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ABSTRACT 

 

 Micro flows find applications in a variety of topics covering biomedical, cooling, 

electronics and MEMS (micro-electro-mechanical-systems) applications. In this work, 

the destructive effects of hydrodynamic cavitation for biomedical treatment, heat 

transfer enhancement with nanostructures and nanofluids for small scale cooling 

applications were investigated. 

 The research performed in this study includes results from bubbly cavitation 

experiments and findings showing the destructive effects of bubbly cavitating flow on 

selected solid specimens, live cells and proteins. Our results showed that cavitation 

could induce damage both on chalk pieces (and possibly kidney stones) and 

leukemia/lymphoma cells while the secondary structure content, the hydrodynamic 

diameter and enzymatic activity of lysozyme were unaffected by cavitation. 

 For the purpose of making compact and efficient heat exchangers, heat transfer 

enhancement with nanostructures could be considered as a futuristic candidate. Thus, 

heat transfer characteristics of nanostructured plates, on which an array of vertical and 

tilted copper nanorods with an average diameter ranging from 100 to 150 nm and length 

500 to 600 nm are integrated to a planar copper thin film coated silicon wafer surface, 

were compared to planar copper thin film coated silicon wafer surfaces via three 

different heat transfer techniques (pool boiling, forced convection and jet impingement). 

 Three different heat sinks were developed for this purpose. Surface temperatures 

were measured and heat transfer coefficients were calculated for the designed heat sinks 

and an average of 22% single-phase heat transfer enhancement was realized with the 

nanostructured plates.  
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 A miniature heat transfer enhancement system is also developed based on the 

actuation of magnetic nanoparticles dispersed in a base fluid (water). The ferromagnetic 

particles within the pool were actuated with the magnetic stirrers and this resulted in an 

average heat transfer enhancement of 37.5% compared to the stationary fluid. 

 In the light of the performed stuides, hydrodynamic cavitation was shown to be a 

strong heat-free and energy efficient future alternative to ultrasonic cavitation which is 

being extensively used in biomedical treatment. Also nanostructured surfaces and 

magnetically actuated nanofluids were proven to contribute to heat transfer 

enhancement significantly. 
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ÖZET 

 

Mikro akışlar; biyomedikal, soğutma, elektronik ve mikro-elektro-mekanik-

sistemler ( MEMS ) gibi çeşitli konularda uygulamalara sahiptir. Bu çalışmada; küçük 

ölçekli soğutma uygulamaları için nanoyapıların ve nanosıvıların ısı transferine katkısı 

ve biyomedikal tedavi için hidrodinamik kavitasyonun yıkıcı etkileri araştırılmıştır. 

Bu araştırma çalışmasında; seçilen katı örnekler, canlı hücreler ve protein üzerinde 

kabarcıklı kavitasyon akışının yıkıcı etkilerini gösteren deneyler ve bunlara ait 

bulguların sonuçları verilmiştir. Çalışmanın sonuçları; kavitasyonun tebeşir parçaları ( 

ve muhtemelen böbrek taşları ) ve lösemi/lenfoma hücrelerinin hasar görmesine neden 

olabildiğini göstermiştir ve aynı koşullarda Lizozom’ların ikincil yapı içeriğinin, 

hidrodinamik çapının ve enzimatik aktivitesinin kabarcıklı kavitasyon tarafından 

etkilenmemiş olduğunu göstermiştir.  

Kompakt ve verimli ısı eşanjörleri yapma amacı için; nanoyapılar ile ısı transferi 

geliştirme, fütüristik bir aday olarak düşünülebilir. Böylece; çeşitli ısı transfer 

teknikleri, ısı transferi geliştirmesinde ortalama çapı 100-150 nm ve uzunluğu 500-600 

nm olan bakır nanoçubukların bakır ince film kaplamalı silikon yarıiletken levhaya 

entegre edilmesiyle üretilen nanoyapıların etkilerini karakterize etmek için 

kullanılmıştır. Üç farklı ısı transferi tekniği (havuzda kaynama, zorunlu konvektif ve jet 

çarpma) ile elde edilen sonuçlar düz bir silikon taban üzerine biriktirilmiş bakır ince 

filmli plakalar ile karşılaştırılmıştır. 

Bu amaç uğruna 3 farklı ısı eşanjörü geliştirilmiştir. Yüzey sıcaklıkları ölçülmüş ve 

ısı transferi katsayıları hesaplanmıştır. Tek-fazlı deneylerde ortalama %22 ısı transferi 

iyileştirilmesi elde edilmiştir. 

Minyatür bir ısı transferi iyileştirme sistemi daha tasarlanmıştır. Manyetik 

nanoparçacıkların hareketine dayalı soğutma sistemindeki bu nanoparçacıklar bir baz 
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sıvı (su) içinde süspansiyon olarak hazırlanmıştır. Havuz içinde ferromanyetik 

partiküller manyetik karıştırıcı ile harekete geçirilmiştir ve sabit nanosıvı ile 

karşılaştırılmıştır. Manyetik parçaların hareketlendirilmesiyle ortalama %37.5 ısı 

transferi iyileştirmesi elde edilmiştir. 

Bu çalışmalar sonucunda, hidrodinamik kavitasyonun ileride ultrasonik 

kavitasyon’a ısı üretimi olmayan ve enerji tasarruflu bir alternatif sunabileceği 

gösterilmiştir. Ayrıca, nanoyapıların ve manyetik alanla hareketlendirilen nanosıvıların 

ısı transferini büyük ölçüde iyileştirdiği gösterilmiştir. 
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NOMENCLATURE 
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xv 
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1 INTRODUCTION 

 

1.1 Biomedical Application of Hydrodynamic Cavitation 

 

1.1.1 Overview on Cavitation Inception 

 

Hydrodynamic cavitation is a progressive cycle of vaporization, bubble 

generation, and bubble implosion. This cycle arises in a running liquid as a result of a 

decrease and consequent increase in local pressure. Hydrodynamic cavitation is initiated 

with local static pressure reduction below a critical pressure value, the saturated vapor 

pressure of the liquid in the case of no impurities in the liquid and the surface. Its effects 

on many types of turbo machinery have been investigated by numerous researchers 

summarized in standard multiphase flow textbooks [1-3]. It is known that every 

hydraulic device is susceptible to the damage caused by cavitation once the appropriate 

cavitating flow conditions occur. In most cases, hydrodynamic cavitation is not desired, 

since it limits the performance of a fluidic system, causes catastrophic damage and flow 

choking, generates acoustic noise, and lowers efficiency [1]. Due to its consequences 

and its destructive nature, cavitation and the energy associated with it constitute an 

important research subject, especially when these unwanted properties are used for 

therapeutic applications. 

Reynolds was one of the first researchers who focused on the subject of 

cavitation by trying to explain the unusual behavior of ship propellers, which were 

vulnerable to damage because of their high rotational speeds (Figure 1.1 [4, 5]). What 

Reynolds achieved was to explain the phenomenon in terms of the possible creation of 

Figure 1.1.  Cavitation on the tip of a propeller blade [4](a) and cavitation damage 

[5](b). 
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air bubbles near the propeller blades. In general, we understand hydrodynamic 

cavitation as the phenomenon of formation and growth of vapor or air pockets in fluid 

flows as a result of local static pressure reduction below a critical value. Cavitation 

bubbles collapse due to rapid successive reduction and increase in local static pressure 

and this leads to a high energy outcome, thereby generating highly localized, large 

amplitude shock waves [1, 2]. 

 

1.1.2 Theory of Cavitation 

 

Cavitation generally occurs as a result of vaporization, followed by bubble 

generation and bubble implosion. Such cavitating flows could be initiated using a 

successful microchannel and microorifice design. In one configuration used to invoke 

cavitation, a pressurized liquid is forced past a narrow orifice, which is fixed to the end 

of a probe lying submerged in a fluid tank [6]. Along the inner surface of the orifice, the 

sudden decrease in the local static pressure below a critical value initiates bubble 

formation and cavitation. Upon exiting the micro-orifice and entering a bulk liquid 

under atmospheric pressure, the bubbles suddenly implode in response to the increase of 

local pressure.  

In contrast to macro scale applications, such as in propellers, a microchannel and 

microorifice design does not involve any moving parts. However, by using the same 

concept of reducing the static pressure and then releasing the emerging bubble to a 

higher pressure medium, it is possible to generate cavitation inside a microorifice. As 

the fluid passes through the orifice throat, the velocity of the fluid increases due to 

conservation of mass. As a result, local static pressure of the fluid decreases in 

consistency with the Bernoulli equation (with the assumption of no frictional losses 

through the orifice and neglecting frictional losses through the orifice). Bernoulli 

equation can be given as: 

 

  

 
 

 

 
  

  
  

 
 

 

 
  

                                                  (1) 

 

where P1, P2 and V1, V2 are local static pressures and fluid velocities at before the 

orifice and inside the orifice, consecutively and ρ is the density of the fluid. 

Due to the Bernoulli Equation, the reduction in static pressure leads to an 

acceleration of the fluid and thus to a significant increase in the fluid velocity between 
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points 1 and 2 (Figure 1.2). The critical location (point 2) where the static pressure 

drops to its minimum and the velocity rises to its maximum, is termed the Vena 

Contracta. Beyond this point, the static pressure recovers downstream of the orifice.  

Further reduction of the exit pressure results in the static pressure at the Vena 

Contracta to fall and produces an increase in the discharge velocity (HGL 2), which is 

directly proportional to the square root of the pressure difference between points 1 and 

2. At some critical pressure in the Vena Contracta, the dissolved gas starts diffusing into 

the nuclei (submicron bubbles) and promotes their growth. The static pressure could be 

still above the vapor pressure of the liquid. This bubble growth is associated with the 

gaseous cavitation.  

Further reduction in the exit pressure reduces the static pressure at the Vena 

Contracta down to the vapor pressure of the liquid (HGL 3). Once this physical limit is 

reached, any attempt to increase the discharge by reducing the exit pressure is futile [7]. 

This situation is defined as choked flow or choked cavitation where the exit pressure 

loses its control over the discharge. The micro-orifice produces its maximum discharge 

under these conditions, and any reduction in the exit pressure only results in the 

elongation of the vapor cavity (HGL 4, HGL 5), which is characterized as 

supercavitating flow. 

The cavitation number, Ci, is a dimensionless number used for quantifying 

Figure 1.2.  Hydrodynamic Pressure Grade Lines (HGL). 
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similar cavitating conditions and for representing the intensity of cavitation. It can be 

quantified by the difference between the local static pressure head and vapor pressure 

head divided by the velocity head. In other words, it is directly proportional to the 

downstream pressure and inversely proportional to the square of flow velocity near the 

orifice [8]. The cavitation number is defined as  

 

    
     
 

 
   

                                                         (2) 

 

where P∞ is the exit pressure, ρ is the density , Pv is the vapor pressure and V is the flow 

velocity at the micro-orifice. 

A reduction in cavitation number will increase the intensity and the extent of the 

cavitation. The channel geometry also affects the formation of cavitation. Small 

cavitation numbers reflect strong cavitation conditions whereas larger numbers specify 

weakly cavitating and eventually non-cavitating hydrodynamic flow conditions [8]. The 

cavitation power increases as Ci decreases until a threshold, defined by a minimum Ci 

value, where a further decrease would prompt the onset of flow choking by bubbles 

generated inside the channel. It is critical not to reduce the cavitation number too much, 

since a transition from bubbly cavitation to supercavitation could occur (Figure 1.3 [9]). 

Supercavitation would be unsuitable for the purpose of the current study, which is to 

Figure 1.3.  A typical supercavitating flow 

pattern [9]. 
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generate continuous bubbly cavitating flow by designing a microfluidic device (bubble 

generator), and then exposing the emerging bubbles to a small target area and to make 

observations on the changes in this area. 

In Figure 1.4, the microchannel configuration with the short orifice throat and 

exit area is shown to provide insight into the cavitating system. The bubble implosion 

caused by hydrodynamic bubbly cavitation is highly destructive on targeted surfaces. 

Assuming an isobaric bubble collapse, the bubble energy Eb available for each 

implosion is equal to the work W done by the liquid on the bubble during its collapse, 

which is obtained by multiplying the pressure head by the initial maximum bubble 

volume [10]: 

 

     
 

 
     

                                                  (3) 

 

where P∞ is the exit pressure, Rmax is the maximum bubble radius and Pv is the vapor 

pressure. Thus, if they could be fine controlled, they could be utilized for a variety of 

treatments, such as destroying kidney stones or killing cancer cells.  

 

1.1.3 Literature Survey on Cavitation for Cancer Treatment 

 

There are two main sources for creating cavitating flow: hydrodynamic and 

ultrasonic sources. The use of ultrasonic cavitation in treatment of cancerous tissues has 

been investigated by various researchers [3, 11-14]. As a result, ultrasonic sources have 

been the most popular means of generating cavitation in laboratory scale studies and, 

Figure 1.4.  Microchannel configuration with the orifice throat, inlet and exit area. 



 

6 

lately, it has been widely used in clinical practice. Therefore, numerous applications of 

ultrasonic cavitation (including biomedical applications) do exist [11, 12]. 

Ultrasonic cavitation is a noninvasive treatment, where some difficulties are faced in 

targeting the precise location (kidney stone and abnormal tissue) of the treatment. To 

provide a better targeting, phased array probes are currently being employed [15-22]. A 

phased array probe consists of many small ultrasonic elements, each of which can be 

pulsed individually. By varying the timing, a pattern of constructive interference could 

be obtained so that a beam, which can be steered electronically, could be generated at a 

set angle. The resulting beam could be directed through the tissue or object being 

treated. Nevertheless, heat produced by ultrasound is responsible for some of the side 

effects produced by this treatment. These side effects include local pain, fistula 

formation, stress urinary incontinence, and erectile dysfunction resulting from various 

degrees of nerve and tissue damage [23]. Therefore, damage to tissue outside the target 

area is considered as a major drawback [24]. Moreover, the ultrasound treatment should 

not be applied over certain body parts, such as eyes and female breasts, and critical 

locations, such as certain bone fractures and skin wounds [23]. 

To reduce the side effects, a newly developed ultrasound cavitation therapy method 

called “histotripsy” was introduced. Histotripsy uses bursts of ultrasound to destroy 

tissue by cavitation; therefore, microbubbles rather than thermal mechanisms are 

responsible for its therapeutic effects [25-32].  

In addition, ultrasonic cavitation applications have suffered from several 

shortcomings on industrial-scale applications due to high-frequency ultrasound usage. 

Research efforts to decrease the threshold of cavitation are present in the literature. The 

use of microdroplets of various contents [33], xanthene dyes [34], solid nanoparticles 

[35], bifrequency excitation [36, 37], and the local introduction of shock-wave-

generated bubbles [38] are some examples for reducing the threshold of cavitation.  

Another ultrasound-based method called lithotripsy (shock wave lithotripsy) is a 

noninvasive technique, which offers important advantages for the treatment of renal and 

ureteral stones [39]. It is the most common treatment for solitary, uncomplicated, and 

small upper urinary tract calculi [40]. Success rate in shock-wave lithotripsy can be 

increased by providing treatment at a slow shock-wave rate. However, some stone types 

(e.g., brushite, calcium oxalate monohydrate, and cysteine stones) could be resistant to 

this treatment [41-44]. Stone breakage with lithotripsy is not always complete and 

patients are exposed to re-treatment or an additional clinical procedure to remove 
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residual fragments. Lithotripsy treatment is limited to a maximum stone burden of 

around 2.5 cm, since renal anatomy could pose a barrier to the clearance of the stone 

debris [45]. Reports describe unexpected and serious adverse effects of lithotripsy [46-

48]. For example, shock-wave treatment can rupture blood vessels, and can cause severe 

acute renal injury. 

Hydrodynamic cavitation is another candidate with a cost-effective and energy-

efficient solution [49-51] for biomedical treatment. With the emergence of 

microfluidics, hydrodynamic cavitation has been considered as an important alternative 

to ultrasonic cavitation over the last decade. Pioneering studies on hydrodynamic 

cavitation in microchannels have been successful in showing the unique properties of 

cavitating flow at the microscale [7,9 52-54]. Bubbles generated by hydrodynamic 

cavitation are highly destructive on the applied surface; therefore, this technique can be 

used efficiently as a minimally invasive surgical technique to destroy urinary stones. 

With an appropriate delivery system such as an endoscopic catheter, bubbles produced 

by cavitating flow could be targeted to the desired spot precisely so that the destructive 

nature of bubbly cavitating flows could be used for abnormal tissue ablation (e.g., 

benign prostate hyperplasia (BPH) or tumor ablation). 

In this study, the aim is to explore the feasibility of this alternative treatment 

method. For this, destructive effects of hydrodynamic cavitation are investigated and 

checked for controllability and success in the aforementioned targeting, which would 

confirm its suitability for biomedical treatments. 

 

1.1.4 Literature Survey on Cavitation Effects on Proteins 

 

Hydrodynamic flow processes, specifically hydrodynamic cavitation in micro-

orifices, describes a promising alternative to ultrasonic cavitation in the treatment of 

certain pathological conditions. Unlike ultrasonic cavitation, which is characterized by a 

relatively large cavitation volume and uniform spatial power distribution, hydrodynamic 

cavitation permits the honed, local cavitation of a target region at potentially much 

higher power levels [8]. In view that cavitation can mechanically disrupt hard and soft 

materials, its prospect as an alternative therapy for kidney stones and prostate diseases 

is currently being assessed [55]. 

In assessing its prospect as a therapeutic technique, one disadvantage of 

hydrodynamic cavitation over traditional sonication-based methods is the obvious 
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inconvenience brought about by the physically invasive nature of the probe. Other 

concerns, however, are related to more subtle, adverse consequences that might follow 

the localized cavitation of tissue at high power levels. The mechanically disruptive 

effect of hydrodynamic cavitation has been recently established on whole cells [55] but 

no work has addressed potential risks at the level of cellular components. Hence, the 

possibility cannot be overlooked that certain environmental factors related to cavitation 

might prompt protein conformational changes, protein aggregation, and even misfolding 

as well as potentially dangerous globular-to-fibrous phase transitions [56, 57]. To date, 

a handful of work related to protein cavitation has reported definite structural and 

chemical changes in soluble model proteins [58, 59]. However, as these protein 

investigations were limited to sonication for extended periods, a knowledge base to 

appreciate the consequences of hydrodynamic cavitation was clearly lacking. It is hoped 

that this in vitro study might prompt sufficient visibility and effort to assess the impact 

of hydrodynamic cavitation-based therapies on endogenous proteins. Such insight 

should prove useful, particularly in light of the regenerative role played by proteins 

localized at sites of injury or incision. 

In this work, the protein model lysozyme was chosen in view of its large 

knowledge base and ease of characterization [60]. Acetate-buffered solutions at pH 4.8 

were subjected to hydrodynamic flow conditions at two Ci values, and aliquots were 

withdrawn at different times and subjected to analysis. 

 

1.2 Nanostructures for Heat Transfer Enhancement 

 

1.2.1 Motivation of Heat Transfer Enhancement with Nanostructures 

 

With the miniaturization of microprocessors and microchips, an increasing trend in 

their power density is inevitable. As a result, there is an urgent need for micro heat sinks 

with low thermal resistance. Besides electronics cooling, micro heat sink technology 

also finds applications in microreactors, micropropulsion, biotechnology, fuel cells and 

air conditioning.  

In the design processes of many mechanical and chemical devices one of the key 

issues of saving energies and achieving compact designs is the enhancement of heat 

transfer [61]. As heat transfer is enhanced, the cooling process becomes more efficient. 

In the design of heat exchangers for spacecrafts, automobiles, MEMS devices and 
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micro-processors, it is crucial that the heat exchanger is kept compact and lightweight 

[62]. For the purpose of making compact and efficient heat exchangers, heat transfer 

enhancement with nanostructures could be considered as a futuristic candidate. 

Recently, nanostructured surfaces have been utilized to achieve high heat transfer 

performance due to their enhanced heat transfer area and positive effect on heat transfer 

coefficients with diminishing length scales [63-66]. In order to keep up with the 

miniaturization process, heat transfer and fluid flow at micro and nano scales have been 

rigorously studied in the literature to achieve higher heat removal capabilities [67-69]. 

Moreover, nanostructures also provide additional active nucleate sites so that they could 

promote nucleate heat transfer in boiling [70]. 

 

1.2.2 Literature Survey on Pool Boiling 

 

The applications of nanostructured surfaces in boiling mainly focus on pool boiling. 

Recent results of pool boiling on nanofluids [66, 71-76] and nanostructured surfaces 

[70, 77-80] have shown significant heat transfer enhancement compared to plain surface 

and unseeded liquids, respectively. The investigators working on pool boiling with 

nanofluids detected nanoparticle coating on their heater surface, which modified the 

surface characteristics [66, 70-75]. They could visualize the increase in surface 

roughness with nanoparticle surface coating and the decrease in contact angle (thus the 

increase in wettability), both of which contributed to enhance critical heat flux (CHF). 

By this way, researchers were able to obtain high CHF values using pure water on 

nanoparticle coated surfaces. Significant increases in heat transfer coefficients and the 

CHF, and dramatic reductions in boiling inception temperatures have been reported by 

independent research groups dealing with nanostructured surfaces and nanofluids in 

pool boiling [66, 70-79]. However these studies generally lack a controlled method of 

nanostructured coating that limits the fundamental understanding of heat-transfer 

mechanisms in nanoscale as well as applications of such approaches in cooling systems. 

With this motivation, a unique method of nanostructured coating for micro-cooling 

systems is presented, with capability of producing nano-features of various shapes, 

dimensions and material types. Recently, preliminary tests on a copper nanorod array 

coated pool boiler were presented and obtained boiling curves were compared to the 

ones from a conventional planar copper thin film surface configuration [80]. In this 

work, these studies were extended using two kinds of working fluid, namely water and 
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ethanol. Convective heat transfer coefficients for both of these fluids having different 

thermo-physical properties have been calculated and plotted with the input heat flux. 

The potential use of such a compact nanostructured pool boiler having no pumping and 

moving components in microscale cooling applications was exploited (up to about 10 

W/cm
2
) and promising results were obtained. 

 

1.2.3 Literature Survey on Forced Convection 

 

Recently, many studies have been going on for enhancing convective heat transfer 

by enlarging the transfer surface using extended surfaces like fins and ribs [61, 81-83]. 

These modifications enlarge the heat transfer surface area and provide high heat transfer 

rates but their drawback is increased friction factor and unwanted pressure drops. Using 

pin-fin structures causes pressure losses which is a significant problem in many thermo-

fluid applications and designs [61]. Such pressure losses occur because of the additional 

flow resistance imposed by pin-fins. 

To achieve positive effects on heat transfer coefficients with diminishing length 

scale and high heat transfer performance due to enhanced heat transfer area, 

nanostructured surfaces have been used in more recent studies [63, 70]. The main focus 

of these studies was utilizing nanostructured surfaces for improving boiling heat 

transfer. Different from the state of the art, this work utilizes nanostructures in a forced 

convective heat transfer scheme so that their potential could be exploited from a 

different perspective. 

For this purpose, this article proposes a nanostructured plate, which comprised of 

vertical copper nanorods of length ~600nm and average diameter ~150nm with an 

average gap among the nanorods ranging from ~50 to 100nm are integrated to copper 

thin film (50 nm thick) deposited on silicon substrate with a thickness of 400 μm, to 

enhance heat transfer via single-phase flow in a rectangular channel. Heat transfer 

coefficients of the system were reduced for a constant heat flux scenario up to 

6.5W/cm
2
 and it has been shown that the nanostructured plate enhances heat transfer 

significantly because of the large surface area of nanorods available for heat transfer, 

and thus heat removal takes place more effectively. The advantage of such a system is 

that it does not cause any significant extra pressure drop and thus does not raise friction 

factor. Pin-fin geometry imposed by nanorods on the plate (integrated to the channel 

wall) is on the nanoscale so that the friction forces induce minor pressure losses. 
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1.2.4 Literature Survey on Jet Impingement 

 

In terms of the capability of providing high heat transfer rates, jet impingement is 

one of the most efficient cooling mechanisms. Jet impingement cooling not only offers 

high heat transfer rates but also has the benefit of removing all thermal interface 

resistances between the surface and the cooling fluid [84]. In a wide range of industrial 

applications such as annealing of metals [85], cooling of gas turbine blades [86], 

cooling in grinding processes [87], and cooling of photovoltaic cells [88] jet 

impingement cooling became a preferential method for the heat transfer community. 

For instance, in gas turbine applications, this cooling method has been used for a long 

time in order to assure durability during long operating intervals [85]. Moreover, 

impingement systems play an important role in micro scale applications such as cooling 

of electronic components, microprocessors, and MEMS (micro-electro-mechanical-

systems) devices [84].  

Flow and heat transfer characteristics of multiple impinging jets can differ 

substantially from those of single jets depending mainly on geometrical conditions. If 

there are more jets in the array and the individual jet diameter is smaller, the heat 

transfer rates will be higher [84]. Multiple jet flows interact with each other so that 

employing jet arrays becomes considerably complex or even erroneous compared to 

single jet configurations. While heat transfer rates for single jets can be functionally 

expressed by relatively simple power-functions of Reynolds (Re) and Prandtl (Pr) 

numbers, correlations for heat transfer rates for multiple jets require the consideration of 

a number of additional characteristic numbers such as nozzle to surface distance and 

nozzle spacing [89]. Heat transfer in jet impingement systems is greatly influenced by 

nozzle geometry. In previous studies reported in the literature, for a constant Reynolds 

number, it was found that decreasing the jet diameter yields higher stagnation and 

average heat transfer coefficients [90-92]. This can be attributed to the higher jet 

velocities created by the smaller nozzles [85]. 

The thermal properties of two types of nanostructured plates based on vertical and 

tilted copper nanorods fabricated by glancing angle deposition (GLAD) technique [93-

95] were investigated and their effect on the performance of heat removal is compared 

to that obtained using a plain plate coated with flat Cu thin film. In addition, multiple 

impinging jets were used instead of a single jet where heat transfer under an impinging 
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jet is very high in the stagnation zone but decreases quickly away from the jet [84]. 

Employed multiple jet arrays increase the number of available stagnation zones, and 

thus, they enhance the heat transfer from the impingement surface. This study reveals 

the advantages of using nanostructured surfaces and multiple impinging jets in 

microscale cooling. Moreover, there is little information and studies concerning the heat 

transfer performance of the nanostructured surfaces with tilted nanorods. It has been 

reported that nanostructures enhance the heat transfer performance in boiling 

applications by decreasing the contact angle of the liquid and therefore enhancing 

wettability [70]. However, there is a lack of knowledge concerning their performances 

and their configuration effects in jet impingement cooling systems. This study is also 

meant to display the effect of the orientation of nanostructures (tilted and vertical 

nanorods) on heat transfer during jet impingement. 

 

1.3 Nanofluids for Heat Transfer Enhancement 

 

1.3.1 Motivation of Heat Transfer Enhancement with Nanofluid 

 

Most of the micro/nano devices tend to shrink in size while the escalation in 

their power densities becomes inevitable every day. This trend asks for an urgent need 

for heat transfer enhancement because these devices find applications in many 

important areas including electronics, microreactors, micropropulsion, biotechnology, 

fuel cells and air conditioning as well as in new emerging areas such as heat-assisted 

magnetic recording (HAMR) [96, 97] and the cooling mechanisms required in future 

thermo photovoltaic cells based on near-field radiative heat transfer principles [98-104].  

In order to keep up with the miniaturization process heat transfer and fluid flow 

at micro and nano scale have been rigorously studied in the literature to achieve higher 

heat removal capabilities [67-69]. Various researchers have shown that, in general, 

nanofluids offer better heat transfer characteristics compared to their base fluids [105-

107]. One of the reasons for that is the improved thermal conductivity due to existence 

of high conductivity nanoparticles dispersed in the base fluid. It has also been shown 

that Brownian diffusion (the random motion of nanoparticles within the base fluid) 

which results from continuous collision between nanoparticles and the molecules of the 

base fluid and thermophoresis (diffusion of particles under the effect of a temperature 

gradient) greatly contribute to heat transfer enhancement in nanofluids [108, 109]. 
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1.3.2 Literature Survey on Nanofluids 

 

Heat transfer experiments have been focused on mainly three techniques; 

utilization of porous-layer coatings, nanofluids and nanostructures. Heat transfer 

surfaces have been treated with porous-layer coatings for the enhancement of pool 

boiling [74, 110] and, recently, nanostructured surfaces have been utilized to achieve 

high heat transfer performance with enhanced heat transfer area and positive effect on 

heat transfer coefficients with diminishing length scale [63, 70]. Moreover, 

nanostructures and porous layer coatings also provide additional active nucleate sites so 

that they promote nucleate heat transfer in boiling. Similarly, micro-machined structures 

have also been studied to enhance heat transfer from surfaces in pool boiling [79, 111]. 

Nanofluids can be considered to be the next-generation heat transfer fluids as 

they offer exciting new possibilities to enhance heat transfer performance compared to 

pure liquids [112]. Nanofluids have been used not only since their thermal 

conductivities are higher compared to their base agents but also the random movement 

and dispersion effect of the nanoparticles have proven to augment heat transfer 

significantly [113]. They have usually been used for deposition of nanoparticles on pool 

surfaces to promote heat transfer by creating roughness and active nucleate sites [72, 73, 

75-78, 114]. Different from the state of art, nanofluids containing magnetic 

nanoparticles are utilized in this study to remove heat from excessive heat generating 

surfaces. Magnetic nanoparticles are actuated and utilized as heat transporters so that 

the system could be operated more effectively. 

The actuation of nanofluids containing magnetic nanoparticles has recently been 

investigated in the literature [115-119]. Such fluids were used to design various pumps 

that do not contaminate the running fluid. Highly controllable nanofluid flows on the 

order of tens of microliters per second were achieved [115-118]. Motivated by the 

results in the above mentioned studies, the aim of this paper is to propose a magnetic 

nanofluid actuation for thermal management applications in microscale. Pioneering 

experiments were conducted and surface temperatures were obtained from miniature 

pool containing nanofluid actuated by magnetic stirrers. The potential for such compact 

pool systems in the use in microscale cooling applications was exploited in this study. 
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2 EXPERIMENTAL 

 

2.1 Experimental Setup and Procedure for Hydrodynamic Cavitation 

 

2.1.1 Experimental Setup to Generate Bubbly Cavitation 

 

A schematic of the experimental apparatus is shown in Figure 2.1. Sequential 

images of bubble growth and collapse were captured by a Nikon SMZ 1500 

stereoscopic zoom microscope and Unibrain Fire-i 400 CCD camera unit. The 

volumetric flow rates were measured with a flow meter. 

Cavitation is generated by a microorifice, which is a plain microchannel of inner 

diameter 147 μm, which is suitable for both cavitation inception at moderate inlet 

pressures and visualization, and is connected to the external tubing. The tubing material 

is polyether ether ketone, which is an organic polymer thermoplastic used in various 

engineering and medical applications such as medical implants. The material involves a 

sheet of protection and has high resistance to corrosion; thus, it can be used in 

biomedical applications that require sterile environments and equipment. The tubing 

substrate is precisely laser drilled to the desired inner diameters for the experiments. A 

representative image of the experiment is depicted in Figure 2.2. The test setup consists 

of an air compressor, a high pressure tank, a filter, a pressure gauge, tubing, flow meter, 

and a fine-control valve. The tank was used as a container for deionized (DI) water, and 

the compressor/nitrogen tank was connected to the tank in order to maintain input 

pressure. The filter was employed to prevent the flow of any particle larger than 15 μm 

to the system.  

The tests were conducted by applying different inlet pressure values. The 

maximum pressure applied at the inlet was 10 atm, while the outlet pressure was set 

constant to 1 atm during tests to better simulate the case for in vivo biomedical 

applications. The flow rate was controlled with a fine-metering valve. Various inlet 

pressure values were applied during the tests in order to observe the result at increasing 

pressure differences until bubbly cavitating flow pattern is obtained. To be reproducible, 

each experiment was repeated for five times. 
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Figure 2.1.  (a) Experimental apparatus. (b) Schematic of 

exposure of bubbly cavitation. 

Figure 2.2.  Picture of the experimental apparatus. 



 

16 

Examination of bubble sizes in DI water without a specimen resulted in 

occurrences of bubble diameters of 60–340 μm recorded by the CCD camera (Unibrain 

Fire-I with a frame rate of 30 f/s) at the exit of the microorifice. The diameters of most 

of the bubbles were less than 150 μm due to channel diameter, but some bubbles 

merged at the exit thereby yielding bigger bubbles of diameter greater than 150 μm. The 

uncertainties in pressure and flow rate measurements were ±0.5% (of entire range) and 

±1% (of measured value), while the uncertainty in the inner diameter measurement was 

±2 μm.  

 

2.1.2 Chalk (Gypsum) As a Model of Kidney Stones 

 

To assess a possible use of bubbly cavitation on kidney stones, experiments were 

conducted. For this purpose, chalk (gypsum) was employed as a material with similar 

properties to some kidney stones (see Table 2.1). Natural urinary stones are 

heterogeneous in size, shape, internal structure, mineral composition, material 

properties, and fragility to treatments [120]. Since natural stones show significant 

variations with respect to their properties (see Table 2.1), they are rarely used during 

optimizations aiming at determining the performance of experimental treatments [121]. 

Instead, some investigators have developed a variety of artificial models or phantom 

stones to be utilized in renal calculi experiments [122, 123]. Chalk and artificial stones 

provided important research tools before applying the methods on natural urinary stones 

Table 2.1.  Material Properties of Chalk (Gypsum) [124, 155] and Some Common 

Kidney Stones [122]. 
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and usage in the clinics (e.g., lithotripsy or ultrasonic cavitation). Chalk (gypsum and 

calcium sulfate dihydrate) has been widely used in such investigations by several 

researchers [124, 125].  

The depth of penetration was measured after placing the piece of chalk 1–2 mm 

downstream just in front of the outlet. All consecutive test runs were made under the 

same working conditions. 

 

2.1.3 Cancerous Cell Culture for Cavitation Experiments 

 

The same experimental method and apparatus were used to initiate bubbly 

cavitation for the experiments on cells. Jurkat, acute T-cell leukemia, and 

myelomonocytic U937 human histiocytic lymphoma cell lines were chosen as cancer 

models because they grow well in suspension, and they are easy to manipulate.  

Jurkat and U937 were obtained from the American-type culture collection. 

These cells were cultured in RPMI- 1640 medium containing 10% fetal bovine serum, 

2-mM L-glutamine, 100-μg penicillin/100-U streptomycin, 55-μM β-mercaptoethanol at 

37 ◦C in a humid 5% CO2–95% air environment. Medium was replaced every 2–3 days. 

For the time-dependent treatments, the cells were cultured in 75-cm
2
 flasks and 

maintained at a cell concentration of 1 × 10
6
 cells/mL. All equipment were sterilized 

with 70% ethanol and then washed with a sterile physiological solution (phosphate 

buffered saline, PBS). PBS was used as a liquid environment to produce cavitation. 

Cells were exposed to bubbly cavitation under an inlet pressure of about 950 kPa (inlet 

pressure was increased until a cavitating flow pattern was obtained) for 0.5, 1, 2, 3, and 

5 min, while the outlet pressure (pressure in the solution) was kept at atmospheric 

pressure. 

 

2.1.4 Cell Death Analysis 

 

Jurkat and U-937 cells were exposed to hydrodynamically produced bubbly 

cavitation and then centrifuged at 300× g for 5 min, washed and transferred to a fresh 

culture medium. They were then evaluated for cell death (0 h) or incubated for 16 or 24 

h. As a cavitation control, PBS of a comparable flow rate was applied on cells using a 

larger channel (3 mm diameter) that did not create cavitation. During the experiments, 

control cells were treated in the same way as their counterparts exposed to cavitation.  
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Cells were harvested at the indicated time points and death was concomitantly 

assessed using the trypan blue exclusion technique. Estimation of viability by trypan 

blue exclusion relies on the loss in membrane integrity (a late event in cell death) that is 

determined by the uptake of a trypan blue dye to which cells are normally impermeable. 

 

2.1.5 Protein Sample Preparation 

 

Hen Egg-White (HEW) lysozyme (Sigma), 1.5 g, was dissolved in 7.5 mL of 

buffer A (10 mM sodium acetate, 100 mMKCl, pH 4.8) and centrifuged at 5400 g (15 

min, +4 ºC).  

The supernatant of this solution (6 mL) was subjected to hydrodynamic flow at 

two Ci values (7.6 versus 0.93) in order to assess, respectively, the potential effects of 

non-cavitating versus cavitating flow at 25ºC. The pressurized fluid exiting the probe 

orifice was the same composition as buffer A. Samples subjected to hydrodynamic 

cavitation were withdrawn (2 mL) every minute, whereas samples subjected to non-

cavitating hydrodynamic flow were withdrawn (2 mL) every 2.5 minutes. After 

accumulating a total volume of 50 mL (i.e., corresponding to a 2-minute time point in 

the former case and a 5-minute time point in the latter case), the content of the tank was 

decanted. Cavitation was resumed as described above using 6 mL of the decanted 

solution. The above process was repeated until the effective protein concentration had 

dropped to approximately 0.4 mg/mL. 

Control samples were prepared by appropriately diluting untreated lysozyme 

solutions in Buffer A. Concentration was determined spectroscopically using the 

established extinction coefficient of lysozyme (2.64 mL mg
-1

 cm
-1

) [126]. 

 

2.1.6 Protein CD Measurements 

 

Circular Dichroism measurements were performed using a JASCO J-810 model 

CD Spectropolarimeter (Jasco International, Tokyo, Japan).  

Far-UV spectra (200-260 nm) were acquired at 298 K with the instrument 

configured in continuous scan mode (scan rate 50 nm/min; 3 scans/sample; 2 s 

response; 1 nm band width; 300 µl samples; 1 mm path length). Data was expressed as 

ellipticity (deg cm
2
 dmol

-1
) on the basis of protein concentration (mg/ml) as well as 

mean residue ellipticity (MRE) [127].The far-UV CD spectra were de-convoluted using 
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CDNN and DICROPROT software in order to determine the percentages of secondary 

structure elements [128, 129]. 

 

2.1.7 Protein Dynamic Light Scattering (DLS) Measurements 

 

Changes of protein hydrodynamic diameter were recorded using a Nano ZS 

model Malvern Instruments Zetasizer, and quantified using Zetasizer software [130]. 

Following withdrawal, the protein samples were equilibrated at room temperature and 

their scattering intensities were quantified at 542 nm. The DLS measurements were 

compared against non-treated control samples prepared at the same concentration. 

 

2.1.8 Protein Activity Assays 

 

Cell viability measurements were performed in order to identify any correlation 

between changes of hydrodynamic diameter and bioactivity. Micrococcus luteus 

(ATCC 4698) cells were grown in Tripticase Soy Agar (ATCC Medium 18) medium. 

This assay is based on the disruption of cell wall peptidoglycans, resulting in lysis of the 

bacteria and loss of optical density. In a typical assay, hydrodynamically treated as well 

as control samples were diluted to a concentration of 0.4 mg/ml. For each sample, an 

aliquot (100 µl) was transferred to 900 µl of cell suspension with an optical density of 

0.6A (450 nm). Changes of optical density were recorded at each 15-second time 

interval. The average activity of each sample was calculated by averaging every 15-

second measurement acquired over the first 3 minutes. The average activity of samples 

treated at Ci values of 7.6 and 0.93 were compared against the non-treated control. 

 

2.1.9 Protein UV Spectroscopy 

 

The UV spectra of hydrodynamically treated and control samples were measured 

using a NanoDrop ND-1000 spectrophotometer. The absorbance measured at 280 nm 

was used to quantify, whereas the absorbance profile beyond 300 nm was used to rule 

out the presence of aggregates [131]. 
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2.1.10 Protein Electrophoresis 

 

12% SDS-polyacrylamide gels were prepared according to the method of 

Laemmli [132]. Samples of equal protein concentration were combined with SDS 

denaturing/reducing buffer, boiled at 95 °C (3 min), and loaded (10 µl) into the wells. 

The samples were migrated at a current of 20mA for 70 minutes. The proteins were 

visualized using Coomassie blue. 

 

2.2 Overview on Nanostructured Plates 

 

GLAD (Glancing Angle Deposition) technique is a self-assembly growth technique 

that can provide a novel capability for growing 3D nanostructure arrays with interesting 

material properties such as high electrical/thermal conductivity and also reduced 

oxidation compared to the polycrystalline films [93-95, 133-135]. It offers a simple, 

single-step, cost- and time-efficient method to fabricate nanostructured arrays of various 

elemental materials as well as alloys and oxides. The GLAD technique uses the 

“shadowing effect” which is a “physical self-assembly” process, through which some of 

the obliquely incident atoms may not reach certain points on the substrate due to the 

concurrent growth of parallel structures. Due to the statistical fluctuations in the growth 

and effect of initial substrate surface roughness, some rods grow faster in the vertical 

direction. These longer nanorods capture the incident atoms, while the shorter rods get 

shadowed and cannot grow anymore. This leads to the formation of isolated 

nanostructures. In addition, nanostructures with different shapes such as vertical tilted, 

helical, or zigzag geometries can be obtained by introducing a substrate rotation around 

the surface normal axis. The shadowing effect, and therefore shapes and sizes of 

nanostructured arrays of GLAD, can be controlled by adjusting the deposition rate, 

incidence angle, substrate rotation speed, working gas pressure, substrate temperature, 

and the initial surface topography of the substrate. 

The schematic of the custom-made GLAD experimental setup in the present study is 

shown in Figure 2.3. For the fabrication of vertically aligned and tilted Cu nanorod 

arrays, the DC magnetron sputter GLAD technique is employed. Cu nanorods were 

deposited on the native oxide p-Si (100) substrates (2 cm
2
) coated with a 50 nm thick 

flat Cu film using a 99.9% pure Cu cathode (diameter about 7.6 cm). The substrates 
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were mounted on the sample holder located at a distance of about 12 cm from the 

cathode. 

For GLAD growth, the substrate was tilted so that the angle θ between the surface 

normal of the target and the surface normal of the substrate is 87º. The substrate was 

attached to a stepper motor and rotated at a speed of 2 rpm for growing vertical 

nanorods, while the substrate was not rotated for the deposition of tilted nanorods. The 

depositions were performed under a base pressure of 6.5 x 10
-7

 Torr, which was 

achieved by utilizing a turbo-molecular pump backed by a mechanical pump. During Cu 

deposition experiments, the power was 200 W with an ultrapure Ar working gas 

pressure of 2.5 mTorr. The deposition time of GLAD Cu nanorods was 60 min. For 

comparison purposes, conventional smooth Cu thin film samples (i.e. “plain surface” 

configuration) were also prepared by normal incidence deposition (θ = 0
o
) with a 

substrate rotation of 2 rpm. Deposition rate of the vertical nanorods was measured 

utilizing quartz crystal microbalance (Inficon- Q-pod QCM monitor, crystal: 6 MHz 

gold coated standard quartz) measurements and cross-sectional scanning electron 

microscopy (SEM) image analysis to be about 8.6 nm/min. The SEM unit (FESEM-

6330F, JEOL Ltd, Tokyo, Japan) was used to study the morphology of the deposited 

nanorods.  

Figure 2.3.  A schematic of the glancing angle deposition (GLAD) technique 

used for the fabrication of vertical and tilted copper nanorod arrays. 
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The top and side view SEM images of vertical Cu nanorods are shown in Figure 

2.4(b) in which an isolated columnar morphology can be seen. However, for the 

conventional Cu film deposited at normal incidence, its surface was observed to be flat 

as indicated by the SEM image (Figure 2.4(a)). As can be seen from Figure 2.4(b), the 

top of the vertical nanorods has a pyramidal shape with four facets, which indicates that 

an individual nanorod has a single crystal structure. This observation was confirmed by 

previous studies [136-139] which reported that individual metallic nanorods fabricated 

by GLAD are typically single crystal. Single crystal rods do not have any interior grain 

boundaries and have faceted sharp tips. This property will allow reduced surface 

oxidation, which can greatly increase the thermal conductivity, robustness, and 

Figure 2.4.  Top and cross-section scanning electron microscopy (SEM) 

views of (a) flat Cu thin film, (b) vertical GLAD Cu nanorods, and (c) 

tilted GLAD Cu nanorods. 
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resistance to oxidation-degradation of our nanorods in the present study. The tilted Cu 

nanorods deposited in the absence of substrate rotation have flat tops tilted towards the 

flux direction as shown in Figure 2.4(c). In addition, the slanted Cu nanorods also have 

a faceted top; however, many fibrous structures are present along its sidewalls in 

contrast to the smooth sides of the vertical Cu nanorods, indicating that the tilted Cu 

nanorods are not single crystal. 

At early stages of GLAD growth, the number density of the nanorods was larger, 

and the resulting nanorods had diameters as small as about 5-10 nm. As they grew 

longer and some of them stopped growing, due to the shadowing effect, their diameter 

grew up to about 100 nm (used in pool boiling and jet impingement studies) and 150nm 

(used in forced convection study). The average height of the individual rod was 

measured to be about 600 nm (used in jet impingement and forced convection studies) 

and 500nm (used in pool boiling study).The average gap among the nanorods also 

changed with their length from 5-10 nm up to 50-100 and 20-50 nm for vertical and 

tilted Cu nanorods, respectively, at later stages. 

 

2.3 Experimental Setup for Pool Boiling Study 

 

The experimental setup for the heat transfer characterization is illustrated in Figure 

2.5. Aluminum base has air gaps on four sides to enhance heat transfer with minimum 

loss from the heater placed beneath the aluminum block. A container made of Plexiglas 

Figure 2.5.  Experimental setup for pool boiling. 
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is closely fitted on top of the aluminum block to create the desired pool for the pool 

boiling experiments on the nanostructured plate. The heat generated by the film 

miniature heater is delivered to the nanostructured plate of size 1.7 cm × 1.5 cm through 

the base. It provides constant heat flux to the system with constant voltage applied from 

the electrodes of the film heater. The heat flux values are calculated with the division of 

the wattage readings from the power supply by the tabulated heater active surface area. 

Heat losses are obtained from commercial software simulation and were found to be 

minor compared to electrical power since the system is compact and isolated during 

experiments. Water/ethanol is filled to the pool separately and all the results are 

recorded for steady-state surface temperatures. Thermocouples are placed near the 

nanostructured plate at different places for the accurate measurement of the surface 

temperature and an almost uniform temperature profile was observed.  

After the experimental setup is prepared as explained, the surface temperature 

readings are recorded as a function of the input voltage and passing current through the 

heaters by the readings from the power supply. The effective areas of the heaters are 

tabulated within the manufacturer’s guide and their values are extracted from there. 

These values are used to calculate the constant heat flux input to the system. At certain 

values of the constant heat flux, steady-state surface temperature values are recorded by 

the thermocouples until boiling started (referred to as single phase) and during boiling 

(referred to as two phase). The experiment is conducted first without the nanostructured 

plate to clearly account for the positive effects of the nanostructured plate. 

 

2.4 Experimental Setup for Forced Convection Study 

 

The experimental setup is demonstrated in Figure 2.6. The cooling device is shown 

in Figure 2.7. This heat transfer equipment has an aluminum base of dimensions 

25mmx60mmx5mm. The base is made of aluminum for its high machinability and 

thermal conductivity. On top of the aluminum base, the nanostructured plate is placed 

and the top side is sealed with a Plexiglas top which has poor thermal conductivity in 

order to minimize heat losses. Therefore, the resulting structure could be also regarded 

as an isolated rectangular channel heated from its lower surface. There is an inlet and an 

outlet port of the channel drilled into the Plexiglas top from which water could be 

pressurized. A miniature film-heater is placed underneath the base in order to simulate 

heat generated by any device like a micro-processor or a MEMS device. The heater is 
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treated with thermal grease and sealed to the base with an Aluminum cap. The whole 

setup is then sealed to avoid any leakages. 

The heat generated by the miniature film-heater is delivered to the nanostructured 

plate over which water flows in a rectangular channel for cooling. The heater provides 

constant heat flux to the system since constant voltage is applied from the ends of the 

film heater. Water is driven through a precisely controlled micro gear pump and surface 

temperatures are obtained along with constant heat flux applied to the system. Pressure 

drop across the system is also determined experimentally using a pressure gauge at the 

inlet and assuming outlet to be atmospheric. Flow rates are deduced using a flow meter 

integrated to the system. Thermocouples are placed on the surface of the heater and to 

the inlet for accurate measurement of the fluid and surface temperatures. Experimental 

data is gathered under steady state conditions and pressure drop, heat flux and surface 

temperatures are acquired through the data acquisition devices. These data points are 

then exported to MATLAB and MS Visual Studio for further analysis. Data points for 

the plain surface configuration and the nanostructured plate configuration are compared 

in terms of heat transfer coefficients and flow velocities. 

After the experimental setup is prepared as explained, the surface and inlet 

temperatures are measured as a function of the input power data gathered from the 

readings of the power supply and this operation is carried out for various flow rates. The 

data collected through the above mentioned procedure is then compared to the setup 

with nanostructured plate instead of the plain one in order to account for the potential 

positive effects of the nanostructured plate. The effective areas of the heaters are 

Figure 2.6.  Experimental setup for forced convection. 
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tabulated in the manufacturer’s guide, from which their values are extracted. These 

values are used to analytically calculate the constant heat flux input to the system. 

 

2.5 Experımental Setup for Jet Impıngement Study 

 

The main components constituting the cooling system are an aluminum base with 4 

cartridge heaters, a nanostructured plate placed on top of it, four microchannels 

Figure 2.7.  Cooling device exploded view. 

Figure 2.8.  Experimental setup for jet impingement. 
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generating the impinging jets over the tested samples, and thin (76 µm thick) sensitive 

thermocouples as shown in Figure 2.8.  

The aluminum base of dimensions 35mmx30mmx10mm houses four built-in 

cartridge heaters of diameter 6.25 mm and of length 31.75 mm which are treated with a 

high duty thermal grease and sealed to the base with an aluminum cap in order to 

enhance heat transfer rate and minimize heat losses. Four thermocouples are also treated 

with high duty thermal grease and attached in the gaps between each cartridge heater 

and the inner surface of the aluminum base as shown in Figure 2.9. The heaters provide 

constant heat flux to the system, simulating the heat generated by 

microchips/microprocessors. The nanostructured copper plates as well as the 

comparison Cu thin film sample of dimensions 35mmx30mm are placed on the 

aluminum base. The plate is also treated with high quality thermal grease to improve the 

efficiency of the cooling process by enhancing the heat transfer rate. The whole setup is 

carefully sealed to prevent any leakages. 

Impinging jets are targeted to the tested surface to remove the unwanted heat away 

from the plate effectively. The impinging jets are provided by four microchannels of 

inner diameter 584 µm that are connected to the experimental setup using a CONAX 

multiple element high pressure sealing and have a distance of 1.5mm to the plate. DI-

water is driven into the channels using a HNP Mikrosysteme micro gear pump that can 

be precisely tuned with a controller allowing the conduction of experiments at different 

Figure 2.9.  Cross section view of the heated base 

showing thermocouple locations. 
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steady flow rates. Cole Parmer flow meter integrated to the system is used to measure 

the volumetric flow rate through the jets. To determine the pressure drop across the 

setup, Omega pressure gauge is attached to the inlet. Four thermocouples placed on the 

surface of each rod heater are used to acquire accurate steady surface temperature data 

(Figure 2.9). 

Data is gathered through data acquisition system (NI-SCXI 1000). Data acquisition 

system records 100 data points per second at 100Hz sampling rate. 12000 temperature 

data points were averaged for each steady state heat flux condition. These data points 

are then exported through data acquisition software LABVIEW after averaging via MS 

Visual Studio and MATLAB software once steady state conditions are reached. 

After the experimental setup is prepared as explained, the surface temperatures are 

measured as a function of the input power data gathered from the readings of the power 

supply. This procedure is carried out at various flow rates, which are adjusted in the 

inlet region of the setup. In addition to the measurements of flow rates and power 

values, inlet temperatures, surface temperatures, pressure drops across the system, and 

electrical currents flowing through the film heater were also measured with the 

appropriate sensors (Omega thermocouples, Omega pressure transducer, Agilent 

voltmeter, Cole Parmer flow meter). This procedure is then executed for the samples of 

vertical and tilted nanostructured plates as well as for the plain surface plate in order to 

investigate the potential positive effects of the nanostructured plates on heat transfer. 

 

2.6 Overview on Nanofluids and Their Preparation Techniques 

 

Nanofluids are fluids having suspended nanoparticles of nanometer-size and 

chemistry (metals, oxides, carbides, nitrides, or nanotubes). It is widely known that iron 

oxide (Fe3O4), the dominant magnetic material, magnetite, in magnetic fluid 

preparations, can be synthesized through the coprecipitation of Fe (II) and Fe (III) salts 

by the addition of a base [140]. Such nanofluids can be actuated by the application of a 

magnetic field. The actuation of these ferromagnetic nanoparticles drives its base 

liquid's molecules along so that a flow is generated. Motivated by this potential, a 

nanofluid sample was prepared, namely Dodecanoic Acid (DA) coated Super 

Paramagnetic Iron Oxide (SPIO-DA). To decrease their viscosities and thus facilitate 

their motion inside the liquid, nanoparticles of SPIO-DA were coated with lauric acid, 

which also contributes to the long term stability of the nanofluid. The sizes of the 
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ferromagnetic nanoparticles in the sample SPIO-DA are 23 nm. Table 2.2 shows some 

properties of the nanofluid used in this study. Dh-I refers to hydrodynamic diameter 

measured with Dynamic Light Scattering (DLS) using scattered light intensity and Dh-

N uses DLS with numerical averaging. 

FeCl2 and FeCl3  salts (Fe
+3

/Fe
+2

 mole fraction) are dissolved  in deoxygenated 

water, then DA is added. The mixture is heated under nitrogen to 85°C and ammonium 

hydroxide is added to the mixture. Color of the solution turned to brown-black 

immediately. The formulations are given in Table 1. The mixture is heated for 30 

minutes and cooled down to room temperature. Mixture is then placed atop a magnet, 

which generates a magnetic field of 0.3 T(tesla) and decanted to remove precipitates if 

any. Excessive coating materials are removed with pure water using ultrafiltration tubes. 

The entire volume is replaced with pure water three times. Long term stability tests 

were conducted and the nanofluid has proven to be highly stable for at least 6 months 

on shelf without precipitation. 

 

2.7 Experimental Setup for Nanofluid Actuation Study 

 

The experimental setup is demonstrated in Figure 2.11. The pool has an outside 

diameter of 31.8 mm, an inside diameter of 25.8 mm and a height of 12 mm (Figure 

2.11). The pool is made of Aluminum for its machinability and high thermal 

conductivity. A miniature film-heater is placed underneath the pool in order to simulate 

unwanted heat generated by any device. The heater is treated with high quality thermal 

grease and sealed to the base with an Aluminum cap through 16 M2.5 bolts. The whole 

setup is then placed between two magnetic stirrers (Figure 2.10). The magnetic stirrers 

Table 2.2.  Nanofluid properties. 
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have a motor, on which two permanent magnets are placed. One of the magnetic stirrers 

is powered so that both magnetic stirrers rotate in unison. The magnetic stirrers generate 

a rotating magnetic field which is intensified at the middle of the pool. The heat 

generated by the miniature film-heater is delivered to the pool containing the liquid. It 

provides constant heat flux to the system since constant voltage is applied from the ends 

of the film heater. The pool is filled with nanofluid and surface temperatures are 

obtained along with constant heat flux applied to the system. Thermocouples are placed 

on the surface of the heater and in the bulk fluid at prescribed locations for accurate 

measurement of the bulk fluid and surface temperatures (Figure 2.11(b)). Data is 

gathered through data acquisition system (NI-SCXI 1000). Data acquisition system 

records 100 data points per second at 100Hz sampling rate. These data points are then 

exported through data acquisition software LABVIEW for further reduction via MS 

Visual Studio and MATLAB software. 

After the experimental setup is prepared as explained, the rise in temperatures is 

obtained as a function of the input voltage and current data gathered from the readings 

of the power supply. The effective area of the pool surface and the power input is used 

to analytically calculate the constant heat flux input to the system. At certain values of 

the constant heat flux, steady state surface temperatures are recorded by the 

thermocouples until boiling started. For each constant heat flux, a minimum of 5000 

data points have been averaged to account for possible errors. The pool is filled with the 

nanofluid and two separate experiments are conducted, one with magnetic stirrers on 

and one with magnetic stirrers off to emphasize on the positive effects of the magnetic 

stirrer. The magnetic flux densities of the two magnets attached to the motor of the 

magnetic stirrer are determined using a magnetometer. The magnetic flux densities were 

Figure 2.10.  Experimental setup for nanofluid actuation. 
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found to be 116.6 mT on the surface of the magnets and 28.4 mT at the middle of the 

pool. The magnetic stirrers were rotated at 30 rpm. 

 

2.8 Data Reduction 

 

2.8.1 Data Reduction of Forced Convection Study 

 

Constant heat flux input, q”, to the system is obtained from 

 

   
       

 
                                                         (4) 

 

Figure 2.11.  (a) Pool Boiling Device and 

Thermocouples (b). 
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where P is the power input (from power supply), Qloss is the electrical and thermal 

power loss and A is the area of the nanostructured plate. The heat transfer coefficient, h, 

is then calculated by 

 

  
  

       
                                                         (5) 

 

where Ts is the surface temperature (from thermocouples) and Tavg is the average fluid 

temperature. Texit is determined by 

 

         
 

 ̇  
                                                     (6) 

 

 

where Texit is the exit fluid temperature, ṁ is the mass flow rate of the fluid (from flow 

meter), Ti is the inlet fluid temperature (from thermocouples) and cp is the specific heat 

of water. Tavg is extracted from  

 

     
        

 
                                                      (7) 

 

2.8.2 Data Reduction of Jet Impingement Study 

 

Heat flux provided to the system, q”, is obtained from 

 

   
       

 
                                                         (8) 

 

where P is the power input (from power supply), Qloss is the thermal and electrical 

power loss and A is the heated area of the plate. The surface temperatures, Ts, are 

calculated by considering thermal contact resistances from the thermocouple to the 

surface of the nanostructured plate.  
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                                                                (9) 

 

where Tth is the thermocouple temperature reading and Rtot is the total thermal 

resistance from the thermocouples to the surface of the nanostructured plate (analytical). 

The heat transfer coefficient, h, is then calculated by 

 

  
  

     
                                                          (10) 

 

where Ts is the surface temperature and Ti is the inlet fluid temperature. Nusselt 

number, Nu, is extracted from  

 

   
      

 
                                                        (11) 

 

where di is the inside diameter of each nozzle and N is the number of jets, k is the 

thermal conductivity of the fluid. The velocity, u, is expressed as 

 

  
 ̇

  
                                                          (12) 

 

where  ̇ is the flow rate of the water (from flow meter) and    is the total crossectional 

area of nozzles. Jet Reynolds number, Rej, is given as 

 

    
    

 
                                                       (13) 

 

where   is the kinematic viscosity of the working fluid. 
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2.8.3 Data Reduction of Nanofluid Actuation Study 

 

Constant heat flux input, q”, to the system is obtained from 

 

   
       

 
                                                      (14) 

 

where P is the power input (from power supply), Qloss is the thermal and electrical 

power loss and A is the effective area of pool surface. The surface temperatures are 

reduced via considering thermal contact resistances from the thermocouples to the 

surface of the pool by 

 

                                                            (15) 

 

where Tth is the averaged thermocouple readings and Rtot is the total thermal resistances 

from the thermocouples to the surface of the pool (analytical). Heat transfer coefficient, 

h, is extracted from the following expression: 

 

  
  

     
                                                       (16) 

 

where Ti is the ambient temperature. 

 

2.9 Uncertainty Analyses 
 

The uncertainties of the parameters used in all the studies are given in the following 

tables (Table 2.3, Table 2.4, Table 2.5 and Table 2.6). All measured values are derived 

from the manufacturer’s specification sheet while the uncertainties of the derived 

parameters are obtained using the propagation of uncertainty method developed by 

Kline and McClintock [141]. 
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Table 2.3.  Uncertainties in jet impingement study 

Table 2.4.  Uncertainties in pool boiling study 

Table 2.5.  Uncertainties in nanofluid actuation study 
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Table 2.6.  Uncertainties in forced convection study 
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3 RESULTS AND DISCUSSION 

 

3.1 Results and Discussion of Hydrodynamic Cavitation Study 

 

3.1.1 Results and Discussion of Chalk Experiments 

 

During the experiments, in order to measure the penetration effect of cavitation, 

pieces of chalk were used as specimens. The depths were measured with a microscope 

after marking the deepest point of the chalk piece without further damaging.  

In Figure 3.1(a), the penetration depth is displayed as a function of time. As 

expected, the penetration in the chalk medium increases with time. It is also evident that 

the distance between the microprobe and the specimen is an important parameter. The 

penetration depth is larger for closer distances due to stronger bubble specimen surface 

interactions. The data for penetration depth were converted to the mass removed by 

hydrodynamic cavitation assuming the erosion to have a hemispherical shape. This 

assumption was borne out by observation of the exposed surfaces. The same trends as in 

Figure 3.1(a) are valid for the dependence of the removed mass on time [see Figure 

3.1(b)]. Removal rates of about 40 mg/min and 35 mg/min are achieved for distances of 

1 and 2 mm, respectively, between the microprobe and specimen surfaces with a flow 

rate of 18.2 mL/min. 

The flow rate curve with increasing inlet pressure can be seen on Figure 3.2. The 

flow rate is increased until bubbly cavitating flow conditions are obtained. The 

cavitation number at cavitation inception was 0.513. The rapid erosion in the 

specimen’s surface proves the effectiveness of the proposed method in kidney stone 

treatments. A sample of surface erosion caused by bubbly cavitation is shown in Figure 

3.1(c). SEM images of unexposed and exposed chalk surfaces are also taken and 

displayed in Figure 3.3. It could be observed that significant changes on surfaces are 

present with the exposure of hydrodynamic cavitation. The surfaces become rougher 

after the exposure to hydrodynamic cavitation [see Figure 3.3(b)] compared to the 

unexposed surface [see Figure 3.3(a)] as expected. This is due to the interaction 

between emerging bubbles (from the microprobe) and the chalk surface. As a result, 

they cause significant erosion and create rough local spots on the surface leading to 

augmented roughness on chalk surfaces. This finding also implies that the erosion 

resulting from the exposure to bubbly cavitation is produced by micrometer-size 
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bubbles rather than the shear effect of the liquid flow. Moreover, the size of the eroded 

stone debris has been measured, and maximum debris size was found to be 50 μm. 

 

3.1.2 Results and Discussion of Cancerous Cells Experiments 

 

Changes in cell viability and especially induction of apoptosis (a genetically 

programmed cellular suicide mechanism) have been reported for cancerous human 

Figure 3.1.  (a) Penetration depth data [d in μm]. (b) Dependence of 

material removed from chalk on microprobe to specimen distance and 

time of exposure [mass in mg]. (c) Erosion on chalk surface after 

exposure to bubbly cavitation. 
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lymphocytes exposed to cavitation bubbles driven with a continuous ultrasound wave 

generator [142]. However, ultrasound produces heat and the observed effects on cells 

are mainly the sum of heat as well as cavitation. Contribution of each parameter 

independently to the final outcome, cell survival, or death, is therefore hard to quantify. 

Similarly, hydrodynamic cavitation incorporates both the bubble implosion 

energy and the shear effect of the liquid flow. To assess the contribution of the shear 

forces to cell death, we first performed some control experiments. As seen in Figure 3.4, 

there was no significant change in percentage of cell death following liquid flow 

without cavitation, but producing similar shear forces. These results suggest that bubbly 

cavitation, rather than the shear effect of the liquid flow, is the actual cause of cell death 

in the following experiments.  

Figure 3.2.  Outlet flow rate versus inlet pressure. 

Figure 3.3.  SEM images of (a) an unexposed chalk surface and (b) an exposed chalk 

surface after exposure to bubbly cavitation. 
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Figure 3.5 and Figure 3.6 show the detrimental effects of bubbly cavitation on 

cancer cells. Under phase contrast microscope, live cells were observed as white-

transparent “balls” [see Figure 3.6(a), (c), (e), and (g)], whereas dead cells are 

characterized with their blue/dark-blue color due to trypan blue dye uptake [see Figure 

3.6(b), (d), (f), and (h)]. 

When we counted dead cells, we observed that after bubbly cavitation exposure, 

cancer cells died with two different kinetics: Shortly after exposure, a significant 

portion of cells lost their membrane integrity, evidenced by trypan blue uptake. The 

increase in cell death was proportional to the cavitation exposure time (see Figure 3.5, 

harvesting time 0. Compare cavitation exposure times 0.5, 1, 2, 3, and 5 min). 

Following 5-min exposure to cavitation, at least half of the Jurkat and U-937 cancer 

cells were already dead. The late effect on cell survival was evident following 16-h 

culture of the exposed cells (see Figure 3.5, harvesting time 16 h). At this time point, 

control cells treated similarly but not exposed to cavitation continued to grow (Cont), 

but cells that were exposed to cavitation and that had an intact cell membrane at time 0 

started to die as well. Cell death was still proportional to the initial cavitation exposure 

time (see Figure 3.5, harvesting time 16 h, compare cavitation exposure times 0.5, 1, 2, 

Figure 3.4.  Cell death of Jurkat T cells following exposure to 

liquid flow without cavitation for indicated durations. Cells were 

further grown in fresh culture medium. Cell viability was 

determined by trypan blue exclusion at 0, 16, and 24 h after 

exposure. Data are shown as mean ± S.D. (n = 5). 
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3, and 5 min). This late effect was even more prominent after 24 h of culture (see Figure 

3.5, harvesting time 24 h). At harvesting time 0 h, 40%–70% and 35%–50% of cells 

were alive after 3- or 5-min exposure to cavitation, respectively, whereas after 24 h of 

culture, majority (90%–100%) of cells exposed to 3- or 5-min cavitation were dead (see 

Figure 3.5, compare harvesting time 0 and 24 h, cavitation exposure times 3 and 5 min). 

These results showed that the trauma caused by bubbly cavitation on cells might go far 

beyond an acute damage to cell membrane integrity and be a result of a programmed 

cell death mechanism (e.g., apoptosis). 

A number of stress-inducing environmental factors, including chemicals, 

Figure 3.5.  Cell viability of (a) Jurkat T cells and (b) U-937 cells. Following exposure 

to bubbly cavitation for indicated durations (cavitation exposure time Cont (0 min), 0.5, 

1, 2, 3, and 5 min.), cells were immediately tested [(harvesting time 0 h) or further 

grown in fresh culture medium for 16 or 24 h (harvesting time 16 or 24 h)]. Cell 

viability was determined by trypan blue exclusion tests of cells. Data are shown as 

mean ± S.D. (n = 5, Student t-test, *P < 0.01). 
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radiation, and changes in the osmotic conditions of the cell, might trigger genetically 

programmed cell death mechanisms, such as apoptosis. These mechanisms are highly 

controlled and depend on a cascade of events regulated by various cellular proteins and 

signaling pathways [143, 144]. Results of our experiments with cells exposed to 

cavitation strongly suggest that, although the short-term effects of cavitation are 

reminiscent of an accidental type of cell death called “necrosis,” the late effects might 

be controlled by a programmed cell death mechanism activated by cavitational forces. 

Since, tissues are organized structures; a late and programmed cell death wave around 

the exposed tissue could contribute to the therapeutic effects of bubbly cavitation. 

Moreover, in live tissues, immune responses generated as a result of the necrosis of 

cells might affect the final outcome. All these biological effects might be used in favor 

to increase the therapeutic potential of the proposed method. Therefore, optimization of 

the time and the strength of cavitation exposure and tests of controlled targeting of the 

probe should take the early and late effects on cell death and consequent immune 

responses after cavitation trauma into account. 

 

 

 

 

Figure 3.6.  Cells were treated (cavitation +) or not (cavitation −) with bubbly 

cavitation under an inlet pressure of 950 kPa for 5 min. Unexposed control Jurkat 

[(a) and (c)] and U-937 [(e) and (g)] cells or 5-min cavitation-exposed Jurkat [(b) 

and (d)] and U-937 [(f) and (h)] cells were harvested immediately (0 h) or after 24 

h of culture (24 h). Arrowheads point out to some of the blue and dead cells (scale 

bars, 100 μm). 
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3.1.3 Results and Discussion of Protein Experiments 

 

Most analyses yielded structural profiles that were virtually identical for 

lysozyme solutions sampled before and after hydrodynamic treatment. While perhaps 

unexpected, the observed trend could be construed as having reflected the 

comparatively higher stability of lysozyme with respect to many other proteins. Of the 

few structural alterations noted, all were subtle and more importantly, reversible, 

suggestive of non-covalent changes. The findings differed markedly from literature 

reports, which documented covalent chemical changes to protein functional groups 

under the conditions of prolonged acoustic cavitation [58]. 

The SDS-PAGE molecular weight profile of lysozyme treated at either of the 

two cavitation numbers (0.93 and 7.6) was identical to the corresponding non-treated 

controls at every point of the time course (Figure 3.7(a) and (b)). Neither a change of 

mobility, a reduction of band intensity, a sign of material trapped in the stacking gel, 

nor any smearing was noted. This finding clearly indicated that peptide bond scission 

and other potential modes of protein loss were inoperative, despite the localized high 

temperatures and pressures anticipated by bubble collapse. As well, the UV spectral 

Figure 3.7.  12% SDS-PAGE analysis of control and hydrodynamically treated 

lysozyme samples subjected to hydrodynamic flow (a) at a Ci value of7.6. Lanes: 

1: MW markers, arrow indicates 15 kDa band, 2:control, 3-7: 7.5 min-17.5 min 

treatments sampled at 2.5 min intervals (b) at a Ci value of 0.93. Lanes: 1: MW 

markers, arrow indicates 15 kDa band, 2:control, 3-7: 3 min-7 min treatments 

sampled at 1 min time intervals. 2.2 µg of protein was loaded to each well. 
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profiles of hydrodynamically treated samples and non-treated controls were comparable 

(results not shown), implying their structural resemblance. Circular dichroism 

measurements (Figure 3.8(a) and (b)) of lysozyme samples treated at Ci values of 0.93 

or 7.6 yielded composite alpha helix and beta sheet structural profiles entirely consistent 

with the native form of lysozyme. Any observable spectral variations were statistically 

insignificant. Dynamic light scattering measurements (Figure 3.9(a) and (b)) of protein 

treated at a Ci value of 0.93 showed no statistically significant variation of 

Figure 3.8.  Secondary structure content of lysozyme 

subjected to hydrodynamic treatment (a) at a Ci value of 

0.93 (b) at a Ci value of 7.6 for the times indicated. 
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hydrodynamic diameter over the entire time course of flow treatment. Moreover, 

samples subjected to this treatment showed no statistically significant digression in 

bioactivity (Figure 3.10(a)), confirming the integrity of all essential structural elements. 

In contrast to the results obtained with Ci equal to 0.93, a decrease of 

hydrodynamic diameter at a Ci value of 7.6 was noted by dynamic light scattering 

(Figure 3.9 (c)). This decrease was discernible after 10 minutes (3.6 nm) and readily 

notable (3.16nm) after 15 minutes of flow treatment. All control samples retained the 

original hydrodynamic diameter of 3.8 nm. Thermally-induced reversible changes of 

hydrodynamic diameter and conformation have been previously documented in 

lysozyme using light scattering [145, 146] and solution X-ray scattering [147]. The 

bioassay of lysozyme (Figure 3.10(b)) also supported the light scattering results in the 

sense that the activity of lysozyme had dropped by a statistically significant amount 

after 15 minutes of flow treatment at a Ci value of 7.6. Most notable, however, was the 

response of cavitated lysozyme towards ultrasonication. Ultrasonication was applied in 

Figure 3.9.  Average hydrodynamic diameter of lysozyme (a) subjected to 

hydrodynamic treatment at a Ci value of 0.93 for the times indicated (b) of 

non-treated control lysozyme samples at concentrations corresponding to 

samples subjected to hydrodynamic treatment at Ci value of 0.93 for the 

times indicated (c) subjected to hydrodynamic treatment at a Ci value of 7.6 

for the times indicated (d) subjected to hydrodynamic treatment at a Ci value 

of 7.6 for the times indicated, before and after 30 s ultrasound treatment. 
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anticipation that it might provide the necessary energy to prompt the reorganization of 

structurally-perturbed lysozyme. Remarkably, all observed alterations of hydrodynamic 

diameter and bioactivity were fully reversed following just 30 s of sonication in an 

ultrasonic bath (Figure 3.9(d) and Figure 3.10 (c), respectively). 

In view of the above results, it followed to reason that lysozyme had experienced 

a conformational change under non-cavitating hydrodynamic flow conditions, thereafter 

remaining kinetically trapped in a non-native state. The non-native state (or states) was 

not elucidated, however, it clearly reflected a subtle conformational change in view that 

flow-treated lysozyme had only yielded minor alterations to the dynamic light scattering 

profile and no circular dichroism signature. 

It was perhaps counter-intuitive that proteins subjected to the higher energy 

cavitation process were unaffected to any statistically significant extent, whereas 

proteins subjected to flow treatment outside the cavitation range experienced noticeable 

changes to their hydrodynamic diameter and bioactivity. While a confirmable 

explanation remains outstanding, one hypothesis is that hydrodynamic cavitation, but 

Figure 3.10.  Relative activity of lysozyme (a) subjected to hydrodynamic 

treatment at a Ci value of 0.93 for the times indicated (b) subjected to 

hydrodynamic treatment at a Ci value of 7.6 for the times indicated (c) 

subjected to hydrodynamic treatment at a Ci value of 7.6, before and after 

30 s ultrasound treatment. 
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not high shear alone, may have provided the necessary conditions to substantially de-

solvate the protein, thereby inducing conformational rigidity. Indeed, the notably gassy, 

bubble-saturated appearance of lysozyme solution under cavitating conditions implied 

the availability of a large hydrophobic-hydrophilic interfacial area. Studies related to 

protein foaming have shown that air-water interfaces have the effect of attracting 

protein and desolvating their hydration shell, with the effect being particularly 

pronounced along surface-exposed hydrophobic regions [148, 149]. In view of the 

relatively much larger interfacial area at Ci values of 0.93 compared to 7.6, it is 

conceivable that a large fraction of lysozyme, under high dilution conditions in 

particular, would reside at the interface. With sufficient dehydration of the protein 

surface realized, it follows that lysozyme flow-treated at a Ci value of 0.93 would attain 

a higher state of rigidity compared to a Ci of 7.6. Proteins manipulated under conditions 

promoting dehydration and increased conformational rigidity have shown an increased 

activation barrier, and thus tolerance, to unfolding [150]. In contrast to the cavitation 

scenario, lysozyme flow-treated outside the cavitation range was perceived to have 

retained a native-like hydration state. In view of the high conformational flexibility 

imparted by water, lysozyme could have experienced shear-induced stretching and 

compression of its structure, thereby assuming one or more new metastable 

conformations [151].Once the flow treatment was terminated, the aqueous system did 

not contain enough energy under ambient conditions to re-equilibrate lysozyme to its 

native conformation. This view was consistent with the ultrasonication test, which had 

rapidly restored lysozyme to its native bioactivity and structure. This view was also 

supported by prior work conducted on lysozyme subjected to different shear rates [152]. 

In that study, lysozyme was found to have encountered a conformational change, which 

could, dependent on the conditions, be reversed. 

Neither the treatment at Ci = 0.93 nor Ci = 7.6 was detrimental to the physico-

chemistry of lysozyme. The rational for this claim may be examined below. Evidence 

showing that lysozyme was neither chemically degraded nor unfolded/misfolded by 

treatment at Ci = 0.93 and evidence showing that lysozyme was neither chemically 

degraded nor irreversibly unfolded at Ci = 7.6: 

1) SDS-PAGE analyses were performed. No streaking, smearing, or extra bands 

that could indicate breakdown were observed. 
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2) DLS analysis of lysozyme subjected to hydrodynamic flow (Ci = 7.6 and 

0.93) showed no ultra-small particles, which might have indicated peptide fragments in 

solution. 

3) Studies [58] have reported no adverse effect on protein activity until 40 

minutes of ultrasonication. Ultrasonication performed on the lysozyme sample (treated 

previously at Ci = 7.6) was limited to only 30s. The activity of lysozyme was fully 

restored following ultrasonication, indicative of a native structure. 

4) The hydrodynamic diameter of lysozyme (treated previously at Ci = 0.93) was 

unchanged, indicating that no dramatic structural change could have taken place. The 

hydrodynamic diameter of lysozyme (treated previously at Ci = 7.6) was reduced, 

indicative of a more compact structure. Had chemical degradation of the primary 

structure occurred during hydrodynamic flow, a less compact, more loosely folded 

structure would have been anticipated (again, DLS showed no evidence of peptide 

fragments). 

All in all, the physico-chemical changes imposed on protein structure upon 

hydrodynamic treatment describe a very new area of research, which merits further 

experimentation as well as modeling. While this seminal contribution has documented a 

decrease of the average hydrodynamic diameter, no information is currently available to 

rule out the opposite possibility in lysozyme or other test proteins. Further in vitro study 

is being conducted to ascertain the nature of the conformational change, the role of pH 

and other environmental factors, and the generality of such changes among different 

model systems in the protein family. It would stand to reason that in vivo studies could 

follow. 

 

3.2 Results and Discussion of Nanostructured Heat Sinks 

 

3.2.1 Results and Discussion of Pool Boiling Study 

 

Figure 3.11 and Figure 3.12 show the heat transfer results comparing plain 

surface to the nanostructured plate using water and ethanol as working fluids, 

respectively. The effect of the nanostructured plate is clearly observed from the 

difference in the superimposed graphs. The nanostructured plate increases heat removal 

rate from the system. It also decreases the boiling inception temperature by ~2ºC for 

both working fluids. The nanorods on the surface of the plate act effectively in the 
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enhancement of boiling heat transfer. The data presented in Figure 3.11(a) and Figure 

3.12(a) shows the superimposed two-phase data from the experiments with and without 

the nanostructured plate during boiling. These results show that in the boiling region the 

rise in the surface temperature is suppressed with the application of the nanostructured 

plate. Boiling heat transfer enhancement of 125% and 110% on average was obtained 

for water and ethanol, respectively. The reason could be explained by the increase in 

heat transfer area and the number of active nucleate sites so that more bubbles would 

emerge during boiling from the nanostructured surface and promote nucleate boiling. 

Recent studies [70, 153] have shown a significant reduction in the macroscopic water 

contact angle of some metallic nanorods (such as Pt and Cu), implying the increased 

wettability because of the enhanced roughness caused by the nanorod structure which, 

in turn, contributes to enhanced CHF. These effects facilitate enhanced heat removal 

from the nanostructured surface of the plate and lead to stabilization of the surface 

temperature (Figure 3.11(d)). 

Figure 3.11.  Superimposed two phase (a) and single phase (b) heat flux 

plotted against surface temperature for water. Heat transfer coefficient 

versus heat flux (c) for two phase region.Schematic of heat removal from 

the system (d). 
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Heat removal in the single-phase region is also promoted with the introduction 

of the nanostructured plate. The single-phase linear slopes are evaluated and 13% 

decrease in the slope is observed with the nanostructured plate for water. In the case of 

ethanol, the single-phase results indicate an offset introduced by the nanostructured 

plate, which, in turn, increases heat removal rate. Thus, even in the single phase the 

effect of the nanostructured plate is significant because of heat transfer area 

enhancement (Figure 3.11(b) and Figure 3.12(b)). 

During boiling, heat transfer coefficients are deduced from surface temperatures 

and displayed along with heat flux in Figure 3.11(c) and Figure 3.12(c) for water and 

ethanol, respectively. The results indicate that the heat transfer coefficient behavior has 

improved with the nanostructured surface relative to the plain surface configuration. 

This could be attributed to the reduced wall superheat for boiling inception and 

promotion of nucleate boiling with nanostructures. 

 

Figure 3.12.  Superimposed two phase (a) and single phase (b) heat flux plotted 

against surface temperature for ethanol. Heat transfer coefficient versus heat flux 

(c) fortwo phase region. 
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3.2.2 Results and Discussion of Forced Convection Study 

 

Data points for Reynolds number values varying from 23 to 30 are shown in 

Figure 3.13. Enhanced heat transfer coefficients can be observed from the figure for the 

cases with the nanostructure. It can be noted that the reduction in the flow rate caused 

by the nanostructured plate is not significant where all the results correspond to 0.5 psi 

pressure drop. This is an advantage over pin-fin geometries where the flow rates are 

reduced much more significantly at constant pressure drop. 

Figure 3.13.  Heat transfer coefficient versus heat flux is 

plotted with 23<Re<30. 

Figure 3.14.  Heat transfer coefficient versus heat flux is 

plotted with 38<Re<46. 
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The results for constant pressure drop 1.0 psi are quite similar to the results for 

the 0.5 psi case (Figure 3.14). The flow rate is reduced slightly at the same pressure 

drop and heat transfer is enhanced. It can be observed that enhancement in the heat 

transfer coefficient on nanostructured plate compared to the plain surface configuration 

tends to increase for high heat fluxes in all the results. In other words, cooling 

enhancement of nanostructured plate is clearer for higher heat fluxes. 

As the constant pressure drop is increased further to 1.5psi (Figure 3.15) and 

2.0psi (Figure 3.16), the enhancement of the nanostructure becomes more significant. 

Figure 3.15.  Heat transfer coefficient versus heat flux is 

plotted with 54<Re<62. 

Figure 3.16.  Heat transfer coefficient versus heat flux is plotted 

with 64<Re<76. 
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The reason for this phenomenon can be explained by the fact that the flow rates are 

higher. In the case of Cu thin film surface, the reason for lower heat transfer rate 

compared to nanostructured surfaces is the presence of a thin layer of fluid which acts 

as a heat transfer resistance, while on nanorods this layer can be easily broken 

especially at high fluid flow rates. Heat transfer enhancement of 16% on average has 

been realized with the experimental setup. 

 

3.2.3 Results and Discussion of Jet Impingement Study 

 

The experimental results are obtained as explained in the previous sections. 

Accordingly, data points for a constant volumetric flow rate of 107.5 ml/min 

(Rej=972.66) are displayed in Figure 3.17(a) where heat transfer coefficient (h), which 

quantifies the convective heat transfer capability of a heat sink, is plotted against the 

heat flux provided from the cylindrical aluminum heaters. As depicted in Figure 3.17(a), 

heat transfer coefficient values increase with the input heat flux where the experiments 

are carried out only in the single phase region. This is due to the change in fluid 

thermophysical properties with temperature (which varies between 30ºC-60 ºC during 

the experiments). Enhanced heat transfer coefficients can be observed with the 

application of the nanostructured plate with vertical nanorods (referred to as “Vertical 

NR” in the legend), whereas the nanostructured plate with tilted nanorods (referred to as 

“Tilted NR” in the legend) is proven to be less efficient even than the Cu thin film plate 

(referred to as “Cu TF” in the legend) implying that the cooling performance of the jet 

impingement system is not promoted. The enhancement in heat transfer obtained using 

nanostructured plate with vertical nanorods can be attributed to the secondary flows 

around the nanorods and the modification of boundary layers developing from the 

Figure 3.17.  (a) Heat transfer coefficient versus heat flux plotted at a constant 

volumetric flow rate of 107.5 ml/min and (b) Heat flux versus surface 

temperature plotted at a constant volumetric flow rate of 107.5 ml/min. 
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heated surface. 

Previous works [153] has shown a significant reduction in the macroscopic 

water contact angle of vertical metallic nanorods, implying the increased wettability 

because of the enhanced roughness caused by the nanorod structure, which, in turn, 

contributes to the enhanced heat transfer surface area. Hence, the increased heat transfer 

surface area available to remove heat from the surface of the base creates a more 

efficient cooling system. In addition, the nanorods also minimize the heat transfer 

resistance induced by the presence of a thin layer of the fluid on the subjected surfaces, 

which can be easily broken on the nanostructured surfaces compared to plain surfaces, 

thereby further contributing to heat transfer. As explained in the previous SEM images 

(Figure 2.4(b)), vertical nanorod arrays form a very rough surface increasing the contact 

area with water and therefore also enhance the heat transfer. Moreover, single crystal 

structure of individual nanorods is believed to further enhance the heat transfer 

properties of the nanostructure plate. 

On the other hand, the reason for poorer heat transfer performance of the 

nanostructured plate with tilted nanorods can be attributed to the decreased supply of 

liquid jets to the base of the plate for the tilted structure, which has smaller gaps 

compared to the vertical nanorods, where the temperature is at the highest level. This 

may cause the liquid to be most likely in contact with only the tops of the tilted Cu 

nanorods which in turn results in poorer heat transfer rate due to the decreased heat 

transfer surface area and the increased resistance to heat transfer which originated from 

the air gaps among the tilted nanorods. Moreover, the low heat transfer of tilted 

nanorods might be also attributed to the non-single crystal property of these nanorods 

which decreases heat transfer and also enhances the surface oxidation. The surface 

oxidation can greatly decrease the thermal conductivity and resistance to oxidation 

Figure 3.18.  (a) Heat transfer coefficient versus heat flux plotted at a constant 

volumetric flow rate of 144.5 ml/min and (b) Heat flux versus surface 

temperature plotted at a constant volumetric flow rate of 144.5 ml/min. 
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degradation of titled nanorods in the present study. However, the vertical nanostructure 

arrangement with larger gaps allows liquid jet supply to the base, which significantly 

enhances the liquid-solid contact area and improves the heat transfer. 

Surface temperature plotted against heat flux at constant volumetric flow rate of 

107.5 ml/min is provided in Figure 3.17(b). As expected, surface temperatures increase 

linearly with heat flux implying constant heat flux boundary conditions. 

The result of the experiments conducted at constant volumetric flow rate of 

144.5 ml/min (Rej=1307.43) is depicted in Figure 3.18(a), which follows a similar trend 

as the lower flow rate. It can be observed that heat transfer coefficients above 2000 

W/m
2
 K can be achieved at this flow rate, which points out to a further enhancement in 

heat transfer. It can also be noted that the improvement in the heat transfer coefficient of 

vertical nanostructured plate compared to the plain surface configuration tends to 

further increase for higher heat fluxes in all the results. An average enhancement in heat 

transfer coefficient of 28.9% can be observed in this flow rate, whereas the 

enhancement obtained with the lower flow rate (107.5 ml/min) was 13.1% on average. 

Tilted nanorods on the other hand, are still unable to augment heat transfer compared to 

the flat plate configuration due to the previously discussed reasons. Surface temperature 

plotted against heat flux at constant volumetric flow rate of 144.5 ml/min is provided in 

Figure 3.18(b), the surface temperature rises with increasing heat flux similar to the 

lower flowrate results. 

 Figure 3.19(a) shows the experimental results of the volumetric flow rate of 

181.5 ml/min (Rej=1642.21). Nanostructured plate with vertical nanorods again yields 

the best results at this flow rate. Further increase in the heat transfer coefficient 

achievable can be observed with increasing flow rate, which is in total agreement with 

the lower flowrate results. Average enhancement in heat transfer coefficient of 17.5% 

Figure 3.19.  (a) Heat transfer coefficient versus heat flux plotted at a constant 

volumetric flow rate of 181.5 ml/min and (b) Heat flux versus surface temperature 

plotted at a constant volumetric flow rate of 181.5 ml/min. 



 

56 

has been achieved compared to the plain surface, while the tilted nanorod structure 

results in the lowest performance similar to the lower flowrate results. Surface 

Figure 3.20.  Nusselt number versus heat flux plotted at a 

constant volumetric flow rate of (a) 107.5 ml/min, (b) 

144.5ml/min and (c) 181.5ml/min. 
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temperature plotted against heat flux at constant volumetric flow rate of 181.5 ml/min is 

provided in Figure 3.19(b). 

 Nusselt number profiles are displayed in Figure 3.20 for three different flow 

rates. In these figures, an increase in Nusselt number with the nanostructured plate 

based on vertical nanorods is apparent. Nusselt numbers are greater for higher flow 

rates when compared to the lower flow rates at the same heat flux. This result implies 

that Nusselt number has a strong dependence on Reynolds number, which has been also 

extensively reported in the literature [154]. It should be noted that Nusselt numbers vary 

for the same flow rate due to the change in thermophysical properties in the working 

fluid due to heating. At higher flow rates, Nusselt number values exceeding 8 are 

observed with the nanostructured surfaces for the proposed cooling device, which is 

promising. 

 The enhanced heat transfer performance obtained from the nanostructured 

surface with vertical nanorods in jet impingement agrees with the previous experimental 

studies [68] and results on nanostructured surfaces used with other heat transfer modes 

in the literature [65, 70]. Pool boiling and single phase flow in rectangular channels 

with nanostructured surfaces were investigated and significant enhancements in heat 

transfer were reported [63, 64]. Positive effects of the nanostructured surfaces with 

lightly spaced tilted nanorods have been reported in boiling applications [70], but 

studies on the performance of such surfaces in jet impingement applications are not 

present. The experimental studies reported in this article prove that such surfaces with 

tilted nanorods, when densely packed, fail to enhance heat transfer with jet 

impingement applications and thus the heat transfer performance of the system is 

decreased, while their vertical arrangement (orientation) results in the enhanced heat 

transfer performance. 

 

3.3 Results and Discussion of Nanofluid Actuation Study 

 

The results are obtained from the experiments as explained in the previous sections. 

Surface temperature data were plotted against heat flux values for the whole experiment 

(Figure 3.21). It can be observed that the use of magnetically activated nanofluid 

increases heat removal rate from the system. The surface temperatures have a linear 

trend with heat flux. The slope of the surface temperature trendline without magnetic 

stirrer is steeper than the slope of the surface temperature trendline with magnetic 
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stirrer. Thus, heat removal is promoted with the introduction of the nanofluid with 

ferromagnetic particles subject to the rotating magnetic field generated by the magnetic 

stirrers. Moreover, the nanofluid provides more mixing in convection mode and 

increases convection from the surface due to applied rotating magnetic field (Figure 

3.22). The iron oxide nanoparticles’ motion near the surface and their contact with the 

heated surface contribute to heat transfer from the heated surface to both the bulk fluid 

and the nanoparticles themselves. As a result, the magnetic nanoparticles act as heat 

carriers, absorb more heat from the surface of the plate (Figure 3.22), and further 

enhance heat transfer, which results in lower surface temperatures at a fixed heat flux 

with magnetic stirring. 

 Heat transfer coefficients were found and plotted against heat flux in Figure 

3.23. Heat transfer coefficients higher than 200 W/m
2
K are reached for the nanofluid 

rotated with magnetic stirrers, while without magnetic stirrers heat transfer coefficients 

Figure 3.21.  Heat Flux vs. Surface Temperature. 

Figure 3.22.  Heat Transfer Enhancement 

Mechanism. 
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lower than 200 W/m
2
K are measured. To better emphasize on the enhancement due to 

rotating magnetic field, the ratios of heat transfer coefficients of the configuration 

without magnetic stirrers to heat transfer coefficients of the configuration with magnetic 

stirrers were displayed for each heat flux value in Figure 3.24. The decrease in the 

enhancement of heat transfer at elevated heat fluxes could be observed from the graph, 

while the enhancements are still above 15%. Magnetic stirring enhancement is more 

significant at lower heat fluxes where convection effects are relatively less dominant 

due the high viscosity of the fluid at lower temperature. Magnetic stirring is able to 

actuate the nanofluid within the pool even at lower temperatures thereby augmenting 

the heat transfer. Convection is intensified at higher heat fluxes due to decreased fluid 

viscosity and this contributes more to the mixing of the nanofluid within the pool, which 

is why the enhancement ratio decreases. 

Figure 3.23.  Heat Transfer Coefficient vs. Heat Flux. 

Figure 3.24.  Heat Transfer Enhancement Ratio. 
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Various researchers have shown that, in general, nanofluids offer better heat 

transfer characteristics compared to their base fluids [105-107]. One of the reasons for 

that is the improved thermal conductivity due to existence of high conductivity 

nanoparticles dispersed in the base fluid. It has also been shown that Brownian diffusion 

(the random motion of nanoparticles within the base fluid) which results from 

continuous collision between nanoparticles and the molecules of the base fluid and 

thermophoresis (diffusion of particles under the effect of a temperature gradient) greatly 

contribute to heat transfer enhancement in nanofluids [108, 109]. In addition to these 

heat transfer mechanisms, the vibrating and rotating nanoparticles, due to rotating 

magnetic field, result in an enhanced heat removal from the surface of the pool. In 

previous studies of the authors [115-118], it was shown that flow velocities greater than 

1cm/s were achievable in mini/micro scale at decent magnetic fields (~0.3mT), which 

are close to those in the current study. This clearly proves the existence of additional 

contribution of the actuation of magnetic nanoparticles to heat transfer. The nanofluid 

within the pool acts effectively in the enhancement of heat transfer. The mechanism 

could be explained by the nanoparticles acting as heat transporters from the surface of 

the pool to the bulk fluid along with the circulation created within the pool with 

magnetic field especially at low temperatures (Figure 3.22). 
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4 CONCLUSION 

 

4.1 Conclusion of Hydrodynamic Cavitation Study 

 

4.1.1 Conclusion of Hydrodynamic Cavitation Application to Chalk and 

Cancerous Cells 

 

The potential of hydrodynamic cavitation for the use in medical treatment was 

explored. Two sets of experiments were undertaken, using first the chalk specimens as 

an artificial kidney stone model and second the cell cultures containing cancerous cells. 

Both target materials were exposed to bubbly cavitation hydrodynamically 

generated by a microorifice, and the changes in the targets were carefully examined. 

The following conclusions were drawn from the results of the respective experiments. 

 

1) The performance of bubbly cavitation has been tested on chalk. Significant 

decrease in size and rapid erosion on the surface of the material indicated that 

hydrodynamic cavitation has the potential to lead to an alternative and 

minimally invasive surgical technique to remove urinary stones. 

2) The hydrodynamic cavitation system could easily be coupled with an 

endoscopic system. Due to the small diameter of the cavitating probe (147 

μm), a camera and a suction probe could be integrated within conventional 

endoscopic systems, which have distal ends variable from 3.2–12.8 mm 

diameter. 

3) Microscale bubbly cavitation caused cell death in two different cancer cell 

types in culture. Cell death kinetics depended on the exposure time to 

cavitation (i.e., death in cells exposed to cavitation for 1 min was less than 

that in cells exposed for 5 min). Additionally, a dramatic increase in death of 

cells in culture was observed hours after such exposure. These findings 

revealed the potential of the use of hydrodynamic bubbly cavitation in 

abnormal tissue (e.g., BPH or tumors) ablation and treatment. 

 

The results from the experiments demonstrated that hydrodynamic cavitation 

might be used as a promising alternative to ultrasound methods in order to treat various 

diseases, such as cancer, BPH, and kidney stone formation. In contrast to some 

ultrasonic methods, hydrodynamic cavitation offers fine controllability, low power 
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consumption, heat-free cavitation, and successful targeting. Its destructive effects were 

tested on chalk and cell cultures. However, further in vivo studies (i.e., exposure on 

dead and live tissues) are needed for better understanding and characterization of the 

possible outcomes of the proposed method. 

 

4.1.2 Conclusion of Hydrodynamic Cavitation Application to Protein 

 

In this initial study, lysozyme subjected to hydrodynamic flow under cavitating and 

non-cavitating conditions was assessed via biochemical and biophysical methods. The 

findings indicated that hydrodynamic cavitation, with Ci set to a value of 0.93, had no 

statistically significant effect on lysozyme structure and function under the applied 

experimental conditions. Interestingly, a reversible change of hydrodynamic diameter 

and bioactivity was noted outside the cavitation regime with Ci set to a value of 7.6. 

Overall, the results were encouraging in the sense that lysozyme was neither 

deactivated, nor irreversibly affected in any adverse way. In view that the analysis was 

primarily phenomenological, it follows to reason that more work is needed to better 

ascertain the rules that govern protein behavior in high-shear environments, as well as 

to assess the risks, benefits and feasibility of applying invasive hydrodynamic cavitation 

to healthcare. 

 

4.2 Conclusions of Nanostructured Heat Sinks 

 

4.2.1 Conclusion of Pool Boiling Study 

 

In conclusion regarding pool boiling enhancement with nanostructures, the 

results show that glancing angle deposited nanorod arrays can considerably enhance the 

nucleate boiling and heat transfer properties leading to superior cooling of the 

underlying plate. The enhancement in heat transfer was significant especially during 

boiling, where nanostructured surfaces induced heat transfer enhancement of 125% and 

110% on average for water and ethanol, respectively. Therefore these nanorod 

integrated plates offer opportunities for enhanced cooling of various applications such 

as small electronic devices, microreactors, micropropulsion, biotechnology, fuel cells 

and air conditioning. 
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4.2.2 Conclusion of Forced Convection Study 

 

The results gathered from our experimental work indicate the advantageous 

effects of a nanostructured plate on heat transfer enhancement via a single-phase 

rectangular channel flow over flat plate. The vertical nanorods integrated to the copper 

thin film layer on silicon wafer introduce enhanced surface area and does not cause any 

significant losses in terms of flow rates at a constant pressure drop scenario. With such 

a compact setup and integrated nanostructures, the cooling system acts more efficiently. 

An average heat transfer enhancement of 16% was obtained with the experimental 

setup. 

Using such experimental studies, further investigations and models, 

nanostructures of different nanorod lengths and diameters can be utilized in various 

cooling applications of small electronic devices, microreactors, micropropulsion, 

biotechnology, fuel cells and air conditioning. 

 

4.2.3 Conclusion of Jet Impingement Study 

 

The results gathered from our experimental work indicate the advantageous 

effects of a vertical nanostructured plate on heat transfer enhancement via a single-

phase submerged jet impingement cooling device. An average heat transfer 

enhancement of 28.9% using the nanostructured plate utilizing vertical nanorods has 

been measured compared to flat plate. The vertical nanorods integrated to the copper 

thin film layer on silicon wafer introduce enhanced surface area. The nanorods also act 

as nanoscale pin-fins, which contribute to heat transfer enhancement with secondary 

flows and changing boundary layers developing from the surface. By using a compact 

setup with integrated nanostructures, the cooling system acts more efficiently compared 

to its plain surface counterparts, while the orientation of nanostructures is found to be an 

important parameter for heat transfer. 

In the light of the experimental studies, more in-depth systematic studies to control 

the length, spacing, orientation and diameter of nanorods are critically important for 

fundamental understanding of heat transfer occurring from the nanostructured surfaces 

as well as to clarify the potential benefits/limitations of this technology in various 

applications such as cooling of small electronic devices like micro reactors, micro 

propulsion, biotechnology, fuel cells and air conditioning. Moreover, there is a need to 
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develop empirical correlations for calculating the heat transfer coefficients of the 

nanostructured surfaces, which can be useful in designing such devices for cooling 

applications. 

 

4.3 Conclusion of Nanofluid Actuation Study 

 

The results gathered from the experiments indicate the advantageous effects of 

magnetic nanofluid actuation (using ferromagnetic particles integrated with magnetic 

stirrer) on heat transfer magnification and flow circulation. With such a compact setup, 

the magnetic stirrer integrated to this cooling system acts effectively. An average heat 

transfer coefficient enhancement of 37.5% was achieved with the magnetic actuation 

with relatively low power consumption. Using experimental results, further 

investigations and models, nanofluids of ferromagnetic particles can be utilized in 

various cooling applications of small electronic devices, microreactors, 

micropropulsion, biotechnology, fuel cells and air conditioning. Further studies could 

include two-phase pool boiling experiments of various nanofluids with and without a 

magnetic stirrer and their comparisons amongst themselves and distilled water. The 

fraction of magnetic nanoparticles inside the nanofluid could also be modified in order 

to account for its advantageous effects. The magnetic flux densities of the magnets 

could be modified in order to see its effects on the heat transfer enhancement. 
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