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ABSTRACT 

 

The past decade has witnessed the development and success of coarse-grained network 

models of proteins for predicting many equilibrium properties related to collective modes of 

motion. Curiously, the results are usually robust towards the different methodologies used for 

constructing residue networks from knowledge of the experimental coordinates. In the first 

part of the thesis, we present a systematical study of network construction strategies, and we 

study their effect on the predicted properties using Anisotropic Network Model (ANM). The 

analysis is based on the radial distribution function and the spectral dimensions of a large set 

of proteins as well as a newly defined quantity, the angular distribution function. In the 

second part of the study, we apply ANM to the well-relaxed atomistic coordinates of a 32-

chain C128 cis-1,4-polybutadiene system to test the extent of applicability of the method. 15-

60 ns long molecular dynamics (MD) simulations are carried out for a wide variety of 

temperatures and pressures. The mean-square fluctuations of the central carbon atoms 

obtained by applying ANM on a few snapshots are shown to be in good agreement with 

values from full MD simulations. This leads to predict average flexibility values of the 

system under different conditions. We extend the methodology to approximate the virial of 

the system. In the third part, to understand the nanoclusters’ behavior and influence on the 

polymer’s viscoelastic and thermodynamic properties, different nanoclusters having 10 to 

150 atoms are embedded in the cis-1,4-polybutadiene matrix. First, the diffusion coefficient 

and zero shear viscosity are calculated from the simulations and compared with the 

experimental results obtained with rotational viscosimeter. In addition, correlation times of 

C-H bond vectors of simulation at four different temperatures were compared with the C-

NMR experiments of cis-1,4-polybutadiene with high-cis-content polybutadiene (%93 cis, 

%3 trans and %4 vinyl). The agreement between simulation results and experiments confirm 

that the united atom force field used in the simulations well-describes the dynamics of the 

real system. It is also possible to manipulate mechanical properties by tuning the interaction 

strength of the nanoclusters with the chains. From a practical point of view, we can assume 

that bulk modulus is not much affected by the size of the nanocluster, whereas it linearly 

increases as the interaction strength changes from normal to strong. Another 

thermodynamical quantity, glass transition temperature (Tg) increases from ~176 K to ~184 K 

as the nanoclusters are introduced to the polymer melt. Tg decreases to ~178 K as their 

interaction strength is made much stronger than the standard value.  
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ÖZET 

 

Geçtiğimiz on yılda toplu hareket modları ile ilgili pek çok denge özelliğini tahmin 

etmek için proteinlerde kaba-ölçekli ağ modelleri geliştirilip başarılı bir şekilde 

uygulanmıştır. Deneysel kordinat bilgilerinden ağlar oluşturularak kullanılan farklı yöntemler 

genellikle iyi sonuçlar vermektedir. Tezin ilk bölümünde, ağ örgüleme stratejilerinin 

sistematik bir çalışması ve Anizotropik Ağ Modeli (AAM) kullanılarak tahmin edilen 

özellikler üzerindeki etkisi araştırıldı. Analizler çok sayıdaki proteinin ortak radyal dağılım 

fonksiyonu, bu tezde tanımlanan açısal dağılım fonksiyonu ve spektral boyuta 

dayanmaktadır. Çalışmanın ikinci bölümünde ise, 32-zincirli 128 carbon atomundan oluşan 

cis-1,4-polibütadien eriyik sisteminin denge koşullarındaki atomlarının koordinatlarına AAM 

uygulanmıştır ve yöntemin uygulanabilirliği test edilmiştir. 15-60 ns uzunluğundaki molekül 

dinamik (MD) benzetimleri geniş bir sıcaklık ve basınç aralığında yapılmıştır. Bir kaç anlık 

görüntüye AAM uygulanarak elde edilen merkezi karbon atomlarının ortalama kare 

dalgalanmalarının MD benzetim değerleri ile uyumluluk içerisinde olduğu gösterilmiştir. Bu 

değerler, sistemin farklı koşullar altında ortalama esneklikleri tahmin etmek için 

kullanılmıştır. Ayrıca, uygulanan metod sistemin yaklaşık viral değerlerini elde etmek için 

genişletilmiştir. Üçüncü bölümde, nanoparçacıkların polimerin viskoelastik ve termodinamik 

özellikleri üzerindeki davranış ve etkisini anlamak için, 10 ila 150 atomdan oluşan farklı 

büyüklükteki nanoparçacıklar cis-1,4-polibütadien matrisi içerisinde çalışılmıştır. İlk olarak, 

difüzyon katsayısı ve sıfır kayma viskozitesi betimleme sonuçlarından hesaplanmış ve dönme 

viskozimetre ile elde edilen deney sonuçları ile karşılaştırılmıştır. Buna ek olarak, dört farklı 

sıcaklıkta hesaplanan C-H bağ vektörlerinin korelasyonları yüksek cis yapıdaki 

polibütadienden elde edilmiş C-NMR deneyleri ile karşılaştırılmıştır. Benzetim sonuçları ve 

deneyler arasında uyumluluk kullanılan birleşik atom kuvvet alanının gerçek sistem 

dinamiklerini iyi şekilde betimlediğini onaylamaktadır. Zincirler ile nanoparçacıklar 

arasındaki etkileşim gücünü değiştirerek polimerin mekanik özelliklerini de değiştirmek 

mümkündür. Esneklik modülü etkileşimi normalden çok güçlüye değiştirdikçe doğrusal 

olarak artmakta, oysa ki, pratik anlamda nanoparçacık boyutundan etkilenmemektedir. 

İncelenen diğer bir termodinamik özellik olan camsı geçiş sıcaklığı ise nanoparçacıklar 

sisteme entegre edilince ~176 K’den ~ 184 K’e artış göstermekte, ancak etkileşim standart 

değerin çok üzerindeki güçlü değerlerde uygulanınca tekrar nanoparçacıksız durumdaki yalın 

polimer değerine yakın (~ 178 K) düşmektedir.  
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1. INTRODUCTION 

 

Soft materials science, focusing on such versatile materials as proteins, 

polymers, self-assembled micellar structures, complex fluids, liquid crystals, 

elastomers, soft ferroelectric materials, foams, and gels, is an active area of scientific 

research and technological applications. Soft matter plays a role in a wide variety of 

important processes and applications, as well as in all living systems. Due to their 

complex nature, understanding and controlling the behavior of soft materials through 

the relationship between their structures, dynamics and function requires an 

interdisciplinary approach using theoretical models, complementing computational and 

experimental findings. The ultimate goal is to engineer and design materials with 

specific functions having the desired macroscopic mechanical, thermal and dynamical 

properties by selectively manipulating microscopic parameters such as chemical 

composition, or choice of interacting species. To reach such goals, studying the 

equilibrium and dynamical properties of proteins that provide excellent models for self-

assembled polymeric materials proves useful. 

The physical properties of polymers starting from basic structure information 

was pioneered by Flory and others in the late 1940s [1]. Despite the limitations of 

Flory-Huggins theory for the thermodynamics of macromolecules, such as its use of a 

lattice model, random mixing, and incompressibility assumptions, it is still useful in 

understanding and predicting the qualitative behavior of polymer solutions, melts and 

mixtures. Recently other theoretical methods, including scaling arguments [2] and 

renormalization group theory [3], enabled a more thorough understanding of the 

polymer properties and behavior on larger length scales [4]. According to these 

theories, many important properties of polymeric systems are not universal, but rather 

depend on the details of local packing and to the specific architecture of the polymer. 

For example, the dynamics of linear polymer chains in the melt depends strongly on 

chain length: for short, unentangled chains, the dynamics is determined by a balance of 

viscous and entropic forces; for long chains, topological constraints are more dominant  

[1]. 

In addition to theoretical and experimental developments, classical atomistic 

simulations, in particular molecular dynamics (MD) simulations [5], have become a 
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common tool for investigating the properties of polymer and biomolecular systems in 

the last decades. Because of their remarkable single atom resolution, femtosecond time 

scales, and more realistic energetic environment, MD simulations assist experimental 

techniques by providing insight into observed processes [6]. MD simulations, basically 

an integration of the classical equations of motion, generating the trajectory of 

configuration space in time, can provide detailed information on the behavior at the 

atomistic level, but are generally limited to time scales up to the order of hundreds of 

nanoseconds, which is not enough to explain many interesting phenomena occurring on 

the order of seconds. The technique of dissipative particle dynamics (DPD) was 

introduced by Hoogerbrugge and Koelmann in order to fill the gap between the 

atomistic simulation methods and continuum fluid models without applying lattice 

models [7]. DPD uses group of atoms called “beads” moving via classical equations of 

motion, interacting by soft potentials and predefined collision rules. The momentum of 

the interacting blocks is conserved providing a hydrodynamic solution for the system. 

After the formulation of the underlying physics using statistical mechanics and mapping 

bead interactions onto Flory-Huggins mean field theory of polymers by Espanol and 

Warren [8], many polymeric systems such as polymer melts [9] and polymer chains 

[10, 11], block copolymers [12, 13], and random elastomers [14, 15] have been 

investigated by DPD. The results were found to be in good agreement with other 

theories and experiments, and provides a route for generating initial morphologies for 

further use in multi-scale approaches [16]. 

Alternative coarse-grained models have been developed to study properties of 

proteins. Globular proteins show diversified structures and sizes, yet, it has been 

claimed that they display a nearly random packing of amino acids with strong local 

symmetry on the one hand [17], and that they are regular structures that occupy specific 

lattice sites, on the other [18]. It was later shown that this classification depends on the 

property one investigates, and that proteins display “small-world” properties, where 

highly ordered structures are altered with few additional links [19]. Furthermore, 

packing density of proteins scales uniformly with their size [20, 21] which causes them 

to show similar vibrational spectral characteristics to those of solids [22]. 

Dynamical studies of folded proteins draw much attention to their importance in 

relating the structure of the proteins to their specific function and collective behavior. 
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Protein dynamics is generally both anisotropic and collective. Internal motional 

anisotropy is a consequence of the general lack of symmetry in the local atomic 

environment, while the collectivity is mainly caused by the dense packing of proteins 

[23]. 

Theoretical studies on fluctuations and collective motions of proteins are based 

on either molecular dynamics (MD) simulations or normal mode analysis (NMA). 

Since, in molecular simulations with conventional atomic models and potentials, 

computational effort is demanding for larger proteins with more than a few hundreds of 

residues, coarse grained protein models with simplified governing potentials have been 

employed. Of these, Anisotropic Network Model (ANM) in particular, has shown great 

success in the description of the residue fluctuations and the collective behavior of 

proteins [24-26]. 

While heterogeneity is ever-present in proteins leading to the specific functions 

carried-out in the cell environment, it may be created in polymers in a plethora of ways. 

These include polymer mixtures, copolymers, using different solvents as well as 

including nanofillers to obtain various properties of interest. In this work, we shall be 

mainly interested in the latter because it poses an open problem. While it is clear that 

the interfacial region between the nanofiller and the polymeric chains has a significant 

impact on the properties of nanocomposites, quantitative understanding of the structure 

and morphology of the polymer interacting with nanoscale surfaces is still developing. 

Together with dynamical and mechanical analysis, rheology is extensively used in 

nanoscale composites to probe the extent, structure, and properties of the interfacial 

region [27] and it has been found that the extent and properties of the interfacial region 

depend on the nanofiller/matrix interactions. In this work, the effect of nanofiller 

interaction strength as well as nanofiller size on mechanical and thermodynamical 

properties is systematically studied for the first time in the literature. 

In this thesis, we shall first study the extent of predictions of elastic network 

models on the well-studied protein systems. We shall than seek to understand the extent 

of applicability of ANM to oligomeric systems, exemplified by polybutadiene melts. 

We shall then use nanoclusters to probe the linear viscoelastic properties of the melts. 

Finally, we shall use these nanoprobes to manipulate properties of polymers. These 

include mechanical strength, which is directly related to force constants derived by 
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ANM, as well as the glass transition temperature, which is shown to be both upshifted 

and restored by playing with van der Waals (vdw) interaction strength. 

 

1.1.  Residue Network Construction and Predictions of Elastic Network Model 

 

NMA using a single parameter harmonic potential [28] successfully predicts the 

large amplitude motions of proteins in the native state [29]. Within the framework of 

this model, proteins are modeled as elastic networks whose nodes are residues linked by 

inter-residue potentials that stabilize the folded conformation. The residues are assumed 

to undergo Gaussian-distributed fluctuations about their native positions. The springs 

connecting each node to all other neighboring nodes are of equal strength, and only the 

atom pairs within a cut-off distance are considered without making a distinction 

between different types of residues. This model, with its simplicity, speed of calculation 

and relying mostly on geometry and mass distribution of the protein, demonstrates that 

a single-parameter model can reproduce complex vibrational properties of 

macromolecular systems. By separating different components of normal modes, e.g. 

collective (low-frequency) motions, the nature of a conformational change, for example 

due to the binding of a ligand, can also be analyzed thoroughly [30]. 

Following the uniform harmonic potential introduced originally by Tirion [31], 

residue level application of elastic network models paved the way for the concept 

Gaussian Network Model (GNM), which is based on the energy balance of the system 

at the energy minimum, and is a purely thermodynamic treatment [29, 32]. Elastic 

models based on the force balance around each node [33] led to the development of the 

ANM [24]. In the past few years, variant methods of GNM and ANM [34, 35] have 

been introduced. The applications of these models to many proteins show successful 

results in terms of predicting the collective behavior of proteins. Despite numerous 

applications comparing the theoretical and experimental findings on a case-by-case 

basis [36-40], only a few attempted a statistical assessment of the models. A 

methodology that evaluates the number of modes necessary to map a given 

conformational change from the degree of accuracy obtained by the inclusion of a given 

number of modes, showed the results to be protein dependent [41]. In another study 

where 170 pairs of structures were systematically analysed, it was shown that the 
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success of coarse-grained elastic network models may be improved by recognizing the 

rigidity of some residue clusters [42].  

To date, the structures that form the basis of the network models have been 

generated from certain rules of thumb. In GNM, which does not include directionality 

and is therefore a one-dimensional model, the first correlation shell between the Cα or 

Cβ atoms of the residues is used as the rule for the connectedness of a given pair of 

residues (ca. 6.7 – 7.0 Å) [29]. In the three-dimensional ANM, values in the range of 8 

– 14 Å are found in the literature based on the argument that (i) the eigenvalue 

distributions obtained from the modal decomposition are similar to those obtained from 

the full-atom NMA description of proteins, or (ii) these provide atomic fluctuation 

profiles that display the largest correlation with the experimental B-factors. Voronoi 

tessalation of the space defined by the central (usually Cα or Cβ) atom into non-

intersecting polyhedra constitute another route that frees one from defining a cut-off 

distance [43]. Atom-based network construction approaches have also been used. A 

review of the variety of network construction methods published by Csermely et al. is 

also available in the literature [44]. 

In this thesis, we use a systematic approach on a large set of globular proteins with 

varying architectures and sizes to find a basis for why the network models work well to 

define certain properties of the system. This enables us to assess the various residue-

based approaches used in the construction of the networks. We define a direction based 

radial distribution function for this purpose, and show that the orientation of newly 

added links samples a spherically symmetric collection of directions beyond a given 

distance of interacting residues. We show that the network construction is free of the 

cut-off distance problem once a certain baseline threshold is accessed, if one is 

interested in the collective motions and the fluctuation patterns of the residues. 

Implications for the limitations of the ANM methodology are also discussed due to 

functionality-related predictions based on the most global motions.  
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1.2. Properties of Polybutadiene Melts Probed by Nanoclusters 

 

Polymer nanocomposites are polymer matrix composites in which the fillers are 

less than 100 nm in at least one dimension. These composites have exhibited 

extraordinary properties such as increasing the elastic moduli by an order of magnitude 

while maintaining glass transtion temperature [45]. A defining feature of polymer 

nanocomposites is that the small size of the fillers leads to a dramatic increase in 

interfacial area as compared to traditional composites. This interfacial area creates a 

significant volume fraction of interfacial polymer with properties different from the 

bulk polymer even at low loadings. The properties and structure of this interfacial 

region are not yet known quantitatively, presenting a challenge both for controlling and 

predicting the properties of polymer nanocomposites.  

One of the challenges in developing polymer nanocomposites for advanced 

technology applications is a limited ability to predict the properties. While the 

techniques exist to tailor the surface chemistry and structure of nanoparticle surfaces 

[46], the impact of the nanoscale filler surface on the morphology, dynamics, and 

properties of the surrounding polymer chains cannot be quantitatively predicted. 

Therefore, the properties of a significant volume fraction of the polymer, the interfacial 

polymer, are unknown, making it difficult to predict bulk properties. One of the 

challenging goals in nanocomposite science is to fully understand the impact of the 

interfacial region on both composite properties and to have the ability to model 

behavior of nanocomposites 

The structure and properties of the interfacial region are not only different from 

the bulk, but are also critical in controlling properties of the overall nanocomposite. 

Since the interfacial region properties must play a significant role in increasing the 

composite modulus, for amorphous polymer matrices, it is hypothesized that the 

interfacial region in the nanotube composites is a region of polymer with reduced 

mobility and associated higher stiffness [47, 48]. 

In amorphous polymer matrices, it is qualitatively understood that an attractive 

interface will decrease the mobility of the polymer chains and a repulsive interface will 

increase the mobility [49]. One method for probing this change in mobility of the 
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polymer chains in the interfacial region is to measure the glass transition temperature, 

using either differential scanning calorimetry or rheology typically dynamic mechanical 

analysis [50, 51]. Studies using these methods show that the glass transition temperature 

of a polymer nanocomposite can be raised or lowered with the addition of nanoparticles 

with attractive and repulsive interaction with the matrix, respectively [52, 53]. 

Recent experiments have helped demonstrate that nanoscopic additives can alter 

the properties of polymeric materials in several important ways. The elastic constants, 

the toughness, and the modulus at frequencies below the end of the plateau modulus of 

the composite can be very different from those of the pure polymer [27, 54, 55]. 

Depending on the nature of the interactions between the nanoparticles and the polymer 

matrix, the plateau modulus can either increase [54] or decrease [27] suggesting that the 

addition of these particles modifies the properties of the polymer matrix in 

unanticipated ways. 

Although experimental work [56, 57] points to a reduction in molecular mobility 

in the region of the interface, little is known about the origin of this immobilization. It is 

experimentally challenging to generate equilibrated, well-dispersed homogeneous 

nanoparticle/polymer samples, rendering it difficult to establish general principles 

regarding the manner in which nanoparticles affect polymer properties. So, it is more 

efficient to undertake a study of a nanocomposite system using a molecular modeling 

approach. The structure and dynamics of the nanoparticle-polymer matrix interface 

have only recently started to become studied using such simulation techniques [58-61]. 

Bitsanis et al. [62] give a review of some of the early work in the field and describe 

their MD simulations of liquid systems of relatively short freely jointed chains in the 

vicinity of a plain wall. Beside these MD simulations. Binder and co-workers have used 

dynamic MC simulations using the bond-fluctuation lattice model to study similar 

systems using an even more coarse-grained approach [63, 64].  

Until now, several hypotheses have been proposed to rationalize the 

reinforcement of polymeric materials by nanoparticles. These include interaction zone 

arguments, originally put forth to explain experimental results [65] and, more recently, 

supported by molecular simulations [66]. Such arguments propose that a layer near the 

surface of the particles exhibits dramatically different properties than those of the bulk 

material [67, 68] . Some experimental studies have speculated that the density of 
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entanglements near the surfaces of the nanoparticles is higher than in the bulk [27], and 

others have suggested that long polymer chains can wrap around several particles, 

forming a “bridge network” where the particles function as physical cross-links [54]. 

The evidence in support of such mechanisms has been indirect, or has been extracted 

from simulations of unentangled chain molecules. 

In this thesis results are presented of a systematic study of a model polymer matrix 

reinforced by a nanoparticle. The nanoparticle is modeled with atomistic detail which 

allows us to determine the dynamical and mechanical properties as well as glass 

transition temperature of the bulk reinforcing phase to make connections with 

micromechanical modeling. The nanoparticles that interact via vdw interactions with 

the chains are incorporated and the effect of interaction strength is varied. Furthermore, 

the effect of the size of the nanoparticle as well as chain length is studied. We note that 

the majority of the systems studied hee are below the entanglement limit of the 

polymers. 

 

1.3. General Approach 

 

The systems of interest in the present study are proteins, polymeric melts pure as 

well as having embeded nanoparticles. Our interest in proteins stems from our 

experience in coarse-graining these self-organized natural molecular structures. Since 

we wish to extend this knowledge to synthetic systems, we study the general properties 

of oligomers/polymers. Finally, we will combine the knowledge-base obtained in these 

to predict the properties of stnthetic structures that incorporate spherical nanoparticles 

of various size and interaction strength. 

For each system, we will first construct the structure in the way suitable to the 

simulation technique that will be used: MD or ANM. We will then compare the radial 

distribution function (RDF)  profiles obtained by each approach. We will then extract 

macroscopic properties of interest.  
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1.3.1. System structure construction 

 

For each system different structure construction will be applied. For proteins, the 

coordinates of the backbone geometry will be obtained from the x-ray data that is 

available in Protein Data Bank (PDB) [69]. In the case of polymers, the equilibriated 

coordinates obtained from MD simulations will be used following an appropriate 

amorphous cell construction procedure (in Materials Studio Program) [70]. To construct 

systems and to check the consistency of their general properties the following steps will 

be followed: 

a. Construction of amorphous system with polymers/oligomers of different molecular 

weight (MW), type, temperature, and other environmental conditions of interest. 

b. Obtaining pair correlation function, g(r)  

c. Obtaining thermodynamical properties such as characteristic ratio or atomic 

fluctuations to compare with known experimental values. 

 

1.3.2. Network construction and related microscopic properties 

 

The steps followed in network construcion are as follows: 

a. Obtaining appropriate cutoff distance that provides the same neighborhood 

information as the RDF. 

b. Applying ANM to the equilibriated backbone geometry of the system that is 

obtained from the constructed network . 

c. Obtaining dynamical and static physical properties such as B-factors, vibrational 

frequency distribution, total energy and partition function of the network. 
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1.3.3. Extraction of Properties 

 

We calculate the following properties to gain an overall understanding of the 

microscopic effect of local heterogeneities to observables: 

a. Macroscopically measurable thermal, mechanical and structural properties such as 

heat capacity, isothermal compressibility (κT), elastic modulus, intrinsic viscosity (η), 

glass transition temperature (Tg), radius of gyration (Rg) etc.  

b. Kinetic properties such as diffusion coefficient on the macroscopic scale, and 

various relaxation times of chain units on the microscopic scale. 

This protocol is applied for different sets of input parameters such as T, density, 

polymer type and length (MW), in order to obtain output macroscopic (material) 

properties and how thay are related to these input parameters. 
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2. THEORETICAL BACKGROUND AND METHODS 

 

2.1. Theory 

 

2.1.1. Radial and angular distribution functions 

 

The radial distribution function (RDF), g(r), is a measure of the correlation 

between the locations of particles within a system, measured as the probability of 

finding another particle at a distance, r, from a chosen particle, normalized by the 

volume element and computed through the relation: 
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where N is the number of particles, Rj is the position vector of jth particle and δ is 

Kronecker delta function. 

 

The RDF is a useful tool to describe the structure of a molecular system, 

particularly those of liquids. In an ordered solid, RDF has an infinite number of sharp 

peaks whose separations and heights are characteristic of the lattice structure. RDF can 

be deduced experimentally from X-ray or neutron diffraction studies, thus providing a 

direct comparison between experiment and simulation. 

 

We are not only interested in the number distribution of particles around a given 

node, but also concentrate on the link structure. We treat all neighbors of a node 

equivalently, and we find that as rc is increased with the addition of new neighbors to 

each node, the resultant vector, Qi, on node i due to all its neighbors, j, converges to a 

certain location: 

 

     Q� = ∑ ���� R��    (2.2) 

 

where Rij is the unit vector connecting residue pairs i and j, and Aij are the elements of 
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the adjacency matrix. An example is shown on a 54 residue α-helical protein (PDB 

code: 1enh) in figure 2.1, where the length of a red vector is proportional to rc and 

demonstrate that at small rc, the neighbors of a node are at distinct locations, whereas 

with increasing rc, the new nodes are added in a spherically symmetrical manner so that 

the resultant vector, Qi, is only slightly modified. The resultant vectors from the 

Voronoi tessalated network structure is also shown (in yellow) and is found to be 

different from the converged ones.  

 

Figure 2.1. (a) The negative of the resultant vectors acting on the nodes, −Q�, exemplified by a 

54 residue protein (PDB code: 1enh). The length of each red vector is proportional to the cut-off 

distance used in network construction, rc, the shortest at 7 Å and the longest at 15 Å. The 

yellow vector is the resultant obtained from the networks obtained from the Voronoi 

tessalations. (b) Part of the helix marked by the square in (a) is magnified; “exterior” refers to 

the solvent contacting part of the helix, and “interior” marks the side facing the core of the 

protein. 

 

To quantify this behavior, we define the angular distribution function (ADF), 

which is the distribution of angular change, ∆φ, of the resultant vector obtained from 

the contacting residues at a distance r to r+dr to the reference residue:  

 

  cos∆����� = �∑ ���R��� 	
�
⋅ �∑ ���R��� 	

����
= 
Q�|� ⋅ 
Q�|����  (2.3) 

 

where dr is a small perturbation on the distance r. 

 

 

exterior

interior

(a) (b)
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2.1.2. From g(r) to thermodynamic relations 

 

Importance of the radial distribution function comes from the fact that when the 

total potential energy of the N-body is assumed to be pair-wise additive, i.e. 
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where the summation runs over all pairs of particles in the system, then all the 

thermodynamic functions of the system can be related to g(r) [71]. 

 

In order to calculate all thermodynamic properties, one has to have three 

equations of state. In terms of g(r), the most convenient triplet is that of energy, 

pressure and chemical potential. 

 

The total energy is the sum of mean kinetic and mean potential energy: 
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where ρ is the density (N/V) and kB is the Boltzmann constant. The pressure is related to 

g(r) through:  
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The last thermodynamic property, which is non-mechanical, is the chemical 

potential. Introducing a coupling parameter ξ, which ranges from 0 to 1, to replace the 

interaction of the central molecule (1) with the jth molecule of the system, total potential 

energy may be modified to: 

 

∑∑
≤<≤=

+=
Nji

ij

N

j
ijN rururrU

22
1 )()(),,..,( ξξrr

          (2.7) 



28 
 

 

The chemical potential finally will have the form: 
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where Λ is a constant called the thermal de Broglie wavelength, defined as 

(h2/2πmkBT)1/2. Once these three equations of state are known, one can in principle 

obtain any thermodynamical property of interest through the relevant relationship.  

 

Thus, in order to compute any thermodynamic property from a knowledge of the 

molecular distribution functions, one needs to know the potential at a given point as a 

function of distance, u(r) and the coupling parameter ξ. For mechanical properties, such 

as the heat capacity or coefficient of thermal expansion, the latter is not necessary.  

 

2.1.3. Prediction of the effective intermolecular potential u(r) 

 

When we take the logarithm and then take the gradient with respect to the position 

of one of the n molecules of both sides of the definition of correlation function,             

gn (r1,..rN) [71]: 
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where n is the number of particles in the interaction (n-body) and Uj∇− is the force 

acting on molecule j due to molecules fixed at position r1,.., rN. 

 

So the right hand side of the equation gives the mean force acting on j averaged 

over the configurations of other particles. We will focus on g2(r1,r2), since it may be 

experimentally determined from x-ray or neutron diffraction and we can have this 

information directly from the pair correlation function g(r). The integration of this mean 
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force over all other N-2 particles approximates the intermolecular potential, u(r), when 

the density of the system is sufficiently low. 
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where r is relative distance between the particles (1) and (2). 

 

2.1.4. Anisotropic network model as a coarse-grained method 

 

In ANM that was originally developed for proteins, each node is represented by 

the α-carbon coordinates of the residues in a folded protein, and the interactions 

between them are considered to be due to harmonic potentials. Nodes within the 

predetermined cutoff distance rc are coupled by elastic springs having a uniform force 

constant γ. Thus the overall potential of the molecule is given by the sum of all 

harmonic potentials among interacting nodes such that 
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Here Aij is the ijth element of the Kirchhoff matrix Г of inter-residue contacts. 

This term is equal to 1 if the distance between nodes i and j, Rij, is smaller than the 

cutoff distance rc, zero otherwise. Ro
ij is the equilibrium distance between 

corresponding residues. For a network of N nodes, the Hessian matrix is a 3N x 3N 

matrix formed by a number of N2 super elements Hij . The off-diagonal super elements 

of Hij (i ≠ j), obtained from the second derivative of the total potential with respect to 

node positions, are given by 
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where Xij, Yij, and Zij are the Cartesian components of the distance vector Ro
ij. The 

pseudo-inverse of H is the 3N x 3N covariance matrix, C, that can be expressed in terms 

of the 3N-6 non-zero eigenvalues λk and corresponding eigenvectors uk of H as: 
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Here, the eigenvectors uk represent the spatial dependence (direction) of each 

mode ��. The smallest nonzero eigenvalue λ0 corresponding to the lowest frequency is 

assumed to carry information on the most collective internal modes of motion. The 

residue fluctuations are predicted by the ANM for residue i from the trace of Cii. 

Theoretically, they are related to the B-factors determined from x-ray crystallografic 

data through the relation, 

 

    
�� = (8�����/3�) ��(��� )              (2.14) 

 

where kB is the Boltzmann constant and T is the absolute temperature. The value of γ is 

determined a posteriori if experimental data are available, and does not affect the 

fluctuation profile of residues. 

 

2.2. Methods and Systems Studied 

 

2.2.1. Molecular dynamics (MD) simulation 

 

Molecular dynamics is the integration of classical Newton equations to generate 

successive configurations of the system in time [5]. Trajectory of particles, defined by 

their positions and velocities, may be obtained from the Newton’s second law: 

 

iii frm =&&              (2.15) 

 

where fi, mi, and ri are force exerted on, mass and position of particle i, respectively. 

The force is the gradient of potential on particle i, which is defined as the sum over all 

the effective interactions of all other particles with i: 
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The solution of equation 2.16 reproduces a trajectory of atomic coordinates and 

velocities. In principal using this information, one may compute any property of 

interest, for example the total mean energy by adding the kinetic and potential energies 

of each particle’s position and velocity, averaging over consecutive time intervals,  
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Heat capacity may then be obtained by the relation: 
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In practice, one is limited by computational power. Since the molecular 

potentials have complex forms, there is no analytical solution of the equations of 

motions. Numerical methods and algorithms are used to obtain the trajectories of 

particles. The potential energy, U, can be separated into non-bonded and bonded 

interactions: 
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Non-bonded potential is composed of 1-body, 2-body and higher body terms,  

 

..)()()...( ,1 ++= ∑∑∑
>

−
i ij

ji
i

iNbondednon rrurvrrU             (2.20) 

  

however, for simplicity higher order terms are neglected and the pair potential is used. 

The v(r) term represents the applied external potential, and the two body interaction 

potential, u(ri,rj) equals to u(rij). There are numerous experimental and theoretical 
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models on how to define these potentials, Lenard-Jones potential being the most 

commonly used: 
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In the presence of charges, a Columbic interaction is also added. For simplest 

intramolecular interaction potential, vibrational harmonic form can be used by 

including summation over all bonds and bond bending angles in addition to a periodic 

function of torsional angles: 

 

∑ ∑∑∑ −++−+−=
angles

torsional m
ijkl

m
ijkleqijk

angles
bond

ijk
bonds

eqij
r
ijra mkkrrku ))cos(1(

2

1
)(

2

1
)(

2

1 ,22

int γφθθ φθ

(2.22) 

 

where kr, kθ, and kφ are constants that depend on the identity of the atoms participating 

in the interaction, req and θeq are the average bond length and angle, m and γ depend on 

the rotameric states of the torsional angle.  

 

A reliable simulation force-field package has the specification of the strength 

parameters and constants and/or other additional terms those have been obtained by 

matching experimental and/or quantum mechanical data, and have been tested for a 

wide variety of systems.  

 

Using these potentials and current computers, one may simulate systems of 105 

particles up to time scales of sub-microseconds. In simulations of oligomer/polymer 

systems, different techniques that utilize coarse-graining of the system have been 

developed to predict properties of much larger systems at long time scales that are 

currently not accessible through MD.  

 

2.2.2. Molecular modeling and simulation details for PBD melts 

 

Monodisperse 32 chain cis-1,4-polybutadiene melt system with 32 repeating 

units (C128) was used in all of the simulations, unless otherwise specified. To see the 
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thermal and pressure effects, different temperatures and pressures (see table 2.1) were 

carried out under isothermal-isobaric (NPT) conditions. 

 

Table 2.1. Summary of MD Simulations at the data collection stage 

Pressure (atm) Temperature (K) Sim. Time (ns) 

1 300, 340, 380, 410, 430 55,15,15,15,15 

1000 300, 340, 380, 410, 430 15 

2000 380 15 

3000 380 30 

 

United-atom model was employed according to the work of Gee and Boyd [72]. 

With little sacrifice in accuracy, united-atom model provides a higher computational 

efficiency when compared to other all-atom force fields. Each CHn group in the chain is 

represented as an interacting node (see figure 2.2). The force field-parametrization 

details of the model are listed in table 2.2. 

 

 

Figure 2.2. United-atom model representation of cis-1,4-PB 

 

In order to have physically and thermodynamically realistic systems, the 

procedure below was applied prior to the data collection stage: 

 

1. Amorphous cell construction of cis-1,4-polybutadiene with Materials Studio 4.4 

suite of programs [73] (density was chosen to match the experimental value of 

0.92 gr/cm3) 

2. Minimization at 300 K with NAMD Program [74] (10 ps) 

3. NPT simulation at extremely low density (approximate 47 Å cubic sized chains 

immersed into 300 Å length box ) and 300 K (50 ps) 

4. NPT simulation at 106 atm at 300 K in order to reduce the characteristic ratio of 

the chains, Cn, to match experimental values (150 ps) 
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5. NPT simulation at 1 atm and 430 K in order to relax the system (1 ns) 

6. Data collection stage with NPT simulation at different temperatures and 

different pressures as indicated in table 2.1.  

 

For all simulations, 1 fs integration time step was used. Temperature and 

pressure of the system were maintained constant in the MD simulations at their 

prescribed values by employing the Langevin thermostat-barostat. For the non-bonding 

interaction cut-off distance of 10 Å was used with switching distance of 8 Å. 

 

Table 2.2. Force-field parameter of united-atom model used for MD simulations [75] 

Interaction Potential Form 
  

Parameters 
    

Bond 

Stretching 
2

0)(
2

1
llkV strstr −=  Type 

 

kstr(kcal/mol. 

Å2)   
lo(Å) 

 

   1  158.5   1.54  

   2  183.8   1.5  

   3  246.9   1.34  
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 Type k1 k2(kcal/mol) k3 k4 k5 k6 

   3 - 24.2 - - - - 

   2 1.033 -0.472 0.554 0.263 0.346 0.164 

   1 -0.888 -0.619 -3.639 -0.666 -0.247 -0.190 
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    1  0.0936   4.5  

    2  0.1   3.8  

    3  0.1015   4.257  
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2.2.3. Network construction from PBD melt simulations  

 

A polymer of N monomers is treated as a residue-based structure, where the -CH 

atom of each repeating butadiene unit is considered as a node, of which the coordinates 

are obtained from fully relaxed constant pressure MD simulations. The network 

information is contained in the N × N adjacency matrix, A, of inter-residue contacts, 

whose elements Aij are taken to be one (1) for contacting pairs of nodes i and j, and zero 

(0) otherwise. We establish a link between two nodes if they are within a cut-off 

distance rc of each other.  

 

For cut-off selection, we chose different cut-off values ( rcut = 5, 7.5,10 and 12.5 

Å) and calculated the correlation of the RMS-fluctuation obtained from ANM with the 

RMS-fluctuation from MD simulation. Correlation of RMS-fluctuation of ANM and 

MD at rcut = 5 Å is close to zero and reaches to a plateau (approx. 0.5) at rcut = 7.5 Å and 

for higher cut-off values correlation does not improve, displaying very similar RMS-

fluctuation patterns as depicted in the figure 2.3. Since, higher cut-off values do not 

improve correlation, cut-off value of 7.5 Å was chosen for network construction in 

order to decrease the amount of processing time. 

 

RMS-fluctuation is obtained from ANM by obtaining the trace of Cii as 

explained in the section 2.1.4. ANM is applied to 15 consecutive time frames each 

separated by 1 ns and the averages are reported. The RMS-fluctuations obtained from 

the MD simulation were calculated directly from the MD trajectory. After computing 

the average x, y, z coordinates of the selected atoms, the RMS distance of each atom 

from that position were computed for 1500 time frames of 10 ps intervals. In the 

calculations of the RMS-fluctuations both from the ANM and MD were applied 

periodic boundary conditions (PBC). The procedure for the PBC correction is explained 

in Appendix A. 
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Figure 2.3. RMS-fluctuations obtained from ANM for different cut-off values (rcut=7.5 

Å, 10 Å and 12.5 Å). 

 

2.2.4. Simulation details for PBD melts with nanoprobes  

 

Nanoclusters having radii ranging from 3.16 Å to 7.12 Å (number of atoms from 10 

to 150) are embedded in the cis-1,4-polybutadine (32 chains each with 32 repeating 

units of the butadiene monomer) in order to obtain the diffusion coefficient and predict 

the zero-shear viscosity of the polymer as well as to understand nanoclusters’ behavior 

and influence on the polymer’s thermodynamic properties. The nanoclusters with 10, 40 

and 150 atoms are depicted in the figure 2.4. As the number of the atoms increases, the 

nanoclusters obtain to more spherically-symmetric form.  

 

In this study, seven set of cluster size (N = 10, 20, 30, 40, 70, 100 and 150) for four 

temperature sets (at 280, 330, 380 and 430 K) were conducted (table 2.3). Since cis-1,4-

polybutadiene of molecular weight (MW) 55000 g/cm3 has a Tg approximately at 170 

K [76], the simulation temperatures were chosen well above 170 K.  

 

Table 2.3. Overview of the simulations for 32 PBD chains of 32 repeat units 

Temperature 

(K) 

Ensemble Simulation 

Time(ns) 

Nanoclusters Size 

280 npt 60 0,10,20,30,40,70,100,150 

330 npt 40 0,10,20,30,40,70,100,150 

380 npt 20 0,10,20,30,40,70,100,150 

430 npt 20 0,10,20,30,40,70,100,150 
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The fundamental properties of the atoms constituting the nanocluster are taken to be 

similar to that of silicon. Thus, the atomic mass of the atoms are 32 g/mol, and the well 

depth for non-bonded interactions between pairs of atoms occurs at 0.854 kcal/mol. The 

van der Waals radius is taken to be 4 Å. The particle coordinates of the nanocluster are 

obtained from the Cambridge Cluster Database [77] and those pairs that are within 2.23 

Å of each other are connected by springs with spring constant k = 150 kcal/mol. These 

particles otherwise interact with each other and the rest of the polymeric chains via vdw 

forces depicted by the Lennard Jones potential. Nanoparticle atom - polymeric chain 

atom interactions are obtained via geometric mean for the well-depth, and arithmtic 

mean for the vdw radii, unless otherwise specified. In all simulations, cutoff distance on 

non-bonded interactions are 10 Å, which are smoothed with a switching function set on 

at 8 Å. Time step is 2 fs and data are recorded at intervals of 1000 steps (2 ps).  

 

One nanocluster was embedded into the polymer matrix and this polymer-

nanocluster composite was equilibrated for 2 ns under 1 atm pressure. This procedure 

was repeated for nanoclusters with sizes from 10 to 70 atoms. For the nanoclusters with 

more than 70 atoms, since they cannot be embedded directly into the polymer matrix, 

the nanocluster is first located on the edge of the polymer box. The resulting larger 

periodic box was simulated for 1 ns under 1000 atm pressure until a homogenous 

mixture was obtained and further equilibriated under 1 atm pressure to reach room 

temperature density.  

 

 

 

 

Figure 2.4. Atomic configurations of the nanoclusters of different sizes (N=10, 40, 150) 
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2.2.5. Network construction from proteins and protein data sets 

 

A protein of N residues is treated as a residue-based structure, where the Cα 

atom of each amino acid is considered as a node, and the coordinates of the protein are 

obtained from the protein data bank (PDB) [69]. The network information is contained 

in the N × N adjacency matrix, A, of inter-residue contacts, whose elements Aij are 

taken to be 1 for contacting pairs of nodes i and j, and zero otherwise. We determine the 

presence of a contact using two approaches, one involving a selected cut-off distance, 

and the other using Voronoi tessellations. In the former approach, the criterion for 

contact is that the two nodes are within a cut-off distance rc of each other. In the latter, 

Voronoi cells are formed from the PDB coordinates of Cα atoms such that the three 

dimensional space is uniquely and completely subdivided into polyhedra whose 

surfaces are defined by the intersection of contact planes built midway between the 

nodes of the network. Thus, pairs of nodes sharing a common plane are taken to be in 

contact. This methodology allows eliminating the choice of a cut-off distance so that an 

unambiguous network construction is achieved [17, 78]. We have utilized the freely 

available Voro3D program for this purpose [43]. Note that the nodes in these networks 

have an average distance of 6.6 Å to their neighbors, and an average contact number of 

10.5. 

 

We base our calculations on a set of 595 proteins with sequence homology less 

than 25% and sizes spanning 54–1021 residues [79]. This protein set is identical to that 

used in previous statistical analyses on residue network published by Atilgan et al. [19, 

80]. Forty-five of the proteins in the set have fewer than 100 residues, the number of 

proteins in the ranges (101–200), (201–300), (301–400), and more than 400 residues are 

234, 122, 108, and 86, respectively. A list of all the proteins used, their sizes, and 

distributions appear in the Supplementary Material of reference [80].  

 

In addition, we have studied the location dependence of certain properties. For 

this reason, we calculate residue depth from the surface of the protein [81, 82]. We 

classify residues that are deeper than 4 Å as core, and the rest of them as surface 

residues. The choice of this value is based on the fact that the size of spatial 

fluctuations, as calculated from MD simulations on BPTI, of the surface and interior 

residues converge to the same value at the protein dynamical transition [83]. For the 
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distinction of core/surface residues, we use a subset of the original protein data set that 

has a total of 60 representatives with sizes in the range 140 – 320 amino acids. Finally, 

we also study the eigenvalue spectra of proteins (λk in equation 2.13), which is affected 

by the size of the systems. We therefore choose the subset of 26 proteins for which N = 

150 ± 10. 

 

2.2.6. Viscosity measurement experiments 

 

The experimental results are obtained by Bohlin CVO Rotational Viscosimeter 

at 10 Hz and a strain value of 1 with a similar molecular weight polybutadiene having a 

%60 trans, %20 vinyl, %20 cis microstructure. 

 

2.3. Properties Calculated 

 

2.3.1. Diffusion coefficient and zero-shear viscosity calculations 

 

The nanoclusters in the polymer melt experience two kinds of forces: Brownian 

random force and frictional force. So the equation of motion is defined as; 

 

  � ��(�)

��
= �����− ��(�)            (2.23) 

 

Mean Square Displacement (MSD) is calculated by taking ensemble average on 

3D coordinates of the nanocluster center all over the simulation time. 

 

< ∆����� > = < [	�� + ∆�� − 	���]� + [
�� + ∆��− 
���]� + [��� + ∆��− ����]� >  (2.24) 

 

When the log of MSD is plotted against log of time step, ∆t, the slope is one for 

Newtonian fluid obeying the below relation: 

 

  � = lim
�→�

�[�	�
��	�
]�

��
            (2.25) 
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Zero shear viscosity, o, may be derived via the Stokes-Einstein equation 

(below) with using D obtained from MSD: 

 

 �� =

���

����
             (2.26) 

 

where kB is the Boltzmann constant, T, the temperature of the system, a, the radius of 

nanocluster and D, the diffusion coefficient.  

 

The diffusion coefficients are obtained from the MSD curve where the slope is 

close to one, satisfying the condition of longer times in equation 2.25. An example of 

MSD curve of nanocluster with 150 atoms is given in figure 2.5. When D is plotted 

against 1/a, the slope of the line fitted to the data points gives the inverse of zero shear 

viscosity, o multiplied by the factor, kBT/6 �. 
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Figure 2.5. Mean square displacements vs. time for diffusion coefficient calculation 

 

2.3.2. Dynamical properties 

 

Time correlations (τc) from the 13C-NMR experiments are calculated from the 

time decay of the second orientational autocorrelation function (OACF), M2 (t), of the 

butadiene C-H bond vectors via: 

 

����� =
�

�
[3 < �������� > −1]            (2.27) 
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where  �(t) is the angle between two orientations of the C-H bond at times 0 and t. τc is 

obtained from the integral of the OACF as [84]: 

 

  �� = � ��
	�
���(�)

��
	�
���(�)

��              (2.28) 

 

Time correlations from the simulation are extracted by fitting best exponential 

decay lines to M2(t): 

 

��(�)  =
�

�
[3 ���	�
.�	�


��	�
.�	�

�− 1]             (2.29) 

 

where m(t) is the bond orientation vector of the butadiene C-H bond. 

 

Another dynamical property of interest is the residence (or escape) time (τr) 

[85]which is an average time of a atom/molecule to escape from a given region. It is 

used to obtain information on the dynamical behavior of polymer chains that are close 

to the surface of the nanocluster. We have calculated τr by monitoring the number of 

atoms residing at a distance of one vdw radius. A simple exponential decay function is 

fitted to the curve of number of residing atoms left with respect to simulation time step: 

 

 �� = < �� > exp (−�/��)              (2.30) 

 

where Nr is the number of particles left at the indicated region. 

 

 

2.3.3. Mechanical properties 

 

The mechanical properties of materials are of great importance in engineering 

applications. When a mechanical force is applied to a specimen, the deformation of the 

specimen is described in terms of its stress-strain behavior. In an atomistic calculation, 

the internal stress tensor can be obtained using the so-called virial expression: 
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� = −
�

��
[�∑ ����������

��� �+ (∑ ���������� )]           (2.31) 

 

where index i runs over all particles 1 through N; mi vi and fi denote the mass, velocity 

and force acting on particle i; and V0 denotes the (undeformed) system volume. 

 

For small deformations, the relationship between the stresses and strains may be 

expressed in terms of a generalized Hooke's law: 

 

    �	
 = 		
��
��            (2.32) 

 

where ε is the strain tensor and C is the stiffness matrix. 

 

The stiffness matrix C is a symmetric 6×6 matrix, and hence a maximum of 21 

coefficients are required to describe the stress-strain behavior of an arbitrary material 

fully. For an isotropic material, the stress-strain behavior may be fully described by 

specifying only two independent coefficients. The resulting stiffness matrix may be 

written as: 

�
�
�
�
�

λ + 2� λ 0 0 0 0

λ λ + 2� λ 0 0 0

0 λ λ + 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 ��
�
�
�
�
�

              (2.33) 

 

where λ and µ are referred to as the Lame coefficients. For the isotropic case, the 

familiar moduli (Young, Bulk and Shear Modulus, respectively) may be written in 

terms of the Lame coefficients as follows: 

 

� = μ(
����

���
)                (2.34) 

 

     � = λ + 2/3μ              (2.35) 

 

            � = μ               (2.36) 
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Originating in the work of Theodorou and Suter [86], elastic moduli may be 

estimated by using a completely static method. After having constructed an energy-

minimized series of amorphous structures confined to a periodic cube, each structure is 

subjected to twelve deformations; three pairs in uniaxial tension/compression and three 

pairs involving pure shear, followed by a reminimization to restore a state of detailed 

mechanical equilibrium. 

 

Each of these deformations corresponds to setting one of the components of the 

strain vector to some small value (for example ε = 0.001), while keeping all other 

components fixed at zero. The elastic stiffness coefficients may then be obtained by 

estimating the second derivatives of the deformation energy with respect to strain using 

a finite difference formula (for the diagonal components only), and by calculating 

∆σi/∆εj for each of the six pairs of applied strains, where σi represent, in vector notation, 

elements of the stress tensor obtained analytically using the virial equation. Although 

this methods gave good agreement for the diagonal elements Cii of the stiffness matrix 

for the glassy polypropylene samples studied in the Theodorou and Suter's original 

work, generally it should be assumed that numerical estimation of second derivatives 

(of the energy) will be less precise than estimation of the first derivatives (of the stress) 

[87]. In this work we use the implementation of the work of Theodorou and Suter by 

the Materials Studio Program for all shear modulus calculations. 

 

The bulk modulus K > 0 can also be formally defined by the equation: 

 

    � = −� ��

��
               (2.37) 

 

where P is pressure, V is volume, and ∂P/∂V denotes the partial derivative of pressure 

with respect to volume. The inverse of the bulk modulus gives a substance's isothermal 

compressibility. It is more precise to calculate the bulk modulus from the fluctuations of 

the periodic box volume using simulations at constant pressure by the relationship, 

 

     � =

����	


�	�
��	
�
              (2.38) 
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2.3.4. Glass transition temperature 

 

Thermodynamic transitions are classified as first- or second-order. In a first-

order transition there is a transfer of heat between system and surroundings and the 

system undergoes an abrupt volume change. In a second-order transition, there is no 

transfer of heat, but the heat capacity does change. The volume changes to 

accommodate the increased motion of the wiggling chains, but it does not change 

discontinuously [88]. Illustrative plots of specific volume vs. temperature are shown in 

figure 2.6 for amorphous and crystalline polymers. 

 

 

Figure 2.6. Graphical schema of volume-temperature curves for crystalline and 

amorphous polymer (reproduced from [88]). 

 

When an amorphous polymer is heated, the temperature at which it changes 

from a glass to the rubbery form is called the glass transition temperature, Tg. A given 

polymer sample does not have a unique value of Tg, because the glass phase is not at 

equilibrium. The measured value of Tg will depend on the molecular weight of the 

polymer, on its thermal history and age, on the measurement method, and on the rate of 

heating or cooling [89]. In this thesis we calculate the approximate value of Tg from the 

intersection of the fitted curve to the two different (phase/slope) curves of specific 

volume vs. temperature data.   



45 
 

3.  RESIDUE NETWORK CONSTRUCTION AND PREDICTIONS OF 

ELASTIC NETWORK MODEL 

 

3.1. Structural Heterogeneity of Amino acid Distributions in Proteins. 

 

The RDF, g(r), of the residues is presented in figure 3.1a for distances up 20 Å, 

recorded at 0.1 Å resolution. We find that the first sharp peak in g(r) ends at ca. 6.7 Å 

corresponding to the first coordination shell (i.e., the range within which residue pairs 

are found with the highest probability), the second coordination shell occurs at 8.5 Å. 

Broader peaks ending at 10.5 and 12 Å are identified as the third and fourth 

coordination shells. At larger distances, g(r) monotonically decreases, indicating that 

the coarse-grained residue beads do not experience further ordering in the liquid-like 

environment. In figure 3.1a we also display the ADF, g(φ), for the same set of proteins 

in the same distance range. We find that the main peaks of ADF and RDF overlap, the 

only difference in the general character of the two distribution functions being found in 

the third and fourth coordination shells. In RDF, we find that a similar number of 

particles per unit volume exist in these two coordination shells (same height in the 

distribution). The ADF provides the additional information that, due to the asymmetry 

in the intensities of the third and fourth coordination shells, these particles are clustered 

in relatively more ordered directions in the third shell, quantified by the increase in 

ADF to ca. 5°. The ADF provides the valuable information that the additional particles 

are taken into account as more concentric spherical shells of 0.1 Å diameter are added 

(recall figure 2.1), have a preferred direction of clustering at the regions of higher 

number density. Conversely, at larger distances, the new neighbors carry directionality 

that cancel each other out, as would be expected from a random packing of spheres, 

quantified by the monotonical decrease in g(φ). 
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Figure 3.1. (a) Radial and angular distribution functions (left y-axis: RDF; right y-axis: ADF) 

obtained by averaging over 595 proteins. (b) ADFs computed separately for the core and 

surface residues for a subset of 60 proteins. 

 

Since globular proteins may be considered to be made up of a core region 

surrounded by a molten layer of surface residues [90], it is of interest to distinguish the 

topological differences between the core and the surface (figure 3.1b). We observe that 

core residues have larger angular changes in the resultant vector, Q� (equation 2.2) 

compared to the surface residues. Note that the fraction of surface residues is ca. 0.6 for 

these proteins, being somewhat larger for the smaller sized ones [19]. Thus, the 

resultant vector on the surface residues rapidly converges to a given directionality 

specific to each residue at short distances, the additional links at higher distances 

arriving in directions that cancel out. The overall structural heterogeneity is detected 

much clearly in the g(φ) of the core residues. However, the heterogeneity in the first 

coordination shell is more pronounced over that of the second for the surface residues, 

possibly due to the loose packing in this region. This effect is reversed in the core. In 

addition, the structural asymmetry between the third and fourth coordination shells is 

found to originate from the structure of the core residues. The dissimilar behavior of the 

core and surface regions is also observed in Figure 2.1b. As r increases, the orientation 

of the vectors are more scattered in the interior, indicating its isotropic nature; 

conversely, the orientation of the vectors at the surface rapidly converges.  

 

3.2. Density of Vibrational Normal Modes. 

 

The vibrational normal mode spectra, g(ω), of proteins was originally studied by 

ben-Avraham for five proteins with sizes in the range of 39 – 375 residues, the data 
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collapsing on a single curve, especially in the slow mode region [22, 91]. The density of 

states was found to increase linearly with the frequency in this region, implying a 

spectral dimension of ds = 2 and deviating from the Debye model of elastic solids where 

the expected value is [92]. The anomalous spectral dimensions of proteins was also 

confirmed by inelastic neutron scattering experimental measurements, which  yielded ds 

≈ 1.4 for hen egg white lysozyme [93]. More recently, an equation of state relating the 

spectral dimension, fractal dimension and the size of a protein was developed based on 

the coexistence of stability and flexibility in folded proteins [94].  
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Figure 3.2. (a) The change of the density of vibrational modes, g(ω), with the cut-off distance, 

rc, used in network construction. The main figure displays the results for rc in the first (rc = 7 Å) 

to above the fourth coordination shell range (up to 16 Å). Also shown, in dashed lines, is the 

frequency distribution of the Voronoi tessalated networks. The inset displays the results for 

very large rc values (up to 30 Å). The data is an average over a set of 26 proteins in the size 

range of 150 ± 10 residues. (b) Spectral dimension, ds, of the networks, obtained from power 

law best-fits to the cumulative density of modes, ���� ∝ ��� for the first 70 modes in each set 

of data. Goodness of fit is 0.98 or better in all cases. The thin dashed lines are included to guide 

the eye for the cross-over in the rate of change of ds with rc. Also indicated on the figure are the 

ds of the Voronoi tessalated networks that occur at ca. 1.0, and the theoretical limit at ds = 3 

when all nodes are interconnected (rc → ∞). 

 

In the original ANM study, the cut-off distance used in network construction 

was roughly chosen to mimic this distribution of the modes [24], which was 13 Å for 

the retinol binding protein studied therein; however, a wide range of cut-off distances 

appear in the literature based on other criteria, as discussed in the Introduction. 

Nevertheless, constructing networks with harmonic potentials whose spectra closely 
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mimic the vibrational modes from all-atom systems seems to be the most plausible 

approach, since this implies that the curvatures of the energy functions used in the two 

approaches are adequately approximated, so that the equilibrium properties would be 

described properly. 

 

In figure 3.2a, we display the rc dependence of normal mode spectra averaged 

over 26 proteins of size 150 ± 10 residues, enabling us to disregard the size effect in the 

calculations [the latter was addressed in references [94] and [95] In general, the low-

frequency band of the graph is responsible for large amplitude collective motions 

related to function, whereas the high-frequency band refers to small amplitude motions 

of individual residues. We find that at rc = 7 Å (where neighbors are from the first 

coordination shell), the distribution is characterized by a direct drop in density with 

increasing frequency; at this value, most proteins have additional zero eigenvalues, 

apart from the six due to the rigid body motions. The universal behavior of the slow 

vibrational modes of proteins is recovered at higher rc values. Above the cut-off 

distances that include the fourth coordination shell (rc > 12 Å), a shoulder in the higher 

frequency region first appears, then broadens as rc is increased. At rc > 16 Å, a two-

peaked density profile that is uncharacteristic of proteins sets in (inset to figure 3.2a). 

For the networks obtained with Voronoi tessalations (dashed line in figure 3.2a), the 

distribution shows a flat behavior, also uncharacteristic of proteins. Also note that, 

although the average distance between adjacent nodes is 6.6 Å in these systems, their 

behavior is markedly different from that of the networks with similar cut-offs (e.g. rc = 

7 Å.) 

 

Thus, an rc value in the range of 8 – 16 Å captures the general shape of protein 

vibrational spectra. Yet, inasmuch as one utilizes network models to study collective 

motions of proteins as a superposition of several low frequency modes, it is important 

to capture the distribution in the slow mode region of the protein in more detail. This 

region is intimately related to material properties, characterized by the spectral 

dimension, ds. In figure 3.2b, we plot the spectral dimensions of these systems, obtained 

from power law best-fits to the cumulative density of modes, ���� ∝ ��� for the first 

70 modes in each set of data [with dG(ω)/dω = g(ω)]. The dimensions approach the 

Debye model value of 3 as rc is increased (dotted line in the figure 3.2b). The spectral 

dimension of the Voronoi tessalated networks is 1.0, and is commensurate with that of 
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the network at rc = 9 Å. The spectral dimensions in the rc range from the second to the 

fourth coordination shell, (8 – 12 Å increase from below ds = 1 to ca. ds = 1.5. 

Furthermore, a crossover in the rate of change of the spectral dimension with the cut-off 

distance occurs at rc = 16 Å, the slope reducing from ca. 0.13 to half this value; the 

crossover is accompanied by the shift to ds > 2. Thus, it is plausible to use the cut-off 

value up to 16 Å so as to capture both the general shape of the vibrational spectra of 

proteins, as well as the spectral dimension that describes the density of slow modes.  

 

3.3. Biological Significance. 

 

The level of success of the studies in relation to the method of network 

construction in proteins has not been addressed systematically. We find for a number of 

proteins that the correlation between the mean-square fluctuations of Cα atoms and the 

theoretical predictions of equation 2.14 improve as the cut-off distance is increased. 

This curious observation is valid up to very large rc values; i.e. for some proteins, even 

when all residues are interconnected, the fluctuations of individual residues are 

faithfully predicted. One example is displayed in figure 3.3 for a 263 residue α-class 

protein (PDB code: 1arb), where the residue-by-residue experimental B-factors (middle 

curve in gray in figure 3.3a) are compared with several selected theoretical models: A 

relatively low correlation is obtained at rc = 8 Å; in particular, the fluctuations of 

surface loop residues 15 – 20 and 135 – 145 are overestimated due to the absence of 

important core-region contacts that are not taken into account at this cut-off distance. 

The rc = 15 Å model captures the experimentally determined fluctuation patterns, which 

remains unaltered at higher cut-offs. The fluctuations predicted by the Voronoi 

tessalated network model are somewhat chaotic, lowering the correlations with 

experiment. The Pearson correlation coefficients at a wide range of cut-off distances are 

plotted in figure 3.3b, along with the value obtained from Voronoi tessalated networks 

(dashed line). We emphasize that the behavior exemplified by figure 3.3 is not unique 

to this protein, but is rather a common property of all proteins. 
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Figure 3.3. (a) Comparison of the X-ray B-factors (gray, middle curve) with fluctuation 

profiles predicted from various models (at rc = 8, 15, 25 Å and network construction with 

Voronoi tessalations) for the 268 residue achromobacter lyticus protease (PDB code: 1arb). (b) 

Pearson correlation coefficients at a wide range of cut-off distances for the same protein; those 

that correspond to the detailed fluctuation profiles of figure 3.3a are shown with filled circles 

and that with the cut-off free Voronoi tessalated model is marked by the dashed line. 

 

In summary, with our analysis over a large set of non-homologous proteins, the 

degree of success of network models of proteins is shown to converge as the cut-off 

distance used in constructing the network from the PDB coordinates of the protein is 

increased. A choice of high rc in the vicinity of 16 Å covers the neighborhood structure 

of an arbitrary protein and its eigenvalue spectra; however, for large proteins, this will 

introduce a large number of interactions which will render the matrix inversion 

procedure rather cumbersome. In such cases, one may resort to compute g(r), g(φ) and 

g(ω) curves and spectral dimensions for the particular protein to choose an optimum rc; 

for large proteins the number of nodes will be high enough to obtain statistics for 

smooth curves where the peaks may be discerned, a problem that cannot be 

circumvented for small system sizes. We note that network models are useful in 

describing the properties related to the fluctuations near the minimum of the 

conformational energy well, and its curvature. However, they will not succeed in 

providing information of the dynamical properties of the protein, unless a methodology 

for updating the Hessian along the reaction coordinate is introduced. 
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4. PREDICTIONS OF THERMODYNAMIC MEASURABLES OF CIS-1,4-

POLYBUTADIENE BY ANM 

 

4.1. Thermodynamical and Structural Properties 

 

The variation of specific volume (ν) with T at 1 atm and 1000 atm, as obtained 

from MD simulations, and depicted in figure 4.1a, indicates that ν increases linearly as 

T is increased for both pressure sets. However, the specific volume values obtained 

from MD simulation at 300 K is slightly higher than the experimental value of ν=1.086 

cm3/gr. The linearity of the specific volume with increasing temperature is in 

accordance with the empirical Tait equation which is valid for most of the amorphous 

polymers [96].  

 

Another important thermodynamic parameter that may be obtained from the 

simulations is the isothermal compressibility, κT, 

 

  �� =
��

�
�����

�

������
    (4.1) 

 

where kB is the Boltzmann constant and T is the temperature of the system. It is 

observed that as depicted in the figure 4.1b, κT increases in a non-linear form with 

increasing T at 1 atm, whereas increases very little at 1000 atm (almost independent of 

temperature for high pressures). The predicted value for κT at 300 K is 11.3x10-10 Pa-1 

and is in agreement with the experimental value (7.2x10-10 Pa-1) reported by 

DiBennedetto for a 1,4 PBD sample of unspecified microstructure at 298 K [97]. 

 

Chain conformational properties in the simulated polymer and the effect of 

temperature and pressure on the overall size of the macromolecular chain may be 

discussed in terms of characteristic ratio, Cn, calculated from the mean-square chain 

end-to-end distance, <R2>, through the equation: 

 

 ���
��

�
�

���̅
     (4.2) 
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Figure 4.1. (a) Temperature dependence of isothermal compressibility (κT) and (b) 

specific volume (ν) at 1 atm obtained from MD simulations. 

 

where n denotes the number of links in the chain backbone and ��̅ the average squared 

skeletal bond length. The temperature and pressure effect on Cn for the simulated 

polymer is presented in figure 4.2. Cn is observed to remain practically constant over 

the temperature range at 1 atm with a variance of 1.0 - 1.5 Å. This result agrees well 

with the experimental data of Fetters et al. [98] that the ratio <R2>/M in 1,4 PBD 

remains the same in the temperature range 298–413 K. At 1000 atm, Cn remains 

constant with a much lower standard deviation and increasing slightly as the 

temperature is increased from 300 to 430 K. 
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Figure 4.2. Characteristic ratio of the cis-1,4-PBD obtained from MD simulations at 

different temperatures. 

 

The effect of temperature and pressure on the local structure is investigated by 

using the intermolecular pair distribution function, g(r). Only one of sp2 atoms of the 
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butadiene monomer were chosen as the center of nodes for coarse-graining. RDFs were 

obtained from these nodes and are depicted in figure 4.3.  
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Figure 4.3. Radial distribution function (RDF) of 14 sets of MD simulations  

 

At all pressure and temperature sets, we find that RDF has a sharp peak around 

6 Å corresponding to the first coordination shell (one sp2 with ~1.33 Å bond length, 

three sp3 with ~1.52 Å bond length) between the sp2 atoms of two butadienes.Two 

broader peaks, one in the range 6.5 - 8 Å and the other in the range 8 -10 Å constitute 

the second and third coordination shells, respectively. Because of the rotational freedom 

of three sp3 bonds, the tail of the first peak corresponding to first coordination shell has 

a shoulder vanishing at 4 Å. Moreover, a few broad peaks with very small probabilities 

beyonf 10 Å appear  as higher order coordination shells. After approximately 15 Å, all 

the peaks converge to one, indicating no ordering beyond this distance.  
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4.2. Thermal Fluctuations 

 

The fluctuations of the polymers and proteins affect their functionality and also 

give information about the globular and local motions which can be checked with the 

experimental techniques such as XRD and Nuclear Magnetic Resonance (NMR). 

Average thermal fluctuations, which are defined as random deviations of a system from 

its equilibrium, may be calculated by the root mean square displacement (RMSD) (see 

section 2.1.4).  

 

In figure 4.4, the vector normalized average RMSD values of chains calculated 

from ANM and MD are compared to see the effect of temperature and pressure on the 

fluctuations of the chains. Averaging was applied after vector normalizing (u.uT=1) 

each RMSD value of all nodes. The RMSD values from ANM and MD are in good 

correlation showing similar qualitative behavior such as at the end of the chains 

increasing 3-4 folds when compared to the center of the chains. This behavior is 

expected since the ends of the chains are not connected and have higher degrees of 

freedom with respect to the center of the chains. There are some peaks and irregularities 

in the fluctuations obtained from ANM and MD data at 3000 atm which also results in 

lower correlations. Thus, the limit of applicability of ANM to PBD is around 3000 atm, 

where the system is rigid and loses elasticity.  
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Figure 4.4. Normalized RMSD averaged over all chains obtained from ANM and MD 

simulation for different temperatures at 1 atm, 1000 atm and for different pressures at 

380 K. 

 

The correlations of the RMSD values of chains obtained from ANM and MD 

are in increasing trend for higher temperatures for both 1 atm and 1000 atm case and 
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decreasing trend for higher pressure values when the temperature is fixed to 380 K (see 

figure 4.5). 
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Figure 4.5. Pearson correlation factors, r, of chain fluctuations between those 

calculated from MD simulations and ANM 

 

Due to the high correlations between MD obtained fluctuations and ANM 

predictions; we use this data to calculate the effective spring constant between chain 

units. The spring constants (or average stiffness) of the bonds which are related to the 

average fluctuations of the atoms are obtained from the ratio of trace of covariance 

matrix, C, (equation 2.13) to the average of RMS-fluctuations obtained from MD 

simulations multiplied by the prefactor 3 kBT: 

 

  � = 3��� 
�	(
��)

�∆�����

    (4.3) 

 

As seen in the figure 4.6a, linear fit to the spring constants of the atoms has a 

negative slope indicating that spring constants are inversely proportional to 

temperature, whereas for the pressure set (figure 4.6b) spring constants are linearly 

increasing as the temperature increases. In fact, when the temperature is low, the atoms 

in the system fluctuate less from their equilibrium point and give rise to lower value of 

stiffness, and when the pressure is increased, the system goes in a more compact form 

with motions in a smaller volume with higher frequency resulting in higher stiffness. 
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4.3. Predicting the Second Virial Coefficients 

 

The second virial coefficient (b2), which is an experimentally obtainable 

thermodynamic quantity, was predicted by ANM. Second virial coefficient was 

obtained from Hessian matrix (derivation details are in Appendix B);  

 

  ����� =
��

�����
��( − �)�   (4.4) 

 

where H is the Hessian matrix, R is the coordinate vector of all atoms relative to center 

of mass of the system, D is the identity matrix. b2 may also be calculated from the RDF; 
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Figure 4.6. Comparison of spring constants for different (a) pressure and (b) 

temperature sets. 

 

where V is the volume of the simulated system and g’(r) is the derivative of the RDF 

with respect to r. In the equation 4.5, the small deviations in the RDF give rise to big 

fluctuations during the integration, so we obtain an equivalent form using integration by 

parts, leading to, 

  ����� =
��

��
(��|��� � − � !(�)3����)�� �

�
   (4.6) 

 

where rcut is taken as 20 Å (approx. half of the simulation box length). 

 

The calculated values of b2 from different sets of temperatures and pressures are 

listed in the table 4.1. Although the predicted values obtained by ANM have lower 

values than the calculated values from the MD simulations, when normalized, the fitted 
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lines are highly correlated and behave qualitatively similar. For fixed values of 

pressures, 1 atm and 1000 atm, normalized b2 decrease as the temperature is increased 

(figure 4.7a and figure 4.7b), and when the pressure is increased for fixed temperature 

for 380 K, we see a positive correlation with respect to pressure (figure 4.7c). 

Normalization in figures 3.10a-c is carried out such that the maximum value is set to 1 

and the minimum to 0 in each case. 

 

Table 4.1. Second virial coefficients obtained from RDF and ANM construction 

Temperature 

(K) 

Pressure 

(atm) 

box 

dimension 

(Å) 

"!"#$ "!%&' 

300 1 47.9 437.2 64.8 

340 1 48.4 367.4 57.4 

380 1 48.9 317.1 41.6 

410 1 49.6 280.6 37.6 

430 1 50.2 259.5 27.6 

     
300 1000 46.5 482.9 120.0 

340 1000 46.9 413.7 63.7 

380 1000 47.1 363.3 70.7 

410 1000 47.4 329.7 47.6 

430 1000 47.7 307.5 39.1 

     
380 1 48.9 317.1 41.6 

380 1000 47.1 363.3 70.7 

380 2000 46.5 382.9 384.6 

380 3000 45.9 400.5 723.1 
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Figure 4.7. Normalized second virial coefficients at (a) constant pressure of 1 atm, (b) 

constant pressure of 1000 atm, (c) and at constant temperature of 380 K 
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5.  LINEAR VISCOELEASTIC PROPERTIES OF POLYBUTADIENE M ELTS 

PROBED BY NANOCLUSTERS: MD SIMULATIONS AND 

EXPERIMENTS 

 

5.1. Radial Distribution Function (RDF) of Polymer with Nanoclusters 

 

Radial distribution functions calculated from the MD simulations are shown in 

figures 5.1, 5.2 and 5.3. The effect of atom type, temperature and cluster size to the 

configuration of the system was investigated. At short distances (less than atomic 

diameter) g(r) is zero. This is due to the strong repulsive forces. At long distances, g(r) 

approaches to a constant value which indicates there is no long-rang order.  

 

In figure 5.1, pair correlations of two different atomic types are compared for 

the same temperature (330 K) and same nanocluster size (N = 10 atoms). The first (and 

large) peaks occurs at 1.54 Å and 1.34 Å corresponding respectively to sp3 and sp2 type 

atoms. The radial distribution function then has four peaks, corresponding to higher 

coordination shells, which have much smaller intensity compared to the first peak 

(resulting from bonding in consecutive repeat units). Since the polymer systems in our 

simulations have % 100 cis content, second peak of sp2 have smaller probability when 

compared to sp3 which is in a more rigid environment. In figure 5.2, we do not see 

much effect of nanocluster size on the sp2 RDF; however, there are small perturbations 

in the first three peaks of sp3 RDF. Similarly there are small perturbations to the sp2 and 

sp3 type atomic RDFs when the temperature is changed (figure 5.3). In particular, long 

range order of sp3 type atoms are affected more than the sp2 type atomic pair 

distributions. 

 

5.2. Diffusion Coefficient and Zero-Shear Viscosity  

 

The calculated values of diffusion constants for temperatures 330 K, 380 K and 

430 K and the curves obtained from these tables and linear fits to obtain zero-shear 

viscosities are given in the Appendix D.  
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Figure 5.1. Comparison of RDF of sp3 and sp2 atoms at T=330 K 
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Figure 5.2. Cluster size effect on the RDF of sp3 and sp2atoms at T=330 K 
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Figure 5.3. Effect of temperature to the RDF of sp3 and sp2atoms for the system with 

nanocluster of 10 atom-size 
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Viscosities that are obtained from four different simulation sets as well as 

experiments on PBD described in section 2.3.6 are plotted in figure 5.4. Both viscosities 

from simulation and experiments have increasing logarithmic character as the 

temperature decreases. Calculated values are close to the experimental values except at 

280 K at which experimental values is approximately 3 times larger.  
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Figure 5.4. Comparison of zero-shear viscosity with respect to temperature obtained 

from simulations and experiment  

 

5.3. Dynamical Properties 

 

Correlation times, τc, (equation 2.28) of C-H bond vectors of simulation at four 

different temperatures were compared in figure 5.5 with the 13C NMR experimental 

data from the literature [84]. In figure 5.5, experimental τc values belong to high cis-

content-polybutadiene ( %93 cis, %3 trans and %4 vinyl). The values obtained from 

simulation are in good agreement qualitatively with the experimental values, except at 

280 K where the deviation is larger. C-H bond rotations are approximately 2.5 orders of 

magnitude more active at 430 K when compared to the value at 280 K.  
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Figure 5.5. Comparison of correlation time, τc, of simulation and experiment with 

respect to temperature calculated from probes of N = 10 atoms  

 

In order to see the effect of temperature and the size of the nanocluster on the 

dynamical behavior of polymer chains, we obtained the residue times, τr (equation 2.30) 

with respect to size and temperature (figure 5.6a,b). We see that as the temperature 

increases, residence time of the chains decreases. At higher temperatures, the chains 

spend less time at the surface of the nanocluster. In addition, for the larger nanocluster 

sizes, chains spend more time in the vicinity of the probe, which indicates additional 

interactions with the polymer chains. Conversely, such a size dependent behavior is not 

observed for the relaxation times of these chains. τr decreases from ~210 ps to ~130 ps 

as the temperature increase from 280 K to 430 K, whereas it increases two-fold (~100 

ps to ~200 ps) as the size of the nanocluster increases from ~3 to ~7 nm. From the 

results it is observed that 150 K difference in the temperature corresponds to 4 Å 

difference of particle radius.  
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Figure 5.6. (a)Temperature (size averaged) and (b) size dependence (temperature 

average) of residence times (τr)  
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To see the effect of vdw interaction strength (-ϵSi-C) on the dynamical behaviour 

of interacting nodes (the nodes within one vdw length of the nanocluster surface ) of 

PBD, -ϵSi-C is increased from -ϵSi-C=0.1 kcal/mol up to -ϵSi-C=1.5 kcal/mol, where the 

standard value in the previous sets of simulations was -ϵSi-C=0.3 kcal/mol. Both τr and τc 

are calculated from the dataset of T = 330 K and N = 150 atoms. From the figure 5.7a, it 

is observed that τr has an asymtotic exponential association type behaviour. τr show this 

character apparently by increasing two-fold from ~100 ps (lowest interaction strength) 

to ~200 ps (highest interaction strength). In figure 5.7b, τc increases from 20 ps (pure 

PBD) to 80 ps until -ϵSi-C=0.75 kcal/mol and drops to below 70 ps until -ϵSi-C=1.5 

kcal/mol. Presence of the cluster slows down the node orientation movement, therefore 

the relaxation rate. This leads to the sticking of the nodes to the nanocluster surface.  
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Figure 5.7. (a) Effect of vdw interaction strength to τr and (b) τc  at T=330 K and N=150 

atoms 

 

5.4. Mechanical Properties 

 

In this section, we investigate the effect of four different parameters (vdw 

interaction strength, nanocluster size, temperature and MW) on the mechanical behavior 

of the polymer nanocomposite. To see the effect of nanocluster size, we set -ϵSi-C=0.3 

kcal/mol and T=330 K. From the figure 5.8a, it is seen that from very small sizes (N=10 

atoms) up to moderate sizes (N=70 atoms and N=100 atoms) , K increases ~%5 but 

drops to the starting K value of N = 10 atoms as the nanocluster size is further increased 

to N=150 atoms. So, from practical point of view, we can assume that K is not much 
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affected by the size of the nanocluster. And for to observe the effect of vdw interaction 

stregth on K, we set T=330 K and N=150 atoms, and we have calculated the K values, 

for a set of vdw interaction strengths (-ϵSi-C=0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25 and 1.5 

kcal/mol). In figure 5.8b, K does not change until - ϵSi-C=0.75 kcal/mol and starts to 

increase linearly until - ϵSi-C=1.5 kcal/mol. This increase is approximately 8%. 
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Figure 5.8. (a) Effect of cluster size and (b) vdw interaction strength to bulk modulus 

calculated from inverse of KT. 

 

The effect of the other parameter of interest, molecular weight, was studied by 

increasing the chain size 4-fold by keeping T at 330 K and N at 150 atoms. In figure 

5.9, K is plotted with respect to vdw interaction strength for two sets of molecular 

weights. Increasing the MW caused a slight increase in K. It is observed that this 

increase does not exceed %20.  
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Figure 5.9. Effects of vdw interaction strength, MW to bulk modulus that are calculated 

from inverse of KT. 
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 To see the effect of parameters of interest on shear modulus, G, a different 

method (see section 2.3.3) was used. In addition to simulation sets indicated above, 

three more simulations with molecular weights of the PBD that are ¼, ½, 2, 4 and 8 

times that of the original system are carried out. From each simulation, ten snapshots 

are obtained from the last 5 ns piece of the simulation (each 0.5 ns apart) for further 

analysis in the MS Program. The averaged values of G over these snapshots for 

different parameters are plotted with their standard error in figure 5.10. In all of the 

figures, G values are always approximately 2-fold less than the K values (see figure 5.8) 

which is characteristic for polymers. G values have an increasing trend with the with 

increasing MW and ϵ, whereas G has a bump at N=70 atoms and an increase from 

N=100 atoms to N=150 atoms. The characteristic curves of G have similar behaviour as 

we have seen for K (see figure 5.8) except for the case of N=150 atoms. For N=150 

atoms, G starts to increase as opposed to decreasing trend of K. 
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Figure 5.10. Effect of (a) molecular weight, (b) nanocluster size, and (c) vdw 

interaction strength on shear modulus. 

 

5.5. Glass Transition Temperature 

 

In order to calculate Tg, the PBD system with N = 150 atoms with -ϵSi-C = 0.1 

kcal/mol (weak), -ϵSi-C = 0.3 kcal/mol (normal) and -ϵSi-C = 1.5 kcal/mol (strong) and 

pure PBD are simulated for the temperatures from 130 K to 200 K with 5 K step and 

from 200 K to 240 K with 10 K step. Changes in specific volume with temperature are 

shown in figure 5.11. For each type of systems, curves have two kinks: one small peak 

at temperatures less than 150 K and one apparent peak between 160 K and 180 K. The 
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temperatures corresponding to the latter transition are 176 K for the pure PBD system, 

177 K for the system with the weak interaction strength, 184 K for the system with the 

standard interaction strength and 178 K for the system where there is strong interaction 

between the nanocluster and the PBD chains. According to these results, Tg increases as 

the nanoclusters are introduced to the polymer melt and decreases as the interaction 

strength increases further from the standard value.  
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Figure 5.11. Change in specific volume with respect to temperature for predicting Tg  

 

In figure 5.12, the effect of MW on Tg is obtained from from three sets of 

molecular weights; MW=1x, 4x and 8x. As the MW increases, Tg is observed to shift to 

higher temperatures according to the Fox-Flory empirical equation [99]: 
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Figure 5.12. Change in specific volume with respect to MW for -ϵSi-C = 1.5 kcal/mol 

(strong vdw interaction)   
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6. CONCLUSION AND FUTURE WORK 

 

In this work we first studied the extent of predictions of elastic network models on 

the well-studied protein systems. We than seeked to understand the extent of 

applicability of Anisotropic Network Model (ANM) to oligomeric systems, exemplified 

by polybutadiene melts. We than used nanoclusters to probe the linear viscoelastic 

properties of these melts. Finally, we used these nanoprobes to manipulate properties of 

polymers. These include mechanical strength, which is directly correlated with force 

constants derived by ANM, as well as the glass transition temperature. 

 

In the first part of the thesis, the extent of predictions of elastic network models on 

the well-studied protein systems is studied. Despite their different topological structures 

and sizes, a statistical analysis of a large number of folded proteins leads to common 

features. In particular, the radial and angular distribution functions provide the degree 

of (in)homogeneity in the protein as well as a quantitative description of the location of 

the coordination shells. Depth dependent analysis shows that the densely packed core 

region of the protein has a different local structure built around it compared to its 

surface. In the core of the protein, the second neighbors have a non-random distribution 

that is more pronounced than the first neighbors. In the surface residues, the reverse is 

observed (figure 3.1b).  

 

Calculations at a variety of cut-off distances used in network construction reflect 

that the dimensionality of the system approaches that of regular crystals where g(ω) 

scales with ω2 only at unrealistically high rc values (figure 3.2b). The modal spectrum 

resembles that obtained from all-atom calculations with realistic atom-atom interaction 

potentials in the region above the second coordination shells up to a cut-off distance of 

16 Å (figure 3.2a). At this threshold, the spectral dimension shifts from the region of   

ds = 1-2 to above 2, accompanied by a crossover in its rate of change (figure 3.2b). 

 

Network constructed by using Voronoi tessalations, on the other hand, fail to 

correctly define the local interactions while they successfully incorporate the long-range 

pairwise interactions. In particular, the mode distributions (figure 3.2a) and the spectral 
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dimensions measured at the slow mode region (figure 3.2b) do not represent the 

experimentally and theoretically well-characterized shapes for proteins. Therefore, 

these network models will provide misleading information on the properties that rely 

mostly on local interactions (e.g. residue fluctuations, figure 3.3). On the other hand, 

they are expected to be very effective in forecasting properties that depend on a correct 

incorporation of the long-range contacts, as was recently demonstrated by their success 

in predicting the folding rates of two-state proteins [100, 101] 

 

In the second part, in order to understand the extent of applicability of ANM to 

polymeric systems, we have successfully simulated bulk model of cis-1,4-PBD over a 

range of pressures and temperatures well above its glass transition temperature (Tg ~175 

K). With MD simulations, we are able to analyze and obtain useful predictions for the 

fluctuations, spring constants and second virial coefficients at different pressures and 

temperatures. Macroscopic properties such as <R2>, Cn, ν, κT are obtained a priori to 

check whether or not the system fully relaxes and predicts similar values to the 

experimentally measured ones obtained for bulk PBD systems. By predicting 

thermodynamic properties and showing correlation of ANM with the experiments in the 

literature as well as MD simulation results, we have assessed the validity and range of 

applicability of ANM.  

 

The simulated systems have very similar structural and conformational properties 

with small differences in the second and third nearest neighbors as confirmed by RDFs. 

However, these small local differences and arrangements result in considerable 

differences in thermodynamical properties which are estimated qualitatively by 

applying ANM to the relaxed coordinates of the system obtained from MD simulations.  

 

RMSD values of the chains obtained by ANM and MD are highly correlated, 

yielding values in the range 0.7 - 0.95. When averaged over all atoms, the trends of 

these RMSD values from different temperatures and pressures are in good agreement 

with the expected qualitative trends with the exception of highest pressure studied, 3000 

atm and the lowest temperature studied, 300 K. Similarly, values of spring constants 

and the second virial coefficients estimated by ANM are qualitatively correlated with 

the values obtained from MD directly.  
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In the third part of the thesis, we use nanoclusters to probe the linear viscoelastic 

properties of these melts and to manipulate properties of polymers by playing 

parameters such as temperature, size, vdw interaction strength between the nanocluster 

and polymer. First, we calculated the diffusion coefficients of the polymer and by 

fitting these coefficients to the Einstein-Stoke Equation, zero-shear viscosity of the 

polymer is predicted. The viscosity results have been compared with those for %60 cis-

content PBD chains of similar molecular weight measured by rotational viscosimeter. 

The estimated viscosity results have close values to the experimental results, having the 

expected logarithmic trend. The relaxation times of C-H vectors are also in very good 

quantitative agreement with NMR measured values, confirming that the united atom 

force field used in the simulations well-describes the dynamics of the real system. 

 

RDF for different temperature and nanocluster sizes was also extracted in order to 

see the effect of these parameters on the configurational properties. It is observed that 

despite the size and temperature slightly modifies the different coordination shells, there 

is no obvious change in the RDF in the bulk of the system.  

 

In order to see the underlying mechanism of dynamical behaviour of polybutadine 

chains in the vicinity of the nanoclusters and the relaxation times of chain nodes (sp2 

atoms in the butadiene monomer), residence time (τr) and correlation time (τc) have 

respectively been calculated from MD simulations. Escape and correlation times reach a 

plateau as the interaction strength increases, because the polymer chains are stick to the 

surface more tightly and their translational and orientational movements are much more 

restricted. 

 

It is also possible to manipulate mechanical properties by tuning the interaction 

strength of the nanoclusters with the chains. Approximately 7 % increase in the bulk 

modulus and 25 % increase in the shear modulus are obtained by changing the vdw 

interaction strength from weak to strong. Furthermore, MW affects both bulk and shear 

moduli. However, increasing the size of the nanoclusters has an increasing effect on 

both bulk and shear modulus up to N=70 atoms, further increase of the size decreases 

the bulk modulus to the values of the smaller sizes and increases the shear modulus 

further. From practical point of view, we can assume that K is not much affected by the 
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size of the nanocluster, whereas K linearly increases as the interaction strength 

increases from normal to strong values.  

 

Tg increases as the nanoclusters are introduced to the polymer melt and decreases 

as the interaction strength increases away from the standard value. Tg is increased from 

~176 K for pure PBD up to ~184 K for the standard interaction strength. Tg also have an 

increasing trend by MW in accordance to theoretical expectations.  

 

For future work, first in order to obtain the change in chain order near the 

nanocluster surface, both translational order, as quantified by RDF, and orientational 

order parameters will be extracted for different set of parameters. The latter in in fact an 

extension of ADF, developed in Chapter 3, and has been studied in detail for a series of 

amorphous materials (ref Steinhardt 1983). These atomistic order details will be used to 

understand the underlying mechanism that lead to the observed mechanical and 

dynamical property variations in the bulk polymer. In addition, the observed effect of 

vdw strength on moduli and Tg will be explained using thermodynamical arguments 

based on entropy-enthalpy balance. The current approach may further be applied to 

polymers with different chain architecture such as copolymers, those incorporating ring 

groups and branching. Finally, the interaction between the nanocluster and polymer 

chains may be modified by adding explicit or partial charges to the nanocluster atoms, 

or direct covalent bonds to the chains to see if we can further enhance the modulus or 

other macroscopic properties. 
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APPENDICES 

 

APPENDIX A: Application of Periodic Boundary Condit ions (PBC) 

 

To implement PBC in practice, at least two steps are needed. The first is to have an 

atom (or a node) which leaves the simulation cell on one side to enter back from the other side. 

This is of course a simple operation, and could be implemented in the code by three if 

statements: e.g. (for the x dimension, assuming an orthogonal unit cell centered on the origin). 

And second is to make sure that every distance between atoms has a length and direction which 

corresponds to the minimum image criterion. This can be achieved in the x direction (which 

should be repeated in all 3 dimensions) as follows: 

 

f (periodicx) then 

if (x <  -xsize/2.0) x=x+xsize 

if (x >=  xsize/2.0) x=x-xsize 

endif 

 

 

if (periodicx) then 

  dx = x(j) - x(i) 

  if (dx >   xsize/2.0) dx = dx - xsize 

  if (dx <= -xsize/2.0) dx = dx + xsize 

endif 

 

Handling PBC in Constrcuting Connectivity and Hessian Matrices 

 

Figure A.1 depicts the graphical representation of the application of PBC to 2D box 

with 4 interacting points. The corresponding Connectivity (Kirchhoff) Matrix is shown in the 

inset. The total number of connections of the particle 3 is increased one more in the diagonal 

entry if it is within the cut-off distance after having mirror-image in the x-direction. The non-

diagonal (3,4) and (4,3) entries does not change. Similarly, only the diagonal elements of the 

Hessian Matrix are increased as the mirrored particles come to the interaction range of the other 

particles within the cut-off value. (For 3D the mirror image is calculated in 2 direction in each 

axis  

 

Figure A.1. Graphical representations of Free Boundary (FB) and Periodic Boundary 

Conditions (PBC) and corresponding Connectivity Matrices (inset) 
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APPENDIX B: Derivation of Second Virial Coefficient (b2) from ANM 

 

The pressure of a system consists of two terms; ideal (thermodynamical) term and the 

virial term. 
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In network models, force on i-j pair is given by  −���∆��� ; thus, the  (��� . ���) term is; 

 

=  −���[(�� − ��) − (��� − ���)] . (�� − ��)   (B.2) 

 

= ���(�
��

)2 + �
��

(�
��

0. ���)     (B.3) 

 

= ���(�
��

)2      (B.4) 

 

For the whole system, the virial coefficient becomes; 
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APPENDIX C: Derivation of Isothermal Compressibility (��) from ANM 

 

Using simple elastic network model potential (
��� = ∆�
Γ∆�
) for the interacting 

pairs (or nodes), the isothermal compressibility is equal to equation C.1. Upon integration, we 

obtain the relation of 
 to the multiplication of the eigenvalues, omitting those equal to zero 

due to the pseudo-inversion, obtained from Kirchoff (Connectivity) Matrix. 
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APPENDIX D: Details of the Diffusion Coefficients and Viscosity Predictions 

 

Table D.1. Details of the diffusion coefficients of PBD+Cluster at T=330 K 

cluster size 

(# of atoms) 

r (A) 1/r slope y-

intercept 

diff.coef. 

10 3.162243 0.316231 1.003 -4.216 1.01356E-07 

20 3.858489 0.259169 1.002 -4.414 6.42464E-08 

30 4.372635 0.228695 1.003 -4.356 7.34258E-08 

40 4.778822 0.209257 1.003 -4.18 1.10116E-07 

70 5.6718 0.176311 1 -4.365 7.19198E-08 

100 6.303312 0.158647 1.004 -4.741 3.02586E-08 

150 7.147039 0.139918 1.002 -4.626 3.9432E-08 

 

Table D.2. Details of the diffusion coefficients of PBD+Cluster at T=380 K 

cluster size 

(# of atoms) 

r (A) 1/r slope y-

intercept 

diff.coef. 

10 3.162243 0.316231 1.018 -3.767 2.85003E-07 

20 3.858489 0.259169 1.001 -3.948 1.87866E-07 

30 4.372635 0.228695 0.9949 -3.985 1.72524E-07 

40 4.778822 0.209257 0.8979 -3.219 1.00658E-06 

70 5.6718 0.176311 1.001 -4.082 1.3799E-07 

100 6.303312 0.158647 1.003 -4.847 2.37055E-08 

150 7.147039 0.139918 1.001 -4.609 4.10061E-08 

 

Table D.3. Details of the diffusion coefficients of PBD+Cluster at T=430 K 

cluster size 

(# of atoms) 

r (A) 1/r slope y-

intercept 

diff.coef. 

10 3.162243 0.316231 1.001 -3.522 5.01013E-07 

20 3.858489 0.259169 1.001 -3.675 3.52248E-07 

30 4.372635 0.228695 1.001 -3.981 1.7412E-07 

40 4.778822 0.209257 1.002 -4.092 1.34849E-07 

70 5.6718 0.176311 1.002 -4.089 1.35784E-07 

100 6.303312 0.158647 1.002 -4.092 1.34849E-07 

150 7.147039 0.139918 1.001 -4.462 5.7524E-08 
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Figure D.1. Predictions of zero-shear viscosities from diffusion coefficients for T=330 

K, 380 K, and 430 K 
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