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ABSTRACT

Shape priors have been successfully used in challenging biomedical
imaging problems. However when the shape distribution involves
multiple shape classes, leading to a multimodal shape density, effec-
tive use of shape priors in segmentation becomes more challenging.
In such scenarios, knowing the class of the shape can aid the seg-
mentation process, which is of course unknown a priori. In this
paper, we propose a joint classification and segmentation approach
for dendritic spine segmentation which infers the class of the spine
during segmentation and adapts the remaining segmentation process
accordingly. We evaluate our proposed approach on 2-photon mi-
croscopy images containing dendritic spines and compare its perfor-
mance quantitatively to an existing approach based on nonparamet-
ric shape priors. Both visual and quantitative results demonstrate the
effectiveness of our approach in dendritic spine segmentation.

Index Terms— Dendritic spine segmentation, joint classifica-
tion and segmentation, multimodal shape density, nonparametric
shape priors, active contours, 2-photon microscopy.

1. INTRODUCTION

Dendritic spines are the post-synaptic partners of a synapse. It has
been shown that spine structure and function are highly coupled.
Dendritic spines have two major components: spine head and spine
neck whose sizes affect electrical and chemical compartmentaliza-
tion. Spine head volume and neck length as well as neck width
change through either regular plasticity mechanisms or pathological
conditions [1, 2, 3]. Studying such structure requires accurate seg-
mentation of spines, whose shapes belong to one of several classes.

In the literature, spines are generally grouped into three classes:
mushroom, thin, and stubby. However, a coarser level classification
of spine shapes reveals two spine classes: spines that have a neck
(mushroom and thin) and those that do not (stubby) [4]. Stubby
spines consist of only a head and can be segmented using intensity
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and context information. Segmentation of spines that have a neck is
a more challenging problem, because the area containing the spine
neck generally has very low contrast and is blurry in 2-photon mi-
croscopy images. Therefore, prior knowledge about spine neck is
required for successful segmentation.

In the literature, several techniques have been proposed for spine
segmentation in 2-photon microscopy images. Thresholding based
methods such as [5, 6] suffer from the difficulty of finding an appro-
priate threshold. Since the intensity level of neck is generally very
low, it is usually not possible to find a threshold that segments the
spine with its neck. The main bottleneck of all existing methods in
the literature is that they use only intensity information for segmen-
tation. Therefore, they cannot be easily used for segmentation of
spines from different classes.

In this paper, we propose an approach for joint classification
and segmentation of spines from different classes in 2-photon mi-
croscopy images. First, our approach segments the spine head us-
ing an intensity-based active contour method proposed by Chan and
Vese [7], coupled with some contextual information about the spine
head in the region of interest (ROI). After spine head segmentation,
the class of the spine to be segmented is inferred using the features of
the spatial intensity distribution in parts of the image that are likely to
contain a potential spine neck. These areas are determined by utiliz-
ing information about the location of the segmented head. The seg-
mentation process terminates for spines that are classified as stubby.
For spines that have necks, the segmentation process continues us-
ing statistical prior information about spine necks, based on manu-
ally segmented training images of spines with necks. In particular,
we use the nonparametric shape priors method of Kim et al. [8] for
spine neck segmentation.

The first, broad contribution of our work is that, to the best of
the authors’ knowledge, this is the first time any kind of shape prior
has been used for segmenting dendritic spines from microscopic im-
ages. The second, more specific contribution of our approach is that
it involves joint segmentation and classification of spines. In particu-
lar, partial segmentation information is used to infer the spine shape
class, which in turn is exploited to refine and finalize the segmen-
tation process. This approach effectively handles the multimodal
shape distribution while exploiting prior information about intensity
distributions in the potential neck region. Using the nonparametric



shape priors approach of Kim et al. [8] directly on the original prob-
lem turns out to be insufficient, whereas it can be effectively used
in our framework in the neck segmentation phase after classifica-
tion. Our experimental results demonstrate the effectiveness of our
approach.

2. PROPOSED APPROACH

In this section, we present our joint classification and segmentation
approach for dendritic spine segmentation in 2-photon microscopy
images. Our approach consists of three stages: spine head segmen-
tation, classification, and spine neck segmentation.

2.1. Spine Head Segmentation

Our approach takes a region of interest (ROI) containing the spine
as input. We assume that the spine head is located around the cen-
ter of the ROI and the ROI is rotated such that the neck is roughly
perpendicular to the horizontal axis as shown in Figure 1(a). In our
experiments, we perform the ROI selection and rotation manually.
However, in practice, the ROI can be selected automatically using
an automatic spine detection approach [9]. Automatic rotation of the
ROI can in practice be performed by exploiting information about
the location of the dendrite, provided by a dendrite segmentation ap-
proach [10].

(a) (b) (c) (d)

Fig. 1. (a) A sample ROI, (b) an initial curve, (c) and (d) spine head
segmentations with µ = 1 and µ = 0.5, respectively

For spine head segmentation, we use active contours with the
energy function proposed by Chan and Vese [7] coupled with some
contextual information about the location of the spine head. Using
the assumption that the spine head is located around the center of the
ROI, we multiply the image intensities with a 2D circular Gaussian
function - Gσ(x, y), with a standard deviation of σ - such that the
center of the Gaussian corresponds to the center of the ROI. This in-
dicates a preference for finding a spine head in the center of the ROI.
Based on this perspective, we use the following energy functional:

E(C) = λ1

∮
C

ds+ λ2

(∫
inside(C)

Gσ(x, y).|I0(x, y)− c1|2dxdy

+

∫
outside(C)

Gσ(x, y).|I0(x, y)− µ.c2|2dxdy
)

(1)

where, C is the evolving curve, I0 is image to be segmented, c1 and
c2 are the average intensities, respectively inside and outside C. The
first term is the curve length penalty which produces smooth curves
using the assumption that shorter curves are statistically more likely
than longer ones. λ1 and λ2 are constants and we fix λ1 = λ2 = 1
in our experiments.

The curve evolution starts with an initial curve as shown in Fig-
ure 1(b). We use the narrowband representation of the level set func-
tion in curve evolution. The narrowband representation and the con-
text information represented by the constant Gσ(x, y) in Eq.1 pre-
vents the inclusion of the dendrite in the foreground region. We fix
σ = 10 in our experiments.

Note that another deviation from the original Chan-Vese ap-
proach is that we multiply c2 in the energy function with a constant
µ ∈ (0, 1). This is to allow the spine head boundary to move towards
the dendrite. Not having this factor keeps the spine head boundary
too far away from the dendrite due to the large intensities of the
dendrite region. Segmentation results without such weighting (i.e.,
µ = 1), and with the weighting we use in our experiments (µ = 0.5)
are shown in Figure 1(c) and 1(d), respectively.

2.2. Classification

In order to segment the neck region, we need prior information about
neck shapes, as it is hard to make further progress solely based on the
intensities of the test image. However that information depends on
the spine class (namely with or without neck). Hence, by exploiting
the spine head, segmented as described in Section 2.1, in this section
we propose an approach for inferring the spine class. Our training set
consists of image intensities as well as the associated manual head
and neck segmentations of 18 spines (see Figure 2). 12 of those
are mushroom spines (which have a neck) and 6 are stubby spines
(which do not have a neck).

If the spine neck exists, it is located in the area below the spine
head. Therefore, once we have the spine head segmentation, we can
find the location of the potential spine neck easily. This motivates
us to infer the spine class based on image intensities in the regions
where the neck might appear. First, we grab a rectangular region
such that the bottom point of the spine head (shown by a red cross in
Figure 3(a)) lies at the center of the rectangle. The second rectangu-
lar region shown in Figure 3(b) is drawn such that it is located just
below the spine head. We fix size of the first and second rectangles
to 40 × 110 and 10 × 130, respectively, in a 150 × 150 ROI. Using
these two rectangular regions, we construct three sets of feature vec-
tors from the training set for classification. The first set of feature
vectors are obtained by summing up the intensities in the first rect-
angle horizontally. Similarly, the second set of feature vectors are
obtained by vertical summation of the intensities in the same rectan-
gle. We present the statistics of these two feature vectors extracted
from the training set for each class in Figure 4(a) and 4(b). In these
figures, error bars indicate one standard deviation around the mean.
The final set of feature vectors are the histograms of intensities in the
second rectangular region. We present average of these histograms
for each spine class in Figure 4(c). Visual inspection of these feature
vectors suggest that they contain discriminatory information about
the spine class.

(a) First region (b) Second re-
gion

Fig. 3. Regions where a potential neck is likely to be contained in.

We design a linear-kernel support vector machines (SVM) clas-
sifier based on each feature vector. Given a test image with a seg-
mented spine head, we run each classifier. We infer the spine class
based on majority voting on the outputs of the three classifiers. We
observe that using the three classifiers provides better results than
using any two of them. Rather than performing decision fusion, one
might also consider concatenating the feature vectors towards a sin-
gle classifier.



Fig. 2. Training set containing examples from both mushroom and stubby classes. First row: Manual segmentations of expert. Second row:
Corresponding intensity images of the manual segmentations in the first row.

(a) Statistics (mean ± one standard deviation)
of the first feature vector based on training
data.

(b) Statistics (mean ± one standard deviation)
of the second feature vector based on training
data.

(c) Mean of the third feature vector based on
training data.

Fig. 4. Visualization of different set of feature vectors. Red indicates the spines that have a neck. Blue indicates spines without necks.

The segmentation process terminates for the spines classified as
stubby (without a neck). Otherwise, the segmentation process con-
tinues with the spine neck segmentation step which is introduced in
the next subsection.

2.3. Spine Neck Segmentation

In this section, we describe the final stage of the segmentation pro-
cess of the spines classified as having a neck. In particular, we evolve
the spine boundary found by the approach described in Section 2.1
further by using nonparametric shape priors [8], where the prior in-
formation about the neck part comes from expert neck segmentations
in our training data, shown in Figure 5. Neck shapes in the training
set are already aligned. A training set of overall spine shapes (head
and neck) are obtained by adding each spine neck in the training
set to the spine head already found in previous stage (see Figure 5).
Hence we do not seek to modify the head piece further in this stage.

We use the following energy function for neck segmentation
with shape priors:

E(C) = α
(∫

inside(C)

|I0(x, y)− c1|2dxdy

+

∫
outside(C)

|I0(x, y)− c2|2dxdy
)
− β log(pC(C))

(2)

where, pC(C) = 1
n

∑n
i=1 k(dL2(ϕC , ϕi), σ) is the learned shape

prior density, k(., σ) is a 1D Gaussian kernel with kernel size σ,
dL2(., .) is the L2 distance metric, n is the number of training
shapes, and ϕC and ϕi are the level set representations of the evolv-
ing curve C and the ith shape in the training set, respectively. The
constants α and β control the contribution of each term to curve
evolution and we set α = 0.1 and β = 5. Note that the weight α
on the data fidelity term is relatively small. This mainly reflects the
perspective that (1) head segmentation has already been achieved,
and (2) most of the information about the neck will come from the
training data. The role of the data fidelity term at this stage is mainly
to ensure a coherent integration of the head and the neck piece.

Proposed Method Kim et al. Chan and Vese
Spine 1 0.8303 0.8389 0.1737
Spine 2 0.7426 0.6744 0.0000
Spine 3 0.7140 0.6619 0.2636
Spine 4 0.7291 0.6386 0.2658
Spine 5 0.8426 0.6221 0.2996
Spine 6 0.8095 0.7678 0.2036
Spine 7 0.8618 0.7282 0.5671
Spine 8 0.8021 0.7516 0.1783
Spine 9 0.8927 0.8469 0.1133
Spine 10 0.8333 0.8141 0.6339
Spine 11 0.8291 0.7388 0.5032
Spine 12 0.8482 0.7846 0.4157
Spine 13 0.7886 0.7990 0.4357
Spine 14 0.7868 0.7045 0.1517
Spine 15 0.8892 0.8450 0.3891
Spine 16 0.7599 0.7500 0.4863
Spine 17 0.8135 0.7322 0.4501
Spine 18 0.4156 0.4820 0.2017
Spine 19 0.7876 0.9244 0.1977
Spine 20 0.6839 0.7383 0.1906
Spine 21 0.7753 0.8068 0.3243
Spine 22 0.7727 0.8566 0.2020
Average 0.7822 0.7375 0.3021

Table 1. Quantitative evaluation of segmentation accuracy through
the Dice coefficient. Spines from Spine 1 to 17 have necks, the re-
maining ones do not.

Given the limited role of the data term, we simply use the basic
Chan-Vese data term here.

We keep evolving the curve with the gradient flow of the energy
function given in Eq. (2) until it converges.

3. EXPERIMENTAL RESULTS

The experiments are conducted on 22 spines different from the ones
used in the training set. We evaluate the performance of our seg-
mentation method with respect to manual delineations of a domain
expert using the Dice coefficient [11]. We also obtain Dice coeffi-
cient results for the methods presented by Chan and Vese [7] and
Kim et al. [8]. The original method by Kim et al. performs segmen-
tation based on a shape prior density estimated from the entire spine
training shapes shown in Figure 2.

We present a quantitative analysis of our segmentation results in
Table 1. Our joint segmentation and classification approach achieves



Fig. 5. First row: aligned training set of spine neck shapes. Second row: training set of spine shapes constructed after spine head segmentation.
Note that the spine neck segmentations in the first row belong to the first 12 spines in Figure 2.

Fig. 6. Visual segmentation results on Spine 1, Spine 4, Spine 15,
Spine 18, and Spine 22 from left to right. First row: proposed
method. Second row: Kim et al.

the best results in terms of the Dice coefficient. Comparison of the
results of our approach with those of Kim et al. and Chan and Vese
based on a paired t-test provides statistical significance levels of p =
0.069 and p = 0.5×10−12, respectively. We note that adapting and
applying the nonparametric shape priors approach of Kim et al. to
the spine segmentation problem would itself be a contribution, yet
we improve the performance of that approach further by our joint
classification and segmentation strategy. Our classification approach
classifies all spines except Spine 12 correctly. We should also point
out that we have explored several ways of using nonparametric shape
priors in the post-classification segmentation phase of our approach
(such as exploiting the class information and then evolving the entire
spine boundary using the corresponding head or head+neck training
shapes). While these ideas have provided some improvements over
Kim et al.’s original approach, we have achieved the most significant
improvements using the approach described in Section 2.3.

Some visual segmentation results are presented in Figure 6. Al-
though, average Dice coefficient results of the two methods are close
to each other, our approach provides significantly better visual seg-
mentation results, due to its success in capturing the challenging
neck region.

4. CONCLUSION

We have proposed a joint classification and segmentation approach
for dendritic spine segmentation in 2-photon microscopy images.
These images are more challenging than corresponding confocal mi-
croscopy images, however, they are useful for analyzing the tempo-
ral evolution of spines. Our approach infers the class of the spine
to be segmented during the segmentation process and adapts the re-
maining steps of the segmentation process accordingly. Our experi-
mental study suggests that this is an effective strategy for exploiting
prior information about the shapes and intensities of spines that be-
long to different classes.

Our current study is limited to two coarse spine classes: those
with and without a neck. Our examples came from spines labeled as
mushroom (with a neck) and stubby (without a neck). One could ex-
tend our study to include other defined spine shapes such as thin and
filopodia, and identify more classes. Furthermore, one could also

consider subdividing these defined classes into subclusters based on
learned features from the training data and exploit that information
in the segmentation phase as well. Another line of work could be to
extend our approach to 3D spine volumes. One might also consider
building a similar approach on a different shape representation than
level sets.
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