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Abstract

In this paper we present an accelerated Augmented
Lagrangian Method for the solution of constrained
convex optimization problems in the Basis Pursuit
De-Noising (BPDN) form. The technique relies on
on Augmented Lagrangian Methods (ALMs), par-
ticularly the Alternating Direction Method of Mul-
tipliers (ADMM). Here, we present an application of
the Constrained Split Augmented Lagrangian Shrink-
age Algorithm (C-SALSA) to SAR imaging, while
introducing a method to handle complex SAR im-
agery in the constrained Total Variation Minimiza-
tion formulation. In addition, we apply acceleration
schemes to C-SALSA to obtain faster convergence
of the method; such as used in Fast ADMM meth-
ods proposed by Goldstein et al., in the Fast Itera-
tive Shrinkage-Thresholding Algorithm (FISTA) pro-
posed by Beck and Teboulle, and in NESTA proposed
by Becker et al. We present examples to illustrate the
effectiveness of Accelerated C-SALSA in the context
of SAR imaging.

1 Introduction

In this paper we consider the problem of compressed
SAR imaging using an Augmented Lagrangian ap-
proach to the optimization problem associated with
the SAR observation model. There are several
sparsity-driven techniques in the context of SAR
imaging , though an important factor hindering their
use in practice is the excessively high computational

cost of solving the associated optimization problem.
From this standpoint, it is important to incorporate
recent advances in optimization techniques. The mo-
tivation for our work comes from our search for such
computationally efficient algorithms for compressed
sensing in SAR, with a potential for parallel imple-
mentation.

As such, Alternating Direction Method of Mul-
tipliers (ADMM) techniques have been successfully
applied to signal and image recovery problems [1].
ADMM provides a divide-and-conquer approach by
splitting unconstrained multi-objective convex opti-
mization problems, augmenting the Lagrangian of the
convex optimization problem with a norm-squared er-
ror term, and using a non-linear block Gauss-Seidel
approach on the resultant terms in the optimization
problem. The resulting problem is guaranteed con-
vergence under mild conditions [1].

In this work, we provide a framework for the ap-
plication of a particular ADMM method, namely the
Constrained Split Augmented Lagrangian Shrinkage
Algorithm (C-SALSA) [1] to SAR imaging, introduce
a method to handle complex SAR imagery in the con-
strained Total Variation Minimization (TVM) formu-
lation, and apply acceleration schemes to C-SALSA
to obtain faster convergence of the method.

1



2 Background

2.1 SAR Observation Model

The SAR observation model can be considered linear
in relating the vector containing the SAR image pix-
els to the data vector, e.g., consisting of phase history
data for spotlight mode SAR imaging. Let us denote
the image vector to be constructed by sequentially
indexed pixel-values x ∈ CN and observation kernel
by the matrix B ∈ CM×N , which relates x to the
measurement vector y ∈ CM :

y = Bx + n, (1)

where n ∈ CM is the additive noise vector, typi-
cally from a normal distribution. The data y can
lie in the phase history domain, in which case the
matrix B would be a spatial Fourier transform type
operator; or y can be a conventionally reconstructed
image, in which case B would be a convolution op-
erator representing the point spread function of the
entire imaging process. In this paper, the data are as-
sumed to be in the phase history domain, therefore a
two-dimensional Fourier transform type model is ap-
propriate for modelling the relation between the data
vector and the unknown SAR image vector. In the re-
construction algorithms we use, however, the matrix
is never formed explicitly but FFTs are carried out
to perform the associated matrix-vector products.

2.2 Sparse reconstruction approaches

In this paper, we consider the application of C-
SALSA [1] for the reconstruction of SAR images, as
well as an accelerated version thereof. The algorithm
is described in the sequel. For the compressed sensing
problem, the problem can be cast as

minimize
x

‖Bx− y‖22 + λφ(x) (2)

where φ(x) is the penalty function appropriately se-
lected according to the reflectivity characteristics of
the imaged region. φ(x) = ‖x‖1 results in the en-
hancement of sparsity in the reconstructions; whereas
φ(x) = TV (|x|) results in piecewise-smooth recon-
structions, TV being the total-variation of the image
to be reconstructed [1, 2]. Notice that, the SAR im-
ages are complex and the total variation is defined
on the magnitude of the SAR image. The handling
of complex SAR data requires special care, as will be
described in the sequel.

Algorithm 1: C-SALSA [1]

1. Set k = 0, choose µ > 0, v
(1)
0 , v

(2)
0 , d

(1)
0 , d

(2)
0

2. repeat
3. rk = v

(1)
0 + d

(1)
0 + BH

(
v
(2)
0 + d

(2)
0

)
4. uk+1 =

(
I + BHB

)−1
rk

5. v
(1)
k+1 = Ψφ/µ

(
uk+1 − d

(1)
k

)
6. v

(2)
k+1 = ΨιE(ε,I,y)

(
Buk+1 − d

(2)
k

)
7. d

(1)
k+1 = d

(1)
k − uk+1 + v

(1)
k+1

8. d
(2)
k+1 = d

(2)
k −Buk+1 + v

(2)
k+1

9. k ← k + 1
10. until some stopping criterion is satisfied.

An alternative form of the problem is such that the
constraint comes from the error in the measurements,
where the error norm is prescribed to be smaller
than a radius ε suggested by the signal-to-noise ratio
(SNR) that can be estimated from the data.

minimize
x

φ(x)

subject to ‖Bx− y‖2 ≤ ε
(3)

where φ(x) is selected as explained above.

3 Accelerated C-SALSA applied
to SAR Imaging

In this section, we describe the use of the method
C-SALSA in SAR imaging, and an accelerated ver-
sion thereof. We first start with the description of
C-SALSA [1] within the context of SAR imaging.

3.1 C-SALSA
The problem in (3) with p = 1 can be expressed in
an unconstrained form as [1]:

minimize
x

φ (x) + ιE(ε,I,y) (Bx) (4)

where ιE(ε,I,y) (Bx) is the indicator function of the
feasible set E(ε, I,y) such that

E(ε, I,y) =
{
x ∈ CN : ‖Bx− y‖2

}
≤ ε, (5)

ιS(s) =

{
0, if s ∈ S
+∞, if s /∈ S . (6)

The steps of C-SALSA are shown in Algorithm 1.
The vectors v

(1)
0 and d

(1)
0 are in CN , whereas v

(2)
0 and
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d
(2)
0 are in CM . The operators Ψφ/µ and ΨιE(ε,I,y)

are the Moreau proximal maps for 1
µφ(x) = ‖x‖1

µ and
ιE(ε,I,y) (s) given by

Ψφ/µ(s) = soft(y, 1/µ), (7)

and

ΨιE(ε,I,y)
(s) =

{
s, if ‖s− y‖2 ≤ ε
y + ε (s−y)

‖s−y‖2 , if ‖s− y‖2 > ε
,

(8)

respectively, where soft(y, 1/τ) denotes the element-
wise application of yi → exp{j6 (yi)}max {|yi| − τ}
to entries yi of y for i = 1, . . . ,M . Here, we have
extended the soft-thresholding function to the com-
plex case through multiplication by the phase fac-
tor of each entry exp{j6 (yi)} instead of the originally
defined factor sign(yi) for yi ∈ R [1]. In real im-
age recovery with the TVM formulation, Ψφ/µ can
be performed using Chambolle projections to obtain
the corresponding Moreau proximal maps.

3.2 Handling phase in TVM for SAR
While it is possible to use C-SALSA for sparse SAR
imaging with a slight modification of the soft thresh-
olding function, the handling of the phase requires
further care in the Total Variation Minimization for-
mulation. For image components with piecewise-
smooth characteristics, it is well-known that the To-
tal Variation is a more suitable cost function to
use within the constrained optimization formulation
in (3). For complex imagery, as in the context of
SAR imaging, it is important to incorporate the fact
that the magnitude of each pixel may be piecewise-
smooth, while the phase thereof may be random in
each pixel. As such, the cost function φ(x) in (3)
should be selected as:

φ(x) = TV (|x|) (9)

=
∑
i,j

∇|x|[i, j], (10)

where

∇|x|[i, j] =

√
(D1|x|)2 + (D2|x|)2 (11)

and

(D1|x|) = |x[i+ 1, j]| − |x[i, j]|, (12)
(D2|x|) = |x[i, j + 1]| − |x[i, j]|. (13)

For real imagery, it is possible to use Chambolle’s al-
gorithm to obtain the result of the Moreau proximal
mapping for the Total Variation function [1]. For
complex images, we still use a fixed number (such
as five) of steps from Chambolle’s algorithm on the
magnitude of the image in each iteration, and com-
bine the resulting magnitude with the initial phase at
each iteration, i.e.,(
ΨTV (|·|)/µs

)
[i, j] = exp{j6 (s[i, j])}

(
ΨTV (·)/µ|s|

)
[i, j]
(14)

where ΨTV (·)/µ is the Moreau proximal mapping cor-
responding to the cost function TV (·)/µ, obtained
herein using Chambolle projections the same way as
in C-SALSA [1]. As a result, we extend the C-SALSA
method with Total Variation of real imagery to the
case where the objective is the Total Variation of the
magnitude of complex imagery.

Regarding the implementation, for SAR imaging
problem sizes that are relevant in practice, it is not
desirable to form the matrix B due to prohibitively
large dimensions. As such, the most critical in C-
SALSA is its fourth step, where a matrix-vector
equality is solved in each step of the iterative algo-
rithm. Therefore, it is of utmost interest to perform
this computation using fast transforms [1], such as
the FFT.

Similar to medical imaging applications such as
MRI and CT, SAR imaging can be viewed as an im-
age recovery problem with partial Fourier domain ob-
servations, where the samples are available on a polar
grid [4]. As a result, following an interpolation in the
two-dimensional Fourier transform domain, it is pos-
sible to relate the resulting data vector to the SAR
image through a 2-D FFT. Hence, the multiplications
by B and BH can be performed via 2-D FFT opera-
tions (that effectively perform the multiplication by a
matrix U containing the Fourier basis vectors), and a
masking operator (that effectively performs multipli-
cation by a matrix M of size M ×N with (M < N),
containing a single nonzero entry that is 1 in each
row, so that MMH = I) such that B = MU. Such
a matrix satisfies [1]:(

I + BHB
)−1

= I− 1

2
UHMHMU (15)

and therefore step 4 of C-SALSA can be performed
at the cost of O(N logN) multiplications [1]. In the
examples in Section 4, (15) is implemented via 2-D
FFTs and consequent masking in the Fourier domains
as described above.
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3.3 Accelerated C-SALSA

There are several methods in the convex optimization
literature for the acceleration of first-order methods
such as FISTA [6] for unconstrained form (2), NESTA
[7] for the constrained form (3). Recently, the accel-
eration methods have been applied in the context of
ADMM [8]. In this work, we adapt the acceleration
approach in [8] to C-SALSA, which is a specific case of
an ADMM. Although C-SALSA has been compared
favorably to NESTA in several cases [1], an acceler-
ated version of C-SALSA has not been employed in
literature to the best knowledge of the authors of this
paper. The algorithm, resulting from the application
of the acceleration scheme described in [8], is shown
below as Algorithm 2. Herein, we only focus on the
acceleration scheme with restart, which is preferred
for problems that are not well-conditioned [8], as is
the case for many inverse problems.

In the accelerated version of the algorithm, each of
the primal and dual variables

(
v
(1)
k ,v

(2)
k ,d

(1)
k ,d

(2)
k

)
need to be stored as well as their accelerated coun-
terparts

(
v̂
(1)
k , v̂

(2)
k , d̂

(1)
k , d̂

(2)
k

)
. Therefore the accel-

erated algorithm has nearly twice as much memory
requirement as the original. The computational cost
associated with calculating the accelerated variables,
however, results in only a marginal increase in the
computational cost of each iteration, since the bottle-
neck of the iterative algorithm remains as the steps
where 2-D forward and inverse FFTs are performed.

In the next section, we study the performance of
Accelerated C-SALSA (AC-SALSA) for SAR imaging
problems within the constrained optimization formu-
lation (3) where the objective function is either `1-
norm of the scattering profile, or the Total Variation
of its magnitude as in Eq. (9).

4 Results

For the examples, we form the phase history data
from reference SAR images obtained from wide-angle,
high bandwidth SAR returns [3]. L denotes the band-
width reduction ratio in each dimension (in terms
of the bandwidth used to reconstruct the reference
image.) The number of available data samples is
M = L2N , where N is the number of phase history
samples in the full-bandwidth data used to form the
reference image.

The two reference images used in the experiments
were Slicy and ZSU-23-4 from the MSTAR database
[5]. Slicy was recovered with the `1 norm objective

Algorithm 2: Accelerated C-SALSA with Restart
1. Set k = 0, α0 = 1,
choose µ > 0, v

(1)
0 , v

(2)
0 , d

(1)
0 , d

(2)
0

2. repeat
3. rk = v

(1)
0 + d

(1)
0 + BH

(
v
(2)
0 + d

(2)
0

)
4. uk+1 =

(
I + BHB

)−1
rk

5. v
(1)
k+1 = Ψφ/µ

(
uk+1 − d

(1)
k

)
6. v

(2)
k+1 = ΨιE(ε,I,y)

(
Buk+1 − d

(2)
k

)
7. d

(1)
k+1 = d

(1)
k − uk+1 + v

(1)
k+1

8. d
(2)
k+1 = d

(2)
k −Buk+1 + v

(2)
k+1

9. ck+1 = ‖uk+1 − v
(1)
k+1‖22 + ‖Buk+1 − v

(2)
k+1‖22

10. αk+1 =
1+
√

1+4α2
k

2

11. v̂
(i)
k+1 = v

(i)
k+1 + αk−1

αk+1
(v

(i)
k+1 − v

(i)
k ), i = 1, 2

12. d̂
(i)
k+1 = d

(i)
k+1 + αk−1

αk+1
(d

(i)
k+1 − d

(i)
k ), i = 1, 2

13. k ← k + 1
14. until some stopping criterion is satisfied.

φ(x) = ‖x‖1, whereas the SAR image of ZSU-23-
4 was recovered with φ(x) = TV (|x|) in the con-
strained optimization formulation (3).

The signal to noise ratio in all measurements were
set to 20 dB, and the iterations were repeated 250
times in all cases. Figure 1 shows the Slicy recon-
struction performance for the case with L = 3/8,
whereas Figure 2 shows the change in the objective vs
iteration count. Both for C-SALSA and AC-SALSA,
the optimum value is obtained in nearly 100 itera-
tions, and the sparsity of the image is visibly im-
proved with respect to the conventional reconstruc-
tion. The objective goes down slightly more quickly
for AC-SALSA, especially in the early steps of the
algorithm.

Figures 3-5 show the reconstructed SAR images
of ZSU-23-4 for the different cases with L = 3/8,
L = 2/8, and L = 1/8, respectively. Due to the
use of the Total Variation of the magnitude as the
objective φ(x) = TV (|x|), there is a slight improve-
ment in contrast both for C-SALSA and AC-SALSA,
with respect to the conventional reconstruction, in all
three cases. (The objective is about 1.5 times smaller
for the solution of optimization problems, in compari-
son to conventional reconstruction.) Figures 6-8 show
the change in the objective for each case with respect
to iteration count. The objective goes down more
rapidly in AC-SALSA, as compared to C-SALSA.
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Figure 1: Slicy SAR image reconstruction (L =
3/8): reference image (upper-left), conventional re-
construction (upper-right), C-SALSA (lower-left),
AC-SALSA (lower-right)
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Figure 2: Objective φ(x) = ‖x‖1 versus iterations for
Slicy SAR image reconstruction (L = 3/8)

Figure 3: ZSU-23-4 SAR image reconstruction (L =
3/8): reference image (upper-left), conventional re-
construction (upper-right), C-SALSA (lower-left),
AC-SALSA (lower-right)

Figure 4: ZSU-23-4 SAR image reconstruction (L =
2/8): reference image (upper-left), conventional re-
construction (upper-right), C-SALSA (lower-left),
AC-SALSA (lower-right)

5



Figure 5: ZSU-23-4 SAR image reconstruction (L =
1/8): reference image (upper-left), conventional re-
construction (upper-right), C-SALSA (lower-left),
AC-SALSA (lower-right)
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Figure 6: Objective φ(x) = TV (|x|) versus iterations
for ZSU-23-4 SAR image reconstruction (L = 3/8)
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Figure 7: Objective φ(x) = TV (|x|) versus iterations
for ZSU-23-4 SAR image reconstruction (L = 2/8)
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Figure 8: Objective φ(x) = TV (|x|) versus iterations
for ZSU-23-4 SAR image reconstruction (L = 1/8)
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5 Discussion

The faster convergence of the proposed AC-SALSA in
comparison to C-SALSA is promising, especially for
cases with larger image sizes, where speed of compu-
tation limits the number of iterations that can be per-
formed within an operational time-budget. In conclu-
sion, AC-SALSA provides a favorable alternative to
C-SALSA in cases where a trade-off between mem-
ory and computation time is made possible by the
available hardware.
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