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ABSTRACT

Statistical characterization of morphological changes of dendritic
spines is becoming of crucial interest in the field of neurobiology.
Automatic detection and segmentation of dendritic spines promises
significant reductions on the time spent by the scientists and reduces
the subjectivity concerns. In this paper, we present two approaches
for automated detection of dendritic spines in 2-photon laser scan-
ning microscopy (2pLSM) images. The first method combines the
idea of dot enhancement filters with information from the dendritic
skeleton. The second method learns an SVM classifier by utilizing
some pre-labeled SIFT feature descriptors and uses the classifier to
detect dendritic spines in new images. For the segmentation of de-
tected spines, we employ a watershed-variational segmentation al-
gorithm. We evaluate the proposed approaches by comparing with
manual segmentations of domain experts and the results of a non-
commercial software, NeuronIQ. Our methods produce promising
detection rate with high segmentation accuracy thus can serve as a
useful tool for spine analysis.

Index Terms— 2-photon microscopy, dendritic spine detection,
dot enhancement filter, SIFT features, SVM classifier

1. INTRODUCTION

Dendritic spines are small bulbous cellular compartments recog-
nized as small objects that carry synapses. Morphological changes
of dendritic spines are of great interest in neuronal structure and the
correlated function at the level of individual spines [1, 2, 3, 4, 5, 6].
Understanding structural changes of spines may provide explanation
of how information is stored in the brain as well as contribute to our
understanding of several neurodevelopmental disorders [7, 8].

Referring to previous work on automating dendritic spine anal-
ysis [9, 10, 11, 12, 13, 14] the problem of correctly detecting spines
still remains unsolved and manual interactions are required. We can
classify existing methods as centerline extraction based and classi-
fication based methods. Centerline extraction based methods con-
sider the spines as small extended objects attached to the dendrites
after detecting all dendrite centerlines in the image. The earliest
centerline extraction based semi-automatic dendritic spine analysis
approaches, proposed by [13, 15], were improved by Zhang et al.
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[16] and later by Cheng et al. [17], utilizing the local SNR, which
considerably reduces the effect of noise in spine detection. Lastly,
to minimize the noise influence and for a better segmentation, local
spine detection and geodesic active contour segmentation has been
combined by Son et al. [18]. This method fails if there are thin-
ning points into the dendrite due to low resolution and it also has the
limitation that geodesic active contour segmentation is not capable
of handling noise properly. Classification based methods separate
image pixels into different groups with proper classifiers for specific
cases. Such a method has been recently introduced by Rodriguez et
al. [19]. The method uses point clustering for spine detection im-
proving over Zhang et al. [14]. Since the method uses the distances
from the points to the closest point of the surface as the clustering
criterion, it may cause spurious spines and even fail due to noise.

In this paper, we propose two methods for automated detection
and segmentation of dendritic spines. The methods are able to accu-
rately segment each individual spine without any manual interaction
and can handle the noise as well as low resolution of the image. Our
first detection technique, introduced in Section 2, extracts the den-
dritic spines by estimating the second-order directional derivatives,
serving as a dot enhancement filter, and eliminates false positives
utilizing end points of the dendritic skeleton. In Section 3, we intro-
duce our second method which employs a support vector machine
(SVM) classifier with scale invariant feature transform (SIFT) based
features. We note that the first approach is unsupervised, whereas
the second approach uses training data to learn a classifier for spine
detection. To the best of our knowledge, dot enhancement filters and
SIFT features have not been adapted to and used for the spine de-
tection before. After spine regions are detected, both methods use
a watershed-variational based technique for segmentation which is
detailed in Section 4. In Section 5, we present experimental re-
sults characterizing the detection and segmentation accuracy of both
methods. Finally, we conclude in Section 6.

2. METHOD 1: DOT ENHANCEMENT FILTER AND
IMAGE MORPHOLOGY BASED SPINE DETECTION

Our first method combines dot enhancement filters and skeleton end
points. They are an attractive tool for spine detection, because of
their strong sensitivity response for dots and their good specificity of
not producing non dot shapes.

The filters we use in this paper are based on the eigenvalue anal-
ysis of the Hessian matrix of the intensities at each pixel of the given



image and have previously been used by Li et al. [20] as parameter-
free techniques to improve the sensitivity of nodule detection. In the
following, we shortly describe these filters in a 2D domain.

Construction of dot enhancement filters in 2D image space:
For a given 2D image already preprocessed with a median filter,
I(x, y), the second derivatives are represented as Ixx, Iyy and Ixy =
Iyx. Then, for each pixel we can construct the Hessian matrix H =[

Ixx Ixy
Iyx Iyy

]
, which is a real symmetric matrix. We find the

eigenvalue of Hessian matrix H determined by the equation:

λ1 = K +
√

K2 −Q2, λ2 = K −
√

K2 −Q2, (1)

where K = (Ixx + Iyy)/2, and Q =
√

Ixx ∗ Iyy − Ixy ∗ Iyx.
Without loss of generality, we assume λ1 is the largest eigen-

value such that satisfy |λ1| ≥ |λ2|, otherwise we do exchange λ1

and λ2. Because we attempt to enhance bright objects in a dark
background, the sign of the second derivatives should be negative
and for a dot (nodule like object) we expect λ1 ≈ λ2 < 0. Defining
k(λ1, λ2) = |λ2|/|λ1|, strict equality of the two eigenvalues leads
to k(λ1, λ2) = 1. The function k(λ1, λ2) can be used to differenti-
ate between a circle, an ellipse, and a line, providing a value of 1 for
a circle, a value between 0 and 1 for an ellipse and 0 for lines.

For filter quality evaluation, the incorporation of the two basic
criteria, i.e., sensitivity and specificity, enables a good enhancement
filter output. The output z(λ1, λ2) of the dot enhancement filters,
considered in [20], is defined by the product of the magnitude func-
tion and likelihood function. Likelihood is directly related to the
sensitivity and specificity of an enhancement filter, indicating the
probability that a pixel belongs to a dot. Li et al. [20] considered
the function k(λ1, λ2) as an approximate measure of the likelihood
of a dot. A good choice for the magnitude function for a dot en-
hancement filter is the value of |λ2|, providing a value greater than
0, indicating a good sensitivity to whether a bright object exists in
a dark background. Therefore, the final enhancement filters for dots
expressed as

z(λ1, λ2) =

{
|λ2|2/|λ1| for λ1 < 0, λ2 < 0

0 otherwise .
(2)

The use of eigenvalues of the Hessian matrix has been previously
investigated for construction of blob filters, but this is more compli-
cated than the approach considered here and unknown parameters
need to be determined [21].

To improve the performance of the filter described in equation
(2) we can take into account the effect of noise and the scale of the
objects. This can be done by using multiscale enhancement filters
[20, 22]. Convolving the original image with a 2D Gaussian func-
tion before calculating the second derivatives not only smoothes the
image but also serves as a matched filter to preserve an object with an
appropriate scale. To enhance all objects in a range of scale [d0, d1],
we should first employ a Gaussian smoothing filter in the scale range
of [d0/4, d1/4] and then apply the dot enhancement filter, detailed
above. The enhancement filters consist of two steps which should be
repeated N times by increasing smoothing scales to provide N en-
hanced images. The N discrete smoothing scales can be selected as
follows: σ1 = d0/4, σ2 = rσ1, . . . , σN = rNσ1 = d1/4, where
r = (d1/d0)

1/N−1. The final output of the multiscale enhancement
filters at a pixel is the maximum value from the N individual filters.
Figure 1 (b) reveals the dot enhancement filter results in a dendritic
spine image.

End-point pixels of a skeleton and spine detection: After the
dot enhancement process, we exploit the information that spines are

attached to the tips of dendritic branches. In particular, we compute
the skeleton of the dendritic structures, and combine the informa-
tion from such skeletons with the enhanced dots for accurate spine
detection. To extract the skeleton, we first binarize the input image
using an adaptive thresholding algorithm, then apply morphological
thinning on this binary image. In order to decide whether a pixel
is an end-point, we have to check its connectivity with its neigh-
bors. In 2D, pixels that have less than 2 neighbors, within their 8-
neighborhoods connectivity, are considered as skeleton end-points.

Due to noise, blur and different artifacts in the given image,
skeletonization can produce some falsely disconnected pieces in the
main backbone. Because of that, we can get false end-points in the
dendritic skeleton backbone, see Figure 1 (c), which are not spines.
To avoid this false positivity we do check for all skeleton end-points
if in their 2×2 neighborhood there is a dot already selected with dot
enhancement filters. The combination ensures that the skeleton end-
points found have a dot shape as well. In return, the skeleton end
points help us eliminate some false positives that would be created
by the dot enhancement filters. Hence dot-like skeleton end points
are detected as spines by our approach (see Figure 1 (d)).

3. METHOD 2: SIFT FEATURES AND SVM CLASSIFIER
BASED SPINE DETECTION

SIFT is a well-known method introduced by [23] to extract local
image features invariant to image scaling, translation, rotation, and
illumination changes. The method transforms an image into a large
collection of local feature vectors invariant to the image and distin-
guishes keypoints identifying candidate object matches. SIFT fea-
tures are represented by a 128 dimensional vector and each vector
corresponds to a keypoint location in the image. Extracting SIFT
features from 2pLSM images reveals that spine centers are generally
found as the keypoint of a feature which is the main motivation of
our method.

This method can be divided into two different phases: training
and test. In the training phase, we extract SIFT features from a set of
training images and manually label each feature vector as spine if its
keypoint corresponds to a spine center, and as non-spine otherwise.
Then, we train an SVM classifier with linear kernel using these pre-
labeled feature vectors. More sophisticated kernels can also be used
for SVMs, but that may increase the number of parameters to be set.
In the test phase of the algorithm, we label each SIFT feature vector
obtained from a new test image as spine or non-spine using the clas-
sifier constructed in the training phase. Finally, keypoint locations of
feature vectors that are labeled as spine become our detected spine
regions as shown with red markers in Figure 2 (a).

We can easily notice that the second method is less dependent
on the parameters in comparison with the first method. In this way
we can avoid the sensitivity of the final results in terms of dendritic
morphology. The process is significantly simplified and very fast.

After spines are detected using one of the above methods, we
employ a segmentation algorithm to determine spine boundaries ac-
curately, explained in the following section.

4. WATERSHED-VARIATIONAL BASED SEGMENTATION

To segment a spine that have already been detected using above
methods, we apply a multi-level segmentation algorithm. As a first
level segmentation we use the watershed algorithm, as used in [24].
For each of the methods above, locations of detected spines help to
label the watershed segments as spine and non spine regions, Figure



1 (e). Watershed algorithm usually finds larger boundaries than the
expert results as stated in [25]. Therefore, we apply a second level
segmentation for an accurate segmentation of the spine regions. In
the second step, each spine region is refined using a variational based
algorithm. This step eliminates the over-segmentation by stopping
on the boundary of target spines. To have a variational function
which will decrease as soon as we are in the boundaries and which
at the same time performs good in presence of noise or fuzzy bound-
aries we employ a combination of an edge detection function, in
particular [26], with a region based one, similar to Chan-Vese (CV)
[27].

The minimization equation used for our region-edge based
model is:

min
Γ,c1,c2

F (Γ, c1, c2) = min
Γ,c1,c2

{
µ

∫
Γ

g(|∇I0(x, y)|)ds + (3)

λ
[ ∫

inside(Γ)

|I0(x, y)−c1|2dxdy+
∫

outside(Γ)

|I0(x, y)−c2|2dxdy
]}

with µ, λ positive parameters and Γ the contour. The first term is
composed by g(|∇I0(x, y)|) = 1

1+ν|∇I0(x,y)|2
, an edge detector

function which helps to stop the evolving curve on the edges of the
objects in an image. Clearly the g(|∇I0(x, y)|) function is almost
0 on edges where |∇I0(x, y)| is large and 1 in flat regions where
|∇I0(x, y)| is small. Our aim is to find a contour Γ such that g ≃ 0
along it. The second term is CV [27] region fitting term.

Introducing the level set functions ϕ = ϕ(x, y) one gets the
following Euler-Lagrange equation

δϵ(ϕ)
{
µ∇ ·

(
g
∇ϕ

|∇ϕ|

)
− λ((I0 − c1)

2 − (I0 − c2)
2)
}
= 0,

with c1 and c2 computed similar to the CV model using regularized
Heaviside function Hϵ and the corresponding Delta function δϵ. In
this paper we use as Heaviside function Hϵ =

1
2
(1 + 2

π
arctan( z

ϵ
))

while as first initial level set ϕ0 we use a multi level set with center
in the spine key points. Visualization of segmentation results for
spines that already have been detected using Method1 and Method2
are shown in Figure 1 (f) and 2 (b), respectively.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results which demonstrate
the performance of our spine detection algorithms as well as that of
the subsequent segmentation process. We start presenting our exper-
imental results by showing the performance of our spine detection
algorithms as well as segmentation accuracy. We use a set of 14
different 2D 2pLSM images provided by the Champalimaud Cen-
tre Neuronal Structure and Function Laboratory. We compare our
results with those of existing work contained in the noncommercial
software NeuronIQ [17] (http://www.cbi-tmhs.org/Neuroniq).

Since our goal was to detect of spines with diameters ranging
from 4(d0) to 32(d1), the smoothing scales used for dot filters
ranged from 1 to 8 in all of our experiments. The parameters µ, λ,
ϵ and ν, have been fixed at µ = 500, λ = 1, ϵ = 1, ν = 100,
respectively. As trained data for the second method, we use only
2 images, different from the 14 test images. Optimization of the
considered parameters will be our future work.

Analysis 1:- robustness and accuracy of our spine detection
algorithms and watershed-variational segmentation. In order to
obtain quantitative results for spine detection, we used the average of
the decisions of two different domain experts as ground truth. Due

(a) given image (b) enhanced dots

(c) skeleton end-points (d) spine detection results

(e) watershed segmentation of de-
tected spines

(f) refined spine segmentation

Fig. 1: Successful segmentation of a dendritic spine image us-
ing dot-enhancement-based spine detection followed by watershed-
variational segmentation.

to noise and artifacts in 2pLSM images there may be high varia-
tions even in the decisions of the experts. In Table 1, we present the
average true positive (TP) and false positive (FP) detection results
for each image in the data set. We also give the average sensitivity
results of all images for both methods.

As shown from Table 1, the second method performs better
than the first method. Method1 also contains parameters to choose
which is a disadvantage. Therefore, we can conclude that Method2
is preferable when the training data are available. However, there
are some cases in which Method1 is superior to Method2. The first
case, when there is no training data set, is obvious, since Method2
cannot be used without a training set. The second case is a scenario
in which the training set and the test set are obtained from different
modalities. To show this, we run both techniques on a confocal
microscopy image. For these experiments, we use a training set of
2pLSM images - same training set with the above experiments -
and test on a confocal microscopy image shown in Figure 3. The
experimental results demonstrate that Method1 performs better than
Method2 in this circumstance as shown in Figure 3. Note that
Method2 captures some dendrite parts as spine and misses a number
of spines around the longer dendrite whereas Method1 captures
most spines with fewer false positives. If we construct the trained
data using confocal microscopy images we do get better results with



(a) SIFT key-points (b) segmented spines

Fig. 2: Successful segmentation using SIFT-based spine detection
followed by watershed-variational segmentation.

Fig. 3: Results on a confocal microscopy image. Left image: result
of dot-enhancement-based spine detection followed by watershed-
variational segmentation. Right image: result of SIFT-based
spine detection (trained on 2pLSM images) followed by watershed-
variational segmentation.

Method2, which for the sake of brevity we do not show here.
We have evaluated the accuracy of watershed-variational seg-

mentation by comparing the results with manual delineations of a
domain expert. We used Dice coefficient [28] as metric which mea-
sures the similarity of two sets. Dice coefficient can take a maximum
value of 1 which indicates a perfect match. We computed Dice co-
efficients for 36 different spines and obtained 0.823 on average with
minimum 0.574 and maximum 0.968.

Analysis 2:- comparison with NeuronIQ. We compare our
methods with a widely used noncommercial software called Neu-
ronIQ developed by The Methodist Research Institute, Center for
Bioengineering and Informatics. We first process the images found
in the NeuronIQ web. Figure 4 shows the results obtained by our
methods and by NeuronIQ. Even though NeuronIQ detects more
spines than our methods, we do notice that NeuronIQ will segment
spines as well as protrusions or noise and can sometimes split a
spine into several fragments depending on the intensity distribution
of the image. This is due to the adaptive threshold method used to
detect dendritic spines similar to [17].

Moreover, NeuronIQ has many parameters to choose and small
changes in parameters appear to cause significant effects on results.
While it produces very good results for the images on NeuronIQ web
with default parameters, it fails on the images from the Neuronal
Structure and Function Laboratory of Champalimaud Centre with
the same parameters as shown in Figure 5. Parameters need to be
fine-tuned to achieve good results on different images.

6. CONCLUSIONS AND FUTURE WORK

We have proposed two spine detection methods and combined them
with a powerful approach for spine segmentation. Our first approach

average ♯ of spines Method 1 Method 2
labeled by experts TP FP TP FP

Image 1 13 12 2 11 1
Image 2 14 10 3 10 1
Image 3 18 14 2 14 1
Image 4 30 22 5 23 2
Image 5 22 9 2 17 1
Image 6 13 12 3 9 2
Image 7 22 12 3 14 3
Image 8 21 8 2 14 1
Image 9 40 27 3 36 4
Image 10 37 25 2 30 2
Image 11 41 27 3 34 10
Image 12 36 31 4 32 12
Image 13 24 14 0 13 1
Image 14 12 9 5 10 5

Average Sensitivity 0.8421 0.8665

Table 1: Detection performance of the proposed methods

Fig. 4: Results on an image from NeuronIQ web with default pa-
rameters. Top image: NeuronIQ software segmentation. Left im-
age: result of dot-enhancement-based spine detection followed by
watershed-variational segmentation. Right image: result of SIFT-
based spine detection followed by watershed-variational segmenta-
tion.

Fig. 5: Result of NeuronIQ on a 2pLSM image from the Champali-
maud Centre. Results of our approaches on this image are shown in
Figures 1(f) and 2(e).

is an unsupervised method based on dot enhancement filters and uti-
lizes information from the skeletonization of the dendritic branches.
The second method is a supervised method, based on SIFT fea-
tures and SVM classification. When training data from the imag-
ing modality to be used for the test images are available, the second
method should be preferred. The second method avoids the use of
several free parameters appearing in the first method as well. When
training data are not available, we observe that our first approach
provides very good spine detection results purely based on the ob-
served data.
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