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In this dissertation, we develop several resource aware approaches for detection

and estimation in wireless sensor networks (WSNs). Tolerating an acceptable degrada-

tion from the best achievable performance, we seek more resource efficient solutions than

the state-of-the-art methods. We first define a multi-objective optimization problem

and find the trade-off solutions between two conflicting objectives for the distributed

detection problem in WSNs: minimizing the probability of error and minimizing the

total energy consumption. Simulation results show that Pareto-optimal solutions can

provide significant energy savings at the cost a slight increase in the probability of error
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from its minimum achievable value.

Having detected the presence of the source, accurate source localization is another

important task to be performed by a WSN. The state-of-the-art one-shot location es-

timation scheme requires simultaneous transmission of all sensor data to the fusion

center. We propose an iterative source localization algorithm where a small set of

anchor sensors first detect the presence of the source and arrive at a coarse location

estimate. Then a number of non-anchor sensors are selected in an iterative manner to

refine the location estimate. The iterative localization scheme reduces the communi-

cation requirements as compared to the one-shot location estimation while introducing

some estimation latency. For sensor selection at each iteration, two metrics are proposed

which are derived based on the mutual information (MI) and the posterior Cramér-Rao

lower bound (PCRLB) of the location estimate. In terms of computational complexity,

the PCRLB-based sensor selection metric is more efficient as compared to the MI-based

sensor selection metric, and under the assumption of perfect communication channels

between sensors and the fusion center, both sensor selection schemes achieve the simi-

lar estimation performance that is the mean squared error of the source location gets

very close to the PCRLB of one-shot location estimator within a few iterations. The

proposed iterative method is further extended to the case which considers fading on

the channels between sensors and the fusion center. Simulation results are presented

for the cases when partial or complete channel knowledge are available at the fusion

center.

We finally consider a heterogenous sensing field and define a distributed parameter

estimation problem where the quantization data rate of a sensor is determined as a

function of its observation SNR. The inverse of the average Fisher information is then

defined as a lower bound on the average PCRLB which is hard to compute. The

inverse of the average Fisher information is minimized subject to the total bandwidth

and bandwidth utilization constraints and we find the optimal transmission probability

of each possible quantization rate. Under stringent bandwidth availability, the proposed

scheme outperforms the scheme where the total bandwidth is equally distributed among

sensors.
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TELSİZ DUYARGA AǦLARI ICIN

RASTLANTISAL OLAYLARIN KAYNAK DUYARLI

DAǦINIK TESBİT VE KESTİRİMI

Engin Maşazade

Doktora Tezi, 2010

Tez Danışmanı: Doç. Dr. Mehmet Keskinöz

Tez Ek Danışmanı: Prof. Dr. Pramod K. Varshney

Anahtar Kelimeler: Telsiz duyarga aǧlari, daǧınık tesbit ve kestirim prob-

lemleri, çok amaçlı eniyileme, duyarga seçimi, sönümlemeli kanallar, tel-

siz haberleşme

Bu tezde, telsiz duyarga aǧlar icin dağınık tesbit ve kestirim problemleri kay-

nak duyarlılıǧ̌i altında incelenmiştir. Duyargalar ufak, pille beslenen cihazlar oldugun-

dan, kaynakların (enerji, bandgenişliǧi) tasarruflu kullanımı önemlidir. Bu doǧrultuda

ulaşılabilen en iyi başarımdan fazla ödün vermeden kaynaklardan onemli ölçude tasar-

ruf eden yöntemler sunulmaktadır. İlk olarak daǧınık tesbit sorunu ele alınmıştır.

Amaçların tümleştirme merkezi karar hata olasılıgının ve aǧın toplam enerji sarfiyatının

en aza indirgenmesi olduǧu bir çok amaçlı en iyileme problemi tanımlanmıştır. Bu prob-

lemden elde edilen sonuçlar, ulaşılabilecek en düşük hata olasılıǧına yakın ama önemli
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ölçüde enerji tasarrufu saǧlayan karar eşiklerinin de olduǧunu göstermiştir.

Olayın varlıǧının tesbiti kadar olay yerinin hassas kestirimi türlü uygulamalar

açısından önemlidir. Tüm duyarga verisini tek bir defada göndermek yerine, tekrarlı bir

kestirim yöntemi sunulmaktadır. Az sayıda duyarganın verisi kullanılarak olay yeri önce

kabaca kestirilir. Yöntemin bir diǧer tekrarında, verisi istenecek duyargalar müşterek

bilgi veya sonsal Cramér-Rao alt sınırı esaslı metrikler yardımıyla seçilmektedir. Müşterek

bilgi veya sonsal Cramér-Rao alt sınırı temelli duyarga seçim metrikleri kusursuz ile-

tim kanalları varsayımı altında benzer kestirim başarımı gösterseler de, hesaplarımız

sonsal Cramér-Rao alt sınırı temelli duyarga seçim metriǧinin karmaşıklıǧının müşterek

bilgi temelli duyarga seçim metriǧine göre daha az olduǧunu göstermiştir. Benzetim

sonuçlarımız, tekrarlı olay yeri kestirimi yönteminin, ufak bir gecikme pahasına, kestirim

için aǧdaki haberleşme gereksinimini tüm duyarga verisini istemeye göre önemli ölçüde

azalttıǧını göstermiştir. Önerilen tekrarlı olay yeri kestirim yöntemi sönümlemeli kanal-

lar için de genelleştirilmiştir. Öncelikle, kestirimde temel başarım kıstası olan sonsal

Cramér-Rao alt sınırı tum duyarga verisi icin türetilmiş, saydıǧımız iki duyarga seçim

metriǧi tüm ve kismi kanal bilgisi varsayımları altında yinelenmiştir.

Son olarak, ölçüm gürültüsünün her bir duyarga için farklı olduǧu ayrışık du-

rum incelenmiştir. Her bir duyarganın olçümünü temsilde kullandıǧı kuantalama hızı,

ölçümünün işaret-gürültü oranlarına baǧlı olarak belirlenmıştır. Verilen bandgenişliǧi

altında, genel bir daǧınık kestirim problemi incelenmiştir. Toplam bandgenişliǧini

aşmamak icin belirli bir kuantalama hızında temsil edilen ölçüm, tümleştirme merkezine

yine belirli bir gönderim olasıǧı ile iletilmektedir. Her bir kuantalama hızının, en uy-

gun gönderim olasılıǧını bulmak için toplam bandgenişliǧi ve band kullanımı kıstasları

altında ortalama Fisher bilgisinin tersi en aza indirgenmiştir. Benzetim sonuçları, kısıtlı

bandgenişliǧinde, önerdiǧimiz yöntemin kestirim hatasını bandgenişliǧini duyargalar

arasında eşit olarak bölüştüren yönteme göre oldukça düşürdüǧünü göstermektedir.
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Thakshila, Swarnendu, Satish, Ashok, Renbin and Long for their wonderful friendship

and the research environment. Also, I would like to thank my friends from Commu-

nications and Networking Lab., Kayhan, Ali, Mehmet and Yunus for being the best

office mates. Last but not least, I would like to thank my dear friends Ertuǧrul, Osman
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Chapter 1

Introduction

A wireless sensor network (WSN) consists of a large number of spatially distributed

sensors that have signal processing abilities. Sensors have finite battery lifetime and

thus limited computing and communication capabilities. When properly programmed

and networked, sensors in a WSN cooperate to perform different tasks that are use-

ful in a wide range of applications such as battlefield surveillance, environment and

health monitoring, and disaster relief operations. Therefore, WSNs have recently been

considered as an attractive low-cost technology for a wide range of surveillance and

monitoring applications [1].

A WSN may be employed to monitor the occurrence of random events in a variety

of applications. A random event may occur at an unknown time, at an unknown location

in a region of interest (ROI) or one of its attributes (such as energy or frequency) can be

random and may vary in time. However, we may have a statistical model for the event

or may be able to learn it. As an example, many random arrival or counting processes

follow the Poisson distribution. The time interval of interest can be of any length like

seconds, minutes, or years. Examples of temporal Poisson counting processes might

include the number of illegal border crossing per day or the number of earthquakes

per year. Examples of spatial Poisson counting processes might include the number

of people per square mile/kilometer or the number of border crossing attempts per

mile/kilometer [2]. Failures represent another class of interesting events. Component

failures may lead to system failures if they are not detected and corrected. For example,
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a truss on a bridge may buckle or a solenoid in a printer may burn out. The Weibull

distribution can be used to model the time to failure of a component, measured from

some specified time until the component fails [2]. If the task of the WSN is to monitor

room temperature, slight deviations from the desired temperature of the room can be

modeled using a Normal (Gaussian) distribution. In a battlefield scenario, the location

of a source transmitting energy by a friend or foe unit can be assumed to be uniformly

distributed over the entire region of interest (ROI).

In this dissertation, we focus on distributed detection and estimation of random

events in WSNs. In distributed detection, multiple sensors work collaboratively to

distinguish between two hypotheses such as the absence or presence of an event. In dis-

tributed estimation, an underlying event or a specific attribute of the event is estimated

based on the sensor observations. Since sensors are tiny battery powered devices with

limited signal processing capabilities, prolonging the lifetime of a WSN is important

for both commercial and tactical applications. With non-rechargeable batteries, this

requirement places stringent energy constraints on the design of all WSN operations.

Energy limitation is one of the major differences between a WSN and other wireless

networks such as wireless local area networks. Also, WSNs are often self-configured

networks with little or no pre-established infrastructure as well as a topology that can

change dynamically. Moreover, there may be channel impairments such as fading and

path loss in the network environment that can considerably degrade the quality of wire-

less links among sensors. Such challenges should be taken into account while designing

the communication and local signal processing algorithms for the WSN. For instance,

to maximize battery lifetime and reduce communication bandwidth, it is essential for

each sensor to locally compress its observed data so that only low rate inter-sensor or

sensor to fusion center communication is required.

The design of distributed detection and estimation algorithms depends on the

underlying WSN topology. In the literature, several popular WSN deployments charac-

terized by the presence or absence of a fusion center have been considered. In a parallel

fusion topology [3], [4], [5], [6] there is no inter-sensor communication, that is the com-

munication is only between sensors and the fusion center. The fusion center collects

2



Figure 1.1: An example wireless sensor network

locally processed data and produces a final inference. In an ad hoc WSN [7], [8], there

is no fusion center. The network itself is responsible for processing the collected infor-

mation, and sensors communicate with each other through the shared wireless medium

and arrive at a consensus. Furthermore, hybrid schemes are also possible in which the

WSN is partitioned into clusters with a hierarchical structure [9], [10]. Each cluster has

a local fusion center generating intermediate estimates, which are combined to obtain

a final result at the global fusion center.

In this dissertation, we consider the case where sensors communicate directly with

the fusion center. In Fig. 1.1, we show an example WSN with N distributed sensors

where the sensor measurements or their compressed versions are directly transmitted

to a central fusion center. Let sk represent a sensor where k ∈ {1, 2, ..., N}. A sensor

receives a noisy measurement zk from the event of interest θ which has the form,

zk = g(θ) + nk (1.1)

If a sensor observes only the noisy version of the event θ itself, then g(θ) = θ. If the
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received signal at each sensor is subject to path loss, the observation function g(.) should

be defined using a suitable path loss model which we define later in the dissertation.

We assume that the observation noise nk is generated from the Gaussian distribution

and is independent across sensors.

Since the sensors suffer from severe energy, computation and storage limitations,

the transmission of raw measurements to the fusion center is not desirable as it incurs

excessive energy and bandwidth consumption. In distributed detection or estimation,

the sensors first locally process their measurements and quantized versions of the deci-

sion statistics are sent to the fusion center for making the final inference. The quantized

measurement of each sensor Dk is obtained from the raw measurement zk according to,

Dk =





0 −∞ < zk < ηk,1

1 ηk,1 < zk < ηk,2

...

L− 2 ηk,L−2 < zk < ηk,L−1

L− 1 ηk,L−1 < zk < ∞

(1.2)

where ηk = [ηk,0, ηk,1, . . . , ηk,L]T is the set of quantization thresholds for sk with ηk,0 =

−∞ and ηk,L = ∞.

Let rk be the received data of each sensor at the fusion center. The quantized

data of sensors are either assumed to be sent to the fusion center over perfect communi-

cation links (rk = Dk) [11] or over imperfect channels (rk = h(Dk)) where the channel

impairments h(.) are modeled by suitable channel fading and noise models [4], [12].

The task of the fusion center is to make an inference about the event of interest.

If the fusion center is responsible to detect either the absence or the presence of the

event, the problem is called the detection problem. Let D0 be the binary decision of

the fusion center, which is defined as follows,

D0 =





0 Fusion center decides on H0

1 Fusion center decides on H1

(1.3)
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where Hypothesis 0 (H0) and Hypothesis 1 (H1) denote the absence and the presence

of the event.

Moreover, if the fusion center is responsible for estimating an attribute of the event

of interest (θ), the problem is called an estimation problem. Let T be an estimator

which is a function of the received sensor data R = [r1 r2 ... rN ], then the estimate of

the parameter is represented as θ̂ and obtained as,

θ̂ = T (R) (1.4)

If the event of interest θ is modeled as an unknown constant, under certain regularity

conditions, the optimal estimator is the maximum-likelihood (ML) estimator [13]. If the

unknown parameter θ has a prior distribution, then the Bayesian estimator minimizes

the Bayes risk [13]. We leave the details of the estimators for later in the dissertation.

Since a wireless sensor network consists of densely deployed tiny, battery-powered

sensors, they have limited on-board energy. Therefore, if a sensor remains continuously

active, its energy will be depleted quickly. In order to prolong the network lifetime,

sensors should alternate between being active and idle. Note that dense deployment of

sensors brings redundancy in coverage. Therefore, selecting a subset of sensors, can still

provide information with the desired quality. The sensor management policies define

the selection of active sensors to meet the application requirements while minimizing

the use of resources [14], [15], [16], [17], [18], [19]. In other words, the problem of

adaptive sensor management and resource allocation in sensor networks is to determine

the optimal way to manage system resources and task a group of sensors to collect

measurements for statistical inference. As shown in Fig. 1.2, the distributed sensors

send their observations through band-limited channels to a fusion center, where the

data are fused by an estimator to update the object state estimate. The updated state

estimate based on the past data is used to guide the sensor management and resource

allocation procedure adaptively. Sensor management is carried out in a way such that

at the next time step, the best estimation accuracy is achieved under pre-specified

resource utilization constraints.
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Figure 1.2: System model for sensor and resource management based on feedback from
recursive estimator.

1.1 Preliminaries

In this section, we briefly summarize the necessary background for several topics that

will be considered in the dissertation. Since we deal with detection and estimation

in wireless sensor networks, we first present the fundamentals of Bayesian detection

and estimation theories. Then we review information measures such as entropy and

mutual information. We then discuss Monte-Carlo based methods and finally present

the problem formulation of Multi-objective optimization.

1.1.1 Bayesian Detection Theory

Let H0 and H1 denote the two hypotheses for the binary hypothesis testing problem.

Let the observation be denoted as z so that the conditional densities under the two

hypotheses are p(z|H0) and p(z|H1) respectively. The observations are generated with

these conditional densities which are assumed known. The a priori probabilities of the

two hypotheses are denoted by P (H0) and P (H1) respectively. In the binary hypothesis

testing problem, four possible actions can occur. Let Ci,j, i ∈ {0, 1}, j ∈ {0, 1} represent

the cost of declaring Hi true when Hj is present. The Bayes risk function is given by,

R =
∑1

i=0

∑1
j=0 Ci,jP (Hj)P (Decide Hi|Hj is present) (1.5)

=
∑1

i=0

∑1
j=0 Ci,jP (Hj)

∫
Zi

p(z|Hj)dz
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where Zi is the decision region corresponding to hypothesis Hi which is declared true

for any observation falling in the region Zi. Let Z be the entire observation space so

that Z = Z0

⋃Z1 and Z0

⋂Z1 = ∅.
Collecting the terms in (1.5) yields,

R = P (H0)C1,0 + P (H1)C1,1 + (1.6)∫

Z0

{[P (H1)(C0,1 − C1,1)p(z|H1)]− [P (H0)(C1,0 − C0,0)p(z|H0)]}

The risk is minimized by assigning those points of Z to Z0 that make the integrand

of (1.6) negative. Then, the minimization results in the likelihood ratio test (LRT)

p(z|H1)

p(z|H0)
≷H1

H0

P (H0)(C1,0 − C0,0)

P (H1)(C0,1 − C1,1)
(1.7)

The quantity on the left hand side is known as the likelihood ratio and the quantity

on the right hand side is the threshold. In this dissertation, we consider Bayes criterion

for the design of decision rules. The minimax criterion [3] is a good alternative when

the knowledge of a priori probabilities of each hypothesis is not available. Moreover,

in many practical applications not only the a priori probabilities but also the cost

assignments are difficult to make. For such cases, Neyman-Pearson test is employed

that constrains the probability of false alarm (PF ) while maximizing the probability of

detection (PD). Then, PF and PD are defined as,

PF = P (Decide H1|H0 is present) =

∫

Z1

p(z|H0)dz

PD = P (Decide H1|H1 is present) =

∫

Z1

p(z|H1)dz

A more detailed treatment of detection theory can be found in a wide variety of

books such as [3] and [20].
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1.1.2 Estimation Theory

Assume that a scalar parameter θ to be estimated using the vector of measurements z.

Let p(z; θ) be the probability distribution function (pdf) of z given θ and it is assumed

that p(z; θ) satisfies the regularity condition [21],

E

[
−∂ ln p(z; θ)

∂θ

]
= 0 for all θ (1.8)

where the expectation is taken with respect to p(z; θ). Then the variance of any unbiased

estimator θ̂ must satisfy,

var(θ̂) ≥ 1

E
[
−∂2 ln p(z;θ)

∂θ2

] (1.9)

where the expectation is taken with respect to p(z; θ) and the derivative is evaluated

at the true value of θ.

Let θ = [θ1, . . . , θN ] be a vector parameter to be estimated. Then, the variance

of each element θi is found by the inverse of the Fisher information matrix defined as,

var(θ̂i) ≥
[
F−1(θ)

]
i,i

(1.10)

where i, jth element of F (θ) is defined as,

[F (θ)]i,j = E

[
−∂2p(z; θ)

∂θi∂θj

]

Let the vector of unknown parameters θ be a random vector with pdf p(θ). Then,

the minimum mean squared error (MSE) estimator is the conditional mean estimator

defined as,

θ̂MSE =

∫
θp(θ|z)dθ (1.11)

In Bayesian estimation, the performance of any estimator θ̂(z) can be bounded by the

Posterior Cramér - Rao Lower Bound, under suitable regularity conditions [13]. The

variance of each element θi is found by the inverse of the Fisher information matrix J
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whose i, jth element is found according to,

J i,j = E

[
−∂2p(z; θ)

∂θi∂θj

]
(1.12)

where the expectation is taken with respect to p(z, θ) which is the joint entropy between

z and θ. The PCRLB states that,

var(θ̂i) ≥
[
J−1(θ)

]
i,i

(1.13)

with equality if and only if the a posteriori density p(θ|z) is a multivariate Gaussian

density [13].

1.1.3 Information Measures

In this section, we give basic definitions and properties of several information mea-

sures such as entropy, conditional entropy and mutual information that we use in the

dissertation. More details can be found in [22] and [23].

Entropy

The entropy or uncertainty of the discrete random variable X is,

H(X) =
∑

a∈sup(PX)

−PX(a) log2 PX(a) (1.14)

where the support of a random variable X is the set,

sup(PX) = {a : a ∈ X, PX(a) > 0} (1.15)

Alternatively we can write,

H(X) = E[− log2 PX(X)] (1.16)
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Conditional Entropy

The conditional entropy of X given the event Y = b with probability P (Y = b) > 0 is,

H(X|Y = b) =
∑

a∈sup(PX|Y (.|b))
−PX|Y (a|b) log2 PX|Y (a|b)

= E[− log2 PX|Y (X|Y )|Y = b] (1.17)

The conditional entropy of X given Y is the average of the values (1.17), that is,

H(X|Y ) =
∑

b∈sup(PY )

PY (b)H(X|Y = b)

=
∑

(a,b)∈sup(PX,Y )

−PX,Y (a, b) log2 PX,Y (a, b)

= E[− log2 PX|Y (X|Y )] (1.18)

Mutual Information

The mutual information I(X,Y ) between two random variables X and Y with respec-

tive discrete and finite alphabets is defined as,

I(X, Y ) = H(X)−H(X|Y ) (1.19)

The name “mutual” describes the symmetry in the arguments of I(X, Y ), i.e,

I(X, Y ) = H(Y )−H(Y |X) (1.20)

Note that,

I(X,Y ) ≥ 0

H(X|Y ) ≤ H(X)

H(X,Y ) ≤ H(X) + H(Y )
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with equality if and only if X and Y are statistically independent. The second inequality

above means that conditioning reduces entropy.

1.1.4 Monte Carlo Methods

Suppose, we want to compute the following integral for the test function ϕ.

I =

∫

Z
ϕ(z)dz (1.21)

where Z represents the integration range of ϕ. To compute I numerically, Monte Carlo

methods introduces a new pdf π(z) as

I ≈ IA

IA =

∫

Z
ϕ(z)π(z)dz (1.22)

where IA is the numerical approximation of I. The Monte-Carlo method approximates

π by the following point-mass measure.

π̂(z) =
1

N

N∑
i=1

δ(z − zi) (1.23)

where N is the number of samples. Using (1.23) in (1.22) yields,

IA =

∫

Z
ϕ(z)π̂(z)dz =

1

N

N∑
i=1

ϕ(zi) (1.24)

Suppose we are interested in sampling from π(z) and assume that we are able to

sample from another pdf q(z). The importance sampling procedure allows us to sample

from π using q(z). Assuming that π(z) > 0 and q(z) > 0, the following identity trivially

holds,

π(z) = w(z)q(z) (1.25)
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where w(.) is the importance weight given by,

w(z) =
π(z)

q(z)
(1.26)

This suggests that if N samples {zi} from q(.) are available, then an approximation of

this distribution is given by,

q̂(z) =
1

N

N∑
i=1

δ(z − zi) (1.27)

Plugging this approximation in (1.25), we obtain

π̂(z) =
1

N

N∑
i=1

w(zi)δ(z − zi) (1.28)

Let wi be the normalized importance weights as,

wi =
w(zi)∑N

j=1 w(zj)
(1.29)

Using importance sampling, (1.24) is computed as follows,

IA =
N∑

i=1

wiϕ(zi) (1.30)

In Chapter 3, based on the available data z, we are interested in approximating

the posterior distribution

p(θ|z) ∝ p(z|θ)p(θ)

Note that the initial probability of each sample p(θi) = 1/N . The weights are then

selected as the likelihood of the received samples as

w(zi) = p(z|θi)

The details of Monte Carlo methods can be found in [24] and references there in.
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1.1.5 Multiobjective Optimization

In this section, we briefly define the problem formulation of multiobjective optimization.

The mathematical description of multiobjective optimization [25], [26], [27], [28], [29],

[30], [31] can be given as follows:

min
χ∈C

[f1(χ) f2(χ) ...fn(χ)]T (1.31)

where χ is a candidate solution to the multiobjective optimization problem (MOP).

The number of objectives n ≥ 2 and the feasible set C,

C : {χ : h(χ) = 0, g(χ) ≤ 0, a ≤ χ ≤ b} (1.32)

is subject to the equality and inequality constraints denoted as h(χ) and g(χ) respec-

tively, and explicit variable bounds [a, b]. In a minimization problem, a solution χ1

dominates another solution χ2 (χ1 À χ2) if and only if

fu(χ1) ≤ fu(χ2) ∀u ∈ {1, 2, .., n} (1.33)

fv(χ1) < fv(χ2) ∃v ∈ {1, 2, .., n}

and a solution χ∗ is the Pareto optimal solution for the MOP if and only if there is

no χ ∈ C that dominates χ∗. Pareto optimal points are also known as non-dominated

points. A well known technique for solving MOPs is to minimize a weighted sum of

the objective functions. Later in the dissertation we utilize several different methods

to obtain the Pareto-optimal front.

1.2 Research Motivation and Approach

The distributed detection problem for WSNs has been studied extensively. If the fusion

center receives the raw measurements of sensors, the problem is reduced to the classic

hypothesis testing problem [32]. For quantized sensor data, in the temporal asymptotic

regime, information theoretic frameworks have been developed [33], [34], [35] to find
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the optimal decision rules based on the error exponent. For the case where the number

of sensors goes to infinity, it is shown in [36] and [37] that an identical decision rule for

all the sensors is asymptotically optimal.

For practical systems with limited number of sensors, the distributed detection

problem can be decomposed into two inter-related problems. The first problem is to

find the optimal decision rule at the fusion center. This is a relatively simple problem

since the optimal fusion rule reduces to a likelihood ratio test (LRT) for binary and

multi-bit sensor decisions [3]. The second problem is to obtain the decision rules at the

sensors which is more complicated. Under the conditional independence assumption,

the optimal decision rule at each sensor is expressed as an LRT [3]. Since the decision

rules at distributed sensors and the fusion center are dependent on each other, person-

by-person optimization (PBPO) is often used to obtain the optimal decision thresholds

of sensors [38]. Many papers in the literature, assume ideal channels between the

sensors and the fusion center. In [39], [4], [6], [40], non-ideal channels have been assumed

between the sensors and the fusion center in the distributed detection context. Without

the conditional independence assumption, the distributed detection problem becomes

very hard [41], [42], [43].

In this dissertation, we first study the event detection problem for sensor net-

works under the isotropic signal emission model [44], [45] where the source location is

assumed to be uniformly distributed in a given ROI. Given the source location and

the assumption of independent identical noise distribution at each sensor, the optimal

decision rules at the sensors and the fusion center are LRTs. When the source location

is random and available only in terms of its probability distribution, the conditional

independence assumption of sensor measurements and the optimality of LRT are no

longer valid [45]. We assume that each sensor arrives at a binary decision about the

event by comparing locally computed decision statistic with its decision threshold. The

binary decision is then transmitted to the fusion center only if the presence of the

event is decided [46], [47]. Therefore, the decision rules used at the sensors not only

determine the decision error probability achieved by the WSN but also the total energy

consumption of the WSN. In order to find the sensor decision thresholds, we formu-
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late a multi-objective optimization problem (MOP) with two objectives, minimizing

the probability of error at the fusion center and minimizing the total network energy

consumption. Using a multi-objective optimization approach, we seek those solutions

which provide significant energy savings as compared to the minimum error solution at

potentially the cost of a slight increase in the best achievable probability of error of the

network.

After the presence of the source emitting energy is detected by the WSN, an

important task that needs to be performed is source localization, which is important

for an accurate tracking of the target and higher level motion analysis. Under the

isotropic signal emission model, the event (or source) location can be determined based

on the energy readings of sensors [48], [44]. In [48] and [44], maximum likelihood (ML)

based source localization approaches have been proposed by using analog and multi-bit

(M -bit) sensor measurements respectively at the fusion center. Furthermore, in [49], the

authors propose a joint detection and source localization scheme using the data received

from all the sensors in the network. We call the source localization scheme which

requires simultaneous data transmission from all the sensors to the fusion center as one-

shot location estimation. One-shot location estimation introduces several challenges.

First of all, the sensors that are far from the source location are not likely to carry

useful information but they still consume energy to transmit information. Secondly,

each sensor requires an independent channel for simultaneous data transmission to the

fusion center. This assumption imposes a limitation on the number of sensors that the

system can support in practice. In our approach, we assume that the source location

is random and characterized by a multivariate Gaussian distribution whose covariance

matrix is large so as to cover the entire ROI. In our model, rather than transmitting

multi-bit data from all the sensors in the network to the fusion center, we first employ

measurements from relatively few anchor sensors to detect the presence of the source

and obtain a coarse location estimate. The non-anchor sensors do not transmit their

measurements in the initial phase. Then, a few non-anchor sensors are activated at

each step of an iterative procedure. Since only the most informative sensors about the

source location are selected, the iterative algorithm is expected to provide significant

15



energy savings as compared to one-shot location estimation at the cost of some latency.

Since source location is a random parameter which has a certain prior pdf, we consider

posterior Cramer Rao lower bound (PCRLB) as the estimation benchmark for the mean

squared error (MSE).

The lossless communication assumption between sensors and the fusion center is

often not valid in practice. Since WSNs are resource constrained in terms of bandwidth

and energy, increasing the transmission power of sensors or employing powerful error

correction codes to ensure lossless communication may not always be feasible. Also,

in a hostile environment, the power of the transmitted signal should be kept low to

decrease the probability of interception or detection. Therefore, the iterative source

localization method also helps in dealing with the channel impairments.

So far, we have assumed that the WSN is homogenous, i.e., the observation noise

of each sensor is independent and identically distributed and all the sensors send the

same amount of information to the fusion center. Next, we investigate a heterogonous

WSN where the observation noise of each sensor is independent but not identically dis-

tributed [50] and depending on the quality of sensor observations, each sensor transmits

different amount of data to the fusion center [51]. We consider a distributed random pa-

rameter estimation problem under a total bandwidth constraint. In the literature, the

total rate-constrained distributed estimation problem has been investigated extensively

(see [52] and references therein). Under rate constraints, the source coding problem has

been studied by deriving the information theoretic achievable rate regions in [5]. If no

prior is assumed for the estimation parameter, then the dynamic range of the parameter

is assumed to be bounded within a certain interval. For such cases linear decentral-

ized estimation schemes have been proposed for homogenous environments [53] and for

heterogenous environments [51], [50]. Moreover, for 1-bit sensor data, [54] investigates

the performance limit of distributed estimation systems where the dynamic range of

the estimation parameter is assumed to be known. Also in [55], the authors assume

that the sensor observations are bounded and they propose nonparametric distributed

estimators based on the knowledge of the first N moments of sensor noises. Different

from the papers discussed so far, we assume that the parameter to be estimated follows
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a certain prior probability distribution, which requires a Bayesian estimator to be em-

ployed at the fusion center and PCRLB is computed as a benchmark for estimation. In

a heterogonous network, the complexity to compute PCRLB is high, which motivates us

to find another lower bound on the MSE. Since we assume that the total bandwidth is

limited, so as not to exceed the total bandwidth, each sensor sending data at a specific

data rate employs a certain transmission probability to send data to the fusion center.

Using this approach of only requesting data from the sensors with more informative

observations, we show that an estimation performance close to having all sensor data

can be obtained. Similar probabilistic approaches for resource-constrained distributed

estimation have been recently introduced in [56], [57]. In such approaches, each sensor

measurement is transmitted to the fusion center with a certain probability so the total

cost of information transmission from sensors to the fusion center does not exceed the

available capacity. In [56], the authors have employed a channel-aware transmission

control where the transmission probability of each sensor is chosen according to the

quality of its local observation and transmission channels. In [57], the optimal trans-

mission rates have been obtained by minimizing the posterior Cramer-Rao lower bound

(PCRLB) under a total energy constraint. We follow a similar probabilistic scheme,

and assume that each sensor transmits its data with a certain transmission probability

per each quantization data rate. Given the number of sensors in the network and total

available bandwidth, the transmission probabilities of each quantization rate minimizes

the inverse of the Fisher information.

1.3 Major Contributions and Dissertation Organization

In this dissertation, resource aware distributed detection and estimation of random

events in WSNs are investigated. We develop novel distributed detection and estima-

tion schemes which can significantly save resources in terms of energy, communication

and bandwidth while achieving a similar performance as the state-of-the-art detec-

tion/estimation methods at the cost of potentially slight increase in the probability of

decision error, estimation latency and outage probability.

In Chapter 2, we study the distributed detection problem for WSNs where the
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source location is assumed to be uniformly distributed in a ROI. We formulate a multi-

objective optimization problem (MOP) with two conflicting objectives, minimizing the

probability of error at the fusion center and minimizing the total network energy con-

sumption. The decision thresholds at the sensors are selected as the optimization

parameters of the MOP. We solve the MOP and generate the Pareto optimal solu-

tions between these two conflicting objectives through Normal Boundary Intersection

(NBI) [25] and Non Dominating Sorting Genetic Algorithm II (NSGA - II) [28]. Simu-

lation results show that, instead of minimizing the global probability of error only, the

proposed MOP approach provides a number of alternative solutions which are able to

provide significant energy savings as compared to the minimum error solution at the

cost of a slight increase in the minimum achievable probability of error of the network.

In Chapter 3, we study the source localization problem for a homogenous WSN

where the observation noise is independent and identically distributed for each sensor

and all the sensors send the same amount of information to the fusion center. The

source location is random and modeled using a multivariate Gaussian distribution whose

covariance matrix is large so as to cover the entire ROI. We present an iterative source

localization method where rather than transmitting complete sensor data to the fusion

center from all the sensors, the anchor sensors first detect the source and obtain a coarse

source location estimate. Then, we develop and compare two different sensor selection

schemes for static source localization. The first scheme iteratively activates the non

anchor-sensors which maximize the mutual information between source location and

the quantized sensor measurements. In the second sensor selection scheme, a number

of non-anchor sensors are activated whose quantized data minimize the PCRLB at each

iteration. Further, using the posterior probability distribution function of the source

location, we compress the quantized data of each activated sensor using distributed data

compression techniques. Simulation results show that the MI and PCRLB based sensor

selection schemes, within a few iterations achieve similar estimation performance and

get close to the PCRLB for the case when all the sensor data are used. The PCRLB-

based sensor selection is better in terms of computational complexity when the number

of non-anchor sensors selected at each iteration is greater than one. By selecting only
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the most informative sensors about the source location, the iterative approach provides

large energy savings as compared to one shot location estimation while introducing

some latency.

In Chapter 4, we extend the iterative source localization method for the case where

the channels between sensors and the fusion center are subject to Rayleigh fading.

Considering phase coherent reception and using the channel gain statistics, we first

derive the likelihood of the M -bit symbols of a sensor received over a fading channel.

Simulation results show that source location estimation using the channel gain statistics

yield performance that is quite close to the case where each sensor’s channel gain is

known exactly. We then extend the mutual information and PCRLB based sensor

selection metrics that include channel fading. When the channel signal-to-noise ratio

(SNR) is relatively high between sensors and the fusion center, the mean squared error

of the iterative algorithm, in a few iterations gets close to the mean squared error when

all N sensor data is available at the fusion center. On the other hand, if the channel

SNR is low, then each selected sensor becomes less informative about the source location

and the iterative sensor selection needs several iterations to reach the mean squared

error of the case where data from all the N sensors is available.

In Chapter 5, we study a distributed parameter estimation problem for a hetero-

gonous WSN where the observation noises of the sensors are Gaussian with non-identical

statistics. The fusion center is unaware of the quality of the sensor observations and

each sensor quantizes its measurement to the rate which improves its Fisher information

per bit the most. For a heterogonous WSN, the complexity to compute the average

PCRLB is high. To reduce the complexity associated with the PCRLB, we first show

that the inverse of average Fisher information is a lower bound on the average PCRLB.

From the previous chapter, we observe that the quantized sensor measurements become

more informative as the wireless channel impairments are suppressed by increasing the

energy per bit. In this chapter, we neglect the channel impairments for multi-bit sensor

data, and assume the wireless channels between sensors and the fusion center are error

free which can be provided by orthogonal channels with sufficient transmit power or

powerful forward error correction. At the same time, we consider that the channels
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between sensors and the fusion center can reliably transmit up to B bits information.

So, not to exceed the total bandwidth (B), the observation of each sensor quantized

with the rate computed as above is sent to the fusion center with a certain transmission

probability. To find the optimal transmission probabilities of each possible data rate of

a sensor, we formulate a constrained optimization problem by minimizing the inverse

of the average Fisher information while taking the total bandwidth and network uti-

lization constraints into account. Under stringent constraint on available bandwidth,

simulation results show that the proposed probabilistic scheme, overcomes the scheme

where the total bandwidth is equally distributed among all sensors in the network. In-

stead of all sensors transmitting at high data rates which requires a large bandwidth,

the proposed probabilistic bit transmission scheme obtains a similar MSE by requesting

data at high rates only from the sensors with high SNR.

In Chapter 6, we summarize the main results of the dissertation and present

suggestions for some future work.

1.4 Notes

We make use of the standard notational conventions. Vectors and matrices are written

in boldface and all vectors are column vectors. For a matrix A, AT indicates the trans-

pose operation. The notation x ∼ N (µ,Σ) means that vector x is Gaussian distributed

with mean vector µ and covariance matrix Σ. Also, throughout the dissertation, we

denote the probability mass function of discrete variables by P (.) and the probability

density function of continuous variables by p(.) or p(., .) depending on the number of

random variables.

Portions of the material in this dissertation have been presented at the 2008 IEEE

Asilomar Conference on Signals, Systems, and Computers [58], the 2009 International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing [59], the

2010 Conference on Information Sciences and Systems [60] and accepted for presentation

at the 2010 International Conference on Information Fusion [61]. Additionally, portions

of the material have appeared in or have accepted to appear in the IEEE Transactions

on Systems, Man, and Cybernetics, Part B [62] and IEEE Transactions on Signal
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Processing [63].
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Chapter 2

A Multi-objective Optimization Approach

to Obtain Decision Thresholds for

Distributed Detection

In this chapter, we study the detection problem where the objective of the WSN is to

distinguish between two hypotheses, such as the absence (Hypothesis 0) or presence

(Hypothesis 1) of a certain event. Such detection ability of a WSN is crucial for various

applications. As an example, in a surveillance scenario the presence or absence of

a target is usually determined, before attributes such as its position or velocity are

estimated [37].

In distributed detection, by taking advantage of the limited onboard signal pro-

cessing capabilities of sensors, the measurements are first preprocessed and a quantized

version of the decision statistic is sent to the fusion center. For binary quantization

and under different performance criteria (Bayes, Neyman-Pearson (NP)), the design of

the optimal fusion rule is relatively straightforward but the evaluation of the decision

thresholds at peripheral sensors is more complicated as a result of the distributed na-

ture of the WSN. Therefore, obtaining local sensor decision rules is a major issue in the

distributed detection problem [3].

For a given number of sensors and under the assumption of conditionally inde-

pendent observations, the optimal decision rule at each sensor reduces to a likelihood

ratio test (LRT) [3] for both Bayesian and NP criteria and different decision fusion

22



topologies such as parallel or serial. In parallel decision fusion, each sensor sends its

decision directly to the fusion center whereas in serial decision fusion, all the sensors

are connected in series. The routing path defines how these sensors are inter-connected

and in this work we assume that it is known in advance. In the serial case, we assume

that each sensor generates its decision by combining the decision coming from its pre-

decessor with its own measurement. Then, the decision of the last sensor on the path

is accepted as the final inference. Under decision fusion schemes for both topologies,

the LRTs at each sensor are coupled with other sensor decisions and the fusion rule.

Optimal values of the local sensor thresholds are typically found using Person by Per-

son Optimization (PBPO) [3], where each sensor threshold is optimized iteratively by

assuming a fixed fusion rule and decision rules at the other sensors. In the asymptotic

regime where the number of sensors is very large, an identical decision rule for all the

sensors is asymptotically optimal [36]. This result simplifies the design of decision rules

considerably.

In this chapter, we assume ideal channels between the sensors and the fusion cen-

ter (for recent work involving non-ideal channels, see [39], [6], [40]). Under the NP

criterion and considering fading channels between sensors and the fusion center, an

exhaustive search has been employed in [6] over all threshold selections to determine

their optimal values. Computational complexity of such an approach increases expo-

nentially with the number of local sensors and this approach for finding the optimal

sensor thresholds is practical only with relatively few sensors. We assume that each

sensor arrives at a binary decision about the event by comparing its decision statistic

with a threshold. If the sensor decides positively about the presence of the event, it

transmits one bit, otherwise it stays silent. To ensure perfect communication, each

sensor decision should be transmitted with sufficient energy which is a function of the

distance between the sensor and the fusion center [64]. Therefore, the thresholds of

local sensors not only determine the network’s probability of error, but also affect the

total energy consumption.

A recent work [47] considers the design of local sensor decision rules that minimize

the probability of error subject to a transmission rate constraint for each sensor. Under
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conditionally independent observations, a constrained minimization problem is defined

and the optimal thresholds are obtained using the well known PBPO procedure. Al-

though conditional independence assumption simplifies the derivation of decision rules,

it may not be valid in many realistic cases such as when the location of the event

isn’t known exactly. If the location of the event can only be described in terms of its

probability density function, the received sensor decisions are no longer conditionally

independent because of the unknown event location. Then the optimality of LRTs for

local sensor decision making fails and the derivation of optimal sensor decision rules

becomes complicated. In this chapter, we consider the case where the event has an

isotropic signal emission with path loss [65], [66]. Then in the presence of the event,

each sensor’s measurement depends on the distance between the sensor and the event

location. Each noisy sensor measurement then follows the same probability distribution

with different means as long as the measurement noise is independent and identically

distributed across sensors. The sensors in proximity of the event decide more likely to

decide on the presence of the event. In other words, an isotropic signal source for the

event implies a high degree of spatial correlation. A related work [67] proposes a collab-

orative detection scheme where a sensor close to the signal source requests collaboration

and receives the decisions of the Kmax sensors within its neighborhood. The authors

showed that increasing Kmax, namely including more sensors to the collaboration that

are located far from the event degrades the detection performance considerably.

Sensor network design usually involves simultaneous consideration of multiple con-

flicting objectives [6], [68], such as maximizing the lifetime of the network or maximiz-

ing the detection capability, while minimizing the transmission costs. In a conventional

WSN setting, one of the desired objectives is optimized while treating others as con-

straints of the problem or the problem is converted into a single objective problem by

assigning weights to each objective function. In the constrained minimization case, one

single solution is obtained based on available resource limitations and the solution has

to be reevaluated for each time when the amount of resource has been changed. In the

weighted sum approach, relative weights of the objectives are usually not known or dif-

ficult to determine. These drawbacks can be overcome via multi-objective optimization
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methods [25], [26], [27], [28], [29], [30], [31] which optimize all the objectives simulta-

neously and generate a set of solutions at the same time reflecting different trade-offs

between the objectives. Multiobjective optimization has recently been introduced for

WSN design [69] where the mobile agent routing and sensor placement problems and

the tradeoff solutions between the desired objectives were determined through the use

of multi-objective optimization based on evolutionary algorithms.

In this chapter, we study the event detection problem for sensor networks under

isotropic signal emission and the event location is only known in terms of its proba-

bility density function. Also, we assume that sensors employ the on-off keying scheme

where they send one bit data to the fusion center only if they decide on the presence

of the event. Then, sensor decision thresholds not only determine the probability of

error but also determine the total energy consumption of the network. So, instead

of having a single solution that minimizes the probability of error of the network, by

using the multi-objective optimization approach, we seek several sensor threshold sets

which deliver significant energy saving as compared to the energy consumption of the

minimum probability of error solution without sacrificing probability of error too much.

Thus, we are able to obtain a set of solutions which provide tradeoffs between energy

consumption and probability of error performance.

Hence, we formulate a multi-objective optimization problem (MOP) with two

objectives, minimizing the probability of error at the fusion center (global probabil-

ity of error) Pe and minimizing the total network energy consumption (global energy

consumption) ET where the sensor decision thresholds are selected as the variables

of the MOP. We solve the MOP and generate the Pareto optimal solutions between

these two conflicting objectives through Normal Boundary Intersection (NBI) [25] and

Non-Dominating Sorting Genetic Algorithm II (NSGA - II) [28]. In this chapter, we

first study the problem for parallel decision fusion where each sensor performed binary

quantization by comparing its measurement with its threshold. We then compare the

results of parallel decision fusion with serial decision fusion. In the serial case, it is hard

to evaluate the optimal decision rule of each sensor since the event location is known

only in terms of its probability density function. Simulation results show that when
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each sensor makes its decision based on the decision of its predecessor and its own ob-

servation, the performance is poor if the sensor is very far away from the event location.

For this reason, motivated by the counting rule considered in [49], we use a heuristic

decision rule at each sensor. Our decision statistic used for the serial case is the aggre-

gation of sensor decisions from all the previous sensors and its own observation. In this

work, we also compare the multi-objective optimization methods NBI and NSGA-II in

detail by using the performance metrics, generational distance, domination and spacing

metrics described in [29]. Finally, we compare the performance of the network both for

different and identical sensor thresholds employed at each sensor.

The rest of the chapter is organized as follows. In Section 2.1, we state the WSN

assumptions and describe each objective function under both parallel and serial decision

fusion schemes. In Section 2.2, we review the fundamentals of MOP, describe NBI and

NSGA-II methods. In Section 2.3, we present our simulation results and finally devote

Section 2.4 to discussion of the results.

2.1 Problem Definition

In this section, we first state the wireless sensor network assumptions, then we define

the mathematical models for both objective functions for parallel and serial decision

fusion topologies.

2.1.1 Wireless Sensor Network Model and Statement of the MOP

A representative wireless sensor network consisting of N sensors, {sk, i = 1, 2, .., N}
with parallel decision fusion is shown in Figure 2.1. The distances between sk and the

fusion center and the event location (x, y) are denoted as df,k and dk respectively. We

assume the event location to be a random variable with an associated prior probability

density function (pdf) and, therefore, dk is a random variable.

Specifically, we assume that the location of the event is uniformly distributed with

joint pdf,

p(x, y) =
1

A×B
, (2.1)
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0 ≤ x ≤ A, 0 ≤ y ≤ B

where the region of interest (ROI) is an area of size A×B. Other pdfs can be employed

in a similar manner. The average distance of sk located at (xk, yk) to the event location

(x, y) is then expressed as,

d̄k =

∫ A

0

∫ B

0

√
(x− xk)2 + (y − yk)2p(x, y)dydx (2.2)

Suppose that a signal that follows the power attenuation model such as an acoustic

signal is radiated from an event source with energy P0 [65] and sensors sk, i = 1, 2, .., N

are deployed at positions (xk, yk), i = 1, 2, .., N . Then, the received energy (ek) observed

at sk is,

Figure 2.1: Wireless Sensor Network Model with Parallel Decision Fusion

ek(xk, yk, x, y) =





P0 dk ≤ d0

P0

(
d0

dk

)n

otherwise
(2.3)
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where n is the signal decay exponent and d0 is the reference distance where we select

d0 = 1m. When n = 2, the energy of the event decays at a rate inversely proportional to

the square of the distance dk =
√

(x− xk)2 + (y − yk)2. Then, under each hypothesis,

the received measurement of each sensor (zk) can be expressed as,

zk = nk, under H0 (2.4)

zk =
√

ek(xk, yk, x, y) + nk, under H1

where nk is the measurement noise that follows normal distribution at each sensor and

it is assumed to be independent across the sensors. zk then follows a normal distribution

with parameters,

zk ∼




N(0, σ2) under H0

N(
√

ek(xk, yk, x, y), σ2) under H1

(2.5)

Throughout the chapter, we assume that the noise variance, σ2 is unity. When zk

exceeds a certain threshold denoted as tk, sensor sk transmits a one bit decision (Dk = 1)

to the fusion center. Otherwise, it does not transmit anything.

The functions global probability of error Pe and global energy consumption ET

are functions of the local sensor thresholds tk and constitute the objective functions of

the MOP. The MOP considered here is formulated as follows,

min
t1,t2,...,tN

{Pe(t1, t2, ..., tN), ET (t1, t2, ..., tN)}, (2.6)

tmin ≤ tk ≤ tmax i ∈ {1, 2, ..., N}.

We first solve the above problem for N nonidentical decision thresholds {t1, t2, ..., tN}
employed at each sensor. We also compare the performance of nonidentical decision

thresholds with identical decision threshold at each sensor {t = t1 = ... = tN} via

simulation.

In the next subsections, we derive the objective functions for the global probability

of error and the global energy consumption under parallel and serial decision fusion
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models.

2.1.2 Parallel Decision Fusion

In this subsection, we derive mathematical expressions for the two objectives namely

global probability of error and the global energy consumption for parallel decision fusion.

Global Probability of Error

Let D0 be the global decision at the fusion center about the presence or absence of an

event, and P (H0) and P (H1) be the a priori probabilities of H0 and H1 respectively.

The global probability of error is given by [3],

Pe = P (H0)PF + P (H1)(1− PD) (2.7)

where PF = P (D0 = 1|H0) denotes the global probability of false alarm, and PD =

P (D0 = 1|H1) denotes the global probability of detection. Given the vector of local

sensor decisions of size 1 × N ,D = [D1 D2 ... DN ] and Dk ∈ {0,1}, the probability

of error is expressed as

Pe = P (H0)P (D0 = 1|H0) + P (H1)(1− P (D0 = 1|H1)) (2.8)

which can be written as,

Pe = P (H1) + P (D0 = 1|D)[P (H0)P (D|H0)− P (H1)P (D|H1)]

Pe is minimized if,

P (D0 = 1|D) = 0 when [P (H0)P (D|H0)− P (H1)P (D|H1)] > 0 (2.9)

P (D0 = 1|D) = 1 when [P (H0)P (D|H0)− P (H1)P (D|H1)] < 0

The above property leads to the following likelihood ratio test (LRT) at the fusion

center [3],

29



P (D|H1)

P (D|H0)
≷D0=1

D0=0

P (H0)

P (H1)
(2.10)

By conditioning PF over each possible incoming vector of decisions D and then aver-

aging over D, PF is expressed as,

PF = P (D0 = 1|H0) =
∑

all D

P (D0 = 1|D)P (D|H0) (2.11)

where according to the received decision vector D, P (D0 = 1|D) is either zero or one

based on the fusion rule expressed in Eq.(2.10). Since the noise samples are assumed

to be independent and identically distributed,

P (D|H0) =
N∏

k=1

P (Dk|H0) (2.12)

where the false alarm probability of an individual sensor PF,k is,

PF,k = P (Dk = 1|H0) = Q(tk) (2.13)

where Q(.) is the complementary distribution function of the Gaussian defined as,

Q(tk) =

∫ ∞

tk

1√
2π

e−
x2

2 dx (2.14)

Since the event location is random, P (D|H1) can not be written directly as the product

of individual decisions as in Eq.(2.12). Instead, the global probability of detection needs

to be first conditioned on the location of the event, and then needs to be averaged over

its probability density function. For a given event location (x, y), the conditional global

probability of detection CPD is,

CPD = P (D0 = 1|x, y, H1) =
∑

all D

P (D0 = 1|D)P (D|x, y, H1) (2.15)

and since the noise distribution is independent across sensors,
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P (D|x, y, H1) =
N∏

k=1

P (Dk|x, y, H1) (2.16)

where the conditional probability of detection of an individual sensor CPD,k under

given event location (x, y) is expressed as,

CPD,k = P (Dk = 1|x, y, H1) = Q(tk −
√

ek(xk, yk, x, y)) (2.17)

and P (Dk = 0|x, y, H1) = 1 − P (Dk = 1|x, y, H1). Also, the error probability of an

individual sensor Pind,k(tk) as a function of its decision threshold tk can be expressed

as,

Pind,k(tk) = P (H0)P (Dk = 1|H0) + P (H1)

∫ A

0

∫ B

0

P (Dk = 0|x, y, H1)dydx (2.18)

The global detection probability PD, is found by averaging CPD,k over the probability

density function of the event location as,

PD =

∫ A

0

∫ B

0

P (D0 = 1|x, y, H1)p(x, y)dydx (2.19)

Our first objective function, the probability of error, is given by (2.20),

Pe(t1, t2, ..., tN) = P (H0)
∑

all D

P (D0 = 1|D)P (D|H0) +

P (H1)[

∫ A

0

∫ B

0

∑

all D

P (D0 = 0|D)P (D|x, y, H1)p(x, y)dydx] (2.20)

Global Energy Consumption

In this section, we employ an energy efficient on-off keying scheme where only the

sensors that detect the event transmit their decision to the fusion center. We also
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assume that the transmitted local decisions are delivered to the fusion center without

any error. Then the energy consumption at sensor sk for transmitting m bits perfectly

to the fusion center over distance df,k defined as [64]

ETX(m, df,k) = Eelec ×m + εamp ×m× d2
f,k [Joules]. (2.21)

According to this model, a sensor dissipates Eelec = 50 nJ/bit to run the transmitter

circuitry and εamp =100pJ/bit/m2 for the transmitter amplifier.

The energy consumption of the network is the total transmission energy of all

single bit decisions transmitted to the fusion center. In other words, in (2.21), m

becomes one if Dk = 1 and m is zero (no transmission) if Dk = 0. An individual

sensor ’s energy consumption can be expressed as,

Eind,k(tk) = E(1, df,k)[P (Dk = 1|H0)P (H0) + P (Dk = 1|H1)P (H1)] (2.22)

Transmission of the decision vector D to the fusion center then requires,

EC(D) =
N∑

k=1

ETX(Dk, df,k) (2.23)

The energy consumption ET of the network is then found by conditioning EC(D) on

all possible vector of decisions as,

ET (t1, t2, ..., tN) =
∑

all D

EC(D)P (D)

=
∑

all D

EC(D)(P (D|H0)P (H0) + P (D|H1)P (H1)) (2.24)

Using the relation,

P (D|H1) =

∫

x

∫

y

[
N∏

k=1

P (Dk|x, y, H1)]p(x, y)dydx (2.25)
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together with Eq.(2.12) and Eq.(2.24), our second objective, global energy consumption

is obtained as,

ET (t1, t2, ..., tN) =
∑

all D

EC(D)[P (H0)
N∏

k=1

P (Dk|H0) +

P (H1)

∫

x

∫

y

[
N∏

k=1

P (Dk|x, y, H1)]p(x, y)dydx] (2.26)

2.1.3 Serial Decision Fusion

In this section, we derive mathematical expressions for the probability of error and

the total energy consumption for serial decision fusion. In the serial fusion scheme,

as described earlier and shown in Figure 2.2, the decision of sk is a function of its

own measurement from the event zk and the decisions of its predecessors Dk−1 =

[D1, ..., Dk−1]. The aggregate decision Dk is then forwarded to the successor sensor

together with the past decisions Dk−1. The last sensor in the serial configuration takes

the final decision which is a binary value that represents either of the two hypotheses.

We assume that the routing path is known to all the sensors.

Probability of Error

In serial topology, the decision of the N th sensor DN is the decision of the entire WSN.

Therefore, the probability of error is expressed as,

Pe = P (H0)P (DN = 1|H0) + P (H1)

∫

x

∫

y

P (DN = 0|x, y, H1)p(x, y)dydx (2.27)

where PF = P (DN = 1|H0) denotes the probability of false alarm, and PD = 1 −
P (DN = 0|H1) denotes the probability of detection. In order to calculate these two

quantities, the decision of sN should be both conditioned on the received measurement

zN and the decisions of all its predecessors DN−1 as shown in Eq.(2.28).
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Figure 2.2: Wireless Sensor Network Model with Serial Decision Fusion

PF,N =
∑

all DN−1

∫

zN

P (DN = 1|DN−1, zN , H0)P (DN−1, zN |H0)dzN (2.28)

PD,N =

∫

x

∫

y

(
∑

all DN−1

∫

zN

P (DN = 1|DN−1, zN , x, y,H1)×

P (DN−1, zN |x, y, H1)dzN)p(x, y)dydx

At each sensor, we assume that the measurement is independent of the received

incoming decisions so their joint probabilities can be expressed according to (2.29).

P (DN−1, zN |H0) = P (DN−1|H0)p(zN |H0) (2.29)

P (DN−1, zN |x, y, H1) = P (DN−1|x, y, H1)p(zN |x, y,H1)
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For simplicity, we only show the derivation of the probability of false alarm. Cal-

culation of probability of detection is then quite straightforward except for an outer

integration on the event location. Plugging (2.29) into (2.28) and using the fact that

the sensor decision is independent of the underlying hypothesis we obtain (2.30)

PF,N =
∑

all DN−1

[∫

zN

P (DN = 1|DN−1, zN)p(zN |H0)dzN

]
P (DN−1|H0) (2.30)

Given the event location (x, y) and independent and identically distributed noise at

each sensor, the optimum decision rule at sk is an LRT which uses the decisions of the

previous sensors Dk−1 together with its own observation zk. It is expressed as [3],

P (Dk = 1|Dk−1, zk) = 0 if
P (Dk−1|H1, x, y)

P (Dk−1|H0)

p(zk|H1, x, y)

p(zk|H0)
≤ tk (2.31)

P (Dk = 1|Dk−1, zk) = 1 if
P (Dk−1|H1, x, y)

P (Dk−1|H0)

p(zk|H1, x, y)

p(zk|H0)
> tk

When the location of the event is a random variable, the sensor measurements from

the event become correlated, the LRT shown in (2.31) is not necessarily optimal at the

local sensors and the derivation of their optimal rules becomes a very hard problem.

For this reason, motivated by the counting rule considered in [49] we use a heuristic

decision statistic δk at each sensor in the following form,

P (Dk = 1|Dk−1, zN) = 0 if δk = zk +
k−1∑
p=1

Dp ≤ tk (2.32)

P (Dk = 1|Dk−1, zk) = 1 if δk = zk +
k−1∑
p=1

Dp > tk

Basically, each sensor computes its decision statistic δk by summing the number of 1s

received from its predecessor sensors together with its own measurement. Then this

decision statistic is compared with a certain threshold tk. This heuristic rule works

even when there is no prior information available in the network such as the location
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of sensors or the location of the event.

The inner integration term in Eq.(2.30),can be written as shown in (2.33),

∫

zN

P (DN = 1|DN−1, zN)p(zN |H0)dzN = (2.33)

∫ ∞

tN−(
∑N−1

k=1 Dk)

1√
2π

e−
z2
N
2 dzN = Q

(
tN − (

N−1∑

k=1

Dk)

)

Also, in Eq.(2.30) the probability mass function of the received decisions P (DN−1, ..., D1|H0)

needs to be iteratively conditioned on sensor decisions as shown in (2.34),

P (DN−1, ..., D1|H0) =

∫

zN−1

P (DN−1|DN−2, zN−1)p(zN−1|H0)dzN−1

...×
∫

z1

P (D1|z1)p(z1|H0)dz1 (2.34)

In (2.34) depending on the local sensors decisions, each inner integral is replaced by

appropriate Q(.) or 1−Q(.) function as defined in Eq.(2.33) based on the decision and

the threshold of each local sensor.

Finally, the probability of error is found by averaging over all possible decisions

in (2.35).

Pe = P (H0)

(∫

zN

P (DN = 1|DN−1, zN)p(zN |H0)dzN (2.35)

...

∫

z1

∑
D1

P (D1|z1)p(z1|H0)dz1

)

+P (H1)

(
1−

∫

x

∫

y

[∫

zN

P (DN = 1|DN−1, zN , x, y)p(zN |x, y, H1)dzN

...

∫

z1

∑
D1

P (D1|z1, x, y)p(z1|x, y,H1)dz1

]
p(x, y)dydx

)
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Energy Consumption

In serial decision fusion, a sensor’s energy consumption depends not only on the dis-

tance between the source and the destination, but also the number of bits received and

distance from its predecessors. Each sensor receives m − 1 bits from its predecessors

and transmits m bits to its next successor including its own decision. We define the

distance between sk and sk+1 as dk,k+1, then E(i) the energy consumption of sk is the

sum of energy used for receiving m−1 bits from its predecessors ERX,k and transmitting

m bits to its successor over distance dk,k+1 ETX,k [64],

ERX,k(m− 1) = Eelec × (m− 1) (2.36)

ETX,k(m, dk,k+1) = Eelec ×m + εamp ×m× d2
k,k+1

E(i) = ERX,k + ETX,k

for i = {2, 3, .., N−1} and E(1) = ETX,1(D1, d1,2) and E(N) = ERX(
∑N−1

k=1 Dk) Joules.

Since the decision of the N th sensor DN is the final inference, DN does not con-

tribute to the energy consumption. Given the vector of past sensor decisions DN−1,

energy consumption in the network is expressed as given in (2.37),

EC(DN−1) = ETX(D1, d1,2)+ (2.37)

N−1∑

k=2

[
ETX,k

(
k∑

q=1

Dq, dq,q+1

)
+ ERX,k

(
k−1∑
q=1

Dq

)]
+ ERX,N

(
N−1∑

k=1

Dk

)

Finally, conditioning on all possible vector of decisions, the energy consumption ET of

the network is found according to (2.38),

ET =
∑

all DN−1

EC(DN−1)P (DN−1) = (2.38)

∑

all DN−1

EC(DN−1)(P (DN−1|H0)P (H0) + P (DN−1|H1)P (H1))
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where P (DN−1|H0) = P (DN−1, ..., D1|H0) and P (DN−1|H1) = P (DN−1, ..., D1|H1) are

calculated as described in (2.34), and (2.35) respectively.

2.2 Multiobjective Optimization

In this section, we briefly summarize NBI and NSGA-II which are efficient methods to

solve MOPs.

A well known technique for solving MOPs is to minimize a weighted sum of the

objectives. Before describing the other MOP methods, in Figure 2.3, we minimize the

weighted sum of the objectives Pe and ET for parallel decision fusion with 5 sensors

where the weights of each objective function are composed of evenly selected 10 points

from the interval [0, 1]. In this problem, each solution to the MOP represents the

set of local sensor thresholds χ = [t1, t2, ..., tN ]. As seen from the figure, minimizing

the weighted sum of the objectives suffers from several drawbacks [25]. First of all, a

uniform spread of weights rarely produces a uniform spread of points on the Pareto

front. Some of the optimal design solutions are closely spaced which reduce the number

of design alternatives. Secondly, if the Pareto optimal curve is not a convex function,

the Pareto points on the concave parts of the actual Pareto optimal curve will be

missed. Moreover, since it is up to the user to choose appropriate weights, decision on

the preferences may not be clear to the user until the solution is generated. Similarly,

when compared with other existing MOP algorithms such as Timmels Population Based

Method (TPM) and Schafflers stochastic method (SSM) [30], the NBI method chosen in

this study and explained below, is computationally efficient in locating Pareto optimal

points. Therefore, we consider the application of NBI first to solve our MOP problem

which is described briefly as follows:

2.2.1 Normal Boundary Intersection (NBI)

The NBI method [25] reduces the MOP to multiple number of single-objective con-

strained problems, called NBI subproblems. This method starts with finding the opti-

mizers of each objective function separately. For the two-objective example illustrated

in Figure 2.4, the shaded area represents the region of feasible design and the curve at
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Figure 2.3: The Pareto optimal front found by minimizing the weighted sum of the
objective functions, N = 5

the lower boundary is the Pareto optimal front. The convex hull of individual minima

(CHIM) is defined as the line segment AB. Any NBI problem is then specified by a

reference point on the CHIM such as the point H. Let χ∗j be the minimizer of the jth

objective and F ∗
j = F (χ∗j) = [f1(χ

∗
j)...fn(χ∗j)]

T , the payoff matrix Φ, is an n× n matrix

whose jth column is F ∗
j − F ∗. β represents one of the RNBI evenly distributed points

on the CHIM. As an example, if RNBI = 11, β is one of the following vectors.

β ∈





 1

0


 ,


 0.9

0.1


 ,


 0.8

0.2


 , . . .


 0

1








where for this example, we can denote β1 ,


 1

0


, β2 ,


 0.9

0.1


 and so on. Φβ then

denotes the reference point H on the CHIM, and each NBI subproblem is defined as,

max
χ,τ

τ (2.39)

39



s.t. Φβ + τv = F (χ)

h(χ) = 0, g(χ) ≤ 0, a ≤ χ ≤ b

The length of the line segment HP, τ , represents the new variable introduced by the

NBI subproblem. The new constraint given the NBI subproblem ensures that the point

lies inside the feasible set C. The number of NBI subproblems, RNBI , determines the

resolution of the Pareto front. Clearly larger values for this parameter imply a better

resolution of the Pareto front. If the Pareto set is disconnected, it is concluded that

some of the subproblems have no solution [25]. Each NBI subproblem can be solved

with any appropriate optimization method. Algorithm 1 summarizes the NBI method.

In Figure 2.5 and Figure 2.6, we show the contour plots of the global probability of

error and global energy consumption for parallel and serial configurations. Since a closed

form expression for either objective function (for the most general case of N sensors)

is not available, the Hessian matrix composed of the 2nd derivatives of the objective

functions with respect to sensor thresholds needed in a formal proof of unimodality

can not be determined analytically. Hence any attempt to prove unimodality with

the available information will only be approximate. For this reason, we choose to

present numerical examples for the objective function’s behavior rather than a formal

proof. Simulation results show that even for a two sensor network the global probability

of error is not a unimodal function of sensor thresholds. For such cases, gradient-

based approaches may yield a local optimum instead of a global optimum. Hence the

obtained results need to be compared with other global techniques such as an exhaustive

search or genetic algorithm to ensure that the solutions really converge to the global

optimum solution. For this purpose, next we describe an evolutionary algorithm for

multiobjective optimization problems called NSGA-II.

Algorithm 1 (The algorithm of NBI)

minχ f1(χ)

minχ f2(χ)

Generate CHIM

rNBI = 1
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Figure 2.4: The point P is the solution of the single-objective constrained NBI sub-
problem outlined with the dashed line v

while rNBI ≤ RNBI do

Solve the NBI subproblem

max
χ,τ

τ

s.t. ΦβrNBI
+ τv = F (χ)

h(χ) = 0, g(χ) ≤ 0, a ≤ χ ≤ b

rNBI = rNBI + 1

end while
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Figure 2.5: Contour lines of the objective functions with N = 2 Sensors, parallel
configuration (a) Probability of Error (b) Energy Consumption

2.2.2 Non-Dominating Sorting Genetic Algorithm - II (NSGA-II)

Non-Dominating sorting genetic algorithm-II (NSGA-II) [28] is a state of the art mul-

tiobjective evolutionary algorithm which simultaneously obtains Mpop Pareto optimal

solutions in the n dimensional objective space. A solution in the population is repre-

sented as a sequence of decision variables, namely the sensor thresholds. Unlike NBI,

using NSGA-II, the Pareto front (tradeoff curve) is found directly so there is no need

to calculate the individual minimizers of each objective function separately. NSGA-II

is an elitist algorithm where good solutions are preserved in the population.

NSGA-II is based on non-domination in each front. Each solution in the popu-

lation is assigned a fitness and crowding distance value. The solutions with the same

fitness are then re-sorted based on their crowding distance which is a closure measure of

each solution to its neighbors. For each generation of the algorithm, the computational

complexity O(n×M2) is governed by this nondominated sorting operation (See [28] for

details). The mating population is subsequently generated by using binary tournament
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Figure 2.6: Contour lines of the objective functions with N = 2 Sensors, serial config-
uration (a) Probability of Error (b) Energy Consumption

selection. If both of the solutions have the same fitness, the solution with larger crowd-

ing distance is selected. We use a real-parameter recombination operator, simulated

binary crossover (SBX) which is used commonly in the evolutionary algorithm litera-

ture [28], [70]. The SBX has a parameter distribution index ηC , whose value determines

the closeness of the offspring to their parents. Let p1 and p2 be two individual solutions

obtained from binary tournament selection. In SBX, offspring solutions c1 and c2 are

obtained from parent solutions p1 and p2 according to,

c1 =
1

2
[(1− ζ)p1 + (1 + ζ)p2] (2.40)

c2 =
1

2
[(1 + ζ)p1 + (1− ζ)p2]

where ζ ≥ 0 is a random number with probability density function [71],

p(ζ) =
1

2
(ηC + 1)ζηC 0 ≤ ζ ≤ 1 (2.41)
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p(ζ) =
1

2
(ηC + 1)

1

ζηC+2
ζ > 1

Along with the SBX, we use polynomial mutation that also makes use of a parameter

distribution index, ηM . In polynomial mutation, the offspring solution cl is obtained

from the parent solution pl according to,

cl = pl + (tmax − tmin)δ (2.42)

where δ is a small variation calculated from the density function [71],

p(δ) = (2q)
1

ηM +1 − 1 q < 0.5 (2.43)

p(δ) = 1− (2(1− q))
1

ηM +1 q ≥ 0.5

where q is a random number with uniform distribution between (0, 1).

The population is then updated by selecting the solutions starting from the first

front. If the number of solutions in the last allowable front is larger then the available

places in the population, the solutions with larger crowding distance is selected first.

After several iterations, the entire population contains only of the solutions near or

at the Pareto optimal front. Let GT be the total number of NSGA-II iterations, then

Algorithm 2 shows the high level description of NSGA-II.

Algorithm 2 (The algorithm of NSGA-II)

Randomly generate an initial population

g = 1

while g ≤ GT do

• Generate mating population

• Generate offsprings by simulated binary crossover or polynomial mutation

• Trim the new pool consisting of parents and offsprings to generate the popu-

lation for the next iteration, with the primary criteria non-domination, sec-

ondary criteria crowding distance.

g = g + 1
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end while

2.2.3 Performance Metrics

For performance comparison between the solutions found with NBI and NSGA-II, we

use three metrics: generational distance, domination metric and spacing metric [29],

[72].

The generational distance (GD) [29],

GD(A,B) =

√√√√
M∑

k=1

g2
k (2.44)

measures the distance between the non-dominated solutions obtained by algorithms A

and B. gk is the Euclidean distance between the solution i ∈ A and the nearest solution

in B.

Domination (Dom.) metric [29], is based on the number of solutions (obtained by

one algorithm) dominated by each solution obtained by the other algorithm. The Dom

metric is defined as:

Dom(A,B) =
d(A,B)

d(A,B) + d(B, A)
(2.45)

where

d(X, Y ) =
∑

x

|{y ∈ Y |x > y}|

If each solution of algorithm A dominates every solution of algorithm B then Dom(A, B) =

1 and Dom(B,A) = 0 where Dom(B,A) = 1−Dom(A,B).

The Spacing metric [72], measures the uniformity of the solutions obtained in the

Pareto-Optimal front. The S metric is defined as,

S(A) =

√√√√ 1

M − 1

M∑

k=1

(rk − r̄)2 (2.46)

where Mpop is the number of nondominated solutions in the archive, rk is the sum

of the differences in objective function values between solution i and its two nearest
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neighbors for each objective. The spacing metric approaches zero when the Pareto

optimal solutions are near uniformly spaced.

2.3 Simulation Results

In this section, we first describe the simulation settings, then present the Pareto fronts

obtained from NBI and NSGA-II algorithms and discuss the effects of non dominated

solutions on WSN performance.

2.3.1 Simulation Settings

In our simulations, we use the WSN configuration described in Section 2.1.1. The solu-

tion of the MOP is illustrated with deterministic sensor placements where the sensors

are equidistantly placed on the y = x line in the region of interest A×B = 100m×100m

as shown in Figure 2.1. As an example, boundary or pipeline surveillance requires plac-

ing the sensors on a straight line. The proposed MOP can be applied to any configu-

rations as long as the sensor placements and the characteristics of the event of interest

are known. The fusion center is located at the origin. According to our objective func-

tions shown in Equations (2.20) and (2.26), adding an additional sensor doubles the

number of possible vectors of received decisions. So the search space of both objectives

increases exponentially with N ,i.e. it is 2N . For this reason, we illustrate the proposed

MOP with relatively few sensors. The a priori probabilities for H0 and H1 are selected

as P (H0) = 0.8 and P (H1) = 0.2 respectively. The parameters of the event detection

model are set as: P0 = 5000 and n = 2. The standard deviation of the measurement

noise σ is set to 1. The minimum tmin and maximum tmax values for the thresholds

are taken as 0 and 10 respectively. For NBI, individual minimizers of each objective

function and each NBI subproblem are determined by using MATLAB c©’s fmincon

routine. For the fmincon routine, all sensor thresholds are initialized at t0k = 8 where

P 0
e ≈ 0.2 and E0

T ≈ 0, the algorithm termination tolerances of fmincon routine are all

set to 10−7. The resolution of the Pareto-optimal front is selected as RNBI = 11. For

NSGA-II, we use a population of size Mpop = 100. Crossover and mutation probabili-

ties are set at 0.9 and 0.1 respectively [73]. Parameter distribution indices of SBX and
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Table 2.1: Generational Distance between NBI and NSGA-II, Spread Metric and Mean
Execution Times (E.T.) for NSGA-II and NBI.

GD (Mean) GD (Std. Dev.) S (Mean) S (Std. Dev.) Mean E.T. (seconds)
NSGA II: GT = 20 603.9421 805.1765 19.2959 22.7605 0.2476e4
NSGA II: GT = 50 253.0000 784.6029 4.5374 9.7953 0.6449e4
NSGA II: GT = 100 5.0322 0.4002 1.6428 0.1827 1.2350e4
NSGA II: GT = 200 5.1058 0.4269 1.7263 0.3049 2.3105e4
NSGA II: GT = 500 5.0539 0.4498 1.9158 0.2094 5.5232e4
NBI: resolution 100 1.5594 1.7118e4

polynomial mutation are set to ηC = 20 and ηM = 20, respectively. We observed that

slight changes in these parameters do not change the results significantly. NSGA-II and

NBI methods are implemented via available public codes in [73] and [74] respectively.

All simulations are performed on a computer with a 3.2 GHz Pentium processor.

2.3.2 Performance Comparison of NBI and NSGA-II

For performance comparison between NBI and NSGA-II, we select both the Pareto front

resolution of NBI and population size of NSGA-II as 100 with N = 4 variables with

parallel decision fusion. The generational distance (GD), domination metric (Dom) and

spacing metric (S ) are averaged over 10 different NSGA-II trials. In Table 1, we vary

the number of generations (GT ) and measure the GD between 100 solutions of NSGA-II

and NBI. Simulation results show that the average generational distance between NBI

and NSGA-II is small after GT = 100 generations. Moreover, according to Table 1 after

GT = 100 generations, the spacing metric of NSGA-II converges with small standard

deviation. On the other hand, the solutions corresponding to NBI are more evenly

spaced as compared to solutions of NSGA-II since NBI yields a smaller S-metric.

Table 2 reveals that the solutions obtained by NBI dominate the solutions of

NSGA-II. Note that, the resolution of the Pareto optimal front is independent from

the convergence of the NBI. So, 10 pareto-optimal solutions found with NBI clearly

dominate every solution found with NSGA-II. So by solving a few subproblems, same

Pareto optimal front can be achieved and evenly distributed trade off solutions can be

obtained in a very short time as compared to NSGA-II. It should be pointed out that
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Table 2.2: Domination Metric between NBI and NSGA-II.

Dom(A,B) A:NBI, B:NSGA-II B: GT = 20 B: GT = 50 B: GT = 100 B: GT = 200 B: GT = 500
A:res. 100,E.T.:1.7e4 s. 1 1 1 1 0.997
A:res. 20,E.T.:4.9e3 s. 1 1 1 1 1
A:res. 10,E.T.:2.3e3 s. 1 1 1 1 1

NBI is known to be better for two objective problems, but for problems with larger

number of objectives, NSGA-II may be better [75].

2.3.3 Optimal Pareto Fronts

In this subsection, we present the Pareto optimal solutions for the parallel and serial

decision fusion for the case of non-identical decision thresholds employed at each of the

N sensors.

Pareto Optimal Fronts under Parallel Fusion

For parallel decision fusion and the WSN configuration as described in Section 2.1.2,

Figure 2.7 shows the Pareto optimal fronts generated with NBI and NSGA-II where

each solution is shown in terms of objective function pairs [Pe, ET ]. The number of

decision variables is selected as N = 4, 5, 6. NSGA-II is executed with population size

Mpop = 100 and number of generations GT = 100 and NBI is executed with resolution

10. Simulation results show that NBI and NSGA-II yield Pareto optimal fronts that

are fairly close to each other. Adding more sensors to the network decreases the error

probability and NBI results in nearly equidistant points on the Pareto front. For N = 5

sensors, if we only minimize Pe, the best achievable global probability of error is 0.061,

which consumes 497.5654nJ . By using the solution for the MOP, instead of selecting

this solution, we may accept the neighboring solution on the Pareto optimal front with

global error probability 0.0619,and global energy consumption 401.38nJ. Therefore, a

1.5% increase in the global probability of error, delivers 23% saving in global energy

consumption. Similarly for the N = 6 case, instead of operating on the minimum

probability error solution [0.05, 536nJ], selecting the solution [0.058, 246nJ] yields 53.9%
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energy saving in exchange for a 15.11% increase in the global probability of error.
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Figure 2.7: Pareto Optimal Solutions generated via NBI and NSGA-II methods for
parallel fusion and non-identical decision thresholds at each sensor

Pareto Optimal Fronts under Serial Fusion

Figure 2.8 shows the Pareto optimal solutions obtained with NBI and NSGA-II for

the serial decision fusion case for N = 4, 5, 6 sensors in the network according to the

WSN configuration as shown in Figure 2.2. The heuristic decision rule of each sensor

proposed in (2.30) yields the global probability of error that is slightly worse than the

parallel configuration. As an example for N = 5 and N = 6 sensors the minimum

achievable error probabilities for parallel decision fusion are 0.061 and 0.05 whereas

serial case yields the minimum error probabilities 0.072 and 0.059 respectively. The

global energy consumption of the serial configuration is determined by the distance

between neighboring sensors and the number of received and transmitted bits of each

sensor. For the N = 4 case, the distance between two neighboring sensors is relatively

large. The minimum error solution for the serial fusion consumes 265nJ where as

the parallel configuration consumes 147nJ . Although increasing the number of sensors
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increases the number of bits for reception and transmission, the distance between sensors

decreases significantly. Since energy consumption of the network is determined by the

square of the inter sensor distance, increasing the number of sensors decreases the

network’s total energy consumption as compared to the parallel case. As an example,

for N = 6 sensors, under parallel network configuration, the minimum achievable global

probability of error is about 0.050 with an energy consumption of 536nJ whereas under

serial configuration the minimum achievable error probability is 0.059 with an energy

consumption of 286nJ. In other words, deploying the network serially increases the

probability of error by 18% but decreases the energy consumption of the network by

46%.

0.05 0.1 0.15
0

50

100

150

200

250

300

E
ne

rg
y 

C
on

su
m

pt
io

n 
in

 th
e 

N
et

w
or

k 
[n

J]

Probability of Error

N=4

  (0.094263,265.0331)

  (0.10497,132.9986)

0.05 0.1 0.15
0

50

100

150

200

250

300
N=5

Probability of Error

  (0.078811,183.3894)

  (0.07276,276.6453)

0.05 0.1 0.15
0

50

100

150

200

250

300

Probability of Error

N=6

 

 
  (0.059269,286.1067)

  (0.077431,152.1766)

Serial:NBI
Serial:NSGA−II

Figure 2.8: Pareto Optimal Solutions obtained by NBI and NSGA-II methods for serial
fusion and non-identical decision thresholds at each sensor.

2.3.4 The Performance of WSN

In this subsection, we analyze the performance of WSNs based on the selected Pareto

solution with N decision variables presented in the previous section. Under parallel

decision fusion, we first determine the error probability of an individual sensor Pind(tk)
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as given in (2.18) as a function of its mean distance to the event location d̄k. We then

calculate an individual sensor’s energy consumption Eind(tk) as given in (2.22) as a

function of its distance to the fusion center df,k. For serial decision fusion, we calculate

the global probability of error and the global energy consumption of the network for a

given number of sensor on the routing path.

WSN Performance under parallel decision fusion

For the minimum global probability of error solutions, Figure 2.9 shows that the local

sensor thresholds are assigned in such a way that the individual sensor error probability

increases with the mean sensor distance to the event location. Due to this, a sensor

transmits more frequently if it is close to the event and does not transmit that frequently

if it is far. Then the error probability of a sensor far away from the mean event location is

close to the prior probability P (H1). In terms of energy consumption, Figure 2.10 shows

that energy consumption of a sensor increases with its distance to the fusion center. This

is an expected result since the energy consumption of a sensor increases with the square

of the distance to the fusion center. Figure 2.10 also shows that for the consecutive

Pareto-optimal solutions with increased global probability of error and decreased global

energy consumption,i.e N = 5 : [0.0619, 401nJ], N = 5 : [0.0651, 313nJ], N = 6 :

[0.051, 430nJ], N = 6 : [0.054, 336nJ], the energy consumption of the sensors that are far

away from the fusion center decreases as their thresholds increase. Since these sensors

are also relatively far from the expected event location, decrease in their transmission

rate makes only a slight difference in the minimum achievable global probability of

error. On the other hand, since delivering their decisions to the fusion center has much

energy cost, decrease in their transmission rate provides significant savings in global

energy consumption.

WSN Performance under serial decision fusion

Figure 2.11 and Figure 2.12 show the global probability of error and the global energy

consumption as a function of number of sensors (hops) on the routing path respectively.

In these figures, sensor 1 (s1) in Figure 2.2 that is farthest away from the fusion center
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Figure 2.9: Parallel Decision Fusion - Local sensor error probability as a function of its
mean distance to the event location

generates the first decision and transmits to s2. At each sensor, we calculate the global

probability of error and the global energy consumption. As a benchmark, we compare

the performance of the proposed decision rule given in (2.32) with a simple rule where

each sensor decision Dk is only the aggregation of the decision of the previous sensor

and its measurement, that is Dk = zk + Dk−1. In Figure 2.11 and Figure 2.12, since s1

has the farthest distance to the average event location, a higher threshold is assigned

to this sensor and it is operating at a probability of error close to the prior probability

P (H1). For the benchmark case, over consecutive sensors, the global probability of error

decreases, since the sensors become much closer to the mean event location. On the

other hand, the sensors near the fusion center are far away from the mean event location

so the measurements of these sensors add uncertainty to the received decisions. That’s

why the global probability of error increases again when the distance to the fusion

center is small (see the topmost curve in Figure 2.11). Our proposed rule considers not

only the decision of the previous sensor but also the decisions of all predecessors. So

increasing the number of sensors on the routing path increases the number of available
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Figure 2.10: Parallel Decision Fusion - Local sensor energy consumption as a function
of its distance to the fusion center

decisions about the event and the global probability of error decreases successively

at each sensor. As shown in Figure 2.12, the global energy consumption of

the network increases as a sensor close to the fusion center is included to

the WSN. In the serial sensor topology, this is due to the fact that the

cumulative increase in the transmitted and received bits at the sensors close

to the fusion center.

2.3.5 Identical Decision Thresholds

Since the search space of both objectives increases exponentially with N , adding an

additional sensor roughly doubles the computation time. In order to simplify the

problem, we may constrain the decision rules to be identical at all the sensors. For

parallel decision fusion, Figure 2.13 shows the optimal Pareto fronts for the case of

identical and nonidentical decision thresholds. For N = 4, 5, 6 sensors assuming an

identical decision threshold for all the sensors, yields the objective function pair val-

ues with minimum global probability of error given by [0.080, 161nJ ], [0.061, 563nJ ],
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Figure 2.11: Serial Decision Fusion - Global error probability as a function of the hop
count on the routing path

[0.051, 555nJ ] whereas the non-identical threshold selection gives the objective function

pair values [0.076, 147nJ ], [0.061, 497nJ ], [0.0508, 536nJ ] respectively. Simulation re-

sults show that as the number of sensors in the network increases an identical decision

threshold for all the sensors achieves nearly the same error probability as compared

to non-identical threshold selection. In [36], it is shown that as the number of sensors

grows to infinity, the probability of error goes to zero, for any reasonable set of decision

thresholds. Therefore, fine adjustment of decision thresholds at each sensor becomes

unnecessary if the number of sensors is large. So especially for a large number of sen-

sors an identical decision threshold at all the sensors simplifies the problem and yet

gives near optimal results. Note that the energy consumption of the network is slightly

higher for the identical threshold case. This is due to the fact that under non-identical

threshold assignment, the sensors that are far from the event are assigned a higher

threshold which reduces the transmission rate of these sensors. On the other hand,

for identical threshold selection these sensors are assigned a lower threshold value and

transmit more frequently. Also, simulation results show that for identical threshold se-
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Figure 2.12: Serial Decision Fusion - Global energy consumption as a function of the
hop count on the routing path

lection, the Pareto-optimal curve between ET and Pe is not convex which implies that

some of the candidate solutions on the Pareto front are still dominated. As an example,

for N = 5 case, the two solutions [0.077246, 293nJ ] and [0.072728, 162nJ ] are on the

Pareto front but [0.077246, 293nJ ] is already dominated by [0.072728, 162nJ ]. On the

other hand, non-identical sensor threshold selection yields a convex Pareto front where

all the solutions are non dominated providing more alternatives to the designer. For

serial decision fusion, Figure 2.14 shows the Pareto optimal solutions for the case of

identical and nonidentical decision thresholds. Simulation results show that the best

achievable error probability with identical threshold selection is slightly worse than

the non-identical threshold selection. Similar to the parallel decision fusion system,

the identical threshold scheme has a non convex trade-off curve and for a given global

probability of error, energy consumption of identical threshold selection is higher than

the non-identical threshold selection.
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Figure 2.13: Parallel Decision Fusion, Pareto Optimal Solutions for identical and non-
identical sensor thresholds

2.4 Discussion

In this chapter, we have studied the binary distributed detection problem. The event

signal is represented by an isotropic emission model and the location of the event is

statistically known where the decision thresholds that minimize the probability of error

can not be determined using the existing methods such as PBPO. We formulated and

solved a multi-objective optimization problem with two conflicting objectives: global

probability of error and global energy consumption of the network where each solution

of this problem corresponds to placing a different emphasis on the two objectives. The

proposed MOP is solved by two different methods. NBI and NSGA-II yield Pareto

optimal fronts that are very close to each other. Simulation results show that for our

problem NBI provides better and more uniformly distributed solutions in a shorter time

as compared to NSGA-II.

Under parallel decision fusion, the consecutive Pareto-optimal solutions decrease

the global energy consumption significantly by allowing a slight increase in the minimum
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Figure 2.14: Serial Decision Fusion, Pareto Optimal Solutions for identical and non-
identical sensor thresholds

achievable probability of error. Under serial decision fusion, increasing the number of

sensors on the routing path, increases the amount of information about the event and the

probability of error at each sensor decreases successively. We have also shown that an

identical decision threshold for all the sensors achieves nearly the same error probability

as compared to nonidentical threshold selections at each sensor as the number of sensors

in the network increases. Therefore, especially for large number of sensors, an identical

decision rule for all sensors can be employed to achieve nearly the best probability of

error performance.
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Chapter 3

Energy Aware Iterative Source Localization

In the previous chapter, we have studied the event detection problem where the source

location is assumed to be random and uniformly distributed in a ROI. Accurate source

localization is another important task to be performed by a WSN, the result of which

has crucial role in accurate target tracking or higher level motion analysis. In this

chapter, we study the static source localization problem where the aim is to estimate

the coordinates of an energy emitting source (e.g. acoustic source).

In a region of interest (ROI), an accurate estimate of the source location can

be obtained by using the energy readings of the sensors [48], [44]. In [48] and [44],

maximum likelihood (ML) based approaches have been proposed by using analog and

multi-bit (M -bit) sensor measurements respectively at the fusion center. In this work,

we assume that each sensor measurement is quantized into M -bits and delivered to

the fusion center over an error-free channel. Simultaneous transmission of all sensors’

M bit data to the fusion center introduces some challenges. First of all, the sensors

that are far from the source location are not likely to carry much useful information

but they still consume energy to transmit information. Secondly, each sensor requires

an independent channel for simultaneous data transmission to the fusion center. This

assumption imposes a limitation on the number of sensors that the system can support

in practice. Therefore, rather than transmitting multi-bit data from all the sensors, we

first employ measurements from a relatively few anchor sensors to detect the source and

obtain a coarse location estimate. In the literature, anchor sensors are utilized to find
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the sensor node locations [76], [77]. In this work, we assume that sensor placements

are known a-priori at the fusion center and try to estimate the source location. Our

iterative algorithm starts when the anchor sensors send their multi-bit data to the fusion

center. The non-anchor sensors do not transmit their measurements in the initial phase.

A few non-anchor sensors are activated at each step of an iterative procedure. Now the

problem is to select the set of non-anchor sensors at each iterative step which improve

the accuracy of the source location estimate the most. These activated sensors send

their multi-bit measurement data to the fusion center to refine the location estimate.

Distributed compression of measurement data prior to transmission is also employed

at the non-anchor sensors to further reduce the energy consumption. Thus, we achieve

significant energy savings in source localization at the cost of tolerating some delay.

The sensor selection problem in sensor networks has been widely studied in the

literature. For sensor management, information based measures have recently been

proposed as objective functions to choose the sensing action that maximizes the ex-

pected gain in information [78], [79], [14,15], [16,17], [80,81]. In [78], a sensor selection

approach has been proposed which chooses the sensors having maximum mutual infor-

mation with source location based on the analog sensor measurements. In [79], authors

focus on using the expected change in Shannon entropy when tracking a single target.

In [14,15], authors have compared several sensor selection approaches involving entropy

and relative entropy. Kreucher et al [16,17] have proposed sensor management schemes

that maximize the Rényi divergence between the current target state probability den-

sity and the density after a new measurement arrives. In [80, 81], sensors are selected

to maximize the mutual information between the sensor measurements and the target

state.

The PCRLB is a very important tool because it provides a theoretical performance

limit for a Bayesian estimator. In [82], Tichavsky et. al. derived an elegant recursive

approach to calculate the sequential PCRLB for a general multi-dimensional discrete-

time nonlinear filtering problem. In [83], based on the PCRLB, a sensor deployment

approach is developed to achieve better tracking accuracy while at the same time it

uses the limited sensor resources more efficiently. Such approaches are extended in [18]
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to incorporate sensor deployment and motion uncertainties. For single target track-

ing, a subset of sensors are selected in a bearing-only sensor network to minimize the

PCRLB on the estimation error, where the selected sensors transmit analog data [84]

or quantized data [85] to the fusion center. Further, the PCRLB based criterion has

been employed to manage sensor arrays for multi-target tracking problems [19,86]. An-

other related work is reported in [87], where a PCRLB based adaptive radar waveform

design method for target tracking has been presented. In this chapter we show that,

one problem with the approaches based on information theoretic approaches is that

the complexity to compute mutual information is large, especially when the number of

sensors to be selected, A, is large. If the sensors provide quantized data, we show in this

chapter that the computational complexity of the mutual information is exponential in

A, whereas the complexity of the PCRLB is linear in A. This fact makes the sensor

management based on information theoretic measures impractical when A is large.

First, we extend the mutual information based sensor selection scheme presented

in [81] for quantized sensor measurements. Then, we define another metric for sensor

selection based on the PCRLB. Note that in [88] the recursive approach presented

in [82] is utilized to calculate the PCRLB. After that, we re-formulate the PCRLB

for static source location estimation. We approximate the posterior pdf of the source

location using an importance sampling based Monte-Carlo method [24]. Using this

posterior pdf approximated by Monte-Carlo methods, a number of non-anchor sensors

are activated in an iterative manner which minimize the PCRLB. Simulation results

show that, within a few iterations, the mean squared error approaches the PCRLB of

a Bayesian estimate based on all the sensor data. Since the fusion center is not likely

to request multi-bit data of the non-informative sensors; which are typically far away

from the source location, the proposed iterative algorithm is expected to provide large

energy savings.

When sensors are densely deployed in a region of interest (ROI), the sensor mea-

surements are likely to be spatially correlated and this correlation can be utilized to

compress the quantized measurements of each sensor prior to transmission to further

reduce energy consumption [89], [90]. Given the multi-bit data received during previous
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iterations and the posterior pdf of the source location, the fusion center calculates the

conditional entropy of the sensors to be activated during an iteration and it requests a

compressed version of sensor’s multi-bit data. Simulation results show that for the first

few iterations, the uncertainty about the source location is very high which implies a

high conditional entropy for the sensor to be activated. In such circumstances, data

compression does not have much effect and each sensor measurement is sent to the

fusion center using almost M -bits. Including new data at each iteration reduces the

uncertainty about the source location and the conditional entropy of each activated

sensor gets smaller at each iteration. After the most informative sensors about the

source location have been selected, the conditional entropy for each activated sensor

becomes very small and only a small number of bits are requested by the fusion center.

Hence, data compression yields significant energy savings.

The rest of the chapter is organized as follows. In Section 3.1, we introduce the

system model and review the ML location estimation method as presented in [44]. In

Section 3.2, we present the iterative source location estimation algorithm. We first give

a brief overview of the algorithm. We then explain the estimation approach for source

location and approximation of the posterior pdf of source location using Monte Carlo

methods. Using this posterior pdf later in this chapter we describe the sensor selection

methodology. We extend the mutual information based sensor selection method for

quantized sensor data and also present the PCRLB based sensor selection method. In

Section 3.3, we discuss data compression using the distributed source coding approach.

In Section 3.4, we compare the two sensor selection schemes in terms of computation

time and give numerical examples to show their estimation performance. In Section 3.4,

we also study the trade-off between estimation performance and communication cost.

We first define a stopping criterion to terminate the algorithm and show that as A, the

number of non-anchor sensors to be activated at each iteration, increases, the algorithm

terminates much faster, at the cost of increased total number of bits transmitted to the

fusion center. Finally, Section 3.5 is devoted to discussion of the results.
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3.1 System Model

We consider a WSN consisting of N sensors {sk, k = 1, 2, .., N}. We assume that

a signal (e.g., an acoustic signal) is radiated from a location (x, y) that follows an

isotropic power attenuation model. In this chapter, we assume that the source is based

on flat ground and all the sensors and source have the same height so that a 2-D model

is sufficient to formulate the problem. As an example, an acoustic event on the ground

can be analyzed using a 2-D scenario as shown in Fig. 3.1. In this chapter, we assume

that N sensors are deployed in a grid layout and the WSN uses a parallel architecture

where the quantized measurements of each sensor are directly delivered to the fusion

center. The assumption of grid layout is not necessary. Source localization based on

sensor readings can be performed for an arbitrary network layout if sensor placements

are known in advance. The location of each sensor (sk) is represented by (xk, yk). Then,

the distance between sk and the source location (x, y) is dk =
√

(x− xk)2 + (y − yk)2.

The received source energy a2
k at sk is expressed as [44],
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Figure 3.1: The signal intensity contours of a source located in a sensor field.
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a2
k = P0

(
d0

dk

)n

(3.1)

where P0 is the signal power measured at a reference distance d0 (In this chapter, we

set d0 = 1m.), ak is the received signal amplitude at sensor sk and n is the signal decay

exponent. At each sensor, the received signal amplitude ak is corrupted by an additive

Gaussian noise:

zk = ak + nk (3.2)

where zk is the noisy signal measurement at sensor sk. Here, we assume that the noise

nk is independent and identically distributed across sensors with Gaussian distribution

N (0, σ) with σ = 1.

We assume the same set of quantization thresholds at all the sensors η = η1 =

η2 = ... = ηN and η = [η0, η1, . . . , ηL]T . Then Dk is obtained from zk according to

(5.4). The optimal quantization rules for M -bit sensor data are given in [44]. Such

rules mostly affect the performance when the number of decision intervals L = 2M

is small (e.g. for the cases when M = 1 or M = 2). Since we are interested in a

larger number of quantization levels such as M ≥ 3, the optimal design of decision

thresholds becomes less crucial. Therefore, we assume that each sensor in the field uses

the same decision thresholds and employs a simple quantization rule that is, L−1 points

which evenly partition the interval [0,
√

P0], are selected as the thresholds. The sensor

measurements less than 0 and more than
√

P0 are mapped to 0 and L− 1 respectively.

In this chapter, we assume that the source location θ = [x, y]T follows a prior

pdf p0(θ) = N (µ0,Σ0) where µ0 is the center of the ROI and Σ0 =


 σ2

x,0 0

0 σ2
y,0




is the covariance matrix which is very coarse so that its 99% confidence region covers

the whole ROI. Note that our proposed approach does not require the prior pdf to be

Gaussian and will work with other prior pdf’s also.

Under the Gaussian noise assumption, the probability that Dk takes a specific

value l is,

p(Dk = l|θ) = Q

(
ηl − ak

σ

)
−Q

(
η(l+1) − ak

σ

)
(3.3)
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where Q(.) is the complementary distribution function of the standard Gaussian distri-

bution, and

Q(t) ,
∫ ∞

t

1√
2π

e−
t2

2 dt (3.4)

3.1.1 Source detection using multi-bit sensor data

Recall from Section 2.1.2 that D0 be the global decision at the fusion center about the

presence or absence of an event, and P (0) and P (1) be the a priori probabilities of H0

and H1 respectively. Instead of using all N sensors in the network, K anchor sensors

are utilized the detect the event first. The probability of error is given by [3],

Pe = P (0)PF + P (1)(1− PD) (3.5)

where PF = P (D0 = 1|H0) denotes the probability of false alarm, and PD = P (D0 =

1|H1) denotes the probability of detection. Given the vector of quantized sensor data of

K anchor sensors DK = [D1, D2, . . . ...DK ] and Dk ∈ {0, 1, . . . , L− 1}, the probability

of error is expressed as

Pe = P (0)P (D0 = 1|H0) + P (1)(1− P (D0 = 1|H1)) (3.6)

which can be written as,

Pe = P (1) + P (D0 = 1|DK)[P (0)P (DK |H0)− P (1)P (DK |H1)]

Pe is minimized if,

P (D0 = 1|DK) = 0 when [P (0)P (DK |H0)− P (1)P (DK |H1)] > 0 (3.7)

P (D0 = 1|DK) = 1 when [P (0)P (DK |H0)− P (1)P (DK |H1)] < 0

The above property leads to the following likelihood ratio test (LRT) at the fusion

center [3],
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P (DK |H1)

P (DK |H0)
≷D0=1

D0=0

P (0)

P (1)
(3.8)

Under H1, the source location follows a certain prior probability density function

(p0(θ)), then (3.8) is computed according to,

1

P (DK |H0)

∫

θ

P (DK |θ, H1)p0(θ)dθ ≷D0=1

D0=0

P (0)

P (1)
(3.9)

3.1.2 Source location estimation using multi-bit sensor data

After the fusion center determines the presence of the source, then the fusion center es-

timates the location of the source. Let D = [D1, D2, ..., DN ]T represent the collected

data from all N sensors. Given the source location θ, the quantized sensor measure-

ments are conditionally independent. Therefore, the likelihood function at the fusion

center has the form [44],

p(D|θ) =
N∏

k=1

L−1∏

l=0

p(Dk = l|θ)δ(Dk−l) (3.10)

where δ(l) is the Kronecker delta function and is defined as,

δ(t) =





1 t = 0

0 t 6= 0
(3.11)

The log-likelihood function of the source location then has the form,

ln p(D|θ) =
N∑

k=1

L−1∑

l=0

δ(Dk − l) ln[p(Dk = l|θ)] (3.12)

The maximum likelihood estimate (MLE) of the source location θ̂
MLE

is the solution
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of the following optimization problem:

θ̂
MLE

= arg max
θ

ln p(D|θ) (3.13)

Assuming the existence of an unbiased estimator θ̂(D), the CRLB is given by [13],

E{[θ̂(D)− θ][θ̂(D)− θ]T} > J−1(θ) (3.14)

in which J(θ) is the 2 × 2 Fisher information matrix (FIM) and the source location

estimate θ̂(D) is a function of D. Given an unknown constant source location θ, J(θ)

can be found as follows:

J(θ) = n2

N∑

k=1

κka
2
kd
−4
k


 (xk − x)2 (xk − x)(yk − y)

(xk − x)(yk − y) (yk − y)2


 (3.15)

where

κk =
1

8πσ2

L−1∑

l=0

γi,l

p(Dk = l|θ)

and

γk,l =

[
e−

(ηl−ak)2

2σ2 − e−
(η(l+1)−ak)2

2σ2

]2

The derivation of the FIM provided in (3.15) can be found in [44].

Since θ is treated as a random parameter with a certain prior pdf, we consider

PCRLB as the estimation benchmark for the mean squared error (MSE) which is defined

later in the chapter.

3.2 Iterative Source Location Estimation Method

Fig. 3.2 depicts an example WSN where each black point represents a sensor and the

proposed iterative source localization algorithm is illustrated in Fig. 3.3. At step 1,

the algorithm starts with the collection of M -bit quantized data from each of the K

anchor sensors (represented with blue squares in Fig. 3.2). For notational simplicity, let

Wi = [D1, D2, ..., DK+iA]T denote the collected sensor data until and including the
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Figure 3.2: Wireless Sensor Network Model. Black Points: Sensor Locations; Blue
Squares: Anchor Sensors used for initial iteration; Green Circles: Activated Sensors
after 10 iterations for the example considered in Section V; Red Star: Source. A = 1
sensor is activated / iteration

ith iteration where i ∈ {0, 1, ...} and A is the number of non-anchor sensors activated at

each iteration (activated sensors are represented with green circles in Fig. 3.2 for the

example considered in Section V). Note that, at iteration 0, only the anchor sensor data

are received at the fusion center. Let p(θ|Wi) denote the posterior pdf of the source

location based on the currently available sensor data Wi at the ith iteration. At step 2

of the algorithm shown in Fig. 3.3, the fusion center finds the source location estimate

θ̂ using the posterior pdf p(θ|Wi). The algorithm starts the next iteration (i = i + 1)

at step 3 of the algorithm. Note that the posterior pdf of the source location is based

on the previously received data until the end of iteration i− 1 and p(θ|Wi−1) serves as

the prior pdf of source location for the ith iteration, which is denoted as pi(θ),

pi(θ) = p(θ|Wi−1) (3.16)

At step 4 of the algorithm, the fusion center activates A non-anchor sensors. In
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this work, we present two sensor selection strategies. The first one selects the sensors

that maximize the mutual information (MI) between the source location and sensors to

be selected. The second one chooses the sensors that minimize the PCRLB. These two

approaches will be compared in terms of computation complexity and mean squared

error performance later in the chapter. Finally, at step 5, using the already available

sensor data as side information, the M -bit data of each activated sensor is locally com-

pressed using standard distributed source coding techniques. We will show later through

simulations that as the amount of information about the source location increases and

the most informative (based on either the MI criterion or PCRLB criterion) sensors

about the source are selected, the estimation error on the source location decreases

quickly.

Figure 3.3: The flow chart of the algorithm. The dashed blocks represent the state-
of-the-art Mutual Information based sensor selection method. The entire set of solid
blocks represent the PCRLB based algorithm.
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3.2.1 Source Location Estimation Based on Monte Carlo Methods

In signal processing, Monte Carlo methods are used to obtain simulation based es-

timates [24], [91], [88]. Monte Carlo-based methods are currently used to compute

integrals, evaluate marginal distributions and optimization. Basically, Monte Carlo

methods can be classified into three categories (see [24] and references therein). The

acceptance-rejection methods are used to sample from the probability distribution of

interest. Importance sampling methods are used to approximate the posterior distri-

bution p(θ|D1, D2, ..., DN) of the state θ given the available data {D1, D2, ..., DN}.
Finally, Markov Chain Monte Carlo methods are suitable for sampling from the pos-

terior which includes multiple states p(θ1, θ2, ..., θN |D1, D2, ..., DN). Since we are

interested in estimating a single parameter θ which is the source location, we employ

an importance sampling based Monte Carlo method [24].

At each iteration of the algorithm, the fusion center gathers the M -bit data (or

its compressed version) from additional A non-anchor sensors. Let p(θ|Wi) be the

posterior pdf of the source location given the available data Wi for iteration i, i ≥ 0

(at step 1 in Fig. 3.3). In this chapter, we approximate p(θ|Wi) using an importance

sampling based Monte Carlo method as,

p(θ|Wi) =
Ns∑

m=1

wm,iδ(θ − θm,i) (3.17)

where the posterior distribution of source location is represented with Ns particles. The

particles θm,i = [θm,i
x θm,i

y ]T (m = 1, 2, ..., Ns) are drawn from the distribution p0(θ) with

equal weights wm,0 = 1/Ns. Let w̃m,i be the weight of particle θm,i which is obtained

according to [24],

w̃m,i ∝ p(Wi|θm,i)wm,0 (3.18)

The initial weight of each particle is then multiplied with the likelihood function of

the sensor data received up to the current iteration. Since the sensor decisions are

conditionally independent, p(Wi|θm,i) = p(D1|θm,i) × ... × p(DK+iA|θm,i), and the

likelihood function p(Wi|θm,i) can be computed from (3.3) and (3.10). The particle
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weights are further normalized as,

wm,i =
w̃m,i

∑Ns

m=1 w̃m,i
(3.19)

Then at the end of the ith iteration, the Monte Carlo approach yields the source

location estimate θ̂i as,

θ̂i =
Ns∑

m=1

wm,iθm,i (3.20)

For the next iteration, the particles are generated from the prior p0(θ) and weights

are updated according to (3.18), using Wi+1. Namely, we employ an importance-

sampling based Monte Carlo method independently at each iteration using the entire

received data to approximate the posterior distribution and update the source location.

Having represented the posterior pdf of the source location, we can now describe the

sensor selection methods.

3.2.2 Sensor Selection Methods

Let Si
A =

{
s
(i,1)
A , s

(i,2)
A , ..., s

(
i,C

N−K−(i−1)A
A

)

A

}
be the collection of all distinct A-element

subsets of N −K − (i− 1)A remaining non-anchor sensors at iteration i. C
N−K−(i−1)A
A

is the combination operation defined as,

C
N−K−(i−1)A
A =

(N −K − (i− 1)A)!

A!(N −K − iA)!
(3.21)

Let s
(ν,i)
A be the set of A non-anchor sensors activated at the ith iteration according to the

sensor selection strategy ν. Then, s
(ν,i)
A = {sν,i

1 , sν,i
2 , ..., sν,i

A } where sν,i
k (k ∈ {1, .., A})

is the kth activated non-anchor sensor according to ν at iteration i and D
(ν,i)
A =

{Dν,i
1 , Dν,i

2 , ..., Dν,i
A } are the quantized measurements of s

(ν,i)
A . Now, the objective

is to find the optimal sensor selection strategy ν∗ which activates the set s
(ν∗,i)
A =

{sν∗,i
1 , sν∗,i

2 , ..., sν∗,i
A }. Corresponding to ith iteration, s

(ν∗,i)
A minimizes a certain cost
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function Ψi(.) as

ν∗ = arg min
s
(ν,i)
A

Ψi(ν), ν ∈
{

1, 2, ..., C
N−K−(i−1)A
A

}
(3.22)

In this work, we first select Ψi(ν) as the negative of the mutual information between

source location and the sensors to be selected and then we select Ψi(ν) as the trace of

the PCRLB matrix. Before describing the sensor selection methods in detail, we first

discuss the relationship between mutual information and Fisher information briefly in

the following subsection.

The relationship between mutual information and Fisher Information

The relationship between mutual information and Fisher information was investigated

in [92]. For ease of presentation, in this subsection we review this analysis for a scalar

parameter θ. The details of the analysis for vector-valued parameter is straightforward

and can be found in [92].

Let I(θ,D) represent the mutual information between the observations D and

state θ and suppose there exists an unbiased estimator θ̂ with mean θ and variance

1
J(θ)

. The amount of information gained about θ in the computation of θ̂ is,

I(θ, θ̂) = H(θ̂)−H(θ̂|θ) (3.23)

where H(θ̂) is the entropy of the estimator. Since the MMSE estimator is asymptotically

efficient and unbiased [93], for each θ, the latter term is smaller than the entropy of a

Gaussian distribution with the same variance 1
J(θ)

. This implies,

I(θ, θ̂) ≥ H(θ̂)−
∫

1

2
ln

(
2πe

J(θ)

)
p(θ)dθ (3.24)

where p(θ) is the prior probability of θ. Since processing can not increase the informa-

tion, I(θ,D) ≥ I(θ, θ̂). In the limit, according to [92], the distribution of the estimator

is sharply peaked around its mean value and the entropy of the estimator becomes

identical to the entropy of the state (H(θ̂) ≈ H(θ)). Then (3.24) becomes,
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I(θ,D) ≥ H(θ)−
∫

1

2
ln

(
2πe

J(θ)

)
p(θ)dθ (3.25)

which shows that asymptotically the lower bound of the mutual information is a function

of the Fisher information.

Mutual information based sensor selection

An entropy based sensor selection method using particle filters was presented in [81]

where sensor data are assumed to be analog. In this chapter, we extend the approach

presented in [81] to deal with quantized sensor data. Let pi(θ) be the prior pdf of the

source location as defined in (3.16). Besides the prior pdf of the source location, we also

need to know the locations of non-anchor sensors and the sensing models of candidate

sensors p(D
(ν,i)
A |θ). Now, for iteration i, the objective is to find the optimal sensor

activation scheme ν∗ which activates A sensors out of N −K− (i−1)A remaining non-

anchor sensors whose data minimize the expected conditional entropy of the posterior

source location distribution,

ν∗ = arg min
ν

H(θ|D(ν,i)
A ) (3.26)

Let I(θ,D
(ν,i)
A ) = H(θ) − H(θ|D(ν,i)

A ) be the mutual information between the

source location θ and the measurements of the activated sensors according to the acti-

vation scheme ν. The sensor selection problem now turns into,

ν∗ = arg max
ν

I(θ,D
(ν,i)
A ) (3.27)

I(θ,D
(ν,i)
A ) can also be expanded as,

I(θ,D
(ν,i)
A ) = H(D

(ν,i)
A )−H(D

(ν,i)
A |θ) (3.28)

To compute (3.28) using Monte Carlo approximation, we start with writing the entropy
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of D
(ν,i)
A ,

H(D
(ν,i)
A ) = −

∑
p(D

(ν,i)
A ) log p(D

(ν,i)
A ) (3.29)

p(D
(ν,i)
A ) can be decomposed as,

p(D
(ν,i)
A ) =

∫

θ

(
A∏

k=1

p(Dν,i
k |θ)

)
pi(θ)dθ (3.30)

where pi(θ) is the prior pdf of the source location and p(Dν,i
1 |θ), p(Dν,i

2 |θ), ..., p(Dν,i
A |θ)

are the likelihood functions. Using (3.16) and (3.17) in (3.30) results in,

p(D
(ν,i)
A ) =

∫

θ

(
A∏

k=1

p(Dν,i
k |θ)

)(
Ns∑

m=1

wm,i−1δ(θ − θm,i−1)

)
dθ (3.31)

=
Ns∑

m=1

wm,i−1

(
A∏

k=1

p(Dν,i
k |θm,i−1)

)

Then using (3.31), H(D
(ν,i)
A ) defined in (3.29) is rewritten as follows,

H(D
(ν,i)
A ) = −

L−1∑

l1=0

...

L−1∑

lA=0

{
Ns∑

m=1

wm,i−1

(
A∏

k=1

p(Dν,i
k = lk|θm,i−1)

)}
(3.32)

× log

{
Ns∑

m=1

wm,i−1

(
A∏

k=1

p(Dν,i
k = lk|θm,i−1)

)}

Now let us compute the second term of (3.28). First we have,

H(D
(ν,i)
A |θ) = −

∫

θ

∑

l1,l2, ...lA

p(D
(ν,i)
A ,θ) log p(D

(ν,i)
A |θ)dθ (3.33)

. Since p(D
(ν,i)
A , θ) = p(D

(ν,i)
A |θ)pi(θ), we have

H(D
(ν,i)
A |θ) = −

L−1∑

l1=0

...

L−1∑

lA=0

(∫

θ

(
A∏

k=1

p(Dν,i
k = lk|θ)

)
pi(θ) (3.34)
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× log

(
A∏

k=1

p(Dν,i
k = lk|θ)

)
dθ

)

Then using the Monte Carlo approximation of the prior source location pdf, H(D
(ν,i)
A |θ)

becomes,

H(D
(ν,i)
A |θ) = −

A∑

k=1

L−1∑

l=0

[∫

θ

p(Dν,i
k = l|θ)

{
Ns∑

m=1

wm,i−1δ(θ − θm,i−1)

}
log(p(Dν,i

k = l|θ))dθ

]

(3.35)

= −
A∑

k=1

L−1∑

l=0

[
Ns∑

m=1

wm,i−1p(Dν,i
k = l|θm,i−1) log(p(Dν,i

k = l|θm,i−1))

]

Finally using (3.32) and (3.35), the mutual information function I(θ,D
(ν,i)
A ) expressed

in (3.28) is calculated as,

I(θ,D
(ν,i)
A ) = −

L−1∑

l1=0

...

L−1∑

lA=0

[{
Ns∑

m=1

wm,i−1

(
A∏

k=1

p(Dν,i
k = lk|θm,i−1)

)}
× (3.36)

log

{
Ns∑

m=1

wm,i−1

(
A∏

k=1

p(Dν,i
k = lk|θm,i−1)

)}]
+

[
A∑

k=1

L−1∑

l=0

{
Ns∑

m=1

wm,i−1p(Dν,i
k = l|θm,i−1) log(p(Dν,i

k = l|θm,i−1))

}]

The quantity −I(θ,D
(ν,i)
A ) is employed as Ψi(ν) for sensor selection in (3.22).

PCRLB based Sensor Selection

Let p(D,θ) be the joint probability density of the pair of (D,θ). Then, the PCRLB of

the estimation error has the form [13], [82],

E{[θ̂(D)− θ)][θ̂(D)− θ)]T} ≥ J−1 (3.37)

where J is the 2× 2 Fisher information matrix (FIM)

J = E[−∆θ
θ log p(D,θ)] (3.38)
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In (3.38), ∆θ
θ is the second derivative operator,

∆θ
θ , ∇θ∇T

θ (3.39)

where ∇θ is the gradient operator with respect to θ.

Using the equality p(D,θ) = p(D|θ)p0(θ), an alternative expression for the Fisher

information matrix can be written as,

J = E[−∆θ
θ log p(D|θ)] + E[−∆θ

θ log p0(θ)]

= Jd + Jp

(3.40)

In (3.40), Jp , E[−∆θ
θ log p0(θ)] represents the a priori information, and Jd , E[−∆θ

θ log p(D|θ)]

is the standard FIM given in (3.15) further averaged over the prior pdf of the source

location.

After initialization via the use of K anchor sensors, during each iteration the

fusion center requests data from A non-anchor sensors that minimize the PCRLB. At

iteration i, given available data Wi−1, the PCRLB of A non-anchor sensors is expressed

as,

E{(θ̂ − θ)(θ̂ − θ)T |Wi−1} ≥ F−1(D
(ν,i)
A |Wi−1) (3.41)

where Jc(ν) = F (D
(ν,i)
A |Wi−1) is the Fisher information matrix (FIM) of the random

variable θ contained in D
(ν,i)
A given available data Wi−1. Then Jc(ν) is expressed as,

Jc(ν) = F (D
(ν,i)
A |Wi−1) , E{

[
−∆θ

θ log p(θ,D
(ν,i)
A |Wi−1)

]
|Wi−1} (3.42)

= −
∫

θ

∑

l1,l2, ...,lA

[
∆θ

θ log p(θ,D
(ν,i)
A |Wi−1)

]
p(θ,D

(ν,i)
A |Wi−1)dθ

where we take expectation over all possible source locations θ and all quantized sensor

measurements {l1, l2, ..., lA}.
Using Bayesian decomposition, the joint probability density function p(θ,D

(ν,i)
A |Wi−1)

of source location θ and new quantized measurements D
(ν,i)
A is written as,
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p(θ,D
(ν,i)
A |Wi−1) = p(D

(ν,i)
A |θ)p(θ|Wi−1) (3.43)

where the identity p(D
(ν,i)
A |Wi−1,θ) = p(D

(ν,i)
A |θ) has been used. Using the above

decomposition, (3.42) can be written as,

Jc(ν) = −
∫

θ

∑

l1,l2, ...,lA

∆θ
θ log

{
p(D

(ν,i)
A |θ)p(θ|Wi−1)

}
p(D

(ν,i)
A |θ)p(θ|Wi−1)dθ (3.44)

which can be decomposed as,

Jc(ν) = −
[∫

θ

∑

l1,l2, ...,lA

{
∆θ

θ log p(D
(ν,i)
A |θ)

}
p(D

(ν,i)
A |θ)p(θ|Wi−1)dθ (3.45)

+

∫

θ

{
∆θ

θ log p(θ|Wi−1)
}

p(θ|Wi−1)

{ ∑

l1,l2, ...,lA

p(D
(ν,i)
A |θ)

}
dθ

]

Since p(D
(ν,i)
A |θ) =

∏A
k=1 p(Dν,i

k |θ) and
∑

l1,l2, ...,lA
p(D

(ν,i)
A |θ) = 1, (3.45) becomes,

Jc(ν) =

−
[∫

θ

L−1∑

l1=0

...

L−1∑

lA=0

({
A∑

k=1

∆θ
θ log p(Dν,i

k = lk|θ)

}
A∏

k=1

p(Dν,i
k |θ)

)
p(θ|Wi−1)dθ (3.46)

+

∫

θ

∆θ
θ log{p(θ|Wi−1)}p(θ|Wi−1)dθ

]

Finally (4.42) reduces to,

Jc(ν) = −
{∫

θ

A∑

k=1

L−1∑

l=0

{[∆θ
θ log p(Dν,i

k = l|θ)]p(Dν,i
k = l|θ)}p(θ|Wi−1)dθ (3.47)

+

∫

θ

[
∆θ

θ log p(θ|Wi−1)
]
p(θ|Wi−1)dθ

}

Note that the result of the double summation term,
∑A

k=1

∑L−1
l=0

[
∆θ

θ log p(Dν,i
k = l|θ)

]
p(Dν,i

k =
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l|θ) has been derived in [44] provided by (3.15). For the first term of (3.47), we use

(3.16) and (3.17) to approximate p(θ|Wi−1). The second term requires the second

derivative of p(θ|Wi−1). Since p(θ|Wi−1) has a non-parametric representation by a set

of random samples with associated weights, it is very difficult to express the exact form

of its second order derivatives. We propose two alternative methods to compute the

FIM of the prior as follows:

Numerical Computation for the FIM of the prior pdf

Let us define,

Γi ,
∫

θ

[
∆θ

θ log p(θ|Wi−1)
]
p(θ|Wi−1)dθ (3.48)

We can calculate the (1, 1) element of Γi first.

Γi(1, 1) = −
∫

x

∫

y

1

p(θ|Wi−1)

(
∂p(θ|Wi−1)

∂x

)2

dydx

Let A2 be the area of the region of interest (ROI). We partition the ROI into G

equal size cells where the area of each cell is δ2 = A 2/G and δ is the distance between

the centers of each neighboring cell.

Let p(θ ∈ {c, q}|Wi−1) be the probability of a particular cell specified by the cell

indices c and q, then

p(θ ∈ {c, q}|Wi−1) =

p
{
xm,i ∈ [cδ, (c + 1)δ]&ym,i ∈ [qδ, (q + 1)δ]

}

where

c ∈ {0, 1, ...,
√

G− 1}, q ∈ {0, 1, ...,
√

G− 1}

Denote Vc,q as the total number of particles inside the cell specified by c and q

where each particle has the weight wc,q
v . Then,

p(θ ∈ {c, q}|Wi−1) =

Vc,q∑
v=1

wc,q
v (3.49)
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Then Γi(1, 1) can be approximated as follows,

Γi(1, 1) ≈ −
√

G−1∑
c=0

√
G−1∑
q=0

1

p(θ ∈ {c, q}|Wi−1)
(3.50)

(
p(θ ∈ {c + 1, q}|Wi−1)− p(θ ∈ {c, q}|Wi−1)

δ

)2

δ2

Using the above procedure Γi(1, 2), Γi(2, 1) and Γi(2, 2) can be computed simi-

larly. Note that calculation of Γi is independent of the number of sensors to be selected

(A).

Using the approximations presented in (3.17) and the numerical approximation

for the FIM of the prior pdf (3.50), (3.47) is rewritten as follows,

Jc(ν) = −
[{

Ns∑
m=1

wm,i−1

A∑

k=1

L−1∑

l=0

[∆θ
θ log p(Dν,i

k = l|θm,i−1)]p(Dν,i
k = l|θm,i−1)

}
− Γi

]

(3.51)

Gaussian approximation for the FIM of the prior pdf:

The posterior pdf represented with the particles and their associated weights can

be also approximated as a Gaussian distribution as,

log p(θ|Wi−1) ≈ −1
2
(θ − µi)

TΣ−1
i (θ − µi)

∇θ
θ log p(Wi−1|θ) ≈ −Σ−1

i

(3.52)

where

µi =
Ns∑

m=1

wm,iθm,0 (3.53)

Σi =
Ns∑

m=1

wm,i(θm,0 − µi)(θ
m,0 − µi)

T

Using the approximations presented in (3.17) and the Gaussian approximation of the
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prior pdf (3.52), (3.47) is rewritten as follows,

Jc(ν) = −
[{

Ns∑
m=1

wm,i−1

A∑

k=1

L−1∑

l=0

[∆θ
θ log p(Dν,i

k = l|θm,i−1)]p(Dν,i
k = l|θm,i−1)

}
−Σ−1

i

]

(3.54)

The result of the two inner summations in the first term of (3.51) and (3.54) is

basically the FIM defined in (3.14) which is then averaged over the prior distribution

of the source location represented by the particles. For the activation strategy ν, we

calculate its corresponding FIM Jc(ν) as defined in (3.51). The fusion center then

decides on the optimal sensor activation strategy ν∗ that minimizes the trace of J−1
c (ν)

which is the PCRLB corresponding to the summation of the MSE of the estimates of

x and y.

Note that the mutual information function defined in (3.36) requires Ns × LA +

A × L × Ns summations. In comparison, the FIM function defined in (3.51) requires

A × L × Ns summations. In other words, since (3.36) requires an A-fold summation,

the computational complexity of the mutual information based sensor selection scheme

increases exponentially with A while the computational complexity of PCRLB based

sensor selection scheme increases linearly with A.

Nearest Sensor Selection

For performance comparison, we also consider selecting the A nearest sensors to the

estimated source location θ̂. Let xν,i
A = [xν,i

1 , xν,i
2 , ..., xν,i

A ]T and yν,i
A = [yν,i

1 , yν,i
2 , ..., yν,i

A ]T

represent the coordinates of the νth sensor set to be activated
(
sν,i
A

)
at iteration i. The

fusion center activates A non-anchor set according to ν∗ which minimizes,

ν∗ = arg min
sν,i
A

(
A∑

k=1

√
(θ̂x − xν,i

k )2 + (θ̂y − yν,i
k )2

)
(3.55)

where θ̂x and θ̂y are the coordinates of the estimated source location θ̂.
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3.3 Sensor Data Compression

In this section, distributed source coding techniques are discussed which use the poste-

rior pdf of the source location to further compress the data transmitted by the activated

sensors. Let sν∗,i
k , (k ∈ {1, 2, .., A}) be a non-anchor sensor which is activated according

to the sensor selection strategy ν∗ at iteration i. Using the Monte Carlo approximation

of the posterior pdf of the source location, probability of receiving a certain data l from

sν∗,i
k is p(Dν∗,i

k = l) and expressed as,

p(Dν∗,i
k = l) =

∫
θ
p(Dν∗,i

k = l, θ)dθ

=
∫

θ
p(Dν∗,i

k = l|θ)pi(θ)dθ

=
∑Ns

m=1 wm,i−1p(Dν∗,i
k = l|θm,i−1)

(3.56)

Let H(Dν∗,i
k ) [94] be the conditional entropy of a non-anchor sensor Dν∗,i

k which is

defined as,

H(Dν∗,i
k ) = −

L−1∑

l=0

p
(
Dν∗,i

k = l
)

log2 p
(
Dν∗,i

k = l
)

(3.57)

The fusion center requests the M -bit data of each non-anchor sensor to be activated in

Bk bits which has to satisfy,

Bk > H(Dν∗,i
k ) k ∈ {1, 2, ..., A}. (3.58)

As an example, in Fig. 3.4, we present the conditional entropies of N −K = 345

non-anchor sensors for the first iteration given the decisions of K = 16 anchor sensors

as depicted in Fig. 3.2 and the source is located at [75m.75m.]. Simulation results

show that the sensors close to the actual source location have high entropies. As the

sensor distance from the source location increases, quantized observations of the sensors

tend to zero and no matter what the side information is, conditional entropy of such a

sensor decreases and goes to zero. Note that for the M = 6 bit case, the asymptotic

entropy of each non-anchor sensor far away from the source is around 1 due to the noise

fluctuations. This means that only a small subset of the sensors contain information of

the source location.
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Figure 3.4: Conditional Entropy of non-anchor sensors in the field given the multi-bit
decisions of the anchor sensors at the beginning of the first iteration. (a) M = 5 bit,
(b) M = 6 bit

In this work, we select,

Bk = min
{(
dH(Dν∗,i

k )e+ 1
)

,M
}

(3.59)

where d.e is the round towards next integer operator or the ceiling function. Using an

approximate posterior pdf for the source location makes the conditional entropy of each

sensor defined in (3.57) also approximate. According to the structure of our iterative

method, any decoding error at a particular iteration may cause error propagation at

the subsequent iterations. Therefore, in order to ensure lossless data compression, we

include an extra guard bit to the approximated entropy of each sensor to be activated.

Let uk be the Bk-bit compressed sensor data which is obtained from its actual

M -bit sensor observation Dν∗,i
k according to [89] as,

uk = Dν∗,i
k mod 2Bk (3.60)

81



where we assume that uk is delivered to the fusion center without any error.

The fusion center generates the decision vector Lu which includes all the possible

multi-bit decisions l which yield uk as a remainder after the modulo 2Bk operation.

Lu =
[
l : ∀ l, uk = l mod 2Bk

]
(3.61)

Using the past information Wi−1 as side information, the multi-bit decision of each

sensor is recovered with a simple maximum a posteriori probability (MAP) rule,

l∗ = arg max
l∈Lu

p(Dν∗,i
k = l|Wi−1) (3.62)

where p(Dν∗,i
k = l|Wi−1) is calculated according to (3.56). As an example, suppose that

M = 4 and L = 24. Let the quantized data of an activated sensor be Dk = 12. If the

quantized data of the activated sensor is requested in Bk = 3 bits, then uk = 12 mod 23.

Fusion center receives uk = 4, finds out that Lu = {4, 12} and computes the following

probabilities, p(Dk = 4|Wi−1) and p(Dk = 12|Wi−1) according to (3.56). The fusion

center then picks either 4 or 12, depending on which has the largest probability.

After recovering the decision of each activated sensor, Dν∗,i
k = l∗, at iteration i,

the fusion center updates the new posterior pdf p(θ|Wi) using the procedure described

in Section 3.2.

3.4 Simulation Results

In this section, we first study the detection performance for different anchor sensor lay-

outs. We compare the computational cost of the two sensor selection schemes presented,

then we give some illustrative examples to show their source location estimation perfor-

mances. Trade-off between estimation performance and communication cost is finally

studied.
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3.4.1 Source Detection Performance

In our examples, we consider the source energy and signal decay exponent as P0 = 25000

and n = 2 respectively. The prior pdf of the source location p0(.) is assumed to be a

Gaussian with N (µ0,Σ0) where µ0 = [50 m. 50 m.]T and Σ0 =


 σ2

x,0 0

0 σ2
y,0


 where

3σx,0 = 3σy,0 = 50 m. and Jp = Σ−1
0 . The selection of K anchor sensors determine

the event detection performance. We assume the K anchor sensors are deployed in a

100 × 100m2 field in a grid layout as shown in Fig. 3.5 where the layout is specified

by the inter-sensor distance (ISD) and the distance of the nearest sensor to the mean

source location (D-NS-MSL). We fix the placement of the bottom-left sensor to the point

(0, 0) and consider 11 different layouts by varying the ISD. The ISD and D-NS-MSL

properties of each layout is shown in Table 3.1

Table 3.1: The sensor layouts to evaluate the detection performance.

Layout K ISD D-NS-MSL
(m.) (m.)

1 16 33.333 23.57
2 9 38.889 15.713
3 9 44.444 7.8567
4 9 50 0
5 4 55.556 7.8567
6 4 61.111 15.713
7 4 66.667 23.57
8 4 72.222 31. 427
9 4 77.778 39.284
10 4 83.333 47.14
11 4 88.889 54.997

We assume that the two hypotheses H0 and H1 are equally likely, that is P0 =

P1 = 0.5. Then the decision threshold at the fusion center becomes log P0/P1 = 0. For

1000 different trials under H1, Fig. 3.6 shows the detection performance corresponding

to the anchor sensor layouts presented in Table 3.1.

Notice that in layout 4, one sensor is placed exactly at the mean source location,

so for M ≥ 4 the source is detected with PD ≈ 1. Layout 3 and layout 5 also contain a
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Figure 3.5: Grid Sensor Layout specified by inter-sensor distance (ISD) and distance
of the nearest sensor to the mean source location (D-NS-MSL). (Black points: Sensors,
Red Star: Source)

sensor that is very close to the mean source location (≈ 7m.), so the source is detected

with very high probability of detection. Decreasing M , reduces the information gathered

from the network, so for a given layout, the detection performance decreases gradually.

For the layouts between 7 and 11, the ISD, hence the D-NS-MSL increases. So for

K = 4 with ISD greater than 66.667 meters, due to the isotropic signal emission model

none of the sensors hear from the source, and the detection performance gets worse.

Similarly, for M = 3 and M = 4, the detection performance of layout 1 and 2 are

worse than that of layout 3 and 4 since anchor sensors are far away from the mean

source location. On the other hand, for layouts 1 and 2, as M increases, several sensors

in the region become informative due to the increased number of quantization levels.
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Figure 3.6: Detection performance of anchor sensor layouts

Therefore, the source is detected with PD ≈ 1.

In our simulations, we also computed PF . After averaging over 1000 trials, we

obtain PF ≈ 0 for all 11 layouts.

3.4.2 Computational Cost

In this subsection, we compare the computation time of two sensor selection schemes.

The mutual information based sensor selection method uses (3.36) to evaluate the

mutual information between the source location and the sensor measurements. The

PCRLB based sensor selection method uses (3.51) and calculates the trace of the

PCRLB maxtrix. We use MATLAB’s cputime function to calculate the computa-

tion times of functions (3.36) and (3.51). Table 3.2 and Fig. 3.7 show the average

computation times of the two methods. The results are averaged over 100 different

executions of each function. The CPU times are obtained on a computer with 2.1 GHz

processor.

For A = 1, (3.36) is much simpler than (3.51) so (3.36) is computed faster than

(3.51). On the other hand, for A ≥ 2, the computational complexity of MI increases
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Table 3.2: Mean CPU times of MI and PCRLB

PCRLB MI
A = 1 0.26 s. 0.17 s.
A = 2 0.51 s. 9.49 s.
A = 3 0.75 s. 371.79 s.
A = 4 1.00 s. 15544.00 s.
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Figure 3.7: Mean computation times of objective functions

exponentially with LA while the computation time of PCRLB increases linearly with

A as L×A. Note that for the ith iteration of the algorithm, the selection of A optimal

sensors has a search set of size C
N−K−(i−1)A
A which is the same for the two sensor

selection schemes. In a dense network, activating a large number of sensors may result

in a large search space and it may take a long time to find the optimal sensor selection

strategy.

3.4.3 Iterative Location Estimation Performance

In this section, N = 19 × 19 = 361 sensors are deployed in a 100 × 100m2 field and

the sensors are deployed in a grid where the location of each sensor is assumed to be
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known. We initialize the iterative algorithm with K = 4 × 4 = 16 anchor sensors

deployed in a grid layout where the distance between two-anchor sensor is 33.5m as

shown in Fig. 3.2. We select Ns = 10000 particles and the particles θm,i are also drawn

from N (µ0,Σ0) where wm,0 = 1/Ns. The mean squared error (MSE) matrix of the

estimation is calculated as follows,

MSE =
1

Z

Z∑
z=1

(θ̂z − θz)(θ̂z − θz)
T (3.63)

We tested our algorithm over Z = 100 different source locations θz drawn from the

prior distribution N (µ0,Σ0).

Calculation of the FIM of the prior

In Fig. 3.8, we present Γ(1, 1) and Γ(2, 2) according to (3.50) as a function of δ which

is the distance between the centers of each neighboring cell as defined in (3.50). While

computing (3.51), the numerical approximation of the FIM of the prior should not

manipulate the overall metric. Thus, we require a stable region of δ where Γ needs

to be obtained consistently. Fig. 3.8 shows that delta is stable within the interval

δ ∈ {0.5, 2}. Thus, in our experiments we select δ = 1.

We employ two approaches to compute the FIM of the prior, namely by using

numerical computation and the Gaussian approximation. The Gaussian approximation

is computationally simpler. In Fig. 3.9, we present the MSE performance of PCRLB

based sensor selection using both methods for different values of M . For M = 3, the

numerical computation of
∫

θ

[
∆θ

θ log p(θ|Wi−1)
]
p(θ|Wi−1)dθ performs better than the

Gaussian approximation. Simulation results show that, for M = 4 and M = 5 cases

both schemes give similar MSE performance at each iteration of the algorithm.

Estimation Performance

In Fig. 3.10, we present the mean squared error (MSE) of the estimation using MI and

PCRLB based sensor selection methods without data compression at each activated

sensor. The experimental MSE obtained above is also compared with the PCRLB
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Figure 3.8: Γ(1, 1) and Γ(2, 2) at the first iteration as a function of δ (
√

G = 100,
M = 5).

found when all the N = 361 sensors send their M -bit quantized data to the fusion

center as defined in (3.40) and an iterative method which selects A non-anchor sensors

nearest to the estimated source location as defined in (3.55). In our simulations, we

activate A = 1 sensor at a time after the initialization via anchor sensors. Simulation

results show that, when M = 3, the MI and PCRLB based sensor selection schemes are

the optimal sensor selection scheme and outperform the nearest sensor selection scheme

in terms of MSE. For M = 4, PCRLB and MI based sensor selection are slightly better

than nearest sensor selection. As M further increases, measurements of each activated

sensor become more informative and the nearest, MI and PCRLB based sensor selection

schemes achieve similar performance. For M = 5 and M = 6, the MSE gets close to the

PCRLB of N sensor data in about 5 iterations by activating only the most informative

sensor about the source location during each iteration. Therefore, instead of using

N = 361 sensors, 21 sensors are enough to achieve a performance close to that when all

the N = 361 sensors send their data to the fusion center. Moreover, increasing A = 1

to A = 2 decreases the MSE of each iteration since we have more sensor data. In Figure
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3.11(a), we present the MSE of estimation using MI and PCRLB based sensor selection

methods. The experimental MSE is also compared with the PCRLB found when all

N = 361 sensors send their M = 5-bit quantized data to the fusion center. The PCRLB

and MI-based sensor selection gives similar MSE performance for A = 1 and A = 2.

Furthermore, as shown in Fig. 3.11(b), for the A = 2 and A = 3 cases, simulation

results show that the MSE gets close to the PCRLB computed with all sensor data

more quickly in about 3 and 2 iterations respectively.

Data Compression Performance

In Table 3.3, we compare the MSE at the end of the 9th iteration obtained by using lo-

cation estimator based on compressed data to that based on data without compression.

Source localization with compressed data achieves almost the same performance as that

without data compression, which implies that the compressed sensor measurements are

decoded almost perfectly at each iteration. For performance evaluation, we define two

metrics: Compression Gain (CGM(i)) is the ratio between the average number of bits

saved and the fixed number of bits M for iteration i,

CGM(i) = 1− B̄k(i)

M
(3.64)

where B̄k(i) is the average number of bits transmitted to the fusion center at the ith

iteration. The overall compression gain (OCGM) is then defined as the average total

number of bits saved by the proposed compression scheme and the fixed number of M

bits until the end of the 9th iteration.

OCGM = 1−
∑9

i=1 B̄k(i)

9M
(3.65)

Results presented in Table 3.4 show that, for M > 4, about 40% of the bits are

saved by compression. At the beginning of the algorithm, there is a relatively large

uncertainty about the source location so the measurements of the sensors selected at

the beginning of the algorithm are transmitted to the fusion center in almost M -bits so

that is why CG is small during the first few iterations. For the particular case illustrated
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in Fig. 3.10 after the 3rd iteration, the MSE of the algorithm decreases rapidly which is

the time when most of the informative sensors about the source location are selected.

Then there is no need to send full M -bit information to the fusion center. As the

fusion center learns more about the source location and the most informative sensors

are selected, the uncertainty regarding source location gets smaller, and the conditional

entropy defined in (3.57) becomes very small. After the most informative sensors have

been selected, the CG increases to around 50% for M > 3.

Table 3.3: Final MSE at the end of the 9th iteration. A = 1, PCRLB based sensor
selection.

M = 3 M = 3 M = 4 M = 4
x axis y axis x axis y axis

No Data Compression 0.3888 0.2993 0.0495 0.0427
Data Compression 0.3369 0.1775 0.0500 0.0520

PCRLB of N sensor data 0.0381 0.0396 0.0183 0.0182
M = 5 M = 5 M = 6 M = 6
x axis y axis x axis y axis

No Data Compression 0.0270 0.0296 0.0155 0.0145
Data Compression 0.0314 0.0259 0.0117 0.0169

PCRLB of N sensor data 0.0089 0.0091 0.0048 0.0048

Table 3.4: A = 1, Average number of bits used to represent the M = 3, M = 4, M = 5
and M = 6 bit sensor data.

Iteration M = 3 CG3 M = 4 CG4 M = 5 CG5 M = 6 CG6

1 3.0000 0 3.9700 0.0075 4.5000 0.1000 5.8673 0.0221
2 2.9900 0.0033 3.9800 0.0050 4.9000 0.0200 5.8469 0.0255
3 2.8600 0.0467 3.5800 0.1050 4.1600 0.1680 4.2653 0.2891
4 2.5300 0.1567 2.7600 0.3100 2.9700 0.4060 3.2245 0.4626
5 2.2200 0.2600 2.2700 0.4325 2.2900 0.5420 2.9694 0.5051
6 2.1000 0.3000 2.0500 0.4875 2.0900 0.5820 2.9184 0.5136
7 2.0500 0.3167 2.0100 0.4975 2.0200 0.5960 2.9388 0.5102
8 2.0000 0.3333 2.0000 0.5000 2.0100 0.5980 2.8980 0.5170
9 2.0000 0.3333 2.0000 0.5000 2.0000 0.6000 2.8367 0.5272

OCG - 0.1944 - 0.3161 - 0.4013 - 0.3748
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3.4.4 The trade-off between estimation performance and communication

cost

In order to make the proposed iterative algorithm useful in practice, we introduce a

stopping criterion to terminate the iterations. Since the sensor placements are known

and the prior distribution of source location is available, the fusion center can compute

the PCRLB of the source location estimate. Let tr{MSE(N)} be the trace of the

MSE matrix when data from all the N sensors are assumed to be received and let

tr{MSE(K + iA)} be the MSE after data from K + iA sensors are received. Then

SM(i) is defined as the stopping metric at iteration i, that is, the iterative algorithm

terminates after the following criterion is met.

SM(i) =
tr{MSE(K + iA)} − tr{MSE(N)}

tr{MSE(N)} ≤ ε (3.66)

where ε is the desired accuracy.

Offline evaluation of stopping metric

The stopping metric (3.66) can be computed offline using the initial prior pdf (N (µ0,Σ0)).

It can be used by the fusion center to coarsely determine how many and which non-

anchor sensors should be selected to meet the stopping criterion in advance. Since

PCRLB is a lower bound on the MSE and the MSE gets very close to its PCRLB for

large sensor data, tr{MSE(N)} can be approximated by its PCRLB as tr{MSE(N)} ≈
tr{PCRLB(N)}. At each iteration, similarly we assume that tr{MSE(K + iA)} ≈
tr{PCRLB(K + iA)}. Given the prior distribution of the source location (N (µ0,Σ0)),

appropriate selection of the number and locations of sensors in the network, the number

and locations of the anchor sensors yield significant communication savings as compared

to one-shot location estimation. As shown in Fig. 3.12, SM(1) intersects the threshold

at about 9. Therefore, 9 sensors should be selected to meet the stopping criterion at

the first iteration.
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Online evaluation of stopping metric

We next evaluate the number of iterations and the communication cost by evaluating

the stopping metric (3.66) online. We select A non-anchor sensors at each iteration

based on the PCRLB-based sensor selection metric. SM(i) for the selected sensors at

iteration i is computed online using the iteratively refined prior pdf. To compute the

MSE of all sensor data, we use the approximation tr{MSE(N)} ≈ tr{PCRLB(N)}.
tr{MSE(K + iA)} is approximated using the iteratively refined prior as,

tr{MSE(K + iA)} ≈ tr {Σi}

where Σi is defined as,

Σi =
Ns∑

m=1

wm,i(θm,i − µi)(θ
m,i − µi)

T

and

µi =
Ns∑

m=1

wm,iθm,i

Fig. 3.13-(a) shows the average number of iterations that is required for the stopping

criterion (3.66) to be satisfied versus A. For A = 1 and M = 5, the algorithm termi-

nates in about 5 iterations which is consistent with Fig. 3.10 (c). According to offline

computation of SM(i), 9 sensors need to be selected in order for the MSE to get very

close to the PCRLB of N sensor data. Therefore, the offline computation of SM(i)

yields a loose estimate on the required number of iterations. The results presented in

Fig. 3.13-(b) show the average number of bits used by the sensors for transmission

until the end of the iterations by activating the non-anchor sensors based on iteratively

updated posterior pdf of the source location and using distributed source coding as dis-

cussed in Section 3.3. As A increases, the algorithm terminates much faster, at the cost

of increased total number of bits transmitted to the fusion center. As an example, for

M = 5 and A = 1, the algorithm terminates in about 5 iterations and on the average

20 bits are transmitted to the fusion center. For M = 5 and A = 2, the algorithm

converges in about 3-4 iterations and on the average 25 bits are transmitted to the fu-
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sion center. For M = 6, the fusion center has much more information about the source

location at each iteration as compared to the M = 5 case, so for the M = 6 case, the

algorithm terminates faster as compared to the M = 5 case. Note that when A is large

the fusion center has to select a large number of sensors using coarse information at

the first iteration. Together with the use of distributed source coding, A = 1 yields the

minimum number of bits transmitted to the fusion center until the end of the iterations.

3.5 Discussion

In this chapter, we have presented an iterative source localization method, where a

coarse source location estimate is first obtained through the use of anchor sensors. Then,

the posterior probability density function of the source location is approximated using

a Monte Carlo method. We have developed and compared two different sensor selection

schemes for static source localization. The first scheme iteratively activates those non

anchor-sensors which maximize the mutual information between source location and

the quantized sensor measurements. In the second sensor selection scheme, at each

iteration a number of non-anchor sensors are activated whose quantized data minimize

the PCRLB. Simulation results show that the MSE of the proposed iterative scheme

gets close to the PCRLB for the case when all the sensor data are used, within a few

iterations by selecting only the most informative sensors while significantly decreasing

the communication requirements.

Simulation results show that the MI and PCRLB based sensor selection schemes

achieve similar estimation performance and significantly outperform the selection of

sensors which are nearest to the estimated source location when M is small. PCRLB

based sensor selection is better in terms of computational complexity. It has been shown

that the computational complexity of MI based sensor selection increases exponentially

with the number of activated sensors per iteration; while the computational complexity

of PCRLB based sensor selection increases linearly with the number of activated sensors

per iteration.

The Monte Carlo-based posterior pdf of the source location is further used to

compress the data of each activated sensor using distributed source coding techniques.
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As the uncertainty about the source location decreases, the conditional entropy of each

activated sensor becomes small and their M -bit data can be compressed significantly.

In this chapter, we considered that multi-bit sensor measurements are perfectly

received at the fusion center. Next chapter will include channel fading and noise between

sensors and the fusion center.
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Figure 3.9: The MSE performance of the PCRLB based sensor selection. Comparison
of Numerical computation and Gaussian approximation for the FIM of the prior. (a)
M = 3, (b) M = 4, (c) M = 5
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Figure 3.10: MSE at each iteration sensor selection is based on MI, PCRLB and nearest
sensor to the estimated source location. (a) M = 3, (b) M = 4, (c) M = 5, (d) M = 6
bits quantization
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Figure 3.11: (a) MSE performance of MI and PCRLB based sensor selection schemes.
N = 361, K = 16, M = 5, A = 2; (b) M = 5 bit quantization of each sensor measure-
ment, MSE performance of source localization with PCRLB based sensor selection and
data compression. A = 1, A = 2 and A = 3 sensor activations / iteration.
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Figure 3.12: Stopping metric vs. the number of sensors to be selected. The black line
with triangle markers indicates the accuracy threshold. (i = 1, ε = 5)
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Figure 3.13: (a) Average number of iterations until the termination of the algorithm.
(b) Average number of bits transmitted to the fusion center until the termination of
the algorithm. (M = 5, M = 6, ε = 5, 100 different trials.)
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Chapter 4

Channel Aware Iterative Source

Localization

In the previous chapter, we have presented an iterative source localization method

under the perfect communication channels assumption. Instead of requesting multi-

bit decisions from all the sensors in the WSN, we first employed a small number of

anchor sensors to obtain a coarse location estimate. Then, a few non-anchor sensors

were activated at a time to refine the location estimate in an iterative manner. In this

chapter, we extend our method for the case where the channels between sensors and

the fusion center are subject to fading and noise. For the source localization problem, a

related work [95] considers imperfect channels but their analysis is only limited to 1-bit

transmission. In this work, we generalize the source location estimation approaches

both given in [95] and [44] and consider M -bit sensor data. Assuming phase coherent

reception, we consider channel impairments of two different types. In the first case,

we assume that complete channel knowledge (CCK) of all the sensors is available at

the fusion center in that the fusion center has the exact gain and phase information of

each sensor. In the second case, we assume that partial channel knowledge (PCK) is

available at the fusion center where only the statistics of the channel gain and phase

information are known at the fusion center.

We derive the Posterior Cramer-Rao lower bound (PCRLB) of the Bayesian es-

timate. For sensor selection, we extend the metrics based on mutual information and

PCRLB taking the channel effects into account. In the previous chapter, we have shown
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that the PCRLB-based sensor selection metric is better than the MI-based sensor se-

lection metric in terms of computational complexity which is still valid when imperfect

channels are considered. Simulation results show that under low channel SNR, MI-

based sensor selection gives higher priority to the sensors with large channel gain while

PCRLB-based sensor selection starts selecting the sensors which are close to the source

location. So the estimation performance of the MI-based sensor selection becomes bet-

ter than the PCRLB-based sensor selection.

The rest of the chapter is organized as follows. In Section 4.1, we provide our

system assumptions and derive the Cramér-Rao lower bound (CRLB) of the maximum

likelihood based source location estimate for M -bit sensor measurements transmitted

over fading channels. In Section 4.2, first we derive the PCRLB of the source location

estimator, we then describe the Bayesian estimate of the source location using a Monte

Carlo-based method. We then extend the mutual information based and PCRLB based

sensor selection methods under fading channels. In Section 4.3, we give some numerical

examples to illustrate the estimation performance and finally we devote Section 4.4 to

to discussion of the results.

4.1 System Model

4.1.1 WSN assumptions

In this chapter, we make the same assumptions as in Section 3.1. Each local decision

Dk is mapped to M bit binary sequence Bk as [6] ,

Bk = [bk,1, ..., bk,M ], (bk,j ∈ {0, 1})

and transmitted using B-PSK modulation as

Qk = [qk,1, ..., qk,M ]

where

qk,j = 2bk,j − 1 , j ∈ {1, 2, . . . ,M} k ∈ {1, 2, . . . , N}
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We consider a discrete-time flat fading channel with a stationary and ergodic

complex gain of hke
jφk between sensor k and the fusion center where hk is the gain

of the channel and φk is the phase of the channel. We assume that channel remains

constant during the transmission of Qk. The received symbols from sk have the form,

r̃k,j =
√

εb hk ejφk qk,j + ñk,j (4.1)

where εb is the bit energy and ñk,j is a zero-mean complex Gaussian noise with inde-

pendent real and imaginary parts having identical variance. Then ñk,j ∼ CN (0, 2σ2).

Let

Rk = [rk,1, rk,2, ..., rk,M ]

be the soft-decoding symbols received from sk after phase coherent reception [4]. Then

rk,j has the form,

rk,j =
√

εb hk qk,j + nk,j (4.2)

where nk,j ∼ N (0, σ2) is independent and identically distributed at each symbol.

In this chapter we assume two different cases for the channel. The first case

assumes complete channel knowledge (CCK) where both channel gain and phase in-

formation are available at the fusion center. The second case assumes partial channel

knowledge (PCK) where the phase information and the probability distribution of chan-

nel gain are known at the fusion center.

Given source location, the likelihood p(R|θ) becomes,

p(R|θ) =
N∏

k=1

p(Rk|θ) (4.3)

In the above equation,

p(Rk|θ) =
L−1∑

l=0

p(Rk|Dk = l)p(Dk = l|θ) (4.4)
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where

p(Rk|Dk = l) =
M∏

j=1

p(rk,j|qk,j)

p(Dk = l|θ) = Q

(
ηl − ak

σ

)
−Q

(
ηl+1 − ak

σ

)

The likelihood of the received symbols under CCK

Under independent channel noise assumption, the vector of symbols received from each

sensor is also independent. We first assume that complete channel knowledge is avail-

able at the receiver. Conditioning on channel gain hk, yields p(Rk|Dk = l, hk) =

p(Rk|Qk, hk) as,

p(Rk|Dk, hk) = (4.5)

1

(2π)M/2σM
exp

(
−

M∑
j=1

(
rk,j −√εbhkqk,j

)2

2σ2

)

The likelihood of the received symbols under PCK

We next incorporate imperfect channel statistics. Assuming a Rayleigh fading channel

with unit power (i.e.,E[h2
k] = 1 ), the pdf of hk is expressed as,

p(hk) = 2hk exp
(−h2

k

)
, hk > 0 (4.6)

and the distribution of p(rk,j|hk, qk,j) becomes,

p(rk,j|qk,j, hk) =
1√

2πσ2
exp

(
−(rk,j −√εb hk qk,j)

2

2σ2

)
(4.7)
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Now using (4.5), the likelihood of the received symbols at the fusion center is described

as,

p(Rk|Dk) =

∫

hk

p(Rk|Qk, hk)p(hk)dhk (4.8)

=

∫

hk

(
M∏

j=1

p(rk,j|hk, qk,j)

)
p(hk)dhk

=

∫ ∞

0

2hk exp (−h2
k)

(2π)M/2σM
exp

(
−

M∑
j=1

(rk,j −√εb hk qk,j)
2

2σ2

)
dhk

Taking average with respect to channel gain hk, we have Lemma 4.1.

Lemma 4.1 The conditional pdf of Rk, given local decision Dk is

p(Rk|Dk) =

2

(2π)M/2σM−2 (2σ2 + εb M)
exp

(
−

∑M
j=1 r2

k,j

2σ2

)
×

[
1 +

√
2πβ

(
M∑

j=1

rk,j qk,j

)

exp




β2
(∑M

j=1 rk,j qk,j

)2

2




Q

(
−β

(
M∑

j=1

rk,j qk,j

))]
(4.9)

where

β =

√
εb

σ
√

2σ2 + εb M

The detailed proof of Lemma 4.1 is presented in Appendix A.1. Note that Lemma 1

presented in [4] is a special case of (4.9) with M = 1.

4.1.2 CRLB of the source location estimate

Let θ̂(R) be an estimate of θ = [x y]T based on available data R. The maximum

likelihood estimate (MLE) of the source location θ̂
MLE

is the solution to the following
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optimization problem:

θ̂
MLE

= θ̂(R) = arg max
θ

log p(R|θ) (4.10)

For a constant but unknown θ, the Fisher information matrix (FIM) JCRLB(θ) can be

obtained as,

JCRLB(θ) = −E


 ∇x

x log p(R|θ) ∇y
x log p(R|θ)

∇x
y log p(R|θ) ∇y

y log p(R|θ)


 (4.11)

It can be shown that θ̂(R) is an unbiased estimator which satisfies the regularity

condition. Then,

E{[θ̂(R)− θ)][θ̂(R)− θ)]T} ≥ J−1
CRLB(θ) (4.12)

Due to the independence assumption given in (4.3),

JCRLB(θ) =
N∑

k=1

Jk(θ) (4.13)

Jk(θ) is the FIM of Rk and the expectation of the second-order derivative of

log p(Rk|θ) yields,

Jk(θ) = −E

[
∂2 log p(Rk|θ)

∂x2

]
= (4.14)

∫

Rk

1

p(Rk|θ)

(
∂p(Rk|θ)

∂x

)2

dRk

where
∂p(Rk|θ)

∂x
=

L−1∑

l=0

p(Rk|Dk = l)
∂p(Dk = l|θ)

∂x
(4.15)

and
∂p(Dk = l|θ)

∂x
=

nak(x− xk)

2
√

2σd2
k

[
e−

(ηl−ak)2

2σ2 − e−
(ηl+1−ak)2

2σ2

]
(4.16)

If CCK is available, p(Rk|Dk = l, hk) is calculated according to (4.5) otherwise
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p(Rk|Dk = l) is calculated according to (4.9). The other terms in (4.11) can be derived

in a similar manner.

4.2 Iterative Source Location Estimation under Channel Fading

4.2.1 PCRLB of the source location estimate

In this section, we assume that the source location θ follows a prior pdf p0(θ) which is

N (µ0,Σ0) where µ0 is the center of the ROI and Σ0 is the covariance matrix which is

very coarse so that its confidence region covers the whole ROI. Let p(R, θ) be the joint

probability density of the pair of (R,θ). Then, the PCRLB of the estimation error has

the form [13],

E{[θ̂(R)− θ)][θ̂(R)− θ)]T} ≥ J−1
PCRLB (4.17)

where J is the 2× 2 Fisher information matrix (FIM)

JPCRLB = −E


 ∇x

x log p(R, θ) ∇y
x log p(R,θ)

∇x
y log p(R, θ) ∇y

y log p(R, θ)


 (4.18)

Using the equality p(R,θ) = p(R|θ)p0(θ), the Fisher information matrix (FIM)

can be written as,

JPCRLB = E[−∇θ
θ log p(R|θ)] + E[−∇θ

θ log p0(θ)]

= Jd + Jp

(4.19)

In (4.19), Jp , E[−∇θ
θ log p0(θ)] = Σ−1

0 represents the a priori information, and Jd ,
E[−∇θ

θ log p(R|θ)] is the standard FIM which has been presented in (4.13) averaged

over the prior pdf of the source location as,

Jd = E[−∇θ
θ log p(R|θ)] =

∫

θ

JCRLB(θ)p0(θ)dθ (4.20)
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4.2.2 Source localization using a Sequential Monte-Carlo method

As presented in Chapter 3, at the beginning of the algorithm the fusion center gathers

M -bit information from each of K anchor sensors and at each subsequent iteration

of the algorithm, the fusion center gathers the M -bit data from additional A non-

anchor sensors. Let p(θ|Wi) be the posterior pdf of the source location given the

available data Wi = [R1, R2, ..., RK+iA] at iteration i (i ≥ 0). Instead of using

the importance sampling based method presented in the previous chapter, to speed up

the computations, we approximate p(θ|Wi) using a sequential importance sampling

Monte-Carlo method as follows.

p(θ|Wi) =
Ns∑

m=1

wm,iδ(θ − θm,0) (4.21)

where θm,0 represents a particle at iteration i, which are drawn from the prior distri-

bution p0(θ) with statistics N (µ0,Σ0) and wm,i represents the weight of a particle. Let

w̃m,i be the weight of particle θm,0. For the first iteration, w̃m,1 is obtained as,

w̃m,1 ∝
K∏

k=1

p(Ri|θm,0)wm,0 (4.22)

where
∏K

k=1 p(Ri|θm,0) is the likelihood of the K anchor sensor data at the end of the

first iteration. For the rest of the iterations (i > 1),

w̃m,i ∝
A∏

k=1

p(Ri|θm,0)w̃m.i−1 (4.23)

Note that
∏A

k=1 p(Ri|θm,0) is the likelihood of the A non-anchor sensors activated at

each iteration. For all the iterations, the particle weights are further normalized as,

wm,i =
w̃m,i

∑Ns

m=1 w̃m,i
(4.24)
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Then the Bayesian estimate (BE) of the source location is found from,

θ̂
BE

i =
Ns∑

m=1

wm,iθm,0 (4.25)

4.2.3 Mutual Information Based Sensor Selection under Channel Fading

Let R(i,A) =
{
R(i,A)

1 ,R(i,A)
2 , ...,R(i,A)

CN−K−iA
A

}
be the collection of all distinct A-element

subsets of N −K− iA remaining non-anchor sensors for the iteration i where CN−K−iA
A

is the combination operation.

Let R(i,ν)
A be the set of A non-anchor sensors to be activated at the ith itera-

tion according to the sensor selection strategy ν. Then, R(i,ν)
A =

{
Ri,ν

1 ,Ri,ν
2 , ...,Ri,ν

A

}

and Ri,ν
k (k ∈ {1, .., A}) are the received symbols from the kth activated non-anchor

sensor according to ν at iteration i. Then, Ri,ν
k = [ri,ν

k,1, ..., r
i,ν
k,M ]. Now, the objective

is to find the optimal sensor selection strategy ν∗ which activates the set R(i,A)
ν∗ =

{Ri,ν∗
1 , ...,Ri,ν∗

A } which activates A sensors out of N −K − iA remaining non-anchor

sensors whose data minimize the expected conditional entropy of the posterior source

location distribution as,

ν∗ = arg min
ν

H(θ|R(i,ν)
A ) (4.26)

Let I(θ,R(i,ν)
A ) = H(θ) − H(θ|R(i,ν)

A ) be the mutual information between the

source location θ and the measurements of the activated sensors according to the acti-

vation scheme ν. The sensor selection problem now turns into,

ν∗ = arg max
ν

I(θ,R(i,ν)
A ) (4.27)

I(θ,R(i,ν)
A ) can also be expanded as,

I(θ,R(i,ν)
A ) = H(R(i,ν)

A )−H(R(i,ν)
A |θ) (4.28)

110



To compute (4.28) using Monte-Carlo approximation, we start with writing the entropy

of R(i,ν)
A ,

H(R(i,ν)
A ) = −

∫
p(R(i,ν)

A ) log p(R(i,ν)
A ) (4.29)

where given source location θ, p(R(i,ν)
A ) can be decomposed as,

p(R(i,ν)
A ) =

∫

θ

p(Ri,ν
1 |θ) ...p(Ri,ν

A |θ)pi(θ)dθ (4.30)

Note that for iteration i, p(θ|Wi−1) serves as the prior pdf of the source location pi(θ).

Then pi(θ) = p(θ|Wi−1) which is obtained by the previously presented importance

sampling-based Monte Carlo method and p(Ri,ν
1 |θ), ..., p(Ri,ν

A |θ) are the likelihood

functions. Using (4.21), (4.30) becomes,

p(R(i,ν)
A ) =

Ns∑
m=1

wm,ip(Ri,ν
1 |θm,0) ...p(Ri,ν

A |θm,0) (4.31)

With (4.31), H(R(i,ν)
A ) defined in (4.29) is rewritten as follows,

H(R(i,ν)
A ) = (4.32)

−
∫

Ri,ν
1

...

∫

Ri,ν
A

{[
Ns∑

m=1

wm,i

A∏

k=1

p(Ri,ν
k |θm,0)

]

× log

[
Ns∑

m=1

wm,i

(
A∏

k=1

p(Ri,ν
k |θm,0)

)]}
dRi,ν

1 ...dRi,ν
A

Now let us compute the second term of (4.28). First we have,

H(R(i,ν)
A |θ) = (4.33)

−
∫

θ

∫

Ri,ν
1 ...Ri,ν

A

p(R(i,ν)
A , θ) log p(R(i,ν)

A |θ)

dRi,ν
1 ...dRi,ν

A dθ

Since p(R(i,ν)
A ,θ) = p(R(i,ν)

A |θ)pi(θ) and considering the Monte-Carlo approximation of
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the prior source location pdf (4.21), (4.33) is expressed as,

H(R(i,ν)
A |θ) = −

A∑

k=1

∫

Ri,ν
k

(4.34)

[
Ns∑

m=1

wm,ip(Ri,ν
k |θm,0) log(p(Ri,ν

k |θm,0))dRi,ν
k

]

Finally using (4.32) and (4.34), the mutual information function I(θ,R(i,ν)
A ) expressed

in (4.28) is calculated as follows.

MI-based sensor selection metric under CCK

Under perfect channel knowledge, MI-based sensor selection metric can be defined as,

I(R(i,ν)
A , θ) = (4.35)

−
∫

Ri,ν
1

...

∫

Ri,ν
A

[
Ns∑

m=1

wm,i

(
A∏

k=1

p(Ri,ν
k |hk,θ

m,0)

)]

log

[
Ns∑

m=1

wm,i

(
A∏

k=1

p(Ri,ν
k |hk,θ

m,0)

)]
dRi,ν

1 ...dRi,ν
A

+
A∑

k=1

∫

Ri,ν
k

[
Ns∑

m=1

wm,ip(Ri,ν
k |hk,θ

m,0)

log(p(Ri,ν
k |hk, θ

m,0))dRi,ν
k

]

MI-based sensor selection metric under PCK

Using fading statistics of the channel, MI-based sensor selection metric can be defined

as,
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I(R(i,ν)
A ,θ) = (4.36)

−
∫

Ri,ν
1

...

∫

Ri,ν
A

[
Ns∑

m=1

wm,i

(
A∏

k=1

p(Ri,ν
k |θm,0)

)]

log

[
Ns∑

m=1

wm,i

(
A∏

k=1

p(Ri,ν
k |θm,0)

)]
dRi,ν

1 ...dRi,ν
A

+
A∑

k=1

∫

Ri,ν
k

[
Ns∑

m=1

wm,ip(Ri,ν
k |θm,0)

log(p(Ri,ν
k |θm,0))dRi,ν

k

]

4.2.4 PCRLB Based Sensor Selection under Channel Fading

After initialization via the use of K anchor sensors, during each iteration the fusion

center requests data from A non-anchor sensors that minimize the PCRLB. At iteration

i, given available data Wi−1, the PCRLB of A non-anchor sensors is expressed as,

E{(θ̂ − θ)(θ̂ − θ)T |Wi−1} ≥ F−1(R(i,ν)
A |Wi−1) (4.37)

where Jc(ν) = F (D
(i,ν)
A |Wi−1) is the Fisher information matrix (FIM) of the random

variable θ contained in D
(i,ν)
A given available data Wi−1. Then Jc(ν) is expressed as,

Jc(ν) = F (R(i,ν)
A |Wi−1) (4.38)

, E
{[
−∇θ

θ log p(θ,R(i,ν)
A |Wi−1)

]
|Wi−1

}

= −
∫

θ

∫

Ri,ν
1 ...Ri,ν

A

[
∇θ

θ log p(θ,R(i,ν)
A |Wi−1)

]

p(θ,R(i,ν)
A |Wi−1)dR

i,ν
1 ...dRi,ν

A dθ

where we take expectation over all possible source locations θ and all vector of received

symbols from all activated sensors {Ri,ν
1 ,Ri,ν

2 , ...Ri,ν
A }.
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Using Bayesian decomposition, the joint probability density function p(θ,R(i,ν)
A |Wi−1)

of source location θ and new quantized measurements R(i,ν)
A is written as,

p(θ,R(i,ν)
A |Wi−1) = p(R(i,ν)

A |θ)p(θ|Wi−1) (4.39)

where the identity p(R(i,ν)
A |Wi−1, θ) = p(R(i,ν)

A |θ) has been used. Using the above

decomposition, (4.38) can be written as,

Jc(ν) = −
∫

θ

∫

Ri,ν
1 ...Ri,ν

A

∇θ
θ log

{
p(R(i,ν)

A |θ)p(θ|Wi−1)
}

p(R(i,ν)
A |θ)p(θ|Wi−1)dR

i,ν
1 ...dRi,ν

A dθ (4.40)

which can be decomposed as,

Jc(ν) = −
[∫

θ

∫

Ri,ν
1 ...Ri,ν

A

{
∇θ

θ log p(R(i,ν)
A |θ)

}

p(R(i,ν)
A |θ)p(θ|Wi−1)dR

i,ν
1 ...dRi,ν

A dθ

+

∫

θ

{∇θ
θ log p(θ|Wi−1)

}
p(θ|Wi−1)

{∫

Ri,ν
1 ...Ri,ν

A

p(R(i,ν)
A |θ)

}
dθ

]
(4.41)

Since p(R(i,ν)
A |θ) =

∏A
k=1 p(Ri,ν

k |θ) and
∫
Ri,ν

1 ...Ri,ν
A

p(R(i,ν)
A |θ) = 1, (4.41) becomes,

Jc(ν) = (4.42)

−
[

A∑

k=1

∫

θ

∫

Ri,ν
k

({
∇θ

θ log p(R
(i,ν)
k |θ)

} A∏

k=1

p(R
(i,ν)
k |θ)

)

p(θ|Wi−1)dR
i,ν
k dθ

+

∫

θ

∇θ
θ log{p(θ|Wi−1)}p(θ|Wi−1)dθ

]
(4.43)
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Finally (4.42) reduces to,

Jc(ν) = −
{

A∑

k=1

∫

θ

[ ∫

Ri,ν
k

[∇θ
θ log p(R

(i,ν)
k |θ)]

p(R
(i,ν)
k |θ)dRi,ν

k

]
p(θ|Wi−1)dθ

+

∫

θ

[∇θ
θ log p(θ|Wi−1)

]
p(θ|Wi−1)dθ

}
(4.44)

Note that the term in brackets
[
.
]
,

∫

Ri,ν
k

[∇θ
θ log p(R

(i,ν)
k |θ)]p(R

(i,ν)
k |θ)dRi,ν

k

is the standard FIM and has been derived in (4.14). For the first term of (4.44), we

use (4.21) to approximate p(θ|Wi−1). The second term

Ψi ,
∫

θ

[∇θ
θ log p(θ|Wi−1)

]
p(θ|Wi−1)dθ

can be computed using the approximations presented in Section 3.2.2.

PCRLB based sensor selection metric under CCK

Under perfect channel knowledge, PCRLB-based sensor selection metric can be defined

as,

Jc(ν) = −
{

A∑

k=1

Ns∑
m=1

wm,i

[ ∫

Ri,ν
k

[∇θ
θ log p(R

(i,ν)
k |hk,θ

m,0)]

p(R
(i,ν)
k |hk, θ

m,0)dRi,ν
k

]
+ Ψi

}
(4.45)

115



PCRLB Based Sensor Selection metric under PCK

Using channel fading statistics, PCRLB-based sensor selection metric can be defined

as,

Jc(ν) = −
{

A∑

k=1

Ns∑
m=1

wm,i

[ ∫

Ri,ν
k

[∇θ
θ log p(R

(i,ν)
k |θm,0)]

p(R
(i,ν)
k |θm,0)dRi,ν

k

]
+ Ψi

}
(4.46)

The fusion center gathers the soft-decoded M -bit sensor data from A non-anchor

sensors which collectively have the maximum mutual information with the source loca-

tion of maximum Fisher information. Once the selected sensors’ data are received at

the fusion center, the iterative source location algorithm continues with updating new

weights wm,i+1.

4.3 Simulation Results

In our examples, we consider the source energy and signal decay exponent as P0 = 2500

and n = 2 respectively. N sensors are deployed in a 20× 20m2 field in a grid topology

and we use M = 3 bits to quantize analog measurements. The decision thresholds

of each sensor η are selected according to the method described in [44]. We consider

two different scenarios which are the low channel signal-to-noise ratio (SNR) and high

channel SNR cases with εb = 1 and εb = 5 respectively. The mean squared error (MSE)

matrix of the estimation algorithm is calculated according to,

MSE =
1

Z

Z∑
z=1

(θ̂z − θz)(θ̂z − θz)
T (4.47)

The integrations with respect to Rk are performed by Monte Carlo integration [96].

The parameters of the prior probability distribution of the source location p0(.) are

assumed to be µ0 = [10 m. 10 m.]T and Σ0 =


 σ2

x,0 0

0 σ2
y,0


 is the covariance matrix
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which is very coarse so that its 99% confidence region covers the whole ROI.

4.3.1 Performance of the one-shot location estimator

In Fig. 4.1, we find the Bayesian estimate (BE) of the source location using all sensor

data where we tested our algorithm over Z = 1000 different source locations. We

plot the trace of the MSE matrix denoted as trace(MSE). We then compare the MSE

performance of the BE with its PCRLB bound. Under low SNR, the MSE performance

of PCK is near optimal as compared to the CCK case. As the bit energy increases,

the MSE performances of CCK and PCK cases are almost indistinguishable. Moreover

under high SNR and large number of sensors, the MSE performance of PCK case gets

very close to its PCRLB bound.

In Table 4.1 and Table 4.2, we compare the estimation performance of the one-

shot location estimator by varying M and N under PCK. N sensors are deployed in a

grid topology and each sensor decision is assumed to be received at the fusion center

under PCK. We calculate the estimation improvement under low channel SNR and

high channel SNR where εb = 1 and εb = 5 respectively. Simulation results show that

as N and M increase, the estimation performance improves. For the same number

of sensors, as M increases, the estimation improvement of εb = 5 is larger than the

estimation improvement of εb = 1. This is due to the fact that as εb increases, the

SNR of the channel increases, the destructive effects of the channel are suppressed and

sensor decisions become more informative about the source location.

Table 4.1: Estimation Improvement by increasing M , εb = 1

N Inter-sensor tr(MSE) tr(MSE) Improvement
distance (m) M = 1 M = 5 %

4 20 6.2861 5.5878 11.11
9 10 6.0088 4.1821 30.40
16 6.7 5.9362 2.0032 66.25
25 5 5.7104 1.1875 79.21
36 4 5.6142 0.5677 89.88
49 3.3 5.2849 0.3614 93.16
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Table 4.2: Estimation Improvement by increasing M , εb = 5

N Inter-sensor tr(MSE) tr(MSE) Improvement
distance (m) M = 1 M = 5 %

4 20 6.0291 5.1080 15.28
9 10 5.5504 2.3538 57.59
16 6.7 5.2218 0.5709 89.07
25 5 4.9000 0.2749 94.39
36 4 4.4020 0.1557 96.46
49 3.3 4.002 0.1061 97.35

4.3.2 Performance of the iterative location estimation

For the proposed iterative source localization algorithm, we employ N = 7 × 7 = 49

sensors deployed in a grid topology. The algorithm is initialized with K = 3 × 3 = 9

anchor sensors. The MSE of BE at each iteration is averaged over Z = 100 different

trials. In our simulations, we activate A = 1 sensor at a time after the initialization via

anchor sensors.

As shown in Fig. 4.2, for MI-based sensor selection and for low channel SNR,

CCK yields better performance than PCK as a result of using the complete channel

information. Increasing the bit energy yields similar estimation performance for both

CCK and PCK. For high channel SNR, iterative source localization converges to the

MSE of all sensor data in about 20 iterations that is when the sensors close to source

location have been selected. On the other hand, for low channel SNR, the sensors

become less informative, hence about 30 sensors need to be selected to achieve the

MSE of all sensor data. The mean channel gain and the mean distance to the source

location of sensors selected at each iteration are shown in Fig. 4.3. Under low channel

SNR, MI-based sensor selection activates the sensors with large channel gains where

the sensors are within a radius of 7 meters of the source location. As the channel SNR

increases, the channel gain becomes less important and sensors in a closer proximity of

the source location are selected.

For PCRLB based sensor selection, we first evaluate Ψi = Γi according to (3.50),

that is the numerical approach to calculate the FIM of the prior. Fig. 4.4 shows Γ1(1, 1)
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and Γ1(2, 2) as a function of δ. Under channel fading, simulation results show us it is

very hard to conclude a stable region for δ which yields consistent Γ values.

Instead, we set Ψi = Σ−1
i and approximate the posterior pdf with a Gaussian

distribution. In Figure 4.5, we compare MI and PCRLB based sensor selection for

source localization under CCK. Note that the MI-based sensor selection metric (4.35)

depends on p(Rk|θ) which further depends on channel gain hk and received signal

strength ak(dk) which is a function of the distance (dk) between sk and source location

(θ). On the other hand, the PCRLB-based sensor selection metric (4.45) depends not

only on p(Rk|θ) but also its first order derivative. As shown in (4.16), the first order

derivative of p(Rk|θ) not only depends on hk and ak(dk), but also depends directly

on d2
k. Since the PCRLB-based method, selects the sensors maximizing the Fisher

information, a sensor with large gain but having dk > 1 would not likely be selected

since its Fisher information is inversely related with d4
k.

According to Fig. 4.6. Under low SNR, MI-based sensor selection gives priority to

the sensors which have large channel gain where the sensors are selected within a radius

of 7 meters of the source location. PCRLB-based sensor selection gives priority to the

sensors which are close to the source location. For the first few iterations, the PCRLB-

based method selects the sensors within a radius of 2 − 3 meters around the source

location. Once the sensors close to the source location are selected, PCRLB-based

sensor selection then selects the sensors according to their channel gain. Simulation

results show that giving priority to the sensors with large channel gain yields better

MSE performance as compared to giving priority to the sensors close to the source

location. Therefore, the MSE performance of MI-based sensor selection is better than

PCRLB-based sensor selection. Also note that, we can compute the MI-based sensor

selection metric exactly. On the other hand, PCRLB-based sensor selection metric is

computed by using the approximation (3.52). Moreover, the PCRLB metric is a lower

bound on the MSE, due to the uncertainties (low SNR, channel fading), the MSE can

highly deviate from its PCRLB. Even though MI-based sensor selection yields better

estimation performance, it is computationally more expensive than the PCRLB-based

sensor selection scheme.
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4.4 Discussion

In this chapter, we have studied the iterative source localization problem where the

multi-bit data of sensors have been transmitted over fading channels. We have first

approximated the PCRLB of the Bayesian estimate of the source location using a

Monte Carlo method. We have shown that having partial channel knowledge provides

estimation performance very close to the case where complete channel information is

available. We have also shown that, for high SNR and large number of sensors, the

MSE gets very close to its PCRLB bound. For iterative source localization, we have

derived the MI and PCRLB based sensor selection schemes and have compared their

estimation performance. Simulation results show that under CCK, MI-based sensor

selection performs better than PCRLB-based sensor selection under low SNR since MI-

based sensor selection gives higher priority to the sensors with large channel gain. As

SNR increases, the PCK assumption yields a similar iterative estimation performance

as with the CCK assumption.

The performance of the PCRLB based sensor selection scheme can be further

improved in a future work. In order to ease the calculations, at each iteration, we have

assumed that the particle weights obey Gaussian distribution. Better models can be

developed to obtain the Fisher information of the prior distribution. Extension of our

methodology for a non-coherent reception employed at the fusion center for multi-bit

sensor data can also be addressed.
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Figure 4.1: Trace of the MSE matrix of N sensor data, (a) εb = 1, (b) εb = 5 (M = 3)
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Figure 4.2: MSE performance of the iterative scheme using MI-based sensor selection
(a) ec = 1 (b) ec = 5, (The dashed line is the trace of the MSE matrix of N = 49 sensor
data.)
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Figure 4.5: MSE performance of the iterative scheme using MI and PCRLB-based
sensor selection (a) εb = 1 (b) εb = 5, (The dashed line is the trace of the MSE matrix
of N = 49 sensor data.)
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Chapter 5

A Probabilistic Rate Transmission Scheme

for Distributed Estimation

In the previous chapters, we considered a homogenous WSN where the sensors experi-

ence independent and identically distributed observation noise and all the sensors send

the same amount of data to the fusion center. In this chapter, we consider a heteroge-

nous WSN where the sensors experience independent but not identical observation noise

and each sensor transmits data to the fusion center as a function of its observation SNR.

We consider a distributed parameter estimation problem in a WSN where the sensors

observe a common parameter θ and the fusion center estimates θ based on the quantized

data transmitted from the sensors. Note that the framework presented in this chapter is

suitable for other estimation problems such as the source localization problem discussed

in the previous chapter. Here, we consider a fully distributed estimation scheme where

the fusion center does not know the individual noise characteristics of each sensor and

can not employ a dynamic rate allocation scheme based on the instantaneous conditions

of each sensor as in [50], [56]. Different from [51], we assume that the dynamic range

of the parameter to be estimated is not bounded but the estimation parameter follows

a certain prior probability distribution function. As an example, a control system may

be responsible to fix the temperature of an indoor facility like an office, greenhouse or

a cold storage. The instantaneous temperature may be recorded in time and for in-

stance the indoor temperature may obey a pdf such as a Gaussian distribution around

the mean desired temperature. Using the statistics of the parameter, the WSN can be
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accordingly deployed and designed in a more intelligent way to perform its task.

In a heterogenous WSN where all the sensors employ different quantization data

rates, as we will show later in the chapter, the complexity to compute the average

PCRLB is high. Therefore, we first introduce the inverse of the average Fisher infor-

mation as a lower bound on the average PCRLB. We then assume that a sensor is able

to measure its observation signal-to-noise ratio and its quantized measurement is trans-

mitted at a data rate that maximizes the Fisher information per bit. In other words,

a sensor with a higher observation SNR, quantizes its observation with a higher data

rate. Recall from Chapter 4, the destructive effects of the channel can be suppressed by

increasing the transmission energy per bit. Then, the multi-bit sensor decisions become

more informative, which leads to a better estimation performance. In this chapter, we

assume sensors transmit their data in multi-bits and we neglect the channel impairments

in the estimation process. We assume that the data transmission between sensors and

the fusion center is error free, which can be provided by using suitable error correction

codes or sufficient transmit power at each sensor. At the same time, we consider that

the available bandwidth of the channel is limited, which means the channel can reliably

deliver at most B bits from sensors to the fusion center. If the constraint on available

bandwidth is stringent, the transmission of all sensor data to the fusion center may

result an outage. To alleviate this problem, a transmission probability is assigned to

each particular quantization data rate. In other words, a sensor whose observation is

quantized with rate Rk bits, sends its data to the fusion center with probability ρRk
.

Our problem is then to find the optimal transmission probabilities corresponding to

each particular quantization data rate so as to minimize the inverse of average Fisher

information subject to total bandwidth and bandwidth utilization constraints.

Given the bandwidth constraint, a simple way to perform distributed estimation

is to share the available bandwidth (B) equally among all the sensors in the network

(N). We refer to this scheme as Equal Rate Transmission (ERT). As an example using

time division multiple access (TDMA), ERT can be implemented in a Round-Robin

fashion where each sensor sends B/N bits to the fusion center. The Probabilistic Rate

Transmission (PRT) scheme can be implemented as follows. The fusion center may
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first send a beacon signal, where sensors synchronize with the fusion center and the

fusion center communicates the transmission probability of each quantization data rate

ρRk
to all the sensors. Then a sensor whose observation is quantized with rate Rk,

reports back to the fusion center with probability ρRk
and announcing that its data will

be transmitted with rate Rk bits. The sensors that report back to the fusion center

are then scheduled for data transmission at the fusion center. As an example, in a

TDMA manner, a sensor with Rk bit data may be assigned Rk time slots to deliver

its observation. Simulation results show that, PRT outperforms ERT significantly in

terms of MSE. The optimal transmission probabilities are assigned in such a way that

the sensors with higher observation SNR have priority to transmit their data, and the

resulting mean squared estimation error is quite close to the case where all the sensors

transmit at the maximum quantization data rate.

The rest of the chapter is organized as follows. In Section 5.1, we provide the WSN

assumptions and describe the rate decision to be made at each sensor. In Section 5.2,

we define the PCRLB of the estimate and describe the probabilistic rate transmission

scheme. In Section 5.3, we introduce the Bayesian parameter estimator of the received

sensor data and in Section 5.4, we present some numerical examples. Finally, we devote

Section 5.5 to concluding remarks and discussion on future applications.

5.1 Problem Formulation

The WSN is composed of N distributed sensors and a fusion center for estimating the

parameter θ. We assume that the parameter θ is a random variable which is generated

from a Gaussian distribution p0(θ) ∼ N (µθ, σ
2
θ). Each sensor sk receives zk which is a

noisy version of θ,

zk = θ + nk (5.1)

We consider a heterogeneous WSN where the noise of each sensor nk follows a Gaussian

distribution N (0, σ2
n,k). Further, we assume that each sensor’s noise variance τk , σ2

n,k
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follows a χ2-distribution with a = 1 degree of freedom as modeled in [50].

p(τk) =
(τk)

a
2
−1 e−(τk/2)

2a/2Γ (a/2)
(5.2)

where Γ(.) denotes the Gamma function. The observation signal-to-noise ratio (SNR)

of each sensor is defined as,

SNRk = 10 log10

E[θ2]

E[n2
k]

= 10 log10

(
µ2

θ + σ2
θ

τk

)
dB (5.3)

Let Dk be the Rk = j-bit (j ∈ {1, 2, ..,M}) quantized measurement of zk, M

be the maximum data rate at which a sensor can communicate with the fusion center,

and Lj = 2j be the number of quantization levels. The set of quantization thresholds

corresponding to rate Rk = j is represented as ηj = [ηj,0 ηj,1 . . . ηj,Lj
]T . Using ηj , we

obtain the quantized data Dk from the analog measurement zk according to,

Dk =





0 −∞ < zk < ηj,1

1 ηj,1 < zk < ηj,2

...

Lj − 1 ηj,Lj−1 < zk < ∞

(5.4)

where ηj,0 = −∞ and ηj,Lj
= ∞.

5.1.1 Data rate decision of each sensor

We consider a one-shot estimation problem. Let the vector of sensor data rates be

R = [R1 R2 ... RN ]T and the collected data from all the N sensors be D =

[D1 D2 . . . DN ]T . Given R, the PCRLB has the form,

E

{[
θ̂(D)− θ

] [
θ̂(D)− θ

]T
∣∣∣∣R

}
≥ J−1 (5.5)
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where J is the Fisher information (FI) defined as,

J = E
[−∇θ

θ log p(D, θ)
∣∣R]

(5.6)

=
N∑

k=1

E
[−∇θ

θ log p(Dk|θ, Rk)
]
+ E

[−∇θ
θ log p0(θ)

]

The first term in the second line of (5.6) is valid as long as τk are independent across

the sensors. The second term is the Fisher information of the Gaussian distribution

which is equal to,

E
[−∇θ

θ log p0(θ)
]

=
1

σ2
θ

Other prior pdf’s for the parameter to be estimated can be used. As an example, the

Fisher information of the Weibull distribution is shown in [97].

Let Jd,k(Rk = j) = E
[−∇θ

θ log p(Dk|θ, Rk = j)
]

be the standard FI of a single

sensor averaged over the prior distribution p0(θ) when Rk = j bits are used to commu-

nicate with the fusion center. Note that (5.6) is maximized by maximizing Jd,k(Rk = j).

Fig. 5.1 shows Jd,k(Rk = j) of a sensor as a function of j for various SNRk. We have

assumed that the sensors can measure SNRk and hence can determine τk. The optimal

quantization thresholds maximize Jd,k(Rk = j|τk) according to,

max
ηj

Jd,k(Rk = j|τk) (5.7)

subject to the constraint ηj,1(τk) ≤ . . . ≤ ηj,L−1(τk).

In Fig. 5.1, Jd,k(Rk = j|τk) increases with the data rate and finally converges to

the FI corresponding to the analog measurements. As an example, for SNRk = 0 dB

(or SNRk = 30dB), Rk = 3 (or Rk = 6) bits is sufficient to achieve the FI of the analog

measurement. Note that, assigning more than Rk = 3 (or Rk = 6) bits is unnecessary

because increasing Rk does not improve Jd,k significantly. Since a sensor knows its

SNRk, it is capable of calculating the Jd,k(Rk = j|τk) for different Rk = j. Then the

data rate Rk = j∗ bits is selected which has the maximum Fisher information per bit
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which is defined as,

j∗ = arg max
j

(
Jd,k(Rk = j|τk)

j

)
(5.8)

For different SNRk, (or τk), the optimal rate j∗ is presented in Fig. 5.2 by using the

criterion (5.8). Then, P (Rk = j) is the probability of each sensor deciding on quantizing

its data in Rk = j bits. P (Rk = j) is found from,

P (Rk = j) = Fχ2(ζM−j+1)− Fχ2(ζM−j) (5.9)

where Fχ2(.) is the cumulative distribution function of the χ2 random variable with one

degree of freedom. The vector of noise variance thresholds ζ = [ζ0 ζ1 . . . ζM ] is used

by the sensors to choose an appropriate communication rate. Each element of ζ corre-

sponds to the noise variance where the optimal transmission rate changes by one in Fig.

5.2. For this example, using M = 6, ζ is obtained as ζ = [0, 0.06, 0.13, 0.38, 1.07, 2.95,∞]

. As an example, if τk falls between 0.06 and 0.13, a sensor measurement is quantized

with data rate Rk = 5 bits.
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5.1.2 Determination of the quantization thresholds

The quantization thresholds corresponding to each data rate optimized based on τk

can not be obtained in practice, since we assume that τk’s are not known at the fusion

center. Instead, we assume that the vector of noise variance thresholds ζ are known

both at the sensors and the fusion center. We first find the mean noise variance (τ̄j) of

the interval [ζM−j, ζM−j+1] where Rk = j,

τ̄j =

∫ ζM−j+1

ζM−j

τkp(τk|Rk = j)dτk (5.10)

where

p(τk|Rk = j) = (5.11)



p(τk)/P (Rk = j) ζM−j ≤ τk < ζM−j+1

0 otherwise
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For τk ∈ [ζM−j, ζM−j+1], we approximate Jd,k(Rk = j|τk) by Jd,k(Rk = j|τ̄j). Then, we

obtain the set of optimal quantization thresholds ηj
∗ for data rate Rk = j based on τ̄j.

Then, the objective function presented in (5.7) is replaced with,

ηj
∗ = arg max

ηj

Jd,k(Rk = j|τ̄j) (5.12)

subject to the constraint ηj,1(τ̄j) ≤ . . . ≤ ηj,L−1(τ̄j). In summary, after ζ is determined,

the sensors and the fusion center employ the decision thresholds ηj
∗ for rate Rk = j.

5.2 Probabilistic Rate Transmission

In order to determine the optimal transmission probabilities (ρj) of each possible rate

decision Rk = j, we minimize a lower bound on the average PCRLB (A-PCRLB) of

the estimate subject to the total rate and utilization constraints.

5.2.1 The average FI of the estimate

From (5.6), the average PCRLB (APCRLB) of the estimate can be written as follows,

APCRLB =
∑

all R

1

E
[−∇θ

θ log p(D, θ)
∣∣R]P (R) (5.13)

and P (R) is calculated from,

P (R) =
(
P (R1 = j1)ρj1

)
. . .

(
P (RN = jN)ρjN

)
(5.14)

where P (Rk = j) is the probability that a sensor quantizes its decision in j bits and

ρj is the probability of sending j bits to the fusion center for a sensor. Therefore,

P (Rk = j)ρj is the probability that the fusion center receives j-bit information from

sensor sk. The APCRLB can now be written as,

APCRLB =
M∑

j1=1

. . .

M∑
jN=1

P (R1 = j1), . . . , P (RN = jN)

E
[−∇θ

θ log p(D1, . . . , DN , θ)
∣∣ R1 = j1, . . . , RN = jN

] (5.15)
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Note that the complexity to compute the APCRLB is very large since it requires

an N-fold summation. To alleviate this problem, we first show in the following lemma

that the inverse of the average Fisher Information is a lower bound on the APCRLB

and we use the inverse of the average Fisher information as the objective function to be

minimized for the optimization problem to find the optimal transmission probabilities.

Lemma 5.1 Let MSEA = E
{

E
[
(θ − θ̂)2|R

]}
be the MSE of the estimate averaged

over all possible rate vectors R. The MSEA is lower bounded by the inverse of average

Fisher information as,

MSEA ≥ 1

Ja

(5.16)

where

Ja =
∑

R1...RN

E
[−∇θ

θ log p(D|θ)
∣∣R]

p(R) + 1/σ2
θ

is the average Fisher information and the expectation is taken over D, θ and R respec-

tively.

The detailed proof of Lemma 5.1 is presented in Appendix A.2. The average FI for all

the sensor data, Ja, is calculated from,

Ja = −
∑

R1...RN

∑
D1...DN

[ ∫

θ

(∇θ
θ log p(D|θ,R)

)

p(D|θ,R)p(θ)dθ
]
p(R) +

1

σ2
θ

(5.17)

In the above definition, since the noise variance of each sensor is independent, the

likelihood p(D|θ,R) has the form,

p(D|θ,R) =
N∏

k=1

p(Dk|θ, Rk) (5.18)
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Using (5.18) and (5.14) in (5.17) yields,

Ja = −N

{ M∑
j=1

[ Lj−1∑

l=0

∫

θ

∇θ
θ log p(Dk = l|θ,Rk = j)

p(Dk = l|θ, Rk = j)dθ

]
P (Rk = j)ρj

}
+

1

σ2
θ

(5.19)

We define Υ(Rk = j) , E
[−∇θ

θ log p(Dk|θ, Rk = j)
]

as the average Fisher infor-

mation when the quantized data are transmitted with rate Rk = j,

Υ(Rk = j) = (5.20)
Lj−1∑

l=0

∫

θ

∫

ωk

− (∇θ
θ log p(Dk = l|Rk = j, ωk, θ)

)×

p(Dk = l|Rk = j, ωk, θ)p(ωk|Rk = j)p(θ)dωkdθ

Note that ∇θ
θ log p(Dk = l|Rk = j, ωk, θ) can be calculated using an approach similar to

that presented in [44]. Since τk is χ2-distributed, ωk =
√

τk becomes χ-distributed as,

p(ωk) =
ωa−1

k e−(ω2
k/2)

2a/2−1Γ (a/2)
(5.21)

with a = 1 and

p(ωk|Rk = j) = (5.22)



p(ωk)/p(Rk = j)
√

ζM−j ≤ ωk <
√

ζM−j+1

0 otherwise

The objective is to find the optimal transmission probabilities [ρ1, ρ2, ..., ρM ] that min-

imize the lower bound on the A-PCRLB as defined in Proposition 5.1 and (5.19),

J−1
a (ρ1, ρ2, ..., ρM) = (5.23)

1

N
(∑M

j=1 Υ(Rk = j)P (Rk = j)ρj

)
+ 1

σ2
θ
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5.2.2 Total Rate Constraint

Let Bk be the number of bits that the fusion center receives from sensor sk. Then,

Bk = RkI(Rk) where I(.) is the indicator function defined as,

I(Rk = j) =





1 with probability ρj

0 with probability 1− ρj

(5.24)

The case
∑N

i=1 Bk > B results in an outage. Then, we would like to ensure that the

outage rate Cout falls under a certain probability ε.

Cout = p

(
N∑

i=1

Bk > B

)
= Q

(
B − ν

σ

)
≤ ε (5.25)

where the Central Limit Theorem has been used by assuming a large number of sensors,

to approximate the distribution of the sum rate with a Gaussian distribution. Q(.) is

the complementary distribution function of a standard Gaussian distribution with zero

mean and unit variance, and

ν = N

M∑
j=1

jP (Rk = j)ρj (5.26)

σ =

√√√√
(

N

M∑
j=1

j2P (Rk = j)ρj

)
− ν2

N

5.2.3 Bandwidth utilization constraint

Under stringent bandwidth availability, minimizing the lower bound on MSE using only

the total rate constraint may assign ρM ≈ 1, since under high SNR, the average Fisher

information of transmitting in M -bits Υ(Rk = M) is much larger than the average

Fisher information of other rates Υ(Rk = j) where j < M . On the other hand, since

P (Rk = M) is small as compared to all the other possible rates, for some instances there

may be no sensors in the network that would employ rate Rk = M . Therefore, under

stringent bandwidth availability, giving priority for the transmission of Rk = M -bits

may result in bandwidth under-utilization. To alleviate this problem, we define another
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constraint which ensures that on the average 100δ% of the bandwidth is utilized,

E

[
N∑

i=1

Bk

]
≥ δB (5.27)

where δ is the bandwidth utilization factor and δ ∈ [0, 1].

Thus, we solve the following constrained optimization problem to find the opti-

mum transmission probabilities of each possible data rate.

min
ρ1, ... ,ρM

f(ρ1, . . . , ρM) =
1

N
(∑M

j=1 Υ(Rk = j)P (Rk = j)ρj

)
+ 1

σ2
θ

subject to g1(ρ1, . . . , ρM) = Q

(
B − ν

σ

)
≤ ε

g2(ρ1, . . . , ρM) = E

[
N∑

i=1

Bk

]
≥ δB (5.28)

Note that the above optimization problem can also be formulated as follows,

min
ρ1, ... ,ρM

f(ρ1, . . . , ρM) =
1

N
(∑M

j=1 Υ(Rk = j)P (Rk = j)ρj

)
+ 1

σ2
θ

subject to g1(ρ1, . . . , ρM) = Q−1 (ε) σ(ρ1, . . . , ρM) + ν(ρ1, . . . , ρM) ≤ b1

g2(ρ1, . . . , ρM) = −
M∑

j=1

jP (Rk = j)ρj ≤ b2 (5.29)

where we redefine the constraints as g1 = Q−1 (ε) σ+ν and g2 = −ν/N with b1 = B and

b2 = −δB/N . Note that ν and σ are functions of the decision variables (ρ1, . . . , ρM) as

defined in (5.26).

Theorem 3 Karush-Kuhn-Tucker (KKT) Conditions: Since (5.29) is a min-

imization problem, let ρ̄ = [ρ̄1, . . . , ρ̄M ] be an optimal solution to (5.29), then ρ̄ =

[ρ̄1, . . . , ρ̄M ] must satisfy the constraints in (5.30) and there exists multipliers λ1, λ2
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satisfying [98]

∂f(ρ̄)

∂ρj

+
m∑

i=1

λi
∂g(ρ̄)

ρj

= 0 (j = 1, . . . , M)

λi [bi − gi(ρ̄)] = 0 (i = 1, 2)

λi ≥ 0 (i = 1, 2) (5.30)

Theorem 4 Since (5.29) is a minimization problem, if f(ρ1, . . . , ρM) is a convex func-

tion and g1(ρ1, . . . , ρM) and g2(ρ1, . . . , ρM) are convex functions, then any point ρ̄ =

[ρ̄1, . . . , ρ̄M ] satisfying the constraints given in Theorem 3 is an optimal solution to

(5.29).

The reason that the hypothesis of Theorem 4 requires that each g1(ρ1, . . . , ρM)

and g2(ρ1, . . . , ρM) be convex is that this ensures that the feasible region for (5.29) is a

convex set [98].

The Hessian Matrix can be used to determine whether f(ρ1, . . . , ρM), g1(ρ1, . . . , ρM)

and g2(ρ1, . . . , ρM) are convex or concave functions. The Hessian of f(ρ1, . . . , ρM) is

the M ×M matrix whose {i, j}th entry is

∂2f

∂ρiρj

Then an ith principal minor of an M ×M matrix is the determinant of any i× i matrix

obtained by deleting M − i rows and M − i columns of the matrix.

Definition 1 A function f(ρ) is assumed to have continuous second-order partial deriva-

tives for each point ρ = (ρ1, . . . , ρM). If all principal minors of the Hessian are non-

negative, f(ρ) is a convex function for each ρ. For k = 1, . . . , M , if all non-zero

principal minors of the Hessian have the same sign as (−1)k, then f(ρ) is a concave

function of ρ.

The objective function f(ρ1, . . . , ρM) = 1/
[
N

(∑M
j=1 Υ(Rk = j)P (Rk = j)ρj

)
+ 1

σ2
θ

]

has continuous second-order partial derivatives for each point ρ = (ρ1, . . . , ρM). Then,

we can easily show that f(ρ1, . . . , ρM) is a convex function of ρ, since all princi-
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pal minors of the Hessian are non-negative. The first constraint g1(ρ1, . . . , ρM) =

Q−1 (ε) σ(ρ1, . . . , ρM)+ν(ρ1, . . . , ρM) is composed of two parts σ(ρ1, . . . , ρM) and ν(ρ1, . . . , ρM)

which both have continuous second-order partial derivatives. For σ(ρ1, . . . , ρM), due to

the
√

. operation, the first principal minors of the Hessian are negative. We can eas-

ily show that for k = 2, . . . , M , all non-zero principal minors of the Hessian have

the same sign as (−1)k. Then, σ(ρ1, . . . , ρM) becomes a concave function of ρ. The

function ν(ρ1, . . . , ρM) and the second constraint g2(ρ1, . . . , ρM) = −∑M
j=1 jP (Rk =

j)ρj are linear functions of the decision variables ρ = (ρ1, . . . , ρM). Linearity im-

plies that g2(ρ1, . . . , ρM) is both convex and concave. Since σ(ρ1, . . . , ρM) is con-

cave and ν(ρ1, . . . , ρM) is convex, their sum g1(ρ1, . . . , ρM) is not a convex function

(∂2g1(ρ)/∂ρiρj = ∂2σ(ρ)/∂ρiρj). Therefore, as defined in Theorem 3 the feasible set is

not convex. Hence, in the absence of convexity, a KKT point can be a global minimum,

a local minimum, a saddlepoint, or even a local or global maximum. One way to obtain

the optimal transmission coefficients is solve the KKT conditions given in Theorem 4

and pick the solution that minimizes the objective function from many local optimal

solutions. On the other hand, although there are M +2 equations and M +2 unknowns,

solving (5.29) using (5.30) is very hard, because when we solve it for ρj, ρj becomes a

non-linear function of high powers of other transmission probabilities ρn
l (l 6= j, n À 1)

and the multipliers λ1, λ2.

Heuristic techniques have been widely used to solve difficult optimization prob-

lems. As in the problem presented in this section, when optimal solutions are difficult

to obtain, heuristic techniques tend to exploit the structure of the problem and arrive

at a good solution. Therefore, we solve the optimization problems presented in (5.29)

numerically by using a genetic search whose algorithm is provided by MATLAB.

5.3 Parameter Estimation based on Received Sensor Data

Let us assume that the fusion center receives data D with rates R from the sensors

and let θ̂ be the Bayesian estimate of the parameter θ based on D and R. The fusion
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center calculates θ̂ according to,

θ̂(D,R) =

∫

θ

θp(θ|D,R)dθ =

∫
θ
θp(D|θ,R)p(θ)dθ∫

θ
p(D|θ,R)p(θ)dθ

(5.31)

where p(D|θ,R) is computed using (5.18). The likelihood of a sensor deciding on l,

p(Dk = l|θ, Rk), is further computed as follows.

5.3.1 The Likelihood under probabilistic rate transmission

For the probabilistic rate transmission case, the fusion center computes the likelihood

of an individual sensor p(Dk = l|θ, Rk) according to,

p(Dk = l|θ, Rk) = (5.32)
∫ √

ζM−j+1

√
ζM−j

p(Dk = l|ωk, θ, Rk)p(ωk|Rk)dωk

where

p(Dk = l|ωk, θ, Rk) =

Q

(
ηRk,l − θ

ωk

)
−Q

(
ηRk,(l+1) − θ

ωk

)

5.3.2 The Likelihood under equal rate transmission

For performance comparison, we consider a simple equal rate transmission scheme where

the total bandwidth is evenly distributed among all the sensors in the network and

ρ1 = . . . = ρN = 1. In other words, all the sensors quantize their measurements with

rate Rk = B/N bits and transmit to the fusion center. The likelihood function of an

individual sensor decision can then be calculated as,

p(Dk = l|θ, Rk) = (5.33)∫ ∞

0

p

(
Dk = l|ωk, θ, Rk =

B

N

)
p(ωk)dωk
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We can either use (5.32) or (5.33) in (5.31) to compute θ̂. In the next section, we

present some illustrative examples.

5.4 Simulation Results

We use N = 20 sensors in the WSN. For the probabilistic rate transmission scheme, we

consider two different cases. The first case is the conservative transmission case where

ε = 0.01 and δ = 0.5 and the second case is the liberal transmission case where ε = 0.1

and δ = 0.7.

We present the optimal transmission probabilities for conservative and liberal

cases for rate Rk in Table 5.2. In order to meet the average bandwidth utilization

constraint δ, when B is small, to utilize the bandwidth, the sensors with smaller rates

are given priority for transmission. As the total allowable bandwidth (B) increases, the

solution of the optimization problem gives priority to the transmission of Rk = 6 bit

information because of the better SNRk and high precision of the quantized measure-

ments. Also note that, as B increases, the sensors with rates Rk = 2 and Rk = 3 bits

transmit with less probability due to their poorer SNRk. Hence, the probabilistic bit

allocation scheme saves energy by reducing the probability that a sensor with low SNR

transmits its data. The optimal transmission probabilities of the conservative case are

comparatively smaller than the liberal case to ensure less outage probability.

Fig. 5.3 compares the mean squared error (MSE) of the proposed algorithm with

a simple scheme where the total bandwidth is equally distributed among the sensors.

For example, if N = 20 and B = 20, in the equal bit allocation scheme, 20 sensors

send their data in Rk = 1 bit. Also, if N = 20 and B = 30, in the equal bit allocation

scheme, 15 sensors send their information in Rk = 2 bits and so on. The MSE of the

estimation is obtained by averaging over 1000 different trials. The probabilistic bit

allocation scheme outperforms the equal bit allocation scheme significantly when the

total bandwidth is small. As B increases, all the sensors are able to quantize their data

to a larger number of bits and the MSE performance of the equal bit allocation scheme

gets closer to the MSE performance of probabilistic bit allocation scheme and finally

converges to the case where all the sensors transmit with the maximum rate.
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Table 5.1: Optimal transmission probabilities of each possible transmission rate Rk = j
bits. (Conservative case: ε = 0.01, δ = 0.5)

Rk = 1 Rk = 2 Rk = 3 Rk = 4 Rk = 5 Rk = 6
B = 20 0.2667 0.7644 0.1432 0.0588 0.0001 0.0017
B = 30 0.9066 0.5252 0.1192 0.2005 0.0225 0.1790
B = 40 0.9775 0.3593 0.0925 0.0000 0.1560 0.5580
B = 50 0.4374 0.0001 0.0000 0.0175 0.1968 1.0000
B = 60 0.1995 0.0001 0.0001 0.1129 0.9999 1.0000
B = 70 0.0001 0.0000 0.0000 0.7835 1.0000 1.0000
B = 80 0.9700 0.6869 0.8409 0.6631 0.7426 1.0000

Table 5.2: Optimal transmission probabilities of each possible transmission rate Rk = j
bits. (Liberal case: ε = 0.1, δ = 0.7)

Rk = 1 Rk = 2 Rk = 3 Rk = 4 Rk = 5 Rk = 6
B = 20 0.6605 0.9283 0.3442 0.0001 0 0.0001
B = 30 0.0646 0.9996 0.2720 0.0000 0.9003 0.0172
B = 40 0.6802 0.8592 0.2640 0.1105 0.0874 0.6151
B = 50 0.4720 0.0001 0.0001 0.2122 1.0000 1.0000
B = 60 0.9712 0.6508 0.3228 0.2484 0.9548 1.0000
B = 70 0.9988 0.6529 0.8429 0.4860 1.0000 1.0000
B = 80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5.5 Discussion

In this chapter, we considered the distributed estimation problem and presented the

probabilistic rate transmission scheme, which minimizes the lower bound on the average

PCRLB to find the optimal transmission probabilities corresponding to possible data

rates under total bandwidth and network utilization constraints. Simulation results

show that under stringent constraint on available bandwidth, the probabilistic rate

transmission scheme outperforms the equal rate transmission scheme. By allowing

transmissions only from the high SNR sensors, the MSE of estimation is very close

to the case when all the sensors transmit using M -bits. Therefore, the probabilistic

rate transmission scheme saves bandwidth significantly yet achieving fairly accurate

estimation.
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Chapter 6

Concluding Remarks and Suggestions for

Future Work

In this dissertation, resource aware distributed detection and estimation of random

events in WSNs has been investigated. The focus of the dissertation was to develop

novel methods which provide significant savings in resource consumption such as energy

and bandwidth while keeping relatively high detection/estimation performance at the

cost of slight potential increase on decision error probability, estimation delay or outage

probability.

We first proposed a multi-objective optimization approach for providing different

alternatives to WSN design for the detection task. Rather than only minimizing the

global probability of error of the network, an MOP approach finds a number of trade-

off solutions between the two objectives namely probability of decision error and the

total energy consumption. A number of alternative solutions provide significant energy

savings as compared to the minimum error solution at the cost of slightly increasing the

best achievable global probability of error. The proposed MOP can be easily extended

to multi-objective problems with more than two objectives as well as under specified

constraints. Future work will include adapting the proposed framework to larger num-

ber of sensors, and more than two objectives as well as development of computationally

efficient approaches. Extension of our methodology for a general network topology with

multiple events occurring at the same time will also be addressed. For this purpose,

earlier work of Alhakeem and Varshney [99] could be used.
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For static source localization, simultaneously requesting complete sensor data may

incur resource challenges in practice. Hence, we have presented an iterative source lo-

calization scheme which arrives at a coarse location estimate first using anchor sensor

data and the location estimate is refined by activating a number of non-anchor sen-

sors in an iterative manner. By only selecting the most informative sensors about

the source location, the iterative localization method provides significant energy and

communication savings as compared to one-shot location estimation, at the cost of

tolerating some estimation latency. We have developed a Monte Carlo-based method

to approximate the posterior probability distribution function of the source location

and its Bayesian estimate. Using this approximate posterior probability distribution

function of the source location, we have developed and compared two sensor selection

metrics which are based on mutual information between source location and sensor lo-

cations and posterior Cramer-Rao Lower bound of the estimate. We first considered the

problem under the assumption of perfect communication channels where both sensor

selection schemes achieve similar estimation performance. PCRLB-based sensor selec-

tion is found to be computationally more efficient than the MI-based sensor selection

scheme. We next considered the case where the channels between sensors and the fusion

center are subject to fading. Under phase coherent reception, we derived the Bayesian

estimate of the source location for multi-bit data and showed that using channel gain

statistics only yields near optimal performance. We also extended the sensor selec-

tion metrics which include the channel impairments. The case where the fusion center

employs non-coherent reception for multi-bit sensor data can be considered as a future

work. Suggested future work also includes defining the communication costs in terms of

more specific path loss models. A theoretical framework can be developed to study the

trade-off between estimation performance in source localization and energy costs. An

extension of our methodology for localization of multiple sources can also be addressed.

In a wireless video sensor network which employs multiple camera sensors, the

problem of selecting the most appropriate camera or a set of cameras to perform target

localization is an important task to balance the trade-off between the localization ac-

curacy and the energy consumption. The mutual information-based camera selection
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method has been recently introduced for wireless video sensor networks [100], [101] The

camera selection based on the PCRLB-based sensor selection is also suitable for wireless

video sensor networks and can be considered in a future work.

Bit allocation is an important problem in the rate-constrained distributed estima-

tion problems. We proposed a fully distributed scheme for heterogenous WSNs, where

the quantization data rate of a sensor has been determined as a function of its obser-

vation SNR. In order not to exceed the allowed bandwidth, after deciding on a data

rate, the quantized observation of each sensor is transmitted to the fusion center with

a certain probability. Under stringent constraint on available bandwidth, the proba-

bilistic approach favors the use of sensors with high observation SNR, and provides a

better estimation performance as compared to the case where the available bandwidth

is equally distributed among the sensors. In this work, we assumed that the wireless

channels between sensors and fusion center are error free, which can be realized by

sufficient transmission energy per each sensor. As a future work, the proposed frame-

work can be further extended while considering energy limitations as well as including

the channel impairments. Notice that the estimation performance improves with the

multibit data coming from the sensors having good quality of observations with higher

reliability. On the other hand, for a fixed transmission energy, mapping the multibit

data into an M-ary symbol increases the probability of symbol error at the fusion center.

Such a trade-off can be examined by solving a multiobjective optimization problem. A

MOP can be defined to find the trade-off solutions between the two objectives, MSE of

the estimation and the energy consumption of the network.
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Appendix A

Proof of Lemmas

A.1 Proof of Lemma 4.1

Proof. If the channel noise is independent and identically distributed among the the

received symbols of each sensor, the likelihood function of the received symbols has the

form,

p(Rk|Dk = l) = p ([rk,1, rk,2, ..., rk,M ]|[qk,1, qk,2, ..., qk,M ]) = (A.1)

∫

hk

(
M∏

j=1

p(rk,j|hk, qk,j

)
p(hk)dhk

In the above equation we assume that entire symbols transmitted from a sensor ex-

perience the same channel. Assuming a Rayleigh fading channel with unit power

(i.e.,E[h2
k] = 1 ), the pdf of hk is expressed as,

p(hk) = 2hk exp
(−h2

k

)
, hk > 0 (A.2)

In Equation (A.1), the distribution p(rk,j|hk, qk,j) is expressed as,

p(rk,j|qk,j, hk) =
1√

2πσ2
exp

(
−(rk,j −√εc hk qk,j)

2

2σ2

)
(A.3)

Than (A.1) can be written as,

p(Rk|Dk = l) ==

∫

hk

2hk exp (−h2
k)

(2π)M/2σM
exp

(
−

M∑
j=1

(rk,j −√εc hk qk,j)
2

2σ2

)
dhk (A.4)
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=

∫

hk

2hk exp (−h2
k)

(2π)M/2σM
exp

(
− 1

2σ2

M∑
j=1

(
r2
k,j − 2hk

√
εc rk,j qk,j + εc h2

k q2
k,j

)
)

dhk (A.5)

=

∫

hk

2hk

(2π)M/2 × σM
(A.6)

exp

(
− 1

2σ2

{(
M∑

j=1

r2
k,j

)
− 2hk

√
εc

(
M∑

j=1

rk,j qk,j

)
+ εc h2

k

M∑
j=1

q2
k,j + h2

k 2σ2

})
dhk

Note that
∑M

j=1 q2
k,j = M , then,

=

∫

hk

2hk

(2π)M/2σM
× (A.7)

exp

(
− 1

2σ2

{(
M∑

j=1

r2
k,j

)
− 2hk

√
εc

(
M∑

j=1

rk,j qk,j

)
+ h2

k

(
2σ2 + εc M

)
})

dhk

=

∫

hk

2hk

(2π)M/2σM
exp


−

{
(
∑M

j=1 r2
k,j)

(2σ2+εc M)
− 2hk

√
εc (

∑M
j=1 rk,j qk,j)

(2σ2+εc M)
+ h2

k

}

2σ2

(2σ2+εc M)


dhk (A.8)

=
2

(2π)M/2σM

∫

hk

hk× (A.9)

exp


−

{
(
∑M

j=1 r2
k,j)

(2σ2+εc M)
− εc (

∑M
j=1 rk,j qk,j)

2

(2σ2+εc M)2
+

εc (
∑M

j=1 rk,j qk,j)
2

(2σ2+εc M)2
− 2hk

√
εc (

∑M
j=1 rk,j qk,j)

(2σ2+εc M)
+ h2

k

}

2σ2

(2σ2+εc M)


dhk

=
2

(2π)M/2σM
exp


−

∑M
j=1 r2

k,j

2σ2+εc M
− εc (

∑M
j=1 rk,j qk,j)

2

(2σ2+εc M)2

2σ2

2σ2+εc M


× (A.10)

∫

hk

hk exp


−

{
εc (

∑M
j=1 rk,j qk,j)

2

(2σ2+εc M)2
− 2hk

√
εc (

∑M
j=1 rk,j qk,j)

(2σ2+εc M)
+ h2

k

}

2σ2

(2σ2+εc M)


dhk
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=
2

(2π)M/2σM
exp


−

∑M
j=1 r2

k,j

2σ2+εc M
− εc (

∑M
j=1 rk,j qk,j)

2

(2σ2+εc M)2

2σ2

2σ2+εc M


× (A.11)

∫

hk

hk exp


−

(
hk −

√
εc (

∑M
j=1 rk,j qk,j)

(2σ2+εc M)

)2

2σ2

(2σ2+εc M)


dhk

Let t = hk −
√

εc (
∑M

j=1 rk,j qk,j)
(2σ2+εc M)

. Then,

=
2

(2π)M/2σM
exp


−

∑M
j=1 r2

k,j

2σ2+εc M
− εc (

∑M
j=1 rk,j qk,j)

2

(2σ2+εc M)2

2σ2

2σ2+εc M


 (A.12)

∫

t


t +

√
εc

(∑M
j=1 rk,j qk,j

)

(2σ2 + εc M)


 exp

(
− t2

2σ2

(2σ2+εc M)

)
dt

Let us evaluate the first summation term inside the integral

∫

t

t exp

(
−t2 (2σ2 + εc M)

2σ2

)
dt (A.13)

= − 2σ2

2 (2σ2 + εc M)

(∫

t

−2t (2σ2 + εc M)

2σ2
exp

(
−t2 (2σ2 + εc M)

2σ2

)
dt

)

= − 2σ2

2 (2σ2 + εc M)

[
exp

(
−t2 (2σ2 + εc M)

2σ2

)]∞

−
√

εc (∑M
j=1

rk,j qk,j)
(2σ2+εc M)

=
2σ2

2 (2σ2 + εc M)
exp


−

εc

(∑M
j=1 rk,j qk,j

)2

2σ2 (2σ2 + εc M)




Now let’s compute the second term inside the summation,

=



√

εc

(∑M
j=1 rk,j qk,j

)

(2σ2 + εc M)




√
2πσ√

2σ2 + εc M
× (A.14)
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∫ ∞

−
√

εc (∑M
j=1

rk,j qk,j)
(2σ2+εc M)

1√
2π σ√

2σ2+εc M

exp

(
− t2

2σ2

(2σ2+εc M)

)
dt

=
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Q


−
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j=1 rk,j qk,j

)

σ
√

2σ2 + εc M




Using (A.13) and (A.14) in (A.12) results,

=
2

(2π)M/2σM
exp


−

∑M
j=1 r2

k,j

2σ2
+

εc

(∑M
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× (A.15)
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Let,

β =

√
εc

σ
√

2σ2 + εc M
(A.16)
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Then (A.15) can be simplified as,

p(Rk|Dk = l) =
2

(2π)M/2σM−2 (2σ2 + εc M)
exp

(
−

∑M
j=1 r2

k,j

2σ2

)
× (A.17)
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j=1 rk,j qk,j

)2

2


Q

(
−β
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j=1

rk,j qk,j

))


A.2 Proof of Lemma 5.1

Proof. Given the rate vector R, the MSE is lower bounded by its PCRLB(R),

E
[
(θ − θ̂)2|R

]
≥ PCRLB(R) (A.18)

where

PCRLB(R) =
1

E
[−∇θ

θ log p(D|θ)
∣∣R]

+ 1/σ2
θ

Let ξ , E
[−∇θ

θ log p(D|θ)
∣∣R]

and calculated from,

ξ =

∫

θ

∑
D1...DN

−∇θ
θ log p(D|θ,R)p(D, θ|R)dθ

where ξ > 0. Further, let

f(ξ) , 1

ξ + 1/σ2
θ

Averaging both sides of the inequality (A.18) over R yields,

MSEA ≥ E {f(ξ)} (A.19)

Since f ′′(ξ) > 0, f(ξ) is a convex function of ξ and f(ξ) satisfies Jensen’s inequality

E {f(ξ)} ≥ f [E (ξ)]. Hence,

MSEA ≥ 1

E
{
E

[−∇θ
θ log p(D|θ)

∣∣R]}
+ 1/σ2

θ

(A.20)
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where the expectation is first taken over D and θ and then over R.
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