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Abstract 

 

Coal bed methane (CBM) can arise from both thermogenic and biogenic activity on the 

coal beds and adsorb on the porous matrix of the coal. Therefore, investigation of pore 

structure and gas capacity of the coal is essential for accurate estimations of coal bed 

gas potential. Coal samples of lignite to sub-bituminous rank were obtained from 

different depths of Soma basin and were characterized by low pressure CO2 adsorption 

isotherms at 273 K. Micropore surface areas of the samples were calculated by using D-

R model, changed from 224.909 m
2
/g to 287.097 m

2
/g. Micropore volume and capacity 

were determined by Dubinin-Radushkevich equation to vary between 0.070 and 0.093 

cm
3
/g and between 39.06 m

3
/ton and 48.44m

3
/ton, respectively. Pore widths of all 

samples were below 1 nm; suggesting that micropore ratios of the samples are very 

high.  On the other hand, high pressure (up to 17 MPa) adsorption isotherms suggest 

that methane adsorption capacity of the as receive Soma Lignites vary from 12.99 

m
3
/ton to 18.13 m

3
/ton. Effects of outgas temperature, organic carbon content on gas 

adsorption capacity of the samples were determined. Results showed that microporosity 

and methane adsorption capacity of the samples increases with increasing micropore 

ratio. Carbon isotope analyses of the coal gas desorbed from coal core samples of the 

Soma lignite basin in Turkey suggests bacterial origin. In order to have a better 

understanding of secondary biogenic gas potential of the samples, biogasification 

experiments have been conducted. Results have shown that methane production by 
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using just methanogens is very limited. When, free hydrogen gas was given the system, 

methane production has gradually increased. This proved that hydrogen was the limited 

reagent for microbial methane formation. After 20 days of incubation 1 m
3
/ton methane 

production was measured. 
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Özet 

 

Kömür kökenli doğal gaz, termojenik ve biyojenik aktivite sonucu oluşup, kömürün 

gözenkli yapısı içinde adsorblanır. Bu yüzden, kömürün gözenek yapısının incelenmesi 

ve ardından gaz kapasitesinin bulunması kömür kökenli doğal gaz potensiyelinin doğru 

hesaplanması için çok önemlidir. Soma havzasından, olgunlukları linyitten altbitümlü 

kömüre kadar değişen örnekler karakterize edilmiş ve 273 K‘de düşük basınç CO2 

izotermleri ile mikro gözenek yapıları bulunmuştur.  D-R adsorpsiyon modeli ile 

kömürlerin mikro gözenek yüzey alanlarının 224.909 m
2
/g dan 287.097 m

2
/g ‗a kadar 

değiştiği hesaplanmıştır. Örneklerin mikro gözenek hacimleri ve CO2 adsorpsiyon 

kapasiteleri sırası ile 0.070 - 0.093 cm
3
/g ve 39.06 - 48.44m

3
/ton arasında bulunmuştur. 

Örneklerin gözenek boyutu dağılımları ise 1 nm‘nin altındadır. Ardından, yüksek 

basınçta (17 MPa‘a kadar) metan adsorpsiyon deneyleri ile örneklerin metan 

kapasiteleri bulunmuştur. Bu deneylerde, degaz yapılmayan örneklerin metan 

adsorpsiyon kapasiteleri 12.99 m
3
/ton‘dan 18.13 m

3
/ton‘ kadar değişmektedir. Bunun 

yanında nem oranınının, degaz sıcaklığının ve organik karbon miktarının adsorpsiyon 

kapasitesine etkisi gravimetric adsorpsiyon deneyleri kullanılarak incelenmiştir. 

Sonuçlara gore kömür örneklerinin mikro gözenek miktarları, organic karbon oranı 

arttıkça artmaktadır. Örnekelerin 
13

C izotop analizi Soma havzasındaki kömür gazının 

kökeninin biyojenik olduğunu göstermiştir. Biyojenik metan gazı oluşum sürecini 
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anlamak için biyogazifikasyon deneyleri metanojen bakterisi kullanılarak yapılmıştır. 

Sonuçlar göstermiştir ki, sadece metanojenler kullanılarak kömürden metan üremesi çok 

sınırlı bir işlemdir. Ama sisteme dışarıdan hidrojen eklendiğinde metan üremesinin 

zamanla arttığı 20 günlük inkübasyon süresince izlenmiştir. Hidrojenin metan 

üretiminde sınırlayacı ajan olduğu ve artan hidrojen miktarı ile metan üretiminin de 

artığı gözlenmiştir. Üretimin 20 gün sonunda 1 m
3
/ton‘a çıktığı görülmüştür. 
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CHAPTER 1 

 
 

1. Introduction 

Energy demand of the world is increasing constantly. At present, coal still keeps its 

value as one of the primary sources of energy to supply this demand. However, 

utilization of coal as an energy source has lots of negative impacts on the 

environment. For this reason, scientists have investigated alternative processes to 

produce clean energy from coal. In order to achieve that, extraction and production 

of natural gas from coal has become a more significant subject for the energy 

providers. Coal bed methane (CBM) production is a large and clean energy source 

with many advantages. In the USA, 10 % percent of natural gas demand has been 

supplied by CBM [1]. CBM may have thermogenic or biogenic origin and the coal 

gas is adsorbed in the porous coal surface. In the last two decades, production of the 

secondary biogenic methane by utilization of additional microorganisms has been 

studied by scientists aiming to obtain more of clean energy from coal. 

Most important factors that affect physical interaction between adsorbent and the 

adsorbate are dynamic radius of the adsorbate, temperature and solubility parameters 

of the materials. In the literature, there are many examples where carbon dioxide gas 

was used for microporous materials instead of nitrogen [2].  Since, dynamic radius 

of the CO2 is relatively smaller than that of N2 (CO2: 3.3 Å, N2: 3.6 Å [3, 4]), also 

solubility parameter of the CO2 is far greater than nitrogen (for CO2 δ=6.1 cal
0.5

cm
-

1.5
, for N2 δ=2.6 cal

0.5
cm

-1.5
). Owing to these superior properties, interaction between 

coal and the CO2 is better than N2-coal interaction [5, 6]. The last and the most 

important parameter is the temperature, for physical adsorption of the CO2, 

measurement temperature of the isotherm can be 273 K or 298 K which means that 

we can avoid slow adsorption equilibrium, diffusion limitations at 77 K, also pore 

shrinkage of the coal at low temperatures can be overcome by using CO2 for the 

micropore characterization of the coal. Therefore, CO2 can reach narrow and wavy 

micropore structure of the adsorbates due to the high diffusion rate which is called 

activated diffusion [7, 8]. With all these advantages, coal micropore characterization 

has been determined by CO2 since 1964 [9, 10]. In 1984, Smith and Williams 

reported a relation between high pressure methane adsorption capacity and low 
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pressure CO2 adsorption of coal by comparing the results of these experiment and 

observed close results which means that low pressure CO2 adsorption also gives idea 

of the CBM potential [11].  

In 1982, Cohen & Gabrielle published the first report on the biological conversion of 

the coal by microorganisms [12]. Since that time, biological conversion of the coal 

has been a major area of interest for scientists. Biological treatment of the coal can 

be divided into two categories; first one is the removal of the sulfur, nitrogen, metals 

and other unwanted components of the coal and the second one is the conversion of 

the coal like liquefaction, microbial gasificat ion and microbial pretreatment.  

Usually, biological treatment of the coal takes place under mild conditions at low 

temperature and pressure unlike the classic thermo-chemical processes. For instance, 

during the thermo-chemical processes, formation of the gas products and liquid 

hydrocarbons from the coal have been carried out by the thermo catalytic breakdown 

of deeply buried organic matter at relatively high temperatures (> 80
o
C). On the 

other hand, in the anoxic biogasification processes, microorganisms cause 

degradation of the organic content (aromatic hydrocarbons) of the coal to produce 

gas and other hydrocarbons. 

In this study, our primary objective was to understand CBM capacity of the Soma 

coal basin. For this reason, porosity of the coal samples must have been determined. 

Usually, surface area and the porosity of the materials can be calculated through the 

N2 physical sorption experiment, in this method entire relative pressure range (10
-8

 

to 1) can be analyzed without using high pressure equipments [13]. However, for 

microporous materials like carbon materials and zeolites physical sorption occurs at 

very low relative pressure ranges (10
-8

 to 10
-3

) and experiments that are conducted 

with N2 are less reliable due to the low diffusion rate and adsorption equilibrium in 

the pores between 0.5 to 1 nm at 77 K. It is also known that specifically for carbon 

materials experiments that are conducted at low temperatures such as N2 sorption 

causes pore shrinkage that leads to the low sorption equilibrium [14, 15]. On the 

other hand, gas capacity of the coal can be found by using high pressure methane 

adsorption isotherms. For this reason, high pressure volumetric gas adsorption 

experiments were conducted to as received Soma lignite. There are too many 

variables which effects gas adsorption capacity of the coal such as moisture, 
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temperature, type of organic content and amount [16-18]. To understand the 

parameters which effect adsorption capacity of the Soma Lignite, gravimetric 

adsorption experiments were performed. For low rank coals, usually methane 

originated from biogenic activity in the coal beds [19]. Hence, laboratory incubation 

experiments were conducted by using methanogens to simulate underground 

methane formation. 
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CHAPTER 2 

 

2. Literature Review on Coal Bed Methane 

2.1. Coal  

Coal is a complex, heterogeneous, sedimentary organic rock, originated from land 

plants which have been consolidated between other rock strata and altered by the 

pressure and heat over millions of years. It consists of mainly carbon, trace amount of 

hydrogen, oxygen and nitrogen in its structure [20]. Moreover, coal contains significant 

amount of inorganic material in its structure such as clay, silt.   Due to pressure and heat 

conditions, chemical and physical changes occur. With increasing heat and pressure, 

water and water vapor are stated to release from the system and peat form, then lignite 

start to form while CO and CO2 are releases with water vapor, after that bituminous coal 

formation occurs with methane and O2 discharge, finally, anthracite formed due to the 

H2 releases. With proper heat and pressure conditions final formation is the grafite. 

Total of these steps are called coalification. Coal can be classified into five main ranks 

according to the calorific values [21]; 

 Peat 

 Lignite Heating value: below 4610 kcal/kg 

 Bituminous coal Heating value: between 5390 and 7700 kcal/kg 

 Anthracite Heating value: over 7.000 kcal/kg 

 Graphite 

 

2.1.1. Coal in World 

Coal has still been one of the most important energy sources of the world, even though 

it has caused negative impacts for the environment due to the greenhouse gas emission. 

World electricity needs almost rely on coal, in 2003 40% of the world electricity 

generated from coal.  For some countries, this figure is much higher such as for Poland 

over 94% of its electricity relies on coal, for china 77%, for Australia 76% [22]. 
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Coal has been the fastest growing energy source of the world which is higher than gas, 

oil, nuclear, hydro and renewables. In the report of the international energy outlook 

2011, coal consumption will increase 50% of the world from 2008 to 2035 regarding 

any environmental regulations in Figure 2.1. According to the reports, 28% of world 

energy produced from coal in 2008. 60% of this energy was used electricity producers 

and 36 percent to industrial consumers [23]. 

 

Figure 2. 1: Coal share of world energy consumption by sector, 2008, 2020 and 2035 

[23]. 
 

BP data of 2010 are reflecting a current reserves-to-production ratio of 118 years which 

is based on proved reserves of the world in table 2.1. Based on the other most used 

energy sources, coal has the highest reserves to production ratio which indicates that 

coal will be available to meet demand well into the future since recoverable reserves are 

less than total coal resources. This mean that further developments such as improving 

coal mining technology and additional geological assessments of the coal resources, are 

needed.  
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Table 2. 1: World coal reserves [24] 

Coal: Proved Reserves  at end 2010  

   

Million tons Total Share of Total R/P ratio 

US 237295 27.60% 241 

Canada 6582 0.80% 97 

Mexico 1211 0.10% 130 

Total North America 245088 28.50% 231 

Brazil 4559 0.50% * 

Colombia 6746 0.80% 91 

Venezuela 479 0.10% 120 

Other S. & Cent. America 724 0.10% * 

Total S. & Cent. America 12508 1.50% 148 

    Bulgaria 2366 0.30% 82 

Czech Republic 1100 0.10% 22 

Germany 40699 4.70% 223 

Greece 3020 0.40% 44 

Hungary 1660 0.20% 183 

Kazakhstan 33600 3.90% 303 

Poland 5709 0.70% 43 

Romania 291 w 9 

Russian Federation 157010 18.20% 495 

Spain 530 0.10% 73 

Turkey 2343 0.30% 27 

Ukraine 33873 3.90% 462 

United Kingdom 228 w 13 

Other Europe & Eurasia 22175 2.60% 317 

Total Europe & Eurasia 304604 35.40% 257 

    South Africa 30156 3.50% 119 

Zimbabwe 502 0.10% 301 

Other Africa 1034 0.10% * 

Middle East 1203 0.10% * 

Total Middle East & Africa 32895 3.80% 127 

    Australia 76400 8.90% 180 

China 114500 13.30% 35 

India 60600 7.00% 106 

Indonesia 5529 0.60% 18 

Japan 350 w 382 

New Zealand 571 0.10% 107 

North Korea 600 0.10% 16 

Pakistan 2070 0.20% * 

South Korea 126 w 60 

Thailand 1239 0.10% 69 

Vietnam 150 w 3 

Other Asia Pacific 3707 0.40% 114 

Total Asia Pacific 265843 30.90% 57 

    Total World 860938 100.00% 118 
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of which: OECD 378529 44.00% 184 
                 Non-OECD 482409 56.00% 92 

                 European Union # 56148 6.50% 105 

                 Former Soviet Union 228034 26.50% 452 

Source of reserves data: Survey of Energy Resources, World Energy Council 2010. 

 * More than 500 years. 

 Less than 0.05%. 

Notes:  Proved reserves of coal - Generally taken to be those quantities that geological and 

engineering information indicates with reasonable certainty can be recovered in the future from 
known deposits under existing economic and operating conditions. 

Reserves-to-production (R/P) ratio - If the reserves remaining at the end of the year are 

divided by the production in that year, the result is the length of time that those remaining 
reserves would last if production were to continue at that rate. 

 

Coal resources are widely distributed all over the world.  China, USA, India, Indonesia, 

Australia and South Africa are the most notable coal producer table 2.2.   Most of the 

top producers are also top consumer. Only around 18% percent of hard coal is in the 

international coal market. 
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Table 2. 2: World coal production [24] 
Production* 

        
  

Million tons oil equivalent 

 
 

2007 

 
 

2008 

 
 

2009 

 
 

2010 

Change 
2010 over 

2009 

2010 
share 

of total 

US 587.7 596.7 540.9 552.2 2.1% 14.8% 

Canada 36.0 35.6 32.5 34.9 7.2% 0.9% 
Mexico 6.0 5.5 5.1 4.5 -11.4% 0.1% 

Total North America 629.7 637.8 578.5 591.6 2.3% 15.9% 

Brazil 2.3 2.5 1.9 2.1 8.2% 0.1% 

Colombia 45.4 47.8 47.3 48.3 2.1% 1.3% 
Venezuela 5.6 4.5 2.7 2.9 8.1% 0.1% 

Other S. & Cent. America 0.3 0.4 0.5 0.5 -7.0% ◆ 

Total S. & Cent. America 53.6 55.2 52.4 53.8 2.6% 1.4% 

Bulgaria 4.7 4.8 4.6 4.8 5.8% 0.1% 

Czech Republic 23.3 21.1 19.5 19.4 -0.7% 0.5% 

France 0.2 0.1 † † – ◆ 

Germany 51.5 47.7 44.4 43.7 -1.5% 1.2% 

Greece 8.6 8.3 8.4 8.8 5.0% 0.2% 

Hungary 2.0 1.9 1.9 1.9 1.0% 0.1% 
Kazakhstan 50.0 56.8 51.5 56.2 9.2% 1.5% 

Poland 62.3 60.5 56.4 55.5 -1.6% 1.5% 

Romania 6.7 6.7 6.4 5.8 -9.2% 0.2% 
Russian Federation 148.0 153.4 142.1 148.8 4.7% 4.0% 

Spain 6.0 3.7 3.5 3.3 -6.3% 0.1% 

Turkey 15.8 17.2 17.4 17.4 ◆ 0.5% 

Ukraine 39.9 41.3 38.4 38.1 -0.8% 1.0% 

United Kingdom 10.3 11.0 10.9 11.0 1.6% 0.3% 

Other Europe & Eurasia 16.7 17.3 16.9 16.1 -4.3% 0.4% 

Total Europe & Eurasia 446.1 452.0 422.1 430.9 2.1% 11.5% 

Total Middle East 1.0 1.0 1.0 1.0 – ◆ 

South Africa 139.6 142.4 141.2 143.0 1.3% 3.8% 

Zimbabwe 1.3 1.0 1.1 1.1 – ◆ 

Other Africa 0.9 0.9 0.8 0.8 – ◆ 

Total Africa 141.8 144.2 143.1 144.9 1.3% 3.9% 

Australia 217.2 220.7 228.8 235.4 2.9% 6.3% 

China 1501.1 1557.1 1652.1 1800.4 9.0% 48.3% 

India 181.0 195.6 210.8 216.1 2.5% 5.8% 
Indonesia 133.4 147.8 157.6 188.1 19.4% 5.0% 

Japan 0.8 0.7 0.7 0.5 -28.4% ◆ 

New Zealand 3.0 3.0 2.8 3.3 16.8% 0.1% 

Pakistan 1.6 1.8 1.6 1.5 -5.2% ◆ 

South Korea 1.3 1.2 1.1 0.9 -17.3% ◆ 

Thailand 5.1 5.0 5.0 5.0 0.5% 0.1% 

Vietnam 22.4 23.0 25.2 24.7 -2.0% 0.7% 

Other Asia Pacific 23.3 24.3 29.2 33.4 14.5% 0.9% 

Total Asia Pacific 2090.2 2180.1 2314.8 2509.4 8.4% 67.2% 

Total World 3362.4 3470.3 3511.8 3731.4 6.3% 100.0% 

of which:  OECD 1036.6 1039.3 978.2 996.0 1.8% 26.7% 

  

Non-OECD 2325.8 2431.1 2533.7 2735.5 8.0% 73.3% 
European Union 177.4 167.7 157.7 156.0 -1.1% 4.2% 

Former Soviet Union 239.0 252.9 233.2 244.4 4.8% 6.5% 
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2.1.2. Coal in Turkey 

In the last report of the BP statistical Energy Survey 2011, Turkey has approximately 

2243 million tons of coal reserves, 0.3% of the world. Among these reserves, lignite has 

the highest availability, around 1814 million tons.  For 2010, coal production in Turkey 

is given 17.4 million tons oil equivalent, 0.5% of the world. 

Turkey can be considered as medium level in lignite and low level for bituminous coal 

production of the world.  Lignite reserve of Turkey is around 12.4 billion tons and 

workable reserves around 3.9 billion tons. Most of the lignite reserves were used in 

thermal power plants due to their low calorific values. In 2008, 82% of the coal was 

used in thermal power plants, 12% was used in heating and industry. Afşin-Elbistan 

basin has the highest lignite reserves around 46% of the total [25]. On the other hand, 

highest bituminous coal reserves are gathered in Zonguldak Basin which are around 

1322 billion tones and workable reserve 519 million tons [26]. In 2004, 60 percent of 

lignite production belongs to the TKI (Turkish Coal Enterprises), EÜAŞ has 32 percent 

and only 8% percent is produced by private sector [27]. In 2008, TKİ has owned 48% of 

the lignite production and the other part belongs to the EÜAŞ and private sector. In 

2008, coal share is 28% of the total energy consumption in Turkey [28]. 

Research on coal mining in Turkey has been expanding since 2005.  The time between 

2005 and 2008, 4.1 billion tons new lignite reserves were found in Turkey [25]. 

2.2. Coal Bed Methane 

Large amounts of methane, light hydrocarbons, carbon dioxide and nitrogen formed 

during the coalification process of coal. Methane rich gas which is known as coal bed 

methane (CBM) or coal seam gas has been stored in porous structure of the coal. This 

trapped methane gas released during the coal mining processes. CBM has been a well 

known mine hazard subject since the first reported coal mine explosions in USA and 

France in 1810 and1845, respectively [29].  

However, last three decades CBM has attracted attention as a potential energy source. 

Because coal has a high micropore surface area which is allowed to store six or seven 

times more methane into these porous structure than conventional natural gas reservoir 

of the same volume. Beside high methane storage potential of coal, there are many 



10 
 

advantages of the coal bed methane such as most of the coal wells which stored 

methane lies at the shallow depths  which is easy to drill and inexpensive to complete. 

Also most of the methane gas lies in the coal beds therefore there is no need to be 

exploration cost because most of the national coal resources of the countries are well 

known [30]. Most of the methane produced on the coal mines has been vented on air. 

Methane has 21 times more potent a greenhouse gas than is CO2. Therefore, using these 

methane gas as an energy source will reduce the greenhouse effect according to the 

ventilation of methane during the coal mining operations [31].  The other fact is the 

using CBM as an energy source is more cleaner way than conventional carbon based 

energy sources because combustion of the natural gas cause 50% less CO2 emission 

than combustion of coal and it does not produce SO2 or particulates [32].  

Adsorption in the coal wells is a complicated process. Since coal is a porous material 

and it has unique adsorption procedures unlike conventional gas reservoirs. Adsorption 

of coal bed methane occurs in four ways. Firstly, gas molecules adsorbed within the 

micropores. Secondly, gas is trapped in meso and macropores. Then excess gas is 

adsorbed in cleat and fractures of coal. In final step, gas is dissolved in ground water 

within coal fractures. Gas amount decreases from step 1 to 4. Because of the four mode 

of adsorbed gas in the coal, estimation of the total gas amount in coal beds and 

forecasting production history have been less predictable than conventional gas 

resources. It is a problematic issue for exploration and exploitation of coal bed methane 

[33]. 

Coal bed methane extraction studies have been conducted since 1980‘s in USA. In 

2007, CBM covers over 10% of the US domestic natural gas supply. In Australia, there 

were not any CBM production until 1995, however now Australia is the second CBM 

producer in the world around 4 billion m
3
 in 2008. Also, CBM production is a rapidly 

growing industry in China due to the high CBM potential of the nation [34]. Coal bed 

methane production is a new developing subject for countries which has high coal 

reservoir which is shown in Figure 2.2. Researches have been focused on new safe 

mining operation and utilization of methane as an unconventional energy source [29]. 
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Figure 2. 2: CBM reserves in present [34]. 

 

Coal bed methane extraction has been conducted in USA for three decades. Extraction 

of coal bed methane is also different from extraction of gas and oil. Since oil and gas 

production is located above water contact. However for CBM, water is completely 

permeates coal beds and its pressure causes gas molecules to be adsorbed into coal 

structure. For CBM production water must be drawn of coal reservoir first, by this way 

pressure in the coal bed started to reduce and methane will desorbs from the coal 

structure and then flow to the well bore in Figure 2.3. 
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Figure 2. 3: Production scheme of gas and water for a typical coal-bed methane well 

[30]. 

 

On the other hand, CBM production is also environmentally problematic issue because 

of disposal of the large volumes of water which are produced from CBM wells. Due to 

the chemical contain and characteristic of the produced water, it can be reinjected into 

the subsurface or if it is not contain environmentally dangerous materials, it may be 

dispersed on the surface, pump into evaporation ponds or released directly into local 

streams. 

2.2.1. Thermogenic Coal Bed Methane   

Coal bed methane can be originated from thermogenic or biogenic processes [35]. 

During coalification process, maturity of coal which exposed to high temperature and 

pressure   at deeper ground has increased. With increasing maturity, carbon amount of 

coal have increased and large amount of volatile matter which contain high amount of 

hydrogen and oxygen released. Methane, carbon dioxide and water formed during this 

coalification process [19].  
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δ
13

C isotope analysis can be used for determination of origin of the coal bed methane. 

With increasing coal maturity, deuterium rich methane formed (more positive δD) 

which leads to more positive heavy isotope δ
13

C values, it means that methane is 

originated more from thermal activity than biogenic activity [19]. 

Methane originated from thermal activity have occur at medium volatile bituminous and 

higher rank coals which is Ro is greater than 0.6. In USA, Black Warrior Basin 

(Wyoming) Appalachian Basin (West Virginia, Illinois, Pennsylvania) are the example  

of the thermogenic gas reservoirs [36] and in Turkey, due to the  limited high rank coal 

resources, methane with thermogenic origin can only be  found in Zonguldak Basin 

[37]. 

 

2.2.2. Biogenic Coal Bed Methane 

Biogenic gas formed in coal basins is a result of the decomposition of the complex 

matrix of the coal into the smaller fragments and followed by conversion to the methane 

by microorganism [1]. Usually, strict anaerobic conditions, high organic content, also 

low sulfate amount, high pH, low temperature less than 100
o
C, and proper pore size are 

required for the generation of the significant amount of coal [19]. 

Two types of biogenic methane are formed; first one is the methyl type fermentation. In 

this mechanism, methyl groups converted to methane and carboxyl groups converted to 

the carbon dioxide. The other type is the carbon dioxide reduction by methanogens; 

carbon dioxide can be formed by both early bacterial processes and thermal 

decomposition of the organic matter of the coal [19]. Primary biogenic methane occurs 

after peat deposition. However, secondary biogenic methane occur all stage of 

coalification, in this stage surface waters move through the permeable coal beds, by this 

way microorganisms also move with the waters and start methanogenesis in the coal 

bed [38], then generated methane adsorb on the internal surface on the coal in Figure 

2.4. 
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Figure 2. 4: Generation of biogenic methane 

 

Biogenic methane formation favorable in the low rank coals such as lignite, sub 

bituminous coal. Also significant amount of biogenic methane presence can found in the 

bituminous coal [39].  

2.3. Petrography and Chemical Analysis of Coal  

Coal is not a homogeneous substance; it contains various minerals in its structure.  

Determination of these physical components, systematic and descriptic studies are 

needed [40]. In order to classify coal and determine its constituents, petrography 

analyses have been conducted.  

2.3.1. Classification and Description of Macerals 

Macerals are microscopic constituents of the coal analogous to the minerals of inorganic 

rocks. Macerals can be classified three groups: vitrinite also called huminite in low rank 

coals, liptinite or exinite and inertinite.  

2.3.1.1. Vitrinite  

Vitrinite can be considered as the standard coalification product of woody and cortical 

tissues. Types of vitrinite macerals are shown in table 2.3. Vitrinite is the most abundant 

macerals in the coal and more homogeneous than other macerals. 
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Vitrinite reflectance is used to determination of the coal thermal maturity. It is 

proportional to the percentage of the directly incident light which is reflected from 

vitrinite surface [41]. Results can change according to the type of polarization. If plain 

polarized light is using, reflectance value change during the rotation of the sample 

between maximum and minimum values [41]. In standard technique, reflectance of the 

100 particles are measured and arithmetic mean maximum (Rmax) is given as a result. If 

non-polarized light is used to measure vitrinite reflectance, the reflection from all of the 

direction on the vitrinite surface integrated to give a random reflectance Rr.  But usually 

Rmax is used to determine rank of the coal [41].  

According to the coal maturity from lignite to anthracite, the color of the transmitted 

light on vitrinite surface change from yellow-orange, red, red brown, dark brown to 

opaque. On the other hand, color of the incident light varies from dark grey, light gray 

and white depending on the coal maturity [42]. 
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Table 2. 3: Nomenclature of vitrinite and huminite macerals [43]. 

Maceral 

group 

Maceral Maceral 

subgroup 

Source 

Vitrinite Telinite   Woody tissues, leaves, bark, 

branches, roots, etc. 

Collinite  Humic gels 

vitrodetrinite  Degraded fragments of other 

vitrinite macerals 

Huminite 

 

 
humotelinite 

 
Textinite 

ulminite 

 
Woody tissues 

humodetrinite Attrinite 

densinite 

Finely comminuted humic detritus 

humocollinite Gelinite 

corpohuminite 

Colloidal humic gels 

Condensation products of tannis 

 

 2.3.1.2. Liptinite 

Macerals which have higher hydrogen content than vitrinite are called liptinite groups 

[41]. Their origin is also related to the plants other than woody tissue such as spore and 

pollen coats, cuticles and resins etc. Type of liptinite macerals and their sources are 

shown in table 2.4. Their reflectance values are too low compared to the other macerals 

with the same rank [42]. 
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Table 2. 4: Nomenclature of liptinite maceral [43]. 

Maceral group Maceral Source 

liptinite sporinite Spores and pollens 

cutinite cuticles 

resinite Resins and waxes 

alginite algae 

Suberinite 

liptodetrinite 

Bark tissues  

Degradation products of liptinite maceral 

 

2.3.1.3. Inertite 

The last type of macerals which have less hydrogen content than vitrinites called 

inertites shown in table 2.5. In carbonization, they behave inert or semi-inert. Inertites 

are formed from intensive degradation of the matrix which induced by microorganisms 

[41].   

Table 2. 5: Nomenclature of liptinite maceral group [43]. 

 

Maceral group Maceral Source 

liptinite Fusinite  Woody tissue 

semifusinite Woody tissue 

macrinite Uncertain-oxidation of gelified plants 

Micrinite 

Sclerotinite 

inertodetrinite 

Secondary Maceral 

Fungie remains 

Degraded fragments of inertinite  

 



18 
 

2.3.2. Ultimate and Proximate Analysis of Coal 

The proximate analysis gives the relative amounts of moisture, volatile matter or fixed 

carbon. Also, calorific value and tar yield sometimes are given as a result of proximate 

analysis.  

Ultimate analysis is used for the determination of chemical elements in coal like C, H, 

O,N and S [41]. 

2.4. Gas Adsorption  

There are lots of different methods to characterize porous materials such as neutron 

scattering, small angle X-ray, SEM, TEM, mercury porosimetry etc. They are all used 

in the different applications. Gas adsorption is the most favorable porous method 

characterization method among them. In gas adsorption method wide range of pore 

sizes can be determined easily (from 0.35 nm to ≥100 nm) [14]. There are lots of 

options and parameters can adjust according to the experiment such as gas type, 

temperature, pressure range, adsorption model. 

Adsorption can be described as attachment of the particles on the surface. Particles can 

move through the surface by two ways. In elastic scattering, atoms hit to the surface and 

bounced back without any energy loss. In inelastic scattering, atoms hit the surface and 

losses or gains energy.   In gas adsorption, gas solid interface occurs. Solid is called 

adsorbent or substrate. And gas molecule which adsorbs on the solid surface is called 

adsorbate.  Amount of adsorbed gas molecule depend on absolute temperature, the 

pressure and interaction potential between gas and the surface. Due to the interaction 

strength of the molecules, adsorption can be divided into two categories; chemisorptions 

and physisorption [14]. Differences are shown in Table 2.6. 

2.4.1. Chemisortion 

If the interaction energy between adsorbate and adsorbent exceed an absolute potential, 

irreversible adsorption or chemisorption occurs (Figure 2.5). In chemisorption, actual 

chemical bonds formed between the gas-solid interfaces which lead to high heat of 

adsorption. All chemical bonds form when certain activation energy exceed, on the 

surface there can be different sites which has different activation energies. With the help 



19 
 

of the chemisorption, active sites on catalyst surface can be measured by the 

determination of the amount of the chemisorbed gas [14].    

 

Figure 2. 5: Energy of adsorption [44]. 
 

 

Table 2. 6: Differences between chemisorptions and physisorption [45]. 

Physical Adsorption Chemical Adsorption 

Low heat of adsorption (≤2 or 3 times 

latent heat of evaporation) 

High heat of adsorption (≥2 or 3 times 

latent heat of evaporation) 

Non specific regarding adsorbate species Highly specific regarding adsorbate species 

Monolayer or Multilayer. No dissociation 

of adsorbed species. Only significant at 

relatively low temperatures 

Monolayer only. May involve dissociation. 

Possible over a wide range of temperature 

Rapid, non-activated, reversible. No 

electron transfer although polarization of 

sorbate may occur. 

Activate, may be slow or irreversible. 

Electron transfer leading to bond formation 

between sorbate and surface. 
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2.4.2. Physisorption 

When adsorption on the gas molecules on surface happened via weak van der Waals 

forces, reversible adsorption also called physisorption occurs since there is no chemical 

bond formed between adsorbate molecules and the solid surface. It is an exothermic 

process and energy of adsorption is not much larger than energy of condensation of the 

adsorbate (between 8.37-41.84 kJ/mol). Usually at low pressure monolayer adsorption, 

at higher pressure multilayer adsorption is favorable depend on the type of the adsorbent 

and the adsorbate [46]. 

2.4.2.1. Porosity 

 

Most of the materials contain free volume in its structure. They can distributed in the 

material and differ from each other by size and shape. Total of this free volume is called 

porosity [42]. Pores in the material allow to the fluids to flow in or out of the material. 

Porosity strongly affects mechanical and chemical properties of the material.  Two types 

of porosity can be observed; first one is the closed pores. They are not connected to the 

external surface and they are not open for adsorbent molecules, they only affect density 

and mechanical strength of the material. The second types of pores are called open 

pores which are connected to the external surface of the material. These pores are 

accessible to the gas or fluid [42].    

2.4.2.2. Pore Size Distribution 

 

In 1982,  IUPAC are subdivided pores in the material into three classes according to the 

their  sizes; micropores are the pores internal width less than ˂ 2nm and mesopores with 

the internal width between 2 and 50 nm, and pores internal width higher than ˃ 50 nm is 

called macropores [47]. 

Adsorption behavior in macropores is different from mesopore and micropore due to 

their size they behave like flat surface. However sorption behavior in micropores is 

dominated by the interaction between adsorbent molecules and the pore walls; in fact 

adsorption potentials of the opposite pore walls are overlapping.  In adsorption on 

mesopore, in addition to the adsorbent pore wall interaction, interaction between 

adsorbent molecules get important additionally which may lead to capillary 

condensation. It means that gas molecules condenses to a liquid phase in pore at 

pressure less than saturation pressure of bulk fluid [14].   
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2.4.3. High Pressure Adsorption 

Conventional gas adsorption experiments are usually conducted at atmospheric 

pressures. On the other hand, most of the coal bed methane measurements are conduct 

at high pressure. Theories and simulation on gas adsorption based on absolute 

thermodynamic variables. However experimental results generally give excess 

thermodynamic variables. At low pressure, differences between absolute and excess 

values are negligible but at high pressure differences became very important [48]. 

For CBM potential investigation or ECBM procedures, gas adsorption potential which 

is found by excess sorption values provides insufficient information, because excess 

sorption considers the void volume that can be occupied by the gas as a constant 

disregarding the volume of the gas in its sorbed phase. For this reason, using absolute 

isotherms values is preferable therefore it considers the total amount of gas that can be 

sorbed per unit mass of sample included gas amount in its sorbed phase [49].  

2.4.3.1. Excess/Absolute Isotherm 

 

 Excess (Gibbs) Adsorption 

Excess adsorption values can be found from experimental data. This does not refer to 

the real adsorption values. Since, it neglects adsorbed gas phase amount. In volumetric 

gas adsorption systems, known amount of pure gas injected to the system ninj and some 

of the injected gas adsorb in the pores and some of the gas retained equilibrium without 

being adsorb in free gas phase called nunads
Gibbs  . Then adsorb gas amount calculated from 

equation 2.1; 

                                                    𝑛𝑎𝑑𝑠
𝐺𝑖𝑏𝑏𝑠 = 𝑛𝑖𝑛𝑗 + 𝑛𝑢𝑛𝑎𝑑𝑠

𝐺𝑖𝑏𝑏𝑠                                             2.1 

Injected amount of gas calculated from gas conditions, shown in equation 2.2 ; 

                                                         𝑛𝑖𝑛𝑗 =  
𝑃∆𝑉

𝑍𝑅𝑇
                                                        2.2 

𝑍 is the compressibility factor of the gas at injected temperature and pressure. Different 

equation of states can be used for determination of Z. It is a very important parameter 

for gas adsorption experiment especially at high pressures where gas molecules diverge 

from ideal gas behavior.  
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Unabsorbed (free) gas amount can be found by using equation 2.3. 

nads
Gibbs =  

PVvoid

ZRT
 

cell
                                         2.3 

𝑉𝑣𝑜𝑖𝑑  must be found before experiment by using helium according to the formula 2.4. 

 Vvoid =
 

P∆V

ZRT
 

injection

 
P 2

Z 2T
−

P 1
Z 1T

 
cell

                                          2.4 

State 1 refers cell condition before gas injection and state 2 is the equilibrium conditions 

after gas injected in the cells. 

 Absolute Adsorption 

In absolute adsorption, volume of gas adsorbed phase included. Absolute adsorption 

data can be calculated from excess adsorption results. In absolute adsorption, we can 

talk about two gas phase; free gas qgas
bulk  and adsorbed gas phase qgas

ads  . As a result of 

this, total volume of the system contains gas volume Vgas, solid volume Vsolid, and 

adsorbed phase volume Vads.           

Vtop = Vgas + Vsolid + Vads                                                 2.5 

According to equation 2.5, void volume can be found equation 2.6; 

Vvoid = Vgas + Vads = Vtotal − Vsolid                                     2.6 

Quantity of the gases can be written; 

nads = ntotal − nunads                                                  2.7 

The only differences between excess and absolute adsorption is the calculation of the 

𝑛𝑢𝑛𝑎𝑑𝑠  value. 

In excess adsorption, 𝑛𝑢𝑛𝑎𝑑𝑠  can be written; 

𝑛𝑎𝑑𝑠
𝐺𝑖𝑏𝑏𝑠 = 𝑛𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑣𝑜𝑖𝑑 𝑃𝑔𝑎𝑠                                             2.8 

In absolute adsorption, 𝑛𝑢𝑛𝑎𝑑𝑠  can be written;  

nads
abs = ntotal − Vgas Pgas                                                  2.9 
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By using equations 2.8 and 2.9, we can find relation between excess and absolute 

adsorption; 

nads
Gibbs = nads

abs − Vads Pgas                                             2.10 

Adsorbed gas volume can be written; 

Vads =
nads

abs

qads
                                                          2.11 

If we can write equation 2.11 inside the equation 2.10, excess adsorption amount can be 

expressed by two type of gas density; 

nads
Gibbs = Vads (qads − qgas )                                         2.12 

Lastly, by using equation 2.11 and 2.12,  

nads
abs = nads

Gibbs  
qads

qads −qgas
                                           2.13 

By using equation 2.13, we can calculate absolute adsorption amount by using excess 

adsorption amount. 

 At low pressure qads ≫ qgaz ; excess and absolute values very closed to the each 

other nads
abs = nads

Gibbs . 

 At higher pressure 𝑞𝑔𝑎𝑠  start to increase and after certain pressure value, it can 

be very closed to 𝑞𝑎𝑑𝑠  value. And differences between excess and absolute 

adsorption became significant.  

2.5. Coal as a Solid Colloidal 

At any rank, coal possesses certain porosity because of its solid colloidal structure. 

2.5.1. Porosity of Coal 

As explained before, porosity is the free volume of the material occupied by the pores. 

Porosity of the material can be determined by density measurements. Helium and 

mercury displacement methods are generally used for density measurements of coal. 

Other gases and vapors also can be used for the density measurement but their 
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penetration in the coal structure can be completely or partially, depends on the 

molecular dimension and the molecular interaction with the coal. 

At low pressures, helium is capable of penetrate complete pore structure of the sample 

but mercury doesn‘t. Even if high pressures were applied, mercury could not penetrate 

the whole pore structure of the coal. This means that coal contains two pore systems: 

macropore and micropore system which mercury cannot penetrate [41].  

2.5.1.1. Internal Surface of coal 

 

In the first attempts to measure surface area of the coal, heat of wetting values of 

methanol are measured. In 1944, Griffith and Hirst measured internal surface area of 

wide range of coal by determining heats of wetting in methanol which changes from 10 

to 200 m
2
/g [41].   

Then, low pressure gas adsorption method was been used to determine the surface area 

of the coal from BET method. Nitrogen or argon at very low temperature were used as 

an adsorbent and measured values are vary from 0.1 to 10 m
2
/g.  Results were very low 

compared to the heat of adsorption experiment‘s results. The reason of these results can 

be explained by the very low diffusion rate of nitrogen in coal at these temperatures and 

also pore shrinkage of the coal which prevents nitrogen molecules to penetrate 

micropore structure of the coal. Surface area of the coal measured by gas adsorption 

experiments always gives different result at different temperature and different gases 

(Figure 2.7).   
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Table 2. 7: Surface Areas of the coal measured by different adsorbates at different 

temperatures [50]. 

 

C (%) 

Surface area (m
2
/g) 

N2 (-196
o
C) Kr (-78

o
C) CO2 (-78

o
C) Xe (-78

o
C) CO2 (25

o
C) 

95.2 34 176 246 226 224 

90.0 Nil 96 146 141 146 

86.2 Nil 34 107 109 125 

83.6 Nil 20 80 62 104 

79.2 11 17 92 84 132 

72.7 22 84 198 149 139 

 

This causes controversial results of determination of coal surface area. The problem was 

resolved by the low temperature He adsorption experiments. At low temperatures, 

helium is not affected by the thermal contraction of coal. It means that pore shrinkage is 

not the only effect on the low surface area values of coal. Dimension of the adsorbent 

molecule is very important to penetration of the gases in to the microporous structure of 

coal. Nitrogen and methane too big to penetrate these micropores however helium is not 

affected due to its small size.  

After that carbon dioxide was used as an adsorbent to eliminate pore shrinkage at low 

temperatures and its small molecular dimensions. In 1965, Marsh used carbon dioxide 

isotherms to determined coal surface area of coal by using Dubinin-Polanyi methods 

[10]. 

 

2.6. Coal Bed Methane Capacity 

Coal bed methane have been considered to be a potential energy source, on the other 

hand it is also a potential danger for underground coal mining. Either way, quantity of 



26 
 

the methane in the basins must be determined. When amount of underground gas was 

determined, it is very important to determine the content of the gas components. Oppose 

to the free gas in the conventional rock gas reservoirs, gas in the coal beds exist in a 

condensed phase due to the physical adsorption into the pores [51].    

2.6.1. Direct Coal Bed Methane 

In direct methane measurements, total gas content in the coal bed is divided into a 3 

groups; lost gas, desorbed gas and residual gas.  

 Lost gas:  During sample collection and retrieval to the desorption canister, 

some gas from the coal escape which is called lost gas. Amount of lost gas is 

only related to the sampling time. If sampling time is too much, lost gas amount 

is also large or vice verse. There is no other control over lost gas for this reason 

it is the least reliable part of the total gas. Also it cannot directly measured it 

must be estimated from the measured desorbed gas volume data (Figure 2.6) 

[52].  
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Figure 2. 6: USBM direct method lost gas estimation graph [52]. 
 

 Desorbed gas: When sample collect and sealed in canister, significant amount of 

gas desorp from the coal due to pressure differences which is called desorbed 

gas. Determination of the desorp gas amount based on periodically measuring 

pressure differentials in desorption canister as gas is released over time, and 

calculating the desorbed gas volume utilizing the ideal gas law.  

 Residual gas: when desorption rate of the gas in the canister reach very low 

values, desorp gas measurement is terminated. However, there is still trapped 

methane gas at 1 atm inside the pores which is called residual gas [53]. Crushing 

of the sample in an air tight container and measuring the released gas volume as 

the same as desorp gas measurement method [54].  

There are some method to determined total gas amount of the coal such as Bertard‘s 

Direct Method [55] , U.S. Bureau of Mines Direct Method and The NIOSH modified 

direct method which provides a significant level of increased accuracy [52]. 
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Figure 2. 7: Examples of desorp gas measurements techniques [52]. 

2.6.2. Indirect Coal Bed Methane  

 

Total gas content of the coal bed can be also found by indirect gas measurements. In 

this method high pressure gas adsorption isotherms are used. Methane is amount 

determined by the pressure change and the temperature.  Isotherms provide information 

of maximum amount of methane sorption or maximum storage capacity of the coal 

beds. However, total methane amount calculated from the isotherm data are not the 

actual data since all coal beds are not fully saturated with methane especially beds in the 

shallow depths. Therefore indirect gas measurements are not the crucial factor for mine 

safety but it can be very useful for preliminary assessment tool for mine planning 

purposes or targeting potential areas for commercial coal bed methane exploration [52]. 

2.6.3. Factors Effecting Coal Bed Adsorption Capacity 

There are several factors affecting the coal bed adsorption capacity of coals 

significantly. They must be carefully determined to correct estimation of the coal bed 

methane potential of the reservoir.   
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2.6.3.1. Temperature  

 

Coal bed temperature is the one of the most important parameter to change adsorb gas 

amount in the coal beds. At higher temperatures, gas in the free state in the coal mines is 

higher than adsorbed state. Adsorption in the gas phase is an exothermic process which 

means that at lower temperature, equilibrium favors to the adsorption in the coal on the 

other hand desorption is the dominant process at higher temperatures [56]. At elevated 

temperatures gas potential of the coal bed start to decrease due to decrease of the 

adsorbed gas amount [42]. 

2.6.3.2. Moisture  

Gas sorption of the coal is decreasing with the increasing moisture content of the coal. It 

can be explained that water molecules adsorb the porous structure of the coal as a result 

of this; accessible micropore volume on the coal is reduced. Usually dry coal adsorbs 

more gas than moist coal. Studies show that linear decreasing on the methane capacity 

of coal with increasing moisture content [16]. However above certain moisture content, 

adsorption amount of the coal does not change which means that water adsorbed all 

possible sites which they can, the other sites available for the gas molecules. 

Researchers show that 1% moisture content can reduce 25% adsorption capacity of the 

coal and in another study 5% moisture cause 65% decrease in the adsorbed gas amount 

[57]. 

2.6.3.3. Ash Content  

 

Adsorption capacity of the coal is increasing with decreasing ash content. Mineral 

matter in the coal adsorbed negligible amount of gas in its structure and also block the 

micropores in coal. Studies show that isotherms are drew against ash free based gives 

significantly higher adsorb gas amount then original isotherms [17]. 

2.6.4. Enhanced Coal Bed Methane  

Coal bed methane is a new and can be a considerably large energy source which takes 

large amount of interest on it. In classic ways, recovery of the coal bed methane has 

been done by reducing the hydrostatic pressure of the coal beds through dewatering. 

Main disadvantage of the process is the low yield around 20-60% of gas can be 

recovered and high amount of waste water produced during the process [46]. The other 
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proposed method is the CO2 injection wellbores into the coal bed to recover methane 

due to the preferential adsorption of the CO2 to methane which is called enhanced coal 

bed methane (ECBM) recovery.  Another idea is to inject flue gas (CO2 and N2) into the 

seam, in this case N2 acts as a stripping agent which is called flue gas-enhanced coal 

bed methane recovery [49]. ECBM is a novel technology which increase methane yield 

and due to the CO2 storage it reduce CO2 emission in to the atmosphere. There have 

been some field examples of the ECBM in the world to improve its potential and usage 

[58]. 

To understand ECBM technology, CO2, N2 and methane adsorption in to the coal must 

be determined at different pressures and temperatures. Also chemical analysis of the 

coal must be studied. Lots of studies have been conducted on ECBM technologies; all 

of them show that CO2 adsorption is always more than methane adsorption at the same 

pressure and temperature by a factor between 2 and 10 [59]. Therefore, coal beds are 

significant CO2 sealing places and allow to store more carbon dioxide that produced by 

the combustion of the recovered methane. 

There are too many benefits of ECBM except from high efficiency methane recovery 

and reducing carbon dioxide emission. Another important benefit of this technology is 

that coal beds which cannot be profitably mined used due to the making available 

substantial amounts of fossil fuel that could otherwise not be used for energy 

production. And this technology gathers most of the energy sources together closed to 

the coal basins and reduce energy transportation [16]. 

2.7. Secondary Biogenic Methane 

During coalification, thermogenic and biogenic processes result in methane production. 

Losses in primary biogenic methane makes it impossible to be used, however, 

secondary methane is produced by microbes that are transported to mature coal seams 

by meteoric recharge [60, 61]. Optimum conditions for methane biogenesis can be 

summarized as: low rank, high permeability and high water content [19]. Essential 

comprehension of biogenesis reactions are compulsory if coal bed methane is active, in 

order to maximize the yield.  
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2.7.1. Methanogenesis of the Coal Beds 

Methane gas is produced by anaerobic microorganisms that are called methanogens.  

Unfortunately, the number of simple carbon compounds that can be converted to 

methane by these microorganisms is limited. H2-CO2 and acetate are the most important 

ones, as well as methanol. Methylotrophs are the methanogens that use methanol, 

methylamines, and dimethyl sulfide as their carbon source [62]. There are also some 

methanogens that utilixe formate, ethanol and isopropanol.  Conversion of coal to 

methane becomes easier as the carbon chains become smaller. Therefore, fermantative 

and acetenogic bacteria addition to methanogens are necessary to increase the 

conversion. Complex substrates are hydrolyzed and fermented by bacteria, that results 

in acetate, longer chain fatty acids, CO2 H2, NH4 + , and HS− formation. H2 and CO2 

are converted to acetate by H2-utilizing acetogenic bacteria. Those microorganisms can 

also convert demethoxylate low-molecular-weight ligneous materials and ferment some 

hydroxylated aromatic compounds to acetate [35]. Aside from H2 utilizing acetogens, 

there is also H2 producing acetogens which produce H2, carbon dioxide, and acetate. 

Those can then be converted to methane by methanogens. This collection of different 

microbial species is referred to as a consortium; for methanogenic consortia, 

interdependencies such as interspecies H2 transfer are common [62]. 

2.7.2. Coal Bioavailability  

By inserting bacterial consortia and nutrients into the coal beds, new methane 

production potential is increased in addition to enhanced reservoir permeability via the 

microbial consumption of coal, waxes, and paraffins [35]. According to biodegradation 

studies, endemic bacteria performs as well as, if not better, than any foreign 

microorganisms site. Therefore, special attention should be payed during the selection 

of bacteria in the consortia. Limiting nutrients shall be included in the consortia as well, 

in order to promote endemic organisms. Since it is easier to break low molecular weight 

carbon chains, which is the common character of low rank coal, low rank coal is open to 

microbial degradation [35].  
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CHAPTER 3 

3. Experimental 

In this chapter, coal characterization steps, characterization devices, gas adsorption 

equipments, and detailed bioprocess experiments were explained. Chapter focused on 

volumetric and gravimetric high pressure gas adsorption mechanism and experiments.  

3.1. Coal Preparation and Preservation   

Characterization of the coal samples which were excavated in different depths from 

Soma Basin in Turkey was performed.  

Coal samples which come from Soma basin were broken and grinded into small 

particles, and then passed through the sieve to reduce particle size to 150 μm. Resulting 

samples were preserved at nitrogen atmosphere.  

Six Soma Samples were used for the analyses. And two Zonguldak coal samples which 

have high maturity were used to compare different types of Turkish coals. 

Sample Origin 

JK-1122 Soma 

JK-1126 Soma 

JK-1135 Soma 

JK-1137 Soma 

JK-1389 Soma 

JK-1408 Soma 

JK-1414 Zonguldak 

JK-1415 Zonguldak 

Table 3. 1: Origin of the samples 
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3.2. Coal Characterization Experiments 

3.2.1. Ultimate and Proximate Analysis 

In order to understand the basic characteristic of our samples ultimate and proximate 

analysis were performed in TÜBİTAK Marmara Research Center (MRC) Energy Institute. 

3.2.2. Rock-Eval Pyrolysis 

Rock-Eval pyrolysis was conducted for determination of level of maturity and type of the 

organic matter contained in the samples. Rock Eval pyrolysis was done using the Delsi-

Nermag Rock Eval II plus TOC module at TÜBİTAK Marmara Research Center (MRC) 

Earth and Marine Sciences Institute.   

3.2.3. Reflectance Analysis 

Petrographic analysis was performed in TÜBİTAK Marmara Research Center (MRC) 

Earth and Marine Sciences Institute by using Leitz MPV microscope that was equipped 

with photomultiplier. 32X optical lens was oiled with immersion oil (refractive index 

%1,518). Fort reflection analysis, a sapphire standard (R= %0,592) was used. 

3.2.4. FT-IR Analysis 

FT-IR analyses of the samples have been conducted by using Thermo Scientific -

Nicolet İS10 FTIR with KBR transmittance accessory. KBR pellets were prepared 

1/100 sample ratio at 9 ton pressure.  

3.3. 
13

C isotope Analyses 

To understand origin of the coal bed gas, 
13

C isotope analyses were conducted by using 

Continuous Flow Gas Chromatography—Isotope Ratio Mass Spectrometer (GC-IRMS) 

at TÜBİTAK Marmara Research Center (MRC) Earth and Marine Sciences Institute 

(EMSI). 

3.4. Solubility Experiments 

For the chemical solubilization experiments, sodium oxalate, sodium carbonate and 

sodium phosphate were used as Lewis bases. 10 ml, 0.1 M aqueous solutions of sodium 

oxalate, sodium carbonate and sodium phosphate at varying pH values (4-12) were 
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prepared. Then 50 mg of coal was added to these solutions. Mixtures were shaken at 

200 rpm, for 24 hours on a rotary shaker. After that time, aliquots were centrifuged at 

5000 rpm for 20 min and absorbance intensities of final solutions were determined by 

using UV-visible spectrometer. 

3.5. Low-Pressure Carbon Dioxide Adsorption Experiments 

Low pressure CO2 micropore surface area and micro porosity experiments were conducted 

at 273 K by using Quantachrome Autosorb Automated Gas Sorption System. Samples were 

outgassed at 373 K for 6 h prior to measurements, this temperature was chosen due to the 

fact that high temperature could cause the collapse of the organic matrix of the coal and also 

low temperature cannot remove water molecules from pores.  

3.6. High Pressure N2 and Methane Adsorption Experiments 

High pressure adsorption experiments were conducted by two different techniques; 

Gravimetric method and volumetric method. In Gravimetric method, nitrogen and 

methane adsorption experiments were conducted by Intelligent Gravimetric Analyzer 

(IGA). 

3.6.1. Intelligent Gravimetric Adsorption (IGA) Experiments 

High pressure gas adsorption experiments were performed by using Hiden Isochema 

Intelligent Gravimetric analyzer (IGA-003) with nitrogen and methane. The IGA has a 

fully automatic microbalance system that allows measuring the weight change as a 

function of time, gas pressure and the sample temperature. The precision of the 

measurement can be controlled by a PC. Long term stability of microbalance is 0.1μg 

with a weighting resolution of 0.2 μg and temperature stability is 0.1
o
C. For nitrogen 

adsorption experiments samples were outgassed at 105
o
C 3 hours under 10

-6
mbar 

vacuum, for methane experiments samples were only outgassed under vacuum without 

any heat treatment. In order to understand the effect of outgas temperature to methane 

adsorption capacity of the coal, only one sample was outgassed at 105
o
C 3 hours. For 

nitrogen experiments, linear driving force mass transfer model was used to get 

asymptotic uptake for every pressure point at 298 K up to 9 bar. For methane 

experiment only 6 hours interaction time was used to get thermodynamic equilibrium at 

298 K up to 9 bar without using PC control asymptotic uptake value.  
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3.6.2. Volumetric Adsorption Experiments 

The methane excess sorption isotherms of the coal samples were determined using the 

manometric method in Aachen University, Institute of Geology and Geochemistry of 

Petroleum and Coal. Measurements were conducted at 45°C on powdered ‗as-received‘ 

coal samples. 

Experimental set up is shown Figure 3.1. It consists of reference cell and stainless steel 

sample cell separated with actuator-driven valves and a high precision pressure 

transducer between them. The reference (void) volume is determined by helium 

pycnometry with a calibration experiment.  

Reference volume: Vref 

Sample cell volume: Vsample cell = Vsample + Vvoid                                                        3.1 

Temperature control was provided by temperature controlled oven with high accuracy. 

Before the experiment, sample cell volume which is not occupied by the sample (void) 

is determined by He as an adsorbate. By this method, volume of the sample can be 

found. Gas sorption experiment can be explained in 5 steps. In the first step, 

experimental setup (reference cell and sample cell) was evacuated to establish proper 

conditions then shot-off valve between reference cell and sample cell is closed. In the 

second step, certain amount of gas introduced to the reference cell volume and valve 1 

closed. Successively, 60 minutes are allowed for pressure and temperature equilibrium 

(step 3).  In the fourth step, valve between cells is opened and gas is admitted to the 

sample cell. In this step, gas begins to adsorb on the sample and measured pressure start 

to decrease due to the decrease in the free gas amount. When the system comes to 

equilibrium in a certain amount of time that can be change with 1 hour to 20 hours 

depending on the experiment conditions, equilibrium pressure is recorded and valve 

between two cells is closed. This procedure is repeated for every pressure level until the 

maximum pressure is reached [16, 59, 63].  

The excess amount (excess mass; mexcess) is defined as: 

mexcess= mtotal − V
0

void⋅ ρmethane (T , p )                                                                             3.2  

Here mtotal denotes the total mass of methane transferred into the measuring cell up the 

corresponding pressure step, V
0

void is the initial void volume of the cell (as determined 
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by helium pycnometry). The density ρmethane (T, p) of the gas phase as a  function of 

pressure and temperature is calculated using the equation of state (EOS) for CH4 of 

Setzman and Wagner [64]. Helium density is calculated using the reference equation of 

state GERG-2004 for natural gases and other mixtures [65, 66]. 

 

Figure 3. 1: Schematic flow diagram of volumetric system [66] 
 

 

3.7. Biogasification Experiments 

For the biogasification experiments, methanobacterium formicicum was brought DSMZ 

as an active culture. And ―ATCC medium: 1045 methanobacteria medium‖ was used. 

This medium was chosen due its Lewis base potential. 

3.7.1. Media Preparation 

Following solutions were prepared. 

Mineral Solution 1: 

K2HPO4 .......................................................................................................................6.0 g 

Distilled water.............................................................................................................1.0 L 

Mineral Solution 2: 
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KH2PO4 .......................................................................................................................6.0 g 

(NH4)2SO4....................................................................................................................6.0 g 

NaCl...........................................................................................................................12.0 g 

MgSO4.7H2O ..............................................................................................................2.4 g 

CaCl2.2H2O .................................................................................................................1.6 g 

Distilled water.............................................................................................................1.0 L 

Sodium Carbonate Solution: 

Na2CO3 ......................................................................................................................8.0 g 

Distilled water.......................................................................................................100.0 ml 

And Wolfe‘s mineral and vitamin solutions were purchased from ATCC as a ready to 

use solutions. Their composition is given below. 

Wolfe's Mineral Solution: 

Nitrilotriacetic acid........................................................................................... ...........1.5 g 

MgSO4.7H2O ..............................................................................................................3.0 g 

MnSO4.H2O ................................................................................................................0.5 g 

NaCl.............................................................................................................................1.0 g 

FeSO4.7H2O................................................................................................................0.1 g 

CoCl2.6H2O ................................................................................................................0.1 g 

CaCl2 ..........................................................................................................................0.1 g 

ZnSO4.7H2O ..............................................................................................................0.1 g 

CuSO4.5H2O ............................................................................................................0.01 g 

AlK(SO4)2.12H2O.....................................................................................................0.01 g 

H3BO3 .......................................................................................................................0.01 g 
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Na2MoO4.2H2O........................................................................................................0.01 g 

Distilled water............................................................................................................1.0 L 

Wolfe's Vitamin Solution: 

Biotin.......................................................................................................................2.0 mg 

Folic acid.................................................................................................................2.0 mg 

Pyridoxine hydrochloride......................................................................................10.0 mg 

Thiamine . HCl........................................................................................................5.0 mg 

Riboflavin................................................................................................................5.0 mg 

Nicotinic acid...........................................................................................................5.0 mg 

Calcium D-(+)-pantothenate....................................................................................5.0 mg 

Vitamin B12.............................................................................................................0.1 mg 

p-Aminobenzoic acid...............................................................................................5.0 mg 

Thioctic acid..................................................................................................... ........5.0 mg 

Distilled water.............................................................................................................1.0 L 

Reducing Agent: Reducing agent is used for the most anaerobic media to reduce redox 

potential at optimum level. In this study, L-Cycteine.HCl and Na2S.9H2O were used as 

a reducing agent.  

For 20 ml solution, 300 mg L-Cystein.HCl was added to 10 ml water and 300 mg 

Na2S.9H2O to 10 ml water separately in a serum bottles and flow with nitrogen at least 

30 minutes by using sterile 15 cm needles and sealed with butyl rubber stopper and 

aluminum crimp under nitrogen gas. Then two solutions were autoclaved at 121
o
C for 

15 minutes and allow cooling. After that, equal amount of L-Cystein.HCl and 

Na2S.9H2O were mixed in glovebox under argon gas.  Final solution was clear and used 

just for two weeks. Once in every two weeks fresh reducing agent was prepared. 

Resazurin (Oxygen Indicator, Redox Sensitive Dye): To control anaerobic condition of 

the media, redox potential of the media must be observed. For this reason redox 
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sensitive dye resazurine was used since it is non-toxic to bacteria and very effective at 

low concentrations. Resazurine is originally dark blue color (inactive form) and it must 

be reduced to be activated. Therefore in first step, resuzurin reduced to resorufin which 

has a pink color, which is an irreversible step, by boiling mineral media which contains 

resazurin under oxygen free gas. After the first step, reversible second step occurs and 

hydroresorufin formed which is colorless, which indicates that oxygen free media is 

produced. Resorufin/hydroresorufin redox couple turns into colorless below a redox 

potential of about -110mV and regains a pink color at a redox potential above -51mV.   

 

Figure 3. 2: a) Hyrdroresorufin (completely oxygen free media) b) resorufin reduced 

form (activated) c) Inactive resazurin  

3.7.2. Anaerobic Incubation in Serum Bottle Experiments 

For biogasification experiments, firstly mehanobacterium formicicum was grown on the 

20 ml medium in 100ml serum bottles. Briefly, 20 ml medium contained; 

16.62 ml double distilled water, 1.0 ml Mineral solution 2,  0.5 ml Mineral solution 1, 

1.0 ml  8.0% Na2CO3 solution, 0.2 ml Wolfe's Mineral solution 0.2  ml Wolfe's Vitamin 

soltion, 0.4  ml Reducing agent, 0.08 ml  Resazurin (from 0.025% resazurin solution).  

First of all water and mineral solution 1, mineral solution 2, Na2CO3 solution and 

Wolfe‘s mineral solution were mixed. Then resazurin was added to the solution and pH 

a 
b c 
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was adjusted to 7.2 by using 1 M NaOH and HCl.  Then, serum bottles were boiled 

under high purity nitrogen which is passed through the cotton packed syringe barrel 

with sterile needles, during boiling, loss water was compensated with additional water 

whose pH was adjusted to 7.2 before. When the solution is reduced, pink color forms.  

However, when high purity nitrogen is passed, colorless solution is not formed due to 

the high amount of oxygen.   

 

Figure 3. 3: Medium prepared by using nitrogen. 

 

For this reason, high purity carbon dioxide which has oxygen content below 5 ppm was 

used as an oxygen free gas due to the higher density than air and good solubility in 

water. When CO2 was used, medium became colorless after prolonged times. Therefore, 

while gassing of the medium, adding 0.2 ml reducing agent shortens the time, and 

medium turns into colorless in around 2 hours.  When the media was completely 

reduced (free of oxygen), needles were removed and septum sealed with aluminum 

crimp by using crimper. 
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Figure 3. 4: : a) Gassing of the media b) Reduced media inside the serum bottles. 

Then, reduced medium was autoclaved at 121
o
C for 15 minutes and cooled under argon 

atmosphere in glovebox. Glovebox was sterilized by using UV lamb for 1 hour before 

every usage.  Then, 0.2 ml Wolfe‘s vitamin solution and 0.2 ml reducing agent was 

added to the medium by using sterile syringes.  Finally, 20 ml medium were inoculated 

with 0.5 ml active methanobacterium formicicicum culture inside the glovebox. After 

that, media was removed from the glovebox and 80% H2 and 20% CO2 gas mixed was 

passed through the media for 5 minutes with sterile needles and cotton filled syringe 

barrels. Bottles placed in a shaker at 37
o
C and agitated at 150 rpm for 3 days. After 3 

days of incubation 5 ml culture medium was transferred to the 60 ml pre-reduced media 

and 80% H2 and 20% CO2 gas mix was passed through the media again. Some of the 

samples turn to pink color during incubation and they were terminated. Only successful 

incubations were used. The microorganism incubation procedure is summarized in 

Figure 3.6. 

 

Figure 3. 5: Successful incubation (colorless), failed incubation (purple) 

a b 
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Figure 3. 6: Microorganism incubation procedure. 

 

 

16.62 ml DDI water 

1.0 ml Mineral solution 2 

0.5 ml Mineral solution 1  

1.0 ml  8.0% Na2CO3 solution 

 0,2 ml Wolfe's Mineral solution 

0,08 ml resazurin 

was mixed in a serum bottles   

pH was adjusted to 7.2 by using 1 M HCl and 1 M NaOH 

Oxygen free gas was passed through the cotton filled syringe barrel to the media 

while boiling by using sterile needles 

0.2 ml Reducing agent was added 

When the solution became colorless, bottles were sealed with alimunium crimp 

Autoclaved at 121oC for 15 minutes 

Cooled under oxygen free gas inside the glovebox 

0.2 ml Wolfe‘s vitamin solution and 0.2 ml reducing agent were added with sterile syringes 

0.5 ml active culture added with sterile syringe inside the glove box 

Media was removed from the glovebox and 80% H2 and 20% CO2 gas mixed was passes 

through the media for 5 minutes with sterile needles and cotton filled syringe barrels 

Bottles placed in a shaker at 37oC and agitated at 150 rpm for 3 days 

After 3 days of incubation, 5ml culture medium were transferred to the 60 ml pre-reduced 
media 
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3.7.2.1. Anaerobic Incubation with coal in Serum Bottles 

 

2 g Soma lignite (particle size less than 150 µm) was added to 20 ml medium reduced 

with high purity argon (oxygen level below 3 ppm) while gas was passing through the 

medium. Prior to inoculation, the sealed, pressurized bottles were sterilized in an 

autoclave at 121
o
C for 15 minutes and cooled inside the glovebox. Then, 0.2 ml Wolfe‘s 

vitamin solution and 0.2 ml reducing agent was added to the medium by using sterile 

syringes. Afterwards, 5 ml of 60 ml methanobacterium formicicicum active culture 

which has been grown for three days was added on top of them with sterile syringe 

inside the glovebox. Final bottles were pressurized different gases and placed the 

incubator at 37
o
C and 150 rpm.  

Four types of incubation were prepared: 

1
st
 Set: 2 g Coal in 20 ml medium + 5ml microorganism + 80% H2 and 20% CO2 

were passed through the media for 5 minutes 

2
nd

 Set: 2 g Coal in 20 ml medium + 5 ml microorganism + 100% H2 was passed 

through the media for 5 minutes 

3
rd

 Set: 2 g Coal in 20 ml medium + 5ml microorganism + 100% Argone was 

passed through the media for 5 minutes 

4
th
 Set: 2 g Coal in 20 ml medium without Na2CO3 solution + 5 ml 

microorganism + 100% Argon was passed through the media for 5 minutes 

3.7.3. Anaerobic Incubation in Bioreactor 

For the bioreactor experiment, Sartorious-Stedim Biostat A-plus autoclaveable 

bioreactor with 1 liter working volume was used. Before the experiment, pH and 

oxygen probes were calibrated. Oxygen probe was calibrated by using high purity 

nitrogen for zero oxygen and dry air for 100% of oxygen value. Reactor was designed 

to working with air, oxygen, nitrogen and carbon dioxide but not hydrogen. Therefore 

all sealing screws were reversed and 2 o-rings were used for every screw to seal the 

reactor against any hydrogen leakage.  

1 liter anaerobic medium was prepared, for the first irreversible reduction step of 

resazurin, media must be boiled. However, reactor is not designed for the high 
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temperature processes due to the heating jacket. Therefore, 1Liter medium was boiled 

on the heater. When resazurin was reduced to resorufin, media was placed the 

bioreactor and gassed with high purity carbon dioxide shown in Figure 3.7.a. Although, 

oxygen probe indicated the 0% oxygen value, medium did not turn into colorless. This 

result indicates that, the zero set of oxygen probe is not sufficient for the process. 

Therefore, it has been decided to take the electric current value reading from the probe 

as a reference instead of the zero set of the probe. When the solution became colorless, 

electric current reading from the probe was 1.8 nA shown in Figure 3.7.b.  After that, 

75g Soma lignite whose particle size is below 150 µm was added into the solution and 

the bioreactor was sealed. Carbon dioxide flow was stopped. During this procedure pH 

was kept at 7.2 by the pH controller. Before autoclaving, pH controller was removed 

from the system in order to avoid any oxygen from the 1 M HCl and NaOH solutions. 

Following that, bioreactor was autoclaved at 121
o
C for 15 minutes and cooled under 

CO2 flow. After addition of coal inside the medium, there was no color control for 

oxygen, therefore, electric current value was followed for the oxygen level in the 

medium. When the current value reading was 1.8 nA, 30 ml of 60 ml methanobacterium 

formicicicum active culture which has been grown for three days was added by using 

sterile syringe and gas flow were changed to 80% H2 and 20% CO2. Gas flow was 

continued about 15 minutes then gas flow was stopped and sealed. Then bioreactor was 

adjusted at 37
o
C and 150 rpm shown in Figure 3.7.c. 
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Figure 3. 7: Media in bioreactor. a) Reduced media, b) Completely colorless oxygen 

free media c) Coal-medium slurry.   

a 

b 

c 
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In this experiment, methane generation was not determined. Only small amount of 

sample was removed after 10 days of incubation and investigated under optical 

microscope. 

3.7.4. Methane Determination 

 Culture tube headspace samples were drawn using aseptic, anaerobic technique with a 

50 μL gas syringe (SGE, 100 μL Gas sealing gland (GSG) syringe) equipped with 

removable 25 gauge needle.  Methane analysis was performed using a Shimadzu 

GCMS-QP2010 Plus gas chromatograph-mass spectrometer, equipped with a Restek 

RT-Q-Band 30×0.32 mm fused silica capillary column. The injection port was 

maintained at 180 °C, the oven temperature was kept at 35 °C for 2 minutes and started 

to increase up to 250
o
C with the rate 20

o
C/min, ion source was at 230

o
C and the 

detector was operated at 250°C. The retention time for methane was 1.5 min. 

Calibration standards consisting of 4% or 10% methane compensated with helium (from 

Linde Gas) were injected at atmospheric pressure to generate the calibration plot. For 

calibration and real measurements same method file was used and methane was 

determined on a daily basis.  

For calibration sampling, 50 ml bulb Erlenmeyer flask with stopcock control outlet 

which is closed by butyl rubber stopper, connected with the Sigma-Aldrich freeze and 

thaw glass equipment was used. Freeze and thaw glass equipment has two outlets, one 

of the outlets was sealed with butyl rubber stopper and the other one was connected the 

vacuum pump system and operated at least 15 minutes. Then shut off valve was closed 

and vacuum was closed.  After that, sealed outlet was opened and calibration gas was 

connected to the system and opened at 1 atm pressure adjusted by a regulator. Gas 

started to flow from one outlet to the other about 5 minutes to clear the air from the free 

space. While gas was flowing, shut off valve was opened and gas filled the vacuumed 

Erlenmeyer flask and valve was closed again and 50 μL of sample was removed from 

the system. Diagram of the gas sampling system was described at Figure 3.8.  
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Figure 3. 8: Sampling of the calibration gas a) Vacuum process b) Gas filling process 

  

a 

b 
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CHAPTER 4 

4. Results and Discussion 

 

4.1. Coal Characterization 

In this Chapter, ultimate and proximate analyses, rock eval pyrolysis, maceral 

reflectance results and FTIR analysis of the Soma lignite were discussed 

4.1.1. Ultimate and Proximate Analyses of Soma Lignite 

Ultimate and proximate analyses of the samples were done at TÜBİTAK Marmara 

Research Center (MRS) Energy Institute. Elemental analyses of the samples were 

conducted according to the ASTM D 5373 standard and proximate analysis is ASTM D 

4239 and D 5142.  

Elemental analysis results of the samples were shown in Table 4.1. For six Soma lignite  

samples, standard %C, %S, %N, %H and %O values change from  59.45-68.5%, 0.8-

2.18%, 0.58-2.68%, 4.8-6.23% and 9.99-14.71% respectively. For two Zonguldak 

samples, values vary from 65.16-85.61%, 0.38-0.52%, 1.69-1.84%, 4.41-5.13% and 

1.15-21.57% respectively. Oxygen ratios of the samples were found by using this 

formula %O = 100 - (ash + moisture + C + H + N + S).   
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Table 4. 1: Ultimate analysis of the samples 

 

 Original sample Dry sample 

Sample C% H 

% 

N 

% 

S 

% 

O% H/C O/C C% H 

% 

N 

% 

S 

% 

O% 

JK - 

1122 

67.91 5.85 0.58 2.18 10.59 1.03 0.12 74.94 5.29 0.64 2.41 12.82 

JK - 

1126 

66.75 4.8 1.48 1.01 12.82 0.86 0.14 72.07 4.29 1.6 1.09 14.71 

JK - 

1135 

59.45 5.79 1.89 1.23 11.15 1.17 0.14 63.62 5.41 2.02 1.32 12.69 

JK – 

1137 

65.56 6.23 0.93 1.88 9.26 1.14 0.11 70.53 5.86 1 2.03 10.79 

JK - 

1389 

68.5 5.36 1.15 0.8 10.18 0.94 0.11 76.58 4.67 1.29 0.9 12.69 

JK - 

1408 

68.15 5.74 2.68 0.86 7.33 1.01 0.08 77.98 4.96 3.07 0.98 9.99 

JK-

1414 

85.61 4.41 1.69 0.38 1.02 0.62 0.01 86.62 4.33 1.71 0.39 1.15 

JK-

1415 

65.16 5.13 1.84 0.52 21.57 0.94 0.25 86.30 5.05 1.86 0.53 1.75 

 

By using standard elemental analysis values, H/C and O/C ratios of the samples were 

found and placed into the van Krevelen Diagram  which is the statistical diagram that 

shows origin and maturity of the kerogen in fossil fuel according to the H/C vs O/C 

values. Figure 4.1 shows that all samples were around type-3 kerogen region, which 

belongs to the humic and woody kerogens with low H/C and high O/C ratio. This type 

of kerogen contains high ratio vitrinite or huminite in its structure. 
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Figure 4. 1: van Krevelen diagram of the samples 

 

 

Proximate analyses of the standard and dry ash free samples are shown in Table 4.2. 

Fixed carbon, moisture, ash and volatile matter percentage of the 6 Soma samples vary 

from 41.56-53.23%, 6.56-12.60%, 33.88-42.30% and 2.64-13.93% respectively. For 

Zonguldak samples original fixed carbon, moisture, ash and volatile matter percentages 

change from 61.29-70.21%, 1.16-1.32%, 22.90-32.93% and 4.46-5.73%, respectively. 

According to the results, Zonguldak samples have higher fixed carbon ratio and lower 

moisture percentage compared to the Soma Samples which are classified as lignite [67] 

due to their higher rank.  
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Table 4. 2: Proximate analysis of the samples. 

 

 Original sample Dry sample 

Sample 

 

Moisture 

% 

Volatile 

Matter 

% 

Ash % 

Fixed 

Carbon 

% 

Volatile 

Matter 

% 

Ash % 

Fixed 

Carbon 

% 

JK- 

1122 
9.37 3.52 33.88 53.23 3.88 37.38 58.74 

JK-1126 7.38 5.76 36.01 50.85 6.21 38.87 54.92 

JK-1135 6.56 13.93 37.63 41.88 14.91 40.27 44.82 

JK-1137 7.04 9.1 42.3 41.56 9.78 45.5 44.72 

JK- 

1389 
10.55 3.46 36.83 49.16 3.86 41.17 49.16 

JK- 

1408 
12.60 2.64 37.33 47.43 3.01 42.71 54.28 

JK-1414 1.16 5.73 22.90 70.21 5.80 23.17 71.03 

JK-1415 1.32 4.46 32.93 61.29 4.51 33.37 62.12 

 

4.1.2. Rock-Eval Pyrolysis and Maceral Analysis 

Rock Eval pyrolysis is used to identify the type and maturity of organic matter fuel. 

Program based on heat treatment of the sample in an inert atmosphere and detection of 

quantative mass loss. A unique property of the program is the selective determination of 

the free hydrocarbons contained in the sample and the hydrocarbons and oxygen 

containing compounds (CO2) which are volatilized during the cracking of the 

unextractable organic matter in the sample (kerogen). 

For specific determination of hydrocarbon, gradual increase in temperature is necessary. 

In the first step, temperature of the oven was kept for three minutes at 300
o
C to 

volatilize free hydrocarbons which is called S1 in the program and detected by flame 

ionization detector. In the second step, temperature is increased from 300
o
C to 550

o
C 

with heating rate 25
o
C/min. In this step, volatilization of heavy hydrocarbons (>C40) and 
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cracking of the nonvolatile organic carbons occur which is called S2 peak in the 

program. The hydrocarbons released from this thermal cracking are detected by FID.  S2 

peak is the most important step to determine the maturity of the fuel because in this step 

maximum temperature, which is called Tmax, depends on the nature and maturity of the 

products. In the last step, CO2 from hydrocarbon cracking process is trapped and then 

heated. Released CO2, which is called S3, is detected by TCD.  Total organic carbon 

(TOC) amount of the samples can also be found by this process. Organic matter 

remaining in the sample after pyrolysis is oxidized and detected. Finally, sum of the 

pyrolysis products and the oxidized organic matter gives TOC of the sample. 

Hydrogen index (HI = (100 x S2)/TOC) and oxygen index (OI = (100 x S3)/TOC) are 

used for the determination of type and maturity of the sample. Rock Eval pyrolysis data 

of the samples are given Table 4.3. Soma samples have lower hydrogen content and 

higher oxygen content compared to the Zonguldak samples. TOC values of the Soma 

Lignite are much closed to the each other, changes from 61.3 to 68.31%, much higher 

than Zonguldak samples.    
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Table 4. 3: Rock-Eval pyrolysis of the samples 

 

Sample 

Depth 

(m) 

S1 S2 S3 HI OI 

Tmax 

(
o
C) 

Organic 

Carbon 

% 

JK-1122 
793.50-

793.70 0.24 79.77 4.6 118 7 
396 67.55 

JK-1126 826.65 
0.49 61.19 18.77 90 27 

412 68.31 

JK-1135 
725.90-

726.20 1.29 103.38 15.14 169 25 
408 61.3 

JK-1137 
736.70-

736.90 3.97 161.24 9.42 241 14 
393 66.37 

JK-1389 
1207.2-

1208.7 
0.48 103.3 15.1 158 23 406 65.43 

JK-1408 772.0-773.0 0.68 130.37 10.7 200 16 407 65.29 

JK-1414 Kozlu 0.86 105.84 2.43 212 5 456 49.82 

JK-1415 Armutçuk 5.93 252.74 2.35 476 4 442 53.07 

 

Modified van Krevelen Diagram gives the relation between hydrogen index and the 

Tmax values of the samples. HI data gives the origin of the kerogen and Tmax data gives 

maturity of the products. Tmax = 400°-430°C represents immature organic matter; Tmax = 

435°-450°C represents mature or oil zone; Tmax > 450°C represents the over-mature 

zone. In Figure 4.2., HI vs Tmax data are plotted. As it can be seen in Figure 4.2, Soma 

samples lie in the immature region and type III kerogen. These results are in good 

agreement with the elemental analysis results. However, Zonguldak Coals lie in the 

over-mature zone as expected.  
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Figure 4. 2: Modified van Krevelen diagram. HI vs Tmax relation of the samples [68]. 

According to the maceral analysis results of four samples which are given in the table 

4.4., huminite is the dominant maceral group in the Soma lignite. Studies show that 

vitrinite rich coals have higher microporosity [18, 69]. For this reason, high adsorption 

capacity of the Soma lignite is expected due to the maceral composition which allows 

the micropore formation.  
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Table 4. 4: Maceral analyses of the Soma Lignite 

 

Sample  

No 

Depth 

(m)  

Huminite 

(%)  

Liptinite  

(%) 

Inertite 

(%)  

Ro 

(%)  

JK -1122  793.50-793.70 96 2  2  0.46 

JK-1126  826.65  87  1  12  0.48 

JK-1135  725.90-726.20  78  19  3  0.42 

JK-1137  736.70-736.90 82  16  2  0.44 

 

 

4.1.3. FT-IR Analysis 

Figure 4.3 shows that FT-IR spectrum of the lignite samples which were evacuated 

from different depths of Soma basin. Most of the peaks are common for all samples. 

The broad band at 3400 cm
-1

 is due to the O-H and N-H groups. The peaks at 2900-

2800 cm
-1

 represent C-H stretching vibration of aliphatic and alicyclic methyl, 

methylene and alkyl groups. The intensity of the peak at 2900 cm
-1

 is greater than 

intensity of the peak at 2800 cm
-1

. This shows the presence of long aliphatic chains in 

the samples. Also, the peak at 1600 cm
-1

 and the shoulder at 1700 cm
-1

 indicate the high 

concentration of conjugated carbonyl structures and conjugated aromatic structures. 

Relatively strong band at 1400 cm
-1

 is due to the C-H bend in methyl, methylene or 

aromatic C-H bending. Usually, peaks between 1100 cm
-1

 - 400 cm
-1

 belong to 

inorganic mineral matter in the coal. 
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Figure 4. 3: FT-IR results of the samples 

 

4.2. Gas Analysis 

4.2.1. 
13

C isotope Analyses 

Origin of the desorp gas from Soma samples was found before making any assumption 

due to gas generation.  For this reason, desorbed gas from the coal samples were 

collected and used for the determination of the carbon isotopic ratio of the gasses in 

TÜBİTAK Marmara Research Center (MRC) Earth and Marine Sciences Institute 

(EMSI). Results are shown in Figure 4.4. According to the results, majority of the 

collected samples are in biogenic region, represented as a green dot on the Figure 4.4., 

also one of the samples is in the mixed gas region but very close to the biogenic part, 

which is shown by red dot on the figure. These results confirm that origin of the CBM is 

the result of the bacterial activity [67]. 
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Figure 4. 4: Differentiation of biogenic and thermogenic gas of Soma Lignite 
 

 

4.2.2. Direct Method CBM Results 

After determination of the origin of the gas in Soma Basin, desorbed gas amount was 

calculated by the direct method.  Four borehole samples were immediately placed in the 

gas tight canister and gas desorption was measured in certain time periods [52]. 

Relation with the time and desorption amount was given in Figure 4.5. For all samples, 

lost gas amount, which is the desorbed gas during the extraction of the sample, is 

calculated by the extrapolation of the linear increase part of the graph to time zero. 

According to the results, gas capacities of the Soma Lignites measured from direct 

method vary from1.43 m
3
/ton to 3.86 m

3
/ton.   
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Figure 4. 5: Direct method gas capacities of the samples 

4.3. Low-Pressure Carbon Dioxide Adsorption Experiments 

Coal is one of the materials with high micropore ratio. Since gas adsorption occurs in 

this microporous structure, gas capacity of the coal increases with increasing micropore 

ratio. Even though, there are also other factors that affect the gas adsorption capacity, 

such as moisture ratio, ash amount, etc., microporosity is the most significant effect on 

gas adsorption capacity.  In that sense, for 6 Soma samples and 2 Zonguldak coals 

which were characterized before, porosity determination experiments were conducted 

by using low pressure CO2 experiments.  
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Usually, surface area and the porosity of the materials can be calculated through the 

N2 physical sorption experiments. In this method, entire relative pressure range (10
-8

 

to 1) can be analyzed without using high pressure equipments [13]. However, for 

microporous materials like carbon materials and zeolites physical sorption occurs at 

very low relative pressure ranges (10
-8

 to 10
-3

) and experiments that are conducted 

with N2 are less reliable due to the low diffusion rate and adsorption equilibrium in 

the pores between 0.5 to 1 nm at 77 K. It is also known that specifically for carbon 

materials experiments that are conducted at low temperatures such as N2 sorption 

causes pore shrinkage that leads to the low sorption equilibrium [14, 15].     

Most important factors that affect physical interaction between adsorbent and the 

adsorbate are dynamic radius of the adsorbate, temperature and solubility parameters 

of the materials. In the literature, there are many examples where carbon dioxide gas 

was used for microporous materials instead of nitrogen [2].  Since, dynamic radius 

of the CO2 is relatively smaller than that of N2 (CO2: 3.3 Å, N2: 3.6 Å [4]), also 

solubility parameter of the CO2 is far greater than nitrogen (for CO2 δ=6.1 cal
0.5

cm
-

1.5 
, for N2 δ=2.6 cal

0.5
cm

-1.5
 ). Owing to these superior properties, interaction 

between coal and the CO2 is better than N2-coal interaction [5, 6]. The last and the 

most important parameter is the temperature, for physical adsorption of the CO2, 

measurement temperature of the isotherm can be 273 K or 298 K which means that 

we can avoid slow adsorption equilibrium, diffusion limitations at 77 K. Moreover, 

pore shrinkage of the coal at low temperatures can be overcome by using CO2 for 

the micropore characterization of the coal. Therefore, CO2 can reach narrow and 

wavy micropore structure of the adsorbates due to the high diffusion rate which is 

called activated diffusion [7, 8]. With all these advantages, coal micropore 

characterization has been determined by CO2 since 1964 [9, 10].   
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Figure 4. 6: CO2 adsorption isotherms 

Table 4. 5: CO2 surface characterization results at 273 K 

 

Sample 

 

Organic 

carbon 

% 

DR 

surface 

area 

(m
2
/g) 

DR micropore 

volume 

(cm
3
/g) 

DR micropore 

capacity 

(cm
3
/g) 

R
2
 values 

JK-1122 67.55 248.891 0.083 43.23 0.99861 

JK-1126 68.31 274.73 0.092 47.92 0.99758 

JK-1135 61.3 224.909 0.075 39.06 0.99955 

JK-1137 66.87 232.653 0.078 40.63 0.99941 

JK-1389 65.43 280.097 0.093 48.44 0.99977 

JK-1408 65.29 278.041 0.092 47.92 0.99977 

JK-1414 

Kozlu 
49.82 157.148 0.052 27.08 0.99803 

JK-1415 

Armutc

uk 

53.07 127.646 0.043 22.39 0.99700 

 

For 6 Soma Lignites and Zonguldak samples, CO2 isotherms can be seen in Figure 4.6. 

Low pressure isotherms by CO2 as an adsorbent cannot characterize all relative pressure 

regions due the high condensation pressure of CO2 at 0
o
C which is equal to the 26141 

torr. However, microporous materials like coal, porosity characterization of the 

micropore region can be considered enough for entire porosity since contributions from 
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meso and macropores are very low. Moreover, 0.03 relative pressure is enough for the 

micropore filling processes. 

Micropore surface areas and pore volumes of the samples were calculated by Dubinin-

Radushkevich method. All Soma samples have high micropore surface areas and 

volume. According to the results in Table 4.5, Micropore surface areas and micropore 

volumes of the Soma samples change from 224.909 m
2
/g to 287.097 m

2
/g and 0.070 to 

0.093 cm
3
/g, respectively. CO2 micropore capacities of the samples were calculated by a 

density conversion factor which is equal to the 0.00192 [70]. Calculated capacities of 

Soma Lignites are vary from 39.06 m
3
/ton to 48.44m

3
/ton. Zonguldak samples are much 

lower micropore surface areas than Soma samples. This result proves that gas 

adsorption capacity is not strongly related to the coal rank at a certain level. Gürdal et 

al. [70] show that micropore surface area of the coal decreasing with increasing 

maturity until Ro reach 1.0-1.1 values. After that value, micropore surface area start 

increased with increasing maturity due to bitumen generation in the structure during 

coalification which blocks accessible pores. However after certain maturity bitumen is 

degraded to the gas and pore became accessible again.  

JK-1389, JK-1408 and JK-1126 have the biggest capacity of the all samples. They have 

also highest organic ratio compare to the other samples. Organic carbon structure in the 

coal is the certain region which allows adsorbent molecule to find high interaction 

surface due to the physical van der Waals forces between CO2 molecules and Carbon 

structure. Organic carbon ratio of the Soma samples very closed to the each other (table 

4.5), it is hard to get good correlation. For this reason Zonguldak samples which have 

low organic carbon ratios were also used. In Figure 4.7, D-R micropore surface areas of 

the samples are correlated with organic ratios. As it can be seen in the Figure 4.7, 

microporosity of the samples is increasing with increasing organic carbon ratios.   
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Figure 4. 7: Relation with the organic carbon ratio and surface area  

 

In Figure 4.8, pore size distribution of the six Soma samples can be seen. The graph has 

been plotted the pores under 15 Ǻ according to the Non Local Density Functional 

Theory with device software. Pore distribution became intensified 5.5 Ǻ and 8.5 Ǻ for 

all samples.  Results were concluded that Soma lignite did not contain pores bigger than 

10 Ǻ and different pore formation have not been observed.   
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Figure 4. 8: Pore size distribution of the samples 
 

4.4. High Pressure N2 and Methane Adsorption Experiments 

4.4.1. Intelligent Gravimetric Adsorption (IGA) Experiments 

To understand gas adsorption behavior of Soma lignite and observe the effects of the 

gas adsorption capacity, gravimetric gas adsorption experiments were conducted by 

Intelligent Gravimetric Analyzer (IGA-003) up to 1 MPa. 

As explained in Section 3.3., IGA has completely automatic microbalance system which 

allowed to measure mass uptake in time according to the pressure and temperature 

change. High precision measurements could be attained by gravimetric method with 

long term stability 0.1µg and very low temperature deviation around 0.1
o
C. The 

software of the device used two mass transfer methods (Linear Driving Force and 

Avrami Model) for the get asymptotic uptake for one isotherm point. In Figures 4.9 and 

4.10, IGA system and process schematics can be seen. IGA working principles were 

explained in previous sections. 
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Figure 4. 9: IGA system 
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Figure 4. 10: Process schematic of IGA 

 

 

4.4.1.1. IGA Buoyancy Correction: 

Gas adsorption experiments can be conducted by volumetric and gravimetric methods. 

Gravimetric method can be more accurate and sensitive. It allows high vacuum 

operations and more parameters like pressure and temperature adjustment. In volumetric 

method, dead volume measurement calibration at certain pressure is the source of the 

errors in the measurement. In gravimetric method, buoyancy correction is 

corresponding to dead volume correction applied in volumetric systems. Error is 

absolute and is proportional to pressure, unlike volumetric systems where the error is 
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also cumulative from point-to-point thus making detailed isothermal studies counter-

productive. Effect can be used to determine unknown sample density. Buoyancy 

calculator incorporated in software which allows for provision of non-ideality via use of 

van der Waal‘s constants or Peng-Robinson EOS or compressibility tables. 

      Dmb = Dp M [(dVc/Zc Tc)-(dVs/ ZsTs)] / R                                  (4.1)

    

Dp-pressure change 

M-Molar mass 

dV-Volume displaced 

T-Temperature 

R-Gas constant 

Z -Compressibility 

c - Counterweight 

s   - Sample 

 

 

4.4.1.2. Nitrogen Adsorption Experiments up to 10 bar 

For nitrogen experiments, coal samples were outgassed at 105
o
C for three hours under 

vacuum level 10
-9 

bar around Ultra High Vacuum (UHV). Temperature inside the 

chamber and the outside the chamber was very different than each other due to the high 

vacuum level. Therefore, sample temperature was adjusted by the thermocouple inside 

the sample chamber to make sure that outgas temperature was reached to desired value. 

Then outgas step have been continued until the constant weight was reached at 10
-9

bar. 

The unique property of IGA is the real time processer which realizes to take asymptotic 

values. In nitrogen experiments, mass uptake was very slow, therefore, easy to 

understand.  
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To understand real time processer (RTP) parameters must be known. RTP consist of 8 

parameters.  

 Mode: This is the most important part of the RTP measurements which requires 

a mathematical model for the variation of uptake with time. The software of the 

device has two models, which have in practice both been applied to diverse 

experimental conditions [71]. 

 

The LDF model of the relaxation u(t) is, F1: u(t) = u0 + Δu( 1- exp(-[t – t0’) / k) 

)  where u0 is the uptake at the arbitrary time origin t0’, k is the exponential time 

constant and Δu is the change in uptake. The asymptotic uptake is then equal to 

u0 + Δu. It is applicable for wide range of unknown sorption processes and 

diffusive processes, which become single exponential-like in the long time limit. 

 

Avrami‘s model of the relaxation u(t) is, F2: u(t) = u0 + Δu( 1- exp(-[t – t0’]
x
 / 

k) ) where u0 is the uptake at the arbitrary time origin t0’, k is the time constant, 

x is a variable power and Δu is the change in uptake. The asymptotic uptake is 

then equal to u0+ Δu. Designed for metal recrystallization and it is suitable for 

phase transition. 

 Phase: The initial value of the time origin for real-time analysis. Data prior to 

this time origin is never used for real-time analysis and data collected afterwards 

may be used although the actual time origin. 

 Min Time: It is the minimum time required for data collection.  

 Timeout: It is the maximum time to be adjusted during the mass relaxation. For 

unknown samples, it must be high as possible as to get equilibrium. 

 Wait until: Which is the required equilibrium criteria for RTP.  It can be defined 

for the sufficient data is acquired when the uptake has changed by a defined 

fraction of the difference between the initial reading u00 and predicted 

asymptote (u0 + Δu).  

 RTP min: This is the minimum uptake change for the real time analysis attempt 

to get asymptote value. Typically 0.1-10 µg. 

 RTP tolerance: Which is refer to the deviation of the last reading from the 

average deviation of the fit trajectory between the time origin t0’ and the current 

time t. 



69 
 

 Acquisition Min.: which is the target interval for weight acquisition 

Temperature is another parameter to get asymptotic value for the one isotherm point. 

IGA did not have computer control water bath therefore temperature equilibrium was 

provided by the water in a Dewar which is was temperature equal to the room 

temperature and Temperature Deviation Limit was attained 0.2
o
C by this way. 

To understand adsorption of the different gases into coal, nitrogen adsorption 

experiments were done up to 1MPa. Also, Investigation of the nitrogen adsorption must 

be very useful for Flue-gas Enhanced Coal Bed Methane mechanism (N2-CO2 mixture 

injected to the underground). 

 

Figure 4. 11: Nitrogen adsorption isotherms at 298 K 

 

In Figure 4.11, nitrogen adsorption isotherms of the samples are shown. Zonguldak coal 

samples JK-1414 and 1415 have a lower nitrogen adsorption capacity than Soma lignite 

samples due to their low porosity. Nitrogen sorption in coal was a diffusion limited 

process, uptake was very low compared to methane and CO2. Nitrogen could not be 

adsorbed in micropores of the coal due to its low diffusion rate and high dynamic 
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radius. Therefore, sorption in the mesopores and macropores was a more effective 

parameter for N2 adsorption compared to the methane and CO2 adsorption. For Soma 

Lignites nitrogen adsorption capacities changed from 2.76 m
3
/ton to 6.44 m

3
/ton 

Nitrogen isotherms up to 9 bar by using asymptotic values show that JK-1122 has 

higher adsorption capacity than the others. 

Interface of the software can be seen in Figure 4.12 for one isotherm point. Adsorption 

equilibrium can be followed in real time by the software. As it can be seen in the figure, 

uptake reaches equilibrium while asymptotic value is being recorded.  

 

Figure 4. 12: The interface of the software used for one isotherm point 
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4.4.1.3. Methane Adsorption Experiments up to 9 bar 

In methane sorption, real time processer was not used due to the high deviation of the 

uptake reading. Therefore, 6 hours interaction time was enough to get equilibrium and 

understand methane adsorption capacity. 6 hours was chosen by trying 3 hours and 10 

hours interaction time. 3 hours was too short for the complete equilibrium and 10 hours 

consumed too much machine time for one isotherm point.  Temperature stability was 

provided by the same method as the nitrogen sorption experiments. In the literature, 

equilibrium times for methane adsorption vary as a function of particle size. 

Researchers used different equilibrium times for different particle sizes (Figure 4.13). 

According to the results, 6 hours interaction time for our 150 µm particles was 

consistent with literature.  

Table 4. 6: Equilibrium times in the literature [49] 

Author Grain Size (µm) Temperature(K) 
WaitingTime 

(hours) 

Chaback et al. 1996 93-300 300-320 6-18 

Clarkson and Bustin 

1999 
1840 273 7 

Busch et al. 2006 63-2000 318 1 

Goodman et al. 2004 250 295-328 0..5-12 

Siemons and Busch 

2007 
200 318 20 

Day et al. 2008 500-1000 326 4 

Gruszkiewicz et al. 1000-2000 308-313 50 

Majewska et al. 2009 20000x20000x10000 298 440 

Goodman et al. 2006 250 328 96 

Battistutta et al. 2010 1000-2000 318-328 336 
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Methane adsorption is far greater than nitrogen adsorption to the coal due to the strong 

interaction of the C-C van der Waals forces and easy access (i.e.: smaller dynamic 

radius) to the micropore structure of the coal (see Figure 4.14), JK-1389 which has the 

one of the highest organic carbon ratio, also has the highest adsorption capacity. 

Therefore micropore structure of the coal strongly related to the organic carbon pattern 

so adsorbent finds available sites in these organic patterns. 

 

Figure 4. 13: High pressure gravimetric methane adsorption 
 

As it can be seen Figure 4.13, JK-1389 and Jk-1408 had higher methane adsorption 

capacity than the others like CO2 adsorption. They also had higher micropore ratio 

which meant that methane adsorption occurred in micropores. Methane adsorption 

capacities of outgassed Soma Lignites changed from 19.76 m
3
/ton to 26.47 m

3
/ton at 1 

MPa. JK-1414 and 1415 gives the lowest adsorption capacity due to their low 
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micropore surface areas. Gravimetric methane adsorption results were in good 

agreement with the low pressure CO2 results. 

In the literature, there are many arguments about outgas temperature of coal, therefore 

temperature assisted outgas effect on the methane adsorption capacity of coal was 

investigated. In Figure 4.15, sample was outgassed in vacuum at 105
o
C prior to 

adsorption. Other sample was outgassed only in vacuum. Results show that vacuum 

outgassed sample has a higher methane adsorption capacity than the other; it means that 

temperature could cause a collapsed micropore structure of coal, and disturbed structure 

cannot adsorb methane efficiently.  

  

 

Figure 4. 14: JK-1137 adsorption isotherms at 298 K with and without temperature 

outgas prior to experiment. 

 

4.4.2. Volumetric Methane Adsorption Experiments 

Volumetric adsorption experiments up to 17 MPa were conducted in Aachen 

University. As received (moisture equilibrated) samples were used and high pressure 

excess adsorption values are recorded according to the normalized dry, ash-free coal 

mass since this is the standard procedure that has been encountered in the literature. 

Maximum excess adsorption values of the samples change from 9.73 m
3
/ton to 13.13 

m
3
/ton as shown in Figure 4.16. In Figure 4.17, absolute adsorption isotherms of the 

samples are given. Calculated absolute methane adsorption capacities of the samples 
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varied from 12.99 m
3
/ton to 18.13 m

3
/ton. Absolute sorption values were similar to the 

excess sorption in the low pressure region up to ~3 MPa. At higher pressures, absolute 

sorption became significantly higher.  

 

Figure 4. 15:  Excess sorption isotherms of the samples 
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Figure 4. 16: Absolute sorption isotherms of the samples 

 

Absolute adsorption results of the samples can be considered to be true methane 

capacities. Since adsorption experiments are conducted on as-received samples without 

outgassing. For enhanced coal bed methane processes, ratio of CO2 adsorption to 

methane adsorption is very important. Therefore, calculated CO2 micropore capacities 

of the samples were compared to the absolute methane adsorption capacities. Results 

are shown in Table 4.6. According to the data, Soma samples adsorbed at least 2.65 

times more CO2 which was a very encouraging result for ECBM processes.     
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Table 4. 7: CO2/CH4 ratio for ECBM processes 

 

 

Theoretical 

CO2 

adsorption 

capacity 

(m
3
/ton) 

Experimental 

Methane 

Capacity 

(17MPa) 

(m
3
/ton) 

CO2/CH4 Ratio 

JK-1122 43.23 13.31 3.247934 

JK - 1126 47.92 14.02 3.417974 

JK - 1135 39.06 14.75 2.648136 

JK - 1137 40.63 13.8 2.944203 

JK - 1389 48.44 12.99 3.729022 

JK - 1408 47.92 18.08 2.650442 

JK-1414 Kozlu 27.08 18.13 1.493657 

JK-1415 Armutcuk 22.39 13.74 1.629549 

 

According to the high pressure volumetric adsorption results, Zonguldak samples JK-

1414 and JK-1415 had higher adsorption capacities as expected, since they had lower 

microporosity, lower nitrogen and methane adsorption amount upto 1MPa. However, in 

all other sorption experiments, outgas was conducted prior to adsorption. Outgas can 

remove moisture and impurities from the internal surface of the material and make them 

accessible for gas molecules. However, in volumetric adsorption experiments, moisture 

equilibrated samples were used. Therefore moisture amount inside the structure affected 

adsorption capacities, since moisture blocks the pores. Soma Lignites are low rank coals 

and contain more moisture in their structures compared to the high rank Zonguldak 

coals which reduce adsorption capacity of Soma lignite more than Zonguldak coal 

samples. Moisture effect is shown in Table 4.7, at the same pressure, 10% of moisture 

could reduce approximately 90% of the methane adsorption amount. 
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Table 4. 8: Effect of outgas on methane adsorption 

 

 Moisture % 

Outgassed 

Methane 

Capacity at 1 

MPa (m
3
/ton) 

Moisture 

equilibrated 

Methane 

Capacity at 1 

MPa 

(m
3
/ton) 

% Methane 

Capacity Loss 

JK-1122 9.37 22.06875 2.30947 89.53511 

JK - 1126 7.38 20.00773 2.443769 87.78587 

JK - 1135 6.56 22.68581 2.271099 89.9889 

JK - 1137 7.04 20.93032 2.285488 89.08049 

JK - 1389 10.55 26.79849 2.393407 91.06887 

JK - 1408 12.60 23.45107 2.767527 88.19872 

JK-1414 

Kozlu 
1.16 8.034462 3.482192 56.65931 

JK-1415 

Armutcuk 
1.32 6.337493 2.311868 63.52078 

 

4.5. Solubility and Biogasification Results 

To understand underground methane production due to bacterial activity, small lab scale 

anaerobic incubations were investigated. 
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4.5.1. Solubilization Results 

In this study, solubilization of the coal samples was investigated as a beginning. Studies 

showed that, coal can be solubilized biologically or chemically. In biological methods, 

wood-rotting fungi species are able to solubilize/depolymerize low rank coals by 

secreting oxalate ions. Bumpus et al. [72] show that chemically, coal macromolecules 

are solubilized in an alkaline medium, like aqueous solution of oxalate, carbonate and 

phosphate ions instead of using any fungi species. 

  

Figure 4. 17: Leonardite solubilization in different Lewis bases in different pH [72]. 

 

Carbonate, phosphate and oxalate systems could solubilize around 40% low rank coal, 

Figure 4.18. That means that coal can be degraded to small fragments by using Lewis 

bases. In the light of this point, we used different Lewis bases to reach maximum 

solubilization capacity for our coal samples. Effect of pH on the ability of Lewis bases 

to solubilize coal was investigated.  
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Figure 4. 18: pH dependence of Lignite solubilization 

Figure 4.19 shows the comparison of the absorbance intensity at 275 nm of the 

solubilized coal in the aqueous solution of the different Lewis bases at varying pH. The 

UV-visible spectrum of this material was uncharacteristic, gradually increasing in 

intensity through the visible spectrum into the UV. There were no distinct peaks. 275 

nm was chosen to compare all results due to the higher absorbance value of the whole 

spectrum. At high pH values (pH ≥10), solubility of the coal was more in carbonate and 

phosphate anions systems than oxalate anions. On the other hand, at lower pH levels 

between 9≥ pH ≥5, oxalate anion system solubilized coal more effectively. This result 

was important, since in the microbial gasification processes of the coal, harsh conditions 

reduce microorganism‘s activity. Therefore, higher solubilization of the coal at 

moderate pH levels is a very important parameter to increase the efficiency of the 

biogasification processes due to the decomposition of the complex structure of the coal 

into the smaller organic substances which are more easily converted to methane by 

microorganism.  

For the future prospect of this study, Lewis bases will be used for the biogasification of 

the lignite samples to increase efficiency of these processes. 
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4.5.2. Biogasification Results 

4.5.2.1. Optical Microscope Results  

For biogasification experiments, first anaerobic growth of the microorganisms was 

observed; therefore after ten days of incubation of methanobacterium formicicicum in 

bioreactor, 1 ml sample was taken and sealed in the test tube. To visualize 

microorganisms‘ cell, 10 µl samples dropped on the microscope slide and colored with 

resazurine dye. In Figure 4.20-a, optical microscope image of bacterial colony was seen 

in 1000x magnification. In Figure 4.20-b, colored microorganisms can be seen more 

clearly, opaque samples were coal particles and green round images represented 

microorganisms after ten days of incubation. 
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Figure 4. 19: Optical microscope images after 10 days of incubations a) Bacterial 

colony at 1000x magnification b) Bacteria and coal particles at 500x magnification 

Figure 4.20 showed that after ten days of incubation, microorganisms inside the slurries 

still active and detectable.  

4.5.2.2. Bacterial Methane Production Results 

For bacterial gasification process, methanobacterium formicicicum grew in ATCC 1045 

methanobacteria medium under H2/CO2 as the sole carbon-energy source. Serum bottles 

of these strains were overpressurized to 0.5 to 1 bar with a gas mixture of 80% H2 and 

20% CO2. After 3 days of incubation produced methane in the headspace of the bottles 

a 

b 
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were measured. In figure 4.21 and table 4.8, methane production result of the H2-CO2 

culture is shown as an example of the GC-MS spectrum of the products.   

 

Figure 4. 20: GC-MS spectrum of the produced methane after 3 days of GC-MS 

spectrum of the produced methane after 3 days of incubation H2/CO2 as the sole carbon-

energy source 

 

Table 4. 9: GC-MS data of the produced methane after 3 days of incubation H2/CO2 as 

the sole carbon-energy source 

 

Pea

k# 

Ret. 

Time 

Proc. 

From 

Proc

.To 

Mas

s 
Area Height A/H 

Con

c. 
Name 

1 1,511 1,475 1,55 TIC 
1294594

4 

1074049

0 
1,21 

40,3

6 

Methane 

(CAS) 

Marsh gas 

 

After 3 days of incubation with H2-CO2, culture growth was frequently flocculent and 

formation of large cell aggregates which settled down at the bottom of the bottles have 

been observed. Optical density of the microorganisms at that time was measured 0.4 at 

600 nm.  After that soma lignite was incubated with growth microorganisms.  Cell 

concentrations were not quantified, as the presence of coal solids would have interfered 

with such measurements.  

CH4 

 

CH4 
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As explained in section 3.7.2.1 four types of incubation were prepared. In the first set, 

H2-CO2 was added to the coal slurry to enhanced microbial growth to convert coal into 

the methane. Methane production was monitored around 20 days. As it can be seen in 

Figure 4.22, methane production reached to 11 m
3
/ton in three days, after that, 

significant methane production has not been measured. This result indicated that 

produced methane was the result of the CO2 reduction to the CH4 but not coal 

conversion.  

 

Figure 4. 21: Set 1 - Coal-medium with H2-CO2 as the sole carbon-energy source 

results after 20 days of incubation. 

On the other hand, if methane production of the coal degradation occurred, it was too 

low to be observed compared to the CO2 reduction to CH4 by microorganisms.  

In the second set, CO2 was not used; coal was the only source of the carbon conversion. 

H2 was added to the substrate and methane production was monitored. As it can be seen 

on the Figure 4.23, significant increase was observed during incubation. 
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Figure 4. 22: Set 2 - Coal-medium with H2 results after 20 days of incubation. 

Coal can be solubilized with Lewis Base systems. Methanobacterium medium contain 

carbonate and phosphate system. Coal can be degraded into small fragments and 

converted to the methane by methanogenic bacteria. As a result, the coal in this reaction 

act as sole carbon and energy source in excess but conversion to the methane not only 

dependent on carbon amount also H2 is needed to conversion. As it can be observed in 

the results H2 is the limiting agent for the methane production from the coal by 

methanogens. 1 m
3
/ton was a good result for methane production compared to the 

results in the literature. These results also proved that H2-producing microorganisms 

must be included in the consortium (collection of different microbial species) in 

addition to the methanogens.   

In the set 3, coal was the only carbon and hydrogen source for the methanogens. 

Methane production was very limited (Figure 4.24). Because even if, Lewis base system 

convert complex coal structure to small organic molecules, there was no H2 in the 

system for the conversion of the methane for methanobacterium formicicicum. 

Maximum 0.06 m
3
/ton methane production was measured at the end of the 20 day. 
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Figure 4. 23: Set 3 - Coal-medium in argon results after 20 days of incubation. 

Methanogens can convert small carbon molecules to methane. Carbonate in the medium 

may have cause additional methane production.  To understand methane production due 

the carbonate conversion, the set-4 was prepared without carbonate in the medium and 

methane production was monitored. Results are shown in Figure 4.25. There was no 

additional methane production due to the carbonate in the medium was observed. 

Methane production was almost the same as of the set-3. 
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Figure 4. 24: Set 4 - Coal-medium without carbonate in argon results after 17days of 

incubation. 
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CHAPTER 5 

 

5. Conclusion 

In this study, coal bed methane adsorption capacity of Soma lignite and factors that 

affect gas adsorption capacity were examined. For this purpose, chemical and 

petrographical analyses of coal were studied. Then, gravimetric and volumetric high 

pressure gas adsorption experiments were conducted. After determination of biogenic 

origin of the gas produced in the coal bed, gasification experiments were conducted by 

using methanogens to simulate methane generation from coal. As a result of this study, 

following observations were concluded; 

 By using standard elemental analysis values, H/C and O/C ratios of the samples 

were found and placed into the van Krevelen Diagram. Origin of the organic 

matter in Soma Lignites was found to type-3 kerogen that belongs to the humic 

(woody) kerogens with low H/C and high O/C ratio. This type of kerogen 

contains high ratio vitrinite or huminite in its structure. Proximate analyses of 

the samples showed that Soma lignite samples had high moisture content with 

low fixed carbon ratio compared to the Zonguldak coals (JK-1414, JK-1415) 

due to their low rank. 

 Thermal analysis (Rock-Eval pyrolysis) results showed that Soma samples were 

laid in the immature region of the modified van Krevelen diagram due to their 

low Tmax values. But they had high organic carbon ratio compared to the mature 

Zonguldak coal (JK-1414, JK-1415).  

 High pressure volumetric adsorption isotherms up to 17 MPa showed that 

absolute methane adsorption capacities of the as received (without outgas) Soma 

lignite were vary between 12.99 m
3
/ton to 18.08 m

3
/ton at 45

o
C.  

 To understand enhanced coal bed methane capacity of the Soma Lignite, 

calculated carbon dioxide micropore capacity and experimental high pressure 

methane adsorption capacity of the samples were compared. For Soma Lignite, 

CO2 was adsorbed at least 2.5 times more than methane. This was a good result 

for ECBM processes.  
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 Low pressure CO2 adsorption experiments showed that micropore surface areas 

and micropore volumes of the Soma Lignite changed from 224.909 m
2
/g to 

287.097 m
2
/g and 0.070 to 0.093 cm

3
/g, respectively. Results were much higher 

than mature Zonguldak coal samples. Pore size distribution results were 

concluded that Soma lignite did not contain pores bigger than 10 Ǻ and different 

pore formation had not been observed. 

 Micropore surface areas of the samples were correlated with organic carbon 

ratios. Results have shown that microporosity was increasing with increasing 

organic carbon ratio. Mature Zonguldak samples had lower microporosity and 

organic carbon ratio according to the results. It has been observed that organic 

carbon ratio affected microporosity (adsorption capacity) more than maturity of 

the samples. 

 Soma Lignites are low rank coals and contain more moisture in their structures 

compared to the high rank Zonguldak coals. To understand the effect of 

moisture on the adsorption capacity, gravimetric adsorption results with high 

vacuum outgassed samples and volumetric adsorption results on as received 

samples were compared at the same pressure. Moisture could approximately 

reduce the methane adsorption amount by 90% due to blockage of the 

microporosity of the coal structure by water molecules. Also outgas conditions 

were investigated by using gravimetric adsorption experiments. High 

temperature used 105
o
C during outgas with high pressure vacuum conditions 

reduced adsorption capacity significantly compared to the only vacuum 

outgassed results. Removal of moisture at this high temperature regime caused 

some thermal expansion of the coal and the micropore structure to collapse. 

Therefore this disturbed structure could not adsorb methane efficiently.  

 Four types of microbial gasification experiments were conducted by using 

methanobacterium formicicum. Results have shown that methane production by 

using just methanogens was very limited process due to the low degradation of 

the complex carbon structure of coal for the methane production. When, free 

hydrogen gas was given to the system, methane production gradually increased. 

This proved that hydrogen was the limited reagent for microbial methane 

formation. After 20 days of incubation 1 m
3
/ton methane production was 

measured which was a promising result compared to the literature.  
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 According to the results of the set-3 and the set-4 in the biogasification 

experiments, carbonate in the medium did not affect total methane yield. 

 

5. 1. Future Work 

As a future step of our study, thermal expansion of the coal samples up to 150
o
C under 

inert atmosphere can be investigated to understand temperature outgas effect on the coal 

structure. To investigate enhanced coal bed methane processes, methane-carbon dioxide 

replacing ratio in the micropores can be found through the CO2 injection in the methane 

adsorbed samples by using two gas mass flow systems with pressure and temperature 

control. 

For biogenic methane formation processes, methane production due to the endemic 

bacterial population of Soma Basin can be determined. For this reason, underground 

water samples must be collected anaerobically. Moreover, microbial consortium which 

contains species that produce H2 shall be prepared. Then, produced H2 can be used by 

methanogens. This consortium should contain fermentative and acetenogic bacteria in 

addition to methanogens are necessary to increase the conversion. By this way, complex 

substrates are hydrolyzed and fermented by bacteria that result in acetate longer chain 

fatty acids, CO2, H2 formation.  
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