
MINIMUM HUB COVER PROBLEM:

SOLUTION METHODS & APPLICATIONS

by

BELMA YELBAY

Submitted to the Graduate School of Engineering

and Natural Sciences in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Sabancı University

Summer 2014

MINIMUM HUB COVER PROBLEM:

SOLUTION METHODS & APPLICATIONS

by Belma Yelbay

APPROVED BY:

Prof. Ş. İlker Birbil ..
(Thesis Advisor)

Assoc. Prof. Kerem Bülbül ..
(Thesis Advisor)

Assist. Prof. Tınaz Ekim Aşıcı ..

Assoc. Prof. Özgür Gürbüz ..

Assoc. Prof. Tonguç Ünlüyurt ..

DATE OF APPROVAL: August 6, 2014

c©Belma Yelbay, 2014

All Rights Reserved

To my lovely son and husband...

iv

MINIMUM HUB COVER PROBLEM:

SOLUTION METHODS & APPLICATIONS

Belma Yelbay

PhD Thesis, 2014

Thesis Advisors:

Prof. Ş. İlker Birbil

Assoc. Prof. Kerem Bülbül

Keywords: minimum hub cover problem, graph query processing, graph covering problem

The minimum hub cover is a new NP-hard optimization problem that has been

recently introduced to the literature in the context of graph query processing on graph

databases. The problem has been introduced as a new graph representation model to

expedite graph queries. With this representation, a graph database can be represented

by a small subset of graph vertices. Searching over only that subset of vertices decreases

the response time of a query and increases the efficiency of graph query processing.

We introduce the problem of finding a subgraph including the minimum number of

vertices as an optimization problem referred to as the minimum hub cover problem. We

demonstrate that searching a query over the vertices in minimum hub cover increases

the efficiency of query processing and surpasses the existing search methods.

We also introduce several mathematical programming models. In particular, we

v

give two binary integer programming formulations as well as a novel quadratic integer

programming formulation. We use the linear programming relaxations of the binary

integer programming models. Our relaxation for the quadratic integer programming

model leads to a semidefinite programming formulation. We also present several round-

ing heuristics to obtain integral solutions after solving the proposed relaxations.

We also focus on planar graphs which have many applications in planar graph

query processing and devise fast heuristics with good solution quality for minimum hub

cover. We also study an approximation algorithm with a performance guarantee to

solve the minimum hub cover problem on planar graphs. We conduct several numerical

studies to analyze the empirical performances of solution methods proposed in this

thesis.

vi

EN KÜÇÜK GÖBEK KAPSAMA PROBLEMİ:

ÇÖZÜM METODLARI VE UYGULAMALAR

Belma Yelbay

Doktora Tezi, 2014

Tez Danışmanları:

Prof. Dr. Ş. İlker Birbil

Doç.Dr. Kerem Bülbül

Anahtar Kelimeler: en küçük göbek kapsama problemi, çizge sorgu işleme, çizge kap-

sama problemi

En küçük göbek kapsama problemi, çizge veri tabanları üzerinde sorgulama alanında

literatüre kazandırılmış yeni bir eniyileme problemidir. Problem çizge sorgularının

hızlandırılması için yeni bir çizge gösterim şekli olarak tanıtılmıştır. Bu gösterim şekli

ile bir çizge veritabanı o çizginin düğümlerinin bir alt kümesi cinsinden ifade edilmekte-

dir. Bu alt küme üzerinden sorgu işlemek, sorgu süresinin azalmasını ve sorgu sürecinin

verimliliğinin artmasını sağlamaktadır. Bu çalışmada en az sayıda düğümle bir çizgeyi

ifade etme problemini en küçük göbek kapsama problemi olarak tanımlıyoruz. Bu alt

küme üzerinden sorgulama işlemi yapılmasının sorgu verimliliğini artırdığını ve mevcut

yöntemlere göre avantaj sağladığını gösteriyoruz.

Bu çalışmada en küçük göbek kapsama problemi içlerinde 0-1 tamsayılı program-

lama formülasyonu ile ikinci dereceden tamsayılı programla modelinin de olduğu farklı

matematiksel programlama modelleri tanıtıyoruz. İkinci dereceden tamsayılı program-

vii

lama modelinin gevşetilmesini kullanarak yarıbelgili programlama formülasyonu elde

ediyoruz. Doğrusal ve yarıbelgili gevşetme modellerini kullanan yuvarlama yöntemleri

önererek bu yöntemlerin deneysel performanslarını karşılaştırıyoruz.

Ayrıca düzeysel çizge veritabanlarında obje tanımlama, biyometrik kimlik be-

lirleme gibi sorgu işleme uygulamaları olan düzeysel çizgelere odaklanıp iyi çözümler

üreten hızlı sezgisel geliştiriyoruz. En küçük göbek kapsama problemini düzeysel çizgeler

üzerinde performans garantisi veren bir yaklaşıklama algoritması tanıtıyoruz. Ayrıca

yaklaşıklama algoritmasının teorik performansını ispatlayarak, kapsamlı deneysel bir

çalışma ile algoritmanın deneysel performansını ölçüyoruz. Ayrıca bir çok deneysel

çalışma ile çözüm yöntemlerimizin deneysel performanslarını ölçüyoruz.

viii

Acknowledgments

ix

Table of Contents

1 INTRODUCTION 1

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Outline . 5

2 LITERATURE REVIEW 6

2.1 Related Problems . 6

2.2 Graph Query Processing . 10

3 MATHEMATICAL MODELING 13

3.1 Mathematical Programming Formulations 13

3.2 Mathematical Programming Relaxations 17

3.2.1 Linear Programming Relaxation 17

3.2.2 Semidefinite Programming Relaxation 18

4 SOLUTION METHODS 21

4.1 Planar Graphs . 21

4.1.1 Approximation Algorithm . 23

4.1.2 Dynamic Programming Algorithm 29

4.2 Greedy Algorithms . 44

4.3 Relaxation Heuristics . 56

5 APPLICATION: GRAPH QUERY PROCESSING 64

5.1 Minimum Hub Cover: Graph Representation Model 65

x

5.2 Graph Matching . 66

5.3 Experimental Analysis . 71

6 CONCLUSION 74

A RELATED OPTIMIZATION PROBLEMS 77

B SUPPLEMENTARY TABLES 80

xi

List of Tables

4.1 DP table for tree node (1,2) . 32

4.2 DP iterations for MHC problem for the tree in Figure 4.8b 32

4.3 DP tables (3, C, 5, C) and (5, C, 4, D) 36

4.4 DP tables (3, C, 4, D) and (4, D, 3, B) 36

4.5 DP tables (1, A, 2, A) and (2, A, 3, C) 37

4.6 DP tables (1, A, 3, C) and (3, C, 3, B) 37

4.7 DP tables (1, A, 3, B) and (3, B, 1, A) 38

B.1 Solution times of the benchmark algorithms for random graphs 80

B.2 Solution times of the benchmark algorithms for bounded graphs 82

B.3 Solution times of the benchmark algorithms for irregular bounded graphs 83

B.4 Solution times of the benchmark algorithms for meshes 84

B.5 Solution times of the benchmark algorithms for irregular meshes 85

B.6 Solution times of the benchmark algorithms for scale-free graphs 87

B.7 Percentage gaps of obtained by heuristics 89

B.8 Percentage gaps of obtained by approximation algorithm 90

B.9 Computation times of obtained by approximation algorithm 91

B.10 Computation times of obtained by heuristics 92

B.11 The performances of the rounding algorithms on random graphs 93

B.12 The performances of the rounding algorithms on bounded graphs . . . 94

B.13 The performances of the rounding algorithms on irregular bounded graphs 95

B.14 The performances of the rounding algorithms on regular meshes 96

B.15 The performances of the rounding algorithms on irregular meshes . . . 97

B.16 The performances of the rounding algorithms on scale-free graphs . . . 98

xii

B.17 The performances of the rounding algorithms on planar graphs 99

xiii

List of Figures

1.1 Subgraph isomorphism between two hand-drawn images 2

1.2 A query and a database graph of a molecular compound 2

1.3 A sample graph for the minimum hub cover problem 3

4.1 Graph representation of a fingerprint image 22

4.2 An 8-level planar graph embedding . 24

4.3 The overlapping 3-outerplanar graphs when i = 1 and k = 2 24

4.4 The overlapping 3-outerplanar graphs when i = 2 and k = 2 25

4.8 An outerplanar graph and the corresponding tree 30

4.5 Observed vs. theoretical approximation gaps 39

4.6 Computation times of the approximation algorithm and CPLEX 40

4.7 Gaps vs computation times of approximation algorithm and heuristic . 41

4.9 Outerplanar graph and triangulations 42

4.10 Trees for the graph in Figure 4.9a . 42

4.11 The set of slices of a planar graph . 42

4.12 The slices at all level and for each tree node 43

4.12 Computation time of CPLEX on problem classes 50

4.13 Performance profiles for different solution methods 53

4.14 Computation time vs problem classes 55

4.15 The empirical cdf of optimality gaps obtained by LP and SDP relaxations 61

4.16 The empirical cdf of optimality gaps of rounding algorithms 62

4.17 Optimality gaps with respect to the problem classes 63

5.1 Example: Query graphs q1 and q2, and data graph d 67

xiv

5.2 Graph matching with and without MHC-based query plan 73

xv

List of Algorithms

4.1 Planar Graph Approximation Algorithm 25

4.2 Algorithm to Convert a Planar Graph into a Rooted Tree 30

4.3 DP Algorithm for Planar Graphs . 38

4.4 Primal Rounding Algorithm for the MTS Problem 57

4.5 Primal Rounding Algorithm for the MHC Problem 57

4.6 Dual Rounding Algorithm for the MHC Problem 58

4.7 Semidefinite Programming Algorithm for the MHC Problem 59

4.8 SDP Algorithm for the MHC Problem 59

4.9 Postprocessing Algorithm . 60

5.1 Computing All Optimal Solutions . 69

xvi

Chapter 1

INTRODUCTION

“Premature optimization is the root of all evil”.

Donald Ervin Knuth

The main objective of this thesis is modeling and analyzing solution approaches for a

new optimization problem referred to as the minimum hub cover (MHC) problem. The

problem has recently originated from a new representation used for query processing

over large graph databases, which store a high volume of relational data coming from

various sources including communication, social and biological networks [64, 109]. For

instance, a chemical compound is a graph database where each node represents an atom

and each edge represents a chemical bond formed between two atoms. For readers

not familiar with graph query processing, also known as graph matching, querying a

graph database refers to searching structural similarity between the nodes of a query

graph and a database graph under a set of label constraints. Subgraph isomorphism

problem, on the other hand, is to find whether a database graph includes a subgraph

that is structurally similar to a given query graph. Formally, two graphs G(V,E) and

G′(V ′, E ′) are isomorphic if there is a bijective function f : V → V ′ such that any two

vertices u and v in G are adjacent if and only if f(u) and f(v) are adjacent in G′. Given

two graphs G and Ḡ, the subgraph isomorphism problem tries to find a subgraph of G

that is isomorphic to Ḡ. Figure 1.1 illustrates the relationship between graph query

processing and subgraph isomorphism. Figure 1.1a and Figure 1.1b are the query and

data graphs, respectively. These figures capture hand-drawn images of human figures.

1

Figure 1.1c shows all subgraphs of Figure 1.1b that are isomorphic to Figure 1.1a and

thus are embedded in the data graph. The goal of subgraph matching is to identify the

isomorphic graphs in Figure 1.1c given the query graph in Figure 1.1a against the data

graph in Figure 1.1b. Another example can be seen in Figure 1.2, which demonstrates a

query and a database graph of two molecular compounds. Note that the database graph

on the right has a subgraph, which is structurally identical to the query graph on the

left. Therefore, carrying out a query with this subgraph returns a positive response. The

MHC problem has been recently introduced as an alternate solution method to expedite

the efficiency of subgraph matching. Latest studies demonstrate that searching a graph

query by solving the MHC problem improves the current techniques in graph query

processing [91, 92].

(a) (b) (c)

Figure 1.1: Example for subgraph isomorphism between two hand-drawn images and
the resulting solution [75]

Figure 1.2: A query and a database graph of a molecular compound

The MHC problem is one of the NP-hard problems in the literature [44]. Hence,

solving the MHC problem to optimality is inherently hard. The objective of the MHC

problem is to cover all edges of a graph with the minimum number of vertices. Unlike

2

the conventional meaning of covering, here, a selected vertex covers not only its incident

edges but also the edges between its adjacent neighbors. For instance, in Figure 1.3,

the edges that can be covered by vertex f are (f, g), (f, h), (f, k) and (h, k) and the

optimal solution is {a, c, f}. The formal definition of the MHC problem follows.

b

a

c

d e f

g h

k

Figure 1.3: A sample graph for the minimum hub cover problem

Definition 1.1 Let G(V,E) be an undirected graph, where V is the set of vertices and

E is the set of edges. Then, for a given graph G, a subset of the vertices HC ⊆ V is a

hub cover of G if for every edge (i, j) ∈ E, either i ∈ HC or j ∈ HC or there exists a

vertex k such that (i, k) ∈ E and (j, k) ∈ E with k ∈ HC. The MHC problem is finding

a hub cover that has the minimum number of vertices.

1.1 Motivation

Many relational data coming from various sources, such as; bioinformatics, social net-

works, world wide web and so on, can be represented as graphs. Due to the recent

explosion in graph database applications, it is very critical to manage and process the

information encoded in graphs. One of the major hurdles in managing very large graph

databases is to efficiently store the graphs which require large memory. The other

hurdle is to develop fast graph query processing techniques to extract the information

from the graphs quickly. This is important especially for those applications where high

response times cannot be tolerated. MHC has been introduced to the literature as a

compact graph representation model, which requires less memory. In this representa-

tion, a query graph is represented by a subset of hub nodes coming from the solution

of the MHC problem [64, 109]. Also, the graph matching algorithm, which searches

3

subgraph isomorphism over that subset achieves reduction in both solution time and

memory usage relative to other existing techniques.

Proposed graph matching algorithm in [109] is a two-phase algorithm. In the

first phase, MHC is obtained for the query graph and in the second phase, a one-to-

one mapping is obtained between the hub nodes in the query graph and the nodes

of the database graph. In this study, we primarily focus on the first phase. From

this perspective, we propose mathematical programming approaches to solve the MHC

problem. Since we solve an NP-hard problem in the first phase, it is very critical

to obtain an optimal or near optimal solution to the MHC problem quickly. Our

motivation is two-fold: (1) With the advances in mathematical programming techniques

and computational machinery, very large NP-hard problems, which were not solved

years ago can now be solved efficiently. Therefore, we investigate the existing solution

methods in mathematical programming area and adapt them for the MHC problem.

(2) Since the MHC problem has been recently introduced, there is a need for exploring

its various mathematical programming formulations. To this end, we give not only

different mathematical programming models but also study their relaxations.

1.2 Contributions

The contributions of this thesis are as follows:

• We exploit various mathematical programming formulations of the MHC problem.

We introduce new binary programming models along with a quadratic integer

programming model. The relaxations of the binary models are linear programs

whereas the relaxation of the last model is a semidefinite program. We also present

several rounding heuristics to accompany the proposed relaxations. We conduct

an extensive computational study to illustrate the empirical performances of the

rounding heuristics.

• We study an approximation algorithm, which provides an approximate solution

to the MHC problem on planar graphs. This algorithm can be used in various

graph query processing applications, such as; biometric identification, image clas-

4

sification and object recognition and so on. We prove an approximation bound

for the algorithm and conduct the first extensive numerical experiments to test

its empirical performance [111].

• We discuss query graph processing, and the connection between the graph match-

ing computation and MHC. We demonstrate how MHC provide strategic advan-

tages for graph matching computations.

1.3 Outline

Chapter 2 surveys the literature related to graph query processing and the optimiza-

tion problems with similar mathematical programming formulations. In Chapter 3,

we present various mathematical programming formulations of MHC. The linear and

semidefinite programming relaxations of MHC are also given in this chapter. Chapter 4

is dedicated to solution methods proposed for the MHC problem. We first propose so-

lution approaches for planar graphs. We introduce an approximation algorithm, which

returns approximate MHC on planar graphs with proven performance ratio. Then, we

continue with the solution methods for general graphs such as greedy algorithms and re-

laxation heuristics. In each section, we provide computational experiments, which test

the performances of the proposed solution methods. In Chapter 5, we briefly discuss

graph query processing. We talk about the connection between MHC and the graph

matching, and demonstrate how MHC is used in graph matching computation. A brief

summary and concluding remarks as well as directions for future research are given in

Chapter 6.

5

Chapter 2

LITERATURE REVIEW

“I don’t need to know everything, I just need to know where to find it, when I need it”.

Albert Einstein

This chapter surveys the relevant studies under two categories. In the first cate-

gory, we summarize studies related to some well-known optimization problems, which

share similar mathematical programming formulations with the MHC problem. We re-

fer the readers to Appendix A for details about those problems. In the second category,

we focus on graph query processing and survey the studies as well as its application

areas.

2.1 Related Problems

The first related problem is the set covering problem (SCP), which is one of the oldest

and most studied optimization problems. Many studies focus on solving SCP to opti-

mality with exact algorithms. Exact algorithms generally rely on the branch-and-bound

method to obtain optimal solutions [9, 16, 19, 41]. Beasley [16] uses subgradient opti-

mization and a heuristic algorithm to bound the problem. Beasley and Jornsten [19]

employ the same method but improve the solution quality through Gomory f-cuts with

a better branching strategy. Fisher and Kedia [41] use a primal and a dual heuristic

for bounding. Similarly, Balas and Carrera [9] use a primal and a dual heuristic and a

dynamic subgradient procedure, and iteratively improve the bounds by variable fixing.

6

SCP is long known to be NP-hard in the strong sense [44]. Similar to the prob-

lems in the same class, many algorithms have been developed to provide approximate

solutions with proven performance guarantees. Gomes et al. [48], Grossman and Wool

[49], Vazirani [103], and Williamson [105] list various approximation algorithms and

they compare their theoretical and empirical performances. Chvatal [30] proposes a

greedy-type algorithm to approximate the SCP with a performance guarantee log |S|.

Bar et al. [12], Hall and Vohra [50], and Hochbaum [59] propose approximation al-

gorithms using primal and dual linear programming formulations with a performance

guarantee f which is defined as the maximum number of sets that can cover an item.

An inapproximability result is presented by Lund and Yannakakis [77] which is a factor

of c log |S| for any c < 1/4 unless NP ⊆ DTIME(|S|poly log |S|). Bertsimas and Vohra

[20] propose a randomized rounding algorithm that obtains the same performance guar-

antee. Bronniman and Goodrich [22] approximate SCP by using the minimum hitting

set formulation when the Vapnik-Chervonenkis dimension is d [101]. Their algorithm

ensures that the largest set cover is at most a factor of O(d log(ds)) where s is the car-

dinality of optimal set cover. Then, Even et al. [38] improve the bound with a factor of

4 relative to Bronniman and Goodrich [22], i.e., the largest set cover is within at most

a factor of O(d
4
log(ds)).

There are also heuristics sacrificing optimality but obtaining fairly good solutions

within an acceptable time without performance guarantees. Caprara et al. [25], Gomes

et al. [48], and Grossman and Wool [49] list various heuristics and approximation al-

gorithms and show that those algorithms perform well empirically. There are several

approaches to develop a heuristic algorithm. Among these, we have greedy algorithms,

randomized search, heuristics based on linear programming and Lagrangian relaxations,

and the closely related, primal-dual methods. The simplest algorithms are the greedy

algorithms, which can be used to solve large-scale set covering problems in negligible

times. However, their myopic nature may easily yield solutions far from optimality.

Haouari and Chaouachi [55], Feo and Resende [39], as well as Vasko and Wilson [102]

introduce randomness and penalization into the greedy algorithms to improve solution

quality. Along this line, three local search heuristics can be mentioned [71, 78, 106]. Fin-

7

ger et al. [40] conduct an analysis on benchmark instances by measuring the correlation

between the cost of a solution and the closeness to the optimal solution. This study gives

useful insights to understand the problem structure and develop problem-specific local

search algorithms. Several meta-heuristics have also been proposed for SCP. Among

these, we can list simulated annealing [23, 62], genetic algorithms [2, 18, 76], tabu

search [27, 68, 81], ant colony optimization [89], and electromagnetism meta-heuristic

[6]. In a recent study, Muter et al. [82] devise a generic framework that uses information

from the linear programming relaxation for promoting meta-heuristics to diversify or

intensify while searching for the optimum of set covering-type optimization problems.

Muter et al. [82] also consider the role of dual information in their numerical study on

the vehicle routing problem with time windows. First, they use the dual information

for altering the randomized selection mechanism in the meta-heuristic. With this new

mechanism, the meta-heuristic is encouraged to generate routes (sets) that are more

likely to have negative reduced costs. Second, the dual information is used to reduce the

size of the column pool by removing those columns with higher reduced costs. Muter

et al. [82] report that the dual information does not increase the effectiveness of their

algorithms. However, Yelbay et al. [110] assert the contrary through a fundamentally

different setting and implementation. Yelbay et al. [110] emphasize the importance of

using the optimal dual solution of the linear programming relaxation of SCP. The dual

information is gathered from the optimal solution of the linear programming relaxation,

and then problem size is reduced considerably so that the resulting SCP can be solved

by an integer programming solver with much less computational effort.

Moreover, several studies design heuristics based on the Lagrangian relaxation or

the linear programming relaxation of SCP [17, 24, 28, 59, 100]. The resulting primal-

dual approach has been commonly used for approximating NP-hard optimization prob-

lems that can be modeled as integer programming problems, such as the metric traveling

salesman problem, the Steiner tree problem, the Steiner network problem, and the set

covering problem [103]. Bar and Even [11] are the first researchers who have considered

a generic primal-dual approach to approximate the set covering problem – later shown

to be equivalent to the local ratio technique [13]. The basis of the primal-dual approach

8

is finding only a feasible solution to the dual of the linear programming relaxation of

the SCP. Using this solution, an integral solution for SCP is constructed. Although

the worst case performance of the primal-dual algorithm of Bar and Even [11] is poor

[50], its empirical performance turns out to be much more promising. Therefore, sev-

eral studies have sprung out of the primal-dual approach in the set covering literature

[20, 79, 105, 108].

In the literature, there are many studies that use the dual information from the

Lagrangian relaxation of SCP to reduce the size of the large-scale SCP instances by

variable fixing. Reduced costs are computed for a current set of Lagrangian multipliers

attained by a subgradient procedure. Beasley [17], Caprara et al. [24], Ceria et al. [28],

and Yagiura et al. [106] set a variable to zero, whenever its reduced cost is greater than

a threshold. The dual information is also used to construct a good feasible solution.

The variables with the most negative reduced costs are accepted as good candidates to

obtain a feasible solution [24, 27].

The second closely related problem is minimum vertex cover (MVC), which is a

special case of the unicost SCP. MVC is equivalent to MHC in triangle-free graphs.

In the literature, there are various approximation algorithms for MVC. However, it is

known that approximating MVC with a good performance ratio is also difficult. Dinur

and Safra [34] show that finding a δ-approximate solution for the MVC problem in

polynomial time is NP-hard for δ ≤ 1.3606. Moreover, Khot and Regev [67] show

that it is NP-hard to find an approximate solution within a constant factor less than

2. Nagamochi and Ibaraki [83] propose an odd-cycle elimination technique and achieve

a bound 2 − 8m
(13n2+8m)

. Hochbaum [59] proposes a 2-approximation algorithm, which

uses the linear programming relaxation of MVC to approximate the optimal integer

programming solution. Arora et al. [3] add odd-cycle inequalities to obtain a tighter

bound, 2− o(1). Similarly, Han et al. [53] use the solution of this new formulation and

apply some new graph reduction rules to approximate the optimal vertex cover with a

performance ratio 3/2 for special types of graphs. Asgeirsson and Stein [4, 5] propose

an algorithm that performs a set of reduction rules and guarantees 3/2 performance

ratio. However, their algorithm does not always guarantee a feasible solution. Han and

9

Punnen [52, 54] obtain a 2− [1/(1+σ)] approximation ratio where σ is an upper bound

on a measure related to weak edge of a graph which is defined as an edge with only one

end point in the optimal vertex cover. Dharwadker [33] proposes an algorithm which

performs a series of redundant vertex elimination operations and gives an approximation

ratio n − [n
1+∆

] where ∆ is the maximum degree of a vertex. Some of the researchers

focus on approximating MVC for the more generalized hypergraphs in which an edge

can connect any number of vertices. Okun [87] achieves an approximation bound (D−

1)[1 − ∆1/(1−D)] + 1, where the number of neighbors are bounded by D. Similarly,

Cardinal et al. [26] propose an approximation algorithm for dense hypergraphs with

bounded size k. Their algorithm guarantees an approximation bound k
1+(k−1) d

k∆

where

d is the average degree of a vertex. Semidefinite programming relaxations of the MVC

problem can also be used to achieve a good performance ratio. Halperin [51] gives a

factor of 2− (1−o(1))2 ln ln∆
ln∆

for the MVC problem. He also uses the similar techniques

to approximate k-uniform hypergraphs with a ratio of k− (1−o(1))k(k−1) ln ln∆
ln∆

for large

n. Similarly, Karakostas [66] adds triangle inequalities to the semidefinite programming

formulation of the MVC problem and obtains a tighter bound given as 2−Θ(1√
logn

).

2.2 Graph Query Processing

Studies related to query processing can be categorized into two groups: exact and

inexact graph matching algorithms. Exact graph matching algorithms are proposed

to solve either the graph isomorphism problem [32, 93] or the more general subgraph

isomorphism problem [32, 65, 74, 97, 99, 104, 109, 114].

A survey of recent graph pattern matching algorithms can be found in [43, 72].

Among those studies, we have studies applying index-based searching [97, 104]. Shang

[97] propose a two-phase graph matching algorithm. In the first phase, indexing helps

to decrease the number of candidates mappings. In the second phase, subgraph isomor-

phism computations are performed among the candidates. Similarly, Weber et al. [104]

propose an index-based graph matching algorithm. Permutations of vertex sequences

in an adjacency matrix is represented by a tree. Firstly, they assign each tree a label

and then a weight so that they can eliminate some vertex sequences from consideration.

10

In this way, the number of permutations for searching decreases considerably. Lipets

et al. [74] propose graph decomposition methods and subgraph isomorphism search is

performed individually for each subgraph separately. Moreover, Jamil [64] and Zhu et

al. [114] propose using new data structures and graph representations keeping topo-

logical data. Zhu et al. [114] and Jamil [64] and Yelbay et al. [109] propose vector

signature and graphlet representation, which keep topological data to help the detect

the most similar vertices between the nodes of query and database graphs. Graphlet

representation uses the solution of the MHC problem to represent the data as a compact

form. Rivero and Jamil [91, 92], and Yelbay et al. [109] propose an algorithm using the

graphlet representation and searching over the hub nodes obtained by solving the MHC

problem. Rivero and Jamil [91, 92] show that solving the MHC problem increases the

efficiency of the graph query processing relative to its counterpart algorithms. Some

studies especially focus on labelled graph databases [56, 97, 112, 113]. These systems

pay particular attention to graph specific properties to increase the efficiency of graph

query processing and thus they each favor specific graph types, e.g., arbitrary, tree or

path type queries and graphs.

Some of the studies are specialized for planar graph databases constructed from

images [31]. Since hand-written or digital images may include noise, inexact graph

and/or subgraph isomorphism are used to respond to a query of databases constructed

from images. Images are first partitioned into regions. Each region is represented by a

vertex and two adjacent regions are linked by an edge. Dorn [36], Eppstein [37], Kukluk

[70], and Messmer and Bunke [80] apply planar graph decomposition techniques to find

subgraph and/or graph isomorphism. Eppstein [37] propose a polynomial algorithm

to solve the subgraph isomorphism in planar graphs. They use Baker’s decomposition

technique in [7] to partition a planar graph into a set of subgraphs. Each subgraph is

then solved by dynamic programming algorithm proposed in [7]. Jaja and Kosaraju

[63] and Gazit and Reif [46] use parallel processing for computing graph isomorphism.

Lingas [73] and Higuera et al. [58] focus on subgraph isomorphism for special types of

planar graphs, open graphs in which some faces are invisible. Open plane graphs are

generally used to represent an image that represents a robot moves in such a way that

11

the forbidden areas are labelled as invisible. Neuhaus et al. [86], Saux and Bunke [95],

and Yates and Valiente [107] propose inexact graph matching algorithms to identify not

the exact but the most similar graphs of images. Graph edit distance is computed as

a similarity measure. Abdulrahim and Misra [1], Baloch and Krim [10], and Saxena et

al. [96] develop graph and/or subgraph isomorphism algorithms for object recognition,

identifying an object by comparing it to a database of known objects. Moreover, some

studies focus on biometric identification of digital images such as faces, hand postures

and fingerprints. Chikkerur et al. [29], Isenor and Zaky [61], and Neuhaus and Bunke

[84, 85] propose several graph representation methods and graph matching algorithms

to identify a match in the fingerprint database. After filtering and removing the noise in

the images, each bifurcation point is represented by a vertex and vertices are connected

by an edge if there is a ridge between two two bifurcation points. Similar to other

image applications, graph edit distance is computed to find the set of best matches.

Moreover, Llados et al. [75] propose an algorithm for symbol recognition to measure

the similarity between two hand-written documents.

12

Chapter 3

MATHEMATICAL MODELING

”The formulation of the problem is often more essential than its solution, which may

be merely a matter of mathematical or experimental skill.”

Albert Einstein

In this chapter, we focus on mathematical programming models and their relax-

ations of the MHC problem. We give two binary integer programming (IP) formulations

as well as a novel quadratic integer programming formulation. We present the linear

programming relaxations of the first two binary integer programming models. Then, we

introduce a semidefinite programming relaxation obtained from the quadratic integer

programming model.

3.1 Mathematical Programming Formulations

In this section, we first prove that the MHC problem is one of the NP-hard problems in

the literature and also decision version of it, (MHC −D), belongs to the class of NP-

complete problems [44]. Then, we introduce mathematical programming formulations

and their relaxations. The definition of (MHC −D) and its proof is given as follows:

Definition 3.1 Given a graph G(V,E) and an integer n ≤ |V |, does there exist a

subset HC ⊆ V with |V | ≤ n such that for every edge (i, j) ∈ E, i ∈ HC or j ∈ HC

or there exists a vertex k ∈ HC such that both (i, k) ∈ E and (j, k) ∈ E.

13

Theorem 3.1 TheMHC −D problem is NP-complete.

Proof. Given a yes-instance and HC ′ ⊆ V with |HC ′| ≤ n, we can verify in

polynomial time that every edge in E is covered by HC ′. Thus, theMHC −D problem

is in NP. Poljak [88] proves that the MVC problem is NP-complete for triangle-free

graphs. Therefore, we now complete the proof by a reduction from the MVC problem

on triangle-free graphs. In triangle-free graphs, for all (i, j) ∈ E there does not exist

a vertex k such that (i, k) ∈ E and (j, k) ∈ E. Thus, either i or j must be in HC ′ to

cover the edge (i, j). Consequently, the MHC and the MVC of a graph are equivalent

in this class of graphs. 2

Our first formulation is a set covering formulation of MHC introduced in [109].

If an edge corresponds to an item, and a set is defined for each vertex whose elements

are the edges covered by that vertex, then the connection between the set covering and

MHC can easily be established. This mathematical programming formulation is given

as follows:

minimize
∑

j∈V
xj , (3.1)

subject to xi + xj +
∑

k∈K(i,j)

xk ≥ 1, (i, j) ∈ E, (3.2)

xj ∈ {0, 1}, j ∈ V. (3.3)

Here, xj is a binary variable, which is equal to 1 when vertex j is selected. For (i, j) ∈ E,

K(i,j) denotes all those vertices k ∈ V such that (i, k) ∈ E and (j, k) ∈ E. The objective

function (3.1) minimizes the number of selected vertices. Constraints (3.2) ensure that

every edge is covered by at least one vertex in the hub cover. Finally, constraints (3.3)

enforce binary restrictions on the variables.

The well-known MVC problem is a special case of the MHC problem when the

cardinality of the set K(i,j) is zero; that is, |K(i,j)| = 0. The MVC problem has a

complementary problem formulation known as the maximum independent set problem.

This relationship inspired us to introduce a new optimization problem, which we call

14

the maximum triangular set (MTS) problem. The formal definition of MTS follows.

Definition 3.2 For a given graph G = (V,E), TS ⊆ V is a triangular set if and only

if for every edge (i, j) at most |K(i,j)| + 1 of the vertices in K̄(i,j) := K(i,j) ∪ {i, j} are

also in TS. The MTS problem is about finding a triangular set which has the maximum

number of vertices.

A careful reader may notice that MTS is equivalent to MHC in the sense that the

solution of one problem will yield a solution for the other one. This is in fact the case

as we prove in Lemma 3.1.

Lemma 3.1 In any graph G = (V,E), HC is a hub cover in G if and only if V \HC

is a triangular set or TS is a triangular set in G if and only if V \ TS is a hub cover.

Proof. Suppose TS is a triangular set on G. Then for any edge (i, j), at most

|K(i,j)|+1 of the vertices in K̄(i,j) are in TS. Since the number of vertices that can cover

edge (i, j) is equal to |K(i,j)| + 2, at least one of the vertices in S must be in V \ TS.

Thus, V \ TS must be a hub cover. Conversely, suppose V \ TS is a hub cover. Then,

at least one of the vertices in K̄(i,j) must be in V \ TS so that V \ TS is a hub cover.

That is for each edge, the cardinality of the subset of K̄(i,j) included in TS is less than

|K(i,j)|+ 2 and hence, TS is a triangular set. 2

The mathematical programming model of the MTS problem is given by

maximize
∑

j∈V
xj , (3.4)

subject to xi + xj +
∑

k∈K(i,j)

xk ≤ |K
(i,j)|+ 1, (i, j) ∈ E, (3.5)

xj ∈ {0, 1}, j ∈ V, (3.6)

where xj is a binary variable that is equal to 1 when vertex j is selected. The objective

function (3.4) maximizes the number of selected vertices. Constraints (3.5) ensure that

the solution is a TS as defined in Definition 3.2. The final set of constraints (3.6) ensure

the integrality of the binary variables.

15

Our last reformulation is a quadratic integer program, where each term is a prod-

uct of two binary variables. This formulation shall form the basis of the semidefinite

programming relaxation that we will introduce in Section 3.2:

minimize
∑

j∈V
(1 + y0yj)/2, (3.7)

subject to (y0 − yi)(y0 − yj) + (2y0 − yi − yj)
∑

k∈K(i,j)

(y0 − yk) ≤ 8|K(i,j)|, (i, j) ∈ E,

(3.8)

yj ∈ {+1,−1}, j ∈ V ∪ {0}.

(3.9)

The optimal solution of the MHC problem is given by those vertices j ∈ V such that

yj = y0. The set of constraints (3.8) is obtained after simplifying the following constraint

for each (i, j) ∈ E.

(y0 − yi)(y0 − yj) +
∑

k∈K(i,j)

(y0 − yi)(y0 − yk) +
∑

k∈K(i,j)

(y0 − yj)(y0 − yk) ≤ 8|K(i,j)|.

(3.10)

The following example illustrates relation (3.10) on a clique of three vertices.

Example 3.1 Suppose that we consider the clique consisting of the vertices i, j, and k.

Since in a clique, every two vertices are connected by an edge, the constraint (3.10) for

edge (i, j) becomes

(y0 − yi)(y0 − yj) + (y0 − yi)(y0 − yk) + (y0 − yj)(y0 − yk) ≤ 8. (3.11)

Given yi ∈ {−1,+1}, this constraint ensures that the solution y0 6= yi = yj = yk is

infeasible. Thus, at least one of the three vertices is selected.

Clearly, the mathematical programming models that we have introduced in this

section are very difficult to solve to optimality. Nonetheless, the relaxations of these

problems can be solved efficiently. These relaxations have two uses: (i) Their optimal

16

objective function values can be used to give bounds. Then, these bounds could be used

to increase the efficiency of exact methods. (ii) The optimal solutions of the relaxations

can be used to obtain feasible solutions for the original problem. In certain cases, these

solutions can even play a role to give approximation bounds. These relaxations are

given in the next section.

3.2 Mathematical Programming Relaxations

The mathematical programming relaxation is a modeling approach to replace a difficult

problem with easier one. In most cases, the solutions of the relaxed models are not

feasible for the original problem. Then, one needs to resort to rounding heuristics.

In this section, we focus on linear and semidefinite programming relaxations. In next

chapter, we present several rounding heuristics using those relaxations.

3.2.1 Linear Programming Relaxation

The linear programming (LP) relaxation is obtained simply by replacing the binary

constraints on the variables with the inequalities 0 ≤ xj ≤ 1. We relax the integrality

constraint in models (3.1)-(3.3) and (3.4)-(3.6) and obtain LP models for the MHC and

the MTS problems that we shall refer to as LP1 and LP2, respectively.

Associated with LP1, there is a corresponding dual formulation given is as follows:

maximize
∑

(i,j)∈E
y(i,j), (3.12)

subject to
∑

(i,j)∈E
y(i,j) +

∑

(j,i)∈E
y(j,i) +

∑

j∈K(i,k)

y(i,k) ≤ 1, j ∈ V, (3.13)

y(i,j) ≥ 0, (i, j) ∈ E, (3.14)

where y(i,j) is a dual variable corresponding to the coverage constraint for edge (i, j).

17

3.2.2 Semidefinite Programming Relaxation

Semidefinite programming (SDP) is about optimizing a linear function of a symmetric

matrix over the cone of positive semidefinite matrices. LP is a special case of SDP.

Today, many NP-hard optimization problems have semidefinite relaxations. The im-

portant point is that very good approximation bounds can be obtained after solving

the SDP relaxations of hard combinatorial problems [47, 51, 66].

Before introducing the SDP relaxation, we first remove the integrality constraint

from (3.7)-(3.9) and obtain

minimize
∑

j∈V

(1 + y0yj)/2, (3.15)

subject to (y0 − yi)(y0 − yj) + (2y0 − yi − yj)
∑

k∈K(i,j)

(y0 − yk) ≤ 8|K(i,j)|, (i, j) ∈ E, (3.16)

y2j = 1, j ∈ V ∪ {0}. (3.17)

We next introduce the matrix variable Y = yyT , where y is the vector consisting of

components y0 and yi, i ∈ V . We also define A • B :=trace(ATB). Using now this

notation, we can give the following equivalent formulation:

minimize C •Y (3.18)

subject to A(i,j) •Y ≤ 8|K(i,j)|, (i, j) ∈ E, (3.19)

diag(Y) = e, (3.20)

Y � 0, (3.21)

rank(Y) = 1, (3.22)

where C and A(i,j) are symmetric matrices, e is the vector of ones and Y � 0 means

that the matrix Y is positive definite. Before specifying C and A(i,j), let us relax the

18

constraint (3.22) and obtain the SDP relaxation of the MHC problem given by

minimize C •Y (3.23)

subject to A(i,j) •Y ≤ 8|K(i,j)|, (i, j) ∈ E, (3.24)

diag(Y) = e, (3.25)

Y � 0. (3.26)

The symmetric matrices in the SDP relaxation are defined as follows: Let Cmn

denote the components of the matrix C. Then,

Cmn =



















1/4, if m = 0 and n ∈ V ;

1/4, if m ∈ V and n = 0;

0, otherwise.

When it comes to the matrix A(i,j), we observe that

(y0 − yi)(y0 − yj) = M • yyT ,

where M is a symmetric matrix and its nonzero components are given by

M00 = 1, M0i = Mi0 = M0j = Mj0 = −1/2, Mij = Mji = 1/2.

Note for a given (i, j) ∈ E that the constraint (3.10) is constructed by summing up

matrices like M above. Consequently, the matrix A(i,j) also becomes a symmetric

matrix.

Formally, we write Y = VTV, where the columns of V are given by vm, m ∈

19

V ∪ {0}. Then, we obtain,

minimize
∑

m,n

Cmnv
T
mvn (3.27)

subject to
∑

m,n

A(i,j)
mn vT

mvn ≤ 8|K(i,j)|, (i, j) ∈ E, (3.28)

vT
mvn = 1, m ∈ V ∪ {0}, (3.29)

vm ∈ R
|V |+1, m ∈ V ∪ {0}. (3.30)

20

Chapter 4

SOLUTION METHODS

“If I had 60 minutes to solve a problem, I’d spend 55 minutes defining it and 5

minutes solving it”.

Albert Einstein

This chapter provides an overview of the solution methods for the MHC problem.

The first chapter summarizes the solution methods proposed for the planar graphs

which have many applications in graph query processing. The second chapter is about

the algorithms proposed for the problems that share similar mathematical program-

ming formulations with the MHC problem. We present some computational results to

demonstrate the performance of those solution methods on the MHC problem. Third

section introduces some rounding algorithms to solve the MHC problem on general

graphs.

4.1 Planar Graphs

In this section, we focus on planar graphs for they appear in various graph query pro-

cessing applications. A planar graph is a graph that can be embedded in a plane in such

a way that no edges cross each other. Many graph databases in query processing satisfy

planarity condition that is common in diverse applications, such as; face recognition,

fingerprint identification, hand posture recognition, image classification, object recog-

nition, and so on. As an example, Figure 4.1 shows the planar graph representation of

a finger print. Each node in the graph represents a finger ridge pattern and the edges

21

are constructed according to the orientation of the ridges.

Figure 4.1: Graph representation of a fingerprint image [85]

MHC on planar graphs is NP-complete based on the fact that MVC is NP-

complete when restricted to triangle-free planar graphs [45]. In Chapter 3, we use the

equivalence of MHC and MVC in triangle-free graphs to prove the NP-completeness

of MHC for general graphs. We use the same argument to prove the the following

corollary.

Corollary 4.1 The MHC problem on planar graphs is NP-complete.

Proof. Given a yes-instance and HC ′ ⊆ V with |HC ′| ≤ n, we can verify

in polynomial time that every edge in E is covered by HC ′. Thus, the problem is in

NP. Minimum vertex cover problem is NP-complete when restricted to triangle-free

planar graphs [45]. In triangle-free planar graphs, for all (i, j) ∈ E there does not exist

a vertex k such that (i, k) ∈ E and (j, k) ∈ E. Thus, either i or j must be in HC ′

to cover the edge (i, j). Consequently, the MHC and the MVC of a planar graph are

equivalent in this class of graphs. 2

Similar to other problems that belong to the class of NP-complete problems,

unless NP = P, there are hard MHC instances that are intractable with the exact

methods. Therefore, we need to develop approximation algorithms with a performance

guarantee or heuristics to solve the MHC problem efficiently. In line with this purpose,

we discuss a well-known graph decomposition technique that partitions the graph into

a set of outerplanar graphs [7]. First, we introduce an algorithm which provides an

approximate solution with a proven performance ratio. We conduct a comprehensive

computational experiment to investigate the empirical performance of the algorithm.

Computational results demonstrate that the empirical performance of the algorithm

22

surpasses its guaranteed performance. We also apply the same decomposition approach

to develop a decomposition-based heuristic, which is much more efficient than the ap-

proximation algorithm in terms of computation time. Computational results also indi-

cate that the efficacy of the decomposition-based heuristic in terms of solution quality

is comparable to that of the approximation algorithm. Finally, we discuss a dynamic

programming (DP) algorithm to solve the MHC problem on outerplanar graphs to

optimality.

4.1.1 Approximation Algorithm

In this section, we make use of a general decomposition technique first proposed by

Baker [7]. Before discussing the technique, let us introduce some terminology used

throughout this section.

Some Definitions and Terminology: A face of a planar graph is a region bounded

by edges. A vertex of a planar graph is at level 1 if it is on the exterior face. A planar

embedding is k-level if it has no nodes of level greater than k. A graph is outerplanar

if it is a planar such that all of the vertices belong to the exterior face. A planar

embedding is said to be k-outerplanar if removing the vertices on the exterior face

results in a (k − 1)-outerplanar embedding. Every planar graph is k-outer planar for

some k. See Figure 4.2 for induced subgraph and planar embedding representations.

The graph decomposition technique can be applied to any planar graph whose

planar embedding and the set of vertices in its each level are known. In case they

are not known, one of the algorithms in the literature can be applied to obtain a

planar embedding [21, 60]. With the proposed technique, given a planar embedding

and a nonnegative number k, the planar graph is decomposed into a set of overlapping

(k+1)-outerplanar graphs such that the union of the optimal solutions of those graphs

gives a feasible solution to the original planar graph. The algorithm picks the best of

these solutions as its approximation to the optimal hub cover. Figure 4.3 and Figure

4.4 illustrate how the decomposition is applied to the problem shown in Figure 4.2a

when k = 2. The unions of the optimal solutions of the subgraphs in Figure 4.3 and

23

(a) The set of vertices in each level of
a planar graph. The vertices of each
level are represented by a different
color.

(b) A subgraph which is the union
of the subgraphs of the planar graph
in Figure 4.2a induced by levels 1,2,3
and 5,6,7

Figure 4.2: An 8-level planar graph embedding

Figure 4.4 provide two different hub covers. The algorithm selects the solution with

minimum cardinality as an approximate solution. Optimal solutions may be obtained

by solving the IP formulation (3.1)-(3.3) of each subproblem by using an off-the-shelf

solver like CPLEX.

(a) 1-3 (b) 3-5 (c) 5-7 (d) 7-8

Figure 4.3: The overlapping 3-outerplanar graphs when i = 1 and k = 2

The steps of the proposed decomposition and the solution approach are detailed

in Algorithm 4.1. The algorithm takes a planar embedding of a graph and the decom-

position parameter k as input and returns an approximate hub cover HCapprox. Let

Si
j be a (k + 1)-outerplanar graph induced by levels jk + i to (j + 1)k + i and S∗i

j is

the optimal solution of Si
j. A graph G′ is an induced graph of G if G′ is isomorphic to

a graph whose vertex set V ′ is a subset of the vertex set V of G, and whose edge set

E ′ consists of all those edges of G with both end vertices in V ′. For instance, Figures

24

(a) 1-2 (b) 2-4 (c) 4-6 (d) 6-8

Figure 4.4: The overlapping 3-outerplanar graphs when i = 2 and k = 2

4.3a-4.3d demonstrate S1
0 , S

1
1 , S

1
2 , S

1
3 for i = 1. In lines 5 to 13, for each partition,

Algorithm 4.1 iterates as follows: In line 8, a subgraph lying between boundary levels

jk + i and (j + 1)k + i is obtained. Then, in lines 9 and 10, the IP formulation of

that subgraph is solved and the solution is added to current partial feasible solution of

partition i denoted as HC i. When the algorithm exits the inner loop, a feasible MHC

is obtained for the partition i. After iterating for all partitions, in line 14, the solution

with minimum cardinality is selected as an approximate hub cover.

Algorithm 4.1 Planar Graph Approximation Algorithm

1: Input: A planar embedding of G, the vertices lying in each level, and k
2: Output: HCapprox

3: HC i ← ∅ for each i ∈ {1, 2, · · · , k}
4: HCapprox ← ∅
5: for i := 1 to k do
6: j ← 0
7: while (j + 1)k + ith level of G is available do
8: Obtain the subgraph, Si

j , induced by levels jk + i to (j + 1)k + i
9: Solve (3.1)-(3.3) for the subgraph Si

j and obtain the optimal solution, S∗i
j

10: HC i = HC i ∪ S∗i
j

11: j ← j + 1
12: end while
13: end for
14: Return HCapprox ← HCp, where HCp = argmin{|HC i| |1 ≤ i ≤ k}

The decomposition technique guarantees a feasible solution which is within a

factor of (k + 1)/k from the optimal solution for a given k, where k ≥ 1. Proposition

4.1 gives a formal proof of this statement.

25

Proposition 4.1 Algorithm 4.1 finds an approximate hub cover for a planar graph

which is at most (k + 1)/k optimal.

Proof. With the decomposition approach, the boundary levels of (k + 1)-

outerplanar graphs, i.e. the overlapping levels, partition the graph into k pieces. Let

Vi be the set of all vertices in the overlapping levels for each i, 1 ≤ i ≤ k. In Figure

4.2a, V1 and V2 are the vertices lying in levels 1, 3, 5, 7 and 2, 4, 6, 8, respectively,

when k = 2. Since the decomposition partitions the graph into k pieces, there exists at

least one partition i such that at most 1/k of the vertices in HCopt are included in Vi,

where HCopt is the optimal MHC in G. For each i, the union over j of the solutions

gives a hub cover for the whole graph. Since only the vertices in Vi are counted twice,

the cardinality of the solution is at most as follows:

|HCopt| ≤
⋃

j

S∗i
j ≤ |HCopt|+ |HCopt|/k ≤ (k + 1)|HCopt|/k. (4.1)

This completes the proof. 2

Computational Considerations. Notice that the decomposition technique splits

the problem into a set of subproblems that are independent from each other. This

structure of the algorithm enables us to use a parallel implementation to solve the sub-

problems concurrently. Such an implementation not only saves a considerable amount

of computation time but it also allows handling extremely large problems for which

even storing the graph in computer memory is a big burden.

Algorithm 4.1 generates feasible solutions that are obtained by taking the union

of the optimal solutions of the subproblems. We observe that, if the subproblems

have alternate optimal solutions, then the cardinality of the feasible solution may not

be unique. Depending on the alternate optimal solution selected for each subgraph,

the union, that is the cardinality of the solution, may change. Therefore, we added a

subroutine to decrease the cardinality of the solution by decreasing the double coverages

in the levels between two neighboring subproblems. The subroutine checks the optimal

solution of the subproblem j and then perturbs the objective function coefficients of the

26

neighboring subproblem (j +1) before solving it. The objective function coefficients of

the variables that are optimal in the jth subproblem are set to 1 − ǫ in the (j + 1)th

subproblem where ǫ is a small non-negative number between 0 and 1. The subroutine

helps neighboring subproblems generate similar optimal solutions, if there exists such

an optimal solution.

Next comes the fast heuristic that we mentioned at the beginning of this chapter.

The computation time of the approximation algorithm increases with k. As an alter-

nate approach, we propose a decomposition-based heuristic which selects a partition i

randomly among k different partitions. Then, we solve the subproblems resulting from

partition i and take the union of the optimal solutions of those subproblems. The

decomposition-based heuristic does not guarantee a performance ratio but it provides a

feasible solution whose computation time is 1/k of that of the approximation algorithm.

Numerical Experiments. Approximation algorithms provide solutions with proven

performance guarantees for computationally intractable problems. However, the bounds

suggested by the theory are usually quite conservative. In this section, we conduct a

set of experiments to compare the theoretical bound (1 + 1/k) against the empirical

performance of Algorithm 4.1. We also test how well the decomposition-based heuristic

performs.

Before delving into the details, let us define the instances and the experimental

setup. The proposed approximation algorithm and the decomposition-based heuristic

were tested on synthetically generated planar graphs with known planar embeddings.

Our problem set includes 20 planar graphs with different sizes from small to large.

The numbers of vertices and edges range from several thousands to a million. The

number of levels, on the other hand, ranges from 100 to 5,000. Optimal IP solutions

were obtained by IBM ILOG CPLEX Optimization Studio 12.6 running on a personal

computer with Intel Xeon CPU E5-2630 and 64 GB of RAM. The upper limit on the

solution time is set to 3,600 seconds for the CPLEX solver. The batch processing of the

instances is carried out through C++ scripts. We used C++ libraries named Boost

Asio and Thread to execute the algorithm in parallel.

27

Figure 4.5 shows how the empirical and theoretical performances of the approxi-

mation algorithm and the decomposition-based heuristic change with k. The theoretical

performance of the approximation algorithm improves with increasing k and the opti-

mality gap approaches 0 as k tends to infinity. It also demonstrates that the optimality

gap of the approximation algorithm is far better than the theoretical gap 1/k. For each

value of k, we plot the minimum, average and maximum optimality gap observed over

all instances versus the theoretical approximation ratio. These figures depict that when

we increase k, both the empirical and theoretical performances of the algorithms get

close to each other. Therefore, the rate of overestimation decreases considerably for

large k. The results also indicate that even though the decomposition-based heuristic

does not prove a theoretical performance bound, the optimality gaps are lower than

the theoretical gap provided by the approximation algorithm. However, the maximum

optimality gaps of the decomposition-based heuristic are slightly larger than that of the

approximation algorithm.

Figure 4.6 compares the performances of CPLEX and the approximation algorithm

in terms of solution time for different values of k. The approximation algorithm can

return a feasible solution with a much less computational effort for many k values com-

pared to CPLEX. Recall that k determines the number of levels in each subproblem so it

affects the subproblem size. As expected, the empirical performance of the algorithm

in terms of solution quality increases with k at the expense of high computation times.

Therefore, it is very critical to determine the best value of k. The value of k should be

large enough for good approximation but it should be less than a threshold value not

to exceed the solution time of CPLEX. Figure 4.6 indicates that for small size instances,

CPLEX outperforms the approximation algorithm when k is larger than 7. Those in-

stances are solved to optimality within the time limit. Therefore, we especially focus

on large problems for which CPLEX could not find an optimal solution within the time

limit. Figure 4.6demonstrates that for k values larger than 20, the solution time for

CPLEX is less than that of the approximation algorithm. Overall, k = 20 seems like a

compromise value for this set of instances.

Figure 4.7 compares the performances of the approximation algorithm and the

28

decomposition-based heuristic in terms of both solution quality and computation time

(in seconds). Despite the fact that our heuristic does not guarantee a performance

bound, the results demonstrate that the optimality gaps could lower than the theo-

retical gap. As seen in Figure 4.7a, the solution quality is comparable to that of the

approximation algorithm. Since the number of feasible solutions computed by the ap-

proximation algorithm increases with k, we need to invest much more computational

effort for the approximation algorithm than the decomposition-based heuristic. There-

fore, as seen in Figure 4.7b, the approximation algorithm is clearly outperformed by

the decomposition-based heuristic in terms of solution time. The decomposition-based

heuristic returns a feasible solution whose solution time is 1/k that of the approxi-

mation algorithm. Therefore, as seen in Figure 4.7b, increasing k also increases the

performance gap between the approximation algorithm and the heuristic. The details

of the experimental results can be seen in Tables B.8 and B.10 in Appendix B.

4.1.2 Dynamic Programming Algorithm

In this section, we discuss a DP algorithm to solve both 1-level and more generalized k-

level outerplanar graphs, which are obtained by planar graph decomposition technique

aforementioned in Section 4.1.1. The algorithm is O(8kn)-time algorithm [7]. If k =

⌈clog log n⌉ or k = ⌈clogn⌉, where n is the number of nodes and c is some constant, we

get a polynomial time approximation algorithm.

DP Algorithm for Solving 1-Level Outerplanar Graphs We use the tree repre-

sentation of a planar embedding of a graph and a modified version of the DP algorithm

proposed in [7] to solve the MHC problem on outerplanar graphs to optimality. Each

outerplanar graph can be represented as a rooted tree Ḡ such that each leaf node

represents an external edge and every other node of the tree represents a face of the

outerplanar graph. Throughout the section, we use node for the tree and vertex for the

graph to avoid confusion. Here are the steps to obtain Ḡ from G.

29

Algorithm 4.2 Algorithm to Convert a Planar Graph into a Rooted Tree

1: Replace each bridge (x, y) by two edges between x and y to convert it to a face. A
bridge is an edge whose deletion disconnects the graph.

2: Put a node in each interior face and on each external edge of the graph.
3: Draw an edge from each face node that represents an internal face f to either an

adjacent face or an exterior edge.
4: Label a leaf node (x, y) as the vertices x and y that are incident to edge (x, y).
5: Label a face node as the first and last nodes in its children’s labels. Select one of

the face node as a root node and label it as x = y.
6: Write the children of a face node in a sequence as a directed walk of exterior edges

in a counterclockwise direction from x and y.
7: If the graph includes a cutpoint, draw an edge between two face nodes that share the

cutpoint. Cutpoint (vertex 3 in Figure 4.8a) is a vertex whose deletion disconnects
the graph. In this case, there are some nodes labeled (x, y) other than the root
node such that x = y. The label means that there are two faces sharing a cutpoint
x.

(a)

1,1

1,2 2,3 3,3

3,5 5,4 4,3

3,1

(b)

Figure 4.8: An outerplanar graph and the corresponding tree

Figure 4.8a and Figure 4.8b show an outerplanar graph and its tree representation.

The algorithm starts from the leaf nodes and iterates until reaching the root node, (1,1)

in Figure 4.8b. At each iteration, the complementary problem MTS is solved for the

subgraph rooted at (x, y) due to its simplicity to track the feasibility. DP table keeps

a set of bit pairs for each node (x, y) in which represents whether node x and y are

included in MTS or not. Also, it keeps the number of nodes in MTS for the subgraph

that is rooted at (x, y), which is denoted as V (x, y). For instance, Table 4.1 shows a

DP table that represents the tree node (1, 2). First row says that only the vertex 1

is in the solution for the subgraph representing the edge (1,2). The cardinality of the

30

solution is 1 and the solution is feasible.

DP starts from the leaf nodes and continues upwards by merging the tables. At

each iteration, it merges the DP tables rooted at (x, y) and (y, z) and obtain a table

rooted at (x, z). Suppose (b1, b2) and (b2, b3) represent the bit pairs in tables (x, y)

and (y, z), respectively. The value of the bit pair (b1, b3) in table (x, z) is computed as

follows:

V (b1, b3) = V̂ (x, y) + V (b2, b3)− b2

where V̂ (x, y) is the maximum value of all feasible bit pairs (b1, b2) in table (x, y) for b1,

V (b2, b3) is the value of bit pair (b2, b3) in table (y, z) and b2 is the bit that maximizes

V̂ (x, y).

Table 4.2 shows how to solve 1-level outerplanar graph to optimality for the MHC

problem. The leftmost, middle and the rightmost blocks represent the DP tables rooted

at (x, y), (y, z), and (x, z), respectively. The first entry in the table (3,4) points out the

bit pair (0,0) obtained by merging the tables (3, 5) and (5, 4). It can be easily seen that

b1 = 0, V̂ (3, 5) = 1, b2 = 1, and V (0, 0) = 1. A procedure named adjust identifies the

feasibility of each bit pair. A bit pair (b1, b3) is tagged as infeasible if both (b1, b2) and

(b2, b3) are (1, 1) and the bits b1, b2 and b3 results in a solution such that all the vertices

in a triangle are in MTS. The pairs (1, 0) and (0, 1) are also tagged as infeasible for the

DP table rooted at (x, x). If the label of a table is (x, x), adjust procedure decreases

the value of the bit pair (1, 1) by one to avoid counting the same bit twice. Infeasible

entries in the tables are marked by ✗. The maximum value of the root node (1, 1) is

4 which is the cardinality of optimal MTS. Optimal solution is found by backtracking

over the DP tables (see colored rows). For example, the root node says that there are

four nodes in MTS and 1 is included. Given vertex 1 is selected, Table (1, 3) says that 3

is not included (maximum of line 3 and line 4 in Table (1, 3)). The solution vector after

backtracking operations is (1,1,0,1,1); that is, the vertices 1,2,4, and 5 are in MTS. The

complement of the solution, (0,0,1,0,0), is the optimal solution of the MHC problem.

31

Table 4.1: DP table for tree node (1,2)
(1,2)

1 2 V(1,2) Feasible?
1 0 1 X

0 1 1 X

0 0 0 X

1 1 2 X

Table 4.2: DP iterations for MHC problem for the tree in Figure 4.8b
(3,5) (5,4) (3,4)

0 0 0 ✓ 0 0 0 ✓ 0 0 1 ✓

1 0 1 ✓ 1 0 1 ✓ 1 0 2 ✓

0 1 1 ✓ 0 1 1 ✓ 0 1 2 ✓

1 1 2 ✓ 1 1 2 ✓ 1 1 3 ✗

(3,4) (4,3) (3,3)
0 0 1 ✓ 0 0 0 ✓ 0 0 2 ✓

1 0 2 ✓ 1 0 2 ✓ 1 0 3 ✗

0 1 2 ✓ 0 1 1 ✓ 0 1 1 ✗

1 1 3 ✗ 1 1 1 ✓ 1 1 2 ✓

(1,2) (2,3) (1,3)
0 0 0 ✓ 0 0 0 ✓ 0 0 1 ✓

1 0 1 ✓ 1 0 1 ✓ 1 0 2 ✓

0 1 1 ✓ 0 1 1 ✓ 0 1 1 ✓

1 1 2 ✓ 1 1 2 ✓ 1 1 3 ✗

(1,3) (3,3) (1,3)
0 0 1 ✓ 0 0 2 ✓ 0 0 2 ✗

1 0 2 ✓ 1 0 3 ✗ 1 0 3 ✓

0 1 1 ✓ 0 1 1 ✗ 0 1 3 ✓

1 1 3 ✗ 1 1 2 ✓ 1 1 4 ✗

(1,3) (3,1) (1,1))
0 0 2 ✗ 0 0 0 ✓ 0 0 3 ✓

1 0 3 ✓ 1 0 2 ✗ 1 0 4 ✗

0 1 3 ✓ 0 1 1 ✓ 0 1 3 ✗

1 1 4 ✗ 1 1 1 ✓ 1 1 4 ✓

32

DP Algorithm for Solving k-Outerplanar Graphs In the previous section, we

discussed a DP algorithm to solve the MHC problem on outerplanar graphs to opti-

mality. Here, we generalize the algorithm for k-outerplanar graphs. How to partition

the graph affects the size of the DP tables so Baker [7] proposes the decomposition

technique that ensures that the size of the table does not exceed 22k. Therefore, we

partition the graph into slices in such a way that each slice has at most 2k boundary

nodes, one node for each level. Then, we iteratively merge the slices until obtaining the

whole graph.

Similar to an outerplanar graph, a k-outerplanar graph can also be represented as

a rooted tree. However, how the root and the leftmost child are selected for a tree at

level i > 1 have to be discussed. Suppose, a level i component C is enclosed by a level

i− 1 face. Then, the root node of level i and the leftmost child are determined based

on a triangulation between level i and level i − 1. For example Figure 4.9a and 4.9b

demonstrate a 2-outerplanar graph and triangulations between the first and the second

level. Suppose the node at level i− 1 has a label (x, y), then the root node of the tree

at level i would be (z, z) where z is adjacent to x in tree. If x = y then the z can be

any vertex adjacent to x, otherwise z is the third vertex of the triangle formed by x

and y. For example, suppose C is the level 2 component with the vertices 1-5 which

enclosed by the face f , including the vertices A to D in Figure 4.9b. If the label of the

root node of the first level is (A,B), then the label of root node of the second level tree

would be (3,3). If it is (A,A), then the label of the root at the second level can be any

of the pairs (1,1), (2,2) or (3,3). If C includes a single vertex, then the tree includes

only the root, otherwise the leftmost child is (z, u) where (z, u) is the first exterior edge

of C counterclockwise around z from (z, x) in the tree.

DP algorithm iteratively merges the tables of subgraphs called slices. For each

node in a tree, there is a level-i slice including the nodes in its label as well as some

boundary nodes, one for each level from 1 to i. However, a slice at a level may include

higher level boundary vertices when the vertices at that level encloses a component

from higher levels. As we mentioned, DP algorithm merges the tables of slices until

reaching the root node at the first level where the original graph is obtained. Figure 4.11

33

illustrates the slices of the nodes labeled as (1,2) and (3,1). Dashed lines represent the

connection to the boundary nodes when there does not exist any edge to the boundary

nodes. Here, we give the informal definition of the slices. Let v be a tree node labeled

(x, y).

(a) If v represents a level i face with no enclosed vertices, i ≥ 1, its slice is the union

of the slices of its children, plus (x, y).

(b) If v represents a level i face enclosing a level i+ 1 component C, its slice is that

of the root of the tree for C plus (x, y).

(c) If v represents a level 1 leaf, its slice is the subgraph consisting of (x, y).

(d) If v represents a level i leaf, its slice includes (x, y), edges from x and y to a level i

nodes and the slices computed recursively for appropriate level i trees (appropriate

means no edge cross the slice boundaries)

Baker [7] defines a function that determines which boundary nodes will be included

for each tree node. A details about the formal definition of the slices in terms of the

function value value can be seen in [7]. Slice definition provides that two successive

slices that will be merged share a common boundary, i.e., the right boundary of a tree

node is equal to the left boundary of the successive tree node, so the original graph is

obtained by combining the slices like building a puzzle. Figure 4.1.2 shows the slices of

each tree node. The slice of the root node at the first level is the original graph.

Here, we discuss how to solve the MHC problem on a k−level outerplanar graph

to optimality. DP table of an i-level slice keeps at most 22i elements, one for each

subset of 2i boundary nodes. The value of the table is either the number of vertices

in MTS including the subgraph represented by that slice or infeasible if the solution

violates the feasibility. The table includes one bit for each boundary node and one

bit for the value of the table. For example, the first block in Table 4.3, keeps the all

possible combinations of the values that the vertex 3, C or 5 can take. The first and

next two entries of a block represent the bit pairs that shows whether the nodes in left

and the right boundaries (3-C and 5-C) of a slice in MTS or not. The fifth column in

34

a block shows the cardinality of MTS for the subgraph represented by that slice. For

example, fourth entry of the table (3, C, 5, C) says that only the vertex 5 is in MTS.

Since only 5 is in the optimal solution, the value of the table is 1. While merging

the table, we use the same formula described in the previous section to compute the

value of merged table. However, b1, b2 and b3 are the set of boundary nodes rather

than individual vertices. Let’s calculate the third entry of the slice (3,4) represented

by the table (3, C, 4, D). First we search the table (3, C, 5, C) that maximizes the value

of that table when b1 = (0, 1). The maximum value of the table is 2 and b2 that

maximizes the table is (1, 1) (15th entry of table (3, C, 5, C)). We merge (0,1,1,1) and

(1,1,0,0) and obtain the third entry (0,1,0,0). The value of the entry (0,1,0,0) is equal

to the value of the table (3, C, 5, C) for the entry (0, 1, 1, 1) plus the value of the table

(5, C, 4, D) for the entry (1, 1, 0, 0) minus 2 (since the number of vertices included in b2

is 2). The largest entry in table (1, A, 1, A) gives the optimal MTS. The vertices in the

optimal MHC can be found as 3, B, C by following the underlined entries and taking

the complement of MTS.

Algorithm 4.3 summarizes the iterations of the approximation algorithm when

the subproblems are solved by the DP algorithm. Notice that Algorithms 4.1 and 4.3

are very similar. The only difference is that the latter implements the DP algorithm

rather than solving the IP model (3.1)-(3.3) by CPLEX solver.

35

Table 4.3: DP iterations for merging tables (3, C, 5, C) and (5, C, 4, D) to obtain table
(3, C, 4, D)

(3,C,5,C) (5,C,4,D) (3,C,4,D)
0 0 0 0 0 ✓ 0 0 0 0 0 ✓ 0 0 0 0 1 ✓

1 0 0 0 1 ✓ 1 0 0 0 1 ✓ 1 0 0 0 2 ✓

0 1 0 0 1 ✗ 0 1 0 0 1 ✓ 0 1 0 0 2 ✓

0 0 1 0 1 ✓ 0 0 1 0 1 ✓ 0 0 1 0 2 ✓

0 0 0 1 1 ✗ 0 0 0 1 1 ✓ 0 0 0 1 2 ✓

1 1 0 0 2 ✗ 1 1 0 0 2 ✓ 1 1 0 0 3 ✓

1 0 1 0 2 ✓ 1 0 1 0 2 ✓ 1 0 1 0 3 ✗

1 0 0 1 2 ✗ 1 0 0 1 2 ✓ 1 0 0 1 3 ✓

0 1 1 0 2 ✗ 0 1 1 0 2 ✓ 0 1 1 0 3 ✓

0 1 0 1 1 ✓ 0 1 0 1 2 ✓ 0 1 0 1 3 ✓

0 0 1 1 2 ✗ 0 0 1 1 2 ✓ 0 0 1 1 3 ✓

1 1 1 0 3 ✗ 1 1 1 0 3 ✓ 1 1 1 0 4 ✗

1 0 1 1 3 ✗ 1 0 1 1 3 ✓ 1 0 1 1 4 ✗

1 1 0 1 2 ✓ 1 1 0 1 3 ✓ 1 1 0 1 4 ✗

0 1 1 1 2 ✓ 0 1 1 1 3 ✓ 0 1 1 1 4 ✓

1 1 1 1 3 ✓ 1 1 1 1 4 ✓ 1 1 1 1 5 ✗

Table 4.4: DP iterations for merging tables (3, C, 4, D) and (4, D, 3, B) to obtain table
(3, C, 3, B)

(3,C,4,D) (4,D,3,B) (3,C,3,B)
0 0 0 0 1 ✓ 0 0 0 0 0 ✓ 0 0 0 0 3 ✓

1 0 0 0 2 ✓ 1 0 0 0 1 ✓ 1 0 0 0 3 ✗

0 1 0 0 2 ✓ 0 1 0 0 1 ✓ 0 1 0 0 3 ✓

0 0 1 0 2 ✓ 0 0 1 0 1 ✓ 0 0 1 0 4 ✗

0 0 0 1 2 ✓ 0 0 0 1 1 ✓ 0 0 0 1 4 ✓

1 1 0 0 3 ✓ 1 1 0 0 2 ✓ 1 1 0 0 3 ✗

1 0 1 0 3 ✗ 1 0 1 0 2 ✓ 1 0 1 0 3 ✓

1 0 0 1 3 ✓ 1 0 0 1 2 ✓ 1 0 0 1 4 ✗

0 1 1 0 3 ✓ 0 1 1 0 2 ✓ 0 1 1 0 4 ✗

0 1 0 1 3 ✓ 0 1 0 1 2 ✓ 0 1 0 1 4 ✓

0 0 1 1 3 ✓ 0 0 1 1 2 ✓ 0 0 1 1 5 ✗

1 1 1 0 4 ✗ 1 1 1 0 3 ✓ 1 1 1 0 4 ✓

1 0 1 1 4 ✗ 1 0 1 1 3 ✓ 1 0 1 1 5 ✓

1 1 0 1 4 ✗ 1 1 0 1 3 ✓ 1 1 0 1 4 ✗

0 1 1 1 4 ✓ 0 1 1 1 3 ✓ 0 1 1 1 5 ✗

1 1 1 1 5 ✗ 1 1 1 1 4 ✓ 1 1 1 1 5 ✓

36

Table 4.5: DP iterations for merging tables (1, A, 2, A) and (2, A, 3, C) to obtain table
(1, A, 3, C)

(1,A,2,A) (2,A,3,C) (1,A,3,C)
0 0 0 0 0 ✓ 0 0 0 0 0 ✓ 0 0 0 0 1 ✓

1 0 0 0 1 ✓ 1 0 0 0 1 ✓ 1 0 0 0 2 ✓

0 1 0 0 1 ✗ 0 1 0 0 1 ✓ 0 1 0 0 2 ✓

0 0 1 0 1 ✓ 0 0 1 0 1 ✓ 0 0 1 0 2 ✓

0 0 0 1 1 ✗ 0 0 0 1 1 ✓ 0 0 0 1 2 ✓

1 1 0 0 2 ✗ 1 1 0 0 2 ✓ 1 1 0 0 3 ✓

1 0 1 0 2 ✓ 1 0 1 0 2 ✓ 1 0 1 0 3 ✗

1 0 0 1 2 ✗ 1 0 0 1 2 ✓ 1 0 0 1 3 ✓

0 1 1 0 2 ✗ 0 1 1 0 2 ✓ 0 1 1 0 3 ✓

0 1 0 1 1 ✓ 0 1 0 1 2 ✓ 0 1 0 1 3 ✓

0 0 1 1 2 ✗ 0 0 1 1 2 ✓ 0 0 1 1 3 ✓

1 1 1 0 3 ✗ 1 1 1 0 3 ✓ 1 1 1 0 4 ✗

1 0 1 1 3 ✗ 1 0 1 1 3 ✓ 1 0 1 1 4 ✗

1 1 0 1 2 ✓ 1 1 0 1 3 ✓ 1 1 0 1 4 ✗

0 1 1 1 2 ✓ 0 1 1 1 3 ✓ 0 1 1 1 4 ✓

1 1 1 1 3 ✓ 1 1 1 1 4 ✓ 1 1 1 1 5 ✗

Table 4.6: DP iterations for merging tables (1, A, 3, C) and (3, C, 3, B) to obtain table
(1, A, 3, B)

(1,A,3,C) (3,C,3,B) (1,A,3,B)
0 0 0 0 1 ✓ 0 0 0 0 3 ✓ 0 0 0 0 4 ✗

1 0 0 0 2 ✓ 1 0 0 0 3 ✗ 1 0 0 0 5 ✓

0 1 0 0 2 ✓ 0 1 0 0 3 ✓ 0 1 0 0 5 ✗

0 0 1 0 2 ✓ 0 0 1 0 4 ✗ 0 0 1 0 4 ✓

0 0 0 1 2 ✓ 0 0 0 1 4 ✓ 0 0 0 1 5 ✗

1 1 0 0 3 ✓ 1 1 0 0 3 ✗ 1 1 0 0 6 ✓

1 0 1 0 3 ✗ 1 0 1 0 3 ✓ 1 0 1 0 6 ✗

1 0 0 1 3 ✓ 1 0 0 1 4 ✗ 1 0 0 1 6 ✗

0 1 1 0 3 ✓ 0 1 1 0 4 ✗ 0 1 1 0 5 ✓

0 1 0 1 3 ✓ 0 1 0 1 4 ✓ 0 1 0 1 6 ✗

0 0 1 1 3 ✓ 0 0 1 1 5 ✗ 0 0 1 1 5 ✓

1 1 1 0 4 ✗ 1 1 1 0 4 ✓ 1 1 1 0 7 ✗

1 0 1 1 4 ✗ 1 0 1 1 5 ✓ 1 0 1 1 7 ✗

1 1 0 1 4 ✗ 1 1 0 1 4 ✗ 1 1 0 1 7 ✗

0 1 1 1 4 ✓ 0 1 1 1 5 ✗ 0 1 1 1 7 ✗

1 1 1 1 5 ✗ 1 1 1 1 5 ✓ 1 1 1 1 8 ✗

37

Table 4.7: DP iterations for merging tables (1, A, 3, B) and (3, B, 1, A) to obtain table
(1, A, 1, A)

(1,A,3,B) (3,B,1,A) (1,A,1,A)
0 0 0 0 4 ✗ 0 0 0 0 0 ✓ 0 0 0 0 4 ✓

1 0 0 0 5 ✓ 1 0 0 0 1 ✓ 1 0 0 0 5 ✗

0 1 0 0 5 ✗ 0 1 0 0 1 ✓ 0 1 0 0 5 ✓

0 0 1 0 4 ✓ 0 0 1 0 1 ✓ 0 0 1 0 5 ✗

0 0 0 1 5 ✗ 0 0 0 1 1 ✓ 0 0 0 1 5 ✗

1 1 0 0 6 ✓ 1 1 0 0 2 ✓ 1 1 0 0 6 ✗

1 0 1 0 6 ✗ 1 0 1 0 2 ✓ 1 0 1 0 5 ✓

1 0 0 1 6 ✗ 1 0 0 1 2 ✓ 1 0 0 1 6 ✗

0 1 1 0 5 ✓ 0 1 1 0 2 ✓ 0 1 1 0 6 ✗

0 1 0 1 6 ✗ 0 1 0 1 2 ✓ 0 1 0 1 6 ✓

0 0 1 1 5 ✓ 0 0 1 1 2 ✓ 0 0 1 1 6 ✗

1 1 1 0 7 ✗ 1 1 1 0 3 ✓ 1 1 1 0 7 ✗

1 0 1 1 7 ✗ 1 0 1 1 3 ✓ 1 0 1 1 7 ✗

1 1 0 1 7 ✗ 1 1 0 1 3 ✓ 1 1 0 1 7 ✗

0 1 1 1 7 ✗ 0 1 1 1 3 ✓ 0 1 1 1 7 ✗

1 1 1 1 8 ✗ 1 1 1 1 4 ✓ 1 1 1 1 6 ✓

Algorithm 4.3 DP Algorithm for Planar Graphs

1: Input: A planar embedding of G, the vertices lying in each level, and k
2: Output: HCapprox

3: HC i ← ∅ for each i ∈ {1, 2, · · · , k}
4: HCapprox ← ∅
5: for i := 1 to k do
6: j ← 0
7: while (j + 1)k + ith level of G is available do
8: Obtain the subgraph, Si

j , induced by levels jk + i to (j + 1)k + i
9: Find the tree representation of Si

j

10: Obtain S∗i
j by implementing DP algorithm to Si

j

11: HC i = HC i ∪ S∗i
j

12: j ← j + 1
13: end while
14: end for
15: Return HCapprox ← HCp, where HCp = argmin{|HC i| |1 ≤ i ≤ k}

38

1 2 3 5 7 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

k

P
e

r
c
e

n
ta

g
e

 G
a

p

GapThr

MinGapApprox

AverGapApprox

MaxGapApprox

(a) Approximation Algorithm

1 52 3 7 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

k

P
e

r
c
e

n
ta

g
e

 G
a

p

GapThr

MinGapRnd

AverGapRnd

MaxGapRnd

(b) Decomposition-based Heuristic

Figure 4.5: Observed vs. theoretical approximation gaps obtained by both the approx-
imation algorithm and the decomposition-based heuristic

39

0 2 4 6 8 10 12 14 16 18 20

1

5

2

20

50

100

300

2,000

10,000

Instances

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
lo

g
)

CPLEX
k=1
k=2
k=3
k=5
k=7
k=10
k=15
k=20
k=25
k=30

Figure 4.6: Computation times of the approximation algorithm and CPLEX

40

k=1 k=2 k=3 k=5 k=7 k=10 k=15 k=20 k=25 k=30

0.1

0.2

1

3

10

30

100

P
e

rc
e

n
ta

g
e

 G
a

p

GapApprox

GapRnd

(a) Optimality gaps.

k=1 k=2 k=3 k=5 k=7 k=10 k=15 k=20 k=25 k=30
0,01

0.1

1

5

20

100

300

1,000

5,000

20,000

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
lo

g
)

TimeApprox

TimeRnd

(b) Computation time.

Figure 4.7: Percentage gaps and computation times of the approximation algorithm
and the decomposition-based heuristic

41

(a) (b)

Figure 4.9: A 2-level outerplanar graph and possible triangulations shown as dashed
lines

1,1

1,2 2,3 3,3

3,5 5,4 4,3

3,1

(a)

A,A

A,C C,D D,B B,A

(b)

Figure 4.10: Trees for the graph in Figure 4.9a

Figure 4.11: The slices for the second level tree nodes (1,2) and (3,1) for the graph in
Figure 4.9a

42

(a) Slices (3, C, 5, C), (5, C, 4, D), and (4, D, 3, B)

(b) Slices (3, C, 3, B) and (1, A, 2, A)

(c) Slices (1, A, 3, B) and (2, A, 3, C)

Figure 4.12: The slices at all level and for each tree node

43

4.2 Greedy Algorithms

In this section, we discuss two greedy algorithms, which are adapted from the vertex

cover literature. These algorithms return a feasible solution very quickly. We compare

the solutions of the greedy algorithms against the solutions obtained by a mathematical

programming-based heuristic originally proposed for the set covering problem.

Exact algorithm: The IP formulation (3.1)-(3.3) is solved by an off-the-shelf solver

to optimality. Since the MHC problem is shown to be NP-Hard, this approach may

have practical value only for small-to-medium-scale graphs. However, it sets a definitive

benchmark for comparing the performances of various heuristics.

Approximation and greedy algorithms: We implemented two different approxi-

mation algorithms. First algorithm selects the vertex with the highest degree at each

iteration. The degree of a vertex is defined as the number of adjacent neighbours. The

aim is to cover as many edges as possible. Next, all covered edges as well as the vertices

in the cover are removed from the graph. The algorithm ends when there is no un-

covered edge in the graph. The algorithm is called the H(∆)-approximation algorithm

(GR1) for the MVC problem. Here, ∆ is the maximum degree in the graph, and H(∆)

is evaluated by

H(∆) = 1 + 1/2 + . . .+ 1/∆.

The second algorithm (GR2), the 2-approximation algorithm, is an adaptation of [11]

originally proposed for computing a near-optimal solution for the MVC problem. Unlike

the previous algorithm, it selects an edge arbitrarily, then both vertices incident to that

edge are added to the cover.

Mathematical programming-based heuristics: Yelbay et al. [109] propose a

heuristic (MBH) that uses the dual information obtained from the LP relaxation of

the IP model of SCP. They show the efficacy of the heuristic on a large set of SCP

instances. In their work, the dual information is used to identify the most promising

columns and then form a restricted problem with those columns. Then, an integer

44

feasible solution is found by one of the two approaches. In the first approach (MBH),

the exact IP optimal solution is obtained by solving the restricted problem. In the

second approach, a METARAPS [71] local search heuristic (LSLP) is applied over

those promising columns. We use both of these approaches.

Experimental Setup. The NP-completeness of MHC speaks to the hardness of the

solvability in general. In this section, our goal is to design a set of experiments using dif-

ferent graph types, size and graph density parameters to study how the solvability and

the quality of MHC solutions depend on these parameters. The goal is to experimen-

tally identify problem classes for which available solutions are practical and acceptable,

and the classes for which new heuristic solutions are warranted. We therefore employ

different algorithms to show the trade-offs between optimality and computation time

(in seconds) over different graph types.

The optimal LP and IP solutions are obtained by ILOG IBM CPLEX 12.4 on a

personal computer with an Intel Core 2 Dual processor and 3.25 GB of RAM. In all

problem instances, the upper limit on the computation is set at 3,600 seconds. The

batch processing of the instances is carried out through simple C++ scripts. Our data

set includes a total of 830 instances. We have 5 different instances for each combination

of a graph type, size, and density parameter to be able to draw conclusions.

We have chosen to use the benchmark database graph instances in [93] and our

own synthetically generated data set for our numerical study. This is a very large

database of different graph types and sizes designed specifically to test the sophistication

of (sub)graph isomorphism algorithms. Since we are using subgraph isomorphism as

a basic vehicle for graph matching, the instances selected are thus representative of

the class of queries we are likely to handle when we solve the MHC problem. The

descriptions of the graph instances we have chosen from this collection are listed below.

a) Randomly connected graphs: A random graph is a graph that is generated by

a model that produces a probability distribution on the graph. In the literature,

there are several random graph models that produce different probability distri-

butions. Among these, we have two closely related Erdos Renyi random graph

45

models [8, 15]. In these models, the probability of having an edge between two

vertices is the same for all edges. Therefore, the generated graphs have no special

structure. In this class, the number of vertices range from 20 to 1000 (|V |=20,

60, 100, 200, 600, 1000). The parameter η denotes the probability of having an

edge between any pair of vertices. Thus, this parameter, in a sense, specifies the

sparsity of a graph. In the database, three different values of η (0.01, 0.05, and

0.10) are considered. Our data set includes a set of graphs of different sizes for

each value of η.

b) Bounded valence graphs: A bounded graph or a regular graph is a graph

such that all the vertices have the same degree (fixed valence). The sizes of the

instances are similar to those of the problem class (a). We use three different

values of valence – 3, 6 and 9 to obtain graphs of different size and valence.

Bounded valence graphs are generally employed in the modeling of molecular

structures.

c) Irregular bounded valence graphs: Some irregularities are added to bounded

valence graphs to obtain irregular bounded valence graphs. With this modifica-

tion, the average number of degree is again bounded but some of the vertices may

have higher degrees. The sizes of the instances are similar to those of problem

classes (a) and (b).

d) Regular meshes with 2D, 3D, and 4D: A mesh, lattice, or grid graph is a

graph whose drawing is embedded in some Euclidean space Rn. In this drawing,

incident vertices of each vertex have the same symmetrical tiling and the number

of incident vertices of each vertex is the same. In this class, the numbers of vertices

range from 16 to 1024, 27 to 1000, and 16 to 1296, respectively. Similar to the

problem classes (a), (b), and (c), we have a set of graphs for each combination of

size and dimension. 3D objects can be represented as 3D mesh graphs in object

recognition.

e) Irregular meshes: Irregularity comes from the addition of a certain number of

46

edges to the graph. The number of edges added to the graph is ρ × |V |, where

ρ ∈ {0.2, 0.4, 0.6}. The number of vertices is exactly the same as in problem class

(d).

f) Scale-free graphs: Many real networks are called as scale-free networks such as

social, biological, information and World Wide Web links. They follow a power-

law distribution of the form

P (k) ∼ βk−α,

where P (k) is the probability that a randomly selected vertex has exactly k edges,

β is the normalization constant, and 2 ≤ α ≤ 3 is a fixed parameter. The

value of the parameter α is approximately 2.72 for the World-Wide-Web. The

network generation process of scale-free networks is fundamentally different from

that of the random networks [14]. Batagelj [15] proposes a model based on so

called Preferential Attachment Process. In this model, new vertices added to

the graph are connected preferentially to high degree vertices. The probability

of being connected to a given vertex is proportional to its current degree. The

model requires to know the degree of each vertex in the graph to calculate the

probability of being linked. As an alternate model, Herrera and Saramaki [57, 94]

propose models that do not require such a global information. The models use

the principle of random walk. The vertices that are connected to a new added

vertex is determined by a random walk in the graph. The probability that a

random walk visits a high degree vertex is higher than that a low degree vertex so

the models maintain the power law degree distribution. We employed the scale-

free graph generator of C++ Boost Graph Library. The generator (Power Law

Out Degree algorithm) takes three inputs. These are the number or vertices, α

and β. Increasing the value of β increases the average degree of vertices. On

the other hand, increasing the value of α decreases the probability of observing

vertices with high degrees. The sizes of the instances range from 20 to 1000;

|V | ∈ {20, 60, 100, 200, 600, 1000} to be precise. We considered two values for α ∈

{1.5, 2.5} and three values of β ∈ {100×|V |, 200×|V |, 500×|V |}. Graphs in social

47

networks, protein-protein interaction networks, flight networks, and computer

networks are examples of this class.

We focus on analyzing and understanding the MHC solution methods on the

instances above in three different axes: (i) optimal solvability of MHC, (ii) quality

of the solutions, and (iii) computational cost of optimal solution. These analyses are

aimed at understanding which problem classes are inherently more difficult relative to

others so that depending on the application and query, a suitable algorithm can be

selected to compute MHC. We also discuss the factors that increase the complexity of

the problems. The details of the computational results can be seen in Appendix B,

Tables B.1-B.6.

Optimal Solvability of Minimum Hub Covers. Figure 4.12 shows how the op-

timal solution time of CPLEX, an exact method, varies depending on the problem size,

class, and structure. The x-axis and the y-axis represent the number of vertices and

the average computation time (in seconds), respectively. The right-most data point on

a line shows the size of the largest instance that can be solved to optimality in a group.

In general, its performance is good for small to medium scale graphs. However, in our

study, 39 out of 90, 73 out of 285 and 39 out of 180 instances in problem classes (a),

(e) and (f), respectively, could not be solved optimally using CPLEX within the time

limit. This observation opens the door for heuristics to find acceptable but possibly

suboptimal solutions.

From Figure 4.13a we conclude that for randomly connected graphs with more

than 200 nodes, optimal solution is not achievable within the bounded time. It also

suggests that the density of graphs is a factor that affects the solvability. The solver

does increasingly better as the density η goes down (up to 0.01) for the same number

of vertices. Its sensitivity with respect to the size and density is apparent in the plots

for η equal to 0.05 and 0.10, i.e., a 16 fold increase in solution time.

Compared to random graphs, Figure 4.13b shows an improved performance on

bounded valence graphs solving all instances under 0.3 seconds. The reason for the

performance difference may be due to the considerably higher number of edges in a

48

20 100 200 600 1000
0

1

2

3

4

5

Number of Vertices in G

C
o

m
p

u
t
a
t
io

n
 T

im
e

η=0.01
η=0.05
η=0.10

(a) Randomly connected graphs

20 100 200 600 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

valence=3
valence=6
valence=9

(b) Bounded valence graphs

20 100 200 600 1000
0

0.05

0.1

0.15

0.2

0.25

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

valence=3
valence=6
valence=9

(c) Irregular bounded valence graphs

16 100 196 343 512 625 784 1000 1296
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

2D Meshes
3D Meshes
4D Meshes

(d) Regular meshes with 2D, 3D and 4D

16 100 196 400 784 1024
0

10

20

30

40

50

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

ρ=0.2
ρ=0.4
ρ=0.6

(e) Irregular meshes with 2D

27 125 343 512 729 1000
0

5

10

15

20

25

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

ρ=0.2
ρ=0.4
ρ=0.6

(f) Irregular meshes with 3D

49

16 81 256 625 1000
0

2

4

6

8

10

Number of Vertices in G

C
o

m
p

u
t
a

t
io

n
 T

im
e

ρ=0.2
ρ=0.4
ρ=0.6

(g) Irregular meshes with 4D

20 100 200 600 1000
0

2

4

6

8

10

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

β=|V|x100
β=|V|x200
β=|V|x500

(h) Scale-free graphs with α = 1.5

20 100 200 600 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Vertices in G

C
o

m
p

u
ta

ti
o

n
 T

im
e

β=|V|x100
β=|V|x200
β=|V|x500

(i) Scale-free graphs with α = 2.5

Figure 4.12: Average computation time of CPLEX on problem classes as a function of
the number of vertices in G and the parameters of the problem classes

50

randomly connected graph (which forces the number constraints in the IP model to go

higher) than that of a bounded valence graph. However, although we expect higher

solution time for graphs with larger valence, Figure 4.13b shows substantially higher

time for valence 3 than valences 6 and 9 suggesting other factors may also be playing

a role.

Although the degree distribution is neither constant nor fully randomly distributed,

for irregular bounded graphs, CPLEX performs similarly to bounded valence graphs.

As figure 4.13c shows, all solutions are computed in less than 0.25 seconds, and that

the computation time increases with the increase in valence.

Figure 4.13d shows that the size of meshes (2D, 3D or 4D) usually does not have

any influence on the performance barring the abrupt behavior of the 4D mesh graph.

In general, the solution time appears to linearly increase with the increase in graph

size, though the increase in time is extremely small.

Unlike the irregular bounded valence graphs, mesh graphs are more susceptible

to irregularity and the computation time substantially increases with the degree of

irregularity. Figures 4.13e through 4.12g show that the sizes of the problems that can

be solved to optimality decrease and the computation times increase with increasing

degree of irregularity. This result is quite reasonable and expected because increasing

irregularity increases the number of edges, and thus the computation time as well. This

is also because randomly adding edges to a mesh graph makes it structurally more

similar to random graphs, which, as discussed earlier, is inherently hard to solve.

We consider the effect of the two parameters α and β on the solvability of the

scale-free problems. On one hand, increasing α makes the degree distribution sharper,

i.e, we observe smaller number of vertices with high degrees. On the other hand,

increasing the value of β increases the degrees of non-hub nodes. Figure 4.12h and

Figure 4.12i represent the optimal solution times of scale-free instances. It is clear that

the difficulty of the problem is closely related to parameters α and β. The figures

show that computation times decrease significantly with increasing values of α. When

α = 1.5, the instances with more than 100 vertices cannot be solved to optimality within

the time limit. When α = 2.5, however, all of the instances can be solved optimally

51

in less than 0.06 seconds. These figures also show that the computation time increases

with increasing values of β. This means that increasing degrees of non-hub nodes makes

the problem more difficult.

Performance Profile of Solution Methods. To study the quality of solutions

generated by other solution methods with respect to the optimal solutions computed

using CPLEX, we refer to Figures 4.13a through 4.13e. These plots are called performance

profiles of algorithms that depict the fraction of problems for which the algorithm is

within a factor of the best solution [35]. Thus, they compare the performance of an

algorithm s on an instance p with the best performance observed by any other algorithm

on the same instance. The x-axis represents the performance ratio given by

rp,s =
αp,s

min{αp,s : s ∈ S}
,

where αp,s is the number of hub nodes in the hub cover when the instance p is solved

by algorithm s and S is the set of all benchmark algorithms. The y-axis shows the

percentage of the instances that gives a solution that is less than or equal to τ times

the best solution. Recall that CPLEX cannot solve all of the instances in problem classes

(a), (e) and (f) to optimality. However, the solver is able to find feasible solutions for

some of those unsolved instances (11 out of 39, 44 out of 73, and 24 out of 39 in (a), (e),

and (f) respectively). Figure 4.13 includes all instances except those for which CPLEX

cannot find either feasible or optimal solutions within the time limit.

We first analyze how much we sacrifice from the optimality by employing math-

ematical programming-based heuristics MBH and LSLP. Recall that MBH and LSLP

solve the same restricted problem. While MBH tries to solve the problem to optimality,

the latter visits alternate solutions in the feasible region. Figure 4.13a shows that 12%

of the instances in class (a) where both MBH and LSLP find better feasible solutions

than that of CPLEX. Note that, this can happen if and only if CPLEX returns a feasi-

ble solution rather than an optimal solution within the time limit. For other problem

classes, the performances of the CPLEX and MBH are quite similar. Moreover, these

figures show that LSLP is outperformed by MBH and CPLEX on almost 40% and 30%

52

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

P
(r

p
,s

≤
τ)

τ

CPLEX
MBH
GR1
GR2
LSLP

(a) Randomly connected graphs

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

τ

P
(r

p
,s

≤
τ)

CPLEX
MBH
GR1
GR2
LSLP

(b) Bounded valence graphs

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

τ

P
(r

p
,s

≤
τ)

CPLEX
MBH
GR1
GR2
LSLP

(c) Irregular bounded valence graphs

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s≤

τ)

CPLEX
MBH
GR1
GR2
LSLP

(d) Regular meshes with 2D, 3D and 4D

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

τ

P
(r

p
,s

≤
τ)

CPLEX
MBH
GR1
GR2
LSLP

(e) Irregular meshes

1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p
,s

≤τ
)

CPLEX
MBH
GR1
GR2
LSLP

(f) Scale-free graphs

Figure 4.13: Performance profiles for the algorithms on the problem classes in terms of
solution quality

53

of instances in problem classes (b) and (c) respectively. For the remaining problem

classes, the performance of LSLP is also comparable to MBH and CPLEX.

The greedy algorithms return feasible but sub-optimal solutions quickly. Except

the scale-free networks, the performances of the greedy algorithms do not change with

respect to problem classes. GR2 is known as 2-approximation algorithm for MVC.

Figure 4.13c and Figure 4.13f show that there are some instances for which performance

ratios of GR2 are higher than 2. Obviously, the approximation ratio of GR1 for MHC

problem is higher than 2. Intuitively, the performance of GR1 is supposed to be better

when the degree distribution of the vertices is not uniform. Since the average degrees of

the vertices are identical or are quite similar for the instances in problem classes (a)-(e),

the performance of GR1 does not vary for these problem classes. However, Figure 4.13f

shows that GR1 finds the optimal or the best solution in 30% of the scale-free instances.

This means that the performance of the GR1 is better for the graphs that follow the

power-law distribution.

Cost Profile of Solution Methods. The previous two analyses focused on the

optimal solvability and the quality of the solutions. Here we turn our attention to

the cost of computing a feasible or optimal MHC solutions in terms of time. Figures

4.14a through 4.14f summarize the distribution of the average computation times (in

seconds) of the algorithms over the problem classes. In these plots, the instances for

which feasible solutions were not found by any of the algorithm within a time limit are

excluded. Each bar in the figure represents the percentage of the instances that are

solved within the time interval stated in the legend, e.g., the blue bar for 0.0 to 0.05

seconds. Since LSLP is a local search algorithm, we show both the total computation

time and the first time when the best solution is found.

The results clearly show that the solution times of greedy algorithms (GR1, GR2)

are much shorter than that of the other algorithms. MBH can solve the restricted

problem to optimality in a reasonable amount of time for a great majority of the

instances. We have already discussed earlier that the performance of the MBH is good

in terms of its solution quality. However, the main drawback for MBH is its inability

54

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
nt

 o
f t

he
 In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(a) Randomly connected graphs

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
nt

 o
f t

he
 In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(b) Bounded valence graphs

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
nt

 o
f t

he
 In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(c) Irregular bounded valence graphs

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
nt

 o
f t

he
 In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(d) Regular meshes with 2D, 3D and 4D

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
nt

 o
f t

he
 In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(e) Irregular meshes

CPLEX MBH GR1 GR2 LSLP_B LSLP_T
0

0.2

0.4

0.6

0.8

1

Solution Methods

P
er

ce
n

t
o

f
th

e
In

st
an

ce
s

[0.00,0.05]
(0.05,0.50]
(0.50,5.00]
(5.00,100]
(100,3600]

(f) Scale-free graphs

Figure 4.14: Computation time distributions of the solution methods on the problem
classes

55

to solve the restricted problem to optimality. In such cases, LSLP may serve as an

alternative to MBH as it is comparable to MBH in terms of both solution quality and

time, and because LSLP is a local search algorithm, it is also guaranteed to produce

a feasible solution. However, the performance of LSLP is dependent upon prudent

selection of algorithmic parameters, e.g., the total number of iterations, the number

of improvement iterations (see [109] for details). There is a trade-off between solution

time and the solution quality. Decreasing the total number of iterations may result in

a decrease in the total solution time. However, it may increase the optimality gap.

4.3 Relaxation Heuristics

In this section, we first introduce a new rounding algorithm for the MTS problem.

As previously mentioned, our first model (3.1)-(3.3) is a special case of the set cover-

ing problem. Therefore, we also customize two other rounding algorithms that were

originally proposed to solve the set covering problem.

Primal Rounding Algorithm for the MTS Problem (PRMTS): The algorithm

uses the optimal solution of LP2. The pseudo-code of the algorithm is given in Algo-

rithm 4.4. In line 3, we solve LP2 and obtain the optimal solution, x∗. We select the

kth variable, which is the largest component in x∗ in line 5. Then, kth vertex is selected

and the right hand side of the constraints including that vertex is decreased by 1. The

algorithm continues to select the next vertex with largest value as long as none of the

constraints is violated.

Primal Rounding Algorithm for the MHC Problem (PRMHC): Algorithm

4.5 is adapted from a set covering algorithm proposed by Hochbaum [59]. The algorithm

uses the optimal solution of LP1 denoted by x∗. Any component of x∗ with value greater

than or equal to 1/f is set to 1. In the hub cover formulation, f is the maximum

number of vertices that can cover an edge. This approach is guaranteed to yield a

feasible solution for MHC. Suppose PRMHC does not yield a feasible solution, then

there exists at least one constraint for edge (i, j) such that x∗
j < 1/f for all j ∈ K̄(i,j).

56

Algorithm 4.4 Primal Rounding Algorithm for the MTS Problem

1: xj = 0, ∀j ∈ V
2: yij ← |K(i,j)|+ 1 // Right hand side of (3.5)
3: x∗ ← Solve LP relaxation of (3.4)-(3.6)
4: for i = 1 to |V | do
5: pick, the kth variable, which is the ith largest component in x∗

6: find the set of constraints C ⊆ E including kth variable
7: if yij > 0, ∀(i, j) ∈ C then
8: xk ← 1
9: yij ← yij − 1, ∀(i, j) ∈ C
10: end if
11: end for
12: Return x

If this is the case, then x∗
i + x∗

j +
∑

k∈K(i,j)

x∗
k < 1 because |K̄(i,j)| ≤ f . This contradicts

our assumption that x∗ is the optimal solution of LP1.

Algorithm 4.5 Primal Rounding Algorithm for the MHC Problem

1: xj = 0, ∀j ∈ V
2: x∗ ← Solve LP relaxation of (3.1)-(3.3)
3: for all j ∈ V do
4: if x∗

j ≥ 1/f then
5: xj ← 1
6: end if
7: end for
8: Return x

Dual Rounding for the MHC Problem (DRMHC): The algorithm proposed by

Hochbaum [59] for the set covering problem is applied to obtain an integral MHC. It

uses the optimal solution of the dual problem given by

57

maximize
∑

(i,j)∈E
y(i,j), (4.2)

subject to
∑

(i,j)∈E
y(i,j) +

∑

(j,i)∈E
y(j,i) +

∑

j∈K(i,k)

y(i,k) ≤ 1, j ∈ V, (4.3)

y(i,j) ≥ 0, (i, j) ∈ E, (4.4)

where y(i,j) is a dual variable corresponding to the coverage constraint for edge (i, j).

The steps of the algorithm are given in Algorithm 4.6. The optimal solution of (4.2)-

(4.4) is denoted by y∗. The main idea of the algorithm is to set the primal variable to

1 whenever the corresponding dual constraint is tight.

Algorithm 4.6 Dual Rounding Algorithm for the MHC Problem

1: xj = 0 ∀j ∈ V
2: Solve LP relaxation of (4.2)-(4.4)
3: for all j ∈ V do

4: if
∑

(i,j)∈E
y∗(i,j) +

∑

(j,i)∈E
y∗(j,i) +

∑

j∈K(i,k)

y∗(i,k) = 1 then

5: xj ← 1
6: end if
7: end for
8: Return x

SDP Rounding Algorithm for the MHC Problem (RSDP): We implemented

a rounding algorithm inspired from another method proposed for the minimum vertex

cover problem [51]. This rounding method uses the optimal solution of the SDP relax-

ation, v∗, and returns the set S = {j ∈ V |v∗T
0 v∗

j > 0} as an approximate solution. This

solution is not necessarily a feasible hub cover but the number of uncovered edges is

much less with respect to the number of covered edges. Hence, we propose Algorithm

4.7, which obtains S and then repairs the feasibility by iteratively selecting a vertex

i ∈ V \S which covers the highest number of uncovered edges until all edges are covered.

Numerical Experiments. In this section, we conduct a set of experiments to test

the performance of the LP and SDP relaxations as well as the rounding algorithms using

58

Algorithm 4.8 SDP Algorithm for the MHC Problem

1: xj = 0 ∀j ∈ V
2: v∗ ← Solve SDP relaxation of (3.27)-(3.30)
3: for all j ∈ V do
4: if v∗T

0 v∗
j > 0 then

5: xj ← 1
6: end if
7: end for
8: Find the set of uncovered edges U ⊆ E
9: while |U | > 0 do
10: Find the vertex j that covers the maximum number of edges in U
11: xj ← 1
12: U = U \ (i, k) ∀(i, k) covered by vertex j
13: end while
14: Return x

the optimal solutions of those relaxations. Here, we list our problem classes and their

descriptions. Our data set includes a total of 210 graphs (30 graphs from each class) with

known optimal solutions. The first five classes are from a well-known graph database

by Santo et al. [93] and the others are synthetically generated graphs used in various

application areas. The LP and SDP relaxations are obtained by MATLAB 2010b. To

solve the SDP relaxation, we used the SDPA-M solver which is a MATLAB interface

for the semidefinite programming algorithm (SDPA) solver developed by Kojima et al.

[69]. The solver is developed to solve small and medium size semidefinite programming

models. Therefore, our problem set includes only small to medium size instances. The

number of vertices and edges range from 20 to 1000.

Rounding algorithms may return a solution, in which some edges are covered

several times. Therefore, we applied a postprocessing algorithm to decrease the number

of redundant nodes in the hub cover and improve the solution quality. Algorithm 4.9

summarizes the iterations of the postprocessing algorithm. After obtaining the solution

by any of the rounding algorithms in line 1, we compute the number of times that each

edge is covered by the selected vertices. In line 4, for each vertex in the solution, we

check if the vertex is redundant. If it is redundant, then we remove that vertex from

the solution and update the number of times each edge is covered by the remaining

vertices.

59

Algorithm 4.9 Postprocessing Algorithm

1: Get the solution x from any one of the rounding algorithms

2: C(i,j) = xi + xj +
∑

k∈K(i,j)

xk ∀(i, j) ∈ E

3: V ′ = {j ∈ V | xj = 1}
4: for all j ∈ V ′ do
5: Find the set of edges, E ′ covered by vertex j
6: if C(i,k) > 1, ∀(i, k) ∈ E ′ then
7: xj ← 0
8: C(i,k) ← C(i,k) − 1
9: end if
10: end for

Experimental Results. In this section, we carried out a computational experiment

to test the performances of the relaxation models and rounding methods on various

types of graph databases. First, we compare the lower bounds obtained by the LP and

SDP relaxations over all instances. The empirical cumulative distributions in Figure

4.15 indicate that the LP relaxation gives a tighter lower bound relative to the SDP

relaxation. The optimal solutions are denoted by IP in the figure. In almost 90% of

the instances, the gaps between the optimal and the LP solutions are less than 10%.

On the other hand, the SDP relaxation achieves that gap in 75% of the instances.

Figures 4.16a and 4.16b compare the upper bounds obtained by the rounding

methods applied to the optimal solutions of the LP and SDP relaxations before and after

postprocessing. The results without postprocessing indicate that the SDP rounding

algorithm is superior to the primal and dual rounding algorithms by providing tighter

upper bounds. In 70% of the instances, SDP rounding algorithm provides upper bounds

with optimality gaps less than 30%. The fraction of the instances decreases to 25%

and 15% to obtain the same upper bound by primal and dual rounding algorithms,

respectively. On the other hand, surprisingly the rounding algorithm developed for MTS

outperforms all other rounding algorithms. The rounding algorithm using the optimal

LP solution of MTS provides the optimal solution in almost 45% of the instances. With

the postprocessing, the percentage of the instances that can be solved to optimality

increases to 55%. The results indicate that postprocessing algorithm eliminates the

redundant vertices and improves the solution quality considerably for other algorithms

60

as well. On the other hand, postprocessing does not change the relative performances

of the algorithms. Nonetheless, PRMHC and DRMHC derive the most benefit from

postprocessing. The cumulative fraction of the instances for which PRMHC returns

optimal solutions changes from 15% to 40% by postprocessing. The corresponding

change for DRMHC is from 8% to 32%. After the postprocessing algorithm, in 70% of

the instances, the SDP rounding algorithm provides upper bounds with optimality gaps

less than 5%. Without postprocessing the same optimality gap is achieved in about

25% of the instances. The fraction of the instances decreases to 45% and 35% to obtain

the same upper bound by PRMHC and DRMHC with the postprocessing algorithm.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Gap

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

LP−IP Gap
SDP−IP Gap

Figure 4.15: The empirical cumulative distributions of the optimality gaps of LP and
SDP relaxations

Finally, we analyze the rounding algorithms over problem classes to figure out if

the performance of the algorithms changes with respect to the problem classes. Fig-

ure 4.17 summarizes and compares the performances of the rounding algorithms over

different problem classes. The results indicate that the performances of the algorithms

depend on the problem classes. The primal and the dual rounding algorithms applied

61

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Gap

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

PRMHC
DRMHC
RSDP
PRMTS

(a) Before postprocessing

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Gap

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

PRMHC
DRMHC
RSDP
PRMTS

(b) After postprocessing

Figure 4.16: The empirical cumulative distributions of the optimality gaps of the round-
ing algorithms before and after postprocessing

62

to the optimal LP relaxation of MHC are the most sensitive algorithms. On the other

hand, the primal rounding algorithm for the complementary problem MTS is the least

sensitive algorithm over the problem classes. The variations of the performances of the

algorithms are generally low for the mesh graphs in classes (d) and (e).

(a) (b) (c) (d) (e) (f) (g)
0

50

100

150

200

250

300

350

400

450

500

Problem Classes

P
e

rc
e

n
ta

g
e

 G
a

p
s

PRMHC
DRMHC
PRMTS
RSDP

Figure 4.17: The variation of the optimality gaps of the rounding methods with respect
to the problem classes.

63

Chapter 5

APPLICATION: GRAPH QUERY PROCESSING

“Torture the data, and it will confess to anything”.

Ronald Coase

Increasing popularity of graph databases has attracted many researchers to focus

on graph query processing in recent years. Graph databases keep relational data in

various applications such as social networks, Web, protein interactions and so on. MHC

has been first introduced as a new graph representation model to expedite graph queries

[64]. Managing very large graphs has two main drawbacks: (i) large memory is required

to store and process the graphs; (ii) response times to process large graph databases are

very high. MHC is proposed as a graph representation model and a query processing

strategy [64]. Jamil [64] shows that with this representation model, efficient query

processing is possible for generalized undirected graphs without memory limitations. It

offers strategic advantages and facilitates construction of candidate graphs from graph

fragments.

Query processing, known as graph matching is to find one-to-one mapping between

the nodes of a query graph and a database graph under a set of label constraints. Graph

matching algorithms look for individual node structures that are identically connected

and then these individual matches are combined to see if the composed structure is

the target graph. The cost of this search usually is dominated by the cost of piecing

together the components and testing if the process is yielding the target graph. We

can contemplate several different types of graph matching that can be conceived as

64

the variants of subgraph isomorphism though in the literature, only the structural

isomorphs and match isomorphs defined below are prevalent. MHC is proposed for

these two types of matching but by requiring that the two graphs have equal number

of nodes, we can also achieve graph isomorphism.

• structural subgraph isomorph, where only the node IDs (not the labels) are mapped

from query graphs to data graphs using an injective function.

• label subgraph isomorph, on the other hand, requires an injective mapping of both

node IDs and node labels from query graph to data graph.

• full subgraph isomorph extends label subgraph isomorphic matching to include

edge labels in the mapping.

• match subgraph isomorph uses an equality function on the definition of full sub-

graph isomorph to achieve exact matching of node and edge labels while maps

node IDs using an injective function.

5.1 Minimum Hub Cover: Graph Representation Model

Traditional graph representation G(V,E) does not carry any structural information of

which vertices are a part of, and they are not visible until structures are constructed

from the set of edges. To ease computational hurdles and aid analysis, some models

have used vertices and their neighbours as a unit of representation [98], i.e., rv = 〈v,N〉

where v is vertex in V , and N is a set of neighbors such that (v, n) ∈ E ⇒ n ∈ N . A

graph is then modeled as a set of such units. While this representation captures some

structural cues, it still is pretty basic.

We believe representing a graph as a set of hubs is a prudent compromise because

it assures a deterministic model, and yet offers a realistic chance of efficient storage and

processing of graph queries. It is deterministic because each hub can be represented

as a triple of the form rv = 〈v,Nv, Bv〉, called a graphlet, where v ∈ V is a node in

graph G(V,E), and Nv ⊆ V , and Bv ⊆ E such that for each v ∈ V all n ∈ Nv are its

immediate neighbors, and every edge b ∈ Bv are edges involving neighbors in Nv. For

65

unlabeled and undirected graphs, this representation model is sufficient but for labeled

and directed graphs, this simple model can be extended without any structural overhaul.

For example, a hub of a node labeled undirected graph can be represented simply as

rv = 〈v, Lv, Nv, Bv〉 where Lv additionally represents the node label. The hubs in a

fully labeled graphs can be modeled as yet another extension as rv = 〈v, Lv, Nvl, Bvl〉

where Nvl are a set of pairs (n, nl) and Bvl are triples(n1, n2, el) such that nl and el

are edge labels for edges between the hub and the neighbors, and among the neighbors

respectively. The directionality of the edges can be captured by partitioning the sets

Nv and Bv to imply directions. For example, the expression 〈v, (Nvt, Nvf), (Bvt , Bvf)〉

means that (i) there are edges from v to every node in Nvt , and from Nvf to v, and (ii)

for each edge (n1, n2) in Bvt , the sink node is n2, and for edges in Bvf , it is reversed.

We can now simply define a graph as a set of graphlets, i.e., G =
⋃

∀v,v∈V rv.

5.2 Graph Matching

Based on the notion of hub, we are able to reduce the number of query hubs by solving

the MHC problem for a query graph. Given the fact that a query graph may have

multiple MHCs, we devised a technique to perform graph matching that takes a query

graph q, a data graph g, and a set of MHCs M of q as input, and it outputs all of

the possible matchings of q in g. After computing the MHCs of a query graph, we are

able to use them to perform graph matching. We have devised a technique based on

graphlets and MHCs that comprises three steps: 1) Computation of the search space;

2) Computation of a MHC plan; 3) Processing the MHC plan.

In the first step, the goal is to compute the search space, i.e., the nodes of g

that match each node of q. If g is either labeled or unlabeled, we take advantage of

the representation of the graphs by means of hubs in the following way: let ru and

rv be two hubs in q and g, respectively; node v belongs to the search space of u if

and only if the number of neighbors/triangles of ru is less or equal than the number

of neighbors/triangles of rv. Thanks to this property, we are able to prune the search

space even when we are dealing with unlabeled graphs. Additionally, for labeled graphs,

v belongs to the search space of u if and only if their labels match.

66

EA A

B

C

C

D

D

D D

DA

B

C D

D

C A

B

C E

D

C

u3

(b) Data graph d

w1

w2

w3

u1

u6

u5u2

u4

v1

v3
v9

v11
v8

v7

w5

w4

w6

v10

(a) Query graph q1 (c) Query graph q2

v5

v6

v4

v2

Figure 5.1: Example: Query graphs q1 and q2, and data graph d

Example 5.1 Let us determine the search space for the query graph in Figure 5.1(a)

with respect to data graph in Figure 5.1(b).

Graphlet representation of query graph, q1:

〈u4, {u3}, {∅}〉

〈u5, {u1, u2, u3, u6}, {(u1, u2), (u2, u3)}

Graphlet representation of the data graph, d

〈v1, {v6}, {∅}〉

〈v2, {v3, v4, v5, v6}, {(v3, v4), (v4, v5), (v5, v6)}

〈v3, {v2, v4}, {(v2, v4)}

〈v4, {v2, v3, v5, v7, v8, v11}, {(v2, v3), (v2, v5), (v5, v7), (v5, v8), (v7, v11, (v8, v11))}

〈v5, {v2, v4, v6, v7, v8}, {(v1, v2), (v2, v4), (v4, v7), (v4, v8), (v7, v8)}

〈v6, {v1, v2, v5}, {(v2, v5)}

〈v7, {v4, v5, v8, v11}, {(v4, v5), (v4, v11), (v5, v8), (v8, v11}

〈v8, {v4, v5, v7, v9, v11}, {(v4, v5), (v4, v7), (v4, v11), (v5, v7), (v7, v11}

〈v9, {v8, v10}, {∅}〉

〈v10, {v9}, {∅}〉

〈v11, {v4, v7, v8}, {(v4, v7), (v4, v8), (v7, v8)}〉

Taking boundaries and neighbours into account, the search space of our example

is given as below. Notice that v6 cannot be a candidate for u5 because both the number

of neighbours and boundary edges of u5 are greater than that of v6.

67

u4 : {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}

u5 : {v2, v4, v5, v7, v8}

The second step consists of selecting a MHC from the input set and ordering it

to achieve a good matching performance. It is well-known that different orderings may

entail very different computation times when performing the graph matching task [56].

To compute an ordering, we first compute the ordering of all of the nodes of the query

graph in a similar way as in [56], in which a search order is computed by analysing

the costs of the joins of the query nodes. This search order is also called the query

plan, which is represented as a binary tree in which the leaves are query nodes and the

internal nodes are join operations. The cost of a join is estimated as the product of the

sizes of the joined collections. In the case of a leaf node in the order, the collection size

is equivalent to the number of nodes in the search space; an internal node in the order

is estimated as the product of the sizes of the collections reduced by a factor.

Our technique first computes a query plan p for the whole query graph and, then,

it computes a MHC plan to be as similar to p as possible. For instance, assume that

a query plan for query graph q1 in Figure 5.1(a) is u1 ⊲⊳ u2 ⊲⊳ u3 ⊲⊳ u5 ⊲⊳ u6 ⊲⊳ u4.

We restrict ourselves to left-deep query plans, in which the outer node of each join is

always a leaf node. Note that q1 has two MHCs: {u4, u5}, and {u3, u5}. Our technique

processes a whole query hub at a time, therefore, we compute all possible orderings of

the MHCs and their associated whole query orderings, which are the following:

u5 ⊲⊳ u3 u5 ⊲⊳ u1 ⊲⊳ u2 ⊲⊳ u3 ⊲⊳ u6 ⊲⊳ u4

u3 ⊲⊳ u5 u3 ⊲⊳ u2 ⊲⊳ u1 ⊲⊳ u6 ⊲⊳ u5 ⊲⊳ u4

u5 ⊲⊳ u4 u5 ⊲⊳ u1 ⊲⊳ u2 ⊲⊳ u3 ⊲⊳ u6 ⊲⊳ u4

u4 ⊲⊳ u5 u4 ⊲⊳ u3 ⊲⊳ u2 ⊲⊳ u1 ⊲⊳ u6 ⊲⊳ u5

As a conclusion, one of the first or the third MHC plans are preferred since their

associated query plans are the most similar ones to the original query plan. [91] also

takes into account all MHC solutions if the problem has alternate optimal solutions.

68

They compute the least cost query plan for each set of optimal solution and select

the least query plan among all. The optimal solutions are provided by solving the

mathematical programming model given as follows:

minimize
∑

j∈V
xj , (5.1)

subject to xi + xj +
∑

k∈K(i,j)

xk ≥ 1, (i, j) ∈ E, (5.2)

∑

j∈HCi

xj ≤ |HC i| − 1, i ∈ {1, . . . , t− 1}, (5.3)

xj ∈ {0, 1}, j ∈ V. (5.4)

The IP formulation (5.1)-(5.4) is solved to compute the tth optimal solution by adding

a set of constraints (5.3) to the IP formulation (3.1)-(3.3). Here, HC i includes all

variables that are set to 1 in the ith optimal solution. Constraints (5.3) ensure that

new optimal solution obtained at the tth iteration is different than those obtained at

the previous iterations. Algorithm 5.1 iterates as long as the cardinality of the optimal

solution is equal to the that of the first optimal solution.

Algorithm 5.1 Computing All Optimal Solutions
t← 1
Solve (5.1)-(5.4)
HCt = {j ∈ V |xj = 1}
while |HCt| == HC1 do

Solve (5.1)-(5.4)
t← t+ 1
HCt = {j ∈ V |xj = 1}

end while
return {HC1, . . . , HCt−1}

In the final step, we use the previously computed search space and MHC plan to

perform the graph matching. Our technique takes the initial query hub according to

the plan, and it uses the search space to find those data hubs that may match with it.

69

Then, the graph matching task focuses on the structural unification of a query and a

data hub, i.e., we have to match all the neighbors and triangles of the query hub with

some of the neighbors and triangles of the data hub. When the whole query hub is

matched, we perform a recursive call to process the next query hub in the MHC plan.

Note that, in the consequent calls, we are able to ground the query nodes with those

values that are already matched. When the whole MHC is processed, we report the

complete matching and continue the backtracking process until all matchings are found.

Example 5.2 Suppose we select u5, u4 as a hub cover in q1. The cost of query u5 ⊲⊳ u4

is less than u4 ⊲⊳ u5 so we select u5 ⊲⊳ u4 as a query plan. The hub node u5 has five

candidates as stated in Example 5.0.1. Suppose u5 = v2, then the graphlet representation

of query nodes of q1 change as follows:

〈u4, {u3}, {∅}〉

〈v2, {u1, u2, u3, u6}, {(u1, u2), (u2, u3)}

Next, we have to find a one-to-one mapping between the neighbours of u5 and v2

by considering the connections among the neighbours i.e. the boundary edges. Suppose

u1 = v4, u2 = v5, u3 = v6 and u6 = v3. After those mappings, graphlet representation

is given as follows:

〈u4, {v6}, {∅}〉

〈v2, {v4, v5, v6, v3}, {(v4, v5), (v5, v6)}

Once we map all the vertices in u5, we select the second hub node u4. Remember

that all the nodes of d are the candidates of u4. However, previous mappings reduces

the search space of u4. The candidates are the hub nodes which has a neighbour v6.

We select v1 as a candidate so u4 = v1. Since we find a one-to-one mapping for all

query nodes so we are done. We can continue like that to generate all possible subgraph

isomorphs in Figure 5.1 (b), which are represented as different colors.

70

5.3 Experimental Analysis

To experimentally show that the computation of MHCs is worthy, we design an exper-

iment in which we compare four techniques: the original implementation of GraphQL

[72] (GQL in short), an implementation of our technique that randomly selects order-

ings of all of the query nodes (RND in short), another implementation of our technique

that uses query plans including all of the query nodes (PLN in short), and the im-

plementation of our technique that uses MHC plans (MHC in short). Note that the

results regarding our graph matching technique that we show in this thesis are just

for motivational purposes, a complete description of the graph matching technique is

available at [91].

One important issue with respect to RND is that, for moderate large graph queries,

the number of node orderings can be huge, e.g., if the query comprises 10 nodes, the

possible number of orderings is 10! = 3, 628, 800. To reduce this number, we focus on

those orderings that ensure connectivity, i.e., they do not perform all possible order

of nodes. For instance, for query graph q1 in Figure 5.1(a), one possible ordering is

u1 ⊲⊳ u4 ⊲⊳ u6 ⊲⊳ u2 ⊲⊳ u5 ⊲⊳ u3, which is discarded since nodes u1 and u4 are adjacent

in the order but they are not connected.

To provide a more precise figure on the number of orderings to test in RND, we

adapt a statistical technique based on Cochran’s formula [90]. In this case, we consider

all of the possible orderings of query nodes as a population, then, we rely on Cochran’s

formula to estimate the sample size, i.e., the number of random orderings to execute.

This formula is based on the variance of a target variable and it indicates if the selected

sample size statistically represents the whole population, i.e., if the number of tested

random orderings is enough to statistically guarantee that their behavior is similar as

the whole set of possible orderings. Therefore, we execute a number of random orderings

(in our experiments we fixed this number to 20) and measure the times of each order

to perform the graph matching task. Then, we use Cochran’s formula to estimate the

number of orderings that we still have to test and we iterate until the number of tested

orderings is greater or equal than the number provided by Cochran’s formula. The final

71

times for a specific query graph is the average of the times of all the random orderings

executed.

We used the Yeast and the Human data sets to perform our experiments [72].

In the former, each node represents a unique yeast protein and each edge represents

an interaction between two proteins. The latter models a subset of the protein-protein

interaction network for homo sapiens. Both Yeast and Human query sets are similar

and comprise clique, path and subgraph queries. Clique queries consist of complete

query graphs that range from 2 to 7 nodes. Path queries consist of paths connecting a

number of nodes, ranging from 2 to 10 nodes. Subgraph queries consist of randomly-

generated subgraphs, ranging from 1 to 10 edges. For each type of query (clique, path

and subgraph), there exist 1,000 queries with randomly-generated node labels.

Our experiments were run on a computer equipped with a four-threaded Intel

Xeon 3.10 GHz CPU and 16 GB RAM, running on Windows 7 Professional (64-bits).

Figure 5.2 presents our experimental results, in which the X axis represents the size of

the queries, and the Y axis represents the total time in seconds of performing graph

matching over the 1,000 queries that a given size comprises. Note that the Y axis is

represented in logarithmic scale. As our experimental results show, our MHC technique

outperforms the rest of the techniques in all of our experiments and, as a conclusion,

it is worthy to compute the MHCs of a query graph to perform graph matching.

72

(a) Yeast cliques. (b) Human cliques.

(c) Yeast paths. (d) Human paths.

(e) Yeast subgraphs. (f) Human subgraphs.

Figure 5.2: The performance of the graph matching algorithm when a MHC solution
is used to obtain a query plan vs other query plans

73

Chapter 6

CONCLUSION

“A conclusion is simply the place where you got tired of thinking.”

Dan Chaon

The minimum hub cover is a new NP-hard optimization problem that has been

recently introduced to the literature in the context of graph query processing on large

graph databases. In this thesis, we define the problem as an optimization problem

and present a standard set covering programming formulation. We also prove that the

problem belongs to the class of NP-hard problems.

Similar to the problems in that class, solving the problem to optimality is com-

putationally intractable especially for large instances. Hence, we presented several new

mathematical programming formulations along with their relaxations for the minimum

hub cover problem. We also introduced two novel rounding algorithms RSDP and

PRMTS, and compared those with two well-known algorithms proposed for the set

covering problem in the literature. The results indicate that the algorithms proposed

in this study are superior to the benchmark algorithms in terms of solution quality.

We also analyze the MHC problem on planar graphs. We propose an approxima-

tion algorithm to find an approximate solution to the MHC problem. The algorithm

decomposes the planar graphs into smaller subgraphs with manageable sizes so it al-

ways returns a feasible solution even for the large-scale problems. In the literature,

there are some approximation algorithms proposed for the related problems such as

the minimum vertex cover and set covering problem. Unlike those algorithms, our ap-

74

proximation bound is not constant and can be improved by decreasing the number of

subproblems to be solved at the expense of an increase in the computation time. We

also investigate the empirical performance of the algorithm extensively. Our computa-

tional results depict that the empirical performance of the algorithm is far better than

its theoretical performance. Alternatively, we propose a decomposition-based heuristic

without a proven performance bound. However, it obtains comparable results relative

to the approximation algorithm in terms of solution quality. Its solution time is on

the average several times less than that of the approximation algorithm. Moreover, we

adopt a well-known dynamic programming algorithm to solve the MHC problem on

planar graphs.

We employ different algorithms to show the trade-offs between optimality and

computation time over different graph types. We conduct computational experiment

and analyse solution methods in different axes such as optimal solvability of MHC,

computational cost of optimal solution and quality of the solutions. Computational

results demonstrate that though computational hard, query processing and optimization

using MHC and subgraph isomorphism is computationally feasible and intellectually

intriguing.

We discuss that the solution quality of the approximation algorithm is affected

by the optimal solution of a subproblem selected among various alternate solutions.

Since it is very time consuming to try all combinations of optimal solutions, finding a

combination that is good enough for a particular application is an interesting question

that we plan to address in our future research. The planar graph decomposition algo-

rithm, by its nature, is amenable to a parallel implementation. In this study, we have

used a straightforward shared-memory implementation of the algorithm that helped us

save significant computation time. In fact, it is possible with the proposed approach

to partition a graph and make use of multiple memory locations in a network. This is

of interest to those practitioners, who deal with huge-scale graphs for their problems

that are difficult to manage on a single computer. Therefore, obtaining computational

results in a distributed computing environment is also in our future research agenda.

Our semidefinite programming relaxation may be used to give an approximation

75

bound for the minimum hub cover problem. However, at this point it is difficult to give

such a result for the minimum hub cover problem. Even for special problem classes,

where the number of candidate vertices to cover an edge is less than or equal to three,

a formal analysis to obtain an approximation bound seems beyond reach. Nonetheless,

based upon our empirical results, we conjecture that our SDP relaxation may achieve

an approximation bound less than two for the minimum hub cover problem.

We used the SDPA-M solver, which is developed to solve small to medium size

instances limited to 2,000 constraints and 2,000 variables. On the other hand, the

parallel version of SDPA referred to as SDPARA, can solve instances with up to a million

constraints [42]. As a future study, we plan to employ the parallel implementation of

the semidefinite programming solver and test the performance of the SDP relaxation

in terms of solution time.

We demonstrate that the cost of query plan changes with respect to the set of

vertices coming from different optimal solutions or the order of the hub nodes in an

optimal solution. Generating the optimal MHC, which will yield the lest cost query

plan is very critical for the performance of the subgraph isomorphism computation.

Constraint solvers such as CPLEX usually do not offer all optimal solutions. Even so, it

is not impractical to generate all optimal solutions of an NP-hard problem. Finding

an optimal solution that will yield least computation time query among all optimal

solutions is an interesting research problem. We plan to use mathematical programming

techniques to solve that problem as a future study.

76

Appendix A

RELATED OPTIMIZATION PROBLEMS

In this section, we list some problems that are similar to the MHC problem.

Definition A.1 (Set Covering Problem) Given a collection S of sets over a fi-

nite universe U , a set cover SC ⊆ S is a sub-collection of these sets, whose union is U .

When each set in the collection has an associated cost, then the set covering problem

is about finding a set cover SC such that the total cost is minimized. If the cost of

coverage is the same for each set, then the problem is called as the unicost set covering

problem.

If an edge corresponds to an item, and a set is defined for each vertex whose ele-

ments are the edges covered by that vertex, then the connection between SCP and MHC

can easily be established. We continue with the minimum hitting set problem which

is equivalent to unicost SCP. The problem definition below implies that there exists a

dual relationship between the unicost SCP and the minimum hitting set problem.

Definition A.2 (Minimum Hitting Set Problem) Given a collection S of sets

over a finite universe U , a hitting set HS ⊆ U is a set which hits every set of S, i.e.

HS
⋂

Sj 6= ∅ ∀Sj ∈ S. The minimum hitting set problem is to find the hitting set with

minimum cardinality.

Definition A.2 implies that for any instance of SCP, there exists an equivalent

instance of the minimum hitting set problem by interchanging the sets U and S.

77

Definition A.3 (Minimum Vertex Cover) For a given graph G = (V,E), a sub-

set of the vertices, V C ⊆ V , is a vertex cover of G if for every edge (i, j) ∈ E, either

i ∈ V C or j ∈ V C. MVC is solved to find a vertex cover that has the minimum number

of vertices.

Notice that, in the MHC problem, a vertex can cover the edges that are incident

to it as well as the edges between its adjacent neighbors. Clearly, the cardinality of

the MHC can be far less than that of the cardinality of the MVC due to the additional

non-incident edges covered by those vertices in a triangle. Therefore, for triangle-free

graphs, the optimal solutions of MHC and MVC naturally coincide. The optimal MHC

and MVC solutions are {a,c,f} and {a,c,g,h,k} for the graph illustrated in Figure 1.3.

The definitions of the SCP, MVC and MHC demonstrate that both the MHC

and MVC problems are just special cases of the unicost SCP. MVC problem can be

generalized for hypergraphs.

Definition A.4 Let H(V,E) be a hypergraph with a set of vertices V and a set of

hyperedges E. Unlike a graph edge, a hyperedge e ∈ E can connect any number of

vertices, i.e., e ⊆ V . Then, a set S ⊆ V is a vertex cover or a hitting set of H if for

every edge e ∈ E, e ∩ S 6= ∅ holds.

MVC in graphs are a special case of MVC in hypergraphs when the number of

vertices that connect each edge is two for each edge. Also, SCP and MVC in hypergraphs

are equivalent when the item set is defined as the set of hyperedges and the sets are

defined as vertex sets connecting each edge.

We continue with an optimization problem known as maximum independent set

(MIS), which is complementary to MVC. The formal definition follows.

Definition A.5 (Maximum Independent Set) For a given graph G = (V,E), IS ⊆

V is an independent set if and only if there is no edge in E between any two nodes in

IS. MIS is about finding an independent set IS in G of maximum cardinality.

It is a known fact that MIS is complementary to MVC. That is, the solution of

one gives the solution of the other. Formally, the set of vertices defined by V \ IS is

78

the solution of MVC where IS is the independent set in G. The opposite also holds

true. The set of vertices defined by V \ V C is the solution of MIS, where V C is the

vertex cover in G. By using this information, the optimal solution for MIS whose graph

is shown in Figure 1.3 can be easily found as {b, d, e, f}.

79

Appendix B

SUPPLEMENTARY TABLES

Table B.1: Average solution times of the benchmark algorithms for random graphs

MBH GR1 GR2 LSLP

Group |V | |E| η Time Time Time BestTime TotTime

R1 20 39.8 0.01 0.00 0.00 0.00 0.27

R2 60 339.6 0.16 0.00 0.00 0.01 1.45

R3 100 945.8 3.33 0.00 0.00 0.36 3.82

R4 200 3,786.4 0.1 ⋆ 0.01 0.01 5.12 15.61

R5 600 34,149.8 ⋄ 0.20 0.21 351.01 626.96

R6 1,000 94,922 ⋆ 0.86 0.88 801.28 1,871.44

R7 20 26.2 0.01 0.00 0.00 0.00 0.24

R8 60 180.2 0.04 0.00 0.00 0.01 1.17

R9 100 488.2 0.05 0.34 0.00 0.00 0.03 3.00

R10 200 1,950.6 ⋆ 0.00 0.01 3.51 13.01

R11 600 17,536.2 ⋆ 0.07 0.07 175.99 622.59

R12 1,000 48,704.2 ⋄ 0.25 0.27 695.8 1,956.81

R13 20 19.6 0.00 0.00 0.00 0.00 0.21

R14 60 70.4 0.01 0.00 0.00 0.00 0.72

R15 100 138.8 0.01 0.01 0.00 0.00 0.00 1.54

Continued on next page. . .

80

MBH GR1 GR2 LSLP

Group |V | |E| η Time Time Time BestTime TotTime

R16 200 442.4 0.17 0.00 0.00 0.09 6.02

R17 600 3,628.4 ⋆ 0.01 0.01 150.55 330.47

R18 1,000 9,991.2 ⋆ 0.03 0.03 529.46 1,178.18

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

81

Table B.2: Average solution times of the benchmark algorithms for bounded graphs

MBH GR1 GR2 LSLP

Group |V | |E| valence Time Time Time BestTime TotTime

B1 20 30 0.02 0.00 0.00 0.00 0.30

B2 60 90 0.02 0.01 0.00 0.00 0.98

B3 100 150 3 0.03 0.00 0.00 0.01 1.94

B4 200 300 0.05 0.00 0.00 0.54 6.02

B5 600 900 0.17 0.01 0.00 81.37 183.85

B6 1,000 1,500 0.35 0.01 0.00 139.09 493.92

B7 20 60 0.01 0.00 0.00 0.00 0.19

B8 60 180 0.02 0.00 0.00 0.20 0.86

B9 100 300 6 0.01 0.00 0.00 0.45 1.76

B10 200 600 0.02 0.00 0.00 2.05 4.89

B11 600 1,800 0.08 0.01 0.01 40.72 128.08

B12 1,000 3,000 0.15 0.01 0.01 98.19 332.09

B13 20 90 0.01 0.00 0.00 0.00 0.44

B14 60 270 0.02 0.00 0.00 0.00 1.33

B15 100 450 9 0.02 0.00 0.00 0.01 2.52

B16 200 900 0.02 0.01 0.00 0.03 6.99

B17 600 2,700 0.08 0.01 0.01 0.37 182.41

B18 1000 4,500 0.23 0.01 0.01 0.95 473.99

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

82

Table B.3: Average solution times of the benchmark algorithms for irregular bounded graphs

MBH GR1 GR2 LSLP

Group |V | |E| valence Time Time Time BestTime TotTime

IB1 20 29.6 0.01 0.00 0.00 0.00 0.28

IB2 60 86.6 0.02 0.00 0.00 0.01 0.92

IB3 100 149.8 3 0.03 0.00 0.00 0.01 1.81

IB4 200 299.8 0.03 0.00 0.00 0.11 5.35

IB5 600 899.6 0.08 0.00 0.00 59.14 157.37

IB6 1,000 1,499.2 0.08 0.00 0.00 157.11 414.82

IB7 20 57.8 0.01 0.00 0.00 0.00 0.23

IB8 60 177.8 0.02 0.00 0.00 0.00 0.92

IB9 100 298.4 6 0.03 0.00 0.00 0.05 1.93

IB10 200 598.4 0.08 0.00 0.00 0.92 5.45

IB11 600 1,797.4 0.11 0.01 0.01 40.98 139.97

IB12 1,000 2,997.2 0.15 0.01 0.01 177.74 358.24

IB13 20 85.4 0.02 0.00 0.00 0.00 0.20

IB14 60 266.6 0.02 0.00 0.00 0.01 1.28

IB15 100 446.6 9 0.04 0.00 0.00 0.02 2.59

IB16 200 895.2 0.10 0.00 0.00 1.21 7.26

IB17 600 2,695.6 0.26 0.01 0.01 55.78 192.64

IB18 1000 4,495.6 0.48 0.02 0.01 137.38 498.20

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

83

Table B.4: Average solution times of the benchmark algorithms for meshes

MBH GR1 GR2 LSLP

Group |V | |E| dim. Time Time Time BestTime TotTime

M1 16 24 0.00 0.00 0.00 0.00 0.16

M2 64 112 0.01 0.00 0.00 0.00 0.84

M3 100 180 0.02 0.00 0.00 0.01 1.94

M4 196 364 2D 0.02 0.00 0.00 0.03 6.51

M5 400 760 0.04 0.00 0.00 0.25 24.60

M6 784 1,512 0.08 0.00 0.01 1.12 363.19

M7 1,024 1,984 0.11 0.01 0.01 3.61 614.21

M8 27 54 0.01 0.00 0.00 0.00 0.17

M9 64 144 0.03 0.00 0.00 0.01 0.60

M10 125 300 0.02 0.00 0.00 0.03 1.51

M11 343 882 3D 0.04 0.00 0.00 0.20 18.44

M12 512 1,344 0.05 0.01 0.00 0.35 173.91

M13 729 1,944 0.08 0.00 0.01 1.26 347.72

M14 1,000 2,700 0.10 0.01 0.01 1.55 652.03

M15 16 24 0.01 0.00 0.00 0.00 0.21

M16 81 198 0.02 0.00 0.00 0.01 0.68

M17 256 672 4D 0.03 0.00 0.00 0.05 8.02

M18 625 1,700 1.34 0.00 0.00 2.66 247.04

M19 1,296 3,600 0.22 0.01 0.01 2.11 1,057.55

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

84

Table B.5: Average solution times of the benchmark algorithms for irregular meshes

MBH GR1 GR2 LSLP

Group |V | |E| dim-ρ Time Time Time BestTime TotTime

IM1 16 26.6 0.01 0.00 0.00 0.00 0.17

IM2 64 123.4 0.05 0.00 0.00 0.01 1.10

IM3 100 199.6 0.09 0.00 0.00 0.01 2.17

IM4 196 402.4 2D-0.20 0.41 0.00 0.00 0.05 6.56

IM5 400 839.8 2.78 0.00 0.00 1.60 24.46

IM6 784 1,667.8 ⋄ 0.01 0.00 47.34 354.43

IM7 1,024 2,187.6 ⋄ 0.01 0.01 66.05 598.2

IM8 16 29.6 0.01 0.00 0.00 0.00 0.21

IM9 64 136 0.06 0.00 0.00 0.00 1.13

IM10 100 218.8 0.06 0.00 0.00 0.02 2.18

IM11 196 440.8 2D-0.40 1.14 0.00 0.00 0.24 6.80

IM12 400 919.2 144.56 0.00 0.00 4.29 25.17

IM13 784 1,823 ⋆ 0.01 0.01 121.89 362.58

IM14 1,024 2,392.4 ⋆ 0.01 0.01 162.74 612.21

IM15 16 31.8 0.01 0.00 0.00 0.00 0.23

IM16 64 148.6 0.04 0.00 0.00 0.01 1.21

IM17 100 239.2 0.23 0.00 0.00 0.01 2.29

IM18 196 479.8 2D-0.60 2.26 0.00 0.00 0.06 7.06

IM19 400 999 1,928.2 0.00 0.00 7.98 25.91

IM20 784 1,980.6 ⋆ 0.01 0.00 151.61 375.07

IM21 1,024 2,596.4 ⋆ 0.01 0.01 200.34 631.05

IM22 27 58.6 0.01 0.00 0.00 0.00 0.29

IM23 64 155.6 0.02 0.00 0.00 0.01 0.79

IM24 125 324.6 0.09 0.00 0.00 0.02 2.79

IM25 343 950 3D-0.20 1.60 0.00 0.00 0.12 20.46

Continued on next page. . .

85

MBH GR1 GR2 LSLP

Group |V | |E| dim-ρ Time Time Time BestTime TotTime

IM26 512 1,445 3.83 0.00 0.01 0.63 175.49

IM27 729 2,088.4 17.81 0.01 0.01 1.11 348.27

IM28 1,000 2,899.4 855.1 0.01 0.01 1.91 650.22

IM29 27 63 0.01 0.00 0.00 0.00 0.32

IM30 64 168.4 0.03 0.00 0.00 0.01 1.03

IM31 125 348.2 0.31 0.00 0.00 0.02 3.41

IM32 343 1,018.2 3D-0.40 49.76 0.00 0.00 0.12 21.06

IM33 512 1,547 714.89 0.00 0.00 0.75 179.09

IM34 729 2,233.4 ⋆ 0.01 0.01 1.14 356.45

IM35 1,000 3,098.4 ⋄ 0.01 0.01 2.73 658.38

IM36 27 68.8 0.02 0.00 0.00 0.00 0.37

IM37 64 180.4 0.04 0.00 0.00 0.00 1.05

IM38 125 373.2 0.44 0.00 0.00 0.02 3.61

IM39 343 1,084.8 3D-0.60 341.82 0.00 0.00 0.13 21.72

IM40 512 1,650 ⋆ 0.01 0.00 0.74 184.12

IM41 729 2,379.2 ⋆ 0.01 0.01 7.23 363.35

IM42 1,000 3,297.4 ⋆ 0.01 0.01 63.9 678.23

IM43 16 26.4 0.01 0.00 0.00 0.00 0.20

IM44 81 213.6 0.03 0.00 0.00 0.01 1.04

IM45 256 722.8 4D-0.20 0.33 0.00 0.00 0.13 11.40

IM46 625 1,824.2 19.98 0.00 0.00 1.68 253.01

IM47 1,296 3,858.8 509.04 0.01 0.01 6.55 1,065.88

IM48 16 29 0.00 0.00 0.00 0.00 0.20

IM49 81 229.4 0.04 0.00 0.00 0.01 1.59

IM50 256 773.2 4D-0.40 1.76 0.00 0.00 0.15 11.89

IM51 625 1949 ⋆ 0.00 0.01 3.43 261.98

IM52 1,296 4,116.8 ⋄ 0.01 0.01 18.53 1,087.81

Continued on next page. . .

86

MBH GR1 GR2 LSLP

Group |V | |E| dim-ρ Time Time Time BestTime TotTime

IM53 16 31.6 0.01 0.00 0.00 0.00 0.23

IM54 81 244.2 0.12 0.00 0.00 0.02 1.77

IM55 256 823.6 4D-0.60 5.94 0.00 0.00 0.15 12.56

IM56 625 2,073 ⋆ 0.01 0.01 4.41 270.53

IM57 296 4,374.6 ⋄ 0.01 0.01 110.33 1,124.86

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

Table B.6: Average solution times of the benchmark algorithms for scale-free graphs

MBH GR1 GR2 LSLP

Group |V | |E| α− β Time Time Time BestTime TotTime

S1 20 107 1.5-2,000 0.04 0.00 0.00 0.01 0.18

S2 20 113 1.5-4,000 0.01 0.00 0.00 0.01 0.16

S3 20 113.8 1.5-10,000 0.01 0.00 0.00 0.01 0.23

S4 20 49.4 2.5-2,000 0.01 0.00 0.00 0.01 0.24

S5 20 75.8 2.5-4,000 0.01 0.00 0.00 0.01 0.24

S6 20 99 2.5-10,000 0.01 0.00 0.00 0.01 0.17

S7 60 718.8 1.5-6,000 0.24 0.00 0.00 0.07 1.53

S8 60 943.4 1.5-12,000 0.26 0.00 0.00 0.08 1.08

S9 60 1125.2 1.5-30,000 5.81 0.01 0.00 0.21 1.59

S10 60 118.4 2.5-6,000 0.02 0.00 0.00 0.02 0.74

S11 60 146.2 2.5-12,000 0.01 0.00 0.00 0.02 0.78

S12 60 239.6 2.5-30,000 0.00 0.00 0.00 0.02 1.08

Continued on next page. . .

87

MBH GR1 GR2 LSLP

Group |V | |E| α− β Time Time Time BestTime TotTime

S13 100 1359.4 1.5-10,000 0.5 0.00 0.01 0.20 5.06

S14 100 1952 1.5-20,000 1.12 0.01 0.01 0.21 5.07

S15 100 2830.6 1.5-50,000 71.47 0.01 0.01 0.48 3.88

S16 100 168.6 2.5-10,000 0.01 0.00 0.00 0.03 1.34

S17 100 237.6 2.5-20,000 0.00 0.00 0.00 0.03 1.58

S18 100 385.6 2.5-50,000 0.01 0.00 0.00 0.04 2.01

S19 200 2629.4 1.5-20,000 150.06 0.01 0.01 5.86 17.67

S20 200 4443.8 1.5-40,000 ⋆ 0.02 0.02 11.58 27.83

S21 200 7258.2 1.5-100,000 ⋆ 0.03 0.04 11.19 32.00

S22 200 306.2 2.5-20,000 0.00 0.00 0.00 0.08 3.88

S23 200 353 2.5-40,000 0.01 0.00 0.00 0.08 4.02

S24 200 655 2.5-100,000 0.01 0.00 0.00 0.11 5.54

S25 600 7,504.2 1.5-60,000 ⋆ 0.03 0.03 159.74 492.39

S26 600 12,447 1.5-120,000 ⋆ 0.06 0.07 491.14 773.12

S27 600 23,695.6 1.5-300,000 ⋄ 0.16 0.17 613.51 1,327.97

S28 600 672.8 2.5-60,000 0.02 0.00 0.00 1.23 98.51

S29 600 918.8 2.5-120,000 0.01 0.00 0.00 1.28 107.24

S30 600 1,216 2.5-300,000 0.02 0.00 0.00 1.34 116.67

S31 1,000 11,889.2 1.5-100,000 ⋆ 0.06 0.06 433.82 1,201.1

S32 1,000 19,833.8 1.5-200,000 ⋄ 0.11 0.12 804.48 1,906.62

S33 1,000 39,834.8 1.5-500,000 ⋄ 0.32 0.34 1,491.73 3,751.9

S34 1,000 1,061.2 2.5-100,000 0.01 0.00 0.00 3.41 271.12

S35 1,000 1,375.4 2.5-200,000 0.03 0.00 0.00 3.44 278.52

S36 1,000 1,824.8 2.5-500,000 0.03 0.01 0.01 3.61 302.21

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

88

Table B.7: Percentage gaps obtained by planar graph decomposition-based heuristic for different k values

No |V | |E| l T IP GapIP (%) Gapk=1 Gapk=2 Gapk=3 Gapk=5 Gapk=7 Gapk=10 Gapk=15 Gapk=20 Gapk=25 Gapk=30

1 1,000 2,500 100 0.40 0.00 69.86 36.52 23.48 13.62 8.70 6.09 2.90 2.32 1.16 0.87

2 1,000 2,500 100 0.40 0.00 70.06 37.21 23.84 13.95 9.88 4.94 3.20 1.45 1.16 0.87

3 5,000 7,000 100 1.80 0.00 46.62 23.25 15.12 8.37 6.13 4.12 1.22 1.18 0.51 0.31

4 5,000 7,000 100 2.00 0.00 50.12 23.92 16.00 8.47 6.26 3.43 1.97 0.55 0.63 0.00

5 10,000 12,000 150 6.10 0.00 46.70 22.09 15.61 8.56 5.15 3.50 1.82 0.86 0.06 0.43

6 10,000 12,000 150 7.30 0.00 42.38 22.51 15.42 8.67 5.50 3.95 1.66 0.53 0.35 0.04

7 20,000 25,000 200 13.40 0.00 45.87 21.71 14.69 8.62 5.70 4.35 2.25 1.12 0.45 0.30

8 20,000 25,000 200 13.60 0.00 44.10 23.12 15.37 8.06 5.98 4.15 1.83 1.26 0.61 0.51

9 50,000 55,000 500 54.10 0.01 48.22 22.49 14.61 8.60 5.71 4.08 2.46 1.54 0.42 0.57

10 50,000 55,000 500 103.10 0.01 49.39 25.60 16.87 10.27 6.38 4.18 2.88 1.33 0.35 0.33

11 100,000 105,000 1,000 254.70 0.01 39.14 21.75 14.89 9.02 6.31 3.99 2.34 1.22 0.56 0.39

12 100,000 105,000 1,000 360.40 0.01 40.78 23.46 14.73 9.75 6.45 4.31 2.31 1.18 0.76 0.20

13 300,000 306,003 1,500 ⋄ 0.02 41.30 22.11 14.97 9.37 6.83 4.55 2.92 1.26 1.00 0.42

14 300,000 306,002 1,500 ⋄ 0.03 40.33 22.73 15.62 9.19 6.35 4.24 2.87 1.11 0.75 0.60

15 500,000 507,018 2,000 ⋄ 0.12 36.78 21.58 14.94 9.13 6.24 4.46 2.61 1.19 0.73 0.58

16 500,000 507,013 2,000 ⋄ 0.13 35.80 20.98 15.37 9.17 6.79 4.57 2.83 1.19 0.70 0.61

17 800,000 808,461 4,000 ⋄ 0.15 28.69 18.21 13.71 8.90 6.22 4.25 2.30 1.13 0.52 0.39

18 800,000 808,449 4,000 ⋄ 0.15 29.24 17.28 12.58 8.19 6.31 4.29 2.23 1.09 0.57 0.36

19 1,000,000 1,010,574 5,000 ⋄ 0.21 29.46 18.10 13.32 8.54 6.32 4.59 2.58 1.14 0.58 0.45

20 1,000,000 1,010,578 5,000 ⋄ 0.21 30.33 18.01 13.17 8.79 6.39 4.52 2.48 1.27 0.61 0.50

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

89

Table B.8: Percentage gaps obtained by approximation algorithm for different k values

No |V | |E| l T IP GapIP (%) Gapk=1 Gapk=2 Gapk=3 Gapk=5 Gapk=7 Gapk=10 Gapk=15 Gapk=20 Gapk=25 Gapk=30

1 1,000 2,500 100 0.40 0.00 70.43 36.52 27.25 15.94 8.70 8.41 4.93 3.77 2.03 1.74

2 1,000 2,500 100 0.40 0.00 70.06 38.08 26.74 16.28 10.47 8.72 3.49 4.07 3.78 3.20

3 5,000 7,000 100 1.80 0.00 46.35 22.98 15.44 10.41 6.64 4.75 1.73 2.47 1.65 1.06

4 5,000 7,000 100 2.00 0.00 49.33 23.92 16.27 10.36 6.78 4.26 3.23 2.80 1.73 1.69

5 10,000 12,000 150 6.10 0.00 46.74 22.46 16.78 8.56 7.21 4.13 2.35 2.92 1.19 2.25

6 10,000 12,000 150 7.30 0.00 42.24 23.02 15.42 9.90 6.54 5.19 3.50 2.09 2.21 1.25

7 20,000 25,000 200 13.40 0.00 45.70 21.71 16.19 10.60 6.12 4.98 3.08 1.95 1.63 0.91

8 20,000 25,000 200 13.60 0.00 44.04 23.21 15.72 10.93 6.31 5.40 2.82 2.82 1.59 2.99

9 50,000 55,000 500 54.10 0.01 47.73 22.49 15.67 11.15 8.47 5.66 4.14 2.84 2.13 1.58

10 50,000 55,000 500 103.10 0.01 48.95 26.07 16.90 10.86 7.92 7.10 6.04 2.87 2.34 3.05

11 100,000 105,000 1,000 254.70 0.01 38.97 21.50 14.89 10.15 6.46 4.72 2.93 2.42 2.12 2.11

12 100,000 105,000 1,000 360.40 0.01 40.83 23.50 16.84 10.72 6.96 5.34 3.63 3.42 1.93 1.98

13 300,000 306,003 1,500 ⋄ 0.02 41.05 21.76 16.35 9.76 7.25 4.73 3.65 2.95 2.05 2.26

14 300,000 306,002 1,500 ⋄ 0.03 40.37 22.72 16.41 9.95 7.20 4.18 3.38 3.43 2.18 2.25

15 500,000 507,018 2,000 ⋄ 0.12 36.93 21.61 15.27 9.24 7.52 5.18 3.27 2.72 2.44 2.42

16 500,000 507,013 2,000 ⋄ 0.13 36.01 21.87 15.86 10.15 6.84 4.69 3.46 2.55 2.36 3.06

17 800,000 808,461 4,000 ⋄ 0.15 28.61 18.29 13.63 9.04 6.53 5.02 3.60 2.77 2.10 1.51

18 800,000 808,449 4,000 ⋄ 0.15 29.33 17.29 12.63 8.88 7.06 5.30 3.34 2.49 2.08 1.71

19 1,000,000 1,010,574 5,000 ⋄ 0.21 29.50 17.92 13.36 8.90 6.93 5.03 3.85 2.70 2.24 2.05

20 1,000,000 1,010,578 5,000 ⋄ 0.21 30.53 18.48 13.85 9.43 6.67 5.36 3.46 2.95 2.24 1.65

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

90

Table B.9: Computation times obtained by planar graph approximation algorithm for different k values

No |V | |E| l T IP T k=1 T k=2 T k=3 T k=5 T k=7 T k=10 T k=15 T k=20 T k=25 T k=30

1 1,000 2,500 100 0.40 0.20 0.20 0.20 0.30 0.50 1.00 1.20 2.40 3.70 4.40

2 1,000 2,500 100 0.40 0.20 0.10 0.10 0.30 0.40 0.70 1.20 1.90 3.60 4.60

3 5,000 7,000 100 1.80 0.50 0.60 0.80 1.30 1.90 3.20 7.50 11.40 16.80 22.10

4 5,000 7,000 100 2.00 0.40 0.50 0.70 1.30 1.80 3.40 7.90 12.30 17.20 22.40

5 10,000 12,000 150 6.10 0.50 0.80 1.20 2.10 3.60 7.20 14.90 24.60 37.40 47.70

6 10,000 12,000 150 7.30 0.50 0.90 1.20 2.00 3.30 6.40 15.60 27.30 37.30 53.10

7 20,000 25,000 200 13.40 1.00 1.70 2.50 5.50 9.80 16.60 33.40 59.00 108.30 178.00

8 20,000 25,000 200 13.60 1.00 1.70 2.30 5.10 8.50 15.80 36.60 52.40 114.40 191.20

9 50,000 55,000 500 54.10 1.80 3.20 4.40 7.80 15.10 37.10 81.60 149.40 276.30 549.20

10 50,000 55,000 500 103.10 1.80 3.20 4.30 8.40 16.10 38.20 84.70 157.40 308.20 593.20

11 100,000 105,000 1,000 254.70 3.20 5.50 7.50 13.70 20.70 52.30 144.30 322.60 627.70 1,219.10

12 100,000 105,000 1,000 360.40 3.10 5.30 7.70 13.90 21.60 55.70 153.90 315.00 638.40 1,221.20

13 300,000 306,003 1,500 ⋄ 9.20 15.00 21.80 39.90 70.00 252.60 924.30 1,459.90 2,247.70 4,040.60

14 300,000 306,002 1,500 ⋄ 9.50 14.80 21.60 39.50 71.00 272.30 961.00 1,530.10 2,241.70 3,889.30

15 500,000 507,018 2,000 ⋄ 16.70 26.10 36.70 66.50 153.00 614.90 1,607.00 2,929.30 6,522.60 11,629.10

16 500,000 507,013 2,000 ⋄ 16.80 26.10 37.30 68.20 164.30 627.10 1,693.40 2,971.50 6,663.40 11,769.70

17 800,000 808,461 4,000 ⋄ 36.70 48.10 59.90 102.40 190.50 655.10 2,306.80 4,478.70 6,607.80 11,431.40

18 800,000 808,449 4,000 ⋄ 36.10 48.50 59.80 106.10 212.20 682.90 2,405.30 4,707.70 6,778.00 11,747.00

19 1,000,000 1,010,574 5,000 ⋄ 53.40 67.50 81.50 138.60 267.60 853.10 3,173.20 6,068.60 8,688.80 15,046.50

20 1,000,000 1,010,578 5,000 ⋄ 54.00 66.90 81.30 138.00 267.20 835.60 3,176.90 6,078.10 8,579.80 14,477.20

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

91

Table B.10: Computation times obtained by planar graph decomposition-based heuristic for different k values

No |V | |E| l T IP T k=1 T k=2 T k=3 T k=5 T k=7 T k=10 T k=15 T k=20 T k=25 T k=30

1 1,000 2,500 100 0.40 0.20 0.10 0.10 0.20 0.10 0.10 0.20 0.20 0.20 0.10

2 1,000 2,500 100 0.40 0.20 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.20 0.20

3 5,000 7,000 100 1.80 0.40 0.40 0.50 0.50 0.50 0.40 0.40 0.50 0.50 0.50

4 5,000 7,000 100 2.00 0.30 0.40 0.50 0.60 0.40 0.60 0.40 0.50 0.50 0.70

5 10,000 12,000 150 6.10 0.50 0.60 0.60 0.80 0.90 0.90 1.00 1.00 1.20 1.40

6 10,000 12,000 150 7.30 0.60 0.50 0.60 0.80 0.80 1.00 1.00 1.00 1.20 1.10

7 20,000 25,000 200 13.40 1.10 1.00 1.10 1.70 2.00 2.40 2.10 2.30 2.80 2.60

8 20,000 25,000 200 13.60 0.90 1.10 1.10 1.40 1.90 2.50 2.30 2.60 3.00 2.50

9 50,000 55,000 500 54.10 1.80 1.80 1.90 2.10 2.50 4.30 5.40 9.20 10.50 9.20

10 50,000 55,000 500 103.10 1.80 1.70 1.80 2.00 2.70 4.20 6.00 8.90 9.80 9.50

11 100,000 105,000 1,000 254.70 3.20 2.90 2.80 3.10 3.30 5.80 8.40 16.30 16.20 20.20

12 100,000 105,000 1,000 360.40 3.20 2.90 2.70 3.40 3.50 5.80 8.90 15.80 18.50 19.10

13 300,000 306,003 1,500 ⋄ 9.20 7.50 7.30 8.80 10.60 25.90 40.10 50.70 50.30 67.60

14 300,000 306,002 1,500 ⋄ 9.30 7.40 7.30 8.20 9.80 23.60 40.70 47.90 50.80 83.20

15 500,000 507,018 2,000 ⋄ 16.70 12.70 12.60 14.00 22.20 47.20 80.40 105.90 135.30 212.60

16 500,000 507,013 2,000 ⋄ 16.60 12.80 12.80 13.70 29.30 45.50 87.90 95.90 158.70 208.90

17 800,000 808,461 4,000 ⋄ 36.00 24.80 20.50 22.00 26.40 54.90 88.60 126.70 167.90 204.00

18 800,000 808,449 4,000 ⋄ 35.90 25.30 20.30 22.30 25.60 55.70 90.40 144.50 181.70 219.10

19 1,000,000 1,010,574 5,000 ⋄ 53.70 34.80 27.60 27.80 32.80 70.40 123.50 166.80 232.20 287.50

20 1,000,000 1,010,578 5,000 ⋄ 53.40 34.50 27.60 28.80 32.50 69.60 107.70 168.10 217.60 284.50

⋄: Terminated due to time limit and returned a feasible solution.

⋆: Terminated without giving a feasible solution.

92

Table B.11: The performances of the rounding algorithms on random graphs

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

20 38 8 8.0 11 8 14 9 7.4 12 8 8 8

20 39 10 10.0 15 11 20 12 10 12 10 10 10

20 40 8 8.0 8 8 8 8 8 12 8 8 8

20 40 8 8.0 10 8 10 8 7.4 8 8 8 8

20 42 9 8.5 16 10 17 10 8 9 9 10 9

60 344 24 22.6 52 29 54 29 17.3 38 30 33 25

60 342 27 25.3 54 30 58 30 22.4 40 31 51 30

60 337 27 25.2 55 32 55 32 22.3 38 30 34 30

60 332 27 24.4 55 31 59 32 20.1 35 29 42 29

60 343 24 22.9 50 28 57 30 17.1 36 28 34 28

20 20 8 8.0 8 8 9 8 8 8 8 8 8

20 19 8 8.0 8 8 13 8 8 10 8 8 8

20 20 8 8.0 8 8 10 8 8 9 8 8 8

20 19 8 8.0 8 8 12 8 8 12 8 8 8

20 20 8 8.0 8 8 9 8 8 12 8 8 8

60 69 25 25.0 33 25 35 25 25 34 28 25 25

60 70 26 26.0 26 26 39 27 26 35 26 26 26

60 73 29 28.5 30 29 51 30 28.7 32 29 29 29

60 72 25 25.0 25 25 34 25 25 38 26 25 25

60 68 25 25.0 31 25 32 25 25 27 26 25 25

100 143 46 46.0 59 46 68 47 46 54 46 46 46

100 139 44 44.0 57 44 57 44 44 60 45 44 44

100 138 46 45.5 67 49 75 50 45.8 69 50 48 46

100 138 43 43.0 58 43 63 43 43 66 45 43 43

100 136 48 48.0 82 51 91 51 48 78 54 48 48

200 439 105 99.5 184 122 198 126 104.2 118 112 106 106

200 441 104 98.0 180 121 194 123 102.4 122 107 121 112

200 447 103 99.0 183 118 195 129 102.3 112 104 103 103

200 436 104 100.0 179 122 200 127 103.3 130 109 109 106

200 449 107 99.0 190 129 197 129 104.5 132 108 114 109

93

Table B.12: The performances of the rounding algorithms on bounded graphs

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

100 150 51 50 54 51 100 59 50.05 94 59 92 59

100 150 51 50 81 57 100 57 50.05 86 55 80 57

100 150 51 50 70 55 100 59 50.05 88 57 58 53

100 150 51 50 82 57 100 59 50.05 87 59 71 55

100 150 51 50 79 53 100 61 50.05 85 59 56 51

200 300 101 100 200 115 200 115 100.02 174 115 107 103

200 300 101 100 200 117 200 117 100.02 186 115 140 105

200 300 101 100 200 121 200 121 100.02 184 123 159 111

200 300 101 100 200 119 200 119 100.02 190 119 114 101

200 300 101 100 200 117 200 117 100.02 188 115 112 103

600 900 301 300 599 357 600 357 300.01 556 355 326 305

600 900 301 300 536 347 600 355 300.01 555 355 356 311

600 900 301 300 507 333 600 351 300.01 552 349 368 313

600 900 301 300 583 355 600 357 300.01 546 359 341 303

600 900 301 300 524 335 600 353 300.01 558 345 352 313

60 270 30 30 60 30 60 30 30 31 30 30 30

60 270 30 30 60 30 60 30 30 30 30 30 30

60 270 30 30 60 30 60 30 30 32 30 30 30

60 270 30 30 60 30 60 30 30 30 30 30 30

60 270 30 30 60 30 60 30 30 30 30 30 30

100 450 50 50 100 50 100 50 50 50 50 50 50

100 450 50 50 100 50 100 50 50 53 50 55 50

100 450 50 50 100 50 100 50 50 50 50 50 50

100 450 50 50 100 50 100 50 50 53 50 50 50

100 450 50 50 100 50 100 50 50 50 50 50 50

200 900 100 100 200 100 200 100 100 102 100 129 100

200 900 100 100 200 100 200 100 100 103 100 115 100

200 900 100 100 200 100 200 100 100 101 100 100 100

200 900 100 100 200 100 200 100 100 102 100 100 100

200 900 100 100 200 100 200 100 100 101 100 118 100

94

Table B.13: The performances of the rounding algorithms on irregular bounded graphs

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

60 90 31 30 60 37 60 37 30.3 36 32 31 31

60 89 30 30 30 30 60 39 30 35 31 30 30

60 89 30 30 51 33 60 38 30 41 31 38 32

60 90 29 29 37 29 39 30 29 39 31 29 29

60 90 31 30 38 32 60 40 30.7 32 31 32 32

100 150 52 50 71 58 100 60 51.3 62 52 66 57

100 150 51 50 65 54 100 65 50.4 61 53 59 53

100 149 49 49 88 57 97 58 48.8 57 51 49 49

100 150 49 49 65 50 67 51 49 58 51 49 49

100 150 51 49.5 99 63 99 63 50.2 54 52 56 52

200 299 98 98 116 99 123 100 98 123 100 98 98

200 300 101 100 162 112 200 119 100.2 124 105 106 101

200 300 100 99.5 145 108 199 124 99.8 113 103 100 100

200 300 99 99 140 107 175 114 99 113 104 99 99

200 300 97 97 144 103 147 103 97 103 97 97 97

60 269 26 25.3 53 29 54 29 22.9 28 27 30 26

60 267 26 25.3 54 29 54 29 22.3 31 28 34 27

60 264 26 25.7 51 30 52 30 23.9 30 28 36 29

60 265 27 26 51 31 53 31 24.5 34 28 41 28

60 268 26 25.6 55 29 55 29 23.4 36 29 32 27

100 445 43 42.5 74 48 85 50 39.8 66 47 53 45

100 445 44 42.5 72 51 73 53 39.9 68 51 51 46

100 447 43 42.3 79 50 80 50 39.6 70 50 63 47

100 447 46 44.5 86 53 88 53 43.3 59 49 71 51

100 449 44 42.7 76 47 76 47 40.7 71 50 54 45

200 897 89 87.8 155 102 157 103 82.9 147 103 112 91

200 897 89 88 161 99 172 106 84.4 127 95 111 94

200 893 92 91 163 101 172 102 89.4 121 104 125 95

200 897 90 88.3 167 105 182 109 84.7 153 104 140 96

200 892 87 86.7 155 93 157 93 84.4 118 94 113 93

95

Table B.14: The performances of the rounding algorithms on regular meshes

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

100 180 50 50 68 58 100 59 50 50 50 66 58

100 180 50 50 68 58 100 64 50 50 50 66 58

100 180 50 50 68 58 100 65 50 50 50 66 58

100 180 50 50 68 58 100 59 50 50 50 66 58

100 180 50 50 68 58 100 61 50 50 50 66 58

196 364 98 98 140 111 196 123 98 98 98 132 111

196 364 98 98 140 111 196 128 98 98 98 132 111

196 364 98 98 140 112 196 122 98 98 98 132 112

196 364 98 98 140 113 196 116 98 98 98 132 112

196 364 98 98 140 111 196 120 98 98 98 132 111

64 144 32 32 32 32 64 39 32 32 32 32 32

64 144 32 32 32 32 64 40 32 32 32 32 32

64 144 32 32 32 32 64 43 32 32 32 32 32

64 144 32 32 32 32 64 35 32 32 32 32 32

64 144 32 32 32 32 64 42 32 32 32 32 32

125 300 62 62 62 62 62 62 62 62 62 62 62

125 300 62 62 62 62 62 62 62 62 62 62 62

125 300 62 62 62 62 62 62 62 62 62 62 62

125 300 62 62 62 62 62 62 62 62 62 62 62

125 300 62 62 62 62 62 62 62 62 62 62 62

81 198 39 39 39 39 39 39 39 39 39 39 39

81 198 39 39 39 39 39 39 39 39 39 39 39

81 198 39 39 39 39 39 39 39 39 39 39 39

81 198 39 39 39 39 39 39 39 39 39 39 39

81 198 39 39 39 39 39 39 39 39 39 39 39

256 672 128 128 229 160 256 169 128 128 128 128 128

256 672 128 128 128 128 256 166 128 128 128 128 128

256 672 128 128 128 128 256 166 128 128 128 128 128

256 672 128 128 128 128 256 167 128 128 128 128 128

256 672 128 128 128 128 256 167 128 128 128 128 128

96

Table B.15: The performances of the rounding algorithms on irregular meshes

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

196 403 102 98 196 123 196 123 101.1 102 102 119 107

196 402 107 98 196 123 196 123 102.1 126 111 168 119

196 402 106 98 196 128 196 128 101.8 114 108 150 119

196 402 104 98 152 112 196 124 101.9 108 104 173 115

196 403 104 98 196 129 196 129 101.7 116 107 189 129

196 441 109 98 196 129 196 129 103.9 134 119 131 115

196 441 108 98 196 121 196 121 103.5 122 113 144 118

196 441 109 97.5 195 127 195 127 103.5 129 117 155 115

196 441 109 98 196 122 196 122 104.2 117 110 131 114

196 440 110 98 196 126 196 126 104.7 130 114 140 115

196 481 112 98 196 128 196 128 106.2 122 115 173 125

196 481 110 97.5 195 128 195 128 105.5 129 114 174 122

196 478 112 98 196 131 196 131 106.4 133 118 163 124

196 481 112 98 196 127 196 127 106.1 139 122 189 124

196 478 110 98 196 126 196 126 105.6 136 121 140 121

125 325 64 62.5 125 83 125 83 63.9 66 64 71 65

125 324 67 62.5 125 86 125 86 65.8 70 68 88 73

125 325 66 62.5 125 84 125 84 65.3 72 66 80 67

125 325 66 62.5 125 84 125 84 65.6 67 66 93 72

125 324 67 62.5 125 81 125 81 66,3 71 67 69 67

125 349 69 62.5 125 82 125 82 67.7 73 69 81 72

125 346 69 62.5 125 82 125 82 67.3 72 70 114 84

125 348 71 62.5 125 83 125 83 68.1 78 71 103 82

125 348 69 62.5 125 86 125 86 67.1 82 70 105 76

125 350 71 62.5 125 87 125 87 68.4 78 71 110 81

125 374 73 62,5 125 86 125 86 68.6 83 79 106 79

125 374 73 62.5 125 80 125 80 68.5 82 76 99 81

125 374 71 62.5 125 86 125 86 68.2 86 74 109 81

125 373 71 62.5 125 84 125 84 68.4 82 76 105 77

125 371 71 62.5 125 87 125 87 68.1 80 75 101 80

97

Table B.16: The performances of the rounding algorithms on scale-free graphs

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

20 113 4 3.5 8 6 9 6 1.7 5 4 4 4

20 116 4 3.1 9 4 10 4 1.6 4 4 4 4

20 86 4 4 5 4 5 4 3.4 6 4 4 4

20 112 4 3.5 13 5 15 5 1.7 11 5 6 5

20 108 3 3 7 4 13 4 1.7 6 3 3 3

20 113 3 3 3 3 3 3 1.67 5 4 3 3

20 103 4 3.8 9 5 11 5 2.5 7 6 4 4

20 124 4 2.7 12 5 15 5 0.8 5 5 5 5

20 110 4 4 12 5 13 5 2.5 6 6 5 5

20 115 4 3.2 12 5 14 6 1.6 5 5 5 5

20 116 4 3 11 4 17 4 0.9 5 5 5 4

20 108 3 3 3 3 3 3 2.4 4 3 3 3

20 113 4 3.3 12 4 13 5 1.6 7 5 5 4

20 124 3 2.7 17 4 17 4 0.8 4 3 5 4

20 108 4 3.6 8 4 12 4 2.4 6 5 4 4

20 57 6 6 11 6 13 6 4.6 10 8 6 6

20 37 7 7 9 7 10 7 6.5 9 8 7 7

20 43 7 7 11 7 12 7 6.3 8 7 7 7

20 53 7 7 17 7 18 7 5.7 11 7 9 7

20 57 6 6 7 6 8 6 5.5 8 6 6 6

20 77 5 5 6 5 6 5 3.7 6 6 5 5

20 65 5 5 5 5 5 5 3.9 6 5 5 5

20 82 5 5 6 5 6 5 3.7 6 5 5 5

20 68 6 6 9 6 9 6 4.9 8 7 6 6

20 87 6 5.2 12 7 12 7 3.7 7 6 9 6

20 114 4 3.8 11 4 16 5 1.3 12 6 6 5

20 104 4 3.5 6 4 7 4 1.8 5 4 5 4

20 106 4 3 6 4 6 4 1.7 4 4 4 4

20 99 4 3.7 8 4 9 4 2 8 4 4 4

20 72 5 5 6 5 6 5 3.9 6 5 5 5

98

Table B.17: The performances of the rounding algorithms on planar graphs

Instances Primal Rounding Dual Rounding SDP Rounding MTS

NoOfNode NoOfEdge IPOPT LPOPT IPRound IPPost IPRound IPPost OFVSDP SDPRound IPPost IPRound IPPost

20 30 10 9.5 13 10 13 10 9.8 13 10 10 10

20 30 10 9.5 13 10 13 10 9.8 13 10 10 10

20 30 10 9.5 13 10 13 10 9.8 13 10 10 10

20 30 10 9.5 13 10 13 10 9.8 13 10 10 10

20 30 10 9.5 13 10 13 10 9.8 13 10 10 10

20 30 10 9.5 20 11 20 11 9.2 11 10 17 11

20 30 10 9.5 20 11 20 11 9.2 11 10 17 11

20 30 10 9.5 20 11 20 11 9.2 11 10 17 11

20 30 10 9.5 20 11 20 11 9.2 11 10 17 11

20 30 10 9.5 20 11 20 11 9.2 11 10 17 11

50 100 21 20.5 29 22 31 23 19.2 29 21 21 21

50 100 19 19 25 19 27 19 16.9 31 20 19 19

50 100 20 19.5 29 20 29 20 17.6 26 21 23 20

50 100 21 20.7 29 22 34 23 17.8 23 22 22 21

50 100 21 21 35 21 46 21 18.2 27 23 28 21

50 100 20 19.7 40 23 44 23 16.4 29 21 24 21

50 100 21 20.5 39 22 44 22 18.4 25 24 21 21

50 100 21 20.5 42 23 44 23 17.9 30 24 29 23

50 100 20 20 31 21 31 21 17.8 27 21 21 20

50 100 23 22.3 40 23 47 23 20.3 29 24 32 23

50 100 20 20 34 22 36 22 18.5 37 26 23 20

50 100 22 21 39 23 44 23 19.1 26 24 22 22

50 100 22 21 42 23 43 23 18.6 26 23 34 22

50 100 22 20.8 41 24 41 24 19.2 25 22 33 22

50 100 21 21 36 23 36 23 19.3 24 23 21 21

80 150 35 34 63 38 72 40 31.2 47 40 53 35

80 150 32 32 48 32 67 36 28.3 46 33 35 32

80 150 32 31.5 48 33 53 33 28.4 37 33 32 32

80 150 33 33 49 33 53 33 29.2 42 34 33 33

80 150 35 35 52 35 58 35 33.4 46 36 35 35

99

Bibliography

[1] M. A. Abdulrahim and M. Misra. A graph isomorphism algorithm for object

recognition. Pattern Analysis and Applications, 1:189–201, 1998.

[2] U. Aickelin. An indirect genetic algorithm for set covering problems. Journal of

the Operational Research Society, 53(10):1118–1126, 2002.

[3] S. Arora, B. Bollobas, L. Lovasz, and I. Tourlakis. Proving integrality gaps with-

out knowing the linear program. Theory of Computing, 2:19–51, 2006.

[4] E. Asgeirsson and C. Stein. Vertex cover approximations: Experiments and ob-

servations. Lecture Notes in Computer Science, 3503:545–557, 2005.

[5] E. Asgeirsson and C. Stein. Vertex cover approximations on random graphs.

Lecture Notes in Computer Science, 4525:285–296, 2005.

[6] Z. N. Azimi, P. Toth, and L. Galli. An electromagnetism metaheuristic for the

unicost set covering problem. European Journal of Operational Research, 205:290–

300, 2010.

[7] B. S. Baker. Approximation algorithms for NP-complete problems. Journal of

the Association for Computing Machinery, 41:153–180, 1994.

[8] S. Balaji, V. Swaminathan, and K. Kannan. Optimization of unweighted min-

imum vertex cover. World Academy of Science, Engineering and Technology,

67:508–513, 2010.

[9] E. Balas and M. C. Carrera. A dynamic subgradient-based branch-and-bound

procedure for set covering. Operations Research, 44(6):875–890, 1996.

100

[10] S. Baloch and H. Krim. Object recognition through topo-geometric shape mod-

els using error-tolerant subgraph isomorphisms. IEEE Transactions on Image

Processing, 19:1191–1200, 2010.

[11] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the

weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

[12] R. Bar-Yehuda and S. Even. On approximating a vertex cover for planar graphs.

In 14th ACM Symposium on Theory of Computing, pages 303–309, San Francisco,

California, 1982.

[13] R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual

schema and the local ratio technique. SIAM Journal on Discrete Mathematics,

19:762–797, 2005.

[14] A. L. Barabasi, Z. Dezso, E. Ravasz, S.H. Yook, and Z. Oltvai. Scale-free and hi-

erarchical structures in complex networks. In AIP Conference Proceedings, pages

1–16, Granada, Spain, 2003.

[15] V. Batagelj and U. Brandes. Efficient generation of large random networks. Phys.

Rev. E., 71:1–5, 2005.

[16] J. E. Beasley. An algorithm for set covering problem. European Journal of Oper-

ational Research, 31:85–93, 1987.

[17] J. E. Beasley. A Lagrangian heuristic for set covering problems. Naval Research

Logistics, 37:151–164, 1990.

[18] J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem.

European Journal of Operational Research, 94:392–404, 1996.

[19] J. E. Beasley and K. Jornsten. Enhancing an algorithm for set covering problems.

European Journal of Operational Research, 58:293–300, 1992.

[20] D. Bertsimas and R. Vohra. Rounding algorithms for covering problems. Mathe-

matical Programming, 80:63–89, 1998.

101

[21] D. Bienstock and C.L.Monma. On the complexity of embedding planar graphs

to minimize certain distance measures. Algorithmica, 5:93–109, 1990.

[22] H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite vc-

dimension. Discrete and Computational Geometry, 14:463–479, 1995.

[23] M. J. Brusco, L. W. Jacobs, and G. M. Thompson. A morphing procedure to

supplement a simulated annealing heuristic for cost- and coverage-correlated set-

covering problems. Annals of Operations Research, 86:611–627, 1999.

[24] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering

problem. Operations Research, 47(5):730–743, 1999.

[25] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering problem.

Annals of Operations Research, 98:353–371, 2000.

[26] J. Cardinal, M. Karpinski, R. Schmied, and C. Viehmann. Approximating vertex

cover in dense hypergraphs. Journal of Discrete Algorithms, 13:67–77, 2012.

[27] M. Caserta. Metaheuristics: Progress in complex systems optimization, pages

43–63. Springer, Berlin, 2007.

[28] S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale

set covering problems. Mathematical Programmimg, 81:215–228, 1998.

[29] S. Chikkerur, A.N. Carwright, and V. Govindaraju. K-plet and coupled BFS:

A graph based fingerprint representation and matching algorithm. Advances in

Biometrics, Lecture Notes in Computer Science, 3832:309–315, 2005.

[30] V. Chvatal. A greedy-heuristic for the set covering problem. Mathematics of

Operations Research, 4:233–235, 1979.

[31] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in

pattern recognition. International Journal of Pattern Recognition and Artificial

Intelligence, 18:265–298, 2004.

102

[32] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In 3rd IAPR-TC15 Workshop on Graph-based Represen-

tations in Pattern Recognition, pages 149–159, 2001.

[33] A. Dharwadker. The vertex cover algorithm. Proceedings of the Institute of

Mathematics, 2006.

[34] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.

Annals of Mathematics, 162:439–485, 2005.

[35] E. D. Dolan and J.J. More. Benchmarking optimization software with perfor-

mance profiles. Mathematical Programming Series A, 91:201–213, 2002.

[36] F. Dorn. Planar subgraph isomorphism revisited. In International Symposium on

Theoretical Aspects of Computer Science(STACS), pages 263–274, Nancy, France,

2010.

[37] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In

Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 632–640,

Philadelphia,USA, 1995.

[38] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small.

Information Processing Letters, 95:358–362, 2005.

[39] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

[40] M. Finger, T. Stützle, and H. Lourenço. Exploiting fitness distance correlation of

set covering problems. Lecture Notes in Computer Science, 2279:61–71, 2002.

[41] M. L. Fisher and P. Kedia. Optimal solution of set covering/partitioning problems

using dual heuristics. Management Science, 36(6):674–687, 1990.

[42] K. Fujisawa, T. Endo, Y. Yasui, H. Sato, N. Matsuzawa, S. Matsuoka, and

H. Waki. Peta-scale general solver for semidefinite programming problems with

103

over two million constraints. In The 28th IEEE International Parallel and Dis-

tributed Processing Symposium, Phoenix, USA, 2014.

[43] B. Gallagher. Finding frequent patterns in a large sparse graph. AAAI Fall

Symposium on Capturing and Using Patterns for Evidence Detection, pages 45–

53, 2006.

[44] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, New York, 1979.

[45] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1:237–267, 1976.

[46] H. Gazit and J. H. Reif. A randomized parallel algorithm for planar graph iso-

morphism. Journal of Algorithms, 28:290–314, 1998.

[47] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for

maximum cut and satisfability problems using semidefinite programming. Journal

of ACM, 42:1115–1145, 1995.

[48] F. C. Gomes, C. N. Meneses, P. M. Pardalos, and G. V. R. Viana. Experimen-

tal analysis of approximation algorithms for the vertex cover and set covering

problems. Computers and Operations Research, 33:3520–3534, 2006.

[49] T. Grossman and A. Wool. Computational experience with aproximation algo-

rithms for the set covering problem. European Journal of Operational Research,

101:81–92, 1997.

[50] N. G. Hall and R. V. Vohra. Pareto optimality and a class of set covering heuris-

tics. Annals of Operations Research, 43:279–284, 1993.

[51] E. Halperin. Improved approximation algorithms for the vertex cover problem in

graphs and hypergraphs. SIAM Journal on Computing, 31:1608–1623, 2002.

104

[52] Q. Han and A. P. Punnen. On the approximability of the vertex cover and related

problems. Algorithmic Aspects in Information and Management, Lecture Notes

in Computer Science, 6124:161–169, 2010.

[53] Q. Han, A. P. Punnen, and Y. Ye. An edge-reduction algorithm for the vertex

cover problem. Operations Research Letters, 37:181–186, 2009.

[54] Q. Han and A.P. Punnen. Strong and weak edges of a graph and linkages with

the vertex cover problem. Discrete Applied Mathematics, 160:197–203, 2012.

[55] M. Haouari and J. S. Chaouachi. A probabilistic greedy search algorithm for

combinatorial optimization with application to the set covering problem. Journal

of the Operational Research Society, 53:792–799, 2002.

[56] H. He and A. K. Singh. Graphs-at-a-time: query language and access methods for

graph databases. In SIGMOD Conference, pages 405–418, Vancouver, Canada,

2008.

[57] C. Herrera and P. J. Zufiria. Generating scale-free networks with adjustable

clustering coefficient via random walks. In Network Science Workshop, pages

167–172, Madrid, Spain, 2011.

[58] C. Higuera, J. C. Janodet, E. Samuel, G. Damiand, and C. Solnon. Polyno-

mial algorithms for open plane graph and subgraph isomorphisms. Theoretical

Computer Science, 498:76–99, 2013.

[59] D.S. Hochbaum. Approximation algorithms for the set covering and vertex cover

problems. SIAM Journal on Computing, 11:555–556, 1982.

[60] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the Association

for Computing Machinery, 21:549–568, 1974.

[61] D. K. Isenor and S. G. Zaky. Fingerprint identification using graph matching.

Pattern Recognition, 19:113–122, 1986.

105

[62] L. W. Jacobs and M. J. Brusco. A local search heuristic for large set-covering

problems. Naval Research Logistics, 42:1129–1140, 1995.

[63] J. Jaja and S. R. Kosaraju. Parallel algorithms for planar graph isomorphism

and related problems. IEEE Transactions on Circuits and Systems, 35:304–311,

1988.

[64] H. M. Jamil. Computing subgraph isomorphic queries using structural unification

and minimum graph structures. In Symposium on Applied Computing, pages

1053–1058, Taichung, Taiwan, 2011.

[65] J.Lee, W.S. Han, R. Kasperovics, and J.H. Lee. An in-depth comparison of

subgraph isomorphism algorithms in graph databases. In PVLDB’13 Proceedings

of the 39th International Conference on Very Large Data Bases, pages 133–144,

Riva del Garda, Trento, 2013.

[66] G. Karakostas. A better approximation ratio for the vertex cover problem. In 32nd

International Colloquium on Automata, Languages and Programming(ICALP),

pages 1043–1050, Lisboa, Portugal, 2005.

[67] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-ǫ.

Journal of Computer and System Sciences, 74:335–349, 2008.

[68] G. Kinney, J. W. Barnes, and B. Colleti. A group theoretic tabu search algorithm

for set covering problems. Technical report, Graduate Program in Operations

Research and Industrial Engineering, The University of Texas, Austin, Texas,

2004.

[69] M. Kojima, K. Fujisawa, K. Nakata, and M. Yamashita. SDPA (semidefinite

programming algorithm) user’s manual. Technical report, Department of Math-

ematical and Computing Sciences, Tokyo Institute of Technology, Japan, 2005.

[70] J. P. Kukluk. Algorithm and experiments in testing planar subgraphs for isomor-

phism. Journal of Graph Algorithms and Applications, 8:101–104, 2004.

106

[71] G. Lan, G. W. DePuy, and G. E. Whitehouse. An effective and simple heuristic for

the set covering problem. European Journal of Operational Research, 176:1387–

1403, 2007.

[72] J. Lee, W. S. Han, R. Kasperovics, and J. H. Lee. An in-depth comparison of sub-

graph isomorphism algorithms in graph databases. Proceedings of International

Conference on Very Large Data Bases, 6(2):133–144, 2012.

[73] A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic

time. Theoretical Computer Science, 63:295–302, 1989.

[74] V. Lipets, N. Vanetik, and E. Gudes. Subsea: an efficient heuristic algorithm for

subgraph isomorphism. Data Mining Knowledge Discovery, 19:320–350, 2009.

[75] J. Llados, E. Marti, and J. J. Villanueva. Symbol recognition by error-tolerant

subgraph matching between region adjacency graphs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23:1137–1143, 2001.

[76] L. A. N. Lorena and L. S. Lopes. Genetic algorithms applied to computationally

difficult set covering problems. Journal of Operational Research Society, 48:440–

445, 1997.

[77] C. Lund and M. Yannakakis. On the hardness of approximating minimization

problems. Journal of the ACM, 5:960–981, 1994.

[78] E. Marchiori and A. Steenbeek. An iterated heuristic algorithm for the set cov-

ering problem. In Proceedings WAE’98, pages 1–3, Saarbrücken, Germany, 1998.

[79] V. Melkonian. New primal-dual algorithms for steiner tree problems. Computers

and Operations Research, 34:2147–2167, 2007.

[80] B.T. Messmer and H. Bunke. Efficient subgraph isomorphism detection: a de-

composition approach. Knowledge and Data Engineering, IEEE Transactions,

12:307–323, 2000.

107

[81] N. Musliu. Local search algorithm for unicost set covering problem. Lecture Notes

in Artificial Intelligence, 4031:302–311, 2006.

[82] İ. Muter, Ş. İ. Birbil, and G. Şahin. Combination of metaheuristic and exact al-

gorithms for solving set covering-type optimization problems. INFORMS Journal

on Computing, 22:603–619, 2010.

[83] H. Nagamochi and T. Ibaraki. An approximation of the minimum vertex cover

in a graph. Japan Journal of Industrial and Applied Mathematics, 16:369–375,

1999.

[84] M. Neuhaus and H. Bunke. An error-tolerant approximate matching algorithm for

attributed planar graphs and its application to fingerprint classification. Struc-

tural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer

Science, 3138:180–189, 2004.

[85] M. Neuhaus and H. Bunke. A graph matching based approach to fingerprint clas-

sification using directional variance. Audio-and Video-Based Biometric Person

Authentication, Lecture Notes in Computer Science, 3546:191–200, 2005.

[86] M. Neuhaus, K. Riesen, and H. Bunke. Fast suboptimal algorithms for the com-

putation of graph edit distance. Structural, Syntactic, and Statistical Pattern

Recognition, Lecture Notes in Computer Science, 4109:163–172, 2006.

[87] M. Okun. On approximation of the vertex cover problem in hypergraphs. Discrete

Optimization, 2:101–111, 2005.

[88] S. Poljak. A note on stable sets and coloring of graphs. Commun. Math. Univ.

Carolinae, 15:307–309, 1974.

[89] Z. G. Ren, Z. R. Feng, L. J. Ke, and Z. J. Zhang. New ideas for applying ant colony

optimization to the set covering problem. Computers and Industrial Engineering,

58:774–784, 2010.

108

[90] C. R. Rivero, I. Hernandez, D. Ruiz, and R. Corchuelo. Benchmarking data

exchange among semantic-web ontologies. IEEE Transactions on Knowledge and

Data Engineering, 25:1997–2009, 2013.

[91] C. R. Rivero and H. M. Jamil. Exact subgraph isomorphism using graphlets and

minimum hub covers. Submitted to PVLDB for publication, 2014.

[92] C.R. Rivero and H. M. Jamil. On isomorphic matching of large disk resident

graphs using an XQuery engine. International Workshop on Graph Data Man-

agement: Techniques and Applications.

[93] M.D. Santo, P. Foggia, C. Sansone, and M. Vento. A large database of graphs

and its use for benchmarking graph isomorphism algorithms. Pattern Recognition

Letters, 24:1067–1079, 2003.

[94] J. Saramaki and K. Kaski. Scale-free networks generated by random walkers.

Physica A: Statistical Mechanics and its Applications, 341:80–86, 2004.

[95] B. Saux and H. Bunke. Feature selection for graph-based image classifiers. Pattern

Recognition and Image Analysis, Lecture Notes in Computer Science, 3523:147–

154, 2005.

[96] T. Saxena, P. Tu, and R. Hartley. Recognizing objects in cluttered images using

subgraph isomorphism. In Proceedings of the IU Workshop, California, USA,

1998.

[97] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: An

efficient algorithm for testing subgraph isomorphism. In Journal Proceedings of

the Very Large Database Endowment, volume 1, pages 364–375, Auckland, New

Zealand, 2008.

[98] Y. Tian and J. M. Patel. Tale: A tool for approximate large graph matching.

International Conference on Data Engineering, pages 963–972, 2008.

[99] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,

23:31–42, 1976.

109

[100] S. Umetani and M. Yagiura. Relaxation heuristics for the set covering problem.

Journal of the Operations Research Society of Japan, 50:350–375, 2007.

[101] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, USA,

1989.

[102] F. J. Vasko and G. R. Wilson. An efficient heuristic for large set covering problems.

Naval Research Logistics Quarterly, 31:163–171, 1984.

[103] V. V. Vazirani. Theoretical aspects of computer science, pages 198–207. Springer,

Verlag Lecture Notes in Computer Science 2292, 2002.

[104] M. Weber, M. Liwicki, and A. Dengel. Faster subgraph isomorphism detection

by well-founded total order indexing. Pattern Recognition Letters, 33:2011–2019,

2012.

[105] D.P. Williamson. The primal-dual method for approximation algorithms. Math-

ematical Programming, 91:447–478, 2002.

[106] M. Yagiura, M. Kishida, and T. Ibaraki. A 3-flip neighborhood local search for the

set covering problem. European Journal of Operational Research, 172:472–499,

2006.

[107] R. B. Yates and G. Valiente. An image similarity measure based on graph match-

ing. In Seventh International Symposium String Processing and Information Re-

trieval, pages 28–38, Curuna, Spain, 2000.

[108] B. Yelbay. Primal-dual heuristics for solving the set covering problem. Master’s

thesis, Sabancı University, Istanbul,Turkey, 2010.

[109] B. Yelbay, Ş. İ. Birbil, K. Bülbül, and H. M. Jamil. Trade-offs com-

puting minimum hub cover toward optimized graph query processing, 2013.

http://arxiv.org/abs/1311.1626.

110

http://arxiv.org/abs/1311.1626

[110] B. Yelbay, Ş.İ. Birbil, and K. Bülbül. The set covering problem revisited: An

emipirical study of the value of dual information. To appear in Journal of Indus-

trial Management and Optimization, 2014.

[111] B. Yelbay, Ş.İ. Birbil, K. Bülbül, and H. Jamil. Approximating the minimum hub

cover problem on planar graphs. Submitted for publication, 2014.

[112] S. Zhang, S. Li, and J. Yang. GADDI: distance index based subgraph match-

ing in biological networks. In International Conference on Extending Database

Technology, pages 192–203, Saint Petersburg, Russia, 2009.

[113] P. Zhao and J. Han. On graph query optimization in large networks. Proceedings

of International Conference on Very Large Data Bases, 3(1):340–351, 2010.

[114] K. Zhu, Y. Zhang, X. Lin, G. Zhu, and W. Wang. A novel and efficient frame-

work for finding subgraph isomorphism mappings in large graphs. In 15th In-

ternational Conference on Database Systems for Advanced Applications, pages

140–154, Tsukuba, Japan, 2010.

111

	INTRODUCTION
	Motivation
	Contributions
	Outline

	LITERATURE REVIEW
	Related Problems
	Graph Query Processing

	MATHEMATICAL MODELING
	Mathematical Programming Formulations
	Mathematical Programming Relaxations
	Linear Programming Relaxation
	Semidefinite Programming Relaxation

	SOLUTION METHODS
	Planar Graphs
	Approximation Algorithm
	Dynamic Programming Algorithm

	Greedy Algorithms
	Relaxation Heuristics

	APPLICATION: GRAPH QUERY PROCESSING
	Minimum Hub Cover: Graph Representation Model
	Graph Matching
	Experimental Analysis

	CONCLUSION
	RELATED OPTIMIZATION PROBLEMS
	SUPPLEMENTARY TABLES

