the Poletsky-Stessin Hardy classes on hyper-

convex domains of Cn for n > 1. First we will start with the comparison

results between Poletsky-Stessin Hardy spaces and the classical Hardy type

spaces defined in various ways by different authors. Next we will look at

Poletsky-Stessin Hardy spaces on the unit polydisc in Cn where most of the

results are analogous to unit disc case. Moreover we will consider Poletsky-

Stessin Hardy spaces on complex ellipsoids which are well known examples

of domains of finite type. Contrary to one dimensional case, we will see that

Poletsky-Stessin Hardy classes on complex ellipsoids are not contained in

classical Hardy spaces therefore we study the existence of boundary values

in detail. In order to understand the boundary behavior and approach re-

gions for Poletsky-Stessin Hardy classes we will revisit Stein’s arguments on

maximal functions ([44]) in a general setting. Using this method of utilizing

maximal functions we will obtain Fatou type theorems concerning the exis-

tence of boundary values along some approach regions. Lastly we will apply
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the methods in ellipsoid case to strictly convex domains in Cn with smooth

boundary. This will enable us to recapture the classical results of Stein on

admissible approach regions from a different point of view.

3.1 Comparison Between Classical and Poletsky-

Stessin Hardy Spaces on Higher Dimen-

sions

Let Ω be a smoothly bounded hyperconvex domain in Cn and ϕ be a con-

tinuous, plurisubharmonic, negative exhaustion function on Ω with finite

Monge-Ampère mass and let gz be the Pluricomlex Green Function of Ω

with a logarithmic pole at the point z ∈ Ω. In this section we will compare

Poletsky-Stessin Hardy spaces Hp
ϕ(Ω), 1 ≤ p ≤ ∞, with the Hardy type

spaces considered by various authors. Before proceeding further let us recall

some of the notation which will be used throughout this section :

Let ρ be a real valued function defined in a neighborhood of Ω so that: ρ

is of class C2, ρ(z) < 0 when z ∈ Ω, {ρ = 0} = ∂Ω, and |∇ρ(ξ)| > 0 when

ξ ∈ ∂Ω. Such a function ρ is called a characterizing function for the domain

Ω. In ([44]) classical Hardy spaces on Ω are defined (without the assumption

of hyperconvexity) as follows:

Hp .
= {f | f holomorphic in Ω, sup

r<0

∫
∂Ωr

|f |pdσr <∞}

where dσr is the induced surface area measure on ∂Ωr and 1 ≤ p <∞.

Proposition 3.1.1. Let Ω be a hyperconvex domain and ϕ be a continu-

ous, negative plurisubharmonic exhaustion function on Ω with finite Monge-

Ampère mass. Then Hp
ϕ(Ω) ⊆ Hp

gz(Ω) for any z ∈ Ω.

Proof. First of all since gz(w) and ϕ(w) are exhaustion functions for Ω they

approach to 0 as w approaches to boundary however gz is a maximal function
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on Ω hence near ∂Ω we have ϕ ≤ cgz for some constant c > 0. Hence by ([34],

Theorem 3.1) we have µgz ,r(φ) ≤ cnµϕ,r(φ) for any positive plurisubharmonic

function φ, hence Hp
ϕ(Ω) ⊆ Hp

gz(Ω).

Theorem 3.1.1. Suppose that Ω is a smoothly bounded, hyperconvex domain

with a plurisubharmonic characterizing function ρ. Then Hp(Ω) ⊆ Hp
ρ(Ω) =

Hp
gz(Ω), 1 ≤ p <∞.

Proof. First we will show the equality between Hp
ρ(Ω) and Hp

gz(Ω) :

From the previous result we know that Hp
ρ(Ω) ⊆ Hp

gz(Ω). By Hopf lemma

([28], pg:73) there exists a positive constant c > 0 such that gz ≤ −cdist

where dist is the distance function to boundary. Also since ρ ∈ C2(Ω), from

the mean value theorem we get |ρ| ≤ Kdist for some positive constant K > 0

and combining these two we get gz ≤ Mρ for some constant M > 0 which

depends only on c and K. Thus we have µρ,r(φ) ≤Mµgz ,ar(φ), a > 0, for any

positive plurisubharmonic function φ by ([34], Theorem 3.1) so Hp
gz ⊆ Hp

ρ(Ω).

Therefore Hp
gz = Hp

ρ(Ω).

Now for the first inclusion since ρ is a smooth function we have dµρ,r =

dcρ ∧ (ddcρn−1)|S(r) ([13], Proposition 3.3) and dσ = dcρ ∧ (ddc|z|2)n−1|S(r)

([36], Corollary 3.5) and these are both (2n − 1)-dim differential forms on

the (2n− 1)-dim manifold so we have dµρ,r = c(z)dσ(z). In a neighborhood

of Ω, ρ is smooth and Ω ⊂⊂ Cn so c(z) is a bounded function. Hence,∫
S(r)

φdµρ,r =

∫
S(r)

φ(z)c(z)dσ(z) ≤ K

∫
S(r)

φ(z)dσ(z)

⇒ Hp(Ω) ⊆ Hp
ρ(Ω).

Remark 11. In section 3.3 we will show that for an arbitrary exhaustion

function ϕ we can have that Hp
ϕ(Ω) strictly contains Hp(Ω). However by

([34],Theorem 3.8) we see that under certain geometric conditions on the

domain we can have equality of these two classes.
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Theorem 3.1.2. Let Ω be a strictly pseudoconvex domain then Hp(Ω) =

Hp
gz = Hp

ρ(Ω).

3.2 Poletsky-Stessin Hardy Spaces on

Polydisc in Cn, n > 1

In this section we will examine the characterization of Poletsky-Stessin Hardy

spaces on the unit polydisc of Cn but first we will consider a special type of

exhaustion functions in order to see the transfer of some important results

concerning boundary value characterization from unit disc to the polydisc,

without loss of generality suppose n = 2:

Let u0, u1 be exhaustion functions defined on the unit disc D with finite

Monge-Ampère mass. Define the following plurisubharmonic function,

u2(z, w) = max{v1(z, w), v2(z, w)}

where v1(z, w) = u0(z) and v2(z, w) = u1(w) then we see that u2 is a plurisub-

harmonic exhaustion function. Moreover from the facts given below we have∫
D2(ddcu2)2 <∞ and supp(µu2) = ∂D× ∂D (*) ([9],Cor.4.10).

We will show that in the sense of currents we have dµu2,r = dµu0,r ∧ dµu1,r.

For this we will use the following facts :

(ddc(max{u, v, r}))2 = ddc(max{u, r}) ∧ ddc(max{v, r})

where r is a constant and,

(ddc(max{u(z), v(w)}))2 = (ddcu(z)) ∧ (ddcv(w))

(For the first equation see ([9]) and for the second one see ([6])). Hence,

dµu0,r∧dµu1,r = (ddc(max{v1, r})−χD\Bv1 (r)dd
cv1)∧(ddc(max{v2, r})−χD\Bv2 (r)dd

cv2)
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= (ddc(max{v1, r}) ∧ ddc(max{v2, r}))− χD\Bv2 (r)dd
cv2dd

c(max{v1, r})

−χD\Bv1 (r)dd
cv1 ∧ ddc(max{v2, r}) + χD\Bv1 (r)χD\Bv2 (r)dd

cv1dd
cv2

= (ddc(max{v1, r}) ∧ ddc(max{v2, r}))− χD2\Bu2 (r)(dd
cu2)2

= (ddc(max{v1, v2, r}))2 − χD2\Bu2 (r)(dd
cu2)2 = dµu2,r

⇒ dµu2,r = dµu0,r ∧ dµu1,r (3.2.1)

and as r → 0 by (*) and (3.2.1) we have:

dµu2 = dµu0 ∧ dµu1

which is in fact the product measure for the measures dµu0 and dµu1 .

In the classical theory of the Hardy spaces of unit disc, the existence of

boundary values along admissible approach regions is well-known. When

Hardy spaces are generalized to polydisc in Cn, new phenomena emerged

since the Poisson kernel and the associated Poisson integral representation of

holomorphic functions are carried only on a part of the boundary, namely the

distinguished boundary Tn and as a consequence approach region is also re-

stricted to the product of non-tangential approach regions ([47]). As we have

mentioned, in several variables the existence of boundary values is not yet

well understood. In ([35]), Poletsky approached the boundary value problem

from an abstract point of view where no assumptions about the boundary

smoothness are made and consequently no natural definition of approach

regions could be given. He introduced the so called weak and strong limit

values and when these two limit values are equal he called it boundary value.

In ([35], pg:22) he introduced a generalization for radial limit value and using

this general definition of radial limits he showed that if a Borel function on a

hyperconvex domain has radial limits then it has boundary values and these

boundary values are exactly the radial limit values ([35], Theorem 5.5). In

particular these generalized radial limit values coincide with the usual radial
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limit values in the polydisc case ([35], Theorem 7.6).

As a consequence of Theorem 1.4.1 for any exhaustion function u we have

Hp
u(Dn) ⊂ Hp

g (Dn) and also we have seen that on the polydisc if we choose our

exhaustion function as the Pluricomplex Green function then the Poletsky-

Stessin Hardy space coincides with the classical Hardy space of the poly-

disc. Therefore, for any exhaustion function u on the polydisc, we have

Hp
u(Dn) ⊂ Hp

g (Dn) = Hp(Dn). Functions in Hp(Dn) have non-tangential

limit values over the non-tangential approach region Γ = Γ1 × Γ2 × ... × Γn

by ([47], Theorem 4.13) therefore we automatically have boundary values for

the Poletsky-Stessin Hardy spaces Hp
u(Dn) over the polydisc.

We will now characterize the Poletsky-Stessin Hardy classes through their

boundary values first with the special choice of exhaustion functions that we

mentioned at the beginning of this chapter :

Theorem 3.2.1. Let f ∈ Hp(Dn) be an analytic function. Then f ∗ ∈
Lp(dµun ,Tn) if and only if f ∈ Hp

un(Dn). Moreover the operator which takes

f ∈ Hp
un(Dn) to f ∗ ∈ Lp(dµun ,Tn) is an isometry between Hp

un(Dn) and a

closed subspace of Lp(dµun ,Tn).

Proof. Without loss of generality suppose n = 2. First suppose that p > 1

and let f ∈ Hp(D2) then f ∗ exists ([39]). Suppose f ∗ ∈ Lp(dµu2), then by

([39],pg:53) we have that

f(z, w) =

∫ 2π

0

∫ 2π

0

Pr1(θ1 − t)Pr2(θ2 − θ)f ∗(eit, eiθ)dtdθ

so ∫
Su2 (r)

|f(z, w)|pdµu2,r

=

∫
Su2 (r)

∣∣∣∣∫ 2π

0

∫ 2π

0

Pr1(θ1 − t)Pr2(θ2 − θ)f ∗(eit, eiθ)dtdθ
∣∣∣∣p dµu2,r

then by Hölder Inequality applied with measure Pr1(θ1 − t)Pr2(θ2 − θ)dtdθ
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we have

≤
∫ 2π

0

∫ 2π

0

(∫
Su2 (r)

Pr1(θ1 − t)Pr2(θ2 − θ)dµu2,r

)
|f ∗(eit, eiθ)|pdtdθ

Now since dµu2,r = dµu,r ∧ dµu,r we have∫
Su2 (r)

Pr1(θ1−t)Pr2(θ2−θ)dµu2,r =

∫
Su(r)×Su(r)

P (z, eit)P (w, eiθ)dµu,r(z)dµu,r(w)

=

(∫
Su(r)

P (z, eit)dµu,r(z)

)(∫
Su(r)

P (w, eiθ)dµu,r(w)

)
then by Lelong-Jensen formula we have

=

(∫
Bu(r)

P (z, eit)ddcu(z)

)(∫
Bu(r)

P (w, eiθ)ddcu(w)

)
and as r → 0, by Monotone Convergence Theorem we get

lim
r→0

∫
Su2 (r)

Pr1(θ1−t)Pr2(θ2−θ)dµu2,r =

(∫
D
P (z, eit)ddcu(z)

)(∫
D
P (w, eiθ)ddcu(w)

)
= β(t)β(θ)

(β is as defined in Section 2.1.2)

⇒ ‖f‖Hp
u2

(D2) ≤
∫ 2π

0

∫ 2π

0

|f ∗(eit, eiθ)|pβ(t)β(θ)dtdθ =

∫
∂D×∂D

|f ∗|pdµu2 <∞

⇒ f ∈ Hp
u2

(D2)

For the converse suppose f ∈ Hp
u2

(D2),∫
∂D×∂D

|f ∗(ξ, η)|pdµu2(ξ, η) =

∫
∂D×∂D

|f ∗(ξ, η)|pβ(ξ)β(η)dσ(ξ)dσ(η)
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=

∫
∂D×∂D

|f ∗(ξ, η)|p
(∫

D×D
P (z, ξ)P (w, η)ddcu(z)ddcu(w)

)
dσ(ξ)dσ(η)∫

D×D

(∫
∂D×∂D

|f ∗(ξ, η)|pP (z, ξ)P (w, η)dσ(ξ)dσ(η)

)
ddcu(z)ddcu(w)

The integral inside the parenthesis is the Poisson integral of |f ∗(ξ, η)|p. Call

this expressionH(z, w). Now consider the function v(a, b) = max
{

log
∣∣ a−z

1−az

∣∣ , log
∣∣ b−w

1−bw

∣∣}
then dµv(ξ, η) = P (z, ξ)P (w, η)dσ(ξ)dσ(η) hence, by Lelong-Jensen formula

we have

H(z, w) =

∫
∂D×∂D

|f ∗(ξ, η)|pdµv(ξ, η) = |f(z, w)|p−
∫
D×D

v(a, b)(ddcv(a, b))(ddc|f(a, b)|p)

By ([39], Theorem 3.2.4), H(z, w)and |f(z, w)|p have the same boundary

values. Now,∫
∂D×∂D

|f ∗(ξ, η)|pdµu2 =

∫
D×D

H(z, w)ddcu(z)ddcu(w)

=

∫
D×D
|f(z, w)|p(ddcu2)2−

∫
D×D

(∫
D×D

v(a, b)(ddcv(a, b))(ddc|f(a, b)|p)
)

(ddcu2)2

call g(z, w) =
∫
D×D v(a, b)(ddcv(a, b))(ddc|f(a, b)|p) then,∫

D×D
g(z, w)(ddcu2)(ddcu2) =

∫
D×D

u2(ddcg(z, w))(ddcu2)+

∫
∂(D×D)

g(z, w)(ddcu2)dcu2︸ ︷︷ ︸
0

−
∫
∂(D×D)

u2d
c(g(z, w))(ddcu2)︸ ︷︷ ︸

0

by ([15],Formula 3.1, pg:144) and the last two integrals are zero since g(z, w)

and u2(z, w) are both zero on the boundary. Hence,∫
D×D

g(z, w)(ddcu2)2 =

∫
D×D

u2(ddcg(z, w))(ddcu2)
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=

∫
D×D

u2

(∫
D×D

(ddcv(a, b))2(ddc|f(a, b)|p)
)

(ddcu2) =

∫
D×D

u2dd
c|f(z, w)|pddcu2

so we get∫
∂D×∂D

|f ∗(ξ, η)|pdµu2 =

∫
D×D
|f(z, w)|p(ddcu2)2 −

∫
D×D

u2dd
c|f(z, w)|pddcu2

= ‖f‖Hp
u2

(D2) <∞

⇒ f ∗ ∈ Lp(dµu2 , ∂D × ∂D). The case where p = 1 is a straightforward

application of the procedure above.

Since Hp
un(Dn) is a closed subspace of Lp(dµun ,Tn), from the chain of equa-

tions above we deduce that the operator which takes f ∈ Hp
un(Dn) to f ∗ ∈

Lp(dµun ,Tn) is an isometry betweenHp
un(Dn) and a closed subspace of Lp(dµun ,Tn).

It is important to note that for this specific choice of exhaustion func-

tion, we obtained a product measure on the torus. However if we take an

arbitrary exhaustion function u with finite mass, we may not end up with a

product measure since the Poisson kernel is not pluriharmonic when n > 1.

In the next result we generalize the boundary value characterization for the

Poletsky-Stessin Hardy spaces Hp
u(Dn) to the most general case where the

exhaustion function u is a continuous, negative, plurisubharmonic function

with finite Monge-Ampère mass. Although we have the complete charac-

terization for boundary values and an isomorphism between Hp
u(Dn) and a

closed subspace of Lp(dµu,Tn), in this case we may lose the isometry since

we may not have the Monge-Ampère measure as a product measure.

Theorem 3.2.2. Let f ∈ Hp(Dn), 1 ≤ p < ∞, be a holomorphic function.

Then f ∈ Hp
u(Dn) if and only if the boundary value function f ∗ ∈ Lp(dµu,Tn)

where Tn is torus in Cn.

Proof. (Without loss of generality assume n=2) Let u be a continuous, nega-

tive, plurisubharmonic exhaustion function for Dn with finite Monge-Ampère
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mass, then by ([9], Cor:4.10) we know that supp(dµu) = Tn. Let us first give

the relation between the Monge-Ampère measure dµu and the Euclidean mea-

sure on the torus. Let ϕ ∈ C(T2) be a continuous function and denoting the

Poisson integral of this function also as ϕ we have,∫
Su(r)

ϕdµu,r =

∫
Su(r)

(∫
T2

P (z, ξ)P (w, η)ϕ(ξ, η)dσ(ξ)dσ(η)

)
dµu,r

=

∫
T2

(∫
Su(r)

P (z, ξ)P (w, η)dµu,r

)
ϕ(ξ, η)dσ(ξ)dσ(η)

and dµu is the weak-* limit of dµu,r and the integral in parenthesis in the last

line is increasing in r so by using monotone convergence theorem we have∫
T2

ϕdµu =

∫
T2

(
lim
r→0

∫
Su(r)

P (z, ξ)P (w, η)dµu,r

)
ϕ(ξ, η)dσ(ξ)dσ(η)

and defining

β(ξ, η) = lim
r→0

∫
Su(r)

P (z, ξ)P (w, η)dµu,r

we have dµu = β(ξ, η)dσ(ξ)dσ(η) and since the exhaustion function u has

finite Monge-Ampère mass we have β(ξ, η) ∈ L1(dσ(ξ), dσ(η)). Now suppose

f ∗ ∈ Lp(dµu,Tn),∫
Su(r)

|f |pdµu,r =

∫
Su(r)

∣∣∣∣∫
T2

P (z, ξ)P (w, η)f ∗(ξ, η)dσ(ξ)dσ(η)

∣∣∣∣p dµu,r
≤
∫
T2

(∫
Su(r)

P (z, ξ)P (w, η)dµu,r

)
|f ∗(ξ, η)|pdσ(ξ)dσ(η)

now by monotone convergence theorem we have,

lim
r→0

∫
Su(r)

|f |pdµu,r ≤
∫
T2

(
lim
r→0

∫
Su(r)

P (z, ξ)P (w, η)dµu,r

)
|f ∗(ξ, η)|pdσ(ξ)dσ(η)
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=

∫
T2

|f ∗(ξ, η)|pβ(ξ, η)dσ(ξ)dσ(η) = ‖f ∗‖p
Lpu
<∞

hence f ∈ Hp
u(D2). Conversely now suppose we have a holomorphic function

f ∈ Hp
u(D2).∫

T2

|f ∗(ξ, η)|pdµu =

∫
T2

|f ∗(ξ, η)|p
(

lim
r→0

∫
Su(r)

P (z, ξ)P (w, η)dµu,r

)
dσ(ξ)dσ(η)

by Fatou’s Lemma we have then

≤ lim
r→0

∫
T2

|f ∗(ξ, η)|p
(∫

Su(r)

P (z, ξ)P (w, η)dµu,r

)
dσ(ξ)dσ(η)

= lim
r→0

∫
Su(r)

(∫
T2

|f ∗(ξ, η)|pP (z, ξ)P (w, η)dσ(ξ)dσ(η)

)
dµu,r

now we will examine the integral in parenthesis∫
T2

|f ∗(ξ, η)|pP (z, ξ)P (w, η)dσ(ξ)dσ(η)

which is equal to the following by ([35],Cor.7.4)

= |f(z, w)|p +

∫
D2

(−υ(z,w)(a, b)(dd
cυ(z,w)(a, b))(dd

c|f(a, b)|p)

where υ(z,w)(a, b) = max
{

log
∣∣ a−z

1−az

∣∣ , log
∣∣ b−w

1−bw

∣∣}. Then

= lim
r→0

∫
Su(r)

(∫
T2

|f ∗(ξ, η)|pP (z, ξ)P (w, η)dσ(ξ)dσ(η)

)
dµu,r

= lim
r→0

∫
Su(r)

|f(z, w)|pdµu,r

= lim
r→0

∫
Su(r)

(∫
D2

(−υ(z,w)(a, b)(dd
cυ(z,w)(a, b))(dd

c|f(a, b)|p)
)
dµu,r︸ ︷︷ ︸

0
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second integral is 0 since υ(z,w)(a, b) converges to 0 uniformly on compact

subsets as (z, w) converges to boundary ([10]). Therefore we have∫
T2

|f ∗(ξ, η)|pdµu ≤= lim
r→0

∫
Su(r)

(∫
T2

|f ∗(ξ, η)|pP (z, ξ)P (w, η)dσ(ξ)dσ(η)

)
dµu,r

≤= lim
r→0

∫
Su(r)

|f(z, w)|pdµu,r = ‖f‖p
Hp
u(D2)

<∞

so f ∗ ∈ Lp(dµu) when f ∈ Hp
u(D2).

As an immediate consequence of this boundary value characterization we

have the following corollary which enables us to see the inclusions between

the Poletsky-Stessin Hardy classes in terms of their boundary values:

Corollary 3.2.1. Let f be a holomorphic function such that f ∈ H t
u(Dn) for

some t ≥ 1. If the boundary value f ∗ belongs to Lsu(Tn) for some s > t then

f ∈ Hs
u(Dn).

Remark 12. As in one dimensional case, there exists an exhaustion function

u for the polydisc with finite Monge-Ampère mass so that Hp
u(Dn) & Hp(Dn).

We can see this by an example on Dn that is similar to the disc case. Let

un(z1, z2, .., zn) = max{u(z1), u(z2), .., u(zn)} where u is the exhaustion func-

tion that we constructed in the disc example. Now first of all consider the

holomorphic function f(z1, z2, .., zn) =
1

(1− z1)
3
4 (1− z2)

3
4 ..(1− zn)

3
4

on Dn

then from the arguments that were given in the disc example we deduce

that f(z1, z2, .., zn) ∈ H1(Dn) but f(z1, z2, .., zn) /∈ H1
u(Dn) by combining the

previous result with the example in the disc case.
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3.3 Poletsky-Stessin Hardy Spaces on

Complex Ellipsoids

For domains in Cn we will next consider the complex ellipsoids which are

considered as model cases for domains of finite type. It should be noted

that although complex ellipsoids are convex domains they are not strictly

pseudoconvex since they have Levi flat points at the boundary. The complex

ellipsoid Bp ∈ Cn is given as

Bp = {z ∈ Cn, ρ(z) =
n∑
j=1

|zj|2pj − 1 < 0}

where p = (p1, p2, ..., pn) ∈ Zn. One can easily see that u(z) = log(|z1|2p1 +

|z2|2p2 + ... + |zn|2pn) is an exhaustion function for Bp so we can consider

the Poletsky-Stessin Hardy spaces Hp
u(Bp) associated with this exhaustion

function. In ([22]), Hansson considered Hardy type spaces where the growth

condition is determined by the measures which are restrictions of the measure

∂ρ ∧ (∂∂ρ)n−1 on the sublevel sets of the defining function ρ. If we choose

the exhaustion function u then these measures are in fact the Monge-Ampère

measures dµu,r therefore the Poletsky-Stessin Hardy classes Hp
u(Bp) coincide

with the Hardy type classes defined by Hansson. His main results contain a

generalization of the classical M.Riesz theorem to Cauchy-Fantappie integrals

of L2
u(∂Bp) functions and boundedness of Cauchy-Fantappie integral operator

H on BMO(∂Bp) (For details see [22]). In this section we will show that

unlike the one variable case, for n > 1 Poletsky-Stessin Hardy spaces Hp
u(Bp)

are not included in the classical Hardy spaces Hp(Bp) on complex ellipsoids.

Hence in this case we do not automatically inherit the existence of boundary

values from the theory of classical Hardy spaces. Existence and the behavior

of boundary values have not been considered in ([22]) so we will start with

exhibiting the existence of the radial limits for holomorphic functions in

H1
u(Bp).
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Theorem 3.3.1. Let f ∈ H1
u(Bp) be a holomorphic function. Then the radial

limit function f ∗(ξ) = limr̃→1 f(r̃ξ), ξ ∈ ∂Bp exists µu-almost everywhere and

f ∗ ∈ L1
µu(∂Bp).

Proof. Let Bp be the complex ellipsoid determined by the exhaustion function

u(z) = log(|z1|2p1 + |z2|2p2 + ... + |zn|2pn) and let ξ = (ξ1, ξ2, .., ξn) ∈ ∂Bp,

t ∈ D. Suppose that E is the ellipse which is the intersection of the complex

line joining 0 to ξ and the ellipsoid Bp. An exhaustion function for E is

gE(t) = log(A1|t|2p1 + A2|t|2p2 + .. + An|t|2pn) where Ai = |ξi|2pi , 1 ≤ i ≤ n.

The Monge-Ampère measure associated with the exhaustion function u is

dµu,r = dcu ∧ ddcu|Su(r) and let A0 be the n − 1-dimensional manifold of

complex lines passing through the point 0 ∈ Bp ([45]). Now take f ∈ H1
u(Bp)

then ∫
Su(r)

|f |dµu,r =

∫
Su(r)

|f |(dcu ∧ ddcu) =

∫
A0

(∫
lz∩Su(r)

|f |dcu
)
ω

where we have the pull-back measure π∗ω = ddcu and π : B̄p → A0 is the

function given by π(z) = [0, z] = lz with lz being the line joining 0 and z.

We can use the above generalization of Fubini theorem since π is a submersion

and π|supp(dcu) is proper ([15], pg:17).

The measure dcu on lz ∩ Su(r) is equal to dcgE(t) on Sg(r) and since it is a

smoothly bounded domain dcgE(t) on Sg(r) = dµg,r so

∫
Su(r)

|f |dµu,r =

∫
A0

(∫
Sg(r)

|f |dµg,r

)
ω

and by Fatou’s lemma
∫
A0

(
lim infr→0

∫
Sg(r)
|f |dµg,r

)
ω <∞ for f ∈ H1

u(Bp).

This implies that for ω-a.e. line limr→0

∫
Sg(r)
|f |dµg,r <∞ so f ∈ H1

g (E) and

it has radial boundary values dσ(' dµg) almost everywhere ([44]). Since f ∗

is the pointwise limit of measurable functions it is measurable and consider
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the set A = {ξ ∈ ∂Bp, f ∗(ξ) does not exist}, then∫
∂Bp

χAdµu =

∫
A0

(∫
∂E

χA(η)dµg(η)

)
ω

Since f ∈ H1
g (E), it has radial limit values dµg-a.e. so the integral inside

is 0 and we have
∫
∂Bp χAdµu = 0. Therefore f ∗(ξ) exists µu-a.e. Moreover

for an analytic function f ∈ H1
g (E) we know that the boundary function

f ∗ ∈ L1(∂E) so we have∫
∂Bp

|f ∗|dµu =

∫
A0

(∫
∂E

|f ∗|dµg
)
ω <∞

hence f ∗ ∈ L1
µu(∂Bp).

Now we have two Hardy type spaces on Bp, the first one is the Poletsky-

Stessin Hardy space H1
u(Bp) and the other one is H1(Bp) which is defined

with respect to surface area measure in accordance with Stein’s definition.

We will now show that these spaces are not equal. In fact in contrast to the

one variable case Poletsky-Stessin Hardy class strictly contains the classical

Hardy space.

Proposition 3.3.1. Let Bp be the complex ellipsoid. Then there exists an

exhaustion function u such that H1(Bp)  H1
u(Bp).

Proof. We will explicitly construct the exhaustion function u by taking n = 2

and p = (1, 2). First of all the relation between dσ and dµu on ∂B2 is given

by K1|ξ2|2dσ ≤ dµu ≤ K2|ξ2|2dσ for some K1, K2 > 0 (depending only on

dimension and p = (1, 2)), now consider the analytic function f(z1, z2) =
1

(1− z2
1)2α

where 2
16
< α < 4

16
. We have

∫
∂B2

|f ∗||ξ2|2dσ =

∫
|ξ2|4<1

(∫
|ξ1|=
√

1−|ξ2|4
|f ∗|dξ1

)
|ξ2|2dξ2
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=

∫
|ξ2|4<1

(∫ 2π

0

1

|1− (
√

1− |ξ2|4eiθ)2|2α
dθ

)
|ξ2|2dξ2

=

∫
|ξ2|4<1

(∫ 2π

0

1

|1− e2iθ + |ξ2|4e2iθ|2α
dθ

)
|ξ2|2dξ2

Now we will consider the behavior of the inside integral near the point {1}
i.e. as θ → 0 (this is the only problematic point as |ξ2| → 0).

lim
θ→0

(1− 2(1− |ξ2|4) cos 2θ + (1− |ξ2|4)2)α

|ξ2|8α
= 1

so our integral becomes for t > 0,δ > 0

=

∫
|ξ2|4<1

(
2

∫ π−t

t

1

|1− e2iθ + |ξ2|4e2iθ|2α
dθ

)
|ξ2|2dξ2 + 2

∫
Bδ(0)

2t

|ξ2|8α
|ξ2|2dξ2

+2

∫
|ξ2|4<1\Bδ(0)

2t

|ξ2|8α
|ξ2|2dξ2

since we are away from the singularity first and third integrals are finite

and if we take 2
16
< α < 4

16
then second integral is also finite and we have

f ∈ H1
u(B2) but f /∈ H1(B2) since for this choice of α∫

|ξ2|4<1

(∫ 2π

0

1

|1− e2iθ + |ξ2|4e2iθ|2α
dθ

)
dξ2

diverges.

In the previous results we have shown that for the functions in the

Poletsky-Stessin Hardy class Hp
u(Bp) we have the radial limit values and

throughout the following arguments we will study the behavior of these

boundary values in detail. In the classical Hardy space theory on strictly

pseudoconvex domains, Stein showed the existence of boundary values along

admissible approach regions that are more general than the radial approach.

Throughout the rest of the section we will show that for the functions in
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the Poletsky-Stessin Hardy class Hp
u(Bp) boundary values along admissible

approach regions exist. Although we use the general idea in Stein’s clas-

sical method, our approach differs in two aspects, respectively the use of

Cauchy-Fantappie kernel instead of Poisson kernel and the use of radial lim-

its existence of which is shown before. In the study of the boundary behavior

of holomorphic functions having the boundary of the domain as a space of

homogenous type seems to be a leitmotif because one of the most commonly

used methods in order to understand boundary behavior is to use maximal

functions ([44], Theorem 3) and the natural setting for this type of analysis

is homogenous spaces. Therefore we will start with recalling the properties

of homogenous spaces and then as an application of this classical method we

will show that polynomials are dense in the Poletsky-Stessin Hardy spaces

Hp
u(Bp) on complex ellipsoids. Before proceeding our arguments in Cn with

maximal functions, let us first mention the spaces of homogenous type in Cn

for which we need the following definitions :

Definition 17. Suppose that we are given a space X which is equipped with

a function ρ : X ×X → R+ such that

• ρ(x, y) = 0 if and only if x = y

• ρ(x, y) = ρ(y, x)

• There is a constant C1 > 0 such that if x, y, z ∈ X then ρ(x, z) ≤
C1[ρ(x, y) + ρ(y, z)]

ρ is called a quasi-metric for the space X.

We will denote the balls in this quasimetric by

B(x, r) = {y ∈ X : ρ(x, y) < r}

Definition 18. Assume that the space X is equipped with a quasi-metric

ρ and a regular Borel measure µ on X. We say that (X, ρ, µ) is a space of

homogenous type if the following conditions are satisfied:
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• For each x ∈ X and r > 0 , 0 < µ(B(x, r)) <∞

• (Doubling Condition) There is a constant C2 > 0 such that for any

x ∈ X and r > 0 we have µ(B(x, 2r)) ≤ C2µ(B(x, r))

Let Ω ⊂⊂ Cn be a smoothly bounded domain such that we have a quasi-

metric ρ on Ω and a regular Borel measure µ on ∂Ω. Let K(z, ξ) : Ω×∂Ω→ C
be a kernel such that K(z, ξ) ∈ L1(dµ) for z ∈ Ω, ξ ∈ ∂Ω. Let us consider

the integral operator determined by K(z, ξ) for an Lp(dµ) function f ∗,

Kf ∗(z) =

∫
∂Ω

f ∗(ξ)K(z, ξ)dµ(ξ)

and define the associated maximal function as

Mf ∗(ξ) = sup
ε>0

1

µ(B(ξ, ε))

∫
B(ξ,ε)

|f ∗|dµ

From the corresponding results in literature (see eg. [44], Theorem 2; [47],

chapter 14) the fundamental theorem of the theory of singular operators

which is adopted to our setting can be stated as:

Theorem 3.3.2. Suppose f ∗ ∈ Lp(dµu) and 1 ≤ p ≤ ∞
(a) ‖Mf ∗‖p ≤ Ap‖f ∗‖p for 1 < p ≤ ∞
(b) The mapping f ∗ →Mf ∗ is of weak type (1-1) i.e. µu{ξ : Mf ∗(ξ) > α} ≤
K
α
‖f ∗‖1 if f ∗ ∈ L1(dµu).

Now we further suppose that the following conditions are satisfied:

• ρ is a quasi-metric on Ω

• (∂Ω, ρ, µ) is a space of homogenous type

• For all z ∈ Ω, ξ ∈ ∂Ω with η = ρ(z, ξ) > 0 we have

|K(z, ξ)| ≤ C
1

µ(B(ξ, η))
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for some C independent of ξ, z and η. Such a kernel is called a standard

kernel.

Following the method given in ([44],Theorem 3),which was applied for the

Poisson integrals of Lp functions, we can now estimate the integral operator

given above in this general setting :

Theorem 3.3.3. Suppose Kf ∗(z) is the K(z, ξ)-integral of an Lp(dµ) func-

tion f ∗ where K(z, ξ) satisfies the conditions given above. Let Qα(y) = {z ∈
Ω, ρ(y, z) < αδy(z)} for y ∈ ∂Ω, z ∈ Ω with δy(z) = min{ρ(z, ∂Ω), ρ(z, Ty)}
(Ty is the tangent plane at y), α > 0, be the admissible approach region.

Then

• When ρ(y, z) = ε and z ∈ Qα(y) the following inequality holds

|Kf ∗(z)| ≤ Ã
∞∑
k=1

(µ(B(y, 2kε)))−1

∫
B(y,2kε)

|f ∗|dµ

• supz∈Qα(y) |Kf ∗(z)| ≤ ÃMf ∗(y).

Proof. Let Kf ∗(z) be the K(z, ξ)-integral of the Lp(dµ) function f ∗,

|Kf ∗(z)| ≤
∫
∂Ω

|f ∗||K(z, ξ)|dµ(ξ)

=

∫
ρ(ξ,y)<2ε

|f ∗||K(z, ξ)|dµ(ξ) +
∞∑
k=2

∫
2k−1ε≤ρ(ξ,y)<2kε

|f ∗||K(z, ξ)|dµ(ξ)

first, ∫
ρ(ξ,y)<2ε

|f ∗||K(z, ξ)|dµ(ξ) ≤ C

µ(B(y, 2ε))

∫
B(y,2ε)

|f ∗(ξ)|dµ(ξ)

by the condition on the kernel and similarly since ρ is a pseudometric we have

ρ(z, ξ) ≥ C̃(ρ(ξ, y) − ρ(y, z)) ≥ C̃2k−1ε − C̃ε ≥ ˜̃C2k−2ε if k ≥ 2 whenever
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2k−1ε ≤ ρ(ξ, y) < 2kε and ρ(z, y) = ε, so |K(z, ξ)| ≤ 22k ˜̃C

µ(B(y, 2kε))
. Hence

for all k,∫
2k−1ε<ρ(ξ,y)<2kε

|f ∗||K(z, ξ)|dµ(ξ) ≤ Áα,n
2kµ(B(y, 2kε))

∫
B(y,2kε)

|f ∗(ξ)|dµ(ξ)

Upon summing in k we get the first assertion and the second inequality is an

immediate consequence of the first.

In ([22]), Hansson considered the boundedness of Cauchy-Fantappie in-

tegral operator ,H, from L2
u(∂Bp) into H2

u(Bp). In his work he applied an

operator theory result known as T1-Theorem and in order to use that re-

sult he showed the homogeneity of the boundary of the complex ellipsoid

with respect to the quasimetric d and the boundary measure ∂ρ ∧ (∂∂ρ)n−1

where the function ρ is defined as ρ(z) =
∑n

j=1 |zj|2pj − 1. In fact an easy

calculation shows that this measure is the boundary Monge-Ampère mea-

sure associated with the exhaustion function u(z) = log(|z1|2p1 + |z2|2p2 +

... + |zn|2pn), p = (p1, p2, ..., pn) ∈ Zn of the complex ellipsoid Bp. Now

let d(ξ, z)
.
= |v(ξ, z)| + |v(z, ξ)| be the quasimetric defined on Bp where

v(ξ, z) = 〈∂ρ(ξ), ξ− z〉. Then explicitly v(ξ, z) =
∑n

j=1 pj|ξj|2(pj−1)ξ̄j(ξj− zj)
and define the boundary balls as B(z, ε) = {ξ ∈ ∂Bp, d(ξ, z) < ε}. It is shown

that (∂Bp, d, dµu) is a space of homogenous type ([22],pg:1483) and
1

(v(ξ, z))n

is a standard kernel i.e.

∣∣∣∣ 1

(v(ξ, z))n

∣∣∣∣ ≤ C

dµu(B(z, ε))
for d(ξ, z) = ε > 0 and

for some C > 0 depending only on the dimension and p. In the following

argument we will use his homogeneity result to apply the previous rather

general procedure on the complex ellipsoid case with the so called Cauchy-

Fantappie kernel:

The Cauchy-Fantappie integral (from now on we will refer as CF-integral) of
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an Lp(dµu) function f ∗ is defined as

Hf(z) =

(
1

2πi

)n ∫
∂Bp

f ∗(ξ)dµu(ξ)

(v(ξ, z))n

Before proceeding to further results let us briefly discuss the Cauchy-Fantappie

kernel. In the theory of holomorphic functions in one variable a fundamental

tool is Cauchy integral formula and in the case of several variables one wants

a suitable generalization to Cauchy integral. One of the possible choices for

the generalization is the so called Szegö kernel however except for a few do-

mains Szegö kernel has no explicit formulation. One other choice is the well

known Bochner-Martinelli kernel but the major shortcoming of this kernel

is that it is not holomorphic in z variable (For details see ([36])). Contrary

to Bochner-Martinelli kernel, Cauchy-Fantappie kernel is holomorphic in z

hence it is a natural generalization of Cauchy kernel to multivariable case

and it has reproducing property for the functions in the algebra A(Bp) ([36],

Theorem 3.4). Hardy spaces which are examined in ([22]) are exactly the

Poletsky-Stessin Hardy spaces Hp
u(Bp) that are generated by the exhaustion

function u and at the beginning of this section it is shown that for the func-

tions in Hp
u(Bp) the boundary value function f ∗ ∈ Lp(dµu) exists so the

CF-integral of f ∗ is well-defined. Now we will show that CF-integral has

reproducing property for the functions in Hp
u(Bp):

Proposition 3.3.2. Let f ∈ Hp
u(Bp) be a holomorphic function then

f(z) = Hf(z) =

(
1

2πi

)n ∫
∂Bp

f ∗(ξ)dµu(ξ)

(v(ξ, z))n

Proof. By the Fubini type integral formula that we used in Theorem 3.1.5

we get that

Hf(z) =

(
1

2πi

)n ∫
A0

(∫
∂E

f ∗(η)

(v(η, z))n
dµg(η)

)
ω
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and on every ellipse E by ([44], 9.7) we have reproducing property as a conse-

quence of one variable Cauchy integral formula. Hence the result follows.

Now define the maximal function for the functions in Lp(dµu) as follows

:

Mf ∗(ξ) = sup
ε>0

1

µu(B(ξ, ε))

∫
B(ξ,ε)

|f ∗|dµu

The next result is a consequence of the general method given in Theorem

3.3.3 for complex ellipsoid case and it gives the relation between the CF-

integral and the maximal function of an Lp(dµu) function f ∗:

Corollary 3.3.1. Suppose Hf(z) is the CF-integral of an Lp(dµu) function

f ∗. Let Qα(y) = {z ∈ Bp, |v(y, z)| < αδy(z)} for y ∈ ∂Bp, z ∈ Bp with

δy(z) = min{d(z, ∂X), d(z, Ty)} (Ty is the tangent plane at y), α > 0, be the

admissible approach region. Then

• When d(y, z) = ε and z ∈ Qα(y) the following inequality holds

|Hf(z)| ≤ Ã
∞∑
k=1

(µu(B(y, 2kε)))−1

∫
B(y,2kε)

|f ∗|dµu

• supz∈Qα(y) |Hf(z)| ≤ ÃMf ∗(y).

Next using this maximal function tools we will see the existence of bound-

ary values on the admissible approach regions Qα(y), y ∈ ∂Bp:

Theorem 3.3.4. Let f ∈ Hp
u(Bp) be a holomorphic function and 1 ≤ p <∞.

Suppose that f ∗ is the radial limit function then

lim
Qα(ξ)3z→ξ

f(z) = f ∗(ξ)

exists for almost every ξ ∈ ∂Bp.
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Proof. If ε > 0 then choose g ∈ C(∂Bp) so that ‖f ∗ − g‖Lpu(∂Bp) < ε2. Then

we know that limQα(ξ)3z→ξHg(z) = g(ξ) for all ξ ∈ ∂Bp. Therefore

µu{ξ : lim sup
Qα(ξ)3z→ξ

|f(z)− f ∗(ξ)| > ε} ≤ µu{ξ : lim sup
Qα(ξ)3z→ξ

|f(z)−Hg(z)| > ε/3}

+µu{ξ : lim sup
Qα(ξ)3z→ξ

|Hg(z)−g(ξ)| > ε/3}+µu{ξ : lim sup
Qα(ξ)3z→ξ

|g(ξ)−f ∗(ξ)| > ε/3}

≤ µu{ξ : CαM(f ∗ − g) > ε/3}+ (‖f ∗ − g‖Lpu(∂Bp)/(ε/3))p ≤ Ćαε
p

Hence the result follows.

As another application of this method, we will show an approximation

result on the Poletsky-Stessin Hardy spaces:

Theorem 3.3.5. Polynomials are dense in Hp
u(Bp).

Proof. Let f ∈ Hp
u(Bp) be a holomorphic function, 1 ≤ p < ∞ and let

fr(ξ) = f(rξ) for ξ ∈ ∂Bp. Then we have f(rξ) → f ∗(ξ) µu almost ev-

erywhere. By the previous proposition we know that Hf(z) = f(z) when

f ∈ H1
u(Bp). Using this and the previous results on maximal function we

have |f(rξ)| ≤ Mf ∗, where Mf ∗ ∈ Lpu(∂Bp) then by the Lebesgue Domi-

nated Convergence Theorem we have that fr → f ∗ in Lpu(∂Bp). Furthermore

the complex ellipsoid is a complete Reinhardt domain so as a consequence

of series expansion we deduce that polynomials are dense in A(Bp) in the

topology of uniform convergence on compact subsets. Hence polynomials are

dense in Hp
u(Bp).

3.4 Poletsky-Stessin Hardy Spaces on Strongly

Convex Domains

In this section, in order to understand the boundary behavior of Poletsky-

Stessin Hardy spaces on strongly convex domains we will examine Stein’s
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procedure that we used in ellipsoid case on strongly convex domains in Cn

which are defined as follows ([28]):

Definition 19. Let Ω ⊂⊂ Rn be a domain with C2 boundary and ρ a defining

function for Ω. Fix a point P ∈ ∂Ω. We say that ∂Ω is convex at P if

n∑
j,k=1

∂2ρ

∂xj∂xk
(P )wjwk ≥ 0

for all w in TP (∂Ω) which is the tangent plane at P . We say that ∂Ω is

strongly convex at P if the inequality is strict. If ∂Ω is (strongly) convex at

each boundary point, then we say that Ω is (strongly) convex.

In fact strongly convex domains are strictly pseudoconvex domains there-

fore Poletsky-Stessin Hardy spaces generated by the pluricomplex Green

function coincide with the classical Hardy spaces and the general theory

given in ([44]) is applicable to them. However,in this section we will pro-

vide an alternative approach through Poletsky-Stessin Hardy spaces, to the

boundary behavior of classical Hardy spaces on strictly pseudoconvex do-

mains by localizing the procedures which is possible because of the fact that

on strictly pseudoconvex domains for each boundary point one can find a

neighborhood which is strongly convex (For details see ([45])).

Let Ω be a strongly convex domain in Cn with smooth boundary and let

g(z, a) be the pluricomplex Green function of Ω with pole at a ∈ Ω. Then

by ([29]) we know that g(z, a) is in C∞(Ω\{a}). Now define the quasimetric

d(ξ, z) = | < ∂g(ξ), ξ − z > |+ | < ∂g(z), z − ξ > |

and the corresponding balls will be defined by

B(z, ε) = {ξ ∈ ∂Ω| d(ξ, z) < ε}
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Recall that the Monge-Ampère boundary measure associated with the Green

function g(z, a) is given by dµg = ∂g∧(∂∂g)n−1. We will show that (∂Ω, d, dµg)

is a homogenous space. First of all combining the results of ([30],[44])

we see that for the quasimetric d, the balls have enveloping property i.e.

Bε1(z) ∩ Bε2(ξ) 6= ∅ and ε1 ≥ ε2 implies that Bε2(ξ) ⊂ Bcε1(z). Hence in

order to show that (∂Ω, d, dµg) is a space of homogenous type we need to

prove the doubling condition with respect to measure dµg.

Lemma 3.4.1. There is a constant A > 0 depending only on the surface ∂Ω

so that for all P ∈ ∂Ω and all δ > 0

µg(B2δ(P )) ≤ Aµg(Bδ(P ))

Proof. First assume Ω ⊂ C2. Since ∂Ω is a smooth compact surface it

is sufficient to obtain the inequality for all P and all sufficiently small δ.

Without loss of generality assume that P = 0 ∈ ∂Ω and near 0, ∂Ω is

given as the graph of a convex function ψ such that x4 = ψ(x1, x2, x3) where

C2 ' R4 in real coordinates (x1, x2, x3, x4). Then by construction, for points

(x1, x2, x3, ψ(x1, x2, x3)) ∈ B2δ(0), we have {(x1, x2, x3)| ψ(x1, x2, x3) < 2δ}
and by the proof of Theorem 4.2 in ([7]) there is a constant A1 depending

only on ∂Ω such that

{(x1, x2, x3)| ψ(x1, x2, x3) < 2δ} ⊂ A1{(x1, x2, x3)| ψ(x1, x2, x3) < δ}

Now let π : C2 → C be the natural projection π(z1, z2) = z1, then from the

above inclusion we get π(B2δ(0)) ⊂ Ã1π(Bδ(0)), moreover by ([15],2.19) we

have ∫
π(B2δ(0))

π∗(dµg) =

∫
B2δ(0)

dµg (3.4.1)

and in C we have π∗(dµg) ≈ dσ so we have µg(B2δ(P )) ≤ Aµg(Bδ(P )). For

n > 2 process is the same via an inductive argument; at each step first we

identify the n-dimensional complex space with the 2n-dimensional real one
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and use Theorem 4.2 in ([7]) to have an enveloping property between the balls

of radii 2δ and δ then we project the boundary balls to (n− 1)-dimensional

complex space where we know the existence of doubling property and using

(3.4.1) we obtain the doubling condition for the boundary balls of dimension

n.

Hence (∂Ω, d, dµg) is a space of homogenous type.

From now on suppose Ω ⊂ Cn is a strongly convex domain and with-

out loss of generality assume that Ω contains 0 ∈ Cn. Let g(z, 0) be the

Pluricomplex Green function with the logarithmic pole at 0. We will con-

sider the Poletsky-Stessin Hardy spaces Hp
g (Ω), p > 1. In order to obtain a

Calderon-Zygmund type maximal function argument we need to show that

the Cauchy-Fantappie kernel

υ(z, ξ) =
1

| < ∂g(ξ), ξ − z > |n

is a standard kernel i.e. we need to show
1

|(υ(z, ξ))n|
≤ C

dµg(Bε(ξ))
for

d(z, ξ) = ε.

Lemma 3.4.2. The Cauchy-Fantappie kernel satisfies the following inequal-

ity
1

|υ(z, ξ)|
≤ C

µg(B(ξ, ε))

where d(z, ξ) = ε.

Proof. We need to show that µg(Bε(ξ)) ≤ C|υ(z, ξ)| for d(z, ξ) = ε. First of

all since we have | < ∂g(ξ), ξ − z > | ∼ | < ∂g(z), z − ξ > | ([30]), we get

|υ(ξ, z)|n ∼ εn from the definition of d(z, ξ). Hence we need to show that

µg(Bε(ξ)) ≤ Cεn when d(z, ξ) = ε. Now let ϕ ∈ C∞(Ω) so that ϕ ≥ 0,ϕ = 1

on Bε(ξ) and vanishes outside B 3ε
2

(ξ) with ε(0) = 0 and |ddcϕ| ≤ M
ε2

. Now∫
Bε(ξ)

dµg(η) ≤
∫
∂Ω

ϕdµg(η) =

∫
Ω

(−g)ddcϕ ∧ (ddcg)n−1 (3.4.2)
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and now consider the Taylor expansion of g(z) around ξ

g(z) = g(ξ) + 2Re < g′ξ(ξ), z − ξ > +
1

2
d2g(ξ)

[
z − ξ
|z − ξ|

]
|z − ξ|2 + o(|z − ξ|2)

where

d2g = 2Re
n∑

j,k=1

g′′ξjξkwjwk + 2
n∑

j,k=1

g′′
ξjξk

wjwk

and if ε is small enough then we have γ1|z− ξ|2 ≤ |− g| ≤ γ2|z− ξ| for some

γ1, γ2 > 0 that depend only on Ω. From (3.4.2) we have∫
Bε(ξ)

dµg(η) ≤
∫

Ω

(−g)ddcϕ ∧ (ddcg)n−1 ≤ γ2ε.
M

ε2
.εn+1 = Cεn

⇒ µg(Bε(ξ)) ≤ Cεn

It follows that υ(ξ, z) is a standard kernel.

Lastly we will consider the existence and the characterization of the

boundary values for the holomorphic functions in Poletsky-Stessin Hardy

spaces Hp
g (Ω), p > 1. We will apply the same method that we considered in

the ellipsoid case so let us first see that for a holomorphic function f ∈ Hp
g (Ω),

f ∗(ξ) = limε→0 f(ξ − εν) exists where ν is the outward unit normal.

Proposition 3.4.1. Let Ω be a strongly convex domain containing 0 and

g(z, 0) is the Green function with the logarithmic pole at 0. Then for any

f ∈ Hp
g (Ω) the boundary value function f ∗(ξ) = limε→0 f(ξ − εν) exists µg-

a.e. where ν is the outward unit normal to the boundary.

Let ξ ∈ ∂Ω, and let E be the strongly convex domain in C which is

the intersection of the complex line joining 0 to ξ and Ω. Then g |E is an

exhaustion function for E. The Monge-Ampère measure associated with the

exhaustion function g is given by dµg,r = dcg∧ (ddcg)n−1 |Sg(r), and let A0 be
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the set of all complex lines passing 0 ∈ Ω. Take f ∈ Hp
g (Ω) then

∫
Sg(r)

|f |pdµg,r =

∫
Sg(r)

|f |p(dcg ∧ (ddcg)n−1) =

∫
A0

(∫
lz∩Sg(r)

|f |pdcg

)
ω

where π∗ω = ddcg)n−1 and π : Ω → A0 is the function given by π(z) =

[0, z] = lz with lz being the line joining 0 and z.

We can use the above generalization of Fubini Theorem since π is a submer-

sion and π |supp(dc(g|E)) is proper.([15],2.15).

The measure dcg on lz ∩ Sg(r) is equal to dc(g |E) on Sg|E(r). Since E is a

smoothly bounded domain dc(g |E) on Sg|E(r) is equal to dµg|E ,r so

∫
Sg(r)

|f |pdµg,r =

∫
A0

(∫
Sg|E (r)

|f |pdµg|E ,r

)
ω

and by Fatou’s Lemma

∫
A0

(
lim inf
r→0

∫
Sg|E (r)

|f |pdµg|E ,r

)
ω <∞

since f ∈ Hp
g (Ω) and this gives us that for ω-a.e lim infr→0

∫
Sg|E (r)

|f |pdµg|E ,r <
∞ so f ∈ Hp

g|E(E) for ω-a.e and it has admissible boundary values dσ ' dµg|E
almost everywhere ([44]). Since f ∗ is the pointwise limit of a measurable func-

tion it is measurable and consider the setA = {ξ ∈ ∂Ω, f ∗(ξ)does not exist}
then ∫

∂Ω

χAdµg =

∫
A0

(∫
∂E

χA(η)dµg|E(η)

)
ω

but since f ∈ Hp
g|E(E) it has admissible limits dµg|E -a.e so the integral inside

is 0 and we have
∫
∂Ω
χAdµg = 0 therefore f ∗(ξ) exists µg-a.e. Moreover for a

holomorphic function f ∈ Hp
g|E(E) we know that f ∗ ∈ Lp(∂E) so we have

∫
∂Ω

|f ∗|pdµg =

∫
A0

(∫
∂E

|f ∗|pdµg|E
)
ω <∞
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hence f ∗ ∈ Lpµg(∂Ω).

The Cauchy-Fantappie integral of an Lpµg(∂Ω) function f ∗ is defined as

Hf(z) =

(
1

2πi

)n ∫
∂Ω

f ∗(ξ)dµg(ξ)

(υ(ξ, z))n

Combining the Fubini type integral formula on each complex line with ([44],9.7)

we get Hf = f when f ∈ Hp
g (Ω). Now define the maximal function for f ∗

as follows:

Mf ∗(ξ) = sup
ε>0

1

µg(B(ξ, ε))

∫
B(ξ,ε)

|f ∗|pdµg

As a consequence of the general maximal function argument given in Theorem

3.3.3 we get

Theorem 3.4.1. Let f ∈ Hp
g (Ω). Then from the general argument about the

maximal function we see that the boundary function f ∗ ∈ Lpµg(∂Ω) satisfies

the following:

• supz∈Qα(y) |Hf(z)| ≤ ÃMf ∗(y) when z ∈ Qα(y) = {z ∈ Ω, d(y, z) <

αδy(z)} where δy(z) = min{d(z, ∂X), d(z, Ty)} (Ty is the tangent plane

at y), α > 0.

• ‖Mf ∗‖p ≤ Ap‖f ∗‖p for 1 < p ≤ ∞

• The mapping f ∗ → Mf ∗ is of weak type (1-1) i.e. µg{ξ : Mf ∗(ξ) >

α} ≤ K
α
‖f ∗‖1 if f ∗ ∈ L1

dµg
(∂Ω)

Finally, the proof of the analogous result in ellipsoid case may be imitated

verbatim to establish the following result:

Theorem 3.4.2. Let f ∈ Hp
g (Ω) be a holomorphic function and 1 ≤ p <∞.

Suppose that f ∗ is the limit function given in the normal direction then

lim
Qα(ξ)3z→ξ

f(z) = f ∗(ξ), a.e. ξ ∈ ∂Ω
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Remark 13. Let us now give a comparison about the approach regions given

in our previous results and the classical approach regions considered by dif-

ferent authors. By ([30], [44]) we know that on a convex domain the approach

regions Qα given by the metric d are the admissible approach regions that

are discussed in the classical theory. If we consider the shape of these regions

we see that near its vertex the distance of the Q1(w), w ∈ ∂Ω, along the

normal direction changes in a parabolic way which allows also the tangential

approaches. (For details of this calculation see [5]). Hence our approach re-

gions are greater than the classical non-tangential approach regions given in

([24]). The approach regions Qα are the greatest family of approach regions

in the sense that they are built using the biggest embedded polydiscs that

fit inside the domain (for details see [33]).

3.5 Composition Operators on Poletsky-Stessin

Hardy Spaces on Hyperconvex Domains

in Cn, n > 1

In this section we will consider the boundedness properties of composition

operators acting on Poletsky-Stessin Hardy spaces on hyperconvex domains

in Cn for n > 1. Before proceeding further let us first briefly discuss the re-

sults given in ([34]) about composition operators on Poletsky-Stessin Hardy

spaces that are generated by exhaustion functions which are maximal out of

compact sets:

Let D1 ⊂ Cn and D2 ⊂ Cm be two hyperconvex domains and u1, u2 be

the exhaustion functions for D1 and D2 respectively. In ([34]), Poletsky and

Stessin considered the necessary and sufficient conditions of boundedness of

a composition operator induced by a holomorphic mapping between D1 and

D2 when the exhaustion functions u1 and u2 belong to class E0 i.e. the

Monge-Ampère measures (ddcu1)n and (ddcu2)m have compact support. Be-
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fore proceeding further let us first discuss some of the results given in the

case where exhaustion functions are chosen from E0 :

Definition 20. LetD be a hyperconvex domain with the exhaustion function

u and f be a holomorphic function on D. Nevanlinna counting function is

defined as:

Nu,f (w) =

∫
D

(−u)(ddcu)n−1 ∧ ddc log |f − w|

Let F : D1 → D2 be a holomorphic mapping between the hyperconvex

domains D1 and D2 with exhaustion functions u1 ∈ E0 and u2 ∈ E0 respec-

tively. If f is a holomorphic function on D2 then the “tail” part of Nevanlinna

counting function is defined as follows:

N∗u1,F,f
(w, r) =

∫
T (r)

(−u1)(ddcu1)n−1 ∧ ddc log |f ◦ F − w|

where T (r) = D1 \ Bu2◦F (r) = {z ∈ D1 : u2(F (z)) > r}. Then deficiency

of F is defined as

δu1,u2,F (r) = sup
N∗u1,F,f

(w, r)

Nu2,f (w)

where the supremum is taken over all f ∈ Hp
u2

(D2).

In ([34]) sufficiency condition for boundedness of a composition operator is

given as follows:

Theorem 3.5.1. Let F : D1 → D2 be a holomorphic mapping between the

hyperconvex domains D1 and D2 with exhaustion functions u1 ∈ E0 and u2 ∈
E0 respectively. If there exists r0 < 0 such that δu1,u2,F (r0) < ∞ then the

operator CF (f) = f ◦ F is a bounded operator from Hp
u2

(D2) into Hp
u1

(D1).

To provide necessary conditions, fix a compact set K ⊂ D1 and for a

holomorphic function f ∈ Hp
u2

(D2) introduce the function

νF (w, f) =
|w|pNu1,f◦F (w)

‖f‖Hp
u2
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and for a > 1 set

ρu1,u2,F (a) = sup νF (w, f)

where the supremum is taken over all f ∈ Hp
u2

(D2) and all w ∈ C, |w| >
amaxξ∈K |f ◦ F (ξ)|. In this setting the necessity condition given in ([34]) is

as follows:

Theorem 3.5.2. Let F : D1 → D2 be a holomorphic mapping between the

hyperconvex domains D1 and D2 with exhaustion functions u1 ∈ E0 and u2 ∈
E0 respectively. If CF is a bounded operator from Hp

u2
(D2) into Hp

u1
(D1), then

ρu1,u2,F (a) <∞ for all a > 1.

However when the exhaustion function is chosen with finite Monge-Ampère

mass but not necessarily maximal out of a compact set we can end up with un-

bounded composition operators even for the simplest symbols, namely auto-

morphisms. Consider the exhaustion function un(z) = max{u(z1), u(z2), .., u(zn)}
where u is the exhaustion function for unit disc that we constructed in The-

orem 2.1.2. We have seen that similar to the one variable case, if we use

the symbol ϕ(z, w) = (z1e
iπ
2 , z2e

iπ
2 , .., zne

iπ
2 ) we can obtain that ϕ does not

induce a bounded composition operator on H1
un(Dn) although every auto-

morphism of the polydisc induces a bounded composition operator on the

classical Hardy space H1(D2)([43], Cor.3.2.3).

In the following result we will show that, for a bounded hyperconvex do-

main Ω under certain regularity conditions on u and ϕ we can construct an

exhaustion function ψ for Ω with finite Monge-Ampère mass such that the

composition operator Cϕ with the holomorphic symbol ϕ is Lipschitz con-

tinuous between the Poletsky-Stessin Hardy spaces Hp
u(Ω) and Hp

ψ(Ω) with

Lipschitz constant K = 1 but for this we need to introduce the classes of

compliant functions defined by ([8]):

Recall that the Perron-Bremermann envelope for a given function f : ∂Ω→ R
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is given by:

PBf (z) = sup

ω(z) : ω ∈ PSH(Ω) lim sup
v→ξ
v∈Ω

ω(v) ≤ f(ξ),∀ξ ∈ ∂Ω


Definition 21. A continuous function f : ∂Ω → R which satisfies the fol-

lowing two conditions is called a compliant function:

• limz→ξ
z∈Ω

(PBf + PB−f )(z) = 0 for every ξ ∈ Ω

•
∫

Ω
(ddc(PBf + PB−f ))

n <∞
The set of all compliant functions is denoted by CP(∂Ω) and the set of

functions for which PB−f = −PBf is denoted by CP0(∂Ω)

Theorem 3.5.3. Let Ω ⊂⊂ Cn be a bounded hyperconvex domain. Suppose

u is a continuous, negative, plurisubharmonic exhaustion function with finite

Monge-Ampère mass and ϕ : Ω→ Ω is a one-to-one holomorphic self map of

Ω. If u ◦ ϕ ∈ CP0(∂Ω) then there exists a continuous exhaustion function ψ

with finite mass such that Cϕ : Hp
u(Ω)→ Hp

ψ(Ω) is continuous for 1 ≤ p <∞.

Proof. First we will construct the exhaustion function ψ. Let ρ be the so-

lution of the Dirichlet problem for pluriharmonic functions i.e. ddcρ = 0 on

Ω, ρ ∈ PSH(Ω) ∩ C(Ω) and ρ = u ◦ ϕ on ∂Ω. We know that this problem

is solvable on Ω since u ◦ ϕ ∈ CP0(∂Ω) by ([12], Theorem 3.5). Now con-

sider the function ψ = (u ◦ ϕ) − ρ. We see that ψ = 0 on the boundary

and (ddcψ)n = (ddc(u ◦ ϕ))n ≥ 0, since ρ is pluriharmonic and (u ◦ ϕ) is a

plurisubharmonic function. Moreover ψ is continuous on Ω, and since it is

continuous and equals to 0 on the boundary it is an exhaustion. Therefore

the only part we need is to show that ψ has finite Monge-Ampère mass. First

of all by ([15], pg:10 (1.13)) and ([32], Theorem 4.9) we have∫
Ω

(ddcψ)n =

∫
Ω

(ddc(u ◦ ϕ))n =

∫
Ω

ϕ∗((ddcu)n) (3.5.1)
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where the form ϕ∗((ddcu)n) is the pull-back of (ddcu)n. Then by ([15],pg:11

(1.17)) we have ∫
Ω

ϕ∗((ddcu)n) =

∫
ϕ(Ω)

(ddcu)n (3.5.2)

then combining the equations (3.5.1) and (3.5.2) we have∫
Ω

(ddcψ)n =

∫
ϕ(Ω)

(ddcu)n ≤
∫

Ω

(ddcu)n <∞

the last inequality follows from the fact that u has finite Monge-Ampère

measure. Thus ψ has finite Monge-Ampère mass.

We see that if u ◦ ϕ is continuous on ∂Ω then ψ is a negative, continuous,

plurisubharmonic exhaustion function for Ω with finite mass.

Next we will consider the action of the composition operator Cϕ on Hp
u(Ω):

Let f ∈ Hp
u(Ω) then,

‖f ◦ ϕ‖p
Hp
ψ(Ω)

=

∫
Ω

|f ◦ ϕ|p(ddcψ)n +

∫
Ω

(−ψ)ddc|f ◦ ϕ|p ∧ (ddcψ)n−1

=

∫
Ω

|f ◦ϕ(z)|p(ddc(u◦ϕ(z)))n+

∫
Ω

(ρ−u◦ϕ(z))ddc|f ◦ϕ(z)|p∧ (ddcu◦ϕ)n−1

and since ρ is negative on Ω we have

≤
∫

Ω

|f ◦ϕ(z)|p(ddc(u ◦ϕ(z)))n +

∫
Ω

(−u ◦ϕ(z))ddc|f ◦ϕ(z)|p ∧ (ddcu ◦ϕ)n−1

then combining ([32], Theorem 4.9) and ([27], pg:9) we have∫
Ω

|f ◦ ϕ(z)|p(ddc(u ◦ ϕ(z)))n +

∫
Ω

(−u ◦ ϕ(z))ddc|f ◦ ϕ(z)|p ∧ (ddcu ◦ ϕ)n−1

=

∫
Ω

ϕ∗(|f |p(ddcu)n) +

∫
Ω

ϕ∗((−u)ddc|f |p ∧ (ddcu)n−1)
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and since ϕ is a diffeomorphism to its image we have∫
ϕ(Ω)

|f |p(ddcu)n +

∫
ϕ(Ω)

(−u)ddc|f |p ∧ (ddcu)n−1

≤
∫

Ω

|f |p(ddcu)n +

∫
Ω

(−u)ddc|f |p ∧ (ddcu)n−1 = ‖f‖p
Hp
u(Ω)

<∞

Hence Cϕ acts continuously from Hp
u(Ω) to Hp

ψ(Ω).
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