
PARALLEL, SCALABLE AND

BANDWIDTH-OPTIMIZED COMPUTATIONAL

PRIVATE INFORMATION RETRIEVAL

Ecem Ünal

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August, 2014

PARALLEL, SCALABLE AND BANDWIDTH-OPTIMIZED

COMPUTATIONAL PRIVATE INFORMATION

RETRIEVAL

APPROVED BY:

Assoc. Prof. Dr. Erkay Savaş

(Thesis Supervisor)

Assoc. Prof. Dr. Cem Güneri

Asst. Prof. Dr. Hüsnü Yenigün

DATE OF APPROVAL:

ii

© Ecem Ünal 2014

All Rights Reserved

PARALLEL, SCALABLE AND BANDWIDTH-OPTIMIZED

COMPUTATIONAL PRIVATE INFORMATION

RETRIEVAL

Ecem Ünal

Computer Science and Engineering, Master’s Thesis, 2014

Thesis Supervisor: Erkay Savaş

Abstract

With the current increase of interest in cloud computing, the security of user data

stored in remote servers has become an important concern. Hiding access patterns of

clients can be crucial in particular applications such as stock market or patent databases.

Private Information Retrieval (PIR) is proposed to enable a client to retrieve a file

stored in a cloud server without revealing the queried file to the server. In this work,

we offer improvements to BddCpir, which is a PIR protocol proposed by Lipmaa. The

original BddCpir uses Binary Decision Diagrams (BDD) as the data structure, where

data items are stored at the sink nodes of the tree. First of all, we offer the usage of

quadratic and octal trees instead, where every non-sink node has four and eight child

nodes, respectively, to reduce the depth of the tree. By adopting more shallow trees,

we obtain an improved server implementation which is an order of magnitude faster

than the original scheme, without changing the asymptotic complexity. Secondly, we

suggest a non-trivial parallelization method that takes advantage of the shared-memory

multi-core architectures to further decrease server computation latencies. Finally, we

show how to scale the PIR scheme for larger database sizes with only a small overhead

in bandwidth complexity, with the utilization of shared-memory many-core processors.

Consequently, we show how our scheme is bandwidth-efficient in terms of the data being

exchanged in a run of the CPIR protocol, in proportion to the database size.

iv

PARALEL, ÖLÇEKLENEBİLİR VE AĞ KULLANIMI İÇİN

OPTİMİZE EDİLMİŞ HESABA DAYALI

MAHREMİYET-KORUMALI BİLGİ ERİŞİMİ

Ecem Ünal

Bilgisayar Bilimleri ve Mühendisliği, Yüksek Lisans, 2014

Tez Danışmanı: Erkay Savaş

Özet

Bulut bilişime ilginin artmasıyla birlikte, uzak sunucularda saklanan kullanıcı bilgi-

lerinin güvenliği önemli bir sorun haline gelmiştir. İstemcilerin erişim modellerini gizle-

mek, özellikle borsa veya patent veritabanı gibi uygulamalarda elzem olabilmektedir.

Mahremiyet-Korumalı Bilgi Erişimi (PIR), bir istemcinin bulut sunucuda saklanan bir

veri öğesini (örneğin bir dosya) sunucuya hangisine eriştiğini söylemeden elde etmesini

sağlamak için tasarlanmış bir protokoldr. Bu tezde, Lipmaa tarafından önerilen bir

PIR protokolü olan BddCpir üzerine iyileştirmeler sunulmuştur. Orijinal BddCpir, veri

yapısı olarak, veri öğelerini uç düğümlerde depolayan İkili Karar Diyagramlarını (BDD)

kullanmaktadır. Öncelikle, veri yapısı olarak BDD yerine dörtlü ve sekizli ağaçların kul-

lanımını önerilmiştir. Bu tür ağaçlarda uç olmayan her düğümün sırasıyla dört ve sekiz

alt düğümü olduğu için, daha az derinliği olan ağaçlar elde edilerek, sunucu perfor-

mansı orijinal asimptotik karmaşıklığı değişmeden bir mertebe iyileştirilebilmektedir.

İkinci olarak, sunucu işlem gecikmesini daha da azaltabilmek için paylaşımlı bellek kul-

lanan çok çekirdekli işlemciler için tasarlanmış bir paralelleştirme yöntemi sunulmuştur.

Üçüncü olarak da, bu tezde önerilen PIR protokolünün bant genişliğine yalnızca ufak bir

ek yük ekleyerek nasıl ölçeklenebileceği gösterilmiştir. Son olarak, önerilen protokolün

bir çalışmasında harcadığı bant genişliği bakımından, veri tabanı boyutuna oranla, ne

kadar verimli olduğunun analizi yapılmaktadır.

v

to my beloved family...

vi

Acknowledgements

This thesis would not have been possible without the support of my supervisor,

committee, friends and family.

Foremost, I would like to express the deepest gratitude to my thesis supervisor

Assoc. Prof. Erkay Savaş. The presented work existed and developed with the help of

his ideas, immense knowledge as well as his guidance and encouragement. I also would

like to thank my thesis jury, Asst. Prof. Dr. Hüsnü Yenigün and Assoc. Prof. Dr.

Cem Güneri for their valuable suggestions and inquiries.

I am thankful to all the members of our Cryptography and Information Security

Lab for the great environment they provided in terms of both research and friendship.

Every one of them is important to me, but Naim Alperen Pulur has a special place

among them. I am beyond grateful to his presence when I needed motivation the most;

his unconditional support and help aided me during my writing process. In addition,

I would like to thank my roommate Saime Burçe Özler, since she was always there for

me during both good and rough times.

Last, but not least, I would like express my special appreciation and thanks to my

parents and my brother. I would not be here without the unlimited love and support

they provided throughout my life.

vii

Contents

1 Introduction 1

2 Background Work 4

2.1 Cryptographic Properties . 5

2.1.1 Homomorphic Encryption . 5

2.1.2 Damg̊ard-Jurik Cryptosystem 6

2.2 Binary Decision Diagrams . 8

2.2.1 Properties of a BDD . 8

2.2.2 Quadratic and Octal Trees . 9

2.3 (2, 1) CPIR . 9

2.4 (n, 1) CPIR . 10

3 Problem Statement 14

4 CPIR using Quadratic and Octal Trees 16

4.1 Utilizing Quadratic Trees in CPIR . 16

4.1.1 (4, 1) CPIR . 17

4.1.2 (n, 1) CPIR with Quadratic Trees 18

4.2 Utilizing Octal Trees . 20

4.2.1 (8, 1) CPIR . 20

4.2.2 (n, 1) CPIR with Octal Trees 21

5 Parallelization of CPIR 24

5.1 Client Side Parallelization . 24

5.2 Server Side Trivial Parallelization Algorithm 26

5.3 Server Side Two-Degree Parallelization Algorithm 28

5.4 Server Side Core-Isolated Parallelization 31

6 Scalable CPIR for Parallel Implementations 33

viii

7 Communication and Computation Analysis 40

7.1 Analysis of Communication Complexity 40

7.2 Analysis of Computational Complexity 42

7.2.1 Complexity of Parallel Implementation of Binary Tree 44

7.2.2 Complexity of Parallel Implementation of Quadratic Tree 47

7.2.3 Complexity of Parallel Implementation of Octal Tree 50

7.3 Analysis of Scalable CPIR . 52

7.3.1 Communication Complexity . 52

7.3.2 Computational Complexity . 54

8 Implementation Results 56

8.1 Client-Side Computations . 56

8.2 Server-Side Computations . 58

8.2.1 Serial Case . 58

8.2.2 Parallel Case . 59

8.2.3 Scalable CPIR . 60

9 Comparison 61

10 Conclusion 67

ix

List of Algorithms

1 Parallel client side computation for binary tree based (n, 1) CPIR . . . 25

2 Parallel client side computation for quadratic tree based (n, 1) CPIR . 25

3 Parallel client side computation for octal tree based (n, 1) CPIR 26

4 Parallel server computation for binary (n,1) CPIR v1 27

5 Parallel server computation for quadratic (n,1) CPIR v1 27

6 Parallel server computation for octal (n,1) CPIR v1 27

7 Parallel server computation for binary (n,1) CPIR v2 28

8 Parallel server computation for quadratic (n,1) CPIR v2 29

9 Parallel server computation for octal (n,1) CPIR v2 30

10 Parallel server computation for binary (n,1) CPIR v3 32

11 Client-side computation for binary tree-based Scalable CPIR 35

12 Server-side computation for binary tree-based Scalable CPIR 36

x

List of Figures

1 An example BDD constructed by server 9

2 A depth-2 quadratic tree implementing (16,1)-CPIR 19

3 Collapsing four subtrees into one tree 37

4 Modular exponentiation timings . 44

5 Communication complexity of Scalable CPIR - Binary Tree Case 52

6 Communication complexity of Scalable CPIR - Quadratic Tree Case . . 53

7 Communication complexity of Scalable CPIR - Octal Tree Case 54

8 Bandwidth comparison, with 1024-bit data items 64

9 Bandwidth comparison, with n = 1024 variable sized data items 65

10 Bandwidth comparison, with n = 216 variable sized data items 66

xi

List of Tables

1 The bandwidth requirements of the selection bits 41

2 Actual bandwidth costs of overall communication 42

3 Estimated timings of server-side computation 45

4 Estimation of timing values for serial and parallel implementations with

different number of processor cores and number of synchronization points

and their associated costs - Binary tree case (using GMP library on an

Intel Xeon CPU E1650@3.50 GHz) . 48

5 Estimation of timing values for serial and parallel implementations with

different number of processor cores and number of synchronization points

and their associated costs - Quadratic tree case (using GMP library on

an Intel Xeon CPU E1650@3.50 GHz) 49

6 Estimation of timing values for serial and parallel implementations with

different number of processor cores and number of synchronization points

and their associated costs - Octal tree case (using GMP library on an

Intel Xeon CPU E1650@3.50 GHz) . 51

7 Estimated execution times of the hybrid method for various number of

data items, number of cores, and speedup values over the normal parallel

implementation; l = 3. (using GMP library on an Intel Xeon CPU

E1650@3.50 GHz) . 55

8 Estimated execution times of the hybrid method for various number of

data items, number of cores and speedup values over the normal parallel

implementation; l = 4. (using GMP library on an Intel Xeon CPU

E1650@3.50 GHz) . 55

9 Timings of client’s selection bit encryptions 57

10 Timings of client’s decryption of the final result 57

11 Timings of server computation - sequential 58

12 Timings of server computation - parallel 59

13 Timings of server computation - scalable 60

xii

14 Comparison of bandwidth requirements 62

15 Ratio of exchanged information to database in different PIR schemes . 65

xiii

1 Introduction

In this age of big data, cloud computing has gained a significant importance. Instead

of setting up their own servers, which is costly in terms of money and time, people

are now renting cloud servers for their immense computation and storage capabilities.

Although they are useful and easy to maintain, outsourcing to cloud servers arises

the security concerns for the data stored in these cloud-powered systems. The cloud

computing users would want not only the secrecy and integrity of their data guaranteed,

but also their access patterns to be hidden. For instance, if a stock-market database

is queried many times for the value of a certain stock, knowing the access frequencies

may inadvertently affect their prices, which is an undesirable outcome. Hence, Private

Information Retrieval (PIR) is introduced as a solution to this problem. PIR essentially

enables the user to access one of its files without the server learning the requested file.

Formally, a client that wants to retrieve fx from a remote server storing a database

F = (f0, f1, . . . , fn−1), fx ∈ F , can accomplish this without revealing neither x nor fx

to the server using a PIR protocol.

The trivial solution to this problem would be the client downloading the whole

database and selecting fx among them. This would not be possible if the user had re-

strictions about the files it could access, which is the case for oblivious transfer, a similar

concept in cryptographic literature [30]. Therefore, the fundamental requirement for

an efficient PIR is a sublinear communication rate. In other words, the data exchanged

between the client and the server must be asymptotically less than the database size.

The concept of private information retrieval first introduced by Chor et. al. in

1995 [6], and received serious attention. Afterwards, Computational PIR (CPIR), which

bases the security of the protocol on a computationally difficult problem, is presented

1

in 1997 again by Chor [7]. There is also Information-Theoretic PIR (itPIR), which

preserves the security of the client against computationally unbound servers. However,

Chor et. al. proved that if the database is stored only in one server without any repli-

cation, the best itPIR protocol is the trivial one [6]. Therefore information theoretic

security can only be achieved efficiently if there are more than one non-communicating

servers. Contrarily, CPIR does not require such a replication as proved by Kushilevitz

and Ostrovsky [19]. On the grounds of this information, this thesis is mainly inter-

ested in efficient single-server computational PIR protocols, thus PIR will imply CPIR

henceforth.

CPIR protocols generally rely on the security of the underlying encryption scheme,

therefore each of them employs a different computationally-difficult problem. In 1997,

Kushilevitz and Ostrovsky suggested a CPIR scheme [19], utilizing Goldwasser-Micali

public key cryptosystem [16], thus depending on the intractability of quadratic residu-

osity problem. Later, in 1999, the first polylogarithmic communication rated CPIR is

presented by Cachin et. al., based on the number theoretic φ-hiding assumption, which

is also introduced in the same paper [5]. There exist several other schemes based on

lattice problems such as the ones constructed by Aguilar-Melchor and Gaborit [23,24],

or NTRU based protocol by Doroz, Sunar and Hammouri [10]. Furthermore, with the

current interest and development in fully homomorphic encryption systems, there are

some recent PIR schemes based on them [13, 35]. In addition to all these protocols,

Lipmaa presented a scheme that combines a non-cryptographic data type, binary de-

cision diagrams, and a probabilistic, additively homomorphic public key cryptosystem,

Damg̊ard-Jurik, into a bandwidth efficient protocol called BddCpir [20]. The secu-

rity of BddCpir is also based on the same security assumption as the Damg̊ard-Jurik

cryptosystem, namely the complexity of the well studied decisional composite residu-

osity problem [9]. Many of the aforementioned schemes provide efficient techniques to

speed up the server computation, but fail to provide a reasonable bandwidth perfor-

mance [10,23,24]. On the other hand, Lipmaa’s BddCpir is not one of the best schemes

in terms of computational complexity.

Therefore, we offer the application of quadratic and octal trees, instead of binary

2

ones, to improve the BddCpir protocol in terms of computational complexity, while pre-

serving the bandwidth efficiency. Afterwards, we define some non-trivial parallelization

algorithms to utilize modern multi-core processors for further enhancement in server-

side computations.

In particular, this work first starts by defining preliminary information such as ho-

momorphic encryption, binary decision diagrams, Damg̊ard-Jurik cryptosystem and

Lipmaa’s BddCpir in Chapter 2. Then, in Chapter 3, the properties that we aim to

achieve in our improved methods are listed, thus stating the problem definition. Chap-

ter 4 explains how quadratic and octal trees can be utilized in a PIR protocol, and

shows the client is still able to correctly retrieve its requested data item. After defin-

ing the necessary protocols, Chapter 5 illustrates how they can utilize parallelization

techniques to improve the overall computational complexity. In Chapter 6, a scalable

CPIR is presented for databases with high number of data items. Once our methods

are proposed, their analysis is presented in Chapter 7 in terms of both communication

and computational complexities. To support our claims in the analysis part, Chapter

8 presents the implementation results and actual execution times of both our methods

and BddCpir. Lastly, we compare the proposed schemes with similar protocols in the

literature in Chapter 9 and conclude the thesis in Chapter 10.

3

2 Background Work

As it has been introduced in the first section, our proposed PIR scheme is based on

Lipmaa’s BddCpir protocol [21]. Therefore, in order to start defining our improvements,

we first need to explain this protocol. BddCpir enables the client to query a server

with a database of n files and be able to privately retrieve 1 file out of n. Therefore,

(n, 1) CPIR notation is also employed for this scheme and it will be more frequently

used throughout this document.

(n, 1) CPIR is based on Binary Decision Diagrams (often abbreviated as BDD),

utilizes a more primitive (2, 1) CPIR scheme and requires a cryptosystem with spe-

cific properties. Particularly, the requirements state that it should be an additively

homomorphic, length-flexible public key cryptosystem with randomized key generation

and encryption algorithms [21]. Therefore, we will start by defining homomorphic ecn-

ryption and then we will move on to Damg̊ard-Jurik cryptosystem which satisfies the

specified conditions.

After outlining the cryptosystem, we will continue with BDDs and demonstrate

how they are used to store data in a server. In that subsection the preliminaries of our

quadratic and octal tree methods are also given.

Once the preliminary data structures and encryption system are described, we can

continue with (2, 1) CPIR, the basic scheme that is used to retrieve 1 file out of 2 files

that are stored in the server. Since there are only 2 files in this case, the client will send

1 (encrypted) selection bit to select one of the two files and we will show how the server

returns the selected file correctly without decrypting the selection bit. After that, we

will show how to extend the (2, 1) CPIR into a generic (n, 1) scheme while still using

the same structures and protocols as the building blocks.

4

2.1 Cryptographic Properties

BddCpir protocol and our improved version of it both function because of the un-

derlying properties of the cryptosystem used. Both BddCpir and our scheme share

the same probabilistic public key cryptographic protocol, proposed by Damg̊ard and

Jurik [9], because of its multiple encryption and additive homomorphism properties.

Therefore we will start by defining homomorphic encryption. After this definition,

Damg̊ard-Jurik cryptosystem, its key generation, encryption and decryption operations

will follow. In addition, there will be a proof of how Damg̊ard-Jurik satisfies the additive

homomorphism requirement.

2.1.1 Homomorphic Encryption

Encryption systems that allow operations to be performed on encrypted data (cipher

text) without decrypting it are said to be homomorphic cryptosystems. In this way,

a user does not need to know the private key to be able to perform calculations on

encrypted data. This allows us to make use of powerful but not fully trusted systems

(e.g. cloud servers) to compute costly operations on our data instead of client computers

with limited resources.

More formally, an encryption is homomorphic if using known E(x) and E(y) it is

possible to compute E(f(x, y)) without using private key [33]. In this context E is the

encryption function and f can be +,× or ⊕. If f is an addition function, in other

words, if the cryptosystem allows summation over encrypted text, then the algorithm

is called additive homomorphic encryption. Examples of such cryptosystems include

Paillier [29], Goldwasser-Micali [16] and Damg̊ard-Jurik [9]. Similarly, if multiplication

can be calculated using ciphertext, thenf the algorithm is referred as multiplicative

homomorphic encryption. RSA [1] and ElGamal [11] are among the examples of such

systems. There are also fully homomorphic cryptosystems that allow both addition and

multiplication over the ciphertext.

5

2.1.2 Damg̊ard-Jurik Cryptosystem

As we defined in our cryptographic requirements, additive homomorphism is a must

have property. The example cryptosystems that are given in the previous section, such

as Paillier, can be used in basic (2, 1) BddCpir construction which includes only one

encryption [20,29]. However using Paillier, we cannot extend the protocol to generalized

(n, 1) case since Paillier does not allow to adjust the block length of the scheme after

the public key has been generated. Therefore, Damg̊ard-Jurik, which is a generalization

of Paillier scheme [9], is the cryptosystem of choice for our protocols.

Damg̊ard-Jurik cryptosystem uses the RSA setting, where the modulo arithmetic

is employed with a modulus N , which is the product of two sufficiently large prime

numbers, p and q. However it differs from RSA in its security principal; RSA relies on

the computational difficulty of factorization of large integers, whereas the security of

Damg̊ard-Jurik is based on the decisional composite residuosity problem, which is also

used in the original Paillier cryptosystem [29].

A very important part of this cryptosystem is the natural number s. First of all,

the Paillier scheme is a special case of Damg̊ard-Jurik where s is set to 1. Therefore

incrementing s will allow the block length of the scheme to be changed, thus allowing us

to encrypt the same data more than once. In other words, in Damg̊ard-Jurik, encryption

of an already encrypted file is possible by altering the s value. In the BddCpir protocols,

we will start by setting s to 1 at the lowest level of the tree, and we will increment it

by one as we advance upwards in the tree.

Key generation In order to generate the keys, the security parameter k needs to be

set first.

N of length k bits is an RSA modulus and it is generated as N = pq where p and q

are two large primes.

The other public key, also referred as the base, g ∈ Z∗
Ns+1 is chosen such that

g = (1+N)jx mod N s+1 with a known j that is relatively prime to N and x ∈ H where

H is isomorphic to Z∗
N . In our implementation, we use the simplification suggested by

the creators of the cryptosystem [9] and take g as simply N + 1.

6

For private key, first λ, the least common multiple of p− 1 and q − 1 is computed:

λ = lcm(p− 1, q− 1). Then using Chinese Remainder Theorem (CRT), the private key

d is chosen such that

d = 1 mod N s and d = 0 mod λ.

Using the above procedures, public keys N, g and private key d are generated.

Encryption Given a plaintext m ∈ ZNs ; random r ∈ Z∗
Ns+1 is chosen and ciphertext

is computed as

E(m, r) = gmrN
s

mod N s+1.

Decryption Given a ciphertext c, first cd mod N s+1 is computed. Then by using

the algorithm defined by [9], we can obtain m. More detail about the algorithm and

decryption process in general can be found in [9].

Additive homomorphism Given ciphertexts E(m1) and E(m2),

E(m1) · E(m2) = gm1 rN
s

1 · gm2 rN
s

2 mod N s+1

= g(m1+m2)(r1r2)
Ns

mod N s+1

= g(m1+m2)rN
s

mod N s+1

E(m1) · E(m2) = E(m1 +m2)

We can safely say that the above homomorphic property holds since r1r2 is equialent

to another random number r ∈ Z∗
Ns+1. Similarly, Damg̊ard-Jurik also satisfies the

following equation provided that c is a natural number:

E(m)c = E(m · c)

Because of the properties given above, Damg̊ard-Jurik is an additively homomorphic

encryption system.

7

2.2 Binary Decision Diagrams

A binary decision diagram is a directed acyclic graph where each node of the diagram

can have at most two outgoing transitions as in binary tree. The underlying graphs of

the decision diagrams that we use in our protocol always have tree properties, therefore

in this context BDDs can also be thought as trees.

2.2.1 Properties of a BDD

In a binary decision diagram, non-sink (also called non-terminal) nodes are labeled

as Ri,j where i denotes the level in the tree and j denotes the position of the node

in a level. The initial value of index i is 0 at the terminal nodes and it increases as

we approach the root node (in upwards direction). Likewise, j index starts with 0 at

leftmost node and increases while going right at a level. Besides nodes, the two outgoing

edges of the internal nodes are also labeled as 0 and 1, respectively.

The sink nodes can either be represented with R0,j or fj , since in BddCpir protocol,

those nodes hold the actual data items (files) of the database. In this work, we employ

both of the notations as appropriate for the context. The index j of fj (or R0,j) has the

bit length of m, representing the route taken from the root node to that sink node. In

other words, the indices of the data items are the concatenation of the labels of the edges

that are visited while reaching the sink node from the root node. Therefore their bit

length, m, is equal to the depth of the tree. Since illustrating the indices as bit strings

requires more space and they are harder to handle, we use their decimal equivalents in

j index for convenience. Figure 1 illustrates the aforementioned properties on a binary

decision diagram with 4 sink nodes and thus having a depth of 2.

As mentioned, in BddCpir protocol, the sink nodes represent the data items stored

in the server to be privately retrieved by the client. Thus, the labels of the sink nodes

are used to identify the indices of data items. Therefore if the client queries the server

with a binary input x of bit length m, the server returns the data item fx, stored in

the sink node with the label x. While processing the user input to return the requested

data item, the server stores the intermediate values at non-sink nodes Ri,j , where i > 0.

8

R2,0

R1,1

f3f2

0 1

R1,0

f1f0

0 1

0 1

Figure 1: An example BDD constructed by server, shows the case where the client
queries the database with binary input x = 10, to retrieve file f2.

2.2.2 Quadratic and Octal Trees

For performance reasons, which will be explained in depth later in subsequent sec-

tions, we propose using quadratic and octal trees instead of binary decision diagrams.

These types of trees essentially have the same properties as the binary ones except their

child count.

Quadratic Trees If the non-sink nodes of a tree has 4 children, it is called quadratic

tree or occasionally quadtree. The outgoing edges of the internal (non-sink) nodes in

a quadratic tree are labeled as {00, 01, 10, 11}, therefore the labels of the sink nodes

have 2m bit strings where m is the depth of the tree.

Octal Trees Octal Trees, which are sometimes called octrees, have 8 children in their

non-sink nodes. The outgoing edges of those nodes are labeled by 3-bit strings {000,
001, 010, . . . , 111}, hence the sink nodes’ label strings have bit length of 3m, where m

is again the depth of the tree.

2.3 (2, 1) CPIR

In 2005, Lipmaa proposed a communication-effective (2, 1) CPIR protocol [20],

which is a basic cryptographic primitive that only allows 1 file to be retrieved from a

2-file setting. In this 1-out-of-2 protocol, the server has a database F = (f0, f1) where

files have ℓ bit length, more formally fi ∈ {0, 1}ℓ. Since there are only two files, to

9

retrieve fx from the server, a client should input either 0 or 1, so x ∈ {0, 1}. The

protocol works in three steps:

1. Client generates public and secret keys (pk, sk), computes c = Epk(x) and sends

(pk, c) to the server.

2. Server computes R = Epk(f0) · cf1−f0 and sends R to the client.

3. Client computes Dsk(R) to find fx.

Epk(x) will be referenced as simply E(x) and Dsk(R) as D(R) henceforth, since

encryption and decryption are always performed using public and private keys, respec-

tively.

Proof. Since we have already shown that our cryptosystem is additively-homomorphic,

we can also show that client will get fx after decryption as follows

R = E (f0) · c f1−f0

= E (f0) · E (x) f1−f0

= E (f0 + x (f1 − f0))

= E (fx).

2.4 (n, 1) CPIR

Again in [20], Lipmaa proposes a more generalized (n, 1) CPIR using (2, 1) CPIR

and binary decision diagrams as building blocks. To extend the primitive protocol to

n-file databases, (2, 1) CPIR must be repeatedly applied to 2-file subtrees. Specifically,

the protocol will start processing from the sink nodes, continue in a bottom-up manner

and stop at the root node. While going up in the tree, two data items are processed

into one by using the second step of (2, 1) CPIR described in Section 2.3, and the result

of this calculation is stored in an upper level node. When all the items in a level are

processed, the protocol continues with the elements in the proceeding level until there

is no upper level. After the calculation is finished, the ciphertext stored in the root

10

node of the tree must be sent to the client that will decrypt it to reach the content of

the file it requested.

In this 1-out-of-n protocol, the server has a database F = (f0, f1, ..., fn−1) with n ℓ-

bit files, fi ∈ {0, 1}ℓ, fi ∈ F . To retrieve a file fx from the database F , the client sends
encrypted version of the input x. Namely, for input x = (x0, . . . , xm−1), xi ∈ {0, 1},
the client sends C = (c0, . . . , cm−1), where each ci = E(xi), and m is the depth of the

tree, m = ⌈log2(n)⌉. At the end of the protocol, the client gets fx by decrypting the

ciphertext m times.

Example 1. To illustrate, let us consider a case where the server has 4 files to be chosen

from and these files are stored in the sink nodes of a binary decision diagram. Data

items are F = {f0, f1, f2, f3} and client inputs are x = (x0, x1). First, client computes

and sends c0 = E(x0), c1 = E(x1). Upon receiving those inputs, server computes the

following on the first (lowermost) level:

R1,0 = E (f0) · c f1−f0
0 ,

R1,1 = E (f2) · c f3−f2
0

As described in Section 2.2.1 and illustrated in Figure 1, R1,0 and R1,1 are second-

level nodes of the tree. After processing the first level, server then starts to work with

the ciphertexts obtained from the previous step as

R2,0 = E (R0) · cR1−R0
1 .

11

Different from the previous step, the other selection bit c1 is used, as appropriate

for the level. The computation of the server stops at this point and sends R2,0 to

be decrypted by the client. Upon receiving the ciphertext, client needs to perform the

decryption operation twice in order to obtain fx since R2,0 contains a double encryption

as shown below

R2,0 = E (R0) · cR1−R0
1

= E (R0 + c1 · (R1 − R0))

= E (E (f0x0) + c1 · (E (f1x0)−E (f0x0)))

= E (E (fx1x0))

The important point in this protocol is we need to make sure that every encryption,

exponentiation and multiplication operation is calculated on the correct modulus. At

the beginning, while starting from the raw data on the lowest level, the natural number

s used in Damg̊ard-Jurik cryptosystem must be set to 1 since this will be the first

encryption. After that, in each level this s value will be incremented by 1, allowing

multiple encryptions. Besides encryption, all the other operations will also use N (s+1)

as their modulus, specified according to their level. Therefore the ci inputs sent by

the client also need to be computed on the correct modulus. Specifically, the least

significant bit of the input string should be encrypted with s = 1 (in other words,

using modulus N2), and the encryption of most significant bit should use s = m (i.e.

modNm+1) assuming the input is m bits long.

12

Example 2. In an 8-file binary tree system, the input bits will be formed by the user

as

c0 = gx0rn0 mod N2

c1 = gx1rN
2

1 mod N3

c2 = gx2rN
3

2 mod N4,

where r0 ∈R Z∗
N2, r1 ∈R Z∗

N3 , and r2 ∈R Z∗
N3 and x = (x2, x1, x0) is the index of the

desired data item. The same moduli used by the client will also be used by the server

in the respective levels of the tree.

Therefore, considering the quadratic complexity of Damg̊ard-Jurik encryption op-

eration, the computation latency will be inevitably high even for databases with mod-

erately high number of items because of the constant increase in modulus. This contin-

uous message expansion with multiple encryptions hinders the scalability of the CPIR

scheme.

13

3 Problem Statement

PIR protocols, by definition, should have an efficient communication complexity

compared to the trivial solution. This property differentiates PIR protocols from obliv-

ious transfer schemes that have higher bandwidth requirements [30]. Since in oblivious

transfer, the user is allowed to access only one item in the database, the removal of this

requirement in PIR allows more communication-efficient protocols to be constructed.

However, communication is not the only restriction in PIR. The server-side compu-

tation must also be reasonable so that a user can prefer utilizing a PIR scheme instead

of the naive solution of downloading the whole database. Because of these reasons, we

aim to achieve two major performance measures to obtain an efficient PIR protocol:

� Computational Efficiency and Scalability Since at the core of the PIR pro-

tocols there lies particularly costly cryptographic operations, such as encryption,

multiplication and exponentiation of both plaintext as well as encrypted data,

computational complexity is an important measure for the PIR schemes. The

efficiency is generally based on the throughput metric, expressed as the number

of data items processed in a unit time. Besides that, the latency is also significant

since the users would only tolerate waiting for a limited amount of time. Apart

from the latency and throughput requirements, an efficient PIR protocol should

also be scalable. Namely, even if the number of data items in the database grows,

the scheme must remain applicable. PIR schemes with parallelizable methods will

have an advantage for the scalability requirement, since they allow the distribu-

tion of the work onto different cores. Therefore, in this work we try to benefit

from parallelization of costly computations.

14

� Bandwidth Efficiency As the requirement for any PIR scheme, the commu-

nication complexity must be strictly smaller than the database size. The com-

munication cost consists of both query and response size, sent by the client and

the server respectively. While some of the PIR schemes focus on minimizing the

amount of bits in the query sent by the client to the server, others devote their

efforts to decrease the response length sent from the server to the client. In this

thesis, we are not separating them from each other and aim to optimize the total

bandwidth exhausted by both the client and the server.

As a consequence, the main aim of this work is to outperform the original BddCpir

in terms of both computational and bandwidth efficiency. In the subsequent chapters,

we explain our methods to achieve this goal.

15

4 CPIR using Quadratic and Octal Trees

The underlying data structure of BddCpir has a significant effect on the computa-

tional complexity of the protocol because of the message expansion caused by multiple

encryptions. Since we need to increase the natural number s on each level of the binary

tree used in BddCpir, the modulus which we use in our modular arithmetic operations

constantly increases, and consequently resulting in unacceptable latencies on databases

with high number of files, as demonstrated by our experiments in Chapter 8. Con-

sidering the main factor in this increase, namely the depth of the tree, we focus on

decreasing the depth of the tree while preserving the number of items in a database.

For this purpose, we change the data structure used for storing the files in BddCpir

from binary to quadratic and octal trees. With the increase in the number of children

a node can have, the depth of the tree decreases, thus resulting in reduced computa-

tional complexity. In this section, we will explain how the CPIR protocols work with

quadratic and octal trees comprehensively.

4.1 Utilizing Quadratic Trees in CPIR

In a quadratic tree, each non-sink node has four children as described in Section

2.2.2. Similar to the binary case, the files are stored in the sink nodes of the tree, and

the protocol processes the tree in a bottom-up manner. Let us first define the primitive

(4, 1) CPIR used with a quadratic tree and then proceed to the generalization of this

basic scheme to (n, 1) case.

16

4.1.1 (4, 1) CPIR

(4, 1) CPIR is a 1-out-of-4 protocol that uses a minimal quadratic tree with 4 sink

nodes and a root node. In this scheme, the server holds a database of four files of bit

length ℓ, F = (f0, f1, f2, f3), fi ∈ {0, 1}ℓ, one of which is to be picked for retrieval by

the user. In order to retrieve fx from the server, a client determines the input bits

x = (x1x0) beforehand, and sends E(x1 · x0) in addition to E(x1) and E(x0). Although

the additional encrypted index bit may seem to increase the communication complexity,

this protocol achieves an improvement in overall bandwidth usage as it will be presented

in Chapter 7 in detail.

Formally speaking, given a database F and input bits x, the protocol is executed

as follows:

1. Client:

� generates public and secret keys (pk, sk)

� computes C = {c0, c1, c0,1}: c0 = E(x0), c1 = E(x1), c0,1 = E(x1 · x0)

� sends (pk, C) to the server.

2. Server:

� computes R = E(f0) · c f1−f0
0 · c f2−f0

1 · c f3−f2−f1+f0
0,1

� sends R to the client.

3. Client computes Dsk(R) to find fx1x0 .

Proof. The following proof shows that client will obtain fx after decrypting R, based

on the fact that Damg̊ard-Jurik is an additively-homomorphic encryption:

R = E (f0) · c f1−f0
0 · c f2−f0

1 · c f3−f2−f1+f0
0,1

= E (f0) · E (x0)
f1−f0 · E (x1)

f2−f0 · E (x1 · x0)
f3−f2−f1+f0

= E (f0 + x0 · (f1 − f0) + x1 · (f2 − f0) + x1 · x0 · (f3 − f2 − f1 + f0))

= E (x1 · x0 · f3 + x1 · (1− x0) · f2 + x0 · (1− x1) · f1 + (1− x1) · (1− x0) · f0)

= E (fx1x0) = E (fx)

17

4.1.2 (n, 1) CPIR with Quadratic Trees

The new primitive (4, 1) CPIR can be generalized to n-file case using quadratic trees.

The generalization process is similar to the one from (2, 1) to (n, 1) case with binary

trees: client sends encrypted input bits to retrieve any desired file, server constructs

a tree from database that holds the files at its sink nodes, and processes the tree in a

bottom-up manner using (4, 1) CPIR repeatedly, then returns the final ciphertext that

is stored at the root node of the tree. Client accesses the requested file by decrypting

the ciphertext for number of times equal to the depth of the tree.

Assuming that the number of data items n is an exact power of 4, i.e. n = 4m, the

quadratic tree will have a depth of m. In order to retrieve a file from this database,

client has to decide 2m input bits x = (x0, x1, x2, . . . , x2m−1). After determining the

input bits, client computes E(x2i), E(x2i+1) and E(x2i · x2i+1) for each level of the tree

i = 0, . . . , m − 1. The significant factor in this operation is that the modulus used for

each level of the tree should be different, namely, both client and server encryptions

should be performed on mod N s+1, where s = i+1 for level i of the tree. To imply the

number s used in the modulus during encryptions, we use E(s)(x) notation for arbitrary

x. If no s is present, s = 1, i.e. mod N2 is presumed. In summary, given F of n = 4m

files and input bits x, (n, 1) CPIR protocol with quadratic trees works as follows:

1. Client:

� sets public and secret keys (pk, sk)

� computes C:
for s = 1, . . . , m,

c2s−2 = E(s)(x2s−2), c2s−1 = E(s)(x2s−1), c2s−2,2s−1 = E(s)(x2s−2 · x2s−1)

� sends (pk, C), to the server.

18

2. Server:

� for j = 0, 1, . . . , 4m − 1, set R0,j = fj

� for s = 1, . . . , m and j = 0, 1, . . . , 4m−s − 1

Rs,j =E(s)(Rs−1,4j) · (c2s−2)
Rs−1,4j+1−Rs−1,4j · (c2s−1)

Rs−1,4j+2−Rs−1,4j

· (c2s−2,2s−1)
Rs−1,4j+3−Rs−1,4j+2−Rs−1,4j+1+Rs−1,4j

� sends Rm,0 to the client.

3. Client computes D(Rm,0) m times in order to retrieve fx.

In Figure 2, an example quadratic tree is shown, which is constructed by the server

for a 16 file database. To illustrate, R1,0 will hold the processed version of f0, f1, f2, f3

according to step 2.2 of the protocol with s = 1, namely on modulus N2. Likewise, after

calculating R1,1, R1,2 and R1,3 in the same manner with respective files, R2,0 will be

calculated with R1,0, R1,1, R1,2 and R1,3 using the same formulation with s = 2 (using

modulus N3). When reached to the root of the tree, in this case the node labeled

R2,0, the server stops calculation and returns the ciphertext held by that node. Since

the depth of this example tree is 2, upon receiving the ciphertext, the client needs to

decrypt it twice: first by using s = 2 and then the resulting ciphertext with s = 1.

R2,0

R1,3

f15f14f13f12

R1,2

f11f10f9f8

R1,1

f7f6f5f4

R1,0

f3f2f1f0

00 01 10 11

Figure 2: A depth-2 quadratic tree implementing (16,1)-CPIR

19

4.2 Utilizing Octal Trees

The non-sink nodes of the octal trees have 8 children as explained in Section 2.2.2.

This property helps us to further reduce the depth of the tree for the same amount

of files in a database, without adversely effecting the bandwidth usage. Similarly to

the binary and quadratic case, the server again holds the files in the sink nodes of the

tree and all the calculated intermediate values in the non-sink nodes of the tree. This

chapter first defines the basic 1-out-of-8 CPIR protocol and then shows how it can be

generalized into 1-out-of-n case using octal trees.

4.2.1 (8, 1) CPIR

This protocol is the equivalent of (2, 1) CPIR for the octal tree case. In this primitive

scheme, we assume there are 8 files in the server and the client queries it to retrieve

one of them. Specifically, the server keeps a database F = (f0, f1, . . . , f7), with each

file having ℓ-bit length, fi ∈ {0, 1}ℓ, and the client wants to obtain the file fx, where

x = (x2x1x0) where xi ∈ {0, 1}. Given the database F and input bits x, the (8, 1) CPIR

works as follows:

1. Client:

� generates public and secret keys (pk, sk)

� computes C: c0 = E(x0),c1 = E(x1), c2 = E(x2), c0,1 = E(x0 · x1),

c0,2 = E(x0 · x2), c1,2 = E(x1 · x2), c0,1,2 = E(x0 · x1 · x2)

� sends (pk, C) to the server.

2. Server computes

R = E(f0) · c f1−f0
0 · c f2−f0

1 · c f4−f0
2 · c f3−f2−f1+f0

0,1 · c f5−f4−f1+f0
0,2

· c f6−f4−f2+f0
1,2 · c f7−f6−f5+f4−f3+f2+f1−f0

0,1,2

and sends R to the client.

3. Client computes Dsk(R) to find fx, where x = x2x1x0.

20

Proof. Utilizing the property of additive homomorphism in the underlying cryptosys-

tem, we can show that the computation of R yields to the encryption of the client-

requested file.

R = E (f0) · c f1−f0
0 · c f2−f0

1 · c f4−f0
2 · c f3−f2−f1+f0

0,1 · c f5−f4−f1+f0
0,2 · c f6−f4−f2+f0

1,2

· c f7−f6−f5+f4−f3+f2+f1−f0
0,1,2

= E (f0) · E (x0)
f1−f0 · E (x1)

f2−f0 · E (x2)
f4−f0

·E (x1 · x0)
f3−f2−f1+f0 · E (x2 · x0)

f5−f4−f1+f0 · E (x2 · x1)
f6−f4−f2+f0

·E (x2 · x1 · x0)
f7−f6−f5+f4−f3+f2+f1−f0

= E (f0 + x0 · (f1 − f0) + x1 · (f2 − f0) + x2 · (f4 − f0)

+ x1 · x0 · (f3 − f2 − f1 + f0) + x2 · x0 · (f5 − f4 − f1 + f0)

+ x2 · x1 · (f6 − f4 − f2 + f0)

+ x2 · x1 · x0 · (f7 − f6 − f5 + f4 − f3 + f2 + f1 − f0))

= E (x2 · x1 · x0 · f7 + x2 · x1 · (1− x0) · f6 + x2 · (1− x1) · x0 · f5

+ x2 · (1− x1) · (1− x0) · f4 + (1− x2) · x1 · x0 · f3 + (1− x2) · x1 · (1− x0) · f2

+ (1− x2) · (1− x1) · x0 · f1 + (1− x2) · (1− x1) · (1− x0) · f0)

= E (fx) = E (fx2x1x0).

4.2.2 (n, 1) CPIR with Octal Trees

The generalization of (8, 1) CPIR to (n, 1) CPIR with octal trees is quite similar

to those in the quadratic and binary cases. With a database of n = 8m files F , the
server constructs an octal tree of depth m. To query fx, the client has to determine m

input bits to be encrypted and sent. Different from the binary and quadratic cases, now

every level of the tree requires 3 input bits to be chosen and their encryptions are not

sufficient, particularly, the client has to obtain multiplication of their every combination

other and encrypt these bit combinations too, as in step 1.2 of (8, 1) CPIR protocol.

The need for sending 7 encrypted bits rather than 3 (which would be the case if we

21

used quadratic tree instead) is the cost of using octal trees for a reduced depth. This

is also the reason why we stopped at 8-child trees instead of continuing with 16-child,

32-child, etc.. As it will be shown in Chapter 7 in detail, this is the highest number of

children we can use in the database without exceeding the bandwidth usage of original

BddCpir with binary trees for the database sizes we employed in our implementations.

Provided the database F of n = 8m files, and client input bits x, (n, 1) CPIR

protocol with octal trees will start processing the tree from bottom to up, and return

the resulting ciphertext at the root node to the client as follows:

1. Client:

� sets public and secret keys (pk, sk)

� computes C:
for s = 1, . . . , m

c3s−3 = E(s)(x3s−3), c3s−2 = E(s)(x3s−2), c3s−1 = E(s)(x3s−1),

c3s−3,3s−2 = E(s)(x3s−3 · x3s−2), c3s−3,3s−1 = E(s)(x3s−3 · x3s−1),

c3s−2,3s−1 = E(s)(x3s−2 · x3s−1), c3s−3,3s−2,3s−1 = E(s)(x3s−3 · x3s−2 · x3s−1)

� sends (pk, C) to the server.

2. Server:

� for j = 0, 1, . . . , 8m − 1, set R0,j = fj

� for s = 1, . . . , m and j = 0, 1, . . . , 4m−s − 1

Rs,j = E(s) (Rs−1,8j) · (c3s−3)
Rs−1,8j+1−Rs−1,8j · (c3s−2)

Rs−1,8j+2−Rs−1,8j

· (c3s−1)
Rs−1,8j+4−Rs−1,8j · (c3s−3,3s−2)

Rs−1,8j+3−Rs−1,8j+2−Rs−1,8j+1+Rs−1,8j

· (c3s−3,3s−1)
Rs−1,8j+5−Rs−1,8j+4−Rs−1,8j+1+Rs−1,8j

· (c3s−2,3s−1)
Rs−1,8j+6−Rs−1,8j+4−Rs−1,8j+2+Rs−1,8j

· c Rs−1,8j+7−Rs−1,8j+6−Rs−1,8j+5+Rs−1,8j+4−Rs−1,8j+3+Rs−1,8j+2+Rs−1,8j+1−Rs−1,8j

3s−3,3s−2,3s−1

� sends Rm,0 to the client.

22

3. Client computes D(s)(Rm,0) for s = m,m− 1, . . . , 1 to retrieve fx.

23

5 Parallelization of CPIR

All of the protocols that we have defined in Chapter 4, or has been defined be-

fore by Lipmaa [21], have a substantial amount of repetitive computations that are

mostly independent from each other. Both the client-side and server-side computations

can benefit from parallelization since their costly encryption and modular exponentia-

tion operations can be operated separately by different threads. Thus, in this chapter

we specify how we utilize parallelization in CPIR protocols to improve computational

complexity and outline the proposed parallel algorithms.

Parallelization of the client side computations is rather trivial as outlined in the

Section 5.1. However, for the server side operations, we try three methods, where each

method includes an improvement over the preceding ones. We list each of them in order

to demonstrate our progress and explain our main parallelization method better.

5.1 Client Side Parallelization

The encryption of the input bits constitutes most of the client side computation.

The remaining part, repetitive decrypting, is serial in nature since each decryption

procedure works on the result of previous decryption. Therefore, we operate all the

encryptions done by the client in different threads, hence distributing the computation

onto all available cores.

24

Implementation Details The algorithm for client side parallelization is pretty much

straightforward as can be observed in Algorithms 1, 2 and 3. There is only one minor

detail of the implementation; the iterations of the for loops are independent from each

other, however they do not consume the same amount of time since the encryptions on

each iteration use a different s thus operating on a distinct modulus. Therefore, in order

to optimize the utilization of processor cores and prevent them from being idle during

the execution of the longest encryption, we use dynamic scheduling for the iterations

of the for loop in step 1 of Algorithms 1, 2 and 3. OpenMP, the parallelization library

we are using in our implementation, allows such dynamic allocations by assigning an

iteration of the for loop to a thread as they become available, removing the need to wait

for other threads to complete their executions [25]. Dynamic scheduling is especially

useful for loops with iterations that have fluctuating amounts of work such as our client

side encryptions. However, the parallelization of step 2 in Algorithms 2 and 3 should

not be dynamic since the encryptions inside are expected to take up approximately the

same amount of time.

Algorithm 1 Parallel client side computation for binary tree based (n, 1) CPIR

Require: x = (xm−1xm−2 . . . x0), pk
Ensure: C
1: for s← 1 to m in parallel do
2: cs−1 ← E(s)(xs−1)
3: end parallel for
4: return C = {cm−1, cm−2, . . . , c0}

Algorithm 2 Parallel client side computation for quadratic tree based (n, 1) CPIR

Require: x = (x2m−1x2m−2 . . . x0), pk
Ensure: C
1: for s← 1 to m in parallel do
2: in parallel do
3: c2s−2 ← E(s)(x2s−2)
4: c2s−1 ← E(s)(x2s−1)
5: c2s−2,2s−1 ← E(s)(x2s−2 · x2s−1)
6: sync
7: end parallel for
8: return C

25

Algorithm 3 Parallel client side computation for octal tree based (n, 1) CPIR

Require: x = (x3m−1x3m−2 . . . x0), pk
Ensure: C
1: for s← 1 to m in parallel do
2: in parallel do
3: c3s−3 ← E(s)(x3s−3)

4: c3s−2 ← E(s)(x3s−2)

5: c3s−1 ← E(s)(x3s−1)

6: c3s−3,3s−2 ← E(s)(x3s−3 · x3s−2)

7: c3s−3,3s−1 ← E(s)(x3s−3 · x3s−1)

8: c3s−2,3s−1 ← E(s)(x3s−2 · x3s−1)

9: c3s−3,3s−2,3s−1 ← E(s)(x3s−3 · x3s−2 · x3s−1)
10: sync
11: end parallel for
12: return C

5.2 Server Side Trivial Parallelization Algorithm

For the server side computations, the first parallelization method we try is the most

straightforward one. Since all the base protocols executed on a level of the tree are

independent from each other, their parallelization is almost embarrassingly parallel [34].

On the start of the processing of a level, we assign all the independent executions

of primitive computations (e.g., encryprions and modular exponentations) to distinct

threads, and wait for them to be completed. Note that in this method, all the threads

spawned in a level have to be completely finished before we can proceed to the next

level of the tree. Although all the protocols in a level will be operating on different files,

they are expected to take approximately same time. Therefore provided that there are

adequate number of cores to work on and the server has a reasonable workload, the idle

time before proceeding to next level should be minimal.

There is no restriction about data structure to be used, in other words all binary,

quadratic and octal tree implementations of (n, 1) CPIR can be parallelized using this

trivial method. The parallelization methods for binary, quadratic and octal based server

systems are shown in the Algorithm 4, 5, 6 respectively.

26

Algorithm 4 Parallel server computation for binary (n,1) CPIR v1

Require: C: m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 2m−s − 1 in parallel do
3: t0 ← Rs−1,2j

4: t1 ← Rs−1,2j+1

5: Rs,j ← E(s)(t0) · (cs−1)
t1−t0 mod N s+1

6: end parallel for
7: end for
8: return Rm,0

Algorithm 5 Parallel server computation for quadratic (n,1) CPIR v1

Require: C: 3m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 4m−s − 1 in parallel do
3: for k ← 0 to 3 do
4: tk ← Rs−1,2j+k

5: end for
6: Rs,j ← E(s)(t0) · (c2s−2)

t1−t0 · (c2s−1)
t2−t0 · (c2s−2,2s−1)

t3−t2−t1+t0 mod N s+1

7: end parallel for
8: end for
9: return Rm,0

Algorithm 6 Parallel server computation for octal (n,1) CPIR v1

Require: C: 7m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 8m−s − 1 in parallel do
3: for k ← 0 to 7 do
4: tk ← Rs−1,2j+k

5: end for
6: Rs,j ← E(s)(t0) · (c3s−3)

t1−t0 · (c3s−2)
t2−t0 · (c3s−1)

t4−t0 · (c3s−3,3s−2)
t3−t2−t1+t0

·(c3s−3,3s−1)
t5−t4−t1+t0 · (c3s−2,3s−1)

t6−t4−t2+t0

·(c3s−3,3s−2,3s−1)
t7−t6−t5+t4−t3+t2+t1−t0 mod N s+1

7: end parallel for
8: end for
9: return Rm,0

27

5.3 Server Side Two-Degree Parallelization Algorithm

Two-degree parallelization method is the second algorithm we try as an improvement

over the first one described in the previous section. Again, it relies on the independency

of costly operations performed in a level of the tree being processed by the server.

As it can be observed from the previous algorithms, the calculations for the upper

node ciphertexts include an encryption and varying number of modular exponentiations

depending on the tree used. Since each of these calculations are independent from each

other, we can process all of them in different threads, and synchronize to calculate the

upper tree node by multiplying them using the corresponding modulus of the level.

This method further divides the costly computations performed in a level and ben-

efits multi-core systems in a greater extend. As in the previous method, the threads

created at a level have to be completely finished before advancing on the next level.

Although this method better splits the work done on a level into pieces, the synchro-

nization cost will be higher since numerous threads will be created, especially at the

lowermost levels of the tree.

Similar to the prior method, this parallelization can be applied to binary, quadratic

and octal tree based (n, 1) CPIR as shown in Algorithm 7, 8 and 9 respectively.

Algorithm 7 Parallel server computation for binary (n,1) CPIR v2

Require: C: m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 2m−s − 1 in parallel do
3: t0 ← Rs−1,2j

4: t1 ← Rs−1,2j+1

5: in parallel do

6: q0 ← E(s)(t0)

7: q1 ← (cs−1)
t1−t0 mod N s+1

8: sync
9: Rs,j ← q0 · q1 mod N s+1

10: end parallel for
11: end for
12: return Rm,0

28

Algorithm 8 Parallel server computation for quadratic (n,1) CPIR v2

Require: C: 3m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 4m−s − 1 in parallel do
3: for k ← 0 to 3 do
4: tk ← Rs−1,2j+k

5: end for

6: in parallel do

7: q0 ← E(s)(t0)

8: q1 ← (c2s−2)
t1−t0 mod N s+1

9: q2 ← (c2s−1)
t2−t0 mod N s+1

10: q3 ← (c2s−2,2s−1)
t3−t2−t1+t0 mod N s+1

11: sync
12: Rs,j = q0
13: for k ← 1 to 3 do
14: Rs,j ∗= qk mod N s+1

15: end for
16: end parallel for
17: end for
18: return Rm,0

29

Algorithm 9 Parallel server computation for octal (n,1) CPIR v2

Require: C: 7m encrypted input bits
Ensure: Rm,0

1: for s← 1 to m do
2: for j ← 0 to 8m−s − 1 in parallel do
3: for k ← 0 to 7 do
4: tk ← Rs−1,2j+k

5: end for
6: in parallel do

7: q0 ← E(s)(t0)

8: q1 ← (c3s−3)
t1−t0 mod N s+1

9: q2 ← (c3s−2)
t2−t0 mod N s+1

10: q3 ← (c3s−1)
t4−t0 mod N s+1

11: q4 ← (c3s−3,3s−2)
t3−t2−t1+t0 mod N s+1

12: q5 ← (c3s−3,3s−1)
t5−t4−t1+t0 mod N s+1

13: q6 ← (c3s−2,3s−1)
t6−t4−t2+t0 mod N s+1

14: q7 ← (c3s−3,3s−2,3s−1)
t7−t6−t5+t4−t3+t2+t1−t0 mod N s+1

15: sync
16: Rs,j = q0
17: for k ← 1 to 7 do
18: Rs,j ∗= qk mod N s+1

19: end for
20: end parallel for
21: end for
22: return Rm,0

30

5.4 Server Side Core-Isolated Parallelization

The previous methods for server side parallelization are level-bound, meaning that

they have to synchronize the threads created on each level of the tree before continuing.

This property both introduces high synchronization overheads and also brings the pos-

sibility for some cores to stay idle during the computation due unbalanced workload of

each thread. For this reason, in order to reduce synchronization points between cores,

we propose our main parallelization method, where we isolate the tree onto available

cores.

Main principle of this method is dividing the tree into as many subtrees as the

number of available cores and having them calculate their assigned subtrees separately.

Naturally, after each core finishes its part, a synchronization is necessary. After the

integration of their calculations via synchronization, the remaining part of the tree is

processed as in second parallelization method depicted in Section 5.3.

For example, provided that there are 2κ number of available cores and n = 2m files

in a server implementing (n, 1) CPIR with binary trees and n > κ, each core will have

to process 2m−κ files in isolation using the original scheme without any parallelization

inside for a tree of m − κ levels. Specifically, for m − κ levels, the cores do not need

to communicate in any manner. After the cores finish computing their portion of the

tree, they have to synchronize and continue processing remaining κ levels concurrently.

This algorithm is able to operate on quadtree and octree based (n, 1) CPIR protocols

as well, and the files in those trees will be separated into cores in a similar manner.

The algorithm implementing this method for binary (n, 1) CPIR is described in

Algorithm 10. The isolated work of the cores can be identified in pseudocode statements

between the lines 2-8 whereas the concurrent work after synchronization lies between

lines 11-21.

31

Algorithm 10 Parallel server computation for binary (n,1) CPIR v3

Require: C: m encrypted input bits, F = {f0, . . . , f2m−1} 2κ: number of cores, κ < m
Ensure: Rm,0

1: for p← 0 to 2κ − 1 in parallel do ⊲ cores work in isolation
2: for s← 1 to m− κ do
3: for j ← 0 to 2m−s − 1 do
4: t0 ← Rs−1,2·j·p

5: t1 ← Rs−1,2·j·p+1

6: Rs,j·p← E(s)(t0) · (cs−1)
t1−t0 mod N s+1

7: end for
8: end for
9: end parallel for

⊲ cores sync and continue with the rest of the tree concurrently

10: for s← m− κ+ 1 to m do
11: for j ← 0 to 2m−s − 1 in parallel do
12: t0 ← Rs−1,2j

13: t1 ← Rs−1,2j+1

14: in parallel do

15: q0 ← E(s)(t0)

16: q1 ← (cs−1)
t1−t0 mod N s+1

17: sync
18: Rs,j ← q0 · q1 mod N s+1

19: end parallel for
20: end for

21: return Rm,0

32

6 Scalable CPIR for Parallel Implementations

The proposed parallelization method improves computation efficiency of the server

notably, however, if the database starts to have higher number of files, then CPIR will

not be able to handle those files efficiently due to the increased depth of the tree. In

other words, the system will not be able to scale adequately, even with the help of

the aforementioned parallelization approach, since with the increased number of files,

the database tree will get deeper, increasing the size of the modulus and making the

encryption and exponentiation processes more costly. Therefore, to achieve scalability,

which is a must have property of an efficient CPIR as defined in Chapter 3, we propose

a modified version of CPIR that takes advantage of parallel processing, and allows the

scheme to scale to large number of data items provided that many-core processors are

available.

The scalable method for CPIR is based on holding the whole database in separated,

manageable-sized subtrees instead of one big tree, and collapsing them into one subtree

upon receiving a request from the client and then operating on that subtree. For

this reason, obviously the client has to send different number of selection bits from

the normal CPIR schemes. Since a subtree will have fewer number of items than the

database size, the depth of the tree will be reduced, giving us a considerable amount of

bandwidth gain. However, in contrast, to choose between possible subtrees, the client

will have to send additional encrypted selection bits. With careful selection of subtree

sizes, we can obtain speedup without too much adverse affect on the bandwidth. The

exact analysis of this method in terms of bandwidth and computation costs will also

be given in Chapter 7.

The details of the scalable method are demonstrated in Algorithms 11 and 12.

33

Specifically, Algorithm 11 illustrates the client computations and Algorithm 12 describes

the steps executed by the server process.

First of all, the subtree size and the number of subtrees must be decided and known

by both server and client. Specifically, considering a binary-tree based database with

n = 2m files, if the number of items in a subtree is 2l, with l < m, that gives us the

number of subtrees in a system as µ = 2m−l. Number of subtrees, µ, must be selected

according to the performance requirements. The analyses at Chapter 7 and actual

results at Chapter 8 provide an insight about the selection of l and µ, and show us how

the selection affects the performance clearly.

After determining how many files a subtree will hold and calculating the number of

subtrees, the client may begin to query the server to get a file fx. In order to do so,

for the scalable CPIR, the client must decide both which subtree holds the requested

file and in that subtree, which file corresponds to fx, differently from the previous

schemes. The encrypted selection bits, denoted with ςi in Algorithm 11, are used to

indicate the selected subtree, whereas input bits, cj ∈ C are typical input bits to select

the file within a subtree, similar with the previous schemes. Specifically, if a subtree

contains the desired file, the client will encrypt 1 using the homomorphic Damg̊ard-

Jurik cryptosystem, and 0 otherwise. Since the depth of the tree is now reduced, the

client will have to encrypt l regular input bits for the binary tree case as shown in

Algorithm 11.

Upon receiving the selection bits ςi and input bits cj , the server starts the process by

collapsing all the subtrees into one. As shown in the steps between 1-10 in Algorithm

12, the server uses ςi to collapse the subtrees into one; and after the merge, it works on

the collapsed subtree as a regular tree.

The collapsing process includes a modular exponentiation for each file in the database,

as seen on the line 7 of Algorithm 12. After all the files have been raised to a power

of corresponding ς, they are all multiplied using the same modulus (with s = 1). Since

now the collapsed subtree contains encrypted files at the bottom, our regular, parallel

bottom-to-up processing will start with s = 2, and increments it while going up to

higher levels. The server splits the subtree into smaller parts, assigning each of them to

34

Algorithm 11 Client-side computation for binary tree-based Scalable CPIR

Require: m, l, and x = xl−1 . . . x1, x0

Ensure: {c1, . . . , cl−1} and {ςi, . . . , ς2m−l−1}
1: µ← 2m−l

2: ζ ← xm−1, . . . , xl

3: for i← 0 to µ− 1 do
4: if i 6= ζ then
5: ςi ← E(0)
6: else
7: ςi ← E(1)
8: end if
9: end for
10: for s← 1 to l do
11: cs−1 ← E(s+1)(xs−1)
12: end for
13: return {c0, . . . , cl−1} and {ς0, . . . , ςµ−1}

a different core to work in isolation as shown in lines 11-23. Finally, in the rest of the

algorithm, the server collects the results from processor cores and continues the CPIR

process for the remaining part of the tree.

35

Algorithm 12 Server-side computation for binary tree-based Scalable CPIR

Require: m, C = {c0, . . . , cm−1}, F = {f0, . . . , f2m−1}, {ς0, . . . , ς2m−l}, l < m and κ < l
Ensure: Rm,0

⊲ Collapsing subtrees into one subtree
1: µ = 2m−l ⊲ Number of subtrees
2: δ = 2l−κ ⊲ Number of data items assigned to a core
3: for j ← 0 to 2κ − 1 in parallel do
4: for i← 0 to δ − 1 do
5: R0,jδ+i = 1
6: for k ← 0 to µ− 1 do

7: R0,jδ+i ← R0,jδ+i · ς
f
jδ+k(2l)

k mod N2

8: end for
9: end for
10: end parallel for

⊲ Cores computing in the collapsed subtree in isolation
11: for j ← 0 to 2κ − 1 in parallel do
12: for i← 0 to δ − 1 do
13: R̃0,i ← R0,jδ+i

14: end for
15: for s← 1 to l − κ do
16: for i← 0 to 2l−s − 1 do
17: t0 ← R̃s−1,2i

18: t1 ← R̃s−1,2i+1

19: R̃s,j ← E(s+1)(t0)× ct1−t0
s−1 mod N s+2

20: end for
21: end for
22: Rl−κ,j ← R̃l−κ,0

23: end parallel for

⊲ Cores join
24: for s← l − κ+ 1 to l do
25: for j ← 0 to 2l−s − 1 in parallel do
26: t0 ← Rs−1,2j

27: t1 ← Rs−1,2j+1

28: in parallel do

29: q0 ← E(s+1)(t0)

30: q1 ← ct1−t0
s−1 mod N s+2

31: sync
32: Rs,j ← q1 · q0 mod N s+2

33: end parallel for
34: end for
35: return Rl,0

36

R4,0

R3,1

R2,3

R1,7

f15f14

0 1

R1,6

f13f12

0 1

0 1

R2,2

R1,5

f11f10

0 1

R1,4

f9f8

0 1

0 1

0 1

R3,0

R2,1

R1,3

f7f6

0 1

R1,2

f5f4

0 1

0 1

R2,0

R1,1

f3f2

0 1

R1,0

f1f0

0 1

0 1

0 1

0 1

Figure 3: Collapsing four subtrees into one tree

Example 3. Consider a binary tree having 4 levels for a database with 2m = 16 files

as illustrated in Figure 3. Assuming that there are 2κ = 2 processor cores available and

we choose the subtree size as 2l = 4. The chosen values, m = 4, l = 2, κ = 1 are proper

for a scalable CPIR since l < m and κ < l. Since we select a subtree to hold 4 files,

there will be 16/4 = 4 subtrees in our selection (i.e., two selection bits are needed in

addition to the index bits).

Suppose that the client is interested in file f11, marked with red in Figure 3. Nor-

mally, the input bits would be x = 1011 and client would encrypt all of them using

appropriate moduli for each bit and send them to server. However in scalable CPIR

case, client separates m− l bits for subtree selection and remaining l of them for index

bits. In this example setting, the client will separate 10 from x as the selection bits

to compute ς2 = E(1) for the subtree starting with R2,2 and ςi = E(0), i = 0, 1, 3 for

the remaining subtrees. The rest of the input bits, 11, are encrypted for each level of

the subtree, so, the client prepares the encrypted input bits as c0 = E(2)(1), (x0 = 1),

c1 = E(3)(1), (x1 = 1). The modulus for the bottom level of the tree is no longer N2,

but N3 since, as indicated in line 7 of Algorithm 12, now the leaf nodes of the tree

hold encrypted data items instead of plaintext files. This means that we already use a

37

modulus with s = 1 for the encryption of the files in the selection operation and in order

to continue encrypting them, we need to increment s. Therefore, in the scalable CPIR,

we start performing the modular arithmetic operations with mod N3 and increment s

as the level increases.

After the server receives ςi, i = 0, 1, 2, 3 and cj , j = 0, 1 calculated by the client, it

starts collapsing the subtrees into one using ςi as depicted in lines 1-10 of Algorithm 12.

In the example case, µ is calculated as 24−2 = 4 and δ = 22−1 = 2. The subtree

collapsing operation is also performed in parallel; therefore we assign the calculation

of each data item that will be on the subtree after collapsing to a specific core. That

core is responsible for retrieving the required files from each subtree, raising them to

the corresponding ςi and multiplying them with each other. Therefore, to collapse our

4 subtrees of 4 files using 2 cores in parallel, each core will be responsible for 2 files.

Precisely, one core will compute R0,0, R0,1 of the new subtree, and the other core will

calculate R0,2, R0,3 as follows

R0,j =

12+j
∏

i=j

(ς⌊i/4⌋)
fi mod N2, i+=4.

Due to the homomorphic encryption by the Damg̊ard-Jurik cryptosystem, the operation

will be a homomorphic multiplication of the files in the unwanted subtrees with 0 since

those subtrees do not contain the requested file, therefore ς = E(0). Consequently

we have, through additive homomorphism, E(0)f = E(0 · f) = E(0). Similarly, for

the subtree that contains the desired file, ς = E(1). Therefore, E(1)f = E(1 · f) =

E(f). Again due to the homomorphic properties, multiplying an ecnrypted file with

a corresponding file in another subtree will result in E(0) · E(f) = E(0 + f) = E(f).

In brief, at the end of collapsing procedure, R0,j will hold E(fj+8) , j = 0, 1, 2, 3 since

f8, f9, f10, andf11 are contained in the selected subtree considering the example database

in Figure 3.

Now, we have a tree with 4 encrypted files at its sink nodes, the remaining process

is similar to previous schemes, except we will start modulus variable s from 2 instead

38

of 1. The calculations done in the new subtree for this example proceed as follows:

R1,0 = E(2)(R0,0) · cR0,1−R0,0

0

R1,1 = E(2)(R0,2) · cR0,3−R0,2

0

R2,0 = E(3)(R1,0) · cR1,1−R1,0

1

At the end, R2,0 is sent to the client to be decrypted 3 times since R2,0 is calculated

with s = 3.

39

7 Communication and Computation Analysis

This chapter gives the analyses of all the schemes proposed so far, in terms of com-

munication an computational complexity. Firstly, it will start by the bandwidth usages

of new quadratic and octal trees along with the original binary one, then continue with

the computation requirements of new trees and their parallelization also in comparison

with the original BddCpir. Lastly, the performance of the scalable CPIR with octal

trees is evaluated, examining the case when database tree grows larger.

7.1 Analysis of Communication Complexity

A practical PIR scheme should be more efficient than the user downloading all

the database (the trivial solution) in terms of the amount of information exchanged

between the user and the server. Formally speaking, the bandwidth requirements of

a PIR scheme must be sublinear to the size of the database. The bandwidth of the

original (n, 1)-CPIR scheme based on binary decision trees has a logarithmic complex-

ity. The proposed schemes based on quadratic and octal trees also have logarithmic

complexities. However, the actual implementations of these three CPIR schemes have

different bandwidth requirements, which are important in practice.

In PIR protocol, the client sends encrypted selection bits to the server in the first

stage and receives the encrypted data item in the second stage. For a binary decision

tree, the number of selection bits is log2 n, where n is the number of data items in the

database. Assuming fi < N for all data items and |N | is the size of the modulus N ,

the size of the selection bit for the lowest level of the tree, c0 = E(x0), is 2|N |-bit due
to message expansion property of the Damg̊ard-Jurik encryption. The selection bit for

40

the second level c1 = E(2)(x1), therefore, will be 3|N |-bit long. In general, the selection

bit for the level s, cs−1 = E(s)(x1) will be (s + 1)|N |-bit long.
The proposed CPIR schemes based on quadratic and octal trees require 3 and 7

selection bits for each level of the tree, respectively. This is less efficient than BddCpir,

which requires only a single bit for one level. On the other hand, quadratic and octal

trees are shallower than binary trees; thus it is not immediately clear as to which scheme

offers the best communicative efficiency. This calls for a more detailed inspection of

bandwidth requirements of each scheme.

In an n file database, the binary, quadratic and octal trees would have log2 n, log4 n,

and log8 n levels, respectively. According to this, the bandwidth requirements of the

encrypted selection bits for each type of the tree are given as in Table 1.

Client → Server (# of bits)

Binary Tree [2 + 3 + . . .+ (log2n + 1)] · |N |
Quadtree [3 · (2 + 3 + . . .+ (log4n+ 1))] · |N |
Octree [7 · (2 + 3 + . . .+ (log8n+ 1))] · |N |

Table 1: The bandwidth requirements of the selection bits in different tree implemen-
tations

The size of the response, which contains the requested data item in encrypted form,

is also important since this is a part of the exchanged messages. The bandwidth re-

quirements of the response message sent by the server to the user are [log2n + 1] · |N |,
[log4n+1] · |N |, and [log8n+1] · |N | for binary, quadratic, and octal trees, respectively.

The overall communication cost sums up the number of bits exchanged for the

selection bits and the response, which is tabulated in Table 2 for different database sizes.

The quadratic tree always results in the minimum bandwidth requirements. The binary

case is slightly better than octal tree for database sizes given in Table 2. However, the

octal tree will eventually be better than the binary tree as the database size increases.

For instance, for a database with n = 4096 data items, where each data item is 1 Kbit

in length, the number of bits exchanged will be the same, namely 105472 bits, for both

cases. The octal tree implementation will result in a better communication complexity

for a database of more than n = 4096 data items.

41

n Database size binary quadratic octal
2 2048 4096 - -
4 4096 8192 7168 -
8 8192 13312 - 16384
16 16384 19456 12288 -
32 32768 26624 - -
64 65536 34816 31744 38912
128 131072 44032 - -
256 262144 54272 48128 -
512 524288 65536 - 68608

Table 2: Actual bandwidth costs of overall communication for different database sizes
(in number of bits)

7.2 Analysis of Computational Complexity

In this section, we explain why the quadratic and octal tree implementations are

better than the binary tree implementation in terms of the efficiency of server-side com-

putations. We provide a theoretical analysis showing that we should expect a speedup

in server-side computations. On the other hand, the theoretical analysis fails to give

an exact value for the actual speedup, for which we provide the actual implementation

results in Chapter 8.

The most fundamental operation of the Damg̊ard-Jurik encryption, on which an

overwhelming proportion of server-side computations is spent, is modular exponentia-

tion operation, which has quadratic complexity with the bit length of the modulus (i.e.,

N s+1). Suppose that a 1024-bit modular exponentiation takes τ seconds (i.e., N is a

1024-bit number). The first exponentiations performed for the lowest level non-sink

nodes (R1,j) then are expected to take time which is proportional to τ2 = 4τ seconds

each since we work with modulo N2. And the cost of exponentiation increases in a

similar manner as we go up in the tree.

For every node of the binary tree, three exponentiations are performed. In quadratic

and octal trees, we need five and nine exponentiations, respectively, for a node. For

a node in the sth level, we can adopt the following formulas for the computational

complexity, tbs = 3 · τs, tqs = 5 · τs, and tos = 9 · τs, respectively for binary, quadratic and

octal trees. Then, the overall time complexity of binary, quadratic, and octal trees can

42

be estimated using the following formulas

T2m =
m
∑

s=1

2m−sts for m ≥ 1

T4m =
m
∑

s=1

4m−sts for m ≥ 1

T8m =
m
∑

s=1

8m−sts for m ≥ 1, (1)

where m is the number of levels in the corresponding tree. Employing the assumptions

on the quadratic complexity of modular exponentiation operation with respect to the

bit length of the modulus in homomorphic encryption, we can compute an expected

speedup values between different tree implementations. For instance, for n = 512 (e.g.,

m = 9 andm = 3 for binary and octal trees, respectively), the octal tree implementation

is expected to achieve a speedup of about 5.32 over a binary tree implementation. As

we will show in Chapter 8, the actual speedup for this case will be over 10. There

are two reasons for this discrepancy. Firstly, we use asymptotic complexity of modular

exponentiations which does not exactly give the actual execution time of the modular

exponentiation for a specific operand length. Secondly, the big integer libraries employ

specific optimization techniques based on architectural properties of the underlying

microprocessor for relatively low bit sizes. As the bit size increases, it becomes difficult

to use the same optimization techniques. For example, we incur a severe memory latency

due to the fact that we cannot keep the operands in registers when the operands become

large.

To obtain the actual timing values of modular exponentiation operations for various

bit lengths, we use one of the most optimized big integer libraries available, GMP on

an Intel Xeon CPU E1650 processor operating at 3.50 GHz and depict the results along

with expected timing results according to asymptotic complexity in Figure 4. In the

figure, we take the actual timing value for s = 1 and log2(N) = 1024 as the starting

point and compute the asymptotic timings using the quadratic complexity assumption.

For instance, the asymptotic timing value for s = 3 (corresponding to the case where we

work with modulo-N4) is taken as 8 ms, which is four times the execution time of actual

43

exponentiation time with modulo-N2. As can be observed from Figure 4, the actual

exponentiation times increase faster than expected, which will benefit quadratic and

octal trees. Note that the asymptotic complexity, which is actually quadratic, seems

to be linear in Figure 4 when it is depicted along with the actual timing values, which

increase much faster.

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

s

T
im

in
g

(m
s)

Asymptotic
Actual

Figure 4: Asymptotic and actual timings of modular exponentiation for different values
of s when log2(N) = 1024.

Using the actual timing values for exponentiation operations on an Intel Xeon CPU

E1650 processor operating at 3.50 GHz, we estimate the execution times of server-side

computations for various number of data items, and enumerate the results in Table 3.

As can be observed from the table, the expected speedup of using octal tree is up to

about 11.7 when the number of items is 4096. Note that the estimated speedup values

listed in Table 3 are sufficiently close to the actual values given in Table 11, which

shows the accuracy of our timing model, given in Equations 1.

7.2.1 Complexity of Parallel Implementation of Binary Tree

In this section, we provide a theoretical analysis for the complexity of the proposed

parallel algorithms for three different tree-based CPIRs. We will use two metrics to

evaluate the efficiency of the parallel algorithms: i) expected execution time excluding

the synchronization overhead and ii) the number and cost of synchronization points.

44

Number of Server Computation (ms)
Items binary quadratic octal
2 4.2 - -
4 26.4 7 -
8 97.8 - 12.6
16 279.6 58 -
32 703.2 - -
64 1628 307 154.8
128 3566 - -
256 7564 1368 -
512 15700 - 1373
4096 131490 23218 11239
32768 1062800 - 90346

Table 3: Estimated timings of server-side computation

The expected execution time uses the time model introduced in Equations 1 while it

does not take into account the time spent in synchronization points, which is practi-

cally impossible to measure in real systems. Therefore, our estimations for expected

execution times in this section will be always less than the actual timing values in

Chapter 8. Nevertheless, the estimations can be profitably used to predict the speedup

gained through parallelization.

The second metric is the number and cost of synchronization points, during which

the processor cores synchronize and possibly exchange data. Naturally, an efficient

parallel algorithm minimizes the number and costs of the synchronization points. For

instance, Step 18 of Algorithm 10 indicates that two cores computing Step 15 and

Step 16 have to synchronize beforehand (i.e., sync in Step 17) since in Step 18, the

multiplication operation needs both q0 and q1 that are computed by two different cores.

For example, one core sends q1 to the other core that has q0 and can now perform

the multiplication in Step 18 of Algorithm 10. Therefore, we need to count these and

similar other synchronization points in our analysis.

The other metric is the cost of synchronization point, which is related to the amount

of data transferred from one core to the other(s) in a synchronization point. While it

is true that multicore processors use a shared-memory model whereby cores share the

address space, each core works with data in its own level-1 cache. Thus, a cache

45

coherency protocol [8] transfers data between the caches of cores when a core needs

the data generated by another core. Since the transfer takes place in a system bus

at a certain bandwidth, the amount of transferred data affects the time spent in the

synchronization point. In CPIR protocol, as computation proceeds to the upper levels

of the tree, the amount of data transferred in each synchronization point increases as

well. For instance, the synchronization operation in Step 17 of Algorithm 10 requires

the transfer of q1 (or q0) from one core to the other and the size of q1 depends on

the level of in the tree, namely, s. For example, if we use a 1024-bit modulus in our

Damg̊ard-Jurik algorithm with |N |-bit modulus, the size of q1 is |2N |-bit and |3N |-bit
for s = 1 and s = 2, respectively. We quantify the cost of each synchronization points

by the value of s in our analysis.

We start our analysis by estimating the execution time of Algorithm 10 for the

binary tree. Assuming that 2κ is the number of cores and m ≥ κ ≥ 0, where 2m is the

number of data items, we can obtain the following formula for the time model of the

operations at the server side

T p
2m = T2σ +

m
∑

s=σ+1

⌈2σ−s · 3⌉τs, (2)

where

σ =

m− κ m ≥ κ

0 otherwise.

For the number of synchronization points, we can derive the following formula

S2m =

2κ +
κ−1
∑

s=1

2κ−1−s +
κ−1
∑

s=1

2κ−s m > κ

2m +

m
∑

s=2

2m−s +

m
∑

s=2

2m−s+1 m = κ

m
∑

s=1

2m−s +

m
∑

s=1

2m−s+1 m < κ.

(3)

46

The total cost of synchronization points can be computed using the formula

CS2m =

2κ−1 · κ + 2κ−1 · (κ + 1)+
κ−1
∑

s=1

2κ−1−s(κ + s)+

κ−1
∑

s=1

2κ−s(κ + 1 + s) m > κ

2m−1 + 2m−1 · 2 +
m
∑

s=2

2m−s · s+
m
∑

s=2

2m−s+1 · (s+ 1) m = κ

m
∑

s=1

2m−s · s+
m
∑

s=1

2m−s+1 · (s+ 1) m < κ,

(4)

where κ = m− κ + 1.

Using Equations 2, 3, 4, we can calculate the estimated expected execution times

and precisely calculate the total number and the total cost of synchronization points

for different tree sizes and for different number of process cores. The results are given

in Table 4, where execution times are in seconds. The timing estimations in Table 4

should be taken into account along with the number and cost of synchronization points.

For example, when the number of items is only 64, the gain in the expected execution

times diminishes with the number of cores while the number and costs of synchroniza-

tion points grow very fast. Consequently, we can conclude that using more cores can

deteriorate the performance if the number of items is not too high. Using more and

more cores benefits only very large trees.

7.2.2 Complexity of Parallel Implementation of Quadratic Tree

In this section we perform the same analysis for the quadratic tree implementation

as the one in Chapter 7.2.1 for the binary tree case. Suppose that c is the number of

cores and λ = ⌈log4 c⌉. Then we have

T p
4m =

⌈

4λ

c

⌉

T4σ +

m
∑

s=σ+1

⌈

4m−s · 5
c

⌉

τs, (5)

47

Perf. No. of Cores (c)
No. Metrics 1 4 8 16 32
of no. of

- 7 17 37 77
Items synch.

64
Time (ms) 1628 450 276 206 181
syn. cost - 48 132 320 720

128
Time (ms) 3566 954 553 379 309
syn. cost - 56 156 384 880

256
Time (ms) 7564 1978 1098 697 523
syn. cost - 64 180 448 1040

512
Time (ms) 15700 4045 2169 1289 888
syn. cost - 72 204 512 1200

4096
Time (ms) 131490 33119 16870 8873 4972
syn. cost - 96 276 704 1680

Table 4: Estimation of timing values for serial and parallel implementations with differ-
ent number of processor cores and number of synchronization points and their associated
costs - Binary tree case (using GMP library on an Intel Xeon CPU E1650@3.50 GHz)

where

σ =

m− λ m ≥ λ

0 otherwise.

For the number of synchronization points, we can derive the following formula

S4m =

2 · ϕ+ 7 ·
λ−1
∑

s=1

4λ−1−s m ≥ λ and c > 0

7 · 4m−1 + 7 ·
m−1
∑

s=1

4m−1−s m < λ,

(6)

where ϕ = 4λ−1 · (2− ρ) · (2ρ+1 − 1) and ρ = ⌊ c
4λ
⌋.

48

The total cost of synchronization points can be computed using the formula

CS4m =

ϕ · ̺+ ϕ · (̺+ 1)+

3 ·
λ−1
∑

s=1

4λ−1−s · (̺+ s)+

4 ·
λ−1
∑

s=1

4λ−1−s · (̺+ 1 + s) m ≥ λ and c > 0

11 · 4m−1+

3 ·
m−1
∑

s=1

4m−1−s · (s+ 1)+

4 ·
m−1
∑

s=1

4m−1−s · (s+ 2) m < λ,

(7)

where ̺ = m− λ+ 1.

Using Equations 5, 6, 7, we can calculate the estimated expected execution times

and precisely calculate the total number and the total cost of synchronization points

for different tree sizes and for different number of process cores. The results are given

in Table 5.

Perf. No. of Cores (c)
No. Metrics 1 4 8 16 32
of no. of

- 6 23 31 99
Items synch.

64
Est. Time (ms) 307 88 47 34 25

syn. cost - 21 65 85 193

256
Est. Time (ms) 1368 363 189 116 75

syn. cost - 27 88 116 292

1024
Est. Time (ms) 5712 1464 746 411 237

syn. cost - 33 111 147 391

4096
Est. Time (ms) 23218 5860 2954 1538 820

syn. cost - 39 134 178 490

Table 5: Estimation of timing values for serial and parallel implementations with differ-
ent number of processor cores and number of synchronization points and their associated
costs - Quadratic tree case (using GMP library on an Intel Xeon CPU E1650@3.50 GHz)

49

7.2.3 Complexity of Parallel Implementation of Octal Tree

In this section, we provide our analysis for the expected execution time, the total

number and the total costs of synchronization points in octal tree case. Suppose that

8m is the number of data items, c is the number of cores and λ = ⌈log8 c⌉. Then we

have

T p
8m =

⌈

8λ

c

⌉

T8σ +
m
∑

s=σ+1

⌈

8m−s · 9
c

⌉

τs, (8)

where

σ =

m− λ m ≥ λ

0 otherwise.

For the number of synchronization points, we can derive the following formula

S8m =

2 · ϑ+ 15 ·
λ−1
∑

s=1

8λ−1−s m ≥ λ and c > 0

15 · 8m−1 + 15 ·
m−1
∑

s=1

8m−1−s m < λ,

(9)

where ϑ = 8λ−1 · α · (2β − 1), α =
8λ

c
, and β = log2

c

8λ−1
.

The total cost of synchronization points can be computed using the formula

CS8m =

ϑ · ̺+ ϑ · (̺+ 1)+

7 ·
λ−1
∑

s=1

8λ−1−s · (̺+ s)

8 ·
λ−1
∑

s=1

8λ−1−s · (̺+ 1 + s) m ≥ λ and c > 0

23 · 8m−1+

7 ·
m−1
∑

s=1

8m−1−s · (s+ 1)

8 ·
m−1
∑

s=1

8m−1−s · (s+ 2) m < λ,

(10)

where ̺ = m− λ+ 1.

50

Using Equations 8, 9, 10, we can estimate the expected execution times and precisely

calculate the total number and the total cost of synchronization points for different tree

sizes and for different number of process cores. The results are given in Table 6.

Perf. No. of Cores (c)
No. Metrics 1 4 8 16 32
of no. of

- 12 14 79 111
Items synch.

64
Est. Time (ms) 155 43 25 13 10

syn. cost - 30 35 134 182

512
Est. Time (ms) 1373 355 185 95 58

syn. cost - 42 49 213 293

4096
Est. Time (ms) 11239 2831 1429 722 383

syn. cost - 54 63 292 404

Table 6: Estimation of timing values for serial and parallel implementations with differ-
ent number of processor cores and number of synchronization points and their associated
costs - Octal tree case (using GMP library on an Intel Xeon CPU E1650@3.50 GHz)

51

7.3 Analysis of Scalable CPIR

7.3.1 Communication Complexity

The new scalable CPIR incurs an overhead in communication complexity due to the

selection bits that are sent to the server. The formula for the number of bits sent to

the server by the user for the binary case can be given as

BWb = (2µ+ 3 + 4 + . . .+ (l + 2))|N |

where 2m, 2l, and µ = 2m−l are the number of data items in the entire tree, the number

of data items in each subtree (l < m), and the number of subtrees, respectively, while

N is the modulus used in the Damg̊ard-Jurik cryptosystem. On the other hand, the

number of bits sent by the server to the user will be (l + 2) · |N |. See Figure 5 for the

bandwidth requirements of the scalable solution for the binary case. In the figure, the

bandwidth requirements of the scalable solution is compared with the original CPIR

scheme (regular in the figure) for different number of data items. As can be observed

from the figure, there is no significant change (for the worse) in the ratio of the number

of exchanged bits between the client and the server to the database size.

8,192 16,384 32,768 65,536
0

0.01

0.02

0.03

0.04

0.05

0.06

n: No. of Data Items

R
at

io
 o

f E
xc

ha
ng

ed
 B

its
 to

 D
at

ab
as

e
S

iz
e

Regular
Scalable − 512
Scalable − 1024
Scalable − 2048

Figure 5: Binary Tree Case: Ratio of exchanged number of bits to database size for
|N | = 1024, l = 9, 10, 11.

52

Similarly, we can obtain the following equations for the total bandwidth usage for

quadratic and octal trees

BWq = (2µq + 3 + 4 + . . .+ (lq + 2))|N |

and

BWo = (2µo + 3 + 4 + . . .+ (lo + 2))|N |

where µq = 2m−2l, µo = 2m−3l, and lq and lo represent the depth of the corresponding

tree. The effects of the quadratic and octal versions of the scalable solution in the

bandwidth requirements are illustrated in Figures 6 and 7, respectively. From both

figures, we can conclude that the effect is negligible if the size of the subtrees 2l for a

given m is selected carefully.

8,192 16,384 32,768 65,536
0

0.01

0.02

0.03

0.04

0.05

0.06

n: No. of Data Items

R
at

io
 o

f E
xc

ha
ng

ed
 B

its
 to

 D
at

ab
as

e
S

iz
e

Regular
Scalable − 1024
Scalable − 2048
Scalable − 4096

Figure 6: Quadratic Tree Case: Ratio of exchanged number of bits to database size for
|N | = 1024, l = 5, 6.

53

8,192 16,384 32,768 65,536
0

0.01

0.02

0.03

0.04

0.05

0.06

n: No. of Data Items

R
at

io
 o

f E
xc

ha
ng

ed
 B

its
 to

 D
at

ab
as

e
S

iz
e

Regular
Scalable − 512
Scalable − 4096

Figure 7: Octal Tree Case: Ratio of exchanged number of bits to database size for
|N | = 1024, l = 3, 4.

7.3.2 Computational Complexity

We also provide our estimations for the expected execution times of the scalable

solution in comparison with our earlier parallel implementation for the octal tree case

in Tables 7 and 8. We tabulate the execution times only for the octal tree case due

to the fact that it has the best time performance. We obtain similar results for the

binary and quadratic tree implementations. Note that the figures in Tables 7 and 8 are

estimated lower bounds for the expected execution times and do not take into account

the time lost due to synchronization points. As pointed out earlier, the estimations are

valuable in predicting the speedup figures we can obtain.

In Table 7, we use a subtree with 512 data items and change the total number of data

items from 4096 to 65536, where each data item is 1024 bit. As can be observed from

the table, we can obtain significant speedups when the number of data items increases,

which proves our claim for scalability. The jumps in the speedup values in the table are

due to the fact that the octal tree grows by eight when the depth increments by one.

We repeat the same calculations for a larger subtree with 4096 data items in Table 8

and obtain again significant speedup values. Note that having a larger subtree has a

bandwidth advantage over a smaller subtree.

54

no. of
Imp.

Exec. Times for No. of Items (s)
cores 4 K 8 K 16 K 32 K 64 K

4
parallel 2.83 22.62 22.62 22.62 180.91
hybrid 2.65 4.09 6.95 9.03 24.16
speedup 1.07 5.54 3.25 1.78 7.49

8
parallel 1.43 11.34 11.34 11.34 90.49
hybrid 1.34 2.06 3.49 6.36 12.09
speedup 1.07 5.51 3.25 1.78 7.48

16
parallel 0.72 5.68 5.68 5.68 45.27
hybrid 0.68 1.04 1.75 3.19 6.05
speedup 1.07 5.49 3.24 1.78 7.48

32
parallel 0.38 2.88 2.88 2.88 22.70
hybrid 0.36 0.54 0.90 1.61 3.05
speedup 1.06 5.34 3.21 1.78 7.45

64
parallel 0.21 1.48 1.48 1.48 11.41
hybrid 0.20 0.29 0.47 0.83 1.55
speedup 1.06 5.07 3.14 1.78 7.38

Table 7: Estimated execution times of the hybrid method for various number of data
items, number of cores, and speedup values over the normal parallel implementation;
l = 3. (using GMP library on an Intel Xeon CPU E1650@3.50 GHz)

no. of
Imp.

Exec. Times for No. of Items (s)
cores 8 K 16 K 32 K 64 K

4
hybrid 12.59 15.45 21.19 32.66
speedup 1.80 1.46 1.07 5.54

8
hybrid 6.32 7.75 10.62 16.35
speedup 1.79 1.46 1.07 5.53

16
hybrid 3.17 3.89 5.32 8.19
speedup 1.79 1.46 1.07 5.53

32
hybrid 1.62 1.98 2.70 4.13
speedup 1.77 1.45 1.07 5.49

64
hybrid 0.85 1.03 1.39 2.10
speedup 1.74 1.44 1.06 5.42

Table 8: Estimated execution times of the hybrid method for various number of data
items, number of cores and speedup values over the normal parallel implementation;
l = 4. (using GMP library on an Intel Xeon CPU E1650@3.50 GHz)

55

8 Implementation Results

The implementation consists of all the schemes presented in this work, in other

words, quadratic and octal tree implementations, their parallelization methods and

scalable CPIR are implemented, alongside with the original BddCpir in order to provide

a reference point for our results and support the improvements we claimed. Both client

and server side timings are provided in terms of computational latency (time to gather

a result). For client side secure index calculations (i.e. encrypting selection bits), we

always used the parallelized version. For server side calculations, serial, parallel and

scalable versions are separately presented, as shown in the subsequent sections.

All the protocols are implemented in C++, using GMP, The GNU Multiple Precision

Arithmetic Library, which provides very efficient assembly-level optimizations for big

number calculations [15]. For parallelization and threading purposes, OpenMP is uti-

lized since it provides high-level parallelism for C++ codes running on shared-memory

multi-core processors [27]. The timings that will be presented in this chapter are ob-

tained on a machine running 64 bit Ubuntu 12.04 LTS. The processor is a 6-core Intel

Xeon CPU E5-1650 v2 operating at 3.50 GHz with hyper-threading support. Finally,

cryptographic operations are calculated on a 1024-bit modulus, providing 80-bit equiv-

alent security, which is sufficient for PIR applications.

8.1 Client-Side Computations

The client performs encryption operations to build secure indices (i.e. encrypted

index bits), and decryption operations to retrieve the requested data item. The en-

cryptions are parallelized using algorithms proposed in Section 5.1, however decryptions

are sequential by nature. Table 9 presents parallel client side encryption timings for

56

binary, quadratic and octal tree implementations, and Table 10 enumerates decryption

timings. As the results indicate, quadratic and octal tree based CPIR implementations

offer an obvious advantage over the binary tree implementation as far as the client side

computation is concerned.

Number of Items
Client Encryption (ms)

Binary Tree Quadratic Tree Octal Tree
2 2 - -
4 9 3 -
8 21 - 4
16 34 10 -
32 52 - -
64 79 24 16
128 113 - -
256 158 46 -
512 207 - 37
1024 265 82 -
2048 326 - -
4096 741 130 78
32768 - - 143

Table 9: Timings of client’s selection bit encryptions

Number of Items
Client Decryption (ms)

Binary Tree Quadratic Tree Octal Tree
2 2 - -
4 5 2 -
8 10 - 2
16 19 5 -
32 28 - -
64 40 10 5
128 57 - -
256 77 19 -
512 101 - 10
1024 129 28 -
2048 161 - -
4096 360 40 19
32768 - - 28

Table 10: Timings of client’s decryption of the final result

57

8.2 Server-Side Computations

The server-side computations are the most time and resource consuming part of

the CPIR protocols since all the items in the database should be processed in order

to reply the client with the appropriate file. Therefore, computational complexity is

directly a function of the database. On the other hand, the involved operations are

often independent thus allow parallelization methods to be applied as defined in the

previous chapters. In the following parts, we present the timing results for both serial

and parallel implementations of CPIR and demonstrate our improvements.

8.2.1 Serial Case

The serial CPIR implementation, which corresponds to original BddCpir in binary

tree case, utilizes only one core of the processor and performs calculations sequentially.

The timings for this case are presented in Table 11.

Number of Items
Server Computation (ms)

Binary Quadratic Octal
2 5 - -
4 31 8 -
8 111 - 15
16 315 67 -
32 718 - -
64 1,659 352 180
128 3,640 - -
256 7,707 1,440 -
512 15,900 - 1,468
1024 32,750 5,950 -
2048 66,370 - -
4096 141,370 24,240 11,930
32768 - - 95,803

Table 11: Timings of server computation - sequential

As observed in the table, with the help of octal trees, we can achieve speedups up

to 15900/1468 = 10.83 for a database with 512 data items. As the number of items

increases, the speedup values also increase as expected: for a 4096-file database, the

speedup is 141370/11930 = 11.85.

58

8.2.2 Parallel Case

Among the three server-side parallelization methods presented in Chapter 5, we pro-

vide the timings of the non-trivial one, namely the algorithm introduced in Section 5.4,

in Table 12. Obviously, the parallelization on shared memory multi-core processors

benefits all the CPIR schemes regardless of the tree type.

Number of Items
Server Computation (ms)

Binary Quadratic Octal
2 4 - -
4 22 4 -
8 68 - 6
16 157 28 -
32 332 - -
64 680 129 64
128 1,390 - -
256 2,792 504 -
512 5,556 - 505
1024 11,144 2,027 -
2048 22,249 - -
4096 44,371 8,158 4,033
32768 - - 32,250

Table 12: Timings of server computation - parallel

The benefit of parallelization is more pronounced when the number of data items

is high. For example, with 512 files, we can achieve a speedup of 1468/505 = 2.90 for

the octal tree CPIR and 15900/5556 = 2.86 for binary tree case, whereas in 4096-file

database case, the speedup of octal tree method is 11930/4033 = 2.96, and binary

version is 141370/44371 = 3.19. As the speedup values indicate, the advantage of the

parallel methods are best observed in databases with high number of files.

These results show that using octal tree in the CPIR scheme does not negatively

affect the parallelism in the server-side computation. With CPIR schemes we cannot

achieve the ideal speedup, which is equal to the number of cores in the computing

platform, since the parallelism becomes weaker in the topmost levels of the decision

tree, where the encryption operation is the hardest.

59

Finally, from the binary tree serial implementation to the octal tree parallel imple-

mentation the achieved speedup is

141370

4033
= 35.05.

This is an important improvement that brings CPIR schemes one step closer to practical

usage.

8.2.3 Scalable CPIR

The results in Table 13 show the actual timings of the Scalable CPIR introduced in

Chapter 6. Since the method is designed to be effective on the databases with higher

number of items, we only experimented the octal tree based CPIR with depths 4 and

5, in other words, databases with n = 4096 and n = 32768 number of items are used.

For 4096-file case, subtrees with l = 2 and l = 3 are chosen, and for 32768-file setting,

l = 2, l = 3 and l = 4 are used.

Number of Items Size of a Subtree
Server Computation (ms)

Octal

4096
64 2,185
512 2,850

32768
64 16,640
512 17,330
4096 22,660

Table 13: Timings of server computation - scalable

As can be observed in the Table 13, subtrees with smaller number of items produce

the best results for big databases. However, the cost of getting better computation

latencies result in also an increased bandwidth requirement, as demonstrated in the

analysis chapter. In short, for large octal trees, when scalable CPIR is used instead of

parallelized CPIR, we can achieve

32250

16640
= 1.94

speedup with the cost of increased bandwidth usage.

60

9 Comparison

There is a relatively high academic interest in efficient PIR schemes [2, 3, 5–7, 10,

12, 18, 19, 23, 24, 28, 31]. One of the earliest proposals are due to Kushilevitz and

Ostrovsky [19], which uses a partially homomorphic scheme based on the difficulty

of quadratic non-residue problem. The database is arranged as a square matrix of

(
√
n × √n), D, where n is the number of data items. The user sends a homomorphi-

cally encrypted bit for each column of the matrix D, where all the bits are 0 except for

the bit corresponding to the column that contains the requested data item, which is 1.

The database server, then, performs homomorphic computations for each row of D, and
sends the resulting ciphertexts back to the user. The user decrypts the ciphertext cor-

responding to the row that contains the requested data. Overall, the user sends β · √n
bits to the server that sends back β · √n bits for each bit of the requested data item

as a response, where β is the size of the ciphertext used in homomorphic encryption

scheme.

Another scheme by Boneh et al. [3] uses additive homomorphic computation of two-

disjunctive normal form (2-DNF) of polynomials. Disjunctive normal form is also known

as sum of products expressions of logical functions in Boolean algebra, which basically

means applying logical-OR operation on the product terms obtained by logical AND

operation on Boolean variables. In 2-DNF in [3], each product term is logical AND of

two Boolean variables. The scheme can use additive homomorphic encryption system

proposed by Paillier [29]. In the scheme, the users sends 2 ·n1/3 ciphertexts as the query

and receives n1/3 ciphertexts as the response. Therefore, the bandwidth complexity is

reduced to O(n1/3) from O(n1/2) of Kushilevitz and Ostrovsky in [19].

61

Scheme
Query Size Resp. Size per bit Resp. Size per KB Resp. Size per 64 KB

216 (KB) 232 (MB) 216 (B) 232 (B) 216 (KB) 232 (MB) 216 (KB) 232 (MB)

[19] 32 1 215 223 218 216 224 222

[3] 32 1 16 512 128 4 8192 256

SWFHE [10] 249 32 250 784 2000 6.125 128159 392

SWFHE - Bundled [10] 0.396 0.03125 250 784 2000 6.125 128159 392

Proposed 42.5 32 0.5 0.75 4 ≈ 0.06 256 0.375

Table 14: Comparison of bandwidth requirements in terms of Query and Response
Sizes; for the proposed scheme l = 29 and l = 215 are chosen for the database sizes of
216 and 232, respectively.

The scheme in [10] uses a somewhat fully homomorphic encryption system (SWFHE),

a topic of high interest in the cryptographic community in recent years [4, 13, 14, 22].

Once a fully homomorphic computation is possible (and practical), the selection of the

requested data item is reduced to homomorphic comparison of index bits used to ad-

dress the data items. As comparison circuit is highly simple, a SWFHE based on a

variant of NTRU [17] encryption scheme becomes almost practical for PIR implemen-

tation. For the security assumptions of the NTRU encryptions schemes, see [32]. One

nice property of the PIR scheme in [10], the index bits of the requested data items from

different queries can be packed or bundled into a single query which is the homomorphic

encryption of these index bits. The bundled case can be especially useful when many

queries are generated (perhaps by different users) to amortize the bandwidth overhead

of the PIR scheme. This, however, requires a trusted proxy server to collect and bundle

queries from different users.

In all three schemes [3,10,19], query sizes are reasonably low (see Table 14). Espe-

cially, the SWFHE scheme in the bundled case [10] offers extremely small-sized queries.

However, the bandwidth complexity has two components query and response size and

all three schemes suffer from very high response sizes per one bit of the requested data

item as shown in Table 14. In the proposed scheme, the response is at least more than

one order of magnitude smaller in size than in any other scheme in Table 14. As can

be observed from the table, for even small-sized data items (see the columns 6-9 of Ta-

ble 14), the response sizes dominate the bandwidth complexity and query sizes become

negligible in comparison.

62

Since the schemes in [3, 19] are not well known for their computational and band-

width efficiencies we provide a more detailed comparison of the proposed schemes

against two more recent schemes in the literature [10, 23, 24], both of which utilize

lattice-based cryptography. The former lattice-based scheme introduced in [23, 24],

claims computational efficiency while the latter [10], which utilizes SWFHE, claims

superior bandwidth performance over the former while accepting the former is compu-

tationally much more efficient. We demonstrate that our proposed scheme is always

superior so far as the bandwidth efficiency is concerned while the computational effi-

ciency of our scheme is comparable to or better than that in [10], but worse than that

in [23, 24]. However, we also show that the scheme in [23, 24] can have such a poor

bandwidth performance that it is sometimes better to download the entire database in

many circumstances, as also pointed out in [26].

The CPIR schemes that rely on decisional trees use the Damg̊ard-Jurik cryptosys-

tem that is based on the decisional composite residuosity assumption [29], which is a

relatively well studied classical problem in comparison with those security arguments

used in lattice-based solutions, especially the one in [23, 24].

We compare the bandwidth requirements of the proposed method with octal tree

and the two other technique in Figures 8, 9, 10. In Figure 8, assuming that each data

item in our database is 1024-bit in size we change the number of data items from 512

to 65536 and illustrate the ratio of exchanged bits (i.e., query + response sizes) to the

size of the entire data base. As observed from the graphs given in logarithmic scale in

Figure 8, the proposed scheme always offers the best bandwidth performance.

Figure 9 illustrates the bandwidth performances of the three scheme, when the

number of data items is fixed to n = 1024 and the data items sizes are changed from

1024-bit to 1 million bit. Figure 10 is similar except that n = 65536. As pointed out

earlier in our discussions regarding the bandwidth performance values in Table 14, the

response size dominates when the size of each data item increases. This is apparent in

Figures 9 and 10 as the bandwidth performance of the bundled case of the SWFHE

scheme is almost same as the regular SWFHE scheme.

63

512 8,192 16,384 32,768 65,336
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

n: No. of Data Items

R
at

io
 o

f E
xc

ha
ng

ed
 B

its
 to

 D
at

ab
as

e
S

iz
e

Proposed
SWFHE
SWFHE Bundled
Melchor

Figure 8: Bandwidth comparison of three schemes when the data item size is 1024-bit;
Melchor’s scheme in [23, 24], SWFHE and SWFHE - bundled in [10]

In Figures 8, 9, 10, the lattice-based scheme in [23, 24] demonstrates a very poor

bandwidth performance. To give a better insight we tabulate the ratios of exchanged

information to the database size in each scheme in Table 15 when n = 1024 and

|N | = 1024. As can be observed in the table, the proposed method always results

in superior bandwidth performance. The lattice-based scheme in [23, 24] requires the

transmission of fewer number of bits than the database size only after the size of the

database reaches 128 Mbit. The scheme based on the SWFHE never offers better

performance than transmitting the entire database in this setting. The SWFHE-based

scheme bandwidth requirements will be acceptable only for databases with many data

items. For instance, for a database with 216 items where each data item is 1024-bit,

the ratio of exchanged data to database size in the SWFHE-based PIR scheme is 0.53,

while it is only 0.03 in the proposed scheme for the same setting.

For server-side computations, the lattice based scheme [23, 24] is reported to offer

230 Mbit/s for a database with only 12 data items, each of which is 3 MB. The proposed

method offers about 1 Mbit/s for a database with 512 data items when the parallel

implementation of octal tree is used. When more cores are used it is possible to increase

the throughput of the server-side computations.

SWFHE-based PIR scheme [10] reports two time performance metrics: i) through-

64

1,024 262,144 524,288 1,048,576
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Size of data items

R
at

io
 o

f e
xc

ha
ng

ed
 b

its
 to

 D
at

ab
as

e
S

iz
e

Proposed
SWFHE
SWFHE Bundled
Melchor

Figure 9: Bandwidth comparison of three schemes with variable data item size and
n = 1024; Melchor’s scheme in [23, 24], SWFHE and SWFHE - bundled in [10]

Data item size
(number of bits)

Database size
(number of bits)

[23, 24] [10] Proposed method

1 K 512 K 224 67.21 0.135
32 K 8 M 14.01 7.96 0.016
128 K 64 M 1.76 4.42 0.009
256 K 128 M 0.88 4.16 0.008
2 M 1 G 0.11 3.94 0.008

Table 15: Ratio of exchanged information to database in different PIR schemes n = 1024
and |N | = 1024

put when multiple requests are bundled into a single query, hence the bundled case, and

ii) latency when a request is sent alone (single case). In the bundled case for data items

of 1024-bit long each, the time spent for processing a data item is given as 0.89 ms

while it is 1.00 ms in our scheme. On the other hand, for the latency metric indicating

the waiting time for a user, (which is what matters most for the user) the time spent

for processing a data item is 16.93 ms. For instance, for a database of 512 items each

of which is 1024-bit long, a user has to wait for a query response for about 8.7 s in the

SWFHE-based PIR scheme while in our scheme he has to wait for only 0.5 s, which

corresponds to more than one order of magnitude improvement on behalf of our scheme.

Furthermore, if we use the scalable CPIR and tolerate a slight increase in bandwidth

requirements, we can achieve a better performance. For instance, we can achieve a

65

1,024 262,144 524,288 1,048,576
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Size of data items

R
at

io
 o

f e
xc

ha
ng

ed
 b

its
 to

 D
at

ab
as

e
S

iz
e

Proposed
SWFHE
SWFHE Bundled
Melchor

Figure 10: Bandwidth comparison of three schemes with variable data item size and
n = 216; Melchor’s scheme in [23, 24], SWFHE and SWFHE - bundled in [10]

throughput of 1.44 Mbit/s for a database of 4096 items when octal subtrees with l = 8

are used. This will decrease the time spent for processing a data item to about 0.7 ms,

whereby the proposed scheme outperforms the SWFHE-based PIR scheme [10] in terms

of throughput as well.

66

10 Conclusion

With the increased usage of cloud servers, this thesis aimed to provide reasonable

bandwidth and latency requirements for PIR schemes to protect user privacy. The basis

protocol was Lipmaa’s BddCpir, which relies on the additively-homomorphic encryption

system Damg̊ard-Jurik and binary decision diagrams. We experimented with the data

structure and observed the effects of using trees with nodes that have more number of

children. As a consequence of our experimentations, we discovered that using quadratic

and octal trees improves the performance of server side calculations without adversely

effecting the bandwidth efficiency. Going more than 8-child trees, however, starts to

increase the bandwidth requirements, thus we limited our interest to quadratic and

octal trees. As our implementation results demonstrate, in a 4096-file database with

1024 bit files, using octal trees instead of binary ones decreases the server latency by

11.85 times.

After changing the data structure of original BddCpir and obtaining substantial

improvements, we continued to investigate the ways to further decrease server-side

latency. The observation of the independent modular exponentiations in the protocols

helped us to develop efficient parallelization algorithms for both server and client sides.

We implemented the parallelized versions of CPIR with all tree types, and subsequently,

achieved a speedup of 35.05 from serial implementation of binary CPIR to parallel CPIR

with octal trees for a 4096 Kbit database.

For moderately small database sizes, the parallelization method with octal trees

provide a practical server operation time (505 ms for a 512 Kbit database), however,

when the number of items or file sizes increase, the scheme again loses its feasibility,

for instance, if the server stores a 32 Mbit database, client has to wait for 32.25 s

67

to receive the reply for a PIR query, even with parallelized octal CPIR. Since this is

far beyond practical, we offered a scalable CPIR, to provide applicability of CPIR to

bigger databases. With the new octal scalable CPIR method, 32 Mbit databases can

be processed within 17 s, which is 1.94 times faster than the parallel octal CPIR. Since

we performed our experiments on a machine with 4 cores, this impractical execution

time can be improved greatly using computing platforms that feature higher number of

cores. Since these type of processors are not rather common, we leave the verification

of our claims concerning the scalability of the proposed schemes as future work.

Lastly, we compared the proposed scheme with the schemes in the literature in terms

of bandwidth requirements and found out that the new scheme provides bandwidth

efficiencies, which are better from than those of the other schemes by one to three

orders of magnitude. Also, the adopted security assumption in our scheme is well

studied in comparison with the alternative schemes; another reason for further interest

in the proposed scheme.

68

References

[1] Adleman, L. M., Rivest, R. L., and Shamir, A., ”Cryptographic communications

system and method” U.S. Patent No. 4,405,829, 1983.

[2] Ambainis, A., ”Upper bound on the communication complexity of private infor-

mation retrieval”, In Proc. of the 24th ICALP, 1997.

[3] Boneh, D., Goh, E.-J., Nissim, K., ”Evaluating 2-DNF Formulas on Ciphertexts”,

In Theory of Cryptography, LNCS 3378 pp. 325-341, 2005.

[4] Brakerski, Z., Gentry, C., Vaikuntanathan, V., ”Fully homomorphic encryption

without bootstrapping” In ITCS pp. 309-325, 2012.

[5] Cachin, C., Micali, S., Stadler, M., ”Computationally Private Information Re-

trieval with Polylogarithmic Communication”, In EUROCRYPT 99, pp. 402-414,

1999.

[6] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M., ”Private Information Re-

trieval”, In FOCS 95: Proceedings of the 36th Annual Symposium on the Founda-

tions of Computer Science, pp. 41-50, 1995.

[7] Chor, B., Gilboa, N., ”Computationally Private Information Retrieval”, In 29th

STOC, pp. 304-313, 1997.

[8] Hennessy, J. L., Patterson, D. A., ”Computer Architecture, Fifth Edition: A Quan-

titative Approach”, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2011.

[9] Damg̊ard, I., and Jurik, M., ”A Generalisation, a Simplification and Some Appli-

cations of Paillier’s Probabilistic Public-Key System”, In Public Key Cryptography,

pp. 119-136. Springer Berlin Heidelberg, 2001.

[10] Doröz, Y., Sunar, B., and Hammouri, G., ”Bandwidth Efficient PIR from NTRU”,

Workshop on Applied Homomorphic Cryptography and Encrypted Computing,

WHAC’14, 2014.

69

[11] ElGamal, T, ”A public key cryptosystem and a signature scheme based on discrete

logarithms”, In Advances in Cryptology pp. 10-18, 1985.

[12] Gentry, C., Ramzan, Z., ”Single-Database Private Information Retrieval with Con-

stant Communication Rate”, In ICALP: Annual International Colloquium on Au-

tomata, Languages and Programming, pp. 803-815, 2005.

[13] Gentry, C., ”A fully homomorphic encryption scheme”. Doctoral Dissertation,

Stanford University 2009.

[14] Gentry, C., Halevi, S., ”Implementing Gentrys fully-homomorphic encryption

scheme”, In Advances in CryptologyEUROCRYPT, pp. 129-148, 2011.

[15] GMP, ”The GNU MP Bignum Library”, Free Software Foundation, https://

gmplib.org/, 2014.

[16] Goldwasser, S., and Micali, S., ”Probabilistic encryption”, In Journal of computer

and system sciences 28.2, pp. 270-299, 1984.

[17] Hoffstein, J., Pipher, J., Silverman, J., ”NTRU: A ring-based public key cryptosys-

tem”, In Algorithmic number theory pp. 267-288, 1998.

[18] Ishai, Y., Kushilevitz, E., ”Improved upper bounds on information-theoretic pri-

vate information retrieval”, In Proc. of the 31th ACM Sym. on TC, 1999.

[19] Kushilevitz, E., Ostrovsky, R., ”Replication Is Not Needed: Single Database,

Computationally-Private Information Retrieval”, FOCS ’97, 1997.

[20] Lipmaa, H., ”An oblivious transfer protocol with log-squared communication.” In

Information Security, Springer Berlin Heidelberg, pp. 314-328, 2005.

[21] Lipmaa, H., ”First CPIR protocol with data-dependent computation”, In Informa-

tion, Security and Cryptology ICISC 2009, pp. 193-210. Springer Berlin Heidelberg,

2010.

70

[22] Lopez-Alt. A., Tromer, E., Vaikuntanathan, V., ”On-the-fly multiparty computa-

tion on the cloud via multikey fully homomorphic encryption”, In Proceedings of

the 44th symposium on Theory of Computing, pp. 1219-1234. ACM, 2012.

[23] Aguilar-Melchor, C., Gaborit, P. ”A Lattice-Based Computationally-Efficient Pri-

vate Information Retrieval Protocol”, In WEWORC 2007, 2007.

[24] Aguilar-Melchor, C., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P. ”High-

Speed PIR Computation on GPU”, In SECURWARE’08, pp. 263-272, 2008.

[25] MSDN, ”OpenMP - Using the Schedule Clause.” Microsoft Developer Network,

http://msdn.microsoft.com/en-us/library/9w1x7937.aspx, 2014.

[26] Olumofin, F., and Goldberg, I., ”Revisiting the computational practicality of pri-

vate information retrieval”, In Proceedings of the 15th international conference on

Financial Cryptography and Data Security, pp. 158-172, 2012.

[27] OpenMP, ”The OpenMP API specification for parallel programming”, The

OpenMP ARB, http://openmp.org/wp/, 2014.

[28] Ostrovsky, R., Shoup, V., ”Private Information Storage”, In 29th STOC, pp. 294-

303, 1997.

[29] Paillier, P., ”Public-key cryptosystems based on composite degree residuosity

classes”, In Advances in cryptology, EUROCRYPT’99, pp. 223-238. Springer Berlin

Heidelberg, 1999.

[30] Rabin, M. O., ”How to exchange secrets by oblivious transfer”, Technical Report

TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[31] Sion, R., Carbunar, B., ”On the Computational Practicality of Private Information

Retrieval”, In NDSS07, 2007.

[32] Stehlé, D., Steinfeld, R., ”Making NTRU as secure as worst-case problems over

ideal lattices”, In Advances in Cryptology EUROCRYPT pp. 27-47, 2011.

71

[33] Tebaa, M., El Hajji, S., and El Ghazi, A., ”Homomorphic encryption applied to the

cloud computing security”, In Proceedings of the World Congress on Engineering

(Vol. 1) pp. 4-6, 2012.

[34] Wilkinson, B., Allen, M. Parallel programming Vol. 999, New Jersey: Prentice

hall, 1999.

[35] Yi, X., Kaosar, M. G., Paulet, R., and Bertino, E. ”Single-database private infor-

mation retrieval from fully homomorphic encryption”, Knowledge and Data Engi-

neering, IEEE Transactions on 25.5, 1125-1134, 2013.

72

