
APPLICATIONS OF AI PLANNING IN GENOME
REARRANGEMENT AND IN MULTI-ROBOT SYSTEMS

Tansel Uras

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2011

c© Tansel Uras 2011

All Rights Reserved

YAPAY ZEKA İLE PLANLAMANIN GENOM DÜZENLEME VE
ÇOKLU ROBOT SİSTEMLERİ ÜZERİNE UYGULAMALARI

Tansel Uras

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2011

Tez Danışmanları: Esra Erdem ve Volkan Patoğlu

Özet

Yapay zeka ile planlamada amaç, verilen bir ilk durumu bir hedef duruma ulaştırmak
için, bir etmenin hareketlerini planlamaktır. Bu tezde, yapay zeka ile planlama iki tane
zorlayıcı problemi çözmek için kullanıldı: işlemsel biolojiden genom düzenleme prob-
lemi ve çoklu-robot sistemlerinden ayrışık planlama problemi.

Genom düzenleme problemi, motivasyonunu evrimsel ağaçlardan alır. Amacı, iki
canlının genomlarını karşılaştırarak aralarındaki en az sayıdaki genom düzenleme olayını
(genomda oluşan büyük çaplı mutasyonlar) bulmaktır. Bu problemin tek kromozomlu
dairesel genomlarla olan ve genomda bazı genlerin birden fazla kopyasının olmasına izin
verilenini çözmek için adı GENOMEPLAN olan yeni bir method geliştirdik. Genom
düzenleme problemini bir yapay zeka ile planlama problemi olarak formüle ettik ve ya-
pay zeka planlayıcısı TLPLAN’ı kullanarak planlar bulduk. İşlemsel verimi arttırmak
için GENOMEPLAN’de hareket tanımları içine bir kaç çeşit buluşsal yöntem yerleştirdik.
Gerçek veriler üzerinde daha kesin cevaplar alabilmek için GENOMEPLANd́a düzenleme
olaylarının ağırlıklarının ve önceliklerinin tanımlanmasına izin verdik. GENOME-
PLAN’in uygulanabilirliğini gerçek veriler üzerinde gösterdik.

Çoklu robot sistemlerinde farklı çalışma alanlarında bulunan ve birden fazla robottan
oluşan robot takımlarının, birbirleriyle robot alış verişinde bulunarak kendi hedeflerine
en kısa zamanda ulaşmaya çalıstıklari bir problemi ele aldık. Bu problemi çözmek için
takimlar arasında uzlaşmayı sağlayıp en kısa planı bulan bir algoritma öneriyoruz. Bu
algoritmada, bir taraftan takımlar sadece kendi çalışma alanlarına ait planlar bulurken,
diğer taraftan her takım merkezi bir sistemle iletişim kurup toplamda en kısa planı buluy-
orlar. Algoritmamızın doğru sonuç verdiğini ve olan bir sonucu kaçırmadığını ispatladık
ve işlemsel karmaşıklığını analiz ettik. Metodumuzu akıllı bir fabrika örneği üzerinde
gösterdik ve fabrikadaki bir çalışma alanını hareket anlatma dili C+ ile modelleyip ne-
densel akıl yürütücü CCALC’ın çalışma alanı hakkında akıl yürütmesine dair örnekler
sunduk.

iv

APPLICATIONS OF AI PLANNING IN GENOME
REARRANGEMENT AND IN MULTI-ROBOT SYSTEMS

Tansel Uras

Computer Science and Engineering, Master’s Thesis, 2011

Thesis Supervisors: Esra Erdem and Volkan Patoğlu

Abstract

In AI planning the aim is to plan the actions of an agent to achieve the given goals from
a given initial state. We use AI planning to solve two challenging problems: the genome
rearrangement problem in computational biology and the decoupled planning problem in
multi-robot systems.

Motivated by the reconstruction of phylogenies, the genome rearrangement problem
seeks to find the minimum number of rearrangement events (i.e., genome-wide mutations)
between two given genomes. We introduce a novel method (called GENOMEPLAN) to
solve this problem for single chromosome circular genomes with unequal gene content
and/or duplicate genes, by formulating the pairwise comparison of entire genomes as an
AI planning problem and using the AI planner TLPlan to compute solutions. The idea is
to plan genome rearrangement events to transform one genome to the other. To improve
computational efficiency, GENOMEPLAN embeds several heuristics in the descriptions
of these events. To better understand the evolutionary history of species and to find more
plausible solutions, GENOMEPLAN allows assigning costs and priorities to rearrange-
ment events. The applicability of GENOMEPLAN is shown by some experiments on real
data sets as well as randomly generated instances.

In multi-robot systems, multiple teams of heterogeneous robots work in separate
workspaces towards different goals. The teams are allowed to lend robots to one an-
other. The goal is to find an overall plan of minimum length where each team completes
its assigned task. We introduce an intelligent algorithm to solve this problem. The idea is,
on the one hand, to allow each team to autonomously find its own plan and, on the other
hand, to allow a central agent to communicate with the representatives of the teams to find
an optimal decoupled plan. We prove the soundness and completeness of our decoupled
planning algorithm, and analyze its computational complexity. We show the applicability
of our approach on an intelligent factory scenario, using the action description language
C+ for representing the domain and the causal reasoner CCALC for reasoning about the
domain.

v

Acknowledgements

I wish to express my gratitude to

• Esra Erdem and Volkan Patoğlu for their invaluable supervision,

• my thesis committee for their reviews and suggestions,

• all my friends from Sabancı University for their motivation and endless friendship,

• last, but not the least, my family for their unconditional love, support and persistent
confidence in me.

Parts of this thesis are supported by Sabancı University Internal Research Fund.

vi

Contents

1 Introduction 1

2 AI Planning 4
2.1 Planning Problem . 4
2.2 Action Languages . 5

2.2.1 Action Description Language ADL 5
2.2.1.1 Describing Actions in ADL 5
2.2.1.2 Describing a Planning Problem 8

2.2.2 Action Description Language C+ 8
2.2.2.1 Syntax of Causal Laws 8
2.2.2.2 Semantics for Action Descriptions 10
2.2.2.3 Queries . 10

2.3 Planners . 11
2.3.1 TLPLAN . 11
2.3.2 CCALC . 14

2.4 Example: Blocks World . 14
2.4.1 Solving Blocks World with TLPLAN 15
2.4.2 Solving Blocks World with CCALC 15

3 AI Planning for Genome Rearrangement 20
3.1 Genome Rearrangement Problem . 22
3.2 Methods . 23

3.2.1 Describing Genomes . 23
3.2.2 Genome Rearrangement as a Planning Problem 24
3.2.3 Describing Rearrangement Events 25
3.2.4 Swapping Duplicates . 26
3.2.5 Embedding Heuristics in Action Descriptions 26

3.2.5.1 The Breakpoint Heuristic 26
3.2.5.2 Maintaining the Good Segments 27
3.2.5.3 Discarding Irrelevant Labels 28

3.2.6 Assigning Costs and Priorities to Events 29

vii

3.3 Results . 30
3.3.1 Experiments with Real Data . 31

3.3.1.1 Chloroplast genomes of land plants and green algae . . 31
3.3.1.2 Chloroplast genomes of Campanulaceae 33
3.3.1.3 Mitochondrial genomes of Metazoa 34

3.3.2 GENOMEPLAN vs. DERANGE 2 35
3.3.3 GENOMEPLAN vs. TD-ESTIMATOR 36

3.3.3.1 Fixed genome length but varying number of events . . . 37
3.3.3.2 Fixed number of events but varying genome length . . . 38

3.4 Summary of Contributions . 39

4 Decoupled Planning for Multiple Teams of Robots 42
4.1 A Cognitive Painting Factory Scenario 44
4.2 Representing the Painting Factory Domain 45

4.2.1 Domain Description: No Robot Exchanges 45
4.2.1.1 Fluents . 45
4.2.1.2 Actions . 46
4.2.1.3 Finding Plans without Robot Exchanges 48

4.2.2 Domain Description: Exchanges of Robots 49
4.2.3 Eliminating Redundant Actions 50

4.2.3.1 Eliminating Redundant Swaps 50
4.2.3.2 Eliminating Redundant Attachments/Detachments . . . 51
4.2.3.3 Eliminating Movement Redundancies 52
4.2.3.4 Discussion . 53

4.3 Optimal Decoupled Planning . 54
4.3.1 Finding Decoupled Plans of Fixed Length 55

4.3.1.1 Observations . 55
4.3.1.2 The Main Algorithm 56
4.3.1.3 The Improved Algorithm 58

4.3.2 Finding Minimum Length Decoupled Plans 63
4.3.3 Inferring Bounds from Previous Searches 65

4.4 Embedding Decoupled Planning in an Execution and Monitoring Frame-
work . 68

4.5 Related Work . 69
4.6 Summary of Contributions . 71

5 Conclusion 72
5.1 Genome Rearrangement . 72
5.2 Multi-Robot Systems . 74

viii

List of Figures

2.1 A planning problem . 4
2.2 A sample search tree. Nodes represent states and edges represent actions. 13
2.3 Domain description of blocks world in TLPLAN’s input language 16
2.4 Problem description of blocks world in TLPLAN’s input language 17
2.5 Domain description of blocks world in CCALC 18
2.6 Problem description of blocks world in CCALC 19

3.1 (a) A genome; (b) a transposition of (a); (c) an inversion of (b); (d) a
transversion of (c). 22

3.2 The tree computed by NEIGHBOR with the matrix in Table 3.1. 32
3.3 The tree computed by NEIGHBOR with the matrix in Table 3.2. 34
3.4 The tree computed by NEIGHBOR with the matrix in Table 3.3. 36

4.1 Our general approach. 43
4.2 A sample workspace. 44

ix

List of Tables

2.1 Comparison of planning languages . 6
2.2 Comparison of planners . 12

3.1 The distance matrix computed by GENOMEPLAN for the chloroplast
genomes of 7 land plants and green algae: Nicotiana (NI), Marchan-

tia (MA), Chaetosphaeridium (CM), Chlorella (CA), Chlamydomonas (CS),
Nephroselmis (NE), and Mesostigma (ME). 32

3.2 The distance matrix computed by GENOMEPLAN for 13 chloroplast genomes
of Campanulaceae: Wahlenbergia (WA), Merciera (ME), Trachelium (TM),
Symphyandra (SY), Campanula (CA), Adenophora (AD), Legousia (LE),
Asyneuma (AS), Triodanus (TS), Codonopsis (CO), Cyananthus (CY), Platy-

codon (PL), Tobacco (TO). 33
3.3 The distance matrix computed by GENOMEPLAN for 11 mitochondrial

genomes of Metazoa: Human (HU), Asterina pectinifera (AP), Paracen-

trotus lividus (PL), Drosophila yakuba (DY), Artemia franciscana (AF),
Albinaria coerulea (AC), Cepaea nemoralis (CN), Katharina tunicata (KT),
Lumbricus terrestris (LT), Ascaris suum (AS), Onchocerca volvulus (OV). 35

3.4 Comparison of GENOMEPLAN and TD-ESTIMATOR in the case with
fixed genome length and increasing number of operations. 38

3.5 Comparison of GENOMEPLAN and TD-ESTIMATOR in the case with
fixed number of events and increasing genome lengths. 39

4.1 Fluents for representing the Painting Factory. 46
4.2 Actions for representing the Painting Factory. 47
4.3 Effects of using redundancy elimination in the formulation of a workspace

with 2 workers, 1 carrier, 4 boxes, while finding a plan of length 30. . . . 54
4.4 List of actions for all teams. 70

x

Chapter 1

Introduction

In this thesis, we present two applications of AI Planning in two different areas, one in
computational biology and the other in cognitive robotics. In an AI planning problem,
we are given an initial state, a set of goals, a nonnegative integer k, and descriptions of
actions; and the aim is to find a sequence of acions that lead the initial state to a goal state
in at most k steps.

The first problem we consider is the genome rearrangement problem, a well studied
problem in computational biology. In biology, phylogenies can be reconstructed by com-
paring the genomes of species. One metric of evolutionary distance for a comparison
of two genomes is the number of rearrangement events (i.e., genome-wide mutations that
change the order, orientations, presence of genes in a genome) that convert one genome to
the other. Finding the minumum number of rearrangement events between two genomes
is called the genome rearrangement problem.

Our work on this problem has started as an extension of the work of Erdem and
Tillier [24]. We view the genome rearrangement problem as an AI planning problem
as in [24], and use the AI planner TLPLAN [1] to solve it. Our contributions can be
summarized as follows:

• Extending the earlier work of Erdem and Tillier [24], we introduce a computational
method to solve the genome rearrangement problem for single chromosome circular
genomes with duplicate genes and unequal gene content. The rearrangement events
we consider are transpositions, inversions, transversion, insertions and deletions.
Although the genomes of many species have unequal gene content and duplicate
genes, most of the existing genome rearrangement software (e.g., GRIMM [57],
GRAPPA [46],DERANGE 2 [7], MGR [9]) cannot handle unequal gene content and
duplicate genes directly.

• To improve the computational efficiency, we embed three heuristics in the action
descriptions: We ensure the number of breakpoints (pairs of genes that are adjacent

1

in the first genome but not in the second) decreases at each step of the plan. If
a gene segment occurs in both genomes then the second heuristic identifies this
gene segment as a “good segment” and maintains it through the search. The third
heuristic identifies some genes as “irrelevant” if they form good segments with their
two neighbor genes and the irrelevant genes are discarded. The first two heuristics
combined, reduce the branching factor from O(n3) to O(b2), where n is the length
of the genome and b ≤ n is the remaining number of breakpoints in the genome.
The third heuristic does not effect the branching factor, but reduces the number of
candidate rearrangement events and speeds up the search.

• We allow the users to express domain specific information to get more plausible
results from the point of view of biology, by allowing the specification of costs and
priorities of the actions that model the rearrangement events. A user may express
“transpositions occur more often in these species” by assigning a lower cost and/or
higher priority to transpositions.

• We develop the genome rearrangement software GENOMEPLAN, that incorporates
the features described above, and conduct an extensive experimental evaluation us-
ing it:

– We find phylogenies for species from three sets of real data.

– We compare GENOMEPLAN with DERANGE 2 on randomly generated data.

– We compare GENOMEPLAN with TD-ESTIMATOR (a rearrangement soft-
ware by Lin et al. [41], that estimates the distance between two genomes with
unequal gene content and duplicate genes), on randomly generated data.

The second problem we study is from cognitive robotics. Consider a domain of
multiple teams of robots where each team has separate tasks and they work in separate
workspaces. Each team consists of several different kinds of robots with different capa-
bilities, and some robots may swap their end effectors to perform different actions. The
teams are allowed to help each other by lending robots to each other, and the goal is to
complete all the teams’ tasks in minimum time. One straightforward way to solve this
problem might seem to formalize the whole domain, and pose the problem above as a
single planning problem; however, as the number of teams and robots grow, the domain
description and the search space gets large too quickly.

We consider a restricted version of this problem, where robots are not allowed to lend
or borrow more than one robot, and solve it with a decoupled planning algorithm as fol-
lows: we create representatives for each team, that are able to find minimum length plans
for the teams they represent (plans that may involve lending or borrowing a robot). We
also have a central agent that communicates with the representatives to find a minimum

2

length decoupled plan (possibly with robot exchanges) where each team is able to com-
plete its task. Our work on this problem can be summarized as follows:

• We propose a novel algorithm for finding optimal decoupled plans for the types of
problems described above. It operates by asking individual teams certain types of
queries (such as “can you lend a robot before step k′ and still be able to complete
your task by step k?”) until it can make robot lend/borrow arrangements between
the teams and guarantee that the decoupled plan found is of minimum length. We
provide the termination, soundness, completeness and complexity analysis of the
proposed algorithm.

• We devise a domain, a Cognitive Painting Factory, where boxes are painted, waxed
and stamped. Each team works in a separate workspace (painting the boxes different
colors) and can lend robots to other teams. We model a workspace in the action
description language C+ [33] and use the causal reasoner CCALC [43] to reason
about the model.

• We embed our optimal decoupled plan algorithm in an execution and monitoring
framework and show its applicability on the Cognitive Painting Factory domain

We use two different planners, for the two different problems we study. We use
TLPLAN for the genome rearrangement problem because it allows us to specify domain
specific heuristics and gives us extensive control over the search. For the multi-robot sys-
tems, we use CCALC, because it handles concurrency effectively and allows us to ask
expressive queries.

The rest of this thesis is organized as follows: In Chapter 2, we give preliminaries on
AI planning. Our work on the genome rearrangement problem is summarized in Chapter 3
and our work on the decoupled planning algorithm is summarized in Chapter 4. We
conclude by providing an overlook of contributions and future work on Chapter 5.

3

Chapter 2

AI Planning

In this chapter we give a brief background on AI planning. We give the definition of a
planning problem (Section 2.1), describe how planning problems are represented (Sec-
tion 2.2), and show how they are solved (Section 2.3). We conclude by giving two exam-
ples of modeling a planning problem in the input languages of TLPLANand CCALC(Section 2.4).

2.1 Planning Problem

In a planning problem, we are given an initial state, a set of goals, a nonnegative integer
k, and descriptions of actions that an agent can execute. The aim is to find a plan—a
sequence of actions that leads the initial state to a goal state—whose length is at most k.
For instance, consider a number of blocks on a table such that each block is labeled by a
letter. There is a robot who can move a block from one location to another location on the
table. Suppose that initially the configuration of the blocks is as in Fig. 2.1(initial state).
The goal is to obtain the configuration in Fig. 2.1(goal state) in at most 3 steps. The robot
can achieve this goal by first moving Block r onto Block i, next moving Block a onto
Block r, and then moving Block p onto Block a. This is a plan of length 3.

Classical planning is NP-hard for plans of polynomially-bounded length [11].

goal state

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

p

i

s

r

a

p

a

r

i

s

initial state

Figure 2.1: A planning problem

4

2.2 Action Languages

Action languages allow us to describe actions taht agents can perform in a dynamic world,
and thus specify planning problems to planners.

• Preconditions: For an action to be applicable at a state, its preconditions must be
met: each fluent in the preconditions has to be in the current state as well.

• Add effects: Executing this action at a state (where its preconditions are met),
modifies the state by adding this set of fluents to the world.

• Delete effects: Executing this action at a state (where its preconditions are met),
modifies the state by deleting this set of fluents from the world.

Most of the action languages have evolved from STRIPS: ADL [48] is another fa-
mous action language, which is an extension of STRIPS; ADL is discussed in detail,
in Subsection 2.2.1. There are also more expressive languages, such as the Planning Do-
main Definition Language (PDDL) [44] which was first developed to make the 1998/2000
International Planning Competitions possible (IPC). It is evolving with each IPC and is
currently at version 3.1. C+is another action language based on causal reasoning; it is dis-
cussed in detail, in Subsection 2.2.2. The expressivity of all these languages are compared
in table 2.1.

There are various action languages, such as STRIPS [28], ADL [48], the family of
PDDL [44], and the family of action description languages [30], including C+ [33]. A
comparison of some of these languages is given in Table 2.1. In the following, we describe
ADLand C+, since these are the languages used in this thesis.

2.2.1 Action Description Language ADL

2.2.1.1 Describing Actions in ADL

We start with the two sets of atoms: fluents and actions. Fluents denote properties of the
world that change over time so that a state of the world is described by a set of fluents.
For instance, in the blocks world, a predicate of the form on(block , loc) can be introduced
to describe that block block is on location loc; this predicate is a fluent since the locations
of blocks may change over time. For instance, on(B ,Table) expresses that Table is a
location and Block B is right on top of it. Here Table is a constant denoting the table and
Block B is a constant denoting a specific block in the world. (From now on, we adapt
the following notation: object constants start with an uppercase letter whereas object
variables start with a lowercase letter.) Similarly another predicate of the form clear(loc)

can be introduced as a fluent to describe that the location loc is clear. With these fluents,

5

Table 2.1: Comparison of planning languages

ST
R

IP
S

A
D

L

PD
D

L
1.

0

PD
D

L
2.

1

PD
D

L
2.

2

PD
D

L
3.

0

PD
D

L
3.

1

C+

strips style operators X X X X X X X X
type names in variable declarations × X X X X X X X

negative preconditions × X X X X X X X
disjunctive preconditions × X X X X X X X

equality checks × X X X X X X X
existential-preconditions × X X X X X X X
universal-preconditions × X X X X X X X

conditional effects × X X X X X X X
axioms × × X X X X X X

numeric fluents × × × X X X X X
plan quality measures: metrics × × × X X X X X

durative actions × × × X X X X Xa

temporal preconditions and effects × × × X X X X X
timed intitial literals × × × × X X X X

derived predicates × × × × X X X X
state trajectory constraints × × × × × X X X

preferences × × × × × X X ×
object fluents × × × × × × X X

(interleaved) concurrency × × × X X X X X
ramifications × × × × × × × X
qualifications × × × × × × × X

defaults × × × × × × × X
attributes of actions × × × × × × × X

additive fluents × × × × × × × X

aC+supports durative actions as long as the duration is an integer

we can represent the state S where Block C is on the table and Block B is on top of
Block C as follows:

S = {on(B ,C), on(C ,Table),

clear(B), clear(Table)}.
(2.1)

Action predicates, on the other hand, denote actions that an agent can execute. In the
blocks world, a predicate of the form move(block , loc, loc′) can be introduced to denote
the action of moving the block block from a location loc onto location loc ′. For instance,
move(B ,C ,Table) expresses the action of moving BlockB from the top of BlockC onto
the Table. We describe actions in terms of its preconditions and effects.

In ADL, preconditions of actions are expressed by a set of formulas. For instance, let
X = move(block , loc, loc ′) where block 6= loc and loc 6= loc ′. One precondition of X

6

is that block is at location loc, another is that loc′ is clear. Also block needs to be clear.
Therefore, the precondition set P for X is

P = {on(block , loc), clear(loc′), clear(block)}. (2.2)

If the preconditions of X are satisfied at a state S, then X can be executed at S. For
instance, move(B ,C ,Table) can be executed at state (2.1).

Effects of an action are grouped into two categories: add effects and delete effects.
These effects are represented by sets of fluents. They describe the changes to be added to
and deleted from the state at which that action is executed. For instance, an add effect of
move(block , loc, loc ′) is clear(loc): after a block is moved from loc to loc ′ then loc gets
clear. The add effects of move(block , loc, loc′) can be described as follows:

A = {clear(loc), on(block , loc′)}. (2.3)

A delete effect of move(block , loc, loc ′) is on(block , loc): after block is moved from
loc to loc′ then block is not on loc anymore.

Some of the effects are conditional. For example, a delete effect of move(block , loc, loc′)

is clear(loc ′): after a block is moved loc to loc ′, the location loc ′ is not clear anymore.
This delete effect makes sense if loc ′ 6= Table, since Table is always clear (otherwise, we
would not be able to move a block onto the table). For that reason, we need to specify
clear(loc′) as a delete effect if loc ′ 6= Table holds. We can represent a conditional effect
of an action by an expression of the form F if G where F is a fluent and G is a set of for-
mulas that do not involve actions. For instance, the delete effects of move(block , loc, loc ′)

can be described as follows:

D = {clear(loc′) if {to 6= Table}, on(block , loc)}. (2.4)

With such an add set A and a delete set D, we can define the effect of executing an
action X at a state S (i.e., the state S ′ reached by executing X at S) as follows. First we
“compile” a new add set AS and a new delete set DS from the add set A (2.3) and the
delete set D (2.4) with respect to a state S, getting rid of conditionals:

AS = {Y : Y ∈ A ∩ S} ∪ {Y : Y if F ∈ A, S |= F},
DS = {Y : Y ∈ D ∩ S} ∪ {Y : Y if F ∈ D, S |= F}.

Then, we compute the next state S ′ as follows:

S ′ = (S \ DS) ∪ AS.

For instance, the compiled effects of move(B ,C ,Table) with respect to state S (2.1) are

7

AS = {on(B ,Table), clear(C)},
DS = {on(B ,C)}.

After executing move(B ,C ,Table) at state S, we reach at a new state S ′ of the world
obtained from S by deleting the elements of DS and adding the elements of AS:

S ′ = {on(B ,Table), on(C ,Table),

clear(B), clear(C), clear(Table)}.

2.2.1.2 Describing a Planning Problem

In a classical planning problem, we are given an initial state Si and a goal G (or a goal
state Sg), and want to find a sequence of actions that would lead the initial state Si to a
goal state Sg. For instance, in the Blocks World with three blocks {A,B,C}, a planning
problem with the initial state Si where A is on C and C is on B, and the goal state Sg

where A is on B and B is on C can be described as follows:

Si = {on(A,C), on(C ,B), on(B ,Table),

clear(A), clear(Table)},
Sg = {on(A,B), on(B ,C), on(C ,Table),

clear(A), clear(Table)}.

(2.5)

Note that, in this problem, the goal is to swap the positions of the blocks B and C.

2.2.2 Action Description Language C+

Let us describe briefly the high-level representation formalism (C+ [33]) where we de-
scribe action domains by “causal laws”.

2.2.2.1 Syntax of Causal Laws

We start with a (multi-valued propositional) signature that consists of a set σ of constants

of two sorts, along with a nonempty finite set Dom(c) of value names, disjoint from σ,
assigned to each constant c. An atom of σ is an expression of the form c = v (“the value
of c is v”) where c ∈ σ and v ∈ Dom(c). A formula of σ is a propositional combination of
atoms. If c is a Boolean constant, we use c (resp. ¬c) as shorthand for the atom c = True

(resp. c = False).
A signature consists of two sorts of constants: fluent constants and action constants.

Intuitively, fluent constants denote “fluents” characterizing a state; action constants denote
“actions” characterizing an event leading from one state to another.

A fluent formula is a formula such that all constants occurring in it are fluent constants.
An action formula is a formula that contains at least one action constant and no fluent

8

constants.
An action description is a set of causal laws of three sorts. Static laws are of the form

caused F if G (2.6)

where F and G are fluent formulas. Action dynamic laws are of the form (2.6) where F
is an action formula and G is a formula. Fluent dynamic laws are of the form

caused F if G after H (2.7)

where F and G are as above, and H is a fluent formula. In (2.6) and (2.7) the part if G
can be dropped if G is True; the part F is called the head.

While describing action domains, we can use some abbreviations. For instance, we
can describe the (conditional) direct effects of actions using expressions of the form

c causes F if G

which abbreviates the fluent dynamic law

caused F if True after c ∧G.

This abbreviation expresses that “executing c at a state where G holds, causes F .”
We can formalize that F is a precondition of executing c by the following expression

nonexecutable c if ¬F

which stands for the fluent dynamic law

caused False if True after c ∧ ¬F .

Similarly, we can prevent the concurrent execution of two actions c and c′ by the expres-
sion

nonexecutable c ∧ c′.

We can represent the “commonsense law of inertia” also by using abbreviations. For
instance, we can describe that “the value of a fluent F remains to be true unless it is
caused to be false” by the expression

inertial F

9

that stands for the fluent dynamic causal law

caused F if F after F .

2.2.2.2 Semantics for Action Descriptions

The meaning of an action description can be represented by a “transition system” [33].
Let D be an action description with a signature, with a set F of fluent constants and a
set A of action constants. Then the transition system 〈S, V,R〉 described by D is defined
with a set S of states, a value function V mapping every fluent constant P at each state s
to a truth value, and a set R of transitions:

(i) S is the set of all interpretations s of F such that, for every static law (2.6) in D,
s satisfies G ⊃ F ;

(ii) V (P, s) is the value of the fluent constant P in s;

(iii) R is the set of all triples 〈s, A, s′〉 such that s′ is the unique interpretation of F which
satisfies the heads F of all

• static laws (2.6) in D for which s′ satisfies G, and

• fluent dynamic laws (2.7) in D for which s′ satisfies G and s ∪ A satisfies H;

and A is the unique interpretation of A which satisfies the heads F of all action
dynamic laws (2.7) in D for which s ∪ A satisfies G.

The laws included in (iii) above are those that are applicable to the transition from s

to s′ caused by executing A: the static causal laws make sure that s′ is a state, and handles
the ramifications and the qualifications of A; whereas the dynamic causal laws handle the
preconditions and the direct effects of A, as well as other sorts of change.

A transition diagram can be thought of as a labeled directed graph. Every state s is
represented by a vertex labeled with the function P 7→ V (P, s) from fluent constants to
their values. Every triple 〈s, A, s′〉 ∈ R is represented by an edge leading from s to s′ and
labeled A.

2.2.2.3 Queries

Given an action domain description represented in a fragment of C+ as described above,
we can perform various reasoning tasks over it, such as planning, prediction, postdiction
and diagnosis. Such reasoning problems are represented using queries in an “action query
language” as described in [30]. We consider a variation of the action query language Q
introduced in [30]. In this language, an atomic query is one of the two forms, F holds at t

10

or A holds at t, where F is a fluent formula, A is an action formula, and t is a time step.
A query is a propositional combination of atomic queries.

Let D be an action description and T (D) = 〈S, V,R〉 denote the transition system
described by D, with a set S of states, a value function V mapping, at each state s, every
fluent P to a truth value, and a set R of transitions. A history of D of length n is a
sequence

s0, A1, s1, . . . , sn−1, An, sn (2.8)

where each 〈si, Ai+1, si+1〉 (0 ≤ i < n) is in R. We say that a query Q of the form
F holds at t (resp. A occurs at t) is satisfied by a history (2.8) if st satisfies F (resp. ifAt

satisfies A). For nonatomic queries, satisfaction is defined by truth tables of propositional
logic. We say that a query Q is satisfied by an action description D, if there is a history
H of D that satisfies Q.

Let us give now an example of the use of queries for planning. Suppose that F and
G are fluent formulas denoting an initial state and goal conditions respectively. We can
describe the problem of finding a plan of length n, with a query of the form

F holds at 0 ∧G holds at n.

We can also solve variations of these problems, where some intermediate states are spec-
ified or where the specified actions are not executed consecutively. This allows us to
enforce, for instance, further constraints in a planning problem.

2.3 Planners

There are various planners and reasoning systems to solve planning problems. Some of
them are listed in Table2.2. In the following, we describe two planners: TLPLAN(which
supports ADL) and CCALC(which supports C+).

2.3.1 TLPLAN

The input language of TLPLAN supports ADL. In addition, it provides some predefined
functions/predicates and allows us to define new functions/predicates, to be included in
preconditions and effects of actions.

For instance, we can put a restriction on the length of a plan (e.g., its length is at most
k) by adding the following expression

planlength < k

to the set of preconditions. Here planlength is a predefined function that returns the length
of a plan constructed so far.

11

Table 2.2: Comparison of planners

L
A

M
A

F
F

F
D

-A
U

T
O

T
U

N
E

C
3

R
O

A
M

E
R

T
L

P
L

A
N

C
C

A
L

C

supports predicate representations X X X X X X X
supports object fluent representations × × × × × X X
supports typed representations X X X X X × X
supports untyped representations X X X X X X X
supports schematic representations X X X X X X X
supports grounded representations X X X X X X X
supports negative conditions X X X X X X X
supports first-order formulas X X X × X X X
supports conditional effects X X X × X X X
supports universal effects X X X X X X X
supports derived predicates X × X × X X X
supports recursive effects × × × × × X X
supports external predicates × × × × × × X

In Blocks World, we can ensure that a good tower built from bottom up is not disas-
sembled, by including¬goodTower(loc) to the precondition setP of move(block , loc, loc′).
Here goodTower is a predicate that can be defined by the user as a first-order logic for-
mula [1]. Such predicates are called “derived predicates”, i.e., predicates not directly
added or deleted by actions but derived from fluents at every state.

Given a domain description (i.e., action descriptions) and a planning problem (i.e., ini-
tial state and goal), TLPLAN computes a plan if one exists. For instance, with the domain
description of the blocks world presented in the previous section, TLPLAN computes the
following plan for the planning problem (2.5):

〈move(A,C ,Table),move(C ,B ,Table),

move(B ,Table,C),move(A,Table,B)〉.

This plan consists of four actions: moving A from the top of C onto the table, moving C

from the top of B onto the table, moving B from the table to the top of C , and moving A

from the table to the top of B ; the length of this plan is 4.
To find a plan of length k, TLPLAN performs a forward search in the state space:

starting from the initial state, it explores the states that are reachable from the initial state
by a sequence of k actions, until a goal state is found or some failure condition is reached
(i.e., all the states reachable by a sequence of k actions are explored and the goal state is
not reached).

12

Figure 2.2: A sample search tree. Nodes represent states and edges represent actions.

There are various forward search strategies that affect the order of the explored states,
such as domain-independent depth-first and breadth-first strategies or heuristic search
strategies such as best-first, and A* [49]. TLPLAN allows us to specify a search strat-
egy as part of input. Consider, for instance, the sample search tree (shown in Fig. 2.2)
for the planning problem (2.5). Here, the specified search strategy determines the or-
der of the nodes explored during search. With the depth-first search strategy, the order
is 1, 2, 3, 5, 10; with the breadth-first search strategy, the order is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Some of these strategies are optimal (i.e., they guarantee finding the minimum cost/length
solution in the search tree). For instance, if we are trying to minimize the plan length,
breadth-first search is optimal. If we are trying to minimize the total cost of a plan,
uniform-cost search is optimal [49].

The reason we chose to use TLPLAN over other planners is mainly its expressivity
and its features that allows extensive control over the search, which provide the means
to experiment with different search strategies and heuristics. Table 2.2 compares the
features of TLPLAN to top performing planners in IPC’08 and IPC’10. Note that, most
of the competition planners are meant to be used on problems without any prior domain
specific information, and then use domain independent heuristics for improved search
speed. TLPLAN, on the other hand, does not have built-in heuristics, but allows us to
express search control information, tailored towards specific domains.

13

2.3.2 CCALC

The Causal Calculator (CCALC) [43] is a reasoning system, that performs reasoning tasks
over an action domain description represented in a fragment of C+ described above. To
present formulas to CCALC, conjunctions ∧, disjunctions ∨, implications ⊃, negations ¬
are replaced with the symbols &, ++, ->>, and - respectively. Once an action domain
description is given, we can perform various reasoning tasks via queries in an action query
language, like the variation of the action query languageQ described above. For instance,
we can present a query to CCALC as follows:

:- query

maxstep :: 0..infinity;

0: loc(b) = c;

maxstep: loc(b) = a.

A query of the form F holds at t (resp. A occurs at t) is presented to CCALC as t: F

(resp. t: A). The third line in the query above describes the initial state at time step
0, and the last line describes the goal condition at time step maxstep. With this query,
CCALC successively tries to find a plan of length maxstep=0,1,...,infinity.

Given a domain description and a query, CCALC checks whether the query is satisfied
by the domain description (in the sense of satisfiability planning of [37]) as follows: 1)
it transforms the causal laws into a propositional theory ΓD, via “causal logic” [33]; 2) it
transforms the query into a propositional theory ΓP ; 3) it checks whether ΓD∪ΓP is satis-
fiable; 4) if ΓD∪ΓP is unsatisfiable, it returns No; 5) otherwise, it returns Yes and presents
an example extracted from a satisfying interpretation for ΓD∪ΓP . The transformations in
the first two steps are different: the one in 1) is based on literal completion [43], whereas
the one in 2) is based on a simpler procedure (see the work of Giunchiglia et al. [33] for
a detailed description). Such a difference allows one to check the satisfiability of other
queries (for instance, for replanning) without executing the first step again. Step 3) is
done automatically by a state-of-the-art SAT solver, such as MINISAT [19] or its paral-
lel variant MANYSAT [34]. Inheriting the advantages of C+, CCALC allows reasoning
about nondeterminism, concurrency, ramifications, and provides useful utilities, such as
external predicates and additive fluents.

2.4 Example: Blocks World

In this section, we give two examples of modeling the blocks world problem as a planning
problem, one in the input language of TLPLAN, using ADL operators; the other in the
input language of CCALC using causal laws.

14

2.4.1 Solving Blocks World with TLPLAN

A basic domain model of blocks world in TLPLAN can be found in Fig. 2.3. We have two
fluents (as part of the described symobls in TLPLAN): on(block , loc) and clear(loc), both
of which were explained earlier. There is also another predicate, block(x), that denotes x
is a block, however we do not consider it as a fluent since its value does not change over
time.

We have a single action, move(block , to − loc), this time omitting the location we take
the block from since it is not actually a parameter of the problem (there can be only one
location a block can be on at a given moment). Given a block block , we can ask TLPLAN

to find us a value for loc that would make on(block , loc) true, by using the exists built-in
method.

A simple problem for the described domain model can be found in Fig. 2.4.

2.4.2 Solving Blocks World with CCALC

A basic domain model of blocks world in CCALC can be found in Fig. 2.5.
The first line describes that there are two sorts of objects, locations and blocks, where

each block is also a location. Even though it describes table as a location, it does not
mention the blocks, which is specified in the problem description since they are problem
specific.

It then declares the constants:

• loc(block) is a functional fluent (i.e. loc(block) = value has the same meaning as
on(block , value)).

• above(block , location is kind of like a derived predicate, even though it is not di-
rectly modified by the actions, its value can change as an indirect effect of actions.

• move(block) is the only action that moves a block

• destination(block) is an attribute of move(block) (i.e., it specifies where to move
the block)

One important thing to note in the rest of the formulation is that it allows concurrency
(i.e. multiple move actions can take place in a single turn). Using the noconcurrency .

command would disable it.
Fig. 2.6 shows a problem file for this formulation. The query asks if there is a plan of

length at most 3 (and at least 2), that can transform the initial state to the goal state.

15

Figure 2.3: Domain description of blocks world in TLPLAN’s input language

(declare-described-symbols
(predicate block 1)
(predicate on 2)
(predicate clear 1)

)

(declare-defined-symbols
(predicate move-effects 2)

)

;operator for moving a block
(def-adl-operator (move ?block ?to-loc)

(pre
(?block) (block ?block)
(?to-loc) (clear ?to-loc)
(and

;the block should be clear
(clear ?block)

;the block should not be moved on itself
(not (= ?block ?to-loc))

;the block should be moved somewhere else
(exists (?from-loc)(on ?block ?from-loc)

(not (= ?to-loc ?from-loc)))))

;resolve the effects of the action
(move-effects ?block ?to-loc))

;effects of moving a block
(def-defined-predicate (move-effects ?block ?loc)

(and
;the block is no longer on its previous loc
(exists (?prev-loc)(on ?block ?prev-loc)

(del (on ?block ?prev-loc)))

;it is now on its new location
(add (on ?block ?loc))

;the new location is no longer clear
(implies (not (= ?loc Table)) (del (clear ?loc)))

;the old location is now clear
(exists (?prev-loc)(on ?block ?prev-loc)

(add (clear ?prev-loc)))))

16

Figure 2.4: Problem description of blocks world in TLPLAN’s input language

;
; Initial state: Goal:
;
; 3 6
; 1 3 5 2 5
; 2 4 6 1 4
; ------------- ---------

(set-initial-world

(block 1)(block 2)(on 1 2)(on 2 Table)(clear 1)
(block 3)(block 4)(on 3 4)(on 4 Table)(clear 3)
(block 5)(block 6)(on 5 6)(on 6 Table)(clear 5)

(clear Table)
)

(set-goal
(on 3 2) (on 2 1) (on 1 Table)
(on 6 5) (on 5 3) (on 4 Table)

)

17

Figure 2.5: Domain description of blocks world in CCALC

% File ’bw’: The blocks world

:- sorts
location >> block.

:- objects
table :: location.

:- constants
loc(block) :: inertialFluent(location);
above(block,location) :: sdFluent;
move(block) :: exogenousAction;
destination(block) :: attribute(location) of move(block).

:- variables
B,B1 :: block;
L :: location.

% two blocks can’t be on the same block at the same time
constraint loc(B)=loc(B1) ->> loc(B)=table where B @< B1.

% definition of above

caused above(B,L) if loc(B)=L.
caused above(B,L) if loc(B)=B1 & above(B1,L).
default -above(B,L).

% a block cannot be above itself
constraint -above(B,B).

% effect of moving a block
move(B) causes loc(B)=L if destination(B)=L.

% a block can be moved only when it is clear
nonexecutable move(B) if loc(B1)=B.

% a block can’t be moved onto a block that is being moved also
nonexecutable move(B) & move(B1) if destination(B)=B1.

% a block can’t be moved to its current position
nonexecutable move(B) if destination(B)=loc(B).

18

Figure 2.6: Problem description of blocks world in CCALC

% File ’bw-test’: Planning problem in the blocks world
%
% Initial state: Goal:
%
% 3 6
% 1 3 5 2 5
% 2 4 6 1 4
% ------------- ---------

:- include bw.

:- objects
1..6 :: block.

:- show loc(L).

:- query
maxstep :: 2..3;
0: loc(1)=2, loc(2)=table, loc(3)=4,

loc(4)=table, loc(5)=6, loc(6)=table;
maxstep: loc(1)=table, loc(2)=1, loc(3)=2,

loc(4)=table, loc(5)=4, loc(6)=5.

19

Chapter 3

AI Planning for Genome Rearrangement

In biology, phylogenies can be reconstructed by comparing the genomes of species [51].
One metric of evolutionary distance for a comparison of two genomes is the number of
rearrangement events (i.e., genome-wide mutations that change the order, orientations,
presence of genes in a genome) that converts one genome to the other; a smaller number
of such events implies a closer lineage. Finding the minimum number of rearrangement
events between genomes is called the genome rearrangement problem.

The study of genome rearrangement problems has started with a focus on reversal
distance, pioneered by David Sankoff [50, 38]. Since then various efficient polynomial
time algorithms have been developed [35, 6, 36, 45, 3] for finding the exact reversal
distance. However, no such method is known for finding the exact transposition distance.

Bafna and Pevzner [2] provide a polynomial time approximation algorithm and con-
jecture that the problem of finding the exact transposition distance is NP-hard. Blanchette
et al. [7] introduce a greedy search algorithm with lookahead to find near-optimal solu-
tions to this problem. More recent studies, on the other hand, are based on the idea of
simulating genome rearrangement events by means of Double-Cut-Join (DCJ) operations
introduced by Yancopoulos et al. [61]. Basically, a DCJ operation makes two cuts on a
genome, and then rejoins the four cut points in a possible way. Even though a DCJ oper-
ation is not an evolutionary event encountered in nature, it can simulate such events: Any
inversion, fusion (joining two chromosomes) or fission (breaking a chromosome into two)
can be simulated by a single DCJ operation; and any transposition can be simulated by
two successive DCJ operations (namely a fission to cut the desired part out, followed by a
fusion to reinsert it to the desired location). If the genomes are of equal gene content and
do not contain duplicate genes, then the minimum DCJ distance between two genomes
can be found in linear time [61]. Bergeron et al. [4, 5] extend this result for genomes
with possibly multiple chromosomes (both linear and circular), but still requiring equal
gene content and no gene duplications. Some studies [20, 60] extend the canonical ap-
proach that only considers permutations, by allowing gene duplications or unequal gene

20

content; however, efficient computation of the edit distance is not achieved. A method
that estimates the edit distance with gene duplications and unequal gene content is pro-
posed [55]; however, only inversions are considered. Lin et al. [41] describe a method
that estimates the minimum DCJ distance by using duplication and gene loss operations
along with DCJ operations; however, the relative frequencies of these three types of op-
erations are required for better accuracy, and identifying these frequencies for real data is
problematic.

We view the genome rearrangement problem as an AI planning problem as in our
earlier work [24, 59]. In a planning problem, the goal is to find a plan (i.e., a sequence of
actions that leads an agent from an initial state to a goal state) whose length is at most a
given nonnegative integer k. The idea is then to describe genome rearrangement events as
actions, and consider one of the genomes as the initial state and the other one as the goal
state; and prompt an AI planner to find a sequence of at most k actions (rearrangement
events) that leads the initial state to the goal state.

We introduce a computational method to solve the genome rearrangement problem for
single chromosome circular genomes with duplicate genes and unequal gene content. We
consider transpositions, inversions, transversions, insertions and deletions as rearrange-
ment events [59, 58]. We formulate the genome rearrangement problem as a planning
problem differently and develop a genome rearrangement software, called GENOME-
PLAN, based on these methods. We show the applicability and effectiveness of ur meth-
ods using GENOMEPLAN, with real datasets and randomly generated datasets.

Our formulation of the genome rearrangement problem as a planning problem differs
from that of Erdem and Tillier in the following ways: First of all, it extends the represen-
tation of genomes to handle duplicate genes and the descriptions of events (transpositions,
inversions, transversions). It introduces new operators for insertions and deletions. The
goal-check is done in a more computationally-efficient way by means of checking the
breakpoint distance (instead of checking the whole gene orders of the genomes). Also,
some heuristics (e.g., the breakpoint heuristic, discarding irrelevant genes) are embed-
ded in the action descriptions; Erdem and Tillier specify the breakpoint heuristic as a
search control strategy (separate from the action descriptions) and do not discard irrele-
vant labels. We allow insertion/deletion of a single gene, whereas Lin et al. [41] allow
deletion/duplication of a block of genes.

In the following, we introduce a precise definition of a genome rearrangement problem
and a planning problem (Section 3.1), and explain how we model genome rearrangement
as planning (Section 3.2). We discuss the results of our experiments (Section 3.3) and
conclude (Section 3.4).

21

1 2

−5

−4

−3

−4

−3

2

1

−5

(a) (b)

5

−4

−3 −2

−1 5 −2

1

−4

−3

(d) (c)

Figure 3.1: (a) A genome; (b) a transposition of (a); (c) an inversion of (b); (d) a transver-
sion of (c).

3.1 Genome Rearrangement Problem

We describe the genome rearrangement problem as an AI planning problem, and then use
the AI planner TLPLAN to compute solutions. Before we explain our planning-based ap-
proach to genome rearrangement, let us briefly go over some preliminaries via examples.

We represent a circular genome of a single-chromosome organism by circular config-
urations of numbers 1, . . . , n, with a sign + or − assigned to each of them. For instance,
Fig. 3.1(a) shows a genome for n = 5. Numbers ±1, . . . ,±n will be called labels. In-
tuitively, a label corresponds to a gene, and its sign corresponds to the orientation of the
gene. By (l1, . . . , ln) we denote the genome formed by the labels l1, . . . , ln ordered clock-
wise. For instance, each of the expressions (1, 2,−5,−4,−3), (2,−5,−4,−3, 1), . . . de-
notes the genome in Fig. 3.1(a).

About genomes g, g′, we say that g′ is a transposition of g (or can be obtained from g

by a transposition) if, for some labels l1, . . . , ln and numbers k,m (0 < k,m ≤ n),

g = (l1, . . . , ln),

g′ = (lk, . . . , lm, l1, . . . , lk−1, lm+1, . . . , ln).

Here lk, ..., lm is moved after ln. For instance, the genome in Fig. 3.1(b) is a transposi-
tion of the genome in Fig. 3.1(a). Given two genomes g and g′, the problem of finding
the smallest number of successive transpositions by which g′ can be obtained from g is
conjectured to be NP-hard [2].

Similarly, about genomes g, g′, we say that g′ can be obtained from g by a deletion (or
g can be obtained from g′ by an insertion) if, for some labels l1, . . . , ln and a number m
(0 < m ≤ n),

g = (l1, . . . , ln),

g′ = (l1, . . . , lm−1, lm+1, . . . , ln).

22

Other events, inversions and transversions, can be defined as in Erdem and Tillier’s
work [24]. About genomes g, g′, we say that g′ is an inversion of g (or can be obtained
from g by an inversion) if, for some labels l1, . . . , ln and a number m (0 < m ≤ n),

g = (l1, . . . , ln),

g′ = (−lm, . . . ,−l1, lm+1, . . . , ln).

For instance, the genome in Fig. 3.1(c) is an inversion of the genome in Fig. 3.1(b). Given
two genomes g and g′, the problem of finding the smallest number of successive inversions
by which g′ can be obtained from g is in P [35].

About genomes g, g′, we say that g′ is a transversion (or inverted transposition) of g
(or can be obtained from g by a transversion) if, for some labels l1, . . . , ln and numbers
k,m (0 < k,m ≤ n),

g = (l1, . . . , ln),

g′ = (−lm, . . . ,−lk, l1, . . . , lk−1, lm+1, . . . , ln).

Here lk, ..., lm is inverted and then moved after ln. For instance, the genome in Fig. 3.1(d)
is a transversion of the genome in Fig. 3.1(c).

We say that there is a breakpoint between two genomes if one of the genomes includes
the pair l, l′ and the other genome includes neither the pair l, l′ nor the pair −l′,−l. For
instance, there are 3 breakpoints between (1, 2, 3, 4, 5) and (1, 2,−5,−4, 3). The number
of breakpoints between two genomes is called their breakpoint distance.

The genome rearrangement problem can be defined as follows: given two genomes g
and g′, and a positive integer k, decide whether g′ can be obtained from g by at most k
successive events.

3.2 Methods

We view the genome rearrangement problem as a planning problem as follows:

given two genomes g and g′, and a nonnegative integer k, find a sequence of at most
k events that reduces the number of breakpoints between g and g′ to 0.

3.2.1 Describing Genomes

We view the gene order of a whole genome as a signed permutation of gene labels, and
represent the permutation by specifying the clockwise order of the labels. For that, we
introduce a fluent of the form cw(l, l′) which expresses that label l′ comes after label l
in clockwise direction. However, such a representation alone is not sufficient to describe

23

genomes with duplicate genes. For example, the genome (1, 2, 3, 2, 4, 2) can be repre-
sented as follows:

cw(1, 2), cw(2, 3), cw(3, 2), cw(2, 4), cw(4, 2), cw(2, 1).

Here, (1, 2, 4, 2) can be erroneously considered as a subsequence of the genome. For this
reason, we treat duplicate genes as different genes but also keep track of them. To identify
which genes are duplicates, we introduce a predicate dup(x , y) (“the gene labeled as x is
originally labeled as y”). For example, the duplication in the genome (1, 2, 3, 2, 4, 2) can
be represented by relabeling two of the 2’s as a 5 and a 6 and by specifying that the genes
labeled as 5 and 6 are originally labeled as 2:

cw(1, 2), cw(2, 3), cw(3, 5), cw(5, 4), cw(4, 6), cw(6, 1),

dup(2, 2), dup(5, 2), dup(6, 2).

In general, we represent multiple copies l1, . . . , lc of the same gene m by the set of fluents
dup(li ,m). In this way, we can keep the number of dup predicates linear in the size of
duplicate genes (as opposed to quadratic number of dup predicates when every pair of
duplicates is specified).

3.2.2 Genome Rearrangement as a Planning Problem

In the planning problem that describes a genome rearrangement problem, both genomes
g and g′ are specified in the initial state Si. We assume that the rearrangement events
are applied to the genome g. We describe the gene order of g by fluents of the form
cw(l, l′), and the gene order of g′ by fluents of the form cw ′(l , l ′). The effects of actions
not only change the order of genes in g, but also the number of breakpoints between
g and g′. Therefore, we represent the number of breakpoints between g and g′ by a
functional fluent bpcount . Suppose that we are given two genomes, g = (1, 2, 3, 2, 4) and
g′ = (1, 4,−3,−2). In the corresponding planning problem, the initial state Si is defined
as follows:

Si = {cw(1, 2), cw(2, 3), cw(3, 5), cw(5, 4), cw(4, 1),

cw ′(1, 4), cw ′(4,−3), cw ′(−3,−2), cw ′(−2, 1),

dup(2, 2), dup(2, 5), bpcount = 4}.

The goal Sg is defined as Sg = {bpcount = 0}. Note that any state Z ⊃ Sg is considered
a goal state.

Given the planning problem described by Si and Sg above and the action descriptions
discussed in the following subsections, TLPLAN computes a 2-step plan, 〈transvert(2, 3, 4), delete(5)〉,
according to which the genome (1, 2, 3, 2, 4) can be transformed to (1, 4,−3,−2) as fol-
lows: first 2, 3 is inverted and then inserted after 4, next the first appearance of 2 is deleted.

24

3.2.3 Describing Rearrangement Events

We introduce five actions to describe transpositions, inversions, transversions, insertions
and deletions, and represent them in the input language of TLPLAN.

Consider the action transpose(x , y , z) (“the gene sequence starting with the gene la-
beled as x and ending at the gene labeled as y is inserted after the gene labeled as z”) that
describes a transposition. The preconditions of this action are described with the set:

P = {label(x), label(y), label(z), x 6= z, y 6= z,

planlength < k,¬cw(z, x), notbetween(z, x, y)}
(3.1)

The first three conditions describe that x, y and z are labels to denote genes. The fourth
and the fifth conditions ensure that the segment x ..y of the genome is not inserted after x
or y . The fifth condition is that the length of the plan constructed so far is less than the
given nonnegative integer k. The sixth condition describes that x does not come after z .
The last condition describes that z is not between x and y . Here notbetween is a derived
predicate defined as a first-order logic formula. We can represent notbetween(z, x, y) in
first-order logic as follows:

notbetween(z, x, y) ≡ (length(y, z) ≤ length(x, z))

Here, length(x, y) is a function evaluating to the length of the sequence x . . . y . 1

In a state S that satisfies the preconditions (3.1) and where the genome is of the form
(x1, x..y, y1..z, z1, ...), the effects of a transposition (i.e., insertion of x ..y after z) are
described by an add set A and a delete set D:

A = {cw(x1, y1), cw(z, x), cw(y, z1)},
D = {cw(x1, x), cw(y, y1), cw(z, z1)}.

(3.2)

According to these sets, we discard the clockwise orderings x1 x, y y1 and z z1, and instead
consider the following clockwise orderings x1 y1, z x and y z1. Thus, after the execution
of action transpose(x , y , z), we obtain the genome (x1, y1..z, x..y, z1, ...).

Similarly, other genome rearrangement events are defined as ADL-operators in the
input language of TLPLAN.

1We keep the positions of genes in a genome (as if the genome is represented as a vector) using a
function of the form pos(X) = P (“the position of gene X is P ”). The positions of genes are generated
for the initial genome and updated with each rearrangement event. Then, the length of the sequence x . . . y
(length(x, y)) is computed by finding the difference between the positions of x and y, taking into account
that the genome is circular.

25

3.2.4 Swapping Duplicates

Simply renaming the duplicate genes as described in Section 3.2.1 can lead to different
lengths of plans. Consider, for instance, two genomes (1, 2, 3, 2, 4) and (1, 2, 3, 4, 2).
Renaming one of the 2’s in each genome as 5 leads to four possible problems. One of
these problems is defined by (1, 5, 3, 2, 4) and (1, 2, 3, 4, 5), and the other by (1, 2, 3, 5, 4)

and (1, 2, 3, 4, 5). The former problem can be solved in two steps, by transposing 5 after
4 and transposing 3 after 2; the latter, on the other hand, can be solved in a single step, by
transposing 5 after 4.

To be able to find shorter plans, we introduce an auxiliary action, swap(x, y), for
swapping two genes that are duplicates of each other. We assign a cost of 0 to swap(x, y)

so that a series of swap operations can allow switching between any two different rela-
belings of the same genome with a total cost of 0. The idea is then to assign a cost of 1 to
each rearrangement event, and to try to find a plan whose total cost is as small as possible.

3.2.5 Embedding Heuristics in Action Descriptions

For a more efficient computation, we embed some heuristics in action descriptions to
reduce the search space.

3.2.5.1 The Breakpoint Heuristic

We enforce the breakpoint heuristic in genome rearrangements, i.e., we ensure that the
number of breakpoints decreases at the each step of the plan, by modifying the effects of
actions. For instance, the effects of a transposition characterized by the action transpose(x , y , z)

are modified to take into account the change in the number of breakpoints, by including
the following equality in the add set:

bpcount = bpcount − relievedbp transpose(x , y , z)

where relievedbp transpose calculates the number of breakpoints that are eliminated by
the transposition. Recall that, with relievedbp transpose, breakpoints are not counted
from the scratch at each step: they are counted initially, and after that the number of
breakpoints is decreased by each application of a transposition.

Similarly, the breakpoint heuristic is embedded in the description of each genome
rearrangement event as well as the auxiliary action of swapping duplicates’ labels.

Embedding the breakpoint heuristic in the description of swap is quite important,
which brings along also some complications. Although a series of swaps of duplicates’
labels allows switching between any two different relabelings of the same genome where
each gene is uniquely labeled, note that there are too many possible relabelings that may

26

lead to too many swaps (not to mention redundant swaps). Therefore, forcing a swap oper-
ation to relieve at least one breakpoint reduces the number of these possibilities (and thus
the size of the search space) and eliminates the risk of getting stuck in an infinite loop of
0-cost swap actions in the search. On the other hand, embedding the breakpoint heuristic
in swap operations may prevent switching from one relabeling to another one that would
lead to a plan with a smaller cost. Consider, for instance, the rearrangement of the genome
(1, 5, 6, 4, 2, 3, 7) into (1, 2, 3, 4, 5, 6, 7), and assume that 5 is a duplicate of 2 and 6 is a du-
plicate of 3. In this example, swap(2, 5) alone does not modify the number of breakpoints
(two existing breakpoints are relieved but two new ones emerge), nor does swap(3, 6); but
together, they can relieve 4 breakpoints. To take into account such cases, we introduce two
additional auxiliary actions, namely block swap and reverse block swap (also subject
to the breakpoint heuristic). The auxiliary action block swap takes two non-overlapping
gene segments of equal length k such that, for each 1 ≤ i ≤ k, the i’th gene of the
first segment is a duplicate of the i’th gene of the second segment; after that, for each
1 ≤ i ≤ k, it swaps the i’th gene in the first segment with the i’th gene in the second
segment. The auxiliary action reverse block swap is similar, except it swaps the genes
in reverse order (i.e., swaps the i’th gene of the first segment with the k − i + 1’th gene
of the second segment, for each i). Although these two auxiliary actions guide the search
by picking relabelings of genomes, they do not guarantee that these relabelings lead to
shorter plans. Consider, for instance, rearranging (1, 4, 2, 3, 5) into (1, 2, 3, 4, 5) where
2, 3 and 4 are duplicates of each other. Clearly, these genomes are the same; however,
there are no swap, block swap or reverse block swap operation applicable to reduce
the number of breakpoints.

Let us now discuss how the breakpoint heuristic affects the computational efficiency
and the optimality of plans. Note that the branching factor of the search tree without
the breakpoint heuristics is O(n3) where n is the genome length (since a transposition is
specified by 3 genes). The introduction of the breakpoint heuristic reduces the branching
factor to O(n2) (since the number of transpositions that break at least one breakpoint is
O(n2)). Such a decrease in the branching factor speeds up the search. On the other hand,
the breakpoint heuristic possibly does not preserve optimality with an optimal-cost search
strategy.

3.2.5.2 Maintaining the Good Segments

We call a segment of a genome a good segments if none of the adjacent pairs in the
segment have a breakpoint between them. We maintain the good segments in a genome
while rearranging (i.e. we never create a new breakpoint by seperating a pair of genes
that are also adjacent in the goal). For that, we extend the preconditions of actions with
further conditions.

For example, we extend the preconditions (3.1) of transpositions by including the

27

following predicates:

¬goodbefore(x),¬goodafter(y),¬goodafter(z),

goodlink(z , x) ∨ goodlink(y , z1) ∨ goodlink(x1 , y1).
(3.3)

Here, goodbefore(x), goodafter(y), goodafter(z) and goodlink(z , x) are all derived pred-
icates. The predicate goodbefore(x) expresses that the gene that comes before x in the
genome g described by cw fluents is at its goal position with respect to g′. In other words,
the sequence x1 x that occurs in g occurs also in the other genome g′ described by cw′

fluents; in such a case, we say that x1 and x form a good link. Similarly, goodafter(y)

expresses that the gene that comes after gene y in g is in its goal position with respect to
g′, whereas goodlink(z , x) expresses that the sequence z x in g is in its goal position.

By including (3.3) inP , we ensure that a transposition transpose(x , y , z) is applicable
to a genome g if the genes before x, after y, and after z in g are not in goal positions
relative to genome g′, but at least one of these genes will be in its goal position after
transpose(x , y , z). By this way, including (3.3) in P enforces a transposition to relieve at
least one breakpoint by forming at least one good link.

Note also that maintaining good segments (in addition to the breakpoint heuristic)
reduces the branching factor further (from O(n2)) to O(b2) where b is the number of
breakpoints.

3.2.5.3 Discarding Irrelevant Labels

We consider a label (or a gene) irrelevant if it forms two good links as expected, i.e., it
is in its goal position. To improve the computational efficiency, we remove the irrelevant
labels at each step of the search by modifying the delete effects of actions.

For instance, consider transpose(x , y , z) that rearranges the genome (x1, x..y, y1..z, z1, ...)

into (x1, y1..z, x..y, z1, ...). After this transposition, if x1 y1 forms a good link and y1

forms a good link with the label that comes right after y1, then y1 becomes an irrelevant
label and can be discarded during the search. This heuristic is expressed by adding the
following to the delete effects of transpose(x , y , z):

label(y1) if {goodlink(x1, y1), goodafter(y1)}.

A similar conditional effect is included for the other case, when z x forms a good link and
makes z irrelevant.

Discarding irrelevant labels reduces the number of candidate rearrangement events at
each step of the search, and thus provides a good speed-up. However, it does not reduce
the branching factor further since irrelevant labels are genes with good links on both sides.

28

3.2.6 Assigning Costs and Priorities to Events

To get more plausible results from the point of view of biology, one can incorporate
domain-specific information into action descriptions by assigning costs and priorities to
actions to guide the search. For instance, transpositions may occur more often in some
species, then we can assign a lower cost to transpositions to reflect this domain-specific
information. In this way, with a cost-based search strategy, we expect to obtain a plan that
involves transpositions instead of more expensive actions. Priorities of actions affect the
ordering of successor states in search: actions with higher priorities are selected before
the ones with lower priorities if the search strategy is priority-based.

Costs and priorities can be defined as specific numbers or as terms that evaluate to
numbers. For instance, we can define the cost of a transposition transpose(x, y, z) by a
function:

cost transpose(x, y, z) = ct+ originalLength(x, y)

where ct is a number and originalLength(x, y) is a derived function that returns the length
of the original gene segment (before preprocessing) denoted by x..y. If we want TLPLAN

to take into account the costs of transpositions as defined above, we include the following
expression in the preconditions:

cost = cost transpose(x, y, z).

If we want TLPLAN to prefer transpositions that relieve more number of breakpoints
per cost, we can define the priority of transpositions accordingly:

priority transpose(x, y, z) =

relievedbp transpose(x, y, z)/cost transpose(x, y, z)

and include the following expression in the preconditions:

priority = priority transpose(x, y, z).

Alternatively, we can define priorities of events with respect to an expected occurrence
of events specified in terms of percentages. For instance, the priority of an inversion can
be defined with respect to a specified percentage (say, 80%):

priority invert(x, y) =

epi + (relievedbp invert(x, y, z)/cost invert(x, y, z))

where epi is set to 100 (resp. 0) at 80% (resp. 20%) of the steps. In this way, if the
plan consists of 10 steps, the priority of an inversion is set to a higher value (and thus the
search is biased towards an inversion) at 8 steps.

29

3.3 Results

Based on the planning approach described above, we implemented a software system,
called GENOMEPLAN, that can solve genome rearrangement problems based on the
gene-order data of whole genomes, using the planner TLPLAN. GENOMEPLAN can
handle genomes with unequal gene contents or duplicate genes, and it considers transposi-
tions, inversions, transversions, insertions and deletions as rearrangement events. Also, it
can solve variations of genome rearrangement where we specify costs/priorities of events
by functions.

We performed three sorts of experiments:

• Experiments with Real Data. To show the usefulness of our planning-based approach
to genome rearrangement, we experimented with three sets of real data using GENOME-
PLAN: mitochondrial genomes of Metazoa (animals with a nervous system, and mus-
cles) [8], chloroplast genomes of Campanulaceae (flowering plants) [13], and chloroplast
genomes of various land plants and green algae [15]. Only in the first data set, genomes
are of unequal content and with duplicate genes.

• GENOMEPLAN vs. DERANGE 2. To compare our planning-based approach to genome
rearrangement with duplicate genes, with the naive approach (where we relabel dupli-
cates uniquely and use an existing genome rearrangement software system that can handle
transpositions, inversions and transversions and then whose goal is to find a parsimonious
solution), we experimented with a set of randomly generated problem instances.

• GENOMEPLAN vs. TD-ESTIMATOR. Another available genome rearrangement soft-
ware that can handle inversions, transpositions, and transversions is TD-ESTIMATOR of
Lin et al. [41]. Unlike GENOMEPLAN and DERANGE 2, TD-ESTIMATOR tries to ap-
proximate the true distance between two genomes in terms of DCJ operations, gene losses
and duplications. We experimented with a set of randomly generated problem instances
with duplicates and equal gene content.

Before solving the problem instances, we applied two preprocessing methods to re-
duce their sizes: “safe” deletions and “condensing”. According to the former method, if a
gene is present in one of the genomes only, then we delete all its copies from that genome.
After that, according to the latter method (like in GRAPPA), common subsequences in the
genomes are replaced by some new identifiers.

All experiments are run on a workstation with two 1.60GHz Intel Xeon E5310 Quad-
Core Processor and 16 GB RAM, running Centos 64bit (Version 5.3). All the benchmark
data are available at http://krr.sabanciuniv.edu/projects/GenomePlan.

30

http://krr.sabanciuniv.edu/projects/GenomePlan

3.3.1 Experiments with Real Data

In these experiments, for each data set, first we computed the distance (i.e., the number of
rearrangement events) between each pair of genomes using GENOMEPLAN. Then, based
on these distances, we constructed a phylogeny using the program NEIGHBOR [27] with
default values. We studied these phylogenies in comparison with the published phyloge-
nies, to analyze the accuracy of our approach on the real data.

In all the experiments using GENOMEPLAN, the planner TLPLAN was run with the
default search strategy, namely depth-first-priority. The cost of insertions and deletions
were assigned to 1; and the cost of swaps were assigned to 0 as described in Section 3.2.4.
For the inversions and transpositions, we tried five different cost assignments: 1 and 1,
1 and 1.5, 1 and 2, 1.5 and 1, 2 and 1, respectively. We assumed that the cost of a
transversion is identical to the cost of a transposition. Recall that the goal is to find a plan
with a small total cost (rather than a shortest plan). We set the maximum total cost k of a
plan to a large value, to see the effectiveness of our methods with heuristics.

The priorities of inversions, transpositions and transversions were defined as the num-
ber of relieved breakpoints per cost, as described in Section 3.2.6. Swaps have 0-cost
and they can help forming good links with no cost, as described in Section 3.2.4; there-
fore, to make swaps applicable whenever possible, the priority of swaps was set to a high
value (2000 plus the number of relieved breakpoints). Consider, for instance, rearrang-
ing (1, 4, 2, 3, 5) into (1, 2, 3, 4) where 4 and 5 denote the same gene: if swaps have a
higher priority, then the rearrangement can be achieved by the swap of 4 and 5 followed
by the deletion 5; otherwise, the rearrangement can be achieved with a solution of higher
cost where the deletion of 5 is followed by a transposition of 4 after 3. The priorities of
insertions and deletions were set to high values as well with the following intuition: inser-
tions/deletions are predestined to occur a fixed number of times in a small-cost plan and
thus are unavoidable, and applying them as early as possible helps reduce the problem
size.

We also experimented with these data sets where the priority is defined relative to a
specified percentage of inversions. For each data set, inversion percentages of 25, 50 and
75 were tried, where the costs of all events were set to 1.

3.3.1.1 Chloroplast genomes of land plants and green algae

We considered the chloroplast genomes of 7 species studied by Cui et al. [15]. These
genomes share 85 genes; and each genome is of length 87–97. When the rearrangement
events were assigned the same cost of 1, GENOMEPLAN computed a plan for each pair
of genomes. Overall, 21 plans, each with 8–48 events, were computed in 67 minutes.
The number of rearrangement events included in these plans are summarized in Table 3.1.
Based on these results, an unrooted tree (Fig. 3.2) was constructed using the distance

31

Table 3.1: The distance matrix computed by GENOMEPLAN for the chloroplast genomes
of 7 land plants and green algae: Nicotiana (NI), Marchantia (MA), Chaetosphaeridium
(CM), Chlorella (CA), Chlamydomonas (CS), Nephroselmis (NE), and Mesostigma (ME).

NI MA CM ME NE CS CA
NI 0
MA 8 0
CM 13 10 0
ME 25 19 21 0
NE 30 26 26 25 0
CS 48 43 43 44 45 0
CA 40 35 35 32 34 48 0

Marchantia Nicotiana

Chaetosphaeridium

Mesostigma

Chlorella

Nephroselmis

Chlamydomonas

Figure 3.2: The tree computed by NEIGHBOR with the matrix in Table 3.1.

matrix program NEIGHBOR.
The unrooted tree shown in Fig. 3.2 groups Nicotiana and Marchantia with Chaetosphaerid-

ium, thus grouping the land plants and charophyte algae; it also groups Chlorella and
Chlamydomonas with Nephroselmis, thus grouping the chlorophyte algae; Mesostigma is
an outlier. These results conform with the biological evidence based on the analysis of 50
concatenated proteins [15].

In all other experimental settings (with different costs of events and the percentages of
inversions), exactly the same unrooted tree was computed. Since the distances between
genomes are large, the modifications of costs/priorities do not change the outcome.

In the work by Cui et al. [15], the authors handle duplications in a different way, con-
sidering inversions only. If a gene has multiple copies, instead of renaming the duplicate
genes, they choose to keep only one of these genes and discard the rest. In this way, they
construct multiple datasets with equal gene content and with no duplicates. Then, for each

32

Table 3.2: The distance matrix computed by GENOMEPLAN for 13 chloroplast genomes
of Campanulaceae: Wahlenbergia (WA), Merciera (ME), Trachelium (TM), Symphyan-
dra (SY), Campanula (CA), Adenophora (AD), Legousia (LE), Asyneuma (AS), Triodanus
(TS), Codonopsis (CO), Cyananthus (CY), Platycodon (PL), Tobacco (TO).

TO PL CY CO ME WA TS AS LE SY AD CA TM
TO 0
PL 8 0
CY 6 9 0
CO 6 10 5 0
ME 9 14 9 9 0
WA 8 12 9 9 4 0
TS 8 11 9 9 8 6 0
AS 8 11 9 9 9 7 2 0
LE 9 12 9 10 8 6 2 4 0
SY 7 11 8 8 6 3 5 6 5 0
AD 8 11 8 9 6 4 6 7 6 3 0
CA 7 10 8 8 5 3 5 6 5 1 2 0
TM 7 10 9 8 5 2 4 5 4 1 2 1 0

dataset, a phylogeny is computed using breakpoint medians. The dataset that yields the
best tree is chosen for a full evaluation by GRAPPA. With this method, the computation of
the phylogeny above took almost 25 days in the study of Cui et al. [15].

3.3.1.2 Chloroplast genomes of Campanulaceae

We considered the chloroplast genomes of 13 Campanulaceae species, each with 105
genes, as in the work by Cosner et al. [13]. In the case of rearrangement events having the
same cost, all 78 plans (each with 1–14 events) were computed by GENOMEPLAN in 46
CPU seconds. These results are summarized in a distance matrix (Table 3.2).

According to the unrooted tree constructed by NEIGHBOR (Fig. 3.3) over this distance
matrix, we observe the following: Wahlenbergia and Merciera are grouped together;
Trachelium, Symphyandra, Campanula, Adenophora are grouped together; Legousia,
Asyneuma, Triodanus are grouped together; Codonopsis, Cyananthus, Platycodon, To-

bacco are grouped together, separate from the others. These groupings are identical to the
ones in the consensus tree presented in Fig. 4 of [13]. The major division between the
grouping of Codonopsis, Cyananthus and Platycodon, and the others conform with the
most recent results [14] based on the sequence analysis; also this division corresponds to
the distribution of pollen morphology characteristics, unlike the previous results.

The experiments with other cost/priority settings resulted in the same major group-
ings, except for the case where the cost of inversions were set to 2 and the cost of trans-
positions and transversions was set to 1. In this case, Merciera was not grouped with

33

Platycodon Tobacco

Codonopsis

Cyananthus

Legousia

Asyneuma

Triodanus

Wahlenbergia

Merciera Adenophora

Trachelium

Symphyandra

Campanula

Figure 3.3: The tree computed by NEIGHBOR with the matrix in Table 3.2.

Wahlenbergia but closer to the group of Codonopsis, Cyananthus, Platycodon, Tobacco.
However, penalizing inversions with a higher cost is contradictory to the general belief
that inversions occur more often in chloroplast genomes and this belief might explain the
discrepancy observed between the phylogenies.

3.3.1.3 Mitochondrial genomes of Metazoa

We considered the mitochondrial genomes of 11 species, each with 36 genes, studied by
Blanchette et al. [8].

When the events were assigned the same cost of 1 and the desired percentage of inver-
sions was set to 50%, GENOMEPLAN computed all 55 plans (each with 1–22 events) in
622 CPU seconds; these results are summarized in Table 3.3. The phylogeny constructed
by NEIGHBOR for these distances is shown in Fig. 3.4. This phylogeny groups chordates
(Human) and echinoderms (Asterina pectinifera, Paracentrotus lividus) together; arthro-
pods (Drosophila yakuba, Artemia franciscana), some molluscs (Katharina tunicata) and
annelids (Lumbricus terrestris) together; nematodes (Ascaris suum, Onchocerca volvulus)
are a sister to these two groupings. These results conform with the results of [47] based on
morphological data. Groupings of chordates and echinoderms, and molluscs and annelids
also conform with the most widely accepted view of Metazoan Systematics and Tree of
Life, based on the analysis of molecular data (18S rRNA sequences). On the other hand,
this phylogeny does not group all molluscs together.

In the other settings (with different costs and priorities of events), different phyloge-
nies were obtained; however, these phylogenies do not confirm much with the widely ac-
cepted trees mentioned above. For instance, when the priority was defined as the number

34

Table 3.3: The distance matrix computed by GENOMEPLAN for 11 mitochondrial
genomes of Metazoa: Human (HU), Asterina pectinifera (AP), Paracentrotus lividus
(PL), Drosophila yakuba (DY), Artemia franciscana (AF), Albinaria coerulea (AC),
Cepaea nemoralis (CN), Katharina tunicata (KT), Lumbricus terrestris (LT), Ascaris
suum (AS), Onchocerca volvulus (OV).

OV AS LT KT CN AC AF DY PL AP HU
OV 0
AS 10 0
LT 18 19 0
KT 17 17 11 0
CN 18 17 16 17 0
AC 18 17 18 16 3 0
AF 19 18 15 11 16 16 0
DY 19 17 15 11 17 17 2 0
PL 17 17 15 16 16 16 16 16 0
AP 17 18 16 16 17 17 16 17 1 0
HU 18 18 16 14 17 18 12 11 14 13 0

of breakpoints per cost, chordates were located closer to arthropods than to echinoderms
in the phylogeny. When the costs of inversions were set to higher values or when the
desired percentage of inversions was reduced to 25%, nematodes were grouped with mol-
luscs and echinoderms were placed as a sister to this grouping. We observe that higher
costs of inversions or lower percentage of inversions lead to less plausible groupings;
these results suggest a bias towards inversions. We also observe the variety of phyloge-
nies obtained in different settings. This variety can be attributed to the small variations
between pairwise distances: A small change in the distance matrix results in compara-
tively large changes in the associated phylogeny computed by NEIGHBOR. These exper-
iments show also that GENOMEPLAN, with its flexibility of setting costs/priorities, can
be useful for better understanding which events might have occurred more often.

3.3.2 GENOMEPLAN vs. DERANGE 2

For these experiments, we randomly generated genome rearrangement problem instances.
For a given genome length n, and a number d of duplicate genes, a single random prob-
lem instance was generated as follows: First, we generated the identity permutation
1, . . . , n − d, and, for d times, we added to the end of the permutation a random num-
ber from {1, . . . , n − d}. After shuffling the resulting sequence, we obtained a random
genome g of length n, which contains d duplicate genes. Given the number of each event,
we generated the other genome g′ by applying a series of randomly generated instances
of these events on g.

We generated two datasets, each consisting of 1000 problem instances. In the first

35

Asterina pectinifera Paracentrotus lividus

Albinaria coerulea

Cepaea nemoralis

Lumbricus terrestris

Drosophila yakuba

Artemia franciscana

Katharina tunicata

Onchocerca volvulus

Ascaris suum

Human

Figure 3.4: The tree computed by NEIGHBOR with the matrix in Table 3.3.

dataset, n = 100 and d = 0 (no duplicates); in the second dataset, n = 100 and d = 50.
In both datasets, g′ is generated from g by applying 10 inversions, 5 transpositions and 5
transversions. We presented the second dataset to both GENOMEPLAN and DERANGE 2,
after relabeling the duplicates in the problem instances in random order. We provided
some information to GENOMEPLAN about the duplicates as explained in Section 3.2.1.
The cost of each rearrangement event was set to 1, and the priority was defined as the
number of relieved breakpoints per cost; the priority of a swap was set to 2000 plus the
number of relieved breakpoints. DERANGE 2 was run with look-ahead=4.

In the duplicate-free dataset, out of 1000 instances, GENOMEPLAN found more par-
simonious solutions to 242 instances whereas DERANGE 2 computed more parsimonious
solutions to 112 instances; for the rest of the instances, both systems computed solutions
of equal cost. In the dataset with duplicates, out of 1000 instances, GENOMEPLAN found
more parsimonious solutions to 277 instances whereas DERANGE 2 computed more par-
simonious solutions to 112 instances. These results suggest that allowing 0-cost swaps of
(originally) duplicate genes after relabeling duplicates is a more effective method than the
naive approach of relabeling duplicates.

3.3.3 GENOMEPLAN vs. TD-ESTIMATOR

We also compared GENOMEPLAN with TD-ESTIMATOR [41], the only other software
that can handle duplications and unequal gene content, on randomly generated instances.
These instances were generated as described in the previous section. The randomly
generated sequences contained 40% duplicate genes. Since GENOMEPLAN and TD-
ESTIMATOR handle unequal gene content differently (GENOMEPLAN uses single in-

36

sertions and deletions whereas TD-ESTIMATOR uses block duplications and single gene
losses), for a fair comparison these random instances were generated with equal gene
content.

As mentioned before, Lin et al. try to estimate the actual number of events whereas we
are trying to find the minimum number of events. Due to this fundamental difference of
the problems addressed by TD-ESTIMATOR and GENOMEPLAN, comparing the results
with respect to the actual distance or with respect to the minimal distance is unfair. To
establish a fair comparison criteria, we made use of the following observation: a software
that always correctly estimates the exact half of the true evolutionary distance leads to
better phylogenies than a software that finds solutions closer to the actual distance but with
some deviations. Following this observation, we compared GENOMEPLAN and TD-
ESTIMATOR in terms of consistency in the estimations of the true evolutionary distances.
In order to do that, we normalized the average of their estimations for the given problem
instances to the true distance; and then we compared the squares of the errors of the
normalized distances.

In our experiments we tested the accuracy of GENOMEPLAN and TD-ESTIMATOR

in two different settings: we fixed the length of the genomes and increased the number
of events (i.e., inversions, transpositions and transversions); and we fixed the number
of events and increased the lengths of the genomes. Also, in each setting, we considered
three cases where the ratio of the number of inversions to the number of transpositions and
transversions was set to 1/1, 1/2, or 2/1. The cost of an inversion was set to 1; and the cost
of a transposition/transversion was set to 1.5 (which is the derived cost of a transposition
in Lin et al.’s experiments). The priority of an inversion/transposition/transversion was
defined as the number of relieved breakpoints per cost. The priority of a swap was defined
as 2000 plus the number of relieved breakpoints.

3.3.3.1 Fixed genome length but varying number of events

Table 3.4 shows the results of the experiments where we fixed the length of the genome to
125. The rows identified by A1–A5 (resp. B1–B5 and C1–C5) summarize the results of
the experiments for the case where the ratio of the number of inversions to the number of
transpositions and transversions was set to 1/1 (resp. 1/2 and 2/1). In each of these three
cases, the number of events ranged from 12 (A1, B1, C1) to 60 (A5, B5, C5).

Each line in the table summarizes the results of experiments over 100 randomly gen-
erated instances. Consider, for instance, the row identified by A4. This row summarizes
the results of experiments over 100 randomly generated instances, where each instance
is generated by 30 inversions, 15 transpositions and 15 transversions as explained in the
previous section; hence, the actual cost of the plan is 60. The average cost of the plans
computed by GENOMEPLAN (resp. TD-ESTIMATOR) is 53.32 (resp. 58.12). The stan-
dard deviation for GENOMEPLAN (resp. tde) computed after normalization of these

37

Table 3.4: Comparison of GENOMEPLAN and TD-ESTIMATOR in the case with fixed
genome length and increasing number of operations.

genome #of #of #of actual average cost normalized stdev
ID length inversions transpositions transversions cost TD-ESTIMATOR GENOMEPLAN TD-ESTIMATOR GENOMEPLAN
A1 125 6 3 3 15 14.78 14.68 1.19 0.98
A2 125 12 6 6 30 29.11 28.47 2.52 1.77
A3 125 18 9 9 45 43.75 42.05 3.81 2.33
A4 125 24 12 12 60 58.12 53.32 4.90 3.11
A5 125 30 15 15 75 72.86 62.24 6.59 3.60
B1 125 4 4 4 16 15.53 15.86 1.15 1.02
B2 125 8 8 8 32 30.69 31.17 2.56 1.59
B3 125 12 12 12 48 46.48 45.02 3.48 2.43
B4 125 16 16 16 64 61.56 56.36 4.99 2.96
B5 125 20 20 20 80 76.95 64.37 6.80 3.46
C1 125 8 2 2 14 13.57 13.58 1.13 1.01
C2 125 16 4 4 28 27.56 26.49 1.79 1.49
C3 125 24 6 6 42 41.30 38.89 3.15 2.22
C4 125 32 8 8 56 54.83 50.05 4.41 2.64
C5 125 40 10 10 70 67.39 58.96 5.52 3.44

average costs to the actual cost is 3.11 (resp. 4.90).
In Table 3.4, we observe that the average costs calculated by GENOMEPLAN and TD-

ESTIMATOR tend to be lower than the actual cost. As the number of events increases, the
estimations of TD-ESTIMATOR usually remain just below the actual cost while GENOME-
PLAN finds evolutionary distances with higher deviation from the actual cost; this is ex-
pected since TD-ESTIMATOR tries to estimate the actual cost while GENOMEPLAN tries
to optimize the total cost. The normalized standard deviation increases as the number of
events increase. These error values are lower for GENOMEPLAN, making it more advan-
tageous over TD-ESTIMATOR. Similar observations are made with different ratios of the
number of inversions.

3.3.3.2 Fixed number of events but varying genome length

Table 3.5 summarizes our experiments where the number of events was set to 30 and the
genome length varied from 125 to 2000. It has a similar structure as in Table 3.4. The rows
identified by D1–D5 (resp. E1–E5 and F1–F5) summarize the results for the case where
the ratio of the number of inversions to the number of transpositions and transversions
was set to 1/1 (resp. 1/2 and 2/1). In each of these three cases, the genome length varied
from 125 (D1, E1, F1) to 2000 (D5, E5, F5).

In each case, we observe that the average costs of solutions increase and the normal-
ized standard deviations decrease as the genome size increases. We also observe that, in
shorter genomes (resp. longer genomes), the normalized standard deviation of the solu-
tions computed by GENOMEPLAN (resp. TD-ESTIMATOR) is lower. The average cost
of the solutions GENOMEPLAN becomes slightly higher than the actual cost when the
length of the genome is increased to 2000. This behavior of GENOMEPLAN can be ex-
plained as follows. While generating the instances, as the genome length increases, it

38

Table 3.5: Comparison of GENOMEPLAN and TD-ESTIMATOR in the case with fixed
number of events and increasing genome lengths.

genome #of #of #of actual average cost normalized stdev
ID length inversions transpositions transversions cost TD-ESTIMATOR GENOMEPLAN TD-ESTIMATOR GENOMEPLAN
D1 125 15 8 7 37.5 36.74 35.90 2.67 1.94
D2 250 15 8 7 37.5 37.03 36.64 1.90 1.25
D3 500 15 8 7 37.5 37.46 37.38 1.41 1.21
D4 1000 15 8 7 37.5 37.05 37.32 1.07 0.78
D5 2000 15 8 7 37.5 37.44 37.84 0.70 1.02
E1 125 10 10 10 40 39.21 38.62 3.28 1.98
E2 250 10 10 10 40 39.33 39.54 2.00 1.58
E3 500 10 10 10 40 39.82 39.87 1.57 1.06
E4 1000 10 10 10 40 39.84 40.15 1.12 1.01
E5 2000 10 10 10 40 39.86 40.24 0.73 0.78
F1 125 20 5 5 35 34.29 33.01 3.03 2.06
F2 250 20 5 5 35 34.50 33.57 1.86 1.09
F3 500 20 5 5 35 34.85 34.52 1.37 1.06
F4 1000 20 5 5 35 34.85 34.88 0.79 0.83
F5 2000 20 5 5 35 35.06 35.12 0.66 0.92

becomes less likely for a rearrangement event to operate on a breakpoint generated by a
previous event. Then, the ratio of the number of breakpoints to the number of events that
generated them increases up to a point where the sequence of randomly generated events
gets closer to an optimal plan. Therefore, as the genome length increases, harder prob-
lems are generated. On the other hand, recall that GENOMEPLAN does not guarantee
finding optimal solutions.

3.4 Summary of Contributions

We have extended the work of Erdem and Tillier [24] with the following changes:
To handle duplicates, we include in the representation of genomes the information

about which genes are duplicates of each other, and we introduce a 0-cost auxiliary action
of swapping gene segments. After assigning a cost of 1 to the actions that characterize
rearrangement events, the genome rearrangement problem can be reformulated as a plan-
ning problem that asks for a plan whose total cost is at most a given nonnegative integer
k. By allowing 0-cost swaps of duplicates, we avoid enumerating all possible relabel-
ings of the duplicates and solving the genome rearrangement problem for each possible
relabeling as in Cui et al.’s work [15].

To improve the computational efficiency, we embed three heuristics in the action de-
scriptions. The breakpoint heuristic ensures that the number of breakpoints decreases at
each step of the plan; it reduces the branching factor of the search tree from O(n3) to
O(n2) where n is the genome length. If a gene segment occurs in both genomes then
the second heuristic identifies this gene segment as a “good segment” and maintains it as
is through the search. It further reduces the branching factor of the search tree to O(b2)

where b is the number of breakpoints. According to the third heuristic, a gene is consid-

39

ered “irrelevant” if it forms good segments with its two neighbor genes; if an action makes
a gene irrelevant then that gene is discarded after the application of that action. Discard-
ing irrelevant genes reduces the number of candidate rearrangement events considered at
each step of the search.

To get more plausible results from the point of view of biology, one can incorporate
domain-specific information into descriptions of actions that characterize rearrangement
events. Such an incorporation can be achieved by assigning costs and priorities to these
actions so that the search is guided towards more plausible solutions. For instance, trans-
positions may occur more often in some species, then we can assign a lower cost to
transpositions to reflect this domain-specific information. In this way, with a cost-based
search strategy where the goal is to find a small-cost plan, we expect to obtain a plan that
involves transpositions instead of more expensive actions. On the other hand, priorities of
actions affect the ordering of successor states in search: actions with higher priorities are
selected before the ones with lower priorities if the search strategy is priority-based. The
flexibility of assigning costs and priorities to events is also important in understanding the
frequency of different events [52] in the evolution of species.

We implemented a genome rearrangement software, called GENOMEPLAN, based on
the methods described above, utilizing the facilities of the AI planner TLPLAN [1]. Al-
though the genomes of many species (in particular, the chloroplast genomes) have unequal
gene content and duplicate genes, most of the existing genome rearrangement software
(e.g., GRIMM [57], GRAPPA [46], DERANGE 2 [7], MGR [9]) cannot handle them directly.
Being able to represent and modify genome rearrangement problems in a high-level for-
malism, and to choose the search strategy and cost/priority settings to solve the problem
allows us a flexible tool to analyze and better understand evolutionary history of species.
In this sense, GENOMEPLAN provides an alternative tool to solving genome rearrange-
ment problems.

We illustrated the applicability and the effectiveness of our planning-based approach
to genome rearrangement in three sorts of experiments using GENOMEPLAN. To show
the usefulness of our planning-based approach to genome rearrangement, we experi-
mented with three sets of real data: mitochondrial genomes of Metazoa (animals with
a nervous system, and muscles) [8], chloroplast genomes of Campanulaceae (flowering
plants) [13], and chloroplast genomes of various land plants and green algae [15]. We ob-
served that our results conform with the most recent and widely accepted results. To com-
pare our planning-based approach to genome rearrangement with duplicate genes, with
the naive approach (where we relabel duplicates uniquely and use an existing genome
rearrangement software system that can handle transpositions, inversions and transver-
sions and whose goal is to find a parsimonious solution), we experimented with a set
of randomly generated problem instances. In these experiments, we used DERANGE 2
since it is the only such available system. We observed that GENOMEPLAN computes

40

more parsimonious solutions compared to DERANGE 2. Another available genome rear-
rangement software that can handle inversions, transpositions, and transversions is TD-
ESTIMATOR [41]. Unlike GENOMEPLAN and DERANGE 2, TD-ESTIMATOR tries to
approximate the true distance between two genomes in terms of the Double-Cut-Join op-
erator, gene losses and duplications. We experimented with a set of randomly generated
problem instances with duplicates and with equal gene content. observed that GENOME-
PLAN is comparable with TD-ESTIMATOR in terms of accuracy (deviation of the esti-
mated cost from the actual cost, after normalization).

41

Chapter 4

Decoupled Planning for Multiple Teams of Robots

Consider a domain of multiple teams of robots with each team located in a separate
workspace, working toward completion of their assigned tasks. Let each team be com-
posed of several types of robots with different capabilities and let some types of robots
be able to change their end-effectors to perform different actions. Given the state of each
workspace and designated tasks for each team, the goal is for all the teams to complete
these tasks in a minimum number of steps. We can divide this problem into several inde-
pendent planning problems (i.e., one plan for each team); and thus can solve it by planning
the actions of each team.

To make more efficient use of shared resources (e.g., robots), let us assume that teams
can exchange robots: at any step, a team can lend one of its robots to another team.
A transportation delay (in terms of number of steps) is associated with such exchanges,
since it takes time for a robot to move from one workspace to another. This assumption on
the exchange of robots between teams complicates the whole problem, since the problem
cannot always be divided into independent smaller problems. One straightforward way
to solve this modified problem might seem to formalize the whole domain, and pose the
problem above as a single planning problem; however, the domain description and the
search space gets too large.

We propose to solve a restricted version of this problem where a team can either lend
or borrow a robot, but not both and a team can not lend or borrow more than one robot.
We also assume that all actions of robots are discrete and take a single step, and the teams
start executing their plans at the same time. The goal is to find a plan (for each team,
possibly with robot exchanges) where the tasks of all teams are completed in minimum
number of steps.

Our solution is based on the following idea (Fig. 4):

• Each team has a representative agent. The representative agents can find optimal
plans (with concurrent actions) for that team. The representative agents can also
answer certain types of yes/no queries, such as “can your team complete its task in

42

Team 6

Team 5 Team 4

Team 1 Team 2

Team 3Central
Agent

Figure 4.1: Our general approach.

k steps, while also lending a robot before step k′?”.

• There is a central agent, that communicates with the representative agents through
these kinds of queries, in order to find a minimum length plan.

Our solution involves a combination of causal reasoning and decoupled planning:

• We represent the domain in the action language C+ [33] so that every team can
reason about the domain using the causal reasoner CCALC [43] with respect to
their own parameters (e.g., number of robots).

• We introduce an intelligent algorithm for the central agent to decide how to decou-
ple plans (i.e., which teams lend robots to which other teams, and when) to find an
optimal overall plan, by communicating with the representatives of the teams.

Our approach can be applied to many challenging domains with multiple heterogenous
teams of self-reconfigurable robots (e.g., search and rescue robots, cognitive factories).
We show its applicability on a Cognitive Painting Factory scenario, providing also a good
case study for future intelligent factories [64]. We also discuss how our optimal decoupled
planning algorithm can be embedded in an execution and monitoring framework, allowing
the effective reuse of previously computed results in case of plan failures (e.g., when a
robot gets broken, or tasks are reassigned).

The rest of this chapter is organized as follows: We first briefly introduce the Cogni-
tive Painting Factory in Section 4.1, followed by explaining how we model the workspace
of a single team as a planning problem in C+, in order to answer different kinds of queries
asked by the central agent (Section 4.2). We then explain the algorithm our central agent
utilizes to find a collective optimal decoupled plan and analyze it in Section 4.3. Fol-
lowing a description of how we embed our optimal decoupled planning algorithm in an

43

1 2 3 4

542

5

P u a

not ready ready
bench

Figure 4.2: A sample workspace.

execution and monitoring framework in Section 4.4, we discuss the related work in Sec-
tion 4.5 and conclude.

4.1 A Cognitive Painting Factory Scenario

Consider a Painting Factory with multiple workspaces, where each workspace produces
different colored boxes (by successively painting, waxing and stamping an unpainted box)
with a team of robots consisting of several self-reconfigurable worker robots and a single
carrier robot. Worker robots can move horizontally and change their end-effectors to do
different tasks, while a carrier robot can move both horizontally and vertically and push
or pull the worker robots, after attaching to them. Each workspace is depicted as a grid,
as shown in Fig. 4.1, contains an assembly line along the north wall to move the boxes
and a pit stop area where the worker robots can change their end-effectors.

To make more efficient use of shared resources, teams can exchange robots: at any
step, a team can lend one of its worker robots through their pit stop such that after a
transportation delay the worker robot shows up in the pit stop of a borrowing team. Here,
we are assuming that the end effector (e.g., green painter) of the robot is removed after it
leaves the lending team’s workspace and a new end effector (e.g., red painter) is mounted
on it before it enters the borrowing team’s workspace; and all this extra work is accounted
for in the transportation delay.

Initially, we are given each workspace’s state, with the number of boxes to be painted;
the goal is for all teams to paint the specified number of boxes in minimum number of
steps. While a plan is being executed, it is possible that a robot may get broken so that it
can not attach to another robot or work on a box, or that tasks assigned to teams (e.g., the
number of orders) may be modified.

44

4.2 Representing the Painting Factory Domain

We describe the painting factory domain in the action description languag C+ and the
reasoning problems in the action query language accepted by the causal reasoner CCALC,
like in [12, 25]. Inheriting the advantages of C+, CCALC allows reasoning about true
concurrency, ramifications, defaults, and various reasoning tasks (planning with temporal
constraints, prediction, etc.) over the given domain description. See Chapter 2 for detailed
information about C+ and CCALC.

Our main goal is to be able to answer the following kinds of queries, for a single team:

• Can the team complete its task in k steps?

• Can the team complete its task in k steps, while lending a robot before step k′?

• Can the team complete its task in k steps, by borrowing a robot after step k′?

Let us first consider a single team in a single workspace, explain the domain descrip-
tion in C+, and show how a single team can use CCALC with this formalization for
planning to answer the first type of queries. After that, we explain how to modify the
domain description to allow exchanges of robots. Last, we show how to find plans with a
smaller number of actions (i.e., spend less energy to achieve the same goals).

4.2.1 Domain Description: No Robot Exchanges

We view the workspace as a 3 × 5 grid (Fig. 4.1) with the lower left corner being (1, 1).
We represent the carrier robot by the constant c1; n worker robots by the constants w1,
w2 . . . wn; and each one of b boxes with a distinct number in {1 . . . b}.

4.2.1.1 Fluents

The fluents used in describing the Painting Factory are summarized in Table 4.1.
The robots are supposed to be located at grid squares; therefore, the location of a robot

R is specified by two functional fluents, xpos(R)=X and ypos(R)=Y.
The boxes are supposed to be located in some order on the assembly line; therefore,

the location of a box B on the assembly line is specified by a single fluent linePos(B)=L
where L is in {1− b, . . . , 5 + b}. Here {1− b, . . . , 0} and {6, . . . , 5 + b} denote the boxes
that completed the painting process, or that are not yet taken in the painting process.

The status of a box B is denoted by the functional fluent workDone(B)=WS where WS
stands for a work stage: 0–unprocessed, 1–painted, 2–waxed, 3–stamped.

A newly painted box is wet and it has to be left to dry before it can be waxed; to
formalize this transition constraint, we need a relational fluent wetpaint(B) to show
that box B is wet.

45

Table 4.1: Fluents for representing the Painting Factory.

Fluent Description
xPos(R)=X, yPos(R)=Y Coordinates of robot R on the grid.
linePos(B)=L Position of box B on the assembly line.
workDone(B)=WS Work stage of a box B. WS can be

unprocessed, painted, waxed,
stamped.

wetPaint(B) Indicates the box B has wet paint.
endEffector(W)=E Worker W has the end effector E; which can be:

painter, waxer, stamper.
attached(C,W) Carrier C is attached to worker W.

The functional fluent endEffector(W)=E denotes that the worker robot W has the
end-effector E; the value of E denotes the role of the worker relative to the work stage:
1–painter, 2–waxer, 3–stamper.

The carrier robot needs to attach to and detach from the worker robots, to be able to
carry them along the vertical axis. Therefore, we need a relational fluent attached(C,W)
to express that the carrier robot C is attached to the worker robot W.

Using fluents only, we can describe state constraints by means of static causal laws.
For instance, we formalize that at no state of the world two worker robots W1 and W2 are
on the same grid cell, by the causal law

caused false if xpos(W1)=xpos(W2) & ypos(W1)=ypos(W2) where W1\=W2.

4.2.1.2 Actions

The actions used in describing the Painting Factory are summarized in Table 4.2.
A robot R (which may be a worker W or carrier C) can move in the direction D by one

unit; we denote this action by move(R,D). A worker robot W can perform the follow-
ing actions: swapEndEffector(W,E)–changing its end-effector to E, workOn(W,B)–
working on a box B to proceed to the next work stage. A carrier robot can perform the
following actions: attach(C,W)–attaching to a worker robot W, detach(C)–detaching
from the worker robot it is attached to, push(C)–pushing the worker robot (it is attached
to) vertically by one unit, pull(C)–pulling the worker robot (its is attached to) vertically
by one unit. In addition to the actions of robots in a team, there is also the action of
shifting the assembly line, denoted by lineShift.

In C+, we describe actions and change by causal laws. Consider, for instance, the
action workOn(W,B). We formalize by the following causal law that this action, as its
direct effect, increments the work stage WS of a box B if the worker robot W is working
on B:

46

Table 4.2: Actions for representing the Painting Factory.

Action Description
move(R,D) Robot R moves 1 step towards direction D.

Workers cannot move vertically.
push(C), pull(C) Carrier C pushes/pulls the worker it is attached

to. Only way for the workers to move vertically.
attach(C,W) Carrier C attaches to worker W. Cmust be on top

of W.
detach(C) Carrier C detaches from the worker it is attached

to.
swapEndEffector(W,E) Worker W swaps its end effector to E. W must be

in the pit area.
workOn(W,B) Worker W works on the box B. Current work-

stage of B and end effector of W must match.
lineShift Line shifts, causing all the boxes to move.

workOn(W,B) causes workDone(B)=WS if workDone(B)=WS-1.

The action workOn(W,B) denotes painting if the current work stage is 0, i.e., workDone(B)=0.
Therefore, we formalize that painting a box B causes the box to have wet paint, by the
causal law

workOn(W,B) causes wetpaint(B) if workDone(B)=0.

Similarly, we describe the direct effects of other actions by causal laws.
We can describe change that does not directly involve an action of a robot. For in-

stance, we formalize that a box with wet paint gets dry, by the causal law

caused -wetpaint(B) after wetpaint(B).

We describe preconditions of actions by causal laws as well. For instance, we formal-
ize by the following causal law that the action move is not possible if the robot is at the
rightmost border (maxX):

nonexecutable move(R,right) if xpos(R)=maxX.

We describe that a robot W cannot work on a box B that still has wet paint, by the causal
law:

nonexecutable workOn(W,B) if wetpaint(B).

and that a worker robot W can work on a box B only if the worker has the appropriate
end-effector for the next work stage, by the causal law:

47

nonexecutable workOn(W,B) if endEffector(W)=WS & workDone(B)\=WS-1.

Similarly, we can express that a worker robot can work on a box if it is right next to
the assembly line and it is aligned with the box, that the worker robots do not move
vertically, that a worker robot can swap its end-effector only if it is in the pit area, and
other preconditions of the worker’s actions, etc.

We can also formalize the preconditions of a carrier’s actions: A carrier attaches to a
worker only if it is right on top of it; a carrier can not push/pull a robot if it is not attached
to it.

Concurrent actions are allowed unless specified otherwise. We express the nonexe-
cutability of two actions concurrently, also by causal laws. For instance, we can express
that a robot cannot move in two different directions (to prevent diagonal moves) by the
causal law

nonexecutable move(R,D1) & move(R,D2) where D1\=D2.

a carrier cannot detach and pull at the same time by the causal law

nonexecutable detach(C) if pull(C).

Similarly, we prevent the following concurrent actions: A worker cannot work on a box
while the line is shifting; the pushing/pulling carrier robot and the pushed/pulled worker
robot cannot be involved in any other action; and a moving robot cannot attach or detach
or work on a box.

4.2.1.3 Finding Plans without Robot Exchanges

We present planning problems to CCALC by means of queries. For instance, the following
query asks for a shortest plan whose length is at least 18 and at most 100, for a team with
one worker (w1) and one carrier (c1):

:- query

maxstep :: 18..100;

0: % no robot is attached to another

[/\C /\W |-attached(C,W)],

% no block has wetpaint

[/\B | -wetpaint(B)=0],

% worker is at (1,3); carrier is at (1,1)

xpos(w1)=1, ypos(w1)=3, xpos(c1)=1, ypos(c1)=1,

% boxes are not yet processed

[/\B | linePos(B)=B+lineLength, workDone(B)=0];

maxstep: % all boxes are painted

linePos(maxBox)=0, [/\B | workDone(B)=3].

48

Then, with the domain description whose some parts are explained above, CCALC finds
a shortest plan of length 29 in 10 CPU seconds (on a workstation with two 1.60GHz Intel
Xeon E5310 Quad-Core Processor and 16 GB RAM, running Centos 64bit (Version 5.3))
using the parallel SAT solver MANYSAT [34] as its search engine; it spends 2.4 CPU secs
to find a plan of length 29 (4784 atoms and 28897 clauses) and 7.6 CPU secs to verify the
nonexistence of a plan of length k = 18, ..., 28.

4.2.2 Domain Description: Exchanges of Robots

We extend the basic formulation for CCALC above to answer two different kinds of
queries, namely, for a specific intermediate Step k′:

• “Can the team complete its task in k steps, while lending a robot before step k′?”

• “Can the team complete its task in k steps, by borrowing a robot after step k′?”

For this extension, we introduce a new fluent bench(W) to describe that a worker
robot W is at the bench area, and thus it cannot be part of any of the previous actions, and
it is also forced to be outside the workspace (ypos(W)=0). We also add two new actions,
namely giveRobot(W) which puts W to the bench (W needs to be in the pit stop area first)
and takeRobot(W,X,Y) which takes W from the bench and puts it at (X,Y) in the pit
stop area.

The direct effect of takeRobot(W,X,Y) is described by the causal laws:

takeRobot(W,X,Y) causes xpos(W)=X.

takeRobot(W,X,Y) causes ypos(W)=Y.

whereas the following describe some of its preconditions:

nonexecutable takeRobot(W,X,Y) if -bench(W).

With these additional fluents and actions, we can express the two sorts of queries
mentioned above. CCALC allows us to add constraints as parts of queries. For example,
we can add before the statement of goal in the query above, the line

10: workDone(1)=3;

to introduce a subgoal that the first box should be stamped by Step 10. We can add the
following constraint to ensure that at least one worker is in the bench at step k′:

k’: [\/W | xpos(W)=minX-1], [\/W | bench(W)];

By this way, we can answer the query “Can the team complete its task in k steps, while

lending a robot before step k′?”, provided also that no robot is borrowed meanwhile with:

49

nonexecutable takeRobot(W,X,Y).

Disabling taking robots prevents the cases where a robot is given before step k′, remains
in the bench at step k′, and then taken back.

The queries that involve borrowing a robot are handled similarly. This time we add an
extra robot to the problem, say we, and force it to be in the bench at step k′:

k’: bench(we);

We also disable the lending of robots, similar as before.

4.2.3 Eliminating Redundant Actions

In the plans found by CCALC, we have observed some unnecessary actions, such as:

• A worker swapping its end effector two steps in a row

• The carrier attaching to a worker and detaching immediately after

• Robots moving in one direction and then the opposite direction (including push and
pulls)

These are undesirable behaviours in a factory and they should be eliminated. To this end,
we further modify the formulation, to force CCALC to find plans with less redundancy.
However, while eliminating the redundancies, we should not eliminate a solution. In the
following, we give detailed explanations of how we eliminate the redundancies related to
end effector swappings, carrier attachment-detachments, and robot movement. We then
discuss the issues with redundancy elimination and how we deal with them.

4.2.3.1 Eliminating Redundant Swaps

First of all notice that instead of swapping its end effector twice in a row, a worker can
just sit in the pit stop for one step and swap its end effector to the desired one in the next
step. This kind of modification to the plan does not interfere with the work of other robots,
therefore does not break the completeness of the method (i.e., a solution is not eliminated).
One method of eliminating swap redundancies is with the following constraint:

nonexecutable swapEndEffector(W,E1) after swapEndEffector(W,E2).

which prevents a worker from swapping its end effector twice in a row. However, this
constraint leaves out the case where the worker swaps its end effector every other step (or
every three steps etc.).

To find a more general solution to the problem, we propose a token system, where
robots obtain tokens for performing specific tasks and remove them by performing other

50

tasks. A token penalyzes a robot by not allowing it to perform some actions. For example,
in the example above, we can give a relevant token, swap token to any worker W that swaps
its end effector. While a worker has a swap token, it can no longer perform other swaps,
until its token is removed by working on a box. To include this idea in our formulation,
we introduce a new fluent, swaptoken(W), to denote that W has a swap token, and extend
the formulation with the following causal laws:

swapEndEffector(W,E) causes swaptoken(W).

nonexecutable swapEndEffector(W,E) if swaptoken(W).

workOn(W,B) causes -swaptoken(W).

Also, while finding a plan with redundancy elimination, a worker W always starts
without a swap token and must not have a swap token in the goal state. This can be
achieved with the following additions to a query:

0: [/\ W | -swaptoken(W)].

maxstep: [/\ W | -swaptoken(W)].

The intuition behind this method can be explained by purpose and commitment: the
only purpose of swapping an end effector is to be able to work on a box; so once a worker
swaps its end effector, it actually commits to work on a box. It is not able to perform
further swaps until it fulfills this commitment. If it does not fulfill the commitment during
the plan, that means there was no purpose in swapping the end effector in the first place
and therefore it was a redundant action. Note that our solution with tokens also eliminates
the cases where a worker swaps its end effector and not work on a box for the rest of the
plan, or where a robot swaps, moves left, then moves right and swaps again etc.

4.2.3.2 Eliminating Redundant Attachments/Detachments

To eliminate redundancies of attachments, followed by a detachment, we introduce a
fluent attachtoken(C) to denote that C has an attach token. Then we specify that a
carrier receives an attach token when it attaches to any worker and can not detach while
it has the token. An attach token can be removed only by pushing or pulling the attached
worker (since this is the purpose of attaching in the first place). We add the following
causal laws for attach tokens:

attach(C,W) causes attachtoken(C).

nonexecutable detach(C) if attachtoken(C).

push(C) causes -attachtoken(C).

pull(C) causes -attachtoken(C).

To eliminate a similar case of redundancy, where a carrier detaches from a worker
and attaches to it again, we use a detach token. Note that this is a token for a carrier-
worker pair, which is given when carrier C detaches from worker W. While this token is

51

active C can not attach to W. The token is removed when C attaches to a different worker
(which is an acceptable excuse for detaching), or when the worker performs a horizontal
move (which is also an acceptable excuse, since a worker and a carrier can not move
horizontally while attached). We use the fluent detachtoken(C,W) to denote that the
pair C,W has a detach token. We extend the formulation with the following causal laws:

detach(C) causes detachtoken(C,W) if attached(C,W).

nonexecutable attach(C,W) if detachtoken(C,W).

attach(C,W) causes -detachtoken(C,W1).

move(W,D) causes -detachtoken(C,W).

As with the swap eliminations, we also force no attach tokens or detach tokens to be
present in the initial and goal states:

0: [/\ C | -attachtoken(C)], [/\ C /\ W| -attachtoken(C,W)].

maxstep: [/\ W | -attachtoken(C)], [/\ C /\ W| -attachtoken(C,W)].

4.2.3.3 Eliminating Movement Redundancies

Elimination of redundant carrier movement is easier, compared to eliminating redun-
dant worker movement. In our factories carriers can not collide with any other robots
and therefore can roam freely and can always choose to move between any two points
((x1, y1), (x2, y2)) on the grid, using the minimum number of steps. Note that this mini-
mum number of steps is equal to |x2−x1|+|y2−y1|, and can be achieved by never moving
in opposite directions during movement (i.e., if the carrier moves left, then it should not
move right). To force this optimal movement for the carrier, we use four tokens, one for
each direction: no-left token, no-right token, no-up token, no-down token. Whenever the
carrier moves left, it receives a no-right token, and is not able to move right while it has
a no-right token (similar rules for the other three directions). Any such token is removed
immediately when the carrier attaches to a worker, since the carrier’s reason for moving
is fulfilled. We introduce the fluent norighttoken(C) which denotes that the carrier
C has a no-right token (three other fluents for other directions) and we add the following
causal laws (for one direction, similar laws for the other directions):

move(C,left) causes norighttoken(C) if -attached(C).

nonexecutable move(C,right) if norighttoken(C).

attach(C,W) causes -norighttoken(C).

Eliminating the redundancies in worker’s moves on the grid is more tricky. The two
primary purposes of worker movement are: 1) to get to a grid cell to perform some task
(work on a box, swap end effector, meet halfway with the carrier, go to the pit stop to
be given to another team), or 2) to let another robot pass. Our approach for eliminating

52

redundant worker movement is based on using trail tokens: A worker leaves a trail token

on a grid cell, when it leaves the cell (including push/pulls) and a worker can not move
(or pushed/pulled) on top of its own trail token. All the trail of a robot is erased when
it works on a box, changes its end effector, it is attached to, or it is lent to another team.
Also, other workers can erase parts of the trail of a worker when they move over it. This
is to justify the cases where a worker moves away to avoid collisions. We introduce the
fluent trailtoken(X,Y,W) to denote that worker W has left a trail token on the grid cell
(X,Y) and extend the formulation with the following causal laws:

caused trailtoken(X,Y,W) if -[\/W1 | xpos(W1)=X & ypos(W1)=Y]

after xpos(W)=X & ypos(W)=Y.

workOn(W,B) causes -trailtoken(X,Y,W).

swapEndEffector(W,E) causes -trailtoken(X,Y,W).

attach(C,W) causes -trailtoken(X,Y,W).

caused -trailtoken(X,Y,W) if xpos(W1)=X & ypos(W1)=Y

where W \= W1.

caused false if xpos(W) = X & ypos(W) = Y & trailtoken(X,Y,W).

As with other forms of redundancy eliminations, we also force no no-left token, no-

right token, no-up token, no-down token, or trail tokens to be present in the initial and
goal states:

0: [/\ C | -nouptoken(C)], [/\ C | -nodowntoken(C)],

[/\ C | -norighttoken(C)], [/\ C | -nolefttoken(C)],

[/\ X /\ Y /\ W | -trailtoken(X,Y,W)].

maxstep: [/\ C | -nouptoken(C)], [/\ C | -nodowntoken(C)],

[/\ C | -norighttoken(C)], [/\ C | -nolefttoken(C)],

[/\ X /\ Y /\ W | -trailtoken(X,Y,W)].

4.2.3.4 Discussion

The effects of using redundancy elimination methods (on the size of the formulation,
planning time and number of actions in plans) are shown in Table 4.3. There is a 25%
decrease in the number of actions in the plan computed with redundancy elimination, at
the cost of increased planning time. There are two problems with our methods:

Planning Time: Plans with redundancy elimination can take significantly more time
to find (more than 3 times, for the instance in Table 4.3). The reason for this is the
increased formulation size (almost 3 times the number of atoms and clauses, compared to
the no redundancy elimination version). To avoid this issue as much as possible, we do

53

Table 4.3: Effects of using redundancy elimination in the formulation of a workspace with
2 workers, 1 carrier, 4 boxes, while finding a plan of length 30.

redundancy # of # of # of
elimination atoms clauses time actions
none 7952 64931 2.34964 75
all 14994 113576 5.40018 57

not use the formulation with redundancy elimination to answer the queries asked by the
central agent. We use redundancy elimination only when a decoupled plan is found with
our optimal decoupled planning algorithm (Algorithm 8). This is discussed in more detail
in Section 4.3.

Completeness: Even though the redundancy elimination methods above work effec-
tively most of the time, we have encountered several cases where the completeness of
the method is not preserved due to our worker movement redundancy elimination method
(i.e., plans of certain length and lend/borrow times are found without redundancy elimi-
nation but are not found with redundancy elimination). For these cases where a plan with
redundancy elimination is expected but not found, we simply remove the worker move-
ment redundancy elimination parts, and continue with the redundancy eliminations for
swaps, attachs-detachs, and carrier movement, all of which preserve completeness. Find-
ing a completeness preserving version of worker movement elimination method is part of
our future work.

4.3 Optimal Decoupled Planning

In this section, we show how the central agent communicates with (asks queries to) the
team representatives in order to find an optimal decoupled plan.

Throughout this section, we only consider the central agent, which can directly com-
municate with the team representatives. Representative of team t, denoted by Rt, can be
asked certain kinds of queries, such as “can your team complete its task in k steps, while
also lending a robot before step k′?”, and always provide a correct answer; the repre-
sentative can take an arbitrary amount of time to find a plan and respond, but it does so
eventually. The team representatives plan to answer their respective queries in parallel.

We also make excessive use of summaries for teams. Sk
t = 〈role, l, u〉 summarizes

what is known about team t for plan length k. Usually the reference to team summaries
are for a fixed plan length, and the k is omitted in the representation. Summaries and what
exactly they summarize are discussed in detail in the following subsection.

One further note: instead of saying “a team can complete its task when it lends a robot
before step k′”, we simply say “a team can lend a robot before step k′” and assume that it

54

also has to complete its own task while lending a robot.
This section is organized as follows: We first describe how the central agent tries to

find a decoupled plan of a fixed length k in Subsection 4.3.1, then we give the algorithm
for finding a decoupled plan of minimum length, in Subsection 4.3.2. We follow by
showing how we can modify the algorithms to reduce the number of queries asked to
team representatives, by using their previous answers, in Subsection 4.3.3.

4.3.1 Finding Decoupled Plans of Fixed Length

Given a plan length k, a transportation delay d, a list of already benched robots and when
they are ready to be lent to a team, and access to the representatives R1, R2, . . . Rn for n
teams; the goal is to determine if the teams can be coordinated in such a way that each
team completes their tasks in at most k steps, by lending or borrowing a single robot (or
not getting involved at all).

4.3.1.1 Observations

Let’s start by some observations and explaining how we use them:

• For a given plan length k, a team can either complete its task in k steps, in which
case it may be able to lend a robot to another team; or it can not, in which case it
may be able to complete its task by borrowing a robot. Following this observation,
for any plan length k, the role of a team can be determined by trying to find a plan
of length k without robot exchanges. Note that a lending team may not be able to
lend a robot at all, or a borrowing team may not be able to complete its plan even
with an immediately borrowed robot (in which case there can be no decoupled plan
of length k), but they are still labeled as a lender or a borrower .

• For a lending team, the following holds: “If it can lend a robot before step k′, then
it can definitely lend a robot before step k′′ > k′”. Similarly, the contrapositive
statement also holds: “If it can not lend a robot before step k′′, then it can not lend
a robot before step k′ < k′′”. Following these observations, we can say that there
is a unique k∗ for plan length k, where for all k′ = 0, 1, 2, . . . k∗ − 1, the team can
not lend a robot before step k′, and for all k′ = k∗, k∗ + 1, . . . , k, the team can lend
a robot before step k′. One way of pinpointing k∗ would be to perform a binary
search, starting with the bounds l, u (set to 0, k + 1 initially) and trying to find a
plan where a robot is lent before b(l + u)/2c. If a plan is found, we reduce u, else
we increase l; when l + 1 = u, u is equal to k∗. At any stage of the binary search,
l shows the highest known value for k′ which a robot can not be lent before, and
u shows the lowest known value for k′ which a robot can be lent before. In our

55

Algorithm 1 FINDDECOUPLEDPLAN
Input: plan length k; team representatives R1, R2, . . . , Rn, transportation delay d; an array bench of

benched robots, with the number of steps remaining before they can be given to a team
Output: success if a decoupled plan can be found, failure otherwise

// summaries S1, S2, . . . , Sn for each team, where St = 〈role, l, u〉;

for all teams t do
St ← 〈none, 0, k + 1〉; // set role, bounds
call DETERMINEROLE(k, St, Rt) as a separate thread;

while ∃t(St.l + 1 6= St.u) do
wait for a team’s summary to be updated;

for all t with ¬Rt.isPlanning and St.l + 1 < St.u do
call TIGHTENBOUNDS(k, St, Rt) as a separate thread;

return CANMATCH, S1, S2, . . . , Sn;

Algorithm 2 DETERMINEROLE
Input: plan length k; summary St = 〈role, l, u〉 for team t; Rt (representative of team t)
Output: The role of the team t for plan length k (St.role) is updated when the planning stops;
Rt.isPlanning is true while team t is planning

Rt.isPlanning := true;
Ask Rt for a plan of length k, without exchanges;

wait for Rt to responds with answer ;
if answer = success then

St.role := lender ;
else // answer = failure

St.role := borrower ;
Rt.isPlanning := false;

decoupled planning algorithm, the known values for intermediate steps where the
teams can lend/borrow robots are compared to check if a decoupled plan is found.

• For a borrowing team, similar observations can be made with one major difference:
Notice that, as k′ decreases, it becomes harder for a lending team to lend a robot
before k′, whereas it gets easier for a borrowing team to borrow a robot after step k′.
For the binary search, this difference translates as the lower bound l being increased
when we successfully find a plan and the upper bound u being decreased when no
plan is found, instead of the other way around.

4.3.1.2 The Main Algorithm

With these observations in mind, the naive decoupled planning algorithm (Algorithm 1) is
as follows: For all teams t, first determine their roles, then find their earliest lend or latest
borrow times (t∗) by performing the binary search described above. If each borrowing
team b (with borrow time b∗) can be matched to a unique lending team l (which can lend
a robot by step l∗ < b∗ − d) or a spare robot r (that has to stay in the bench for r∗ more

56

Algorithm 3 TIGHTENBOUNDS
Input: plan length k; summary St = 〈role, l, u〉 for team t; Rt (representative of team t)
Output: Tighter bounds after team t finishes planning (if the bounds are not tight already), Rt.isPlanning

is true while team t is planning

if St.l + 1 = S.tu then // already tight bounds
return;

k′ := (St.l + St.u)/2;
Rt.isPlanning := true;
if St.role = lender then

Ask Rt for a plan of length k, where a robot is lent before k′;
wait for Rt to responds with answer ;
if answer = success then

St.u := k′;
else // answer = failure

St.l := k′;
else // St.role = borrower

Ask Rt for a plan of length k, with a robot borrowed after k′;
wait for Rt to responds with answer ;
if answer = success then

St.l := k′;
else // answer = failure

St.u := k′;
Rt.isPlanning := false;

Algorithm 4 CANMATCH
Input: plan length k; transportation delay d; an array of benched robots bench , with the number of steps

remaining before they can be given to a team; summaries S1, S2, . . . , Sn for all teams t with St =
〈role, l, u〉 with full information (i.e., role is set, u− l = 1)

Output: success if a matching exists with the roles and bounds of the teams, failure otherwise

L,B ← empty sets for lend and borrow times;
L← the values from bench;

for all teams t do
if St.role = lender then

L := L ∪ {St.u+ d};
if St.role = borrower then

B := B ∪ {St.l};

for i = 1, 2, . . . , |B| do
borrow ← ith lowest value in B;
lend ← ith lowest value in L;
if lend ≥ borrow then

return false; // a borrowing team’s needs can not be met
return true; // all borrowers are matched with a lent robot

steps, where r∗ < b∗), then we say a decoupled plan is found, else we say no decoupled
plan can be found.

For implementing this algorithm, we keep “summaries” of teams. A summary for a
team t is a triplet St = 〈role, l, u〉 where St.role denotes the role of that team (lender ,

57

Algorithm 5 FINDDECOUPLEDPLAN (updated with early termination)
Input: plan length k; team representatives R1, R2, . . . , Rn, transportation delay d; an array bench of

benched robots, with the number of steps remaining before they can be given to a team
Output: success if a decoupled plan can be found, failure otherwise

// summaries S1, S2, . . . , Sn for each team, where St = 〈role, l, u〉;

for all teams t do
St ← 〈none, 0, k + 1〉; // set role, bounds
call DETERMINEROLE(k, St, Rt) as a separate thread;

loop
wait for a team’s summary to be updated;

if CANDEFINITELYMATCH(k, d, bench, S1, S2, . . . , Sk) then
return success, S1, S2, . . . , Sn;

if ¬CANPOSSIBLYMATCH(k, d, bench, S1, S2, . . . , Sk) then
return failure;

for all t with ¬Rt.isPlanning and St.l + 1 < St.u do
call TIGHTENBOUNDS(k, St, Rt) as a separate thread;

borrower , or none if it is not determined yet), and l, u denote the associated bounds.
The summary of the team starts as 〈none, 0, k + 1〉, its most uninformative state, and is
iteratively made more informative by asking queries to the team representative Rt, up to
its most informative state where St.l+1 = St.u. We use the functions DETERMINEROLE

(Algorithm 2) and TIGHTENBOUNDS (Algorithm 3) to update the summaries of teams.
Both of these functions are used to ask a query to a team representative, and update the
summaries when an answer is received.

Note that the functions DETERMINEROLE and TIGHTENBOUNDS are called as sep-
arate threads, parallel to the main algorithm. These functions ask a query to a team rep-
resentative, wait for its answer, update the team’s summary accordingly and return. The
main algorithm continues its flow and does not wait for the calls to DETERMINEROLE

and TIGHTENBOUNDS to return. We assume a thread terminates on its own, once its
function returns. At any given time, a team can have at most a single thread running for it
(either for determining its role, or tightening its bounds).

Once the earliest lend and latest borrow times of teams are established, CANMATCH

(Algorithm 4) determines if a decoupled plan is found (or finds out that none exists).

4.3.1.3 The Improved Algorithm

An immediate improvement of Algorithm 1 would be to check for a solution (or the
nonexistence of one), after some team’s summary is updated and thus the central agent has
better information about the teams’ capabilities. We utilize the functions CANDEFINITE-
LYMATCH (Algorithm 6) and CANPOSSIBLYMATCH (Algorithm 7) to check whether the
current summaries are sufficient to find a valid matching, and to check whether there is

58

Algorithm 6 CANDEFINITELYMATCH
Input: plan length k; transportation delay d; an array of benched robots bench , with the number of steps

remaining before they can be given to a team; summaries S1, S2, . . . , Sn for all teams t with St =
〈role, l, u〉

Output: success if we can be sure that a matching exists with the current roles and bounds of the teams,
failure otherwise

if ∃t s.t. St.l = 0 then // it may not be able to find a plan with only 1 borrowed robot
return false;

if ∃t s.t. St.role = none then // it can be a borrower with St.l = 0
return false;

L,B ← empty sets for lend and borrow times;
L← the values from bench;

for all teams t do
if St.role = lender then

L := L ∪ {St.u+ d};
if St.role = borrower then

B := B ∪ {St.l};

for i = 1, 2, . . . , |B| do
borrow ← ith lowest value in B;
lend ← ith lowest value in L;
if lend ≥ borrow then

return false; // a borrowing teams needs can not be met;
return true; // all borrowers are matched with a lent robot

still hope for finding a decoupled plan. By a valid matching, we mean that each borrowing
team is assigned to a lending team or a spare robot, and the lend times are sufficient to
provide the robots before the borrow times (taking the transportation delay into account).
CANDEFINITELYMATCH and CANPOSSIBLYMATCH are slightly modified versions of
CANMATCH.

CANDEFINITELYMATCH interprets the summaries in the most pessimistic way possi-
ble: if a borrowing team’s lower bound is still at its starting value of 0, then it is assumed
that borrowing a robot (at any step) does not help that team finish its task; if a team’s role
is not yet determined, it is assumed to be a borrower (with a lower bound of 0); it works
by trying to match the lower bounds of borrowing teams with the upper bounds of lending
teams (i.e. their current verified lend/borrow times).

Conversely, CANPOSSIBLYMATCH interprets the summaries in the most optimistic
manner: Any team with a not yet determined role is considered the best possible lender
(i.e. can lend by step 1), and the team’s best possible lend/borrow times are compared
(which are St.l + 1 for lending teams and St.u − 1 for borrowing teams). Clearly, for
any group of summaries for which CANMATCH returns success, there is a decoupled
plan. For any group of summaries that CANPOSSIBLYMATCH returns failure, there can
be no decoupled plan. Also observe that, when the summaries are fully informative, both
functions return the same answer.

59

Algorithm 7 CANPOSSIBLYMATCH
Input: plan length k; transportation delay d; an array of benched robots bench , with the number of steps

remaining before they can be given to a team; summaries S1, S2, . . . , Sn for all teams t with St =
〈role, l, u〉

Output: success if there is still hope for a solution if the bounds of the teams are iterated further, failure
otherwise

L,B ← empty sets for lend and borrow times;
L← the values from bench;

for all teams t do
if St.role = lender then

L := L ∪ {St.l + 1 + d};
if St.role = none then // assume it to be the best possible lender

L := L ∪ {1 + d};
if St.role = borrower then

B := B ∪ {St.u− 1};

for i = 1, 2, . . . , |B| do
borrow ← ith lowest value in B;
lend ← ith lowest value in L;
if lend ≥ borrow then

return false; // a borrowing teams needs can not be met
return true; // all borrowers are matched with a lent robot

The improved FINDDECOUPLEDPLAN can be found in Algorithm 5. After asking
for all the teams to determine their roles, it goes in a loop until CANDEFINITELYMATCH

returns true with the current summaries or CANPOSSIBLYMATCH returns false. In each
iteration, it first waits for a team to answer a query and update its summary, and when a
team does, FINDDECOUPLEDPLAN calls CANDEFINITELYMATCH and CANPOSSIBLY-
MATCH to see if the new information leads to a definite decision. If not, the team is asked
to tighten its bounds.

Notice that FINDDECOUPLEDPLAN returns either success or failure, and, in the case
of success, the summaries of teams (not the actual plans themselves). After a (minimum)
decoupled plan is found, a team can be asked to find an executable plan, without redundant
actions, where the team lends (borrows) a robot before (after) a mid step, as specified in
its summary.

Proposition 1. FINDDECOUPLEDPLAN (Algorithm 5) is sound and complete. It always

terminates with at most O(nlogk) queries to CCALC, where k is the length of the decou-

pled plan and n is the number of teams.

Proof. Termination FINDDECOUPLEDPLAN always terminates, either by CANDEFINITE-
LYMATCH returning true or CANPOSSIBLYMATCH returning false on the current sum-
maries. Note that once a team’s role is determined, TIGHTENBOUNDS is iteratively called
for a team, until its the lower and upper bounds on its earliest lend / latest borrow time
are tightened down to a difference of 1. Our claim is that, either FINDDECOUPLEDPLAN

60

terminates before all the teams’ lower and upper bounds are tight (which we call the most
informative state), or it eventually reaches the point where the bounds are tight, at which
point it definitely terminates.

First, let’s show that FINDDECOUPLEDPLAN reaches the point where the bounds are
tight (if it does not terminate early). While a team t’s bounds (St.l, St.u) are not tight
(St.l+1 < St.u), it is asked to tighten its bounds, with a call to TIGHTENBOUNDS which
asks a single query to CCALC, which always returns an answer. It takes a finite number
of calls to TIGHTENBOUNDS to determine a team’s tightest bounds (for plan length k,
dlogke to be exact), and since TIGHTENBOUNDS always terminates, FINDDECOUPLED-
PLAN eventually reaches the point, where for all teams t, St.l + 1 = St.u (if it does not
terminate early).

Our claim is that, upon reaching this point, FINDDECOUPLEDPLAN terminates. Ob-
serve that both CANDEFINITELYMATCH and CANPOSSIBLYMATCH have two stages:
they first collect lend/borrow times from the summaries of teams and then compare these
lend/borrow times to check for a matching, and the comparison method they use are the
same. While collecting lend/borrow times, for a lending team t, CANDEFINITELYMATCH

considers St.u as the lend time, while CANPOSSIBLYMATCH considers St.l + 1. Note
that these values are the same if team t’s bounds are at their tightest (i.e., St.l + 1 = St.u

). A similar case can be made for borrowing times as well where the collected borrow
time from team t is either St.l or St.u − 1, which are the same when the bounds are
at their tightest. Once the collected lend/borrow times are the same, CANDEFINITELY-
MATCH and CANPOSSIBLYMATCH both return the same answer (true or false). And
since FINDDECOUPLEDPLAN requires CANDEFINITELYMATCH to return true or CAN-
POSSIBLYMATCH to return false in order to terminate, it definitely terminates when both
return the same answer.

Soundness We need to show that if FINDDECOUPLEDPLAN returns true for plan
length k, than that means there is a decoupled plan of length k. Note that, for FINDDE-
COUPLEDPLAN to return true, CANDEFINITELYMATCH has to return true for the current
summaries of teams. Let’s observe these summaries: for each team t, its summary St

contains its role St.role, and lower and upper bounds St.l, St.u for its earliest lend or
latest borrow time. For a lending team, if St.u < k, this means that the team can lend a
robot before St.u and still complete its own task in k steps and has actually successfully
found a plan for such a case, using CCALC. Similarly, for a borrowing team, if St.l > 0,
this means that the team can borrow a robot after St.l and complete its own task in k steps.
We claim that the overall plan, in which each lending team i executes its plan of length k
where a robot is lent before Si.u and each borrowing j team executes its plan of length k
where a robot is borrowed after Sj.l, is a valid overall plan (i.e., all the teams complete
their tasks in k steps). This is fairly easy to show:

• Each lending team i is clearly able to complete its plan, since it does not need the

61

help of any other team and can complete its task on its own. Even if Si.u = k it
still has a plan (where it does not lend a robot), since being self sufficient is the
definition of a lending team.

• Each borrowing team j has a plan where it completes its task with a robot borrowed
before step Sj.l. The potential problem here is that a borrowing team is actually
dependent on a lending team and requires it to be able to lend a robot before Sj.l

(minus the transportation delay d). However, since CANDEFINITELYMATCH actu-
ally matches each borrowing team j with a lending team i s.t. Sj.l + d < Si.u, we
know each borrowing team is lent a robot on time and can also complete its plan as
well.

Completeness We need to show that if there is an overall plan P of length k, then
FINDDECOUPLEDPLAN returns true (for length k); specifically, we need to show: 1)
Every call of CANPOSSIBLYMATCH in FINDDECOUPLEDPLAN returns true, given that
there is an overall plan of length k; 2) If every call of CANPOSSIBLYMATCH in FIND-
DECOUPLEDPLAN returns true, then FINDDECOUPLEDPLAN returns true.

1) We prove our first claim observing some inequalities, over the summaries of teams,
and thus, over the lend/borrow times CANPOSSIBLYMATCH tries to match. Take any
team t. In a plan P of length k, team t either lends a robot at step lt < k, borrows a
robot at step bt < k, or is not involved in any robot exchange. Let’s explore these options
and what they imply for our summaries and lend/borrow times CANPOSSIBLYMATCH

considers:

• If t is a lender, with lend time lt, then FINDDECOUPLEDPLAN definitely labels it
as a lender. We know that CCALC never fails to find a plan if one exists, and since
we also know that the team is able to lend a robot by step lt, CCALC always finds a
plan where a robot is lent before step k′ where k′ > lt. Simply put, the lower bound
on the earliest lend time is always smaller than lt (St.l < lt). For a lending team t,
CANPOSSIBLYMATCH, considers l′t = St.l+ 1 as its lend time. Since St.l < lt, we
can say St.l + 1 ≤ lt, and thus, l′t ≤ lt.

• If t is a borrower, with borrow time bt, then it can be labeled as either a lender, or
a borrower. If it is labeled as a borrower, then the upper bound on the latest borrow
time is always above bt (using arguments similar to the lending case, St.u > bt).
For a borrowing team t, CANPOSSIBLYMATCH, considers b′t = St.u − 1 as its
borrow time. Since St.u > bt, we can say St.u− 1 ≥ bt, and thus, b′t ≥ bt.

• If t does not exchange robots, then it means it can perform its task on its own, and
is labeled as a lender.

Let’s return to our original claim, that given there is a plan P of length k, every
call of CANPOSSIBLYMATCH in FINDDECOUPLEDPLAN returns true. After collecting

62

lend/borrow times, CANPOSSIBLYMATCH tries to match them, and if it can’t, it returns
false. We now show that there is always a possible matching, where each borrower i is
matched to a lender j, where j lends a robot to i in the plan P .

Since each team FINDDECOUPLEDPLAN labels as a borrower, can only be a bor-
rower in plan P , and each lender in plan P is labeled as a lender again, we know that
we can uniquely match each borrower with the lender that lends it a robot in plan P .
Pick such a lender/borrower pair with lender i with a lend time of li in P and borrower
j with a borrow time bj in P . Since i is able to lend a robot to j in plan P , we know
that li + d < bj must hold. Using the inequalities from the observations, we also know
that for i, the lend time l′i CANPOSSIBLYMATCH considers satisfies l′i ≤ li and for j,
the borrow time b′j CANPOSSIBLYMATCH considers satisfies b′j ≥ bj . Putting it all to-
gether, we obtain l′i + d ≤ li + d < bj ≤ b′j and thus l′i + d < b′j . This means, in any
call to CANPOSSIBLYMATCH, the matching in plan P is also a matching in CANPOS-
SIBLYMATCH (with lend/borrow time constraints satisfied between the pairs), and thus,
CANPOSSIBLYMATCH always returns true (given that there is such a plan P).

2) If every call of CANPOSSIBLYMATCH in FINDDECOUPLEDPLAN returns true,
then FINDDECOUPLEDPLAN can never return false, and since we know it always termi-
nates, it has to return true. So, given that there is a plan, FINDDECOUPLEDPLAN returns
true.

Complexity For a plan of length k, we can determine a team’s role in a single query
and determine its tightest bounds with an additional dlog2ke queries. For n teams this
means a total of n × dlog2k + 1e queries. Note that this is the worst case behaviour and
FINDDECOUPLEDPLAN may terminate before all the bounds are tightened. Also note
that, due to parallelism, the time to find a decoupled plan is at most as much as the time
it takes for any team to answer their respective queries (at most dlog2k + 1e queries for
a single team), plus the negligible amount of time spent to compare the summaries for
possible matchings.

4.3.2 Finding Minimum Length Decoupled Plans

In this subsection, we show how we utilize the FINDDECOUPLEDPLAN algorithm de-
scribed earlier, to find minimum length decoupled plans. FINDDECOUPLEDPLAN pro-
vides us a tool to check if there is a plan for a given length k. We can use FINDDE-
COUPLEDPLAN to perform a binary search on the plan length, to find the minimum plan
length k∗.

The search has two phases as shown in Algorithm 8: first an upper bound on k∗

is established by trying to find decoupled plans of length k, 2k, 4k . . . until one is found,
that is of length 2mk, where k ∈ Z+ is a parameter of FINDMINIMUMDECOUPLEDPLAN.
Once the upper bound on k∗ is established, a binary search is performed between 2m−1k

63

Algorithm 8 FINDMINIMUMDECOUPLEDPLAN
Input: team representatives R1, R2, . . . , Rn, transportation delay d; an array of benched robots bench ,

with the number of steps remaining before they can be given to a team, plan length k to begin the search
with

Output: a minimum length decoupled plan

// team summaries S1, S2, . . . , Sn;
l := 0;u := 0; // the lengths of the last failed and successful decoupled plan attempts
// Establish an upper bound on plan length

while u = 0 do
outcome, S′

1, S
′
2, . . . , S

′
n ← FINDDECOUPLEDPLAN(k,R1, R2, . . . , Rn, d, bench);

if (outcome = success) then
u := k;
for all teams t do

St := S′
t;

else
l := k;
k := 2k;

// find a minimum length plan
while u > l + 1 do

k := b(u+ l)/2c;
outcome, S′

1, S
′
2, . . . , S

′
n ← FINDDECOUPLEDPLAN(k,R1, R2, . . . , Rn, d, bench);

if (outcome = success) then
u := k;
for all teams t do

St := S′
t;

else
l := k;

return PLAN(S1, S2, . . . , Sn, R1, R2, . . . , Rn);

and 2mk to find the value of k∗. Notice that, for the successful decoupled plans we store
the team summaries; and when the search terminates, we have the team summaries for
the minimum length plan. FINDMINIMUMDECOUPLEDPLAN returns a decoupled plan,
associated with these summaries by calling the PLAN function which asks all the teams to
find good quality plans (with redundancy elimination, as mentioned in Subsection 4.2.3),
ready for execution.

Proposition 2. FINDMINIMUMDECOUPLEDPLAN is sound and complete. It always ter-

minates (assuming there is a plan to be found) with at most O(n(logk∗)2) queries to

CCALC, where k∗ is the length of the optimal decoupled plan and n is the number of

teams.

Proof. Soundness and Completeness FINDMINIMUMDECOUPLEDPLAN performs a bi-
nary search on the optimal plan length and asks FINDDECOUPLEDPLAN if there is a
decoupled plan of a fixed length, at each step of the binary search. Since FINDDECOU-
PLEDPLAN is both sound and complete (Proposition 1), FINDMINIMUMDECOUPLED-
PLAN is also sound and complete, and the found plan is of minimum length.

Termination We know that FINDDECOUPLEDPLAN always terminates and we assume

64

there is a decoupled plan to be found of length k∗, therefore an upperbound is eventually
established after at most dlog2k∗e calls to FINDDECOUPLEDPLAN. After its bounds are
established, the binary search terminates in a finite number of calls to FINDDECOUPLED-
PLAN.

Complexity Assuming we start the first stage of the search with plan length 1, it takes
exactly m calls to FINDDECOUPLEDPLAN to establish the upperbound on k∗ where m is
the smallest integer with log2k+ 1 ≤ m. When the second stage starts, the bounds for the
binary search are 2m−1 and 2m. It takes m − 1 calls to FINDDECOUPLEDPLAN before
we know we have a minimum length plan. FINDDECOUPLEDPLAN makes O(nlog2m) =

O(nm) planning calls each time it is called, so the total number of planning calls is
O(nm2) which is O(n(logk∗)2).

4.3.3 Inferring Bounds from Previous Searches

In FINDMINIMUMDECOUPLEDPLAN described above, the subsequent calls to FINDDE-
COUPLEDPLAN are done without any information from the previous FINDDECOUPLED-
PLAN calls. However, there are some simple inferences that can be made about a teams
role and bounds for a plan of length k, using its roles and bounds from plans of length
l < k and u > k:

Proposition 3. A team is labeled as a lender for plan length k, if it was labeled as a

lender for plan length u > k. Conversely, a team is labeled as a borrower for plan length

k, if it was labeled as a borrower for plan length l < k.

Proof. A team being labeled as a lender (resp. borrower) is only based on its ability to
complete its work on its own. If it can (resp. can not) complete its task in k steps, then it
certainly can (resp. can not) complete its task in u > k (resp. l < k) steps.

Proposition 4. A team can lend a robot before step k′ in a plan of length k, if it can lend

a robot before step k′ in a plan of length l < k. Conversely, a team can not lend a robot

before step k′ in a plan of length k, if it can not lend a robot before step k′ in a plan of

length u > k.

Proof. Given that a team can lend a robot at step k′ in a plan of length l, we can simply
perform that plan and then do nothing for the remaining k − l steps, to achieve a plan of
length k; thus the first statement holds. The second statement is the contrapositive of the
first one, therefore it also holds.

Proposition 5. A team can borrow a robot after step k′ in a plan of length k, if it can

borrow a robot after step l′ = k′−a in a plan of length l = k−a, where a ∈ {1, 2, . . . k′−
1}. Conversely, a team can not borrow a robot after step k′ in a plan of length k, if it

can not borrow a robot after step u′ = k′ + a in a plan of length u = k + a where

a ∈ {0, 1, . . . }.

65

Algorithm 9 FINDMINIMUMDECOUPLEDPLAN (updated for role and bound inferrence)
Input: team representatives R1, R2, . . . , Rn, transportation delay d; an array of benched robots bench ,

with the number of steps remaining before they can be given to a team, plan length k to begin the search
with

Output: a minimum length decoupled plan

Create uninitialized team summaries S1, S2, . . . , Sn ; SL
1 , S

L
2 , . . . , S

L
n ; SU

1 , SU
2 , . . . , SU

n ;
l := 0;u := 0; // the lengths of the last failed and successful decoupled plan attempts
// Establish an upper bound on plan length

while u = 0 do
outcome, S1, S2, . . . , Sn ← FINDDECOUPLEDPLAN(k,R1, R2, . . . , Rn, d, bench ,

SL
1 , S

L
2 , . . . , S

L
n , SU

1 , SU
2 , . . . , SU

n);
if (outcome = success) then

u := k;
for all teams t do

SU
t := St;

else
l := k;
for all teams t do

SL
t := St;

k := 2k;

// find a minimum length plan
while u > l + 1 do

k := b(u+ l)/2c;
outcome, S1, S2, . . . , Sn ← FINDDECOUPLEDPLAN(k,R1, R2, . . . , Rn, d, bench ,

SL
1 , S

L
2 , . . . , S

L
n , SU

1 , SU
2 , . . . , SU

n);
if (outcome = success) then

u := k;
for all teams t do

SU
t := St;

else
l := k;
for all teams t do

SL
t := St;

return PLAN(SU
1 , SU

2 , . . . , SU
n , R1, R2, . . . , Rn);

Proof. Given that a team can borrow a robot at step l′ = k′−a in a plan of length l = k+a,
then we can simply do nothing for a steps and then perform the plan to achieve a plan of
length k where a robot is borrowed after step k′; thus the first statement holds. The second
statement is the contrapositive of the first one, therefore it also holds.

We can use these results to quicken subsequent decoupled plan attempts by infer-
ring roles and bounds of teams, at the beginning of trying to find a decoupled plan, for
that we introduce two new algorithms: INFERROLE (Algorithm 11) and INFERBOUNDS

(Algorithm 12). We also present the updated versions of FINDDECOUPLEDPLAN and
FINDMINIMUMDECOUPLEDPLAN in Algorithm 10 and Algorithm 9.

With the updates, while we are trying to find a decoupled plan, we first try to infer the
role of the team, using the summaries from previous attempts. If we can not, then we call
DETERMINEROLE as usual. Also, before calling TIGHTENBOUNDS for a team for the

66

Algorithm 10 FINDDECOUPLEDPLAN (updated for role and bound inferrence)
Input: plan length k; team representatives R1, R2, . . . , Rn, transportation delay d; an array of benched

robots bench , with the number of steps remaining before they can be given to a team; plan lengths l, u
and summaries SL = {SL

1 , S
L
2 , . . . , S

L
n , }, SU = {SU

1 , SU
2 , . . . , SU

n , } for the last failed and successful
decoupled plan attempts respectively

Output: success if a decoupled plan can be found, failure otherwise

// summaries S1, S2, . . . , Sn for each team, where St = 〈role, l, u〉;

for all teams t do
St ← 〈none, 0, k + 1〉; // set role, bounds
St.role ← INFERROLE(SL

t .role, S
U
t .role);

if St.role = none then
call DETERMINEROLE(k, St, Rt) as a separate thread;

loop
wait for a team’s summary to be updated;
if CANDEFINITELYMATCH(k, d, bench, S1, S2, . . . , Sk); then

return success, S1, S2, . . . , Sn;
if ¬CANPOSSIBLYMATCH(k, d, bench, S1, S2, . . . , Sk); then

return failure, S1, S2, . . . , Sn;

for all t with ¬Rt.isPlanning and St.l + 1 < St.u do
if INFERBOUNDS has not been called for team t yet then

INFERBOUNDS (k, l, u, St, S
L
t , S

U
t);

call TIGHTENBOUNDS(k, St, Rt) as a separate thread;

Algorithm 11 INFERROLE

Input: Roles rL, rU of a team from decoupled plan attempts of shorter and longer lengths
Output: Role of the team, if one can be inferred, none otherwise

if rL = lender then
return lender ;

else if rU = borrower then
return borrower ;

else // bound can not be inferred
return none;

first time, we first call INFERBOUNDS once. The summaries of both failed and successful
decoupled plan attempts are stored, but we only store the latest ones (whose plan lengths
are the tightest bounds we have on the minimum plan length at the moment). This does
not result in a loss of information since all the inferences are transitive.

As an example, suppose the optimal plan length is 20 and we have found successful
plans for length 32 where team t is labeled as a borrower, with an upper bound of 25 (it
can not borrow after step 25); and now we are trying to find a decoupled plan of length
24. We can infer that the team t will again be a borrower, with an upper bound of 17
(25+24-32). Now suppose we have tightened the upper bound of team t down to 12 and
are trying to find a decoupled plan of length 20: if we use the summary from the plan with
length 32, we infer that the team is a borrower with an upper bound of 13 (25+20-32),
if we instead use the summary from the plan with length 24, we end up with an upper

67

Algorithm 12 INFERBOUNDS

Input: Plan lengths k, l, u and summaries St, S
L
t , S

U
t for team t - for the current, last failed and last suc-

cessful decoupled plan attempts respectively
Output: Summary St for team t with potentially updated bounds

if St.role = lender then
if SL

t .role = lender and SL
t .u < l then

St.u = SL
t .u;

if SU
t .role = lender and SU

t .l > 0 then
St.l = SU

t .l;
if St.role = borrower then

if SL
t .role = borrower and SL

t .l > 0 then
St.l = SL

t .l + k − l;
if SU

t .role = borrower and SU
t .u < u then

St.u = SU
t .u + k - u;

if St.l < 0 then
St.l := 0;

if St.u > k then
St.u := k;

return St;

bound of 8 (12 + 20 - 24), which is tighter. Also note that if the upper bound had not been
tightened, we could have still inferred the 13 (17+20-24).

Even though these kind of inferences speed up the process in practice, we were not
able to show the existence of a tighter asymptotical upper bound, than the one shown in
Proposition 2, with the added inference rules.

4.4 Embedding Decoupled Planning in an Execution and
Monitoring Framework

We have embedded our optimal decoupled plan algorithm in an execution and monitoring
framework. The basic idea is, while the tasks of all teams are not completed, we find a
optimal decoupled plan and start to execute it, step by step. If at any step, something goes
wrong (i.e., a carrier tries to attach and fails) or we receive an order for more boxes, we
start again (i.e., replan and execute). Note that, each time we call FINDMINIMUMDE-
COUPLEDPLAN, we assume that no robot exchange had taken place (i.e., a team can lend
a robot, then after replanning lend another robot, or borrow a robot).

For the subsequent replans for an optimal length decoupled plan, we can reuse the in-
formation from the previously computed plan. Notice that, when a teams state is changed,
the rest of the previously computed plan becomes non-executable and we have to find a
new plan for that team. However, for a team that has the desired state, the rest of its plan
is still applicable. Using this observation, when we call FINDMINIMUMDECOUPLED-
PLAN, instead of starting the search by looking for a decoupled plan of length 1, we can
start by looking for a decoupled plan whose length is equal to the remaining length of

68

the plan we were executing. This way, while for the teams that changed their states we
initialize them from scratch (as usual), we can initialize the rest of the teams with their
roles and bounds with the following ideas:

• A lender which has lent a robot is still a lender, since it can complete its task on
its own, with its remaining robots. However, its bounds are reset to zero and the
remaining plan length respectively.

• A borrower which has borrowed a robot becomes a lender, because with the bor-
rowed robot, it can complete the rest of the plan by itself. Its bounds are reset as
well.

• If a lender has not lend a robot or a borrower has not borrowed a robot, they retain
their roles.

• If a team is a lender for plan length k with bounds l, u, and we execute a steps
without lending a robot, if we start to replan for plan length k − a, its bounds
become max(0, l − a), u − a. Same thing applies for a borrower that has not yet
borrowed a robot.

Let’s give an example with four teams: Team 1 has 1 worker and has to paint 4 boxes,
Team 2 has 3 workers and has to paint 5 boxes, Team 3 has 2 workers and has to paint 4
boxes, and Team 4 has 1 worker and has to paint 3 boxes. The transportation delay td is
set to 2.

In the first part of FINDMINIMUMDECOUPLEDPLAN, FINDDECOUPLEDPLAN finds
an overall plan of length k = 32 (after trying k = 1, 2, 4, 8, 16). According to this plan,
Team 1 receives a robot at Step 16 and Team 2 lends a robot at Step 7. The second part of
FINDMINIMUMDECOUPLEDPLAN starts a binary search with l = 16 and u = 32. After
trying k = 24, 28, 26, 27, an optimal plan of length 27 is found. According to this plan,
Teams 2 and 3 can lend robots at Steps 10 and 12 respectively; Teams 1 and 4 can borrow
robots at Steps 13 and 18 respectively. Notice that lend/borrow matchings of Team 2
(10) with Team 1 (13), and Team 3 (12) with Team 4 (18) are valid with respect to the
transportation delay. Table 4.4 shows some parts of these plans. In this example, the
largest problem CCALC solves has 20578 atoms and 186578 clauses. The average time
to answer a query is 11 CPU seconds (on a workstation with two 1.60GHz Intel Xeon
E5310 Quad-Core Processor and 16 GB RAM, running Centos 64bit (Version 5.3)).

4.5 Related Work

Most of the related work on multi-agent systems consider multiple agents, each agent ca-
pable of reasoning, working in the same environment. In comparison, our work focuses

69

Table 4.4: List of actions for all teams.

Team1 Team2 Team3 Team4
0 move(w1,right) move(w2,right) move(w1,right) move(w1,right)

lineShift move(w3,right) move(w2,right) lineShift
move(c1,right) move(c1,right)
lineShift lineShift
swapEndEffector(w1,1)

...
10 move(w1,left) lineShift workOn(w1,1) swapEndEffector(w1,2)

giveRobot(w2) workOn(w2,3)
attach(c1,w3)

11 workOn(w1,1) workOn(w1,5) move(w1,left) move(w1,right)
workOn(w3,3) move(w2,left)

12 move(w1,left) move(w1,left) workOn(w2,2) workOn(w1,1)
pull(c1) giveRobot(w1)

13 move(c1,right) move(w1,left) move(w2,left) move(w1,left)
takeRobot(w2,1,2)
swapEndEffector(w1,2)

...
26 lineShift lineShift lineShift lineShift

on multiple teams of robot, each team with a single cognitive agent, working in separate
environments. A parallel may be drawn between the two approaches if we view the prob-
lem we study in this thesis as multiple agents (as opposed to multiple teams) working in
separate environments but still dependent on each other.

In general, there are three major types of methods used in decoupled planning to co-
ordinate the actions of agents [42], and these types of methods can be used in conjunction
with each other:

• Coordination before planning: These type of methods coordinate the agents be-
fore they even begin to plan, by introducing social laws, which the agents must
follow. These laws restirct the agents in their behavior and can be used to reduce
planning and coordination time. A good example for social laws might be the traf-
fic rules. If everyone drives on the right side of the road, no coordination with
oncoming cars will be required.

Shoham and Tennenholtz, study how social laws can be created in a multi-agent
system [53]. Briggs proposes the idea of flexible laws [10], where agents first try
to find plans using the strictest laws but if a solution cannot be found agents are
allowed to use more relaxed laws. ter Mors et al., describe a preplanning coordina-
tion method that adds a minimal set of additional constraints to the subgoals to be
performed, in order to ensure a coordinated solution by independent planning [56].

• Coordination during planning: In these type of methods, agents find plans for
themselves while sharing their plan information and adapting their plans to avoid
conflicts.

One approach like this is the Partial Global Planning (PGP) framework [18], and
its extension, Generalized PGP [16, 17]. In this approach, agents share their plans
using a specialized plan representation. Coordination is achieved as follows: if
an agent informs a second agent of its own plan, the second agent merges this

70

information into its own partial global plan. Second agent then tries to improve
the global plan. If it can, the improved plan is shown to the other agents who can
accept/reject/modify it. An overview of PGP related approaches is given by [40].

• Coordination after planning: These type of methods use plan merging. Given the
individual plans of all agents, plan merging constructs a joint plan for all agents.
Georgeff was one of the first to propose a plan-synchronization process starting
with individual plans [31, 32]. Stuart uses propositional temporal logic to guaran-
tee that only feasible states of the environment can be reached (it can be seen as
semaphores which guarantee that no event fails) [54]. Introducing restrictions on
individual plans (as in coordination before planning) can be used to ensure efficient
merging [62, 29].

Another approach to merging plans is to use the search method A∗ and a smart
cost-based heuristic [22]. Ephrati and Rosenschein showed that dividing the work
of constructing sub plans over several agents reduces the overall complexity of the
merging algorithm [23].

In light of these related work, we can consider our method to be a coordination during
planning method since our teams keep replanning until a final overall plan is found. A
major difference is that instead of teams communicating with each other, we have a central
agent which communicates with all the teams. Our assumptions for robot exchanges (can
not lend/borrow more than one robot, can not lend and borrow, etc.) may be seen as social
laws, however their purpose is not to avoid conflicts between teams but to simplify the
problem and allow us to efficiently coordinate the teams.

4.6 Summary of Contributions

We have developed a novel algorithm for finding optimal decoupled plans for problems
that involve multiple teams working in separate workspaces, that are allowed to lend or
borrow at most one robot. We provided detailed termination, soundness, completeness
and complexity analysis of the algorithm. We have implemented our algorithm in the
Robot Operating System (ROS), so that it can be used with many different kinds of robots.

We have introduced a new problem, a Cognitive Painting Factory, and modeled it in
the action description language C+. We have shown methods to decrease the number of
redundant actions performed in plans found by CCALC.

We embedded our optimal decoupled planning algorithm in an execution and moni-
toring framework and showed its applicability on the Cognitive Painting Factory domain.

71

Chapter 5

Conclusion

Let us summarize the contributions of this thesis and the ongoing and future work in two
parts.

5.1 Genome Rearrangement

Extending our earlier work [59], we introduced a new computational method, based on
AI planning, to solve genome rearrangement problems with duplicate genes, involving
transpositions, inversions, inverted transpositions, insertions, and deletions. There are
some methods [21], [15], [39], [63] and tools (e.g., GRIMM [57], GRAPPA [46], DE-
RANGE 2 [7], MGR [9]) to solve restricted versions of these problems, e.g., by consider-
ing inversions only or by relabeling duplicates uniquely; however, none of these genome
rearrangement software can handle such general genome rearrangement problems. There
is another system, TD-ESTIMATOR [41], which can handle transpositions and duplicates;
however, rather than solving the genome rearrangement problem, it approximates the dis-
tance between two genomes in terms of the Double-Cut-Join operation, and gene losses
and duplications.

Based on our AI planning approach to genome rearrangement, we implemented a
genome rearrangement software system called GENOMEPLAN, which describes the genome
rearrangement problems discussed above as planning problems and use the planner TLPLAN

to compute solutions. GENOMEPLAN can solve variations of genome rearrangement
where we specify costs and priorities of events by functions. Being able to represent
and modify genome rearrangement problems in a high-level formalism, and to choose the
search strategy and settings to solve the problem by utilizing the facilities of TLPLAN,
allows us a flexible tool (GENOMEPLAN) to analyze and better understand evolutionary
history of species. In this way, GENOMEPLAN provides an alternative tool to solving
genome rearrangement problems.

We showed the applicability and the effectiveness of GENOMEPLAN on three real

72

data sets: chloroplast genomes of various land plants and green algae [15], Metazoan

mitochondrial genomes [8], and Campanulaceae chloroplast genomes [13]. Only in the
first data set, genomes are of unequal content and with duplicate genes. We observed that
the results found by GENOMEPLAN are similar to those widely accepted. As for the
computation time, the first data set is evaluated in 67 minutes; note that this data set is
evaluated in almost 25 days in the work by Cui et al. [15]. The second data set is evaluated
in a minute, whereas the third data set is evaluated in 10 minutes. We also illustrated the
usefulness of specifying costs and priorities of events in understanding the evolutionary
history of Metazoan mitochondrial genomes. We observed that increasing the priority of
inversions in the problem specification improved the accuracy of solutions.

We showed the effectiveness of our approach in handling duplicates, with some ex-
periments over randomly generated problem instances. In particular, we compared our
approach with the naive approach of relabeling duplicates uniquely and then using an
existing genome rearrangement software system to solve the problems. We observed
that, compared to the naive approach of relabeling genes uniquely (using DERANGE 2),
GENOMEPLAN finds more parsimonious solutions.

Last but not the least, we compared our approach to solving genome rearrangement
problems where the goal is to find smaller cost solutions, with Cui et al.’s approach where
the goal is to find solutions that estimate the true evolutionary distance better. We ex-
perimented with a set of randomly generated problem instances with duplicates and with
equal gene content, using GENOMEPLAN and TD-ESTIMATOR. In order to establish a
fair comparison, we compared them in terms of the standard deviation of the computed
distances from the true evolutionary distances, after normalizing the costs of solutions
to the actual costs. We observed that, when the genome length is fixed but the number
of events is varied, the normalized standard deviation increases as the number of events
increase; these error values are lower for GENOMEPLAN, making it more advantageous
over TD-ESTIMATOR. When the number of events is fixed but the genome length is var-
ied, the normalized standard deviation decreases as the genome size increases; in shorter
genomes (resp. longer genomes), the normalized standard deviation of the solutions com-
puted by GENOMEPLAN (resp. TD-ESTIMATOR) is lower.

The results of our work are summarized in a conference paper [59], and a journal
article [58].

Future work As part of our onging work, we have devised a greedy search algorithm
for genome rearrangement, using the search strategies and heuristic we learned while
developing GENOMEPLAN, which significantly outperforms GENOMEPLAN in terms
of planning time and matches GENOMEPLAN in terms of solution quality. It allows
the specification of costs of actions, but does not provide the other kinds of domain in-
formation specification offered by GENOMEPLAN. We have also extended our greedy
search algorithm to a lookahead search. In preliminary experiments, we observed that

73

with lookahead 2, we obtain better results and even with lookahead 3, the search method
performs significantly faster than GENOMEPLAN. We feel that the results obtained by
the search algorithm is promising, and will focus our attention to developing it further.

5.2 Multi-Robot Systems

We have developed a novel algorithm for finding optimal decoupled plans for problems
that involve multiple teams working in separate workspaces, that are allowed to lend or
borrow at most one robot. We provided detailed termination, soundness, completeness
and complexity analysis of the algorithm. We have implemented the algorithm in the
Robot Operating System (ROS). We have shown its applicability on a Cognitive Painting
Factory scenario. For that we modeled the workspaces in the action description language
C+. We have improved the representation to decrease the number of redundant actions in
plans found by CCALC. We have embedded our optimal decoupled planning algorithm
in an execution and monitoring framework and showed its applicability by simulations
with the Cognitive Painting Factory scenario. Our work are summarized in a conference
paper [26].

Future work Our work on decoupled planning is an initial study and has room for
improvement.

The tightening of bounds in the decoupled plan is done naively (i.e., each team tight-
ens its bounds separately until an overall solution is found). A more goal oriented bound
tightening method can be developed. Consider, for instance, a case with only two teams,
a lender and a borrower, and we are trying to find a decoupled plan of length 30. Sup-
pose the current bounds of the lender are 19 and 20 respectively (i.e., it can give a robot
by step 20, at the earliest) and the bounds of the borrower are not initialized yet (i.e., 0
and 30). Our current algorithm would first try to check if the team can borrow a robot
by after 15, however checking if the team can borrow after step 20 (assuming there is no
transportation delay) has two advantages: 1) If it turns out that the team can borrow after
step 20, then there is a decoupled plan. In comparison, if it turns out that the team can
borrow after step 15, then that does not guarantee a decoupled plan and further queries
are required. 2) The query for a borrow time of 20 is more likely to fail than a query for
a borrow time of 15. This way, if there is no decoupled plan, the non-existence of it is
established more quickly.

We are working on a method where a bipartite graph (one part for lenders and extra
robots, other for borrowers) is maintained throughout the search for a decoupled plan.
There is an edge between a borrower and a lender (or a spare robot), if and only if there
can be a valid matching where the teams connected by the edge match. This helps keeps
track of which teams should consider which teams while tightening their bounds. The
method is not fully developed and tested yet, but we believe it will increase the runtime

74

performance even further. The missing parts are mainly about how to choose which value
to test for a team t, given the other teams that t can be matched with and their bounds.
Committing to some strategies and deviating from the middle point has the potential for
the number of planning calls for a single team to exceed the logarithmic bound of binary
search.

Another possible extension is the removal of some of the assumptions we have made
(i.e. a team can lend or borrow at most one robot). There are two extensions to this:
1) allowing a team to lend and borrow in the same plan, 2) allowing a team to lend any
number of robots or borrow any number of robots (but not both).

75

Bibliography

[1] F. Bacchus and F. Kabanza. Using temporal logic to express search control knowl-
edge for planning. Artificial Intelligence, 116(1–2):123–191, 2000.

[2] V. Bafna and P. Pevzner. Sorting by transpositions. SIAM Journal of Discrete Math-

ematics, 11:224–240, 1998.

[3] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. In
Proc. of CPM, pages 106–117, 2001.

[4] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In Proc. of WABI, pages 163–173, 2006.

[5] A. Bergeron, J. Mixtacki, and J. Stoye. A new linear time algorithm to compute
the genomic distance via the double cut and join distance. Theoretical Computer

Science, 410(51):5300–5316, 2009.

[6] P. Berman and S. Hannenhalli. Fast sorting by reversal. In Proc. of CPM, pages
168–185, 1996.

[7] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement.
Gene-Combis, 172:11–17, 1996.

[8] M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in an-
imal mitochondrial phylogeny. Journal of Molecular Evolution, 49:193–203, 1999.

[9] G. Bourque and P.A. Pevzner. Genome-scale evolution: Reconstructing gene orders
in the ancestral species. Genome Research, 12(1):26–36.

[10] W. Briggs. Modularity and Communication in Multi-Agent Planning. PhD thesis,
1996.

[11] T. Bylander. The computational complexity of propositional STRIPS planning. Ar-

tificial Intelligence, 69(1-2):165–204, 1994.

[12] Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can Palaz, Esra Erdem, and
Volkan Patoglu. Bridging the gap between high-level reasoning and low-level con-
trol. In Proc. of LPNMR, 2009.

76

[13] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.S. Wang, T. Warnow,
and S. Wyman. An empirical comparison of phylogenetic methods on chloroplast
gene order data in Campanulaceae. In Comparative Genomics, pages 99–122.
Kluwer, 2000.

[14] M.E. Cosner, L.A. Raubeson, and R.K. Jansen. Chloroplast DNA rearrangements
in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol.

Biol., 4(27), 2004.

[15] L. Cui, J. Leebens-Mack, L.S. Wang, J. Tang, L. Rymarquis, D.B. Stern, and C.W.
dePamphilis. Adaptive evolution of chloroplast genome structure inferred using a
parametric bootstrap approach. BMC Evol. Biol., 6:13, 2006.

[16] K. Decker and V.R. Lesser. Generalizing the partial global planning algorithm. In-

ternational Journal of Intelligent and Cooperative Information Systems, 1:319–346,
1992.

[17] K. Decker and V.R. Lesser. Designing a family of coordination algorithms. In Proc.

of DAI, pages 65–84, 1994.

[18] E. H. Durfee and V. R. Lesser. Planning coordinated actions in dynamic domains.
In Proc. of the DARPA Knowledge-Based Planning Workshop, pages 18.1–18.10,
1987.

[19] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proc. of SAT, pages
502–518, 2003.

[20] N. El-Mabrouk. Genome rearrangement by reversals and insertions/deletions of
contiguous segments. In Proc. of CPM, pages 222–234, 2000.

[21] N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments du-
plications and reversals. J. Comput. Syst. Sci., 65(3):442–464, 2002.

[22] E. Ephrati and J. S. Rosenschein. Multi-agent planning as the process of merging
distributed sub-plans. In Proc. of DAI, pages 115–129, 1993.

[23] Eithan Ephrati and Jeffrey S. Rosenschein. Divide and conquer in multi-agent plan-
ning. In Proc. of AAAI, 1994.

[24] E. Erdem and E. Tillier. Genome rearrangement and planning. In Proc. of AAAI,
pages 1139–1144, 2005.

[25] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for
robotic manipulation. In Proc. of ICRA, 2011.

77

[26] E. Erdem, K. Haspalamutgil, V. Patoglu, and T. Uras. Causality-based planning and
diagnostic reasoning for cognitive factories. In Proc. of ETFA, 2011.

[27] J. Felsenstein. PHYLIP (phylogeny inference package) version 3.6. Distributed by
the author., 2009.

[28] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[29] D. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging. Artificial

Intelligence Journal, 57:143–182, 1992.

[30] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions

on Artificial Intelligence, 2:193–210, 1998.

[31] M. P. Georgeff. Communication and interaction in multi-agent planning. In Proc. of

AAAI, pages 200–204, 1983.

[32] M. P. Georgeff. Communication and interaction in multi-agent planning. In Read-

ings in Distributed Artificial Intelligence, pages 200–204, 1988.

[33] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories. AIJ, 153:49–104, 2004.

[34] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Control-based clause sharing in
parallel sat solving. In Proc. of IJCAI, pages 499–504, 2009.

[35] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations with reversals). In Proc. of STOC, pages
178–189, 1995.

[36] H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algorithm for sorting
signed permutations by reversals. In Proc. of SODA, pages 344–351, 1997.

[37] H. Kautz and B. Selman. Planning as satisfiability. In Proc. of ECAI, pages 359–363,
1992.

[38] J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inver-
sion distance. In Proc. of CPM, pages 307–325, 1994.

[39] M. Lajoie, D. Bertrand, N. El-Mabrouk, and O. Gascuel. Duplication and inversion
history of a tandemly repeated genes family. J. of Comp. Biol., 14(4):462–478, 2007.

[40] V. Lesser, K. Decker, N. Carver, A. Garvey, D. Neimen, M. Prassad, and T. Wag-
ner. Evolution of the gpgp domain independent coordination framework. Technical
report, University of Massachusetts, 1998.

78

[41] Y. Lin, V. Rajan, K. M. Swenson, and B. M. E. Moret. Estimating true evolutionary
distances under rearrangements, duplications, and losses. BMC Bioinformatics, 11
(16), 2010.

[42] B. J. Clement M. M. de Weerdt. Introduction to planning in multiagent systems.
Multiagent and Grid Systems An International Journal, 5:345–355, 2009.

[43] Norman McCain and Hudson Turner. Causal theories of action and change. In Proc.

of AAAI/IAAI, pages 460–465, 1997.

[44] D. McDermott. The formal semantics of processes in pddl. In Proc. of ICAPS

Workshop on PDDL, 2003.

[45] B. Moret, L. Wang, T. Warnow, and S. Wyman. New approaches for reconstructing
phylogenies from gene order data. Bioinformatics, pages 165–173, 2001.

[46] B. Moret, S. Wyman, D. Bader, T. Warnow, and M. Yan. A new implementation and
detailed study of breakpoint analysis. In Proc. of PSB, pages 583–594, 2001.

[47] C. Nielsen. Animal Evolution: Interrelationships of the Living Phyla. Oxford Uni-
versity Press, 2001.

[48] Edwin Pednault. ADL: Exploring the middle ground between STRIPS and the situ-
ation calculus. In Proc. of KR, pages 324–332, 1989.

[49] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2009.

[50] D. Sankoff. Edit distances for genome comparisons based on non-local operations.
In Proc. of CPM, pages 121–135, 1992.

[51] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phy-
logeny. J. of Comp. Biol., 5:555–570, 1998.

[52] D. Sankoff, J. Lefebvre, E. Tillier, A. Maler, and N. El-Mabrouk. The distribution
of inversion lengths in bacteria. In Proc. of RECOMB-CG, pages 97–108, 2004.

[53] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies:off-line
design. Artificial Intelligence, 73, issue = 1–2, year = 1995, pages = 231–252,.

[54] C.J. Stuart. An implementation of a multi-agent plan synchronizer. In Proc. of

IJCAI, pages 1031–1033, 1985.

[55] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E. Moret. Approx-
imating the true evolutionary distance between two genomes. In Proc. of ISBRA,
pages 173–185, 2005.

79

[56] A. ter Mors, J. Valk, and C. Witteveen. Coordinating autonomous planners. In Proc.

of, pages 795–801, 2004.

[57] G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics, 18(3):
492–493, 2002.

[58] T. Uras and E. Erdem. Genome rearrangement and ai planning. submitted to IEEE

Transactions on Computational Biology and Bioinformatics.

[59] T. Uras and E. Erdem. Genome rearrangement and planning: Revisited. In Proc. of

ICAPS, 2010.

[60] S. Yancopoulos and R. Friedberg. Sorting genomes with insertions, deletions and
duplications by DCJ. In Proc. of RECOMB-CG, pages 170–183, 2008.

[61] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permu-
tations by translocation, inversion and block interchange. Bioinformatics, 21(16):
3340–3346, 2005.

[62] Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans with re-
stricted interactions. Computational Intelligence, 8:648–676, 1992.

[63] F. Yue, M. Zhang, and J. Tang. Phylogenetic reconstruction from transposition.
BMC Genomics, 9, 2008.

[64] M.F. Zaeh, M. Beetz, K. Shea, G. Reinhart, K. Bender, C. Lau, M. Ostgathe,
W. Vogl, M. Wiesbeck, M. Engelhard, C. Ertelt, T. Rhr, M. Friedrich, and S. Herle.
The cognitive factory. In Changeable and Reconf. Manufacturing Systems, pages
355–371. 2009.

80

	Introduction
	AI Planning
	Planning Problem
	Action Languages
	Action Description Language ADL
	Describing Actions in ADL
	Describing a Planning Problem

	Action Description Language C+
	Syntax of Causal Laws
	Semantics for Action Descriptions
	Queries

	Planners
	TLplan
	CCalc

	Example: Blocks World
	Solving Blocks World with TLplan
	Solving Blocks World with CCalc

	AI Planning for Genome Rearrangement
	Genome Rearrangement Problem
	Methods
	Describing Genomes
	Genome Rearrangement as a Planning Problem
	Describing Rearrangement Events
	Swapping Duplicates
	Embedding Heuristics in Action Descriptions
	The Breakpoint Heuristic
	Maintaining the Good Segments
	Discarding Irrelevant Labels

	Assigning Costs and Priorities to Events

	Results
	Experiments with Real Data
	Chloroplast genomes of land plants and green algae
	Chloroplast genomes of Campanulaceae
	Mitochondrial genomes of Metazoa

	GenomePLAN vs. Derange 2
	GenomePLAN vs. TD-Estimator
	Fixed genome length but varying number of events
	Fixed number of events but varying genome length

	Summary of Contributions

	Decoupled Planning for Multiple Teams of Robots
	A Cognitive Painting Factory Scenario
	Representing the Painting Factory Domain
	Domain Description: No Robot Exchanges
	Fluents
	Actions
	Finding Plans without Robot Exchanges

	Domain Description: Exchanges of Robots
	Eliminating Redundant Actions
	Eliminating Redundant Swaps
	Eliminating Redundant Attachments/Detachments
	Eliminating Movement Redundancies
	Discussion

	Optimal Decoupled Planning
	Finding Decoupled Plans of Fixed Length
	Observations
	The Main Algorithm
	The Improved Algorithm

	Finding Minimum Length Decoupled Plans
	Inferring Bounds from Previous Searches

	Embedding Decoupled Planning in an Execution and Monitoring Framework
	Related Work
	Summary of Contributions

	Conclusion
	Genome Rearrangement
	Multi-Robot Systems

