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Abstract

In this thesis study, we consider Poletsky-Stessin Hardy (PS-Hardy) spaces
that are generated by continuous, plurisubharmonic exhaustion functions on
hyperconvex domains.

In the first part of this study we examine these spaces on domains in the com-
plex plane that are bounded by an analytic Jordan curve. In this setting we
focus on PS-Hardy spaces generated by exhaustion functions that have finite
Monge-Ampre mass but are not necessarily maximal outside of a compact
set. This choice gives us new Banach spaces strictly contained in classical
Hardy spaces. We characterize PS-Hardy spaces through their boundary
values and we show factorization results analogous to unit disc case. Using
functional analysis techniques we prove that the algebra of holomorphic func-
tions which are continuous on the boundary are dense in PS-Hardy spaces.
Moreover, we consider the composition operators with holomorphic symbols
acting on PS-Hardy spaces and show that contrary to classical case, not all

composition operators are bounded on PS-Hardy spaces.



In the second part, we study PS-Hardy spaces on polydisc, complex ellipsoid
and on strongly convex domains. On complex ellipsoid case, we prove the
existence of radial boundary values and then by applying a classical method
given by Stein we show the existence of boundary values along admissible
approach regions. As an application of this method , we also obtain that
polynomials are dense in PS-Hardy spaces on complex ellipsoids. Lastly, we
examine the boundedness of composition operators on PS-Hardy spaces on

hyperconvex domains in several variables.
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Monge-Ampere Olciimleri ve Siirh Hiperkonveks Bolgelerde

Poletsky-Stessin Hardy Uzaylar

Sibel Sahin
Matematik, Doktora Tezi, 2014

Tez Danigmani: Prof. Dr. Aydin Aytuna

Anahtar Kelimeler: Monge-Ampeére Olciimii, tiikenis fonksiyonu, Hardy

uzay1, hiperkonveks bolge.

Ozet

Bu tez caligmasinda, hiperkonveks bolgelerde siirekli ve ¢oklualtharmonik
tiikenig fonksiyonlarinca iiretilmig Poletsky-Stessin Hardy (PS-Hardy) uzay-
lar1 ele alinmigtar.

(Caligmanin ilk kisminda bu uzaylar karmagik diizlemde analitik bir Jordan
egrisi ile sinirlanmig bolgelerde incelenmisgtir. Bu baglamda siirlh Monge-
Ampere agirligi olan ancak bir kompakt kiime diginda maksimal olmasi gerek-
meyen titkenig fonksiyonlar: tarafindan iiretilmis PS-Hardy uzaylarina odak-
lanmilmigtir. Bu segim klasik Hardy uzaylarimin iginde yeni Banach uza-
ylar1 vermektedir. PS-Hardy uzaylari sinir degerleri tizerinden karakter-
ize edilip, birim disk durumuna benzer sekilde ¢arpanlara ayirma sonuglari
elde edilmigtir. Fonksiyonel analiz teknikleri kullanilarak siirda siirekli
holomorf fonksiyonlar cebirinin PS-Hardy uzaylar: igerisinde yogun oldugu
kanitlanmigtir. Buna ek olarak PS-Hardy uzaylar: iizerinde tanimh holomorf
sembollii bileske operatorleri incelenmis ve klasik durumdan farkli olarak PS-

Hardy uzaylar tizerinde tiim bilegke operatorlerinin sinirli olmadig goriilmiistiir.



Ikinci kisimda PS-Hardy uzaylar polidisk, karmagik elipsoit ve mutlak kon-
veks bolgelerde ¢aligilmigtir. Karmasik elipsoit durumunda 1ginsal sinir degerlerinin
varligi kanitlanmig ve sonrasinda Stein’a ait klasik bir metot kullanilarak sinir
degerlerinin makbul yaklagim bolgelerindeki varligi gosterilmigtir. Bu meto-
dun bir uygulamasi olarak polinomlarin elipsoit iizerindeki PS-Hardy uzay-
larinda yogun oldugu gosterilmistir. Son olarak ¢ok degiskende hiperkonveks

bolgelerde PS-Hardy uzaylari iizerindeki bilegke operatorleri incelenmistir.
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Introduction

The theory of Hardy Spaces has its origins in the works of G.H.Hardy and
J.E.Littlewood in 1920’s. The theory was improved and widened by the
discoveries of I.I.Privalov, F.and M.Riesz, V.Smirnov and G.Szego. Most
of the initial work was on the unit disc of C , and later the theory was
generalized to other classes of domains such as simply connected domains
in C, Smirnov domains and multiply connected domains in C ([17]). Fur-
ther generalizations are then given in the polydisc ([39]), ball of C™ ([40])
and strictly pseudoconvex domains with C* boundaries ([44]). The unit disc
D c C has two natural generalizations, namely polydisc and unit ball, and
one can define Hardy classes by means of integral growth or by means of
harmonic majorants on these two. However these two definitions do not co-
incide even for these classical domains because in the case of unit ball having
an .Z-harmonic majorant is sufficient (a function is .#-harmonic iff Af=0
where Af(a) = A(f 0 ¢,)(0) and ¢, is the automorphism of the ball that
interchanges the point a with 0, [40],pg:47) for being in Hardy class H?(B)
of holomorphic functions but in the case of polydisc having a harmonic n-
majorant is needed ([39],pg:16).

In 2008, Poletsky and Stessin introduced Poletsky-Stessin Hardy spaces,
HP(2), on hyperconvex domains ([34]) to get a “meaningful and uniform
theory of H? spaces” which unifies the different definitions made for various
domains. In this setting 2 is a hyperconvex domain and u is a continuous,

negative, plurisubharmonic exhaustion function for €2 which has finite Monge-



Ampere mass and the growth condition is constructed using integrals with
Monge-Ampere measures defined in ([13]). The general framework of ([34]) is
based on the examination of the Poletsky-Stessin Hardy spaces when the ex-
haustion function u belongs to a special class &, i.e the measure (dd°u)™ has
compact support. In this thesis we will consider the Poletsky-Stessin Hardy
classes in a broader perspective where most of the work will be done using
exhaustion functions belong to a wider class, i.e. the exhaustion functions
that have finite Monge-Ampeére mass but not necessarily maximal outside of
a compact set. Now let us mention the structure of this thesis:

In the first part of this study we will examine the Poletsky-Stessin Hardy
spaces in a setting where 2 is a domain in C containing 0, bounded by an
analytic Jordan curve and w is a continuous subharmonic exhaustion func-
tion for €2 which has finite Monge-Ampere mass but different from Poletsky
& Stessin’s work the exhaustion u is not necessarily harmonic outside of a
compact set. One of the main consequences of this choice of exhaustion func-
tion is that the Poletsky-Stessin Hardy spaces and the classical ones do not
always coincide so we have new Banach spaces to be explored inside the clas-
sical Hardy spaces. First we will characterize Poletsky-Stessin Hardy classes
HP(Q) through their boundary values and the corresponding Monge-Ampere
boundary measure. This boundary value characterization will enable us to
prove factorization properties analogous to classical case and next we will
show the algebra A((2) is dense in these spaces. Finally we will examine the
composition operators induced by holomorphic self maps and we will see that
even on the simplest of such domains , namely the unit disc, not all composi-
tion operators are bounded contrary to the classical Hardy space case. Then
we will explore the necessary conditions needed for composition operators to
be bounded on Poletsky-Stessin Hardy classes.

In the second part we will focus on multidimensional case and we will examine
the Poletsky-Stessin Hardy spaces on hyperconvex domains in C*, n > 1.

We start this chapter with a complete comparison between different Hardy



classes in the most general setting. Then we will continue with the Poletsky-
Stessin Hardy spaces on polydisc in C" and we will see the immediate tran-
sitions of some important characterization results from the unit disc case.
Next we will consider the Poletsky-Stessin Hardy spaces on complex ellip-
soids which are the basic examples of domains of finite type in C". For
Poletsky-Stessin Hardy spaces on complex ellipsoids we will show the exis-
tence of boundary values and then we will obtain boundary values along ad-
missible approach regions. In order to examine the boundary behavior on the
admissible approach regions we will apply a classical method given by Stein
in ([44]) however different from the classical approach we will use Cauchy-
Fantappie kernel. Next we will use this general method on strongly convex
domains which will provide us an alternative approach through Poletsky-
Stessin Hardy spaces, to the boundary behavior of classical Hardy spaces
on strictly pseudoconvex domains by localizing the procedures. Lastly we
will consider the boundedness of composition operators acting on Poletsky-

Stessin Hardy spaces on hyperconvex domains in C".



Chapter 1
Preliminaries

In this chapter, we will give the preliminary definitions and some important

results that we will use throughout this study.

1.1 Differential Forms and Currents

Let Q be a domain in C" and let C§°(£2) be the space of all smooth functions
on € with compact supports. A sequence {¢;} C C5°(€2) converges to 0 if
the supports of all ¢; belong to a compact K C €2 and the functions ¢; with
all derivatives converge uniformly to 0.

We denote by DP4(£2) the space of all differential forms

W = Z wudzle]

[I|=p,|J|=q

of bidegree (p,q) where I = (iy,...,iy) and J = (ji,...,J,) are subsets of
{1,2,..n}, dz; = dz;,...dz;,, dz; = dz;,...dZ;, and wr; € C5°(§2). Equipped
with the topology of uniform convergence on compacta with all derivatives,
DP4(Q) has a structure of a linear topological space.

The space D;),q(Q) of continuous linear functionals on DP?(€) is called the

space of currents of bidimension (p, q) or of bidegree (n —p,n —q). If ¢ €



/

D

pq

(Q) then
¢ = Z ¢rydzrdz;

[I|=n—p,|J|=n—q

where ¢;; are distributions and the pairing (¢,w) is given by

(¢, w) = Y (brnwi)

[I|=n—p,|J|=n—q

A current ¢ € D, (Q)is positive if (¢,w) > 0 for every test form w =
iwr AWy A iwp AWy, wi € DMO(Q). In this case the coefficients ¢, are
positive measures.

The differential of w is defined by dw = Ow + Jw where

ow
&u == Z azIdeZk VAN dZ[ VAN dEJ

— Oow
Ow =" a;k"dzk/\dzl/\dzj

The operator d° is defined by d° = i(0 — 9). For ¢ € C?(2) we have

dd°¢ = 2i ¢ d dz
¢_22282i82j zi N dz;

Given a current 7', we define dT" by the formula (d7',w) = (T, dw) and ddT’
by the formula (dd°T,w) = (T,dd‘w). A current is closed if dT" = 0. The
following result and a detailed treatment of differential forms and currents
can be found in ([15]):

Proposition 1.1.1. Every plurisubharmonic function generates a closed,

positive (1,1)-current.



1.2 Hyperconvex Domains and Maximal

Plurisubharmonic Functions

Definition 1. A connected open subset €2 of C" is called hyperconvex if
there exists a plurisubharmonic function g : Q@ — [—00,0) such that {z €
Q1 g(z) < c} is relatively compact for each ¢ < 0. Here g is called a an
exhaustion for €.

In C, hyperconvex domains are in fact the regular domains for the Dirichlet
problem.([37],pg:88).

Definition 2. A connected open subset 2 of C" is called strictly pseudocon-
vex if there exists a smooth, strictly plurisubharmonic defining function for

Q. i.e. There exists a smooth defining function p such that

(P)w;wz > 0 (1.2.1)

is positive definite for all P € 02 and for all w € Tp(02) where Tp(09) is
the tangent space at P. The form given in (1.2.1) is called the Levi form of
the domain (2.

Definition 3. Let €2 be an open subset of C" and let u :  — R be a
plurisubharmonic function. Then w is mazimal if for every relatively compact

open subset G of €, and for each upper semicontinuous function v on G such
that v € PSH(G) and v < u on 0G, we have v < u in G.

For the maximal plurisubharmonic functions we also have the following

characterization by ([25],pg:93):

Theorem 1.2.1. Let 2 be an open subset of C", and let u € C* N PSH(Q).
Then w is mazimal if and only if (ddu)™ = 0 in .

Remark 1. Since dd‘u = iAudsz by this theorem we see that in C the

maximal subharmonic functions are exactly the harmonic functions.

6



Definition 4. Pluricomplex Green function of {2 C C” is defined as:

gal(z,w) = supu(z)

where u € PSH(?) (including u = —00), u is non-positive and the function
t — u(t) — log |t — w| is bounded from above in a neighborhood of w. Pluri-
complex Green function gqo(z,w) is a negative plurisubharmonic function

with a logarithmic pole at w ([25], pg:222).

When €2 is hyperconvex, go(z,w) is a continuous function ([14]) and by
the previous theorem gq(z,w) is maximal in Q\ {w}.
An important tool that we will use throughout this study is the following
comparison principle for the continuous, plurisubharmonic, exhaustion func-

tions on a hyperconvex domain 2 € C* ([14)):

Theorem 1.2.2. Let ¢,1) : Q — [—00,0) be continuous, plurisubharmonic,
exhaustion functions such that ¢ < ¢ <0 and fQ(ddcap)” < 00. Then

oy < [y

1.3 Classical Hardy and Hardy-Smirnov Spaces

Definition 5. Hardy Spaces on the unit disc are defined for 1 < p < oo as
38] :

(D) = {f € OM): sup (5 / et <00} (131)
and
H™(D) = {f € O(D) : sup|(2)] < o0} (13.2)



For 1 < p < oo we equip HP(D) spaces with the following norms :

1l = sup (- / F(re)Pde)?

0<r<1 2m

and for H>(D)
£ = sup ()

An important tool in the study of H?(DD) spaces and its applications is
the factorization of the holomorphic functions in these classes. For the class

H?(D) we have the following canonical factorization theorem ([17],pg:24):

Theorem 1.3.1. Every function f # 0 of class HP(D) has a unique factor-
1zation of the form f = BSFE where B is a Blaschke product, S is a singular

inner function and F' is an outer function for the class H?(D).

Definition 6. Hardy spaces on the unit ball of C™ are defined for 1 < p < oo
as [40] :

H?(B) = {f € O(B) : sup / G < o)

0<r<1

where S(r) is the sphere with center 0 and radius 7 and p is the usual surface

area measure on the sphere. As usual we define
H*B) ={f € O(B): Suglf(Z)l < oo}
FAS]

Definition 7. Hardy spaces on the unit polydisc of C™ are defined for 1 <
p < oo as [39] :

HY(D") = {f € OD") : sup (-

o<r<1 (27)"

1
[ s pdn)t < o)
’ﬂ"n
where T" is torus and p is the usual product measure on the torus. And

H¥(D") = {f € O"): sup | £(2)] < o¢)



Definition 8. Let (2 be a smoothly bounded domain and A be a character-
izing function for Q which is defined in a neighborhood of Q i.e. A is smooth
cAx) <0iff x € Q, 00 = {A(z) =0} and |[VA(x)| > 0 if z € 9Q. (The last
condition is equivalent to % > 0 where v, is the outward normal at x.). Let
Q. ={z:Az2) <r:r<0}and 09, ={z: A(z) =1}

In ([44]), E.M. Stein defines the class H} as:

HY ={f| f holomorphic in Q, sup/ |f|Pdo, < oo}
r<0 JoQ,
where do, is the induced surface area measure on 0f2,.. This space is equipped

with the norm

£l =sup [ |fdo,
r<0 JoQ,

Remark 2. The space HY(€2) does not depend on the characterizing function
used to define () and one gets equivalent norms for different characterizing

functions.

Definition 9. Let 2 be a domain in C containing 0 and bounded by an

analytic Jordan curve. The classical Hardy space H?((2) is defined as follows:
HY(Q)={f€0®) | |fIPhas a harmonic majorant in Q}  (1.3.3)

Definition 10. Let Q be a domain in C containing 0 and bounded by an
analytic Jordan curve. The Hardy-Smirnov class EP((2) is defined as follows:
A holomorphic function f on € is said to be of class EP(£2) if there exists a
sequence of rectifiable Jordan curves C7, Cs, .. in €2 tending to boundary in
the sense that C), eventually surrounds each compact subdomain of €2 such
that
lf(2)|Pds < M < o0
Ch

Remark 3. The spaces H?(D), H?(D"), H?(B), HY(2), HP(2) and EP(2) are
Banach spaces for 1 < p < oo.



An important point examined in the study of Hardy spaces is the existence
of non-tangential limits which determines the boundary behavior of the given
classes. About the existence of non-tangential limits we have the following
results ([38], [39], [40], [44]) :

Theorem 1.3.2. Let f € H?(D),1 < p < oo then for almost all 6 radial
limits of [ ewists, i.e.

f1(0) = lim £,(9) = lim f(re"”) (1.3.4)

exists almost everywhere with respect to the usual Lebesque measure on the

unit circle.

Remark 4. It should also be noted that H? classes can also be considered as
the normed linear spaces where the norm is defined as the LP norm of the
boundary function, i.e. for f € H?(D) we have || f||z» = ||f*||zr ([17], pg:23).

Theorem 1.3.3. Let f be in HP(D™) then f*(w) ezists for almost allw € T"

with respect to the product measure on the torus.

Theorem 1.3.4. If f isin HP(B), for 1 < p < oo, then for almost allw € S,

f*(w) ezists with respect to the usual surface area measure

Theorem 1.3.5. If f is in HY(QY), for p > 1 the non-tangential limits

[(y)= lim f(z)

Ty
z€la(y)

exists for almost every y € 0S) where
Fa(y)={zeQ:|z—y| <1+ a)i(z),a>0}

where § is the distance from OS)

10



1.4 Monge-Ampere Measures and Poletsky-
Stessin Hardy Spaces

Let Q be a hyperconvex domain in C" and ¢ : Q — [—00,0) be a negative,

continuous, plurisubharmonic exhaustion for €2. Define pseudoball:
B,(r)={2€Q:p(z)<r} , rel-00,0),

and pseudosphere:
Sp(r) ={z€Q:0(z) =r} , rel-000),

and set

o =max{p,r} , 1€ (—00,0).

In 1985, Demailly introduced the Monge-Ampere measures in the sense of

currents as :

pr = (dd°p,)" — Xo\B,(r) (dd°p)" T € (—00,0)

which is supported on S,(r). We can define the mass of an exhaustion

function using the mass of Monge-Ampere measure generated by it as follows:

Definition 11. The Monge-Ampere mass of an exhaustion function u on
Q2 C C" is defined as:

MA(u) = /Q(ddcu)"

The following result by ([34]) gives us the relation between the decay
rate of exhaustion functions near the boundary of €2 and the dominating

measures:

Theorem 1.4.1. Let u and v be continuous, plurisubharmonic exhaustion
functions for Q0 and let F' be a compact set in Q such that ' C B,(ro) for

11



some ro < 0 and v(z) < u(z) for all z € Q\ F. Then for any ¢ > 1 and any

a<1—c' we have

P (V) < " iy 0r (V)

when r > rg and v is a nonnegative plurisubharmonic function on Q.

Now let us mention so called Lelong-Jensen Formula which will be used

in most of the results in this study as a powerful tool ([14]):

Theorem 1.4.2. Let r < 0 and ¢ be a plurisubharmonic function on ) then

for any negative, continuous, plurisubharmonic exhaustion function u

Sl — o(ddu)" = / (r — w)dd°¢(ddu)™"  (1.4.1)
Su(r) By (r) Bu(r)

Inspired by Demailly’s work, Muhammed Ali Alan defined Hardy Spaces
on hyperconvex domains in terms of Monge-Ampere measures associated

with go(z,a) in his MSc thesis (2003) in the following manner:

H(Q) = {f € O(Q) : sup / P <) 1<p<oo

r<0

and we know that these classes HP(2) are independent of the pole point a
([34],pg:13).

In 2008, Poletsky & Stessin introduced new Hardy type classes of holomor-
phic functions on hyperconvex domains in C" as follows ([34]) :

HE(€Q), p > 0, is the space of all holomorphic functions f on € such that

limsup/ | fIPdpigp,r < 00
Q

r—0—

The norm on these spaces is given by:

£ = (i [ 11Pa )
r—0 Q

12



and with respect to these norm the spaces HE () are Banach spaces ([34],pg:16).
Moreover on these Banach spaces point evaluations are continuous ([34], The-
orem 3.6).
Now let us see the correspondence between the classical Hardy spaces and
the Poletsky-Stessin Hardy classes :
In the case of the unit disc in C using ¢;(z) = log|z| as the exhaustion
function we get

gy 0 = dO (1.4.2)

where df is the usual Lebesgue measure on the circle with radius r.
For the unit ball of C™ when we use ¢1(z) = log ||z|| as the defining function

we obtain .

et = S

which is the normalized surface area measure on the sphere with radius r.

(1.4.3)

Now consider the polydisc D™ C C" with p3(z) = log(max |z;|) as the defining
function, we have

1
Hps,r0 = @Tyldeldeg e d@n (144)

which is the usual product measure on the torus. Therefore, the classical
Hardy spaces H?(D), H?(B) and H?(D") correspond to the classes HE (D),
HP (B) and HP (D") respectively.

Lastly let us give an explicit formula for the norms of holomorphic functions
in the Poletsky-Stessin Hardy spaces ([34], Theorem 6.2) :

Theorem 1.4.3. Let 2 be a hyperconver domain in C* with an exhaustion
function u such that the set L(u) = {z € Q| wu(z) = —oo} is finite. If f is

a holomorphic function on 2 then

g = [ 10" + [ (copde| P aara

13



Chapter 2

Poletsky-Stessin Hardy Spaces
on Domains Bounded by An

Analytic Jordan Curve in C

2.1 Comparison Between Hardy Type Classes

of Holomorphic Functions in C

In this section we will compare the Poletsky-Stessin Hardy spaces with the
classical Hardy and Hardy-Smirnov classes over a hyperconvex domain €2 in

C. Let us start with the first comparison:

Theorem 2.1.1. Let 2 be a domain in C containing 0 and bounded by an
analytic Jordan curve. Suppose @ is a continuous, negative, subharmonic
exhaustion function for ) such that ¢ is harmonic out of a compact set
K C Q. Then for a holomorphic function f € O(Q), f € HE(Q) if and only

if | fIP has a harmonic majorant.

14



Proof. Let |f|P has a harmonic majorant v on 2. Then

/ | fPdpig §/ udfip :/ u(dd®yp) (2.1.1)
S(r) S(r) B(r)

by Lelong-Jensen formula and we know that ¢ is harmonic outside of the

compact set K so

/ u(ddp) < / u(ddp) < Ck||ul| Lo (k) (2.1.2)
B(r) K

for some constant C'x and this bound is independent of r. Hence

sup/ | fIPdppr < M < o0 (2.1.3)
5(r)

r<0

for some M
= f € HE(Q). For the converse, suppose f € HL(Q2) and |f[? has no
harmonic majorant. Then by ([37], Theorem 4.5.4) we have that

3 | (ot unalsp = o (2.1

where go(z,w) is the Green function of the domain € ([37]). Then from

Lelong-Jensen formula

o WPinerz 50 [ oy
Note that left hand side is bounded independent from 7 since f € HE(2).
Let us take a compact set F' C €2 containing the support of Ay and {w} such
that both ¢ and gq(z,w) are bounded on JF and bgq(z, w) < ¢ < cga(z,w)
holds on OF for some numbers b, ¢ > 0. By the maximality of both ¢ and
ga(z,w) on Q\ F this inequality holds on Q \ F. Hence near boundary we
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have

2 < CgQ(Z, w)

Then by ([34], Theorem 3.1) for a positive constant a > 0 we have the

following
Ll <>wm<1/|mi<1/|ﬁd
— ar — go(z,w < Hgr = 5 He,r
27 J B(ar) 27 Js(ar) 72w s ’

and as r — 0 by Fatou lemma we have

[ontconalsl <timss [ = gotzwalse
D B(ar)

r—0 27

r—0 27

1
gm—/|mmf
21 Jsr)

the last limit is bounded since f € HE(Q2) but the first integral goes to
infinity by (2.1.4). From this contradiction it follows that | f|” has a harmonic

majorant. 0

Remark 5. We would like to give a direct proof for the previous result in
our study however, alternatively one can deduce this result by combining
(Lemma 3.4, [34]) and (Theorem 5.2.2, [2]). The first one gives us that the
exhaustion functions which are maximal outside of a compact set generate
the same Poletsky-Stessin Hardy space. Hence, all of them generates the
same space that is generated by the Green function and the second one gives
us that a holomorphic function f belongs to Poletsky-Stessin Hardy space
generated by the Green function if and only if |f|” has a harmonic majorant.

Thus, we obtain the previous result.

Remark 6. This result is not true in general for n > 1 if we take harmonic
functions as solutions to the equation Au = 0 in C". As we have seen in the
cases of the unit polydisc and the unit ball in C", if we take our exhaustions

to be Green functions then Poletsky-Stessin Hardy classes coincide with the
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classical Hardy spaces on the ball and polydisc. In the case of unit ball,
having an .#-harmonic majorant is sufficient (a function is .#-harmonic iff
Af =0 where Af(a) = A(fop,)(0) and ¢, is the automorphism of the ball
that interchanges the point a with 0, [40],pg:47) for being in the defined class
of functions, however in the case of polydisc having a harmonic n-majorant

is needed ([39],pg:16).

Corollary 2.1.1. Let 2 be a domain in C containing 0 and bounded by an
analytic Jordan curve. Suppose go(z,w) is the Green function of Q with the
logarithmic pole at w € Q. Then HP(Q) = H} (Q) for p > 1.

Proof. The Green function go(z,w) is harmonic outside of the compact set
{w} by definition so by previous theorem we have f € HP (§2) is equivalent
to the condition that |f[? has a harmonic majorant which is by definition
means f € HP(Q). O

Now we would like to compare Poletsky-Stessin Hardy classes with the
classical Hardy and Hardy-Smirnov spaces when €2 is a domain in C that is
bounded by an analytic Jordan curve. First of all on 2 we have EP(Q2) =
H?(Q) by (Theorem 10.2,[17]) and using the previous theorem we see that
for any exhaustion function ¢ which is harmonic outside of a compact set
we have EP(Q) = HP(Q) = HP(S2). However this need not be the case when
our exhaustion function v has finite Monge-Ampeére mass yet not harmonic
outside of a compact set. When an exhaustion function u has finite Monge-
Ampere mass then by (Theorem 3.1, [34]) we have HE(2) C HP () = HP(Q)
where the last equality is given in the previous corollary however by explicitly
constructing an exhaustion function u on the unit disc D, we will show that

HP(Q) need not be equal to HP(£) :

Theorem 2.1.2. There exists an exhaustion function u with finite Monge-
Ampére mass such that the Hardy space HE(D) & H? (D).

Proof. (Without loss of generality assume p=1) In order to prove this result

we will first construct an exhaustion function v with finite mass:

17



Let D be the unit disc in C, and let p be the solution of the Dirichlet problem
in the unit disc such that Ap = 0 in D and p = f on 9D where f(z) =
—(1—2)3. Then define u = f — p. We will first show that u is a continuous,
subharmonic, exhaustion function for D:

u is continuous: u(z) = f(z) + [, P(z,€?)(1 — cos 6)1d6 and both parts on
the right hand side are in C?(ID) N C(D) hence u is a continuous function.

u is subharmonic:  is a C2(D) function and Au = A(—(1 — 2)1) = (1 —
x)fT5 > 0 hence u is subharmonic.

u is an exhaustion: For this we should show that A, = {x | u(z) < ¢} is
relatively compact in ID for all ¢ < 0. Suppose not then there exists a sequence
xp in A, such that it has a subsequence xz,,, converging to boundary of D. Now
suppose that x,, — x, |z| = 1 and since u is continuous so u(z,, ) — u(x) but
u(zy,, ) < c¢sowu(zr) < c. This contradicts the fact that u = 0 on the boundary.
Hence A, is relatively compact in D for all ¢ and u is an exhaustion.

Since we have a negative, continuous, subharmonic exhaustion function in D
we can define the Monge-Ampere measure p,, associated with v and we will

show that total mass ||z, of 1, is finite :

(1 z)(14x) s 1 L 5
|\pu\|_/ddcu_/ / —x)4dyda::/ 2(142)4 (1—2) i do
(1- m(l—f—x -1

< 2\/5/11(1 —x) idz

say t =1 — x then
2
1
0 ta

Hence p,, has finite mass.

We know that for any continuous, negative, subharmonic exhaustion function
u the Poletsky-Stessin Hardy space HP(D) C H'(D) ([34],pg:13) but now we
will show that the inclusion is strict by using the exhaustion function u

that we constructed above. Now consider the holomorphic function F'(z) =
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W fOI' q<%

First of all we want to show that F'(z) € H'(D), so we will show the following

growth condition is satisfied:

2
sup / |F(re®|df < oo for 2¢<1
0

0<r<1

1 1 1
F — - = - -
|F(2)] |1 —re®2a — (14712 —2Re(re?))s (1412 — 2rcos(0))

o 2
/ 1 do — / — 1 df
o (1472 —2rcos(f)) o (sin®0 + (cosf —r)?)

2 1
< — _db
- /0 (cos@ —r)2a

and as r — 1 this integral converges for 2¢ < 1 and

2m ] 1
sup / |F(re?|df < 0o for ¢ < 3
0

0<r<1
Now we will show that F(z) ¢ H}(D) :

= e = (=P )

S T (e et

from the Lelong-Jensen formula,

/S(r) |F'(2)|dptur = /B(T) |F(z)|Au+/ (r —u)A|F(z)|

B(r)

second integral on the right hand side is non-negative so

L/ W@Wmmz/ F(z)|Au
S(r) B(r)
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now asr — 0
1E ) >hm/ |Au>/\F )| Au

where the last inequality is due to Fatou Lemma. On D, y* < 1—2% < 2(1—x)

SO

1+m
1Py > / F(2)|Au = / / (1— 2 + 42 9(1 — 2)~Sdyda
(1:(31+x

(1 z)(14x) s
/ / (1 —2)+2(1 —2))9(1 — )" 1dydx

(1 z)(14x)

> /_1<1 )1 —2) (3 — ) (1 — 2) o

! 1
> / _
1 (1 —xz)7ta

so for ¢ > § this integral diverges. Hence for ; < ¢ < 3 F(z) € H'(D) but
F(2) ¢ H,(D) O

Remark 7. Moreover from this result we also deduce that if u is an arbitrary
exhaustion function with finite Monge-Ampere mass HP(2)’s are not always
closed subspaces of HP(§2) because as Banach spaces, the inclusion H?(Q2) —
HP(Q) is continuous which can be deduced from Closed Graph Theorem and
the fact that point evaluations are continuous ([34]). However the range is
not closed because range includes all bounded functions (hence polynomials)
and polynomials are dense in H?(§2) but H?(Q2) # HP(Q2) in general.
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2.2 Boundary Monge-Ampere Measure and
Boundary Value Characterization of Poletsky-
Stessin Hardy Spaces

2.2.1 Boundary Monge-Ampere Measures

In [14], Demailly gave the following definition for the boundary Monge-

Ampere measures :

Definition 12. Let ¢ : @ — [—00,0) be a continuous plurisubharmonic
exhaustion function for €2. Suppose that the total Monge-Ampere mass of ¢

is finite, i.e.
/ (dd°p)" < o0 (2.2.1)
Q

Then as r tends to 0, the measures p, converge to a positive measure pu
weak*-ly on € with total mass [,,(dd°¢)" and supported on 9. This limit
measure p is called the boundary Monge-Ampere measure associated with

the exhaustion (.

In certain cases we can explicitly calculate the boundary Monge-Ampere

measure :

Proposition 2.2.1. Let € be a bounded, simply connected domain bounded
by an analytic Jordan curve and pig, » be the boundary Monge-Ampére mea-
sure associated with the Green function with a logarithmic pole at a € ().
Then pig, » converges to the boundary Monge-Ampére measure p, which is
given by

o= IV s (2:22)

where ||.|| denotes the Fuclidean norm, f is the conformal map given by
Riemann mapping with f(a) =0, f'(a) > 0 and ds is the arclength measure.
Moreover, u has finite mass and ds < p (absolutely continuous) on OS).
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Proof. Let a be a point in 2 and f be the conformal mapping given by
Riemann mapping theorem which maps 2 conformally onto the unit disk D
such that f(a) = 0. Then the Green function of  is

ga(z,a) = g(z) = —log[f(2)]

and let f(z + iy) = u(z,y) + w(zr,y). Now Monge-Ampere measure on 2
reduces to d°g|s( and

I uuy + v, Uy + VUg
=5l
2wt +w u®+v

d*(—log |f(2)]) dy]

but since on S(r), g(z) = r we have u? + v? = ¢~ and hence

1 uuy + vv, Ul + VU,
Sl i et ) P ML |
27'('[ u? + v? v u? + v? J
er 1,0, 4, 0
— (= d (a2 2d
L5 (5 (0 + ) = (w0
e2'r 8 )
= —— d
a7

627‘

= IV =)P)llds

where 7 is the unit outward pointing normal.So

62

Haor = IV E)P)ds

Now since €2 is bounded by an analytic curve f conformally extends to the

boundary ([18]) and hence as r — 0, we have

1y = IV s

In order to see that ds is absolutely continuous to p,, it is enough to show
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that V|f(2)]? # 0 on the boundary. Assume the contrary, then

V(u® 4+ v*) = 0 & (uu, + vo,, uu, + vv,) = (0,0)

& uuy = —vv, and  uuy, = —vv,

Now let z = (z,y) be a point on 0 then since —log|f(z)| = 0 on the
boundary we have |f(z)| = 1 so u(x,y) and v(x,y) can not be both zero.

CASE 1:(u(z,y) and v(z,y) are both non-zero)

Combining the above equalities with the Cauchy-Riemann equations we get

2 _ a2 0,2

UL, = —VV Uy = VUV, = —UL, = —UV;
2 9 . .

= u; = —v; since u(z,y) is non-zero

= Uy =V, =0

= f'(z) = uy +iv, =0

but this contradicts with f being conformal so there is no such case.

CASE 2:(one of u(z,y) and v(zx,y) is zero)

Without loss of generality suppose u(z,y) = 0 then since they cannot be
both zero v(z,y) # 0

uty (z,y) = —vvg(x, y) = vog(
but  wv(z,y) # 0 = v,(

uuy(x,y) = —vvy(x,y) = vo,(z,
but wv(z,y) # 0= vy(x,y) = us(

= f1(2) = up + v, =

but this contradicts with f being conformal so there is no such case either.
Hence ds is absolutely continuous to 4.
In order to show that p, has finite mass we will first show that ||V (]f(2)]?)]|
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is bounded:

IVAF I = 20l (urty + vve, uwy, + vv,) |

= 2\/(uu$ + vv,)? + (uuy + voy)?

— 20,2 22 24,2 29)2
_2\/u uy + 2uvug vy + viug + utug + 2uvuyvy, + vy

= 23/uu2 + v2u2 + v202 + u2v2
=24/ (u? + v?)(u2 + v3)
<2yui+v; =21 (2) < Oy

from Cauchy estimate. Now

Ch
[ :/du §—/dS§M
ol = [ g < 3 [

since (2 is a bounded domain. Hence p, has finite mass. O]

Corollary 2.2.1. Suppose ) is a bounded domain whose boundary is a
Jordan curve I' which is a union of k analytic arcs I';. Let h € HP(Q)

then h has boundary values h* a.e.(du,) on I' in the normal direction and
h* e LT, duy)

Proof. Let f be the Riemann mapping of {2 onto unit disc A. Then f extends
to be analytic and conformal on a neighborhood of 2 UT'; for each j since
I';’s are all analytic. Further g = ho f~! lies in H?(A) and so g has boundary
values a.e. df on A and g* € LP(0),df). Then h = g o f has boundary
values a.e. ds on I' hence we have that h has boundary values h* = g* o f

pg-a.e. from the previous result. Also h* = ¢g* o f € LP(I',ds) and hence
B e LP(T, dp,) 0

Remark 8. The above result can be generalized to compact bordered Rie-
mann surfaces by means of a procedure called Schottky Doubling. The double
of a multiply connected domain of the plane was first introduced by Schot-

tky and it was generalized to general Riemann surfaces by Picard. When
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we study the classes of functions given on the border of a compact bordered
Riemann surface by means of Schottky Doubling, we can assume that our
compact bordered Riemann surface is the closure of a region €2 of a compact
Riemann surface S such that I' = €2 is the union of a finite number (> 0) of
disjoint, regular, analytic Jordan curves. The double S of a Riemann surface
R may be defined as follows. T'wo points of S are associated with, or lie over,
each interior point of R and one point of .S is associated with each boundary
point of R. Two disjoint neighborhoods of S lie over each neighborhood of
an interior point of R.

To obtain a more complete description of S consider the Riemann surface
(R, ®) where ® is the complex structure on R and replace each h € ® by
h* : p — —h(p) and consider the conjugate Riemann surface (R, ®*). The
new structure is conformal since hto (h})~! is explicitly z — —(hy o hy')(—2)
which is conformal. On boundary, identify the boundary points of (R, ®)
and (R, ®*) by identity mapping. Now S is the topological sum of (R, ®)
and (R, ®*) i.e. S is obtained topologically from two copies of R by gluing
the conjugate parts at the boundary and identifying the boundary points
by identity mapping. As well-known examples, the double of a simply con-
nected domain with boundary is the sphere, while the double of a multiply
connected domain with m-boundaries is the sphere with m — 1 handles, the
double of the Mobius strip is the torus.

Remark 9. A function v : R — R is harmonic if for some chart A, : U, — V,
the functions u, = u o h,' are harmonic in the usual sense.
A function is harmonic on a bordered Riemann surface R only if it has a

harmonic extension to an open set on the double S.([1])

Now using doubling argument we have the following generalization:

Proposition 2.2.2. Let R be a compact bordered Riemann surface whose
border is denoted by I'. Let f € HP(R) (i.e |f|P has a harmonic majorant)
then f has boundary values f* a.e. (duy) onI' and f* € LP(dp,).
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Proof. First of all due to Schottky doubling we take R as the closure of a
region 2 of a compact Riemann surface S such that I' = 0f2 is the union
of k analytic arcs, I';. Now we can introduce a univalent conformal map n
of an annulus A = {p < |z| < p~'} into S, mapping the unit circle onto a
component of I' and mapping points in its domain of modulus less than 1 into
points of ©([21], pg:208) and by this we conclude that a member, f of HP((2),
composed with 7 restricted to A; = {p < |z| < 1} belongs to HP(A;) i.e.
fon=g¢€ HP(Ay). And since g € HP(A;) has Fatou boundary function g* €
LP(Ay,df) on DA, f has Fatou boundary function f* = g*on™t € LP(09, ds)
([23], pg:70). Also we can conformally map € into unit disc by a map ¥(z)
and then the Green function of 2, go(z,a) = —log|i(z)| and by (2.2.2) we
have boundary Monge-Ampére measure on 9 as py = ||V (|¢(2)[?)||ds so
f* e LP(09, duy). O

2.2.2 Boundary Value Characterization of Poletsky-
Stessin Hardy Spaces

Let 2 be a domain in C containing 0 and bounded by an analytic Jordan
curve and u be a continuous, negative, subharmonic exhaustion function for
Q with finite Monge-Ampere mass. In the classical Hardy space theory on the
unit disc D we can characterize the H? spaces through their boundary values
inside the L? spaces of the unit circle and since we have HP(Q2) C HP(2), any
holomorphic function f € HP(Q2) has the boundary value function f* from
the classical theory (Theorem 10, [44]). In this section we will give an anal-
ogous characterization of the Poletsky-Stessin Hardy spaces through these
boundary value functions and boundary Monge-Ampere measure. First, we
will show the relation between boundary Monge-Ampere measure and Eu-

clidean measure on the boundary 0.

Proposition 2.2.3. Let u be a continuous, negative, subharmonic exhaustion

function for Q with finite Monge-Ampére mass. Then the boundary Monge-
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Ampeére measure i, and the Euclidean measure on OS2 are mutually absolutely

continuous.

Proof. Let ¢ be a continuous function on 02 and let the Poisson integral of

© be
H(z) = /8 P 8p(do(6)

then by Lelong-Jensen formula we have

/an pdp, = /QH(z)ddcu: /Q/(99 P(z,€)p(€)do(&)ddu

and since ¢ is a continuous function on the boundary and ., has finite mass

we can use Fubini theorem to get

/aﬂ@dﬂu:/g/m P(z,f)s@(é)da(f)aldcu=/8§2 (&) (/QP(Z,E)ddCu(z)> do(€)

Now define
B6) = | P.gddu)

We will show that 5(£) is do-integrable: First we see that 5(£) > 0 and

[ JBeaote) = | pe)ao(e) - /a ) /Q P(z, €)ddeu(z)do () = /Q /8 Pl o ()

and since

/ P(z.6)do(€) = 1
o0

we have

1B(O)do(e) = / dd°u = MA(u) < oo
o0 Q

Hence 8 € L'(do) and we have

/ ey =/ pPdo
o0 oN
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= dju, = fdo. Now we will also show that 1/8 € LL(09). In fact, near 99
we have u < Cgq(z,0) for some positive constant C' > 0, therefore we have
do < Cdp, = pdo. Thus, 1/ < C and since bounded functions belong to
LL(09) we have 1/8 € LL(09). Hence, the result follows. O

Remark 10. From the previous proof we see that for a fixed £ € 09, Bz(§)

which is defined as

5 = [ | Pl = | P

Su(F)

converges to 3(§) = [, P(z,&)ddu(z) by Monotone Convergence Theorem

since B > 0 for all 7, and (; is increasing with respect to 7.

Now we will give the characterization of Poletsky-Stessin Hardy spaces

HP(Q2) through boundary value functions:

Theorem 2.2.1. Let f € HP(Q) be a holomorphic function and u be
continuous, negative, subharmonic exhaustion function for 2. Then f €
HP(Q) if and only if f* € LP(d,) for 1 < p < oo. Moreover || f*||Lr(du.) =
1/l mz -

s}

Proof. Let f € HP(Q2) C HP(Q)) we want to show that f* € LP(du,). First
of all let p > 1,

[ ir@ran= [ 11©P ([ Peodr) o

and using Fubini-Tonelli theorem we change the order of integration and get

/Q 09 [ (©IPP(2,8)do(€) | ddu(z)

H(z)

Then the harmonic function being the Poisson integral of |f*|P is the least
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harmonic majorant of |f|? so by ([37], Theorem 4.5.4) we have

H(=) = |f(2)F — / gor(w, 2)dd?| f(w)?

where go(w, z) is the Green function of 2 with the logarithmic pole at the
point z. By ([14],Theorem 4.14), go(w, z) is continuous on Q and subhar-

monic in €2 hence we have

[ aearu= [1rerae [ ([ ae) ariswp

Now using the boundary version of Lelong- Jensen formula ([14],Theorem
3.3) we get

/Qgg(w,z)ddcu(z) = /Qu(z)ddcgg(w,z) = u(w)
therefore

RGGITS / H(z)ddou = / F()Pddu— / w(2)dd|fP = || fllpeey < o

so we have f* € LP(dpu,).

For the converse since f € HP({)) we have

f(2) = / P, €)*(€)do (©)

| ifGpdu, = [
Su(r) Su(r)

then by using Holder inequality we have,

</ ( / » P(z,@duu,r) () Pdo(e)

now
p

Aft,r

/Q P2, ) f*(€)do ()
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by Remark 2 we know |, Su(r) P(z,&)dp,, is increasing and using Monotone

Convergence Theorem as r — 0 we get

1Ly < /a PO dme) <o

so f € HP(Q2). The case p = 1 is just a straightforward application of the

above procedure. O

2.2.3 Weak and Strong Limit Values

The existence of boundary values for holomorphic functions depends on the
geometry of the domain and the growth of the functions. However through-
out this section we have made use of the fact that Poletsky-Stessin Hardy
classes are inside the classical ones so we already have the non tangential
boundary values. In his 2011 paper ([35])in order to look at the boundary
value problem without any boundary smoothness condition, Poletsky gave
definitions for two types of boundary values namely, strong and weak limit

values for sequences of functions in an abstract setting as follows:

Definition 13. Let K be a compact metric space and M = p; be a sequence
of regular Borel measures on K converging weak-* in C*(K) to a finite mea-
sure f1. We denote the set supppu; by K; and suppu by Ky. Let ¢ = {¢;} be

a sequence of Borel functions ¢; on K;. We let

¢l zeary = limsup |6l 2o (r¢; )
Jj—00

If the measures {¢;/;} converge weak-* to a measure ¢, then the function
¢, will be called the weak limit values of ¢. We will denote by A(M) the
space of all sequences ¢ of Borel functions ¢; on K; which have weak limit
values and by AP(M) those sequences ¢ in A(M) for ||¢]|Lr(ar) < 00.

We say that a sequence ¢ € A(M) has the strong limit values on K

with respect to M if there is a y-measurable function ¢* on Ky such that for
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any b > a and any €,0 > 0 there is a jo and an open set O C K containing
G(a,b) = {z € Ky : a < ¢*(x) < b} such that

1i{o; <a—etnO)+p({¢; >b+etN0O) <o

when j > jo. The function ¢* is called the strong limit values of ¢.

Now we will show the relation of weak and strong limit values with the
boundary values of the functions in the Poletsky-Stessin Hardy classes H; (D)
where v is a continuous, negative, subharmonic exhaustion function with

finite mass:

Theorem 2.2.2. Let f € H(D) and f* be the boundary value of f. Then

the sequence { fi,,} has f*u, as its weak limit value.

Proof. First define P(z, &) = T Flw )i a(e) P(qu’i;%(w) we see that [, P(z,&)du(§) = 1.
[D) b
Now define

ple)= [ PO,

Step 1: We will show that p,’s are uniformly bounded and converge weak-x
to 1 on OD:

p@) = [ P6)dua, !

509 ~ J, Pw, )ddeu(w) /S(T) Pz, §)dpr(2)

and using Lelong-Jensen formula we get

1 »
- Jo P(w, §)ddeu(w) /Bm P(z,€)ddu(z)

Hence ||p.|| < 1 for all r, €.
Let ¢ € C(D) then

r—0 oD r—0

i [ @) = iy [ 516 ( / ( )P<z,£>duu,r) din(€)
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i [ ([ et0r. 006 ),

lim (2)dpy(2) = /a Dw(&)duu(@

r—0 S(T‘)
the last equality is true since dp,, , weak-* converges to du,.Hence p,’s weak-

x converge to 1 on JD.

Step 2: For z € S(r) define ¢, (2) = [,; P(2, &) f*(§)dp(§) then
[, e ) = /B o /S ) P(z,@duu,r(z)) e
. F(Epr (&) dpa(€)
and

/S(T) |V (2)|dptr (2) / | f*(€ (L(T)P<Z’£)duu’r(z)) dpiy (€)

. |f*(E)Ipr (&) dpu(§)

Hence [|1), || 1(s(r)) are uniformly bounded and we can take a subsequence

{¥r; ftu,r; } converging weak-* to a measure v then

J]—00

/ dv = hm/ wr]d,uu r; = hm f prjd/iu / [y,
oD

by ([35],Lemma 4.1). Thus v = f*u, and the sequence {t¢,p1,,} converges

weak-* to f*u,. Hence,

lim [ (), = lim / P2, &) F(E)diua(€) it
r—0 D oD

r—0 D D
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Therefore f* is the weak limit value. O

Corollary 2.2.2. Let f € H}(D) and f* be the boundary value of f. Then
the sequence {|f|pur} has |f*|p as its both weak and strong limit value.

Proof. For z € S(r) define ,(2) = [,; P(2,)|f*(€)|dp.(§) then

[f(2)| =

Df*<s>P<z,5>da<f>' < [ 17 (OPEOU© = .

Now using the same argument in the previous result we get that the sequence
Yy fly,» converges weak-x to | f*|pu,, therefore the non-negative sequence v, —
|f| has zero weak-* limit value hence we have |f|,, — |f*|p. weak-x. By

([35],Theorem 3.6) we also have | f*| as strong limit value. O

2.3 Factorization

Let 2 be a domain in C containing 0 and bounded by an analytic Jordan
curve. Suppose ¢ : D — € is the conformal map such that ¢(0) = 0 and
¢ = 9. By Carathéodory theorem for a domain like Q we have 0 < m <
|| < M < oo for some m, M > 0. Following the definition given in ([3]),

we have that :

Definition 14. A holomorphic function h on € is Q2-inner if h o) is inner in
the classical sense i.e. |h o] =1 for almost all £ € D and Q-outer if ho )

is outer in the classical sense i.e.

log|hozp(0)|—/ log |h o ¢|do

oD

For the classical Hardy space on the unit disc D we have the following

canonical factorization theorem ([17],pg:24):

Theorem 2.3.1. Every function f # 0 of class HP(D) has a unique factor-
1zation of the form f = BSFE where B is a Blaschke product, S is a singular
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inner function and F' is an outer function for the class H?(D).

Using this result and the conformal mapping the following is shown in
(I3)):
Proposition 2.3.1. Every f € HP(Q)) can be factored uniquely up to a uni-
modular constant as f = IF where I is Q-inner and F is Q-outer.

Inspired by this result we have the following corollary

Corollary 2.3.1. Let f € HP(2), 1 < p < oo, where u is a continuous
exhaustion function with finite Monge-Ampére mass. Then f can be factored
as [ = IF where I is Q-inner and F is Q-outer. Moreover I € HP(Q) and
F e HP(Q).

Proof. First of all, since H?(2) C HP(2) by the above proposition it is
obvious that f can be factored as f = IF where I is Q-inner and F' is
Q-outer. Now define the measure 1 on 0D as (E) = u,(¢(F)) for any
measurable set £ C 0D then it is clear from the change of variables formula
that | o9| =1 dji-a.e. so

/ |1 [P, :/ ]Io¢|pdﬂ:/ d,&:/ dp, = MA(u) < o0
o0 oD oD o0

since u has finite Monge-Ampere mass and for the outer part

[ 1pran = [ Povrdi= [ |5oupdi= [ |fPdn, <o
00 oD oD o0

since f € HP(QY). Hence we have I € HP(Q2) and F € HE(9Q). O

In fact in the particular case of unit disc D we can say more about this

factorization :

Theorem 2.3.2. Let f be analytic function in D such that f € HP(D). Then
f can be factored into a Blaschke product B, a singular inner function S and
an outer function F such that B, S, F € HE(D) for 1 <p < oo.
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Proof. Let f € HP(D) then f € HP(D) so f has canonical decomposition
f = BSF where B is a Blaschke product, S is a singular inner function
and F'is an outer function. The exhaustion u has finite mass so bounded
functions belong to class H?(D). Since B and S are bounded ([17],pg:24),
B,S € H2(D). As the outer function F'(z) is concerned , we know F' € H'(D)

so we have

1 2 )
F(z) = — P(r,0 —t)F*(e")dt
)= [ POO=DF
Now
1 2 ) p
| F@Pde = o [ | [T Peo— o at| dus
S() 21 Js@ 1o
1 2 )
< — (/ P(r,0 — t)d,uuf) |F*(e™)[Pdt
21 Jo S()

1 2w (/ > )
= — P(r,0 — t)dp,z ) | (") Pdt
o AR ]

and using the previous result, monotone convergence theorem and the fact
that |f*| = |F*| (dt)- a.e. we get as 77— 0:

\W@MWSAJN&WM@<W

= F(z) € HP(D) O

In the classical H? space theory a useful tool for the proofs is that any
holomorphic function f € H'(D) can be expressed as a product of two func-
tions , f = gh where both factors g and h € H*(D). Now we will show that

there is a similar factorization in the spaces HP(€2).

Corollary 2.3.2. Suppose 1 < p < oo, f € HE(Q), f # 0. Then there
is a zero-free function h € H2()) such that f = Ihe. In particular every
f € HNQ) is a product of f = gh in which both factors are in H2(L).
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Proof. By the previous theorem f/I € HP(Q2). Since f/I has no zero in
and  is simply connected , there exists p € O(Q2) such that exp(y) = f/I.
Define h = exp(pp/2) then h € O(Q) and |h|*> = |f/I|P and h € H%(Q)
and f = Ih#. To obtain f = ghfor f € H(Q) write f = Ih? in the form
f=(h)h. O

2.4 Approximation

Let A(Q2) denote the algebra of holomorphic functions on €2 which are con-
tinuous on J€2. We know that the algebra of holomorphic functions A(€) is
dense in the classical Hardy spaces when () is a domain bounded by an an-
alytic Jordan curve and we will show an analogous approximation result on
H2(Q) where u is a negative, continuous, subharmonic exhaustion function
on §2 with finite Monge-Ampere mass but before this result we should first
mention some classes of holomorphic functions from the classical theory on

the unit disc which will help us in the proof of approximation result:

Definition 15. An analytic function f € O(D) is said to be of class N if
the integrals

27
/ log™ |f(re®)|d8
0

are bounded for r < 1.

Definition 16. An analytic function f € O(D) is in class N7 if it has the
form f = BSF where B is a Blaschke product, S is a singular inner function

and F' is an outer function for the class N

It is clear that N D Nt D> HP(D) for all p > 0, (For details see [17]). We
will also use the following result (Theorem 2.11, [17]), which plays a crucial

role in our approximation result:

Theorem 2.4.1. If a holomorphic function f € N* and f* € L? for some
p >0, then f € H?(D).
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Now we can give the approximation result for the Poletsky-Stessin Hardy
classes HP(Q):

Theorem 2.4.2. The algebra A(SY) is dense in HP(2), 1 < p < occ.

Proof. (Case 1: p > 1)Let L be a linear functional on H?(2) such that L
vanishes on A(Q2). Then L(f) = [, f*g*dp, for some non-zero g € LI(d,)
hence [y vg¥*dp, = 0 for all v € A() (*). Now we need the following

lemma:

Lemma 2.4.1. Let p be a measure on the boundary 0S2 of 2 which is orthog-
onal to A(S2). Then p is absolutely continuous with respect to dpug, , which
1s the boundary Monge-Ampeére measure with respect to the Green function

with pole at 0.

Proof. The homomorphism “evaluation at 0” of A(2) has the representing
measure dfig, , on J€2. Then by generalized F. and M. Riesz Theorem (The-
orem 7.6, [19]) the singular part s, of  with respect to dj, , is orthogonal
to A(Q) that is [, fdus = 0 for all f € A(Q2) but on a domain like Q, A(Q)
is dense in C(99Q) (Theorem 2.7, [19]) so [,, gdus = 0 for all g € C(99).
Hence dus, = 0 and dp << djugq, . O]

Now by the above lemma and (*) we have g*dj,, << djig, , so by Radon-
Nikodym Theorem we have g*dp, = h*dpg, , for some h* € L'(dpuy, ) and
on a domain (2 which is bounded by an analytic Jordan curve, we have
c1dfig,, < do < cadpy, ,, so we have h* € L'(do). Let ¢ be the conformal
mapping between the unit disc and ©Q and v = ¢~!. Now consider the
function H* = h* o ¢ on JD then since h* € L'(do) we have h* € L'(9D),

and since 1(0) = 0 and g, , is in fact the harmonic measure, we have

ditgy o (€”) = dpigg o (1(e”)) and using @ = =" we get

einO * 5 ei@ _ 2)) *Z ) — s n— _
[ e ovtenan = [ (@) Gt (c) = [ (o) T =0

o0
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for all n as a consequence of (*). Hence H* is the boundary value of an
H'(D) function H, then h which is defined as H = ho4) is in the class E'(£2)
by the corollary of (Theorem 10.1, [17]). Moreover since E*(Q2) = H'(Q2) we
have h € H*(Q2) and since ¢(0) = 0 we have h(0) = 0.

Now take o € HP(2) and consider the analytic function ah

: s
mwﬂwas(/‘mww) (/ mww) < llallZu 0k,
o0 o0 o0

since h € HY(Q) and a € HP(Q) C H?(Q) € HY(Q) so ah € Hz(). On the
other hand

B (N e I
o0 o0 o0N

< ([ ) ([ v <o
oQ o0

since « € HP(Q) and ¢g* € L(du,). Hence we have a*h* € L'(09Q). Now
since ah € Hz () by the corollary of (Theorem 10.1, [17]) the function AH =
ah(v(w))[Y (w)]2 € H2(D) € NT but since o*h* € L}(0Q) , AH* € L*(dD)
hence again by the corollary of (Theorem 10.1, [17]) we have ah € H'(Q).
Finally

0=ah(0) = / ahdpg, , = / ag*du, = L(a)
o0N onN

for all @ € HP(§2) hence A(?) is dense in HE(Q2).

(Case 2: p = 1): By the previous corollary we know that if f € HL()
then we can factor it out like f = gh where g,h € H2(2) and from the first
part of the proof we know there exist sequences {g, }, {h,} € A(£2) such that
{g.} — g and {h,} — h in H2(Q2). Now for f consider the sequence {g,h,}
then,

1 — guhnlditn = / (9h — gubnldite = | 1gh = ghn + ghn — gubald
o0 o0 o0
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3 3 3 3
s( / |g|2duu) ( / |h—hn|2duu) +( / |hn|2duu) ( / |g—gn|2duu)
o0 o0 o0 o0

But right hand side goes to 0 since {g,} — ¢ and {h,} — h in H2(Q) hence

{gnhn} € A(Q) converges to f in HL(Q).

Combining these two cases we see that A(2) is dense in H?(Q2) for 1 < p < occ.
[

Moreover, we know from Mergelyan’s Approximation Theorem ([31]) that
the algebra A(£2) can be uniformly approximated by polynomials therefore,

we have the following corollary:

Corollary 2.4.1. Polynomials are dense in HE(Q2), 1 < p < oc.

2.5 Composition Operators With Analytic
Symbols

Let ¢ : Q — Q be a holomorphic self map of €2. The linear composition
operator induced by the symbol ¢ is defined by Cy(f) = fo¢, f € O(Q). In
2003, Shapiro and Smith ([42]) showed that on a domain €2 which is bounded
by an analytic Jordan curve, every holomorphic self map ¢ of 2 induces a
bounded composition operator on the classical Hardy space HP(2). More-
over we know that being in the class H?(Q2) where v is harmonic outside of a
compact set is equivalent to having a harmonic majorant hence any composi-
tion operator on a Hardy class generated by this sort of exhaustion function
is also bounded. As a consequence of Closed Graph Theorem continuity of
a composition operator on HP(2) is in fact determined by whether it takes
functions from HP(2) to HP(€2) or not. However this does not always hold
when exhaustion function has finite Monge-Ampeére mass but not harmonic

outside of a compact set as we see from the following example :

Example 1. Suppose u is the exhaustion function that we constructed in

Theorem 2.1.2 then we know again from the proof of Theorem 2.1.2 that the
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function ( 11) 3 ¢ H!(D). Now consider the operator with symbol ¢(z) =

ze'2 | and take the function f(z) = #, then
z—1)4

1

e = | ——(€)dole) < 0
op (§ — )3

since the singularities of §(£) and f*(£) do not overlap and they are both

integrable functions on the boundary so f(z) € H}(D) but

1

€% (z—1)3

and Cy(f) ¢ H.(D). Therefore not every composition operator is bounded
on Poletsky-Stessin Hardy classes even though the symbol function is a nice

and simple one like in our example, namely a rotation.

In the next result we will examine the necessary and sufficient conditions
for the composition operator C, to be bounded on this rather interesting
space HP(D) where u is the exhaustion function constructed in the proof of

Theorem 2.1.2 and ¢ is an automorphism of the unit disc:

Theorem 2.5.1. Let ¢ be a Mobius transformation such that ¢(z) = e 2=%
where a € D and w s the ezhaustion function constructed in the proof of
Theorem 1.3. Then the following are equivalent:

(1) Cy is a bounded operator on the space HP (D)

(i) There exists a constant K > 0 such that [, (o*(n))do(n) < K [, B(n)do(n)
for all measurable E C 0D where du, = Bdo

(i) p(1) =1

Proof. (It is sufficient to prove the result for p = 1)
(i & i) Let f € H(D) and ¢ be a Mobius transformation then

1 o ellmm) = /BD /709" |B(§)da(€) = . [ m)Be™ )™ ") |dor ()
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Suppose C,, is bounded on H;(ID) then ||f o p|lmimy < M| f|la1m) for all
f € H!(D). Now since bounded functions are in HP(D), we have f(z) =
1 € H(D) and we will write the above inequality for f(z) = 1. Since
|(¢* )| < N < oo on OD we get

6@6(90**1(77))\(90**1)’\%(77)SN B(e*H(m)da(n) < NM [ B(n)do(n)

oD oD

For the converse direction, suppose that there exists a constant K > 0 such
that [, 6(¢* ' (n))do(n) < K [, B(n)do(n) for all measurable E C ID.

Then for any characteristic function xyg, £ C 9D we have

/8DXE/3<w*—1<n>>|<*1|do //3 “())do(y <K//a Jdor (1

=K [ xgB(n)do(n)

oD
Hence by monotone convergence theorem for any positive integrable function

g we have

/6 gt I dotn) < K | g(u)Bndotn)

oD

SO

| foullmzm = /8 PPA e o) < N [ PP )dot)

<C [ |fIPBn)do(n) = Cllf|lazm)
oD

Hence C,, is bounded.
(i < i) Suppose C, is bounded and ¢(1) # 1 then 3¢ € D , £ # 1

such that p(§) = 1 and take the function f(z) = T 1)% then we know that
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f(z) ¢ H!(D). Now consider the function F'(z) = f o p~!(z) then

1
1Pl = | =)
op [1 = o=t (n)[3

1 1
— ————duy(n) +/ ————du,(n) < o0
/aD\Bwu) 11— o1(n)|3 B, |1 — o 1(n)F

for some v > 0. The first integral in the last line is bounded because on
[ S
1—p=2 (]

do integrable and the second integral is bounded because on B, (1), m
—e~n

oD\ B,(1), du, and do are mutually absolutely continuous and is
is a bounded function and hence it is du, integrable.

Hence F(z) € HY(D) but F oo = f ¢ HL(D) but this contradicts with the
boundedness of C,.

Suppose now ¢(1) = 1 from the (i < i) part of the proof we know that if
Be ) — N < oo then C,, is bounded and for the case ¢(1) = 1 we have

ﬁ_(n

)
_5(%(717;77)) bounded hence the result follows. u

We can generalize these arguments to a slightly wider class of symbols as

follows:

Proposition 2.5.1. Let ¢ : D — D be a locally univalent self map of D
such that ¢ is differentiable in a neighborhood of D. Then C,, is bounded on
H,(D) if and only if ¢(1) =1 and NZ(n) < KB(n) for some K > 0 and all

n € 0D where Ng(n) = ijl B(&;(n)) and {&;(n)} are the zeros of w(z) — 1.

Proof. (=) Suppose C,, is bounded and ¢(1) # 1 then there exists a £ € 9D
such that (1) = &, now consider the function f(z) = ——, f(z) € H:(D)

(£—2)2
and
1 o ¢l = / 1 o pldu = / o pldu + / 1 o ldua
) OD\B-~ (1) By (1)

where B,(1) = 0D N B,(1) for some small v > 0. The first integral in

the sum is bounded since over dD \ B,(1), du, = Cdo for some C > 0
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and f € H!(D) Cc H'(D) so boundedness over this region is guaranteed by
classical H? theory but

. 1
/ [ o ldp, =/ 3
B, (1) B,(1) [ — 3

and ¢ has finite derivative near {1} so

1 1
/ T 3d,U/u2M/ édlu’“—>oo
By |€ — |3 B, |1 —nl*

contradicting C,, being bounded. Hence (1) = 1.

dfty

The inequality N7 (n) < K3(n) is trivially true for n = 1, so we will consider
the case where 1 # 1 and assume for a contradiction that N (no) > K3(no)
for all K, for some 7y # 1. Then from the definition of Nj(ny) we see
that G(¢(no)) — oo which gives p(ny) = 1. Then consider the function
f(z)= (no_lz)% then by the same argument above fop ¢ H!(ID) contradicting
C,, being bounded hence N (n) < KA3(n) for all n € 9D for some K > 0.

(<) Since ¢ is locally univalent we can find a countable collection of disjoint
open arcs §; with o(dD \ |J;) = 0 and the restriction of ¢ to each Q;

is univalent. Write ¢;(w) for the inverse of ¢ taking ¢(£2;) onto ;. Then

change of variables formula gives

15 eellg©ls©dnte) = [ 1 w)sws o)

e(25)

where £ = 9;(w). Now denoting the characteristic function of ¢(£2;) by x;

we get

[ eele@s@ine = [ i) (Z Xj(w)ﬁ(wj(w))> do(w)

Jj=1
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:/WD (Zﬁ@ ) o(w)

j>1
SO
/ ol < M / o olle (©)1B(E)do (€)
oD oD
— M / )N (w)do(w) < KM [ (w)|8(w)do(w)
p(0D) oD
hence C,, is a bounded operator. O

Now we will examine the most general case where we will give a suffi-
ciency condition for the boundedness of composition operators with arbitrary
holomorphic symbols on the Poletsky-Stessin Hardy Spaces generated by an
exhaustion function with finite Monge-Ampere mass:

Notation: Let 1) be a continuous, subharmonic, exhaustion function for D
and ¢ : D — D be a holomorphic function then the generalized Nevanlinna

function is given as

N (w) = / (—)dd log ¢ — w]

Proposition 2.5.2. Let ¢ : D — D be a holomorphic function with ¢(0) =0

and suppose that v is a continuous, subharmonic exhaustion function for D.

Lp w
ffD ) dcw < 00 and limsupy,, ﬁwi < oo then Cy is bounded on

H(D )

Proof. Suppose f € H (D), then f € HP(D) and f can be factored as

f = Bg where B is a Blaschke product and ¢ is a non-vanishing function in
H?(D) such that || f||g»m) = ||9]| zr@) and clearly g € H*(D). Now suppose
gg(z) = > a,z" then using Holder inequality and Schwarz Lemma we get

[1resrars < [goelttaro = [ (|Ca

PN\ 2
) ddep
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< [ 1S w) (Cr)] v < lolt (| 7—mge)

1
o [ T mped™e) < M1y

By ([34], Theorem 9.2) we know that
1o @llemy = | 1fo@lPddy + (=4)ddlog | — w| ) dd°|f|?
v () D D \JD

now define N‘pf (w,r) fT )dd®log|f o ¢ — w| where T(r) = {z €

o F (oo
Dl(p(z)) > r}. Let y(r) = sup NNf((w)) where supremum is taken over

all f € Hy(D) and w € D. Then by ([34], Theorem 8.3), if for some o,
v(ro) < oo then [ ([ (—v)dd"log |¢ — w|) dd°|f|F < N||f||H5(D) so if we
show that ~(r) is finite then the result follows. Take the set of all points
{w;} € D such that f(w;) = w and ¥(w;) > r. Let U;A;; = ¢ *(w;) be
the decomposition of the preimage of w; under ¢. The multiplicity of f o ¢

on A;; is equal to m;m;; where m;; is the multiplicity of ¢ on A;; and m;,
is the multiplicity of f at w;, then le’f(w,r) = >_;mNJ(w;) and also

Na];(w) > > mi(—Y(w;)) hence

NET ) X miNE(w) {2t )

< max ——@/J(wi))

Ni(w) T imi(—(wy)) T

on the other hand if f(w) = w then NZPN — =

o ®
Mo Hence (r) = su Not) - ow since limsu Ny (w)
o) v Pr<juwl Tyw)) Plul—1 Zyw

have v(r) < oo and the result follows. O

Ny (w)
Thus ~(r) < SUPr<|w| =y zp(

w

—| =
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2.6 Duality for H!(D)

Let u be a continuous, negative, subharmonic exhaustion function such that
ddu has finite mass i.e. fD dd°u < oo. In this section we will examine what
the dual space of HP(D) will be for p > 1. First of all let us remind that
the Monge-Ampere boundary measure du, is given by du, = [do where
B(&) = [, P(z,§)dd°u(z) and § € L'(do). Now let us state our result on the
dual of the Banach space H?(ID) as follows :

Proposition 2.6.1. For1 < p < oo the space (HE(D))* = L4/~ HI (B 9du,)
where HI(B79du,) is the space of all H (D) functions f such that the bound-
ary value function f* € LI(5~9du,) and % + % =1.

Proof. In order to describe the dual of H?(D) we should find the annihilator
of H?(D) in (LP)* = L1. (Here by annihilator we mean all linear functionals
¢ € (LP)* such that ¢(f) = 0 for all f € H?(D)). Now let ¢ be a bounded
linear functional on L? then by Riesz Representation Theorem it has a unique

representation

o(f )= [ flgdp, , ge€Ll

Now suppose ¢ is an element of annihilator of H?(D) then since du, = fdo

we have

o(f*) = . ff9dp, =0 Vfe HY(D)

Call g8 = 1 then since 8 > 0, using Holder inequality we have

[ wldo = [ o = |g|duus( |g|qduu> (/ 1duu) <o
oD oD oD oD oD

since ¢ € L% and mass of dy, is finite. Hence ¢ € L'(do) and since
Jop [f0do = 0 Vf € HE(D), surely f027r e (e?)dh = 0 for n = 0,1,2....
Therefore 1 is a holomorphic function with boundary value in L'(do) so
¢ € H'Y(D) and ¢(0) = 0. Now consider the space 8~ 'H{(3 %du,), then

46



g € BT HG(B7dp,) since fg = ¢ € H'(D), ¢(0) = 0 and
"8 dptay =/ 1919873 d =/ |g|%dp, < o0
oD oD oD

So annihilator of H?(D) C B~ HI(B 9du,,).

For the inverse inclusion take h € S~'HI(37%du,) then Bh is the bound-
ary value of an H!'(D) function f such that f(0) = 0, f* = Bh and f €
H{(B%du,), now take an arbitrary o € HP(D) then

/ahd,uu:/ ahﬁdaz/ af*do =0
oD oD oD

since f(0) = 0. Hence annihilator of H?(D) in LY is the space 3~ HZ (3 %du,,),
then by ([17], Theorem 7.1) we have (H?(D))* = L4/B8~*H{ (B 9du,,). O
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Chapter 3

Poletsky-Stessin Hardy Spaces

in Hyperconvex Domains on
C'n>1

In this chapter we will examine the Poletsky-Stessin Hardy classes on hyper-
convex domains of C™ for n > 1. First we will start with the comparison
results between Poletsky-Stessin Hardy spaces and the classical Hardy type
spaces defined in various ways by different authors. Next we will look at
Poletsky-Stessin Hardy spaces on the unit polydisc in C" where most of the
results are analogous to unit disc case. Moreover we will consider Poletsky-
Stessin Hardy spaces on complex ellipsoids which are well known examples
of domains of finite type. Contrary to one dimensional case, we will see that
Poletsky-Stessin Hardy classes on complex ellipsoids are not contained in
classical Hardy spaces therefore we study the existence of boundary values
in detail. In order to understand the boundary behavior and approach re-
gions for Poletsky-Stessin Hardy classes we will revisit Stein’s arguments on
maximal functions ([44]) in a general setting. Using this method of utilizing
maximal functions we will obtain Fatou type theorems concerning the exis-

tence of boundary values along some approach regions. Lastly we will apply
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the methods in ellipsoid case to strictly convex domains in C™ with smooth
boundary. This will enable us to recapture the classical results of Stein on

admissible approach regions from a different point of view.

3.1 Comparison Between Classical and Poletsky-
Stessin Hardy Spaces on Higher Dimen-

sions

Let 2 be a smoothly bounded hyperconvex domain in C" and ¢ be a con-
tinuous, plurisubharmonic, negative exhaustion function on €2 with finite
Monge-Ampere mass and let g, be the Pluricomlex Green Function of ()
with a logarithmic pole at the point z € €. In this section we will compare
Poletsky-Stessin Hardy spaces HL(€2), 1 < p < oo, with the Hardy type
spaces considered by various authors. Before proceeding further let us recall
some of the notation which will be used throughout this section :

Let p be a real valued function defined in a neighborhood of Q so that: p
is of class C%, p(z) < 0 when z € Q, {p = 0} = 99, and |[Vp(£)| > 0 when
& € 092. Such a function p is called a characterizing function for the domain
Q. In ([44]) classical Hardy spaces on {2 are defined (without the assumption

of hyperconvexity) as follows:

H? ={f| f holomorphicin €, sup/ |f]Pdo, < oo}
r<0 JoQ,
where do, is the induced surface area measure on 0€2, and 1 < p < oo.

Proposition 3.1.1. Let Q be a hyperconvexr domain and ¢ be a continu-

ous, negative plurisubharmonic exhaustion function on Q with finite Monge-
Ampere mass. Then HE(2) C HE () for any z € Q.

Proof. First of all since g,(w) and ¢(w) are exhaustion functions for € they

approach to 0 as w approaches to boundary however ¢, is a maximal function
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on € hence near 02 we have ¢ < cg, for some constant ¢ > 0. Hence by ([34],
Theorem 3.1) we have y,, .(¢) < "y (@) for any positive plurisubharmonic
function ¢, hence HE(Q) C HP (Q). O

Theorem 3.1.1. Suppose that Q2 is a smoothly bounded, hyperconvexr domain
with a plurisubharmonic characterizing function p. Then HP(2) C HF(Q) =
H? (Q), 1 <p < oo.

Proof. First we will show the equality between HP(S2) and HY (€2) :

From the previous result we know that HP(2) C H? (Q2). By Hopf lemma
([28], pg:73) there exists a positive constant ¢ > 0 such that g, < —cdist
where dist is the distance function to boundary. Also since p € C%(Q), from
the mean value theorem we get |p| < Kdist for some positive constant K > 0
and combining these two we get g, < Mp for some constant M > 0 which
depends only on ¢ and K. Thus we have p,,(¢) < Mgy, o (¢), a > 0, for any
positive plurisubharmonic function ¢ by ([34], Theorem 3.1) so HY C H2(€2).
Therefore H? = H2(€2).

Now for the first inclusion since p is a smooth function we have dpu,, =
dp A (dd°p™ 1) sy ([13], Proposition 3.3) and do = d°p A (dd®|z]*)" s
([36], Corollary 3.5) and these are both (2n — 1)-dim differential forms on
the (2n — 1)-dim manifold so we have dpu,, = c(z)do(z). In a neighborhood

of Q, p is smooth and 2 CC C" so ¢(z) is a bounded function. Hence,

| odue= [ sae)o() <K | dlaots
S(r) S(r)

S(r)
— H(Q) C H(Q). O

Remark 11. In section 3.3 we will show that for an arbitrary exhaustion
function ¢ we can have that HP(€2) strictly contains HP(€2). However by
([34],Theorem 3.8) we see that under certain geometric conditions on the

domain we can have equality of these two classes.
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Theorem 3.1.2. Let Q2 be a strictly pseudoconvex domain then HP(Q) =
HP = H?(Q).

3.2 Poletsky-Stessin Hardy Spaces on
Polydisc in C", n > 1

In this section we will examine the characterization of Poletsky-Stessin Hardy
spaces on the unit polydisc of C™ but first we will consider a special type of
exhaustion functions in order to see the transfer of some important results
concerning boundary value characterization from unit disc to the polydisc,
without loss of generality suppose n = 2:

Let ug, u; be exhaustion functions defined on the unit disc D with finite

Monge-Ampere mass. Define the following plurisubharmonic function,
u(z, w) = max{vy(z,w), ve(z,w)}

where v1(z, w) = up(z) and vo(z, w) = uy(w) then we see that uy is a plurisub-
harmonic exhaustion function. Moreover from the facts given below we have
Jp> (ddusg)? < oo and supp(fiy,) = 0D x D (*) ([9],Cor.4.10).

We will show that in the sense of currents we have dpiy, , = dptyyr A dity, -

For this we will use the following facts :
(dd“(max{u,v,7}))* = dd‘(max{u,r}) A dd(max{v,r})
where 7 is a constant and,
(dd*(max{u(2), v(w)}))? = (dd°u(2)) A (dd°o(w))
(For the first equation see ([9]) and for the second one see ([6])). Hence,
Aptug w NAjly » = (dd(max{vy, r}) =X\ B,, (r)dd v1)A(dd° (max{vy, r}) = XD\ B,, (r)dd“V2)
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= (dd“(max{vy,7}) A dd®(max{va, 7})) — Xp\B,, () dd“Vadd® (max{vy, })
—XD\B,, (nddv1 A dd°(max{vy, 7}) + XD\B,, (r) XD\B, (r)dd“V1dd s
= (dd(max{vy,r}) A dd°(max{vy, r})) — Xp2\B,, () (dd°uz)?
= (dd*(max{vy, v,7}))? = X02\Bu, () (dd°U2)? = dptuyy
= Aty r = dptugr N dity r (3.2.1)

and as r — 0 by (*) and (3.2.1) we have:

Aftuy = dftug N dfta,

which is in fact the product measure for the measures du,,, and dg,,, .

In the classical theory of the Hardy spaces of unit disc, the existence of
boundary values along admissible approach regions is well-known. When
Hardy spaces are generalized to polydisc in C", new phenomena emerged
since the Poisson kernel and the associated Poisson integral representation of
holomorphic functions are carried only on a part of the boundary, namely the
distinguished boundary T™ and as a consequence approach region is also re-
stricted to the product of non-tangential approach regions ([47]). As we have
mentioned, in several variables the existence of boundary values is not yet
well understood. In ([35]), Poletsky approached the boundary value problem
from an abstract point of view where no assumptions about the boundary
smoothness are made and consequently no natural definition of approach
regions could be given. He introduced the so called weak and strong limit
values and when these two limit values are equal he called it boundary value.
In ([35], pg:22) he introduced a generalization for radial limit value and using
this general definition of radial limits he showed that if a Borel function on a
hyperconvex domain has radial limits then it has boundary values and these
boundary values are exactly the radial limit values ([35], Theorem 5.5). In

particular these generalized radial limit values coincide with the usual radial
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limit values in the polydisc case ([35], Theorem 7.6).

As a consequence of Theorem 1.4.1 for any exhaustion function u we have
HE(D™) C HP(D") and also we have seen that on the polydisc if we choose our
exhaustion function as the Pluricomplex Green function then the Poletsky-
Stessin Hardy space coincides with the classical Hardy space of the poly-
disc. Therefore, for any exhaustion function u on the polydisc, we have
HE(D") C HP(D") = HP(D"). Functions in H?(D") have non-tangential
limit values over the non-tangential approach region I' =1y x I'y x ... x I',
by ([47], Theorem 4.13) therefore we automatically have boundary values for
the Poletsky-Stessin Hardy spaces H?(ID") over the polydisc.

We will now characterize the Poletsky-Stessin Hardy classes through their
boundary values first with the special choice of exhaustion functions that we

mentioned at the beginning of this chapter :

Theorem 3.2.1. Let f € HP(D™) be an analytic function. Then f* €
LP(dpty,,, T) if and only if f € HE (D"). Moreover the operator which takes
f e HE (D) to f* € LP(dpy,,T") is an isometry between HE (D") and a
closed subspace of LP(d,, ,T™).

Proof. Without loss of generality suppose n = 2. First suppose that p > 1
and let f € HP(D?) then f* exists ([39]). Suppose f* € LP(dp,,), then by
([39],pg:53) we have that

Flzw) = /0 " /0 B By — )Py (6 — 8) (" "\t

SO

/ £z 0) Pl
Su2 (r)
P

2 2
/ / P01 — )Py (62 — 0) £ (e, ®)dtdb| dpra, ,
0 0

[9u2 (r)

then by Holder Inequality applied with measure P,,(6; — t)P., (62 — 0)dtdo
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we have

2w p27m
— i) [P
< /0 /0 (/Sug(r) P, (91 t)PTQ(Q )dﬂuQ r> |f ( )’ dtdo

Now since dpty, » = djtyr A dpt, , We have

/ P (01—t) Py (03—0)djin, » — / Pz, e P(w, ) djin o (2)dnr (w)
Suy (1) Su(r)xSu(r)

— < /S » P(z, eif)duu,r(z)> < /5 " P(w, e”)duu,r(w))

then by Lelong-Jensen formula we have

— P(z,e™)ddu(z) P(w, ) ddu(w)
</Bu(r) ) (/Bu(r) )

and as r — 0, by Monotone Convergence Theorem we get

iy [ PO 0P Ot = ( /D P(z,eit)ddcu(z)) < /D P(w,ew)ddcu(w))
= B(t)B(0)

(B is as defined in Section 2.1.2)

27 27
o 1l o) < /‘/ vw><ww:/ Pty < 00

oDx oD

= f e H: (D?)
For the converse suppose f € H? (D?),

Awwmmmmﬂwﬁmmwwmmn

o4



— /anaD |5 (&,n)|P (/DXD P(,z,§)P(w,77)ddcu(z)ddcu(w)) do(§)do(n)

/D - ( /8 . |f*(§a77)|pP(Z7§)P(w,n)da(§)da(n)> dd°u(z)ddu(w)

The integral inside the parenthesis is the Poisson integral of |f*(&,n)[P. Call

l—az ’1Og ‘lb—__bwﬁ‘}
then du,(§,n) = P(z,&)P(w,n)do(§)do(n) hence, by Lelong-Jensen formula

we have

this expression H (z, w). Now consider the function v(a, b) = max {log |

H(z,w) = / ipEmPdmen =1/ u)p- / v(a,b) (dd°v(a, b)) (dd°| f (e, BP)

DxD

By ([39], Theorem 3.2.4), H(z,w)and |f(z,w)[’ have the same boundary

values. Now,

/ P E Pl = [ H(zw)ddou(z)ddu(w)
ODx oD

DxD

= [ o= [ ([ b @ sony ) @
call g(z,w) =[5, pv(a,b)(ddv(a,b))(dd"|f(a,b)[?) then,
/D Dg(z,w)(ddcuz)(ddch) :/D Duz(ddcg(z,w))(ddcuz)+/ g(z, w)(ddus)d usy

A(DxD)

[\

-~

0

_ /8 RO

S

0
by ([15],Formula 3.1, pg:144) and the last two integrals are zero since g(z, w)

and us(z,w) are both zero on the boundary. Hence,
| st = [ o w)dd )
DxD DxD
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_ /D L ( /D _(dd°vfa, b)2(dd"| f(a, b)\p)> (ddCus) = /D uadd (2, )P

so we get

* P, = 2, w)|P(ddus)? — Uadd®| f(z, w)|[Pddus
L, = [ iicuprare? - [ wdrlfeo)

DxD

= Hf|’H52(D2) <

= f* € LP(djty,,0D x D). The case where p = 1 is a straightforward
application of the procedure above.
Since HY (D") is a closed subspace of L(dj,,,T"), from the chain of equa-
tions above we deduce that the operator which takes f € HE (D") to f* €
L?(dfty,, T™) is an isometry between H? (ID") and a closed subspace of L (dji,,, T").
0

It is important to note that for this specific choice of exhaustion func-
tion, we obtained a product measure on the torus. However if we take an
arbitrary exhaustion function u with finite mass, we may not end up with a
product measure since the Poisson kernel is not pluriharmonic when n > 1.
In the next result we generalize the boundary value characterization for the
Poletsky-Stessin Hardy spaces H?(D") to the most general case where the
exhaustion function u is a continuous, negative, plurisubharmonic function
with finite Monge-Ampere mass. Although we have the complete charac-
terization for boundary values and an isomorphism between HP(D") and a
closed subspace of LP(du,,T™), in this case we may lose the isometry since

we may not have the Monge-Ampere measure as a product measure.

Theorem 3.2.2. Let f € H?(D"), 1 < p < oo, be a holomorphic function.
Then f € HP(D") if and only if the boundary value function f* € LP(dp,, T™)

where T™ is torus in C™.

Proof. (Without loss of generality assume n=2) Let u be a continuous, nega-

tive, plurisubharmonic exhaustion function for D™ with finite Monge-Ampere
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mass, then by (][9], Cor:4.10) we know that supp(du,,) = T". Let us first give
the relation between the Monge- Ampere measure dyu,, and the Euclidean mea-
sure on the torus. Let ¢ € C(T?) be a continuous function and denoting the

Poisson integral of this function also as ¢ we have,

[ etmc= [ ([ peoP@ e o) d,

-/ ( / y P(z,f)P(w,n)duu,r) &, m)do(€)do(n)

and dy, is the weak-* limit of dpu,, , and the integral in parenthesis in the last

line is increasing in 7 so by using monotone convergence theorem we have

r—0

/T iy, = /1r 2 <lim /S " P(275)P(w,n)duu,r) p(&,m)do(€)do(n)

and defining
B¢ n) = lim P(z,§)P(w,n)dp,

r—0 Su (’I")

we have du, = [(£,1n)do(§)do(n) and since the exhaustion function u has
finite Monge-Ampere mass we have 3(¢,n) € L'(do(€),do(n)). Now suppose
f*e LP(du,, "),

/ ’f’pdﬂuw = /
Su(r) Su(r)

< [, (L, PeoP@mdn ) 1 €l

P
dfy, r

/Tz P(z,§)P(w,n)f*(& n)do(§)do(n)

now by monotone convergence theorem we have,

iy [ 1 < L (gn / » P(z,g)P(w,n)duu,r> 7 (&m)|Pdo(€)do (n)
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= [ 15 cm Bt o ©dotn) = 171l < o0

hence f € H?(D?). Conversely now suppose we have a holomorphic function
f € HP(D?).

/T2 |5 (Em)Pdp = /1r2 (&P (15% /sm P(z,f)P(w,n)d,uu,r) do(€)do(n)

by Fatou’s Lemma we have then

r—0

<t [ el ([ PEOPI L, ) dote)intn)

i ( [ If*(§,77)\”P(z7§)P(w7n)d0(£)d0(n)> dita,

r—0 Su (’I“)

now we will examine the integral in parenthesis

17 €nP PO Pw.nds(©drto

which is equal to the following by ([35],Cor.7.4)
1)l + [ (~ttean (0 DA ey D) A0 B)

a—z
1—az

where v(. ) (a, b) = max {log ’ ,log H’:—b“’m ‘ }. Then

~ lim ( / |f*<§,n>\PP<z,£>P<w,n>da<f>da<n>) Qs

r—0 S (’I")

= lim f(z,w)Pdpy ,
i [ 1re)
= lim (/ (—U(zﬂﬂ)(a, b) (ddCU(27w)(a, b))(ddc|f(a, b)|p)) d,uu’r
r—0 SU(T) D2

(. J
n'g
0
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second integral is 0 since v(. . (a,b) converges to 0 uniformly on compact

subsets as (z,w) converges to boundary ([10]). Therefore we have

[irearan <=ty [ ([ 1r6orreorwdo@in ) du,
T2 "0 ) 8u(r) \J T2

<=1 p = p
<t [ 0P, = ey <
so f* € LP(du,) when f € HP(D?). O

As an immediate consequence of this boundary value characterization we
have the following corollary which enables us to see the inclusions between

the Poletsky-Stessin Hardy classes in terms of their boundary values:

Corollary 3.2.1. Let f be a holomorphic function such that f € H!(D") for
some t > 1. If the boundary value f* belongs to L:(T™) for some s >t then
f € H(D").

Remark 12. As in one dimensional case, there exists an exhaustion function
u for the polydisc with finite Monge-Ampere mass so that H2(D") & HP(D").
We can see this by an example on D" that is similar to the disc case. Let
Un (21, 22, ., 2n) = max{u(zy), u(22), .., u(2,)} where u is the exhaustion func-
tion that we constructed in the disc example. Now first of all consider the

3 3 3 on ]D)n
(1 —21)1(1 —29)7..(1 — 2,)3
then from the arguments that were given in the disc example we deduce
that f(z1, 22, ..,2,) € H'(D") but f(z1, 22, .., 2,) ¢ HL(D") by combining the

previous result with the example in the disc case.

holomorphic function f(z1, 22, .., 2,) =
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3.3 Poletsky-Stessin Hardy Spaces on
Complex Ellipsoids

For domains in C" we will next consider the complex ellipsoids which are
considered as model cases for domains of finite type. It should be noted
that although complex ellipsoids are convex domains they are not strictly
pseudoconvex since they have Levi flat points at the boundary. The complex

ellipsoid BP € C" is given as
BP = {z€C" p(z) =) _|z* —1<0}
j=1

where p = (p1, p2, ..., Pn) € Z". One can easily see that u(z) = log(|z1|** +
22?72 + ... + |2,]?P") is an exhaustion function for BP so we can consider
the Poletsky-Stessin Hardy spaces HP(BP) associated with this exhaustion
function. In ([22]), Hansson considered Hardy type spaces where the growth
condition is determined by the measures which are restrictions of the measure
dp A (00p)"! on the sublevel sets of the defining function p. If we choose
the exhaustion function u then these measures are in fact the Monge-Ampere
measures dji, , therefore the Poletsky-Stessin Hardy classes H?(BP) coincide
with the Hardy type classes defined by Hansson. His main results contain a
generalization of the classical M.Riesz theorem to Cauchy-Fantappie integrals
of L?(0BP) functions and boundedness of Cauchy-Fantappie integral operator
H on BMO(0BP) (For details see [22]). In this section we will show that
unlike the one variable case, for n > 1 Poletsky-Stessin Hardy spaces H?(BP)
are not included in the classical Hardy spaces H?(BP) on complex ellipsoids.
Hence in this case we do not automatically inherit the existence of boundary
values from the theory of classical Hardy spaces. Existence and the behavior
of boundary values have not been considered in ([22]) so we will start with

exhibiting the existence of the radial limits for holomorphic functions in
H!(BP).
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Theorem 3.3.1. Let f € H}(BP) be a holomorphic function. Then the radial
limit function f*(&) = limz_,q f(7E), £ € OBP exists i, -almost everywhere and
fre L;u(aﬁp).

Proof. Let BP be the complex ellipsoid determined by the exhaustion function
w(z) = log(|z1 %! + |29]%2 + ... + |2,|?") and let & = (£1,&,..,én) € OBP,
t € D. Suppose that E' is the ellipse which is the intersection of the complex
line joining 0 to £ and the ellipsoid BP. An exhaustion function for E is
g(t) = log(Ap[t|*P + Aqlt]?P2 + .. + A,|t|*P») where A; = &P, 1 < i < n.
The Monge-Ampere measure associated with the exhaustion function u is
Aty = du A ddulg,y and let Ay be the n — I-dimensional manifold of
complex lines passing through the point 0 € BP ([45]). Now take f € H}(BP)

then
| Vs = [ iflundan) = [ ( / |f|dCU>w
Su(r) Su(r) Ap 1:NSu(r)

where we have the pull-back measure 7*w = dd°uv and 7 : BP — Ay is the
function given by 7(z) = [0, z] = [, with [, being the line joining 0 and =z.
We can use the above generalization of Fubini theorem since 7 is a submersion
and 7| supp(dew) is proper ([15], pg:17).

The measure d°u on I, N S,(r) is equal to d°gg(t) on S,(r) and since it is a

smoothly bounded domain d°gg(t) on Sy(r) = dpg, so

/ fldpty = / (/ |f\dug,r>w
Su(r) Ao Sq(r)

and by Fatou’s lemma [, (lim inf, g qu(T) |f|dug,r> w < oo for f € HL(BP).
This implies that for w-a.e. line lim, o fsg(r) | fldpg, < 0coso f € Hy(E) and
it has radial boundary values do(~ du,) almost everywhere ([44]). Since f*

is the pointwise limit of measurable functions it is measurable and consider
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the set A ={£ € OBP, f*({) does mnot exist}, then

/(mp Xadpt, = /AO (/aE xA(n)dug(n)> w

Since f € H, gl(E), it has radial limit values djg-a.e. so the integral inside
is 0 and we have faBp Xadp, = 0. Therefore f*(§) exists p,-a.e. Moreover
for an analytic function f € H}(E) we know that the boundary function
f* € LY(OF) so we have

[ e = [ ([ 171 ) < o0

hence f* € L}, (OBP). O

Now we have two Hardy type spaces on BP, the first one is the Poletsky-
Stessin Hardy space H](BP) and the other one is H'(BP) which is defined
with respect to surface area measure in accordance with Stein’s definition.
We will now show that these spaces are not equal. In fact in contrast to the
one variable case Poletsky-Stessin Hardy class strictly contains the classical

Hardy space.

Proposition 3.3.1. Let B? be the complex ellipsoid. Then there exists an
ezhaustion function u such that H'(B?) & H}(BP).

Proof. We will explicitly construct the exhaustion function u by taking n = 2
and p = (1,2). First of all the relation between do and dpu, on 9B? is given
by Ki|&|?do < dup, < Ks|&|?do for some K, Ky > 0 (depending only on
dimension and p = (1,2)), now consider the analytic function f(z,2;) =

2 4
m where 16 < a< 16 We have

* 2d — *|d 2d
[ rlepar= [ (mea) &2
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2m 1
- do 2d
/|§24<1 (/0 ’1 — (\/1_7|£2’46i0)2|2a > ‘52‘ )

2 1
/|§z|4<1 (/o |1 — e2i0 4 |&,|4e2i0)20 ) |€a|7dE>

Now we will consider the behavior of the inside integral near the point {1}

i.e. as @ — 0 (this is the only problematic point as |{| — 0).

o (1= 201 = &) 08260 + (1 = &)

=1
60 |Ea[B

so our integral becomes for ¢t > 0,0 > 0

o ! ot
- 2/ ' - d0)§2d§ +2/ &[2de
Jooa O a2 [, | e

2t
+2/| |8a|€2|2d§2
&

S[i<1\B;(0) |62

since we are away from the singularity first and third integrals are finite

and if we take 1% <a< % then second integral is also finite and we have

f € H!(B?) but f ¢ H'(B?) since for this choice of a

2w 1
; . do ) d
/§2|4<1 (/0 ]1 — 20 ’§2|4€219’2a ) &2

diverges. O

In the previous results we have shown that for the functions in the
Poletsky-Stessin Hardy class HP(BP) we have the radial limit values and
throughout the following arguments we will study the behavior of these
boundary values in detail. In the classical Hardy space theory on strictly
pseudoconvex domains, Stein showed the existence of boundary values along
admissible approach regions that are more general than the radial approach.

Throughout the rest of the section we will show that for the functions in
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the Poletsky-Stessin Hardy class H?(BP) boundary values along admissible
approach regions exist. Although we use the general idea in Stein’s clas-
sical method, our approach differs in two aspects, respectively the use of
Cauchy-Fantappie kernel instead of Poisson kernel and the use of radial lim-
its existence of which is shown before. In the study of the boundary behavior
of holomorphic functions having the boundary of the domain as a space of
homogenous type seems to be a leitmotif because one of the most commonly
used methods in order to understand boundary behavior is to use maximal
functions ([44], Theorem 3) and the natural setting for this type of analysis
is homogenous spaces. Therefore we will start with recalling the properties
of homogenous spaces and then as an application of this classical method we
will show that polynomials are dense in the Poletsky-Stessin Hardy spaces
HP(BP) on complex ellipsoids. Before proceeding our arguments in C" with
maximal functions, let us first mention the spaces of homogenous type in C™

for which we need the following definitions :

Definition 17. Suppose that we are given a space X which is equipped with
a function p : X x X — R™ such that

e p(x,y)=0if and only if z =y
* p(z,y) = ply,z)

e There is a constant C; > 0 such that if z,y,2z € X then p(z,2) <
Cilp(z,y) + p(y, 2)]

p is called a quasi-metric for the space X.

We will denote the balls in this quasimetric by

B(w,r)={y e X: plr,y) <7}

Definition 18. Assume that the space X is equipped with a quasi-metric
p and a regular Borel measure 1 on X. We say that (X, p, u) is a space of

homogenous type if the following conditions are satisfied:
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e Foreachz e X andr > 0,0 < u(B(x,r)) < 0

e (Doubling Condition) There is a constant Cy > 0 such that for any
x € X and r > 0 we have pu(B(z,2r)) < Cou(B(z,1))

Let 2 CcC C" be a smoothly bounded domain such that we have a quasi-
metric p on Q and a regular Borel measure g on 9. Let K(z,£) : Qx99 — C
be a kernel such that K(z,&) € L'(du) for 2 € Q, £ € 9. Let us consider
the integral operator determined by K(z,&) for an LP(du) function f*,

Kf*(z) = o, F &K (2,€)du(§)
and define the associated maximal function as

M f*(§) = sup

1
- * d
P BE) /B@,@ 7y

From the corresponding results in literature (see eg. [44], Theorem 2; [47],
chapter 14) the fundamental theorem of the theory of singular operators

which is adopted to our setting can be stated as:

Theorem 3.3.2. Suppose f* € LP(du,) and 1 < p < 0o

(a) [[Mf*|l, < Apll f*]lp for 1 <p < oo

(b) The mapping f* — M f* is of weak type (1-1) i.e. p,{&: M f*(§) > a} <
Sl if £+ € LM (dpa)-

Now we further suppose that the following conditions are satisfied:
e p is a quasi-metric on Q
e (09, p, ) is a space of homogenous type

e For all z € 2, £ € 90 with n = p(z,£) > 0 we have

1
KOl OB
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for some C' independent of &, z and 1. Such a kernel is called a standard

kernel.

Following the method given in ([44],Theorem 3),which was applied for the
Poisson integrals of L? functions, we can now estimate the integral operator

given above in this general setting :

Theorem 3.3.3. Suppose K f*(z) is the K(z,&)-integral of an LP(du) func-
tion f* where K(z,€) satisfies the conditions given above. Let Q,(y) = {z €
Q,p(y, 2) < ady(2)} fory € 09, 2 € Q with §,(z) = min{p(z,90), p(z,T,,)}
(T, is the tangent plane at y), o > 0, be the admissible approach region.
Then

o When p(y,z) =€ and z € Q,(y) the following inequality holds

KPS A B2 [l

k=1

o sup.cq, () K[ ()| < AMf*(y).

Proof. Let K f*(z) be the K(z,&)-integral of the LP(du) function f*,

Kf(2)| < /a I . )ldn(e)

= 1K (2,6)|d K (2.€)|d
[, e+ [ 11K, )ldu(e)

k=le<p(€,y)<2ke

first,

* L .
/”(aymf PR (@) = 1(B(y, 2)) /B(y,2€) @)

by the condition on the kernel and similarly since p is a pseudometric we have
p(z,6) > Clp(€,y) — ply,2)) > C2¢'e — Ce > C2¥2¢ if k > 2 whenever
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92
2F=1e < p(€,y) < 2% and p(z,y) = ¢, so |K(2,€)] < ——————. Hence
(& y) p(z,y) [K(z,8)| By, 29)
for all &,

)
K d o,n % d
Lo IO < g [ el

Upon summing in k£ we get the first assertion and the second inequality is an

immediate consequence of the first. n

In ([22]), Hansson considered the boundedness of Cauchy-Fantappie in-
tegral operator ,H, from L?(0BP) into H2(BP). In his work he applied an
operator theory result known as T'1-Theorem and in order to use that re-
sult he showed the homogeneity of the boundary of the complex ellipsoid
with respect to the quasimetric d and the boundary measure dp A (99p)"~!
where the function p is defined as p(z) = Y7, [2;[*” — 1. In fact an easy
calculation shows that this measure is the boundary Monge-Ampere mea-
sure associated with the exhaustion function u(z) = log(|z1|*"* + |2|?P2 +
et 2a®), P = (p1,p2,,Pn) € Z" of the complex ellipsoid BP. Now
let d(&,2) = |[v(€,2)| + |v(z,€)| be the quasimetric defined on BP where
v(€,2) = (9p(§),€ — 2). Then explicitly v(§, 2) = 37, pil&PPiVE (&5 — 2;)
and define the boundary balls as B(z,¢) = {£ € OBP,d(¢, z) < }. It is shown

that (OBP, d, du,) is a space of homogenous type ([22],pg:1483) and e
v(&,z))"
1

< for d(&,2) = ¢ > 0 and
e | = dn B 17
for some C' > 0 depending only on the dimension and p. In the following

is a standard kernel i.e.

argument we will use his homogeneity result to apply the previous rather
general procedure on the complex ellipsoid case with the so called Cauchy-
Fantappie kernel:

The Cauchy-Fantappie integral (from now on we will refer as CF-integral) of

67



an LP(du,) function f* is defined as

1 )" S (&) dp(E)
oBP

Hi(=) = (ﬁ (€ 2)"

Before proceeding to further results let us briefly discuss the Cauchy-Fantappie
kernel. In the theory of holomorphic functions in one variable a fundamental
tool is Cauchy integral formula and in the case of several variables one wants
a suitable generalization to Cauchy integral. One of the possible choices for
the generalization is the so called Szego kernel however except for a few do-
mains Szego kernel has no explicit formulation. One other choice is the well
known Bochner-Martinelli kernel but the major shortcoming of this kernel
is that it is not holomorphic in z variable (For details see ([36])). Contrary
to Bochner-Martinelli kernel, Cauchy-Fantappie kernel is holomorphic in z
hence it is a natural generalization of Cauchy kernel to multivariable case
and it has reproducing property for the functions in the algebra A(BP) ([36],
Theorem 3.4). Hardy spaces which are examined in ([22]) are exactly the
Poletsky-Stessin Hardy spaces H?(BP) that are generated by the exhaustion
function v and at the beginning of this section it is shown that for the func-
tions in HP(BP) the boundary value function f* € LP(du,) exists so the
CF-integral of f* is well-defined. Now we will show that CF-integral has
reproducing property for the functions in H?(BP):

Proposition 3.3.2. Let f € HE(BP) be a holomorphic function then

f(z) = Hf(:) :( ! ) %pw

2mi (v(&, 2))

Proof. By the Fubini type integral formula that we used in Theorem 3.1.5

1169~ (g) [, (5t 500)
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and on every ellipse E by ([44], 9.7) we have reproducing property as a conse-

quence of one variable Cauchy integral formula. Hence the result follows. [

Now define the maximal function for the functions in L?(du,) as follows

* _ 1 *
Mf*(€) =sup (B(&,¢)) /B(g,a) Ve

e>0 Uy

The next result is a consequence of the general method given in Theorem
3.3.3 for complex ellipsoid case and it gives the relation between the CF-

integral and the maximal function of an LP(du,) function f*:

Corollary 3.3.1. Suppose H f(z) is the CF-integral of an LP(du,) function
5 Let Quly) = {z € Br,|v(y, 2)| < ad,(2)} fory € OBP, 2 € BP with
dy(z) = min{d(z,0X),d(z,T,)} (T, is the tangent plane aty), o > 0, be the

admissible approach region. Then

o When d(y,z) =¢ and z € Qu(y) the following inequality holds

Hf(z B(y, 2%)) / S ldpa
| Z )~ B(y72k€)| |

® SUD,cq. () [ Hf(2)] < AM f*(y).

Next using this maximal function tools we will see the existence of bound-

ary values on the admissible approach regions Q,(y), y € OBP:

Theorem 3.3.4. Let f € HP(BP) be a holomorphic function and 1 < p < oo.
Suppose that f* is the radial limit function then

Qa(lgi)glz%f(Z) = /(&)

exists for almost every £ € OBP.

69



Proof. If € > 0 then choose g € C'(0BP) so that || f* — g||zz@ome) < €*. Then
we know that limg, (6)5.—¢ Hg(2) = g(&) for all £ € OBP. Therefore

pA€ s limsup [f(2) = f7(E)] > e} < pa{&: limsup [f(z) — Hg(z)| > ¢/3}

Qa(§)32—¢ Qa(8)32—¢
+u, {8+ limsup [Hg(2)—g(§)| > e/3}+pa{€ : limsup [g(§)—f"(§)] > ¢/3}
Qa(§)32—¢ Qa(§)32—¢
< ma{€: CaM(f* = g) > £/3} + (Ilf* = gllgomey/(£/3))7 < Ca?
Hence the result follows. O]

As another application of this method, we will show an approximation

result on the Poletsky-Stessin Hardy spaces:
Theorem 3.3.5. Polynomials are dense in HE(BP).

Proof. Let f € HP(BP) be a holomorphic function, 1 < p < oo and let
fr(&) = f(r§) for £ € OBP. Then we have f(r) — f*(§) p, almost ev-
erywhere. By the previous proposition we know that H f(z) = f(z) when
f € HL(BP). Using this and the previous results on maximal function we
have |f(r§)| < M f*, where M f* € LP(OBP) then by the Lebesgue Domi-
nated Convergence Theorem we have that f, — f* in L?(0BP). Furthermore
the complex ellipsoid is a complete Reinhardt domain so as a consequence
of series expansion we deduce that polynomials are dense in A(BP) in the
topology of uniform convergence on compact subsets. Hence polynomials are
dense in HP(BP). O

3.4 Poletsky-Stessin Hardy Spaces on Strongly

Convex Domains

In this section, in order to understand the boundary behavior of Poletsky-

Stessin Hardy spaces on strongly convex domains we will examine Stein’s
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procedure that we used in ellipsoid case on strongly convex domains in C"
which are defined as follows ([28]):

Definition 19. Let  CC R" be a domain with C? boundary and p a defining
function for 2. Fix a point P € 02. We say that 0€) is convex at P if

n an
al‘jaZL‘k

(P)wjwy, >0
k=1

for all w in Tp(0f2) which is the tangent plane at P. We say that 0 is
strongly convex at P if the inequality is strict. If 0 is (strongly) convex at

each boundary point, then we say that €2 is (strongly) convex.

In fact strongly convex domains are strictly pseudoconvex domains there-
fore Poletsky-Stessin Hardy spaces generated by the pluricomplex Green
function coincide with the classical Hardy spaces and the general theory
given in ([44]) is applicable to them. However,in this section we will pro-
vide an alternative approach through Poletsky-Stessin Hardy spaces, to the
boundary behavior of classical Hardy spaces on strictly pseudoconvex do-
mains by localizing the procedures which is possible because of the fact that
on strictly pseudoconvex domains for each boundary point one can find a

neighborhood which is strongly convex (For details see ([45])).

Let €2 be a strongly convex domain in C" with smooth boundary and let
g(z,a) be the pluricomplex Green function of Q with pole at a € Q. Then
by ([29]) we know that g(z,a) is in C>=(Q2\ {a}). Now define the quasimetric

(& 2) =] < 09(&),§ — 2> [+ ] <g(z),2 =& > |
and the corresponding balls will be defined by

B(z,e) ={€€ 09| d(, 2)<e}
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Recall that the Monge-Ampere boundary measure associated with the Green
function g(z, a) is given by du, = dgA(9dg)"~*. We will show that (92, d, du,)
is a homogenous space. First of all combining the results of ([30],[44])
we see that for the quasimetric d, the balls have enveloping property i.e.
B.,(z) N B, (&) # @ and g; > &y implies that B.,(§) C B, (z). Hence in
order to show that (0€,d,du,) is a space of homogenous type we need to

prove the doubling condition with respect to measure d,.

Lemma 3.4.1. There is a constant A > 0 depending only on the surface OS2
so that for all P € 092 and all 6 > 0

#g(B2s(P)) < Apig(Bs(P))

Proof. First assume Q C C2  Since 99 is a smooth compact surface it
is sufficient to obtain the inequality for all P and all sufficiently small §.
Without loss of generality assume that P = 0 € 02 and near 0, 0f) is
given as the graph of a convex function 1 such that x4 = ¥ (21, x9, x3) where
C? ~ R* in real coordinates (1, z2, 3, 24). Then by construction, for points
(21, X2, T3, (21, Te, 3)) € Bas(0), we have {(z1, z2, x3)| ¥(x1, 22, 23) < 26}
and by the proof of Theorem 4.2 in ([7]) there is a constant A; depending
only on 0f2 such that

{(xl,IQ,SC3>’ ’lb(l‘l,xg,l’g) < 25} - Al{(xl,IQ,SCg)’ ’lb(xl,xg,l},) < (5}

Now let 7 : C* — C be the natural projection 7(z1, z3) = 21, then from the
above inclusion we get m(Bas(0)) C Aym(Bs(0)), moreover by ([15],2.19) we

have
/ 7 (dpig) :/ dpg (3.4.1)
m(B2s(0)) Bss(0)

and in C we have 7,(dp,) ~ do so we have p,(Bas(P)) < Apy(Bs(P)). For
n > 2 process is the same via an inductive argument; at each step first we

identify the n-dimensional complex space with the 2n-dimensional real one
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and use Theorem 4.2 in ([7]) to have an enveloping property between the balls
of radii 20 and ¢ then we project the boundary balls to (n — 1)-dimensional
complex space where we know the existence of doubling property and using
(3.4.1) we obtain the doubling condition for the boundary balls of dimension
n.

Hence (092, d, dy,) is a space of homogenous type. ]

From now on suppose 2 C C" is a strongly convex domain and with-
out loss of generality assume that € contains 0 € C". Let g(z,0) be the
Pluricomplex Green function with the logarithmic pole at 0. We will con-
sider the Poletsky-Stessin Hardy spaces HF((2), p > 1. In order to obtain a
Calderon-Zygmund type maximal function argument we need to show that

the Cauchy-Fantappie kernel

1
a | <8g(§)’£_z>|n

v(2,€)

for

is a standard kernel i.e. we need to show
d(z,&) =e.
Lemma 3.4.2. The Cauchy-Fantappie kernel satisfies the following inequal-

1 < C
|(v(=, €))7 — dpy(B:(£))

ity
1 < C
(= O~ 1e(B(E;€))

where d(z,§) = ¢.

Proof. We need to show that ,(B:(§)) < Clu(z,§)| for d(z,€) = e. First of
all since we have | < 0¢(£),{ — 2z > | ~ | < dg(2),z —& > | ([30]), we get
lv(&, z)|™ ~ ™ from the definition of d(z,£). Hence we need to show that

pg(B:(§)) < Ce™ when d(z,£) = . Now let ¢ € C°(2) so that ¢ > 0,p =1
on B.(£) and vanishes outside Bse (&) with £(0) = 0 and |dd°p| < %. Now

dpig(n) < dpg(n) = | (—g)ddp A (ddg)"" 3.4.
/E(Qu(n)</m<pu(n) /Q( g)dd“p A (dd°g) (3.4.2)
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and now consider the Taylor expansion of g(z) around &

02) = 8(6) + 2Re < )2 — € > +3o(©) | | 12— €+ olls — P

|2 = ¢

where

2 _
d’g = 2Re Z gé’jgkijk +2 Z ggj?kijk
Ji:k=1 gk=1
and if ¢ is small enough then we have |z — &|? < | — g] < 2|z — €] for some

1,72 > 0 that depend only on €. From (3.4.2) we have

M
/ dﬂg(n) S /(—g)ddcgo AN (ddcg)nfl S 728_6_2.€n+1 — an
=(¢) Q

= pg(B:(§)) < Cem
It follows that v(&, 2) is a standard kernel. O

Lastly we will consider the existence and the characterization of the
boundary values for the holomorphic functions in Poletsky-Stessin Hardy
spaces Hg(Q), p > 1. We will apply the same method that we considered in
the ellipsoid case so let us first see that for a holomorphic function f € HE(2),

f*(&) = lime f(§ — ev) exists where v is the outward unit normal.

Proposition 3.4.1. Let Q be a strongly conver domain containing 0 and
g(z,0) is the Green function with the logarithmic pole at 0. Then for any
[ € HP(Q) the boundary value function f*(§) = lim. o f(§ — ev) exists pg,-

a.e. where v is the outward unit normal to the boundary.

Let £ € 09, and let E be the strongly convex domain in C which is
the intersection of the complex line joining 0 to £ and Q. Then ¢ |g is an
exhaustion function for . The Monge-Ampeéere measure associated with the

exhaustion function g is given by dug, = d°g A (dd°g)" ™" |s, (), and let Ay be
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the set of all complex lines passing 0 € Q. Take f € HE(Q2) then

/ Py, = / FP(dg A (ddog)™) = / ( / |f|pdiq>w
Sg(r) Sg(r) Ao 1:NSg(r)

where m*w = dd°g)" ! and 7 : Q — Ap is the function given by 7(z) =

g

0, z] = [, with [, being the line joining 0 and z.

We can use the above generalization of Fubini Theorem since 7 is a submer-
sion and 7 |supp(ae(g»)) 15 proper.([15],2.15).

The measure d°g on [, N Sy(r) is equal to d°(g |g) on Sy, (r). Since E is a

smoothly bounded domain d°(g [g) on Sy, (r) is equal to djg), , sO

/ ‘f‘pdug,r = / </ |f’pdﬂg|E,r> w
Sq(r) Ao Sg1g(r)

and by Fatou’s Lemma

/ lim inf /
Ao r—0 S

since f € H?(2) and this gives us that for w-a.e liminf, o [ s |fIPdpg)pr <
9 E

|f|pdug|E7r> w < 00

Q\E(T

cosofeH 5 ‘E(E) for w-a.e and it has admissible boundary values do ~ djug),
almost everywhere ([44]). Since f* is the pointwise limit of a measurable func-
tion it is measurable and consider the set A = {£ € 90,  f*(§)does not exist}

then /8Q i — /A 0 ( /6 ) XA(n)dug|E(77)) w

but since f € H;E(E) it has admissible limits dyig|,-a.e so the integral inside
is 0 and we have [, o0 XAdjg = 0 therefore f*(&) exists juy-a.e. Moreover for a
holomorphic function f € Hy, (E) we know that f* € LP(JE) so we have

/(‘)Q [P dpy = /AO </8E\f*\pdug,3) w < 00
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hence f* € L, (09).
The Cauchy-Fantappie integral of an L, (0€2) function f* is defined as

N @)
Hil=) = (m) o (U(E.2)"

Combining the Fubini type integral formula on each complex line with ([44],9.7)
we get Hf = f when f € HP(S2). Now define the maximal function for f*
as follows:

1
Mf(§) = sup ————=
O P ID) /B(s,s)

As a consequence of the general maximal function argument given in Theorem
3.3.3 we get

[f*Pdpg

Theorem 3.4.1. Let f € HP(S2). Then from the general argument about the
mazimal function we see that the boundary function f* € Lﬁg(@Q) satisfies

the following:

o Sup.cq, ) [HF(2)| < AM[*(y) when = € Qu(y) = {2 € Qd(y.2) <
ady(z)} where 6,(z) = min{d(z,0X),d(z,T,)} (T, is the tangent plane
aty), a>0.

o [IMf]lp < Allf*llp for 1 <p < oo

o The mapping f* — Mf* is of weak type (1-1) i.e. p {§ : Mf*(&) >
a} < gl Il if £+ € Ly, (09)

Finally, the proof of the analogous result in ellipsoid case may be imitated

verbatim to establish the following result:

Theorem 3.4.2. Let f € HE(Q) be a holomorphic function and 1 < p < oo,

Suppose that f* is the limit function given in the normal direction then

o lm ()= f1(), ae £

76



Remark 13. Let us now give a comparison about the approach regions given
in our previous results and the classical approach regions considered by dif-
ferent authors. By ([30], [44]) we know that on a convex domain the approach
regions @), given by the metric d are the admissible approach regions that
are discussed in the classical theory. If we consider the shape of these regions
we see that near its vertex the distance of the Q;(w), w € 01, along the
normal direction changes in a parabolic way which allows also the tangential
approaches. (For details of this calculation see [5]). Hence our approach re-
gions are greater than the classical non-tangential approach regions given in
([24]). The approach regions @, are the greatest family of approach regions
in the sense that they are built using the biggest embedded polydiscs that
fit inside the domain (for details see [33]).

3.5 Composition Operators on Poletsky-Stessin
Hardy Spaces on Hyperconvex Domains
inC", n>1

In this section we will consider the boundedness properties of composition
operators acting on Poletsky-Stessin Hardy spaces on hyperconvex domains
in C™ for n > 1. Before proceeding further let us first briefly discuss the re-
sults given in ([34]) about composition operators on Poletsky-Stessin Hardy
spaces that are generated by exhaustion functions which are maximal out of
compact sets:

Let Dy ¢ C" and D, C C™ be two hyperconvex domains and wuq, us be
the exhaustion functions for D; and Dj respectively. In ([34]), Poletsky and
Stessin considered the necessary and sufficient conditions of boundedness of
a composition operator induced by a holomorphic mapping between D; and
Dy when the exhaustion functions u; and us belong to class & i.e. the

Monge-Ampere measures (ddu;)™ and (dd°us)™ have compact support. Be-
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fore proceeding further let us first discuss some of the results given in the

case where exhaustion functions are chosen from & :

Definition 20. Let D be a hyperconvex domain with the exhaustion function
u and f be a holomorphic function on D. Nevanlinna counting function is
defined as:

Ny s (w) = /D (—u)(dd“u)" " A dd log |f — w]

Let F': D; — Dy be a holomorphic mapping between the hyperconvex
domains D; and D, with exhaustion functions u; € & and uy € & respec-
tively. If f is a holomorphic function on D, then the “tail” part of Nevanlinna

counting function is defined as follows:

Ny p(w,r) = / (—w)(dduy)" " Add°log |f o F — w)|
T(r)

where T'(r) = Dy \ Buyor(r) = {z € Dy :  wus(F(z)) > r}. Then deficiency

of F is defined as .
Nul,F,f(wv r)

NU2,f<w)

where the supremum is taken over all f € H? (D;).

Ouy ug,p(T) = sUp

In ([34]) sufficiency condition for boundedness of a composition operator is

given as follows:

Theorem 3.5.1. Let F': Dy — Dy be a holomorphic mapping between the
hyperconver domains D1 and Dy with exhaustion functions uy € & and uy €
Eo respectively. If there exists 1o < 0 such that 8y, uy r(10) < 00 then the
operator Cp(f) = f o F is a bounded operator from HE (D) into H? (D).

To provide necessary conditions, fix a compact set K C D; and for a

holomorphic function f € HE (D) introduce the function

0l N gor ()
D) =
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and for a > 1 set

pu1,u2,F<a> = sup VF(w7 f)

where the supremum is taken over all f € H? (D;) and all w € C, |w| >
amaxeex |f o F(€)]. In this setting the necessity condition given in ([34]) is

as follows:

Theorem 3.5.2. Let F': Dy — Dy be a holomorphic mapping between the
hyperconvex domains D1 and Dy with exhaustion functions uy € & and uy €
&y respectively. If Cr is a bounded operator from HE (D) into HE (D), then
Puy s F(a) < 00 for all a > 1.

However when the exhaustion function is chosen with finite Monge- Ampere

mass but not necessarily maximal out of a compact set we can end up with un-
bounded composition operators even for the simplest symbols, namely auto-
morphisms. Consider the exhaustion function u,(z) = max{u(z1), u(22), .., u(z,)}
where u is the exhaustion function for unit disc that we constructed in The-
orem 2.1.2. We have seen that similar to the one variable case, if we use
the symbol (2, w) = (z1€%, 20€7, .., 2% ) we can obtain that ¢ does not
induce a bounded composition operator on H, (D") although every auto-
morphism of the polydisc induces a bounded composition operator on the
classical Hardy space H'(D?)([43], Cor.3.2.3).
In the following result we will show that, for a bounded hyperconvex do-
main {2 under certain regularity conditions on u and ¢ we can construct an
exhaustion function v for €2 with finite Monge-Ampere mass such that the
composition operator C, with the holomorphic symbol ¢ is Lipschitz con-
tinuous between the Poletsky-Stessin Hardy spaces HP(€2) and HJ () with
Lipschitz constant K = 1 but for this we need to introduce the classes of
compliant functions defined by ([8]):

Recall that the Perron-Bremermann envelope for a given function f : 02 — R

79



is given by:

PBg(z) =sup w(z): we PSH() limsupw(v) < f(§),VE € 00
v—=€
veEN

Definition 21. A continuous function f : 92 — R which satisfies the fol-
lowing two conditions is called a compliant function:

o lim. ,:(PB;+ PB_¢)(z) =0 for every £ €

2€Q
o [,(dd(PB;+ PB_j))" < o
The set of all compliant functions is denoted by CP(9€2) and the set of
functions for which PB_; = —PB;y is denoted by CPy(052)

Theorem 3.5.3. Let 2 CC C" be a bounded hyperconvexr domain. Suppose
u s a continuous, negative, plurisubharmonic exhaustion function with finite
Monge-Ampére mass and ¢ : Q0 — 0 is a one-to-one holomorphic self map of
Q. Ifuop € CPy(ON) then there exists a continuous exhaustion function 1
with finite mass such that C,, : HE(Y) — H}(€2) is continuous for 1 < p < co.

Proof. First we will construct the exhaustion function . Let p be the so-

lution of the Dirichlet problem for pluriharmonic functions i.e. dd‘p = 0 on

Q, pe PSH(Q)NC(N) and p = uo ¢ on d2. We know that this problem
is solvable on Q since u o ¢ € CPy(9N2) by ([12], Theorem 3.5). Now con-
sider the function ¥ = (u o @) — p. We see that ¢» = 0 on the boundary
and (dd“y)™ = (dd°(uo ))™ > 0, since p is pluriharmonic and (u o ¢) is a
plurisubharmonic function. Moreover v is continuous on €, and since it is
continuous and equals to 0 on the boundary it is an exhaustion. Therefore

the only part we need is to show that ¢ has finite Monge-Ampere mass. First
of all by ([15], pg:10 (1.13)) and ([32], Theorem 4.9) we have

[arer = [rwopy = [ o aron) (3.5.1)
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where the form ¢*((dd°u)™) is the pull-back of (dd°u)"™. Then by ([15],pg:11
(1.17)) we have

/Q o ((ddu)") = / (ddu)" (3.5.2)

»(2)

then combining the equations (3.5.1) and (3.5.2) we have

/Q (dd°)" = /¢ IR /Q (dd°u)" < oo

the last inequality follows from the fact that u has finite Monge-Ampere
measure. Thus v has finite Monge-Ampere mass.

We see that if u o ¢ is continuous on 92 then v is a negative, continuous,
plurisubharmonic exhaustion function for {2 with finite mass.

Next we will consider the action of the composition operator C, on HE():
Let f € HP(2) then,

1f o el = /Q |f o @lP(ddy)" + /Q(—w)ddclf o [P A (ddy)™!

- / Fopl2)P(dd?(uoo(2)))" + / (p—uop(2))dde| f o ()P A (dduo )™
Q Q

and since p is negative on €2 we have

< [Iroparartuo @)+ [ (cuog:)ddlf ow()P Aldduop)

Q

then combining ([32], Theorem 4.9) and (]27], pg:9) we have

/Q 1 o p(2)P(dd(u o p(2)))" + / (—u 0 p(2)dd°|f o ()P A (dd°u o o)™

=/w*(|f|p(ddCU)")+/w*((—U)ddclfl”/\(ddCU)”_l)
Q Q
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and since ¢ is a diffeomorphism to its image we have

[ sty + [ s n @
#(Q)

()

< /Q | F[P(ddu)™ + /Q (—w)dd”| FI? A (dd“u)" ™ = || £ 2y < 00

Hence C,, acts continuously from HZ(Q2) to HJ ().
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