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Abstract

Image formation algorithms in a variety of applications have explicit or implicit

dependence on a mathematical model of the observation process. Inaccuracies in

the observation model may cause various degradations and artifacts in the recon-

structed images. The application of interest in this thesis is synthetic aperture radar

(SAR) imaging, which particularly suffers from motion-induced model errors. These

types of errors result in phase errors in SAR data which cause defocusing of the re-

constructed images. Particularly focusing on imaging of fields that admit a sparse

representation, we propose a sparsity-driven method for joint SAR imaging and

phase error correction. In this technique, phase error correction is performed during

the image formation process. The problem is set up as an optimization problem in a

nonquadratic regularization-based framework. The method involves an iterative al-

gorithm each iteration of which consists of consecutive steps of image formation and

model error correction. Experimental results show the effectiveness of the proposed

method for various types of phase errors, as well as the improvements it provides

over existing techniques for model error compensation in SAR.
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Özet

Çeşitli uygulamalardaki görüntü oluşturma algoritmaları açık veya kapalı olarak

gözlem sürecinin matematiksel modeline bag̃lıdır. Gözlem modelindeki hatalar,

oluşturulan görüntüde kötüleşmeye ve çeşitli bozukluklara neden olabilmektedir.

Bu tezin ilgi alanı ise özellikle harekete bag̃lı model hatalarının ortaya çıktıg̃ı sen-

tetik açıklıklı radar (synthetic aperture radar (SAR)) görüntü oluşturmadır. Bu tip

hatalar SAR verisinde faz hatalarına, faz hataları da oluşturulan görüntülerde bu-

lanıklaşmaya yol açmaktadır. Özellikle seyrek gösterimle ifade edilebilecek sahneleri

gözönüne alarak, aynı anda hem SAR görüntüsü oluşturan hem de faz hatalarının

giderilmesini sag̃layan seyreklik güdümlü bir yöntem öneriyoruz. Bu yöntemde,

faz hataları görüntü oluşturma aşamasında düzeltilmektedir. Problem, karesel ol-

mayan düzenlileştirmeye dayalı bir çerçevede, bir eniyileme problemi olarak ele

alınmaktadır. Yöntem yinelemeli bir algoritmaya sahip olup, her yineleme, görüntü

oluşturma ve model hatası düzeltimi olmak üzere ardışık iki basamaktan oluşmaktadır.

Deneysel sonuçlar, önerilen yöntemin, hem çeşitli tipteki faz hataları için etkinlig̃ini

hem de SAR görüntülemesindeki model hatalarının giderilmesi için geliştirilmiş

yöntemlere göre üstünlüklerini göstermektedir.
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I would like to thank Aytül Erçil for her geneorousity and support. I would like

to thank her also for being a member of my thesis jury. To see her smiling face and

her joyful personality always let me feel better.

I also would like to thank my thesis committee members Gözde Ünal and Ilker
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Chapter 1

Introduction

This dissertation presents a new approach to the synthetic aperture radar (SAR)

autofocus problem. The purpose of this chapter is to: 1) give a brief history of SAR;

2) introduce the SAR autofocus problem; 3) give an overview of existing approaches

and provide a concise description of the approach taken in this work by pointing

out the main contributions; 4) present the outline of the dissertation.

1.1 A Brief History of Synthetic Aperture Radar

(SAR)

In 1960s, cameras and passive radiometers were the most used remote sensing sen-

sors to observe a field on the earth [1]. Since these sensors operate in the visible

or infrared part of the electromagnetic spectrum, they provide fine spatial resolu-

tion. Today, they are still used. However, they are limited with the daylight and

weather conditions. With this type of sensors, imaging may not be possible during

night or in the existence of cloud cover, rain or fog. On the other hand, we know

that the speed of electromagnetic waves is a constant and in the electromagnetic

spectrum, shown in Figure 1.1, as the frequency increases the wavelength decreases

and microwaves have longer wavelengths than the visible and infrared light. This

property of microwave signals help us to overcome cloud cover problem. However,

since the discriminatory power of an optical system is reversely proportional to the

wavelength of the illuminating source and proportional to the antenna aperture size,
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to obtain a good enough resolution with microwave signals, very large antenna aper-

ture sizes need to be used. This fact will be explained in Section 2.1 in more detail.

Figure 1.1: Electromagnetic spectrum (Image taken from the website of Princeton

University.)

Carl Wiley, working at Goodyear (which later became Goodyear Aerospace, and

eventually Lockheed Martin Corporation), in 1951, found that the construction of

a detailed image is possible with a reasonable antenna aperture size based on the

principle that each object in the radar beam has a slightly different speed relative to

the non-moving antenna [2]. Approximately one year after Wiley, researchers at the

University of Illinois independently developed the same idea, as well as developing

beam-sharpening and autofocus concepts. In 1957, the first practical airborne SAR

is developed and used by the University of Michigan [2]. With the development of

SAR, the spatial-resolution problem arising due to the usage of microwave signals

is solved and this fact led to the idea of using a satellite with a SAR sensor for

oceanic observations. In 1978, the first civilian application of synthetic aperture

radar, SEASAT, was launched. Unfortunately, SEASAT could operate only from

June to October due to a short circuit in its power system [2]. After SEASAT,

the evolution of SAR continued with Soviet 1870 SAR in 1987 and then with Mag-

ellan SAR, which imaged Venus, in 1990. Beginning from 90s many SARs have

been placed on satellites in space. Some of them are as follows: Soviet ALMAZ

and European ERS-1 (1991), Japanese JERS-1 (1992), SIR-C (1994), ERS-2(1995),
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Canadian RADARSAT-1 (1995), SRTM (2000) and ENVISAT (2002) [1]. Synthetic

aperture radar (SAR) has recently been and continues to be a sensor of great in-

terest in a variety of remote sensing applications including military, atmospherical,

geological and space observation processes. In Figure 1.2, an example of a SAR

image is displayed.

Figure 1.2: SAR image of a military vehicle

1.2 SAR Autofocus Problem

Due to the advantages of SAR over other sensing modalities, SAR image formation

has become an important research topic. The problem of SAR image formation

is a typical example of inverse problems in imaging. Solution of inverse problems

in imaging requires the use of a mathematical model of the observation process.

However such models often involve errors and uncertainties themselves. As a pre-

dominant example in SAR imaging, motion-induced errors are reasons for model

uncertainties which may cause undesired artifacts in the formed imagery. In SAR

systems, at every aperture position the demodulation time, which is the time re-

quired for the signal transmitted by the SAR sensor to propagate from the SAR

platform to the field and back, is needed to obtain the data used for imaging, from

the returned signals. The inexact knowledge of the demodulation time causes phase

errors in the SAR data which result in defocusing of the reconstructed images [3].
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The most common causes of demodulation time errors are the inexact measurement

of the distance between the SAR platform and the field due to SAR platform posi-

tion uncertainties or random delays in the signal due to propagation in atmospheric

turbulence. Because of the defocusing effect of such errors, this problem is known as

SAR autofocus problem and the techniques developed for removing phase errors are

often called autofocus techniques. Besides the SAR platform position uncertainties,

presence of moving targets in the scene cause phase errors as well. However, the

phase errors caused by moving targets does not affect the entire image, the defo-

cusing appears only in the parts of the image where moving targets exist, i.e., these

phase errors cause space-variant defocusing.

1.3 Overview of Existing State-of-the-Art Approaches

and the Contributions of the Thesis

Various studies have been presented on the SAR autofocus problem [4–19]. One of

the most well known techniques, Phase Gradient Autofocus (PGA) [4], estimates

phase errors using the data obtained by isolating many single defocused targets via

center-shifting and windowing operations. It is based on the assumption that there

is a single target at each range coordinate. Another well-known approach for aut-

ofocus is based on the optimization of a sharpness metric of the defocused image

intensity [5–12]. These techniques aim to find the phase error estimate which mini-

mizes or maximizes a sharpness function of the conventionally reconstructed image.

Commonly used metrics are entropy or square of the image intensity. Techniques

such as mapdrift autofocus [13] use subaperture data to estimate the phase errors.

These techniques are suitable mostly for quadratic and slowly varying phase errors.

A recently proposed autofocus technique, multichannel autofocus (MCA) [14], is

based on a non-iterative algorithm which finds the focused image in terms of a basis

formed from the defocused image, relying on a condition on the image support to

obtain a unique solution. In particular, MCA estimates 1D phase error functions by

directly solving a set of linear equations obtained through an assumption that there

are zero-reflectivity regions in the scene to be imaged. When this is not precisely sat-

isfied, presence of a low-return region is exploited, and the phase error is estimated
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by minimizing the energy of the low-return region. When the desired conditions are

satisfied, MCA performs very well. However, in scenarios involving low-quality data

(e.g., due to low SNR) the performance of MCA degrades. A number of modifica-

tions to MCA have been proposed, including the incorporation of sharpness metric

optimization into the framework [14], and the use of a semidefinite relaxation based

optimization procedure [19] for better phase error estimation performance.

One common aspect of all autofocus techniques referred to above is that they per-

form post-processing, i.e., they use conventionally reconstructed (i.e., reconstructed

using 2D inverse Fourier transform) defocused images in the process of phase er-

ror estimation. Our starting point however is the observation that more advanced

SAR image formation techniques have recently been developed. Of particular in-

terest in this dissertation is regularization-based SAR imaging (see, e.g., [20–22]),

which has been shown to offer certain improvements over conventional imaging.

Regularization-based techniques can alleviate the problems in the case of incomplete

data or sparse apertures. Moreover, they produce images with increased resolution,

reduced sidelobes, and reduced speckle by incorporation of prior information about

the features of interest and imposing various constraints (e.g., sparsity, smoothness)

about the scene. However, existing regularization-based SAR imaging techniques

rely on a perfect observation model, and do not involve any mechanism for address-

ing any model uncertainties.

Motivated by these observations and considering scenes that admit sparse repre-

sentation in some dictionary, we propose a sparsity-driven technique for joint SAR

imaging and phase error correction by using a nonquadratic regularization-based

framework. In the proposed sparsity-driven autofocus (SDA) method, phase errors

are considered as model errors which are estimated and removed during image for-

mation. The proposed method handles the problem as an optimization problem in

which the cost function is composed of a data fidelity term (which exhibits a depen-

dence on the model parameters) and a regularization term, which is the l1 − norm

of the field. For simplicity we consider scenes that are spatially sparse, however our

approach can be applied to fields that are sparse in any given dictionary by using

an l1 − norm penalty on the associated sparse representation coefficients. The cost

function is iteratively minimized with respect to the field and the phase error using
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coordinate descent. In the first step of every iteration, the cost function is minimized

with respect to the field and in the second step the phase error is estimated given

the field estimate. The phase error estimate is used to update the model matrix and

the algorithm passes to the next iteration.

Sharpness-based autofocus techniques [5–12] share certain aspects of our per-

spective, but our approach is fundamentally different. In particular, our approach

also involves a certain type of sharpness metric about the field, but inside of a cost

function as a side constraint (regularization term) to a data fidelity term which

incorporates the system model and the data into the optimization problem for im-

age formation. Hence our approach imposes the sharpness-like constraint during

the process of image formation, rather than as post-processing. This enables our

technique to correct for artifacts in the scene due to model errors effectively, in an

early stage of the image formation process. Furthermore, unlike existing sharpness-

based autofocus techniques, our model error correction approach is coupled with an

advanced sparsity-driven image formation technique which has the capability of pro-

ducing high resolution images with enhanced features, and as a result our approach

is not limited by the constraints of conventional SAR imaging. In fact, our approach

benefits from a dual use of sparsity, both for model error correction (autofocusing)

and for improved imaging. Finally, our framework is not limited to sharpness met-

rics on the scene, but can in principle be used for model error correction in scenes

that admit a sparse representation in any given dictionary.

We have extended the framework we proposed, for space-variant defocusing prob-

lem caused by moving targets in the scene. The phase errors arising due to the

uncertainties on the SAR platform position cause space-invariant defocusing, i.e.,

the amount of the defocusing in the reconstructed image is same for all points of

the scene. Moving targets in the scene cause defocusing in the reconstructed image

as well. However, this defocusing needs to be corrected with a space-variant refocus

algorithm, since the defocusing appears only around the positions of the moving

targets whereas the stationary background is not defocused. Therefore, autofo-

cus techniques developed for space-invariant focusing cannot handle the defocusing

arising in the imaging of a scene including multiple moving targets with different

velocities.
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This not only involves a nontrivial extension of the phase error estimation piece

of our previous framework, but it also provides opportunities for incorporation of

information about the expected spatial structure of the motion errors as well. In

particular, in the new approach, we not only exploit the sparsity of the reflectivity

field, but we also impose a constraint on the spatial sparsity of the phase errors

based on the assumption that motion in the scene will be limited to a small number

of spatial locations. The method effectively produces high resolution images and

removes the cross-range dependent phase errors caused by moving targets.

In conclusion, the main contributions of the thesis can be summarized as follows:

• Existing autofocus techniques perform post-processing, i.e., they use conven-

tionally reconstructed defocused images in the process of phase error estima-

tion. However, our method performs SAR imaging and phase error correction,

simultaneously.

• Existing autofocus techniques use conventionally reconstructed images. How-

ever, the proposed technique uses regularization-based imaging which has

many advantages over conventional imaging.

• We have provided a closed-form solution for phase error estimation in every

cross-range position.

• We have extended our initial framework to the space-variant defocusing prob-

lem arising in the case of moving targets in the scene.

1.4 Organization of the Thesis

In Chapter 2 we cover the preliminaries for our work. This chapter aims to explain

basic SAR principles and provide necessary knowledge on phase errors, existing

autofocus techniques and regularization-based imaging. In Chapter 3, we present

our approach and explain the proposed technique in detail. Moreover, we present

experimental results on synthetic scenes as well as on two public datasets provided

by the U.S. Air Force Research Labaratory (AFRL) for different scenarios. We

also provide results for comparison of our approach with three widely used existing

autofocus techniques and a quantitative analysis of these experimental results. In
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Chapter 4, we extend our framework for moving target imaging and present two

procedures for space-variant focusing. Finally, Chapter 5 summarizes the results we

have obtained, and indicates potential future research directions.
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Chapter 2

Preliminaries

In this chapter, we provide preliminary knowledge about SAR, SAR autofocus prob-

lem and mention existing autofocus techniques. Finally, we cover the basics for

regularization-based imaging.

2.1 SAR Background

2.1.1 Introduction to SAR

SAR is an imaging radar used in a significant part of remote sensing applications.

A desirable property for a remote sensing device is being able to collect reliable

data, independent from the illumination and weather conditions of the environment.

SAR satisfies all these conditions since firstly it is an active sensor, so it produces

its own signals which gives the ability for imaging both day and night. Secondly,

the signals sent by SAR are microwave signals which enable imaging in adverse

weather conditions as well. SAR is mostly used for imaging of the ground from an

aircraft or a satellite. As shown in Figure 2.1, along the flight path of the aircraft

(satellite) the SAR sensor regularly transmits signals to the ground and then receives

the returned signals. The direction of radiation propogation called range direction

where the one parallel to the flight path is called cross-range or azimuth direction.

Imaging is performed using the data which are obtained after a pre-processing of

the received signals. For SAR, resolution in the range direction is based on the

basic echo principle, as in other radars. The transmitted signal is reflected from the

9



Figure 2.1: SAR data collection geometry. (Image obtained from the web site of

Sandia National Laboratories.)

ground points that have the same distance to the SAR platform, at the same time.

By using the round trip flight time and speed of the propagated signal, it is possible

to find the distance between a point on the 2D scene and the SAR sensor. In this

way, the points of a 2D scene which lie at different distances from the SAR sensor can

be discriminated. However, cross-range resolution depends on the antenna aperture

size. Cross-range resolution in radars and resolution in optical systems are analogous

and can be expressed as

ρ =
λwd

w
(2.1)

where λw is the wavelength of the illuminating source, d is the target range, and w

is the width of the antenna aperture or the diameter of the lens. Let us consider

an example, where the wavelength and d are 0.03m and 50km, respectively. This

is a typical wavelength for an X-band radar. If we want a resolution of 1m, then

according to the above expression we need an antenna aperture width of 1500m.

As it is seen, to have a reasonable resolution in the cross-range direction, antennas

of huge sizes, which are very impractical to carry on an aircraft or satellite, are
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required. SAR solves this problem, by sending multiple pulses from a number of

observation points, and then focusing the received information coherently to obtain

a high-resolution 2D description of the scene. Hence it synthesizes the effect of a

large antenna, using multiple observations from a small antenna [23].

2.1.2 SAR Imaging Model

In SAR imaging systems, one of the most widely used signals in transmission is the

chirp signal:

s(t) = Re
{

e[j(ω0t+αt2)]
}

t ≤ |Tpulse|
2

(2.2)

Here, ω0 is the center frequency and 2α is the so-called chirp-rate. For spotlight-

mode SAR, which is the modality of interest in this thesis, the received signal qm(t)

at the m − th aperture position (cross-range position) involves the convolution of

the transmitted chirp signal with the projection pm(u) of the field at that aperture

position.

qm(t) = Re

{∫

pm(u)ej[ω0(t−τ0−τ(u))+α(t−τ0−τ(u))2]du

}

(2.3)

pm(u) =

∫ ∫

x2+y2≤L2

δ (u − x cos θ − y sin θ) F (x, y)dxdy (2.4)

Here, L is the radius of the circular patch to be imaged, F (x, y) denotes the un-

derlying field and, θ is the observation angle at the m − th aperture position. The

corresponding visual description is presented in Figure 2.2. If we let the distance

from the SAR platform to the center of the field be d0, then τ0 +τ(u) is the delay for

the returned signal from the scatterer at the range position d0 + u, where τ0 is the

so called demodulation time. The corresponding graphical illustration is shown in

Figure 2.3. The data used for imaging are obtained after a pre-processing step. In

particular, the returned signal is first multiplied with delayed in-phase and quadra-

ture versions of the transmitted chirp signal which are displayed in (2.5) and then

the output is low-pass filtered [3].

sI(t) = cos(ω(t − τ0) + α(t − τ0)
2)

sQ(t) = −sin(ω(t − τ0) + α(t − τ0)
2) (2.5)
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Figure 2.2: SAR fighthpath and imaging geometry
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Figure 2.3: Reflected signal.

From the projection-slice theorem [24], the pre-processed SAR data r̄m(t) obtained

after this process, can be identified as a band-pass filtered Fourier transform of the

projections of the field [25],

r̄m(t) =

∫

|u|≤L

pm(u)e−jUudu (2.6)

where

U =
2

c
(ω0 + 2α(t − τ0)) (2.7)

Here, c is the speed of light. In 2.6, a quadratic phase term of ατ 2(u) is neglected.

Substituting (2.4) into (2.6), we obtain the relationship between the observed data

r̄m(t) and the underlying field F (x, y).

r̄m(t) =

∫ ∫

x2+y2≤L2

F (x, y)e−jU(x cos θ+y sin θ)dxdy (2.8)

All of the returned signals from all observation angles constitute a patch from the

two dimensional spatial Fourier transform of the corresponding field. These data are

called phase histories and lie on a polar grid in the 2D frequency domain as shown

in Figure 2.4. Let the 2D discrete phase history data be denoted by a K×M matrix

R. Column m of R, denoted by the K × 1 vector r̄m, is obtained by sampling r̄m(t)

(the returned signal at cross-range position m), in fast-time t (range direction)
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Figure 2.4: Graphical representation of an annulus segment containing known sam-

ples of the phase history data in the 2D spatial frequency domain.
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at K positions. In terms of this notation, the discrete observation model can be

formulated as follows [20]:
















r̄1

r̄2

r̄M

















︸ ︷︷ ︸

r

=

















C̄1

C̄2

C̄M

















︸ ︷︷ ︸

C

f (2.9)

Here, the vector r of observed samples is obtained just by concatenating the columns

of the 2D phase history data R, under each other. C̄m and C are discretized approx-

imations to the continuous observation kernel at the cross-range position m and for

all cross-range positions, respectively. f is a vector representing the sampled and

column-stacked version of the reflectivity image F . Note that K and M are the

total numbers of range and cross-range positions, respectively.

2.1.3 Range and Cross-range Resolution

In the pre-processing step, for a certain aperture position, only the signals returning

in the following time interval are considered:

τ0 −
Tpulse

2
+

Tprop

2
≤ t ≤ τ0 +

Tpulse

2
− Tprop

2
(2.10)

Here, Tpulse is the duration of the transmitted chirp signal and Tprop is the patch

propogation time and it is assumed that

Tpulse >> Tprop (2.11)

τ0− Tpulse

2
+ Tprop

2
is the time at which the chirps returning from the far edge target are

firstly received and τ0+
Tpulse

2
− Tprop

2
is the time at which the chirps returning from the

near edge target end. Therefore, the time interval in (2.10) is the only common time

segment for which chirp returns from all targets in the field exist simultaneously [3].

If the limits for the observation time t from (2.10) are substituted into the definition

of U in (2.7), the lowest and highest spatial frequencies are obtained as follows:

2

c
(ω0 − α (Tpulse − Tprop)) ≤ U ≤ 2

c
(ω0 + α (Tpulse − Tprop)) (2.12)
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Since the transmitted chirp signal in (2.2) has a bandwidth of
αTpulse

π
in the frequency

domain and we have assumed that Tpulse >> Tprop, we can write ∆U in Figure 2.4

as follows:

∆U ≈ 4αTpulse

c
=

4πB

c
(2.13)

To determine the cross-range resolution let us use the geometry in the Figure 2.4.

According to that geometry, the following relationship can be obtained.

sin

(
∆θ

2

)

≈ ∆Ucr/2

U0

(2.14)

Here, U0 = 2ω0/c. For very small ∆θ, the relationship in (2.14) leads to

∆Ucr ≈
2ω0∆θ

c
(2.15)

As a result, using the fact that the wavelength of the transmitted signal is given

by λw = 2πc/ω0, the following range and cross-range resolution expressions are

obtained:

ρr =
2π

∆U
≈ c

2B

ρcr =
2π

∆Ucr

≈ λw

2∆θ
(2.16)

2.1.4 Conventional Imaging (Polar-Format Algorithm)

In Section 2.1.2, we mentioned that the SAR phase histories data correspond to the

band-pass filtered 2D Fourier transform of the field. Consequently, the conventional

imaging algorithm for SAR is the polar-format algorithm based on the 2D fast

Fourier tansform (FFT). In polar-format algorithm, first the data are interpolated

from the polar grid to the Cartesian grid and then a 2D inverse Fourier transform

is applied.

2.2 Phase Errors

In SAR imagery, the time required for each radar pulse from the SAR platform to

the patch center and back is called the demodulation time which was defined as

τ0 = 2d0

c
before. d0 is the distance from the SAR platform to the patch center.
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Conventionally, for each pulse, d0 is measured with the inertial measurement units

(IMUs) placed on the SAR platform. However, even with high quality IMU’s, de-

termining d0 within the required tolerances is difficult. Errenous d0 measurements

cause demodulation time errors. The demodulation time error results in phase er-

rors in the SAR data obtained after pre-processing of the received signal. To deal

with this problem, methods have been developed for increasing the accuracy of IMU

systems and for automatically removing the phase errors by post-processing the

reconstructed SAR images. The techniques developed for removal of the effects of

demodulation time errors are called autofocus techniques and using these techniques

has advantages over improving the accuracy of the IMU systems. Improving accu-

racy of the IMU systems helps only in the situations when the cause of phase errors

is the SAR platform position uncertainty. However, except platform position uncer-

tainties, random delays in the signal which occurs through atmospheric turbulence,

also cause demodulation time errors. On the other hand, autofocus techniques can

remove phase errors independent of the error source. Moreover, these techniques

could help avoid significant hardware costs arising from the usage of high accuracy

IMU systems.

Demodulation time errors can be modeled as constant phase errors on each range

compressed pulse. All of the expressions for the SAR imaging model in Section 2.1.2

are based on the assumption that the demodulation time is known exactly. If the

demodulation time is not known exactly, during pre-processing, the received signals

are multiplied with

cos(ω(t − τ0 + ε) + α(t − τ0 + ε)2) (2.17)

−sin(ω(t − τ0 + ε) + α(t − τ0 + ε)2)

instead of the expressions in (2.5). Here, ε is the demodulation time error. In this

case, the output of the preprocessing step becomes

Zε(U) = r̄mε
(t) = e−jε2αej εc

2
U

∫

|u|≤L

pm(u)e−jUudu (2.18)

Accordingly, the phase corrupted and error-free data relate to each other as follows:

Zε(U) = e−jε2αej εc
2

UZ(U) (2.19)
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Since ε2α << 1, after the approximation of e−jε2α ≈ 1, the relationship between the

erroneous and error-free data is obtained as in (2.20) [3].

Zε(U) = ej εc
2

UZ(U) (2.20)

If we substitute the expression in (2.19) into (2.20) we find

Zε(U) = ejεω0ejε(2α(t−τ0))Z(U) (2.21)

The value of (2α(t − τ0)) is generally very small as compared to ω0, so if it is

neglected, we obtain

Zε(U) = ejφZ(U) (2.22)

where φ = εω0 is the phase error and it is different for every aperture position which

means that it affects the reconstructed image along the cross-range. The implication

of such an error in the image domain is the convolution of (each range line of) the

image with a 1D blurring kernel in the cross-range direction. Hence, such phase

errors cause defocusing of the image in the cross-range direction.

An example of SAR platform position uncertainties arises from errors in measur-

ing the aircraft velocity. A constant error on aircraft velocity induces a quadratic

phase error function in the data [3]. A simple 2D SAR data collection geometry is

presented in Figure 2.5 for the analysis of such a scenario. The measured demodu-

lation time τ0ε
at any point in the aperture can be expressed as

τ0ε
=

2

c

√

d2
0 + d2

1ε

τ0ε
≈ 1

c

(

2d0 +
d2

1ε

d0

)

τ0ε
=

1

c

(

2d0 +
(vεts)

2

d0

)

(2.23)

where d1ε
is the incorrect distance between the aircraft and the aperture center and

vε is the measured velocity of the aircraft. If we let the correct aircraft velocity be

v then the correct demodulation time should be

τ0 ≈
1

c

(

2d0 +
(vts)

2

d0

)

(2.24)

Therefore, the error on the demodulation time becomes

ε (ts) = τ0ε
− τ0 =

1

cd0

(
v2 − v2

ε

)
t2s (2.25)
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Figure 2.5: 2D data collection geometry
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As seen in the Equation (2.25) the error is a quadratic function of aperture time

(slow-time) ts or in other words a quadratic function of aperture position vts which

is denoted as m in the discrete data. This demodulation time error corresponds to

a phase error of

φ (ts) = ε (ts) ω0 (2.26)

which can be expressed in terms of the range position errors ∆d (ts) as follows:

φ (ts) = ε (ts) ω0 =
2∆d (ts)

c
ω0 =

4π

λw

∆d (ts) (2.27)

Since the defocus effect of a quadratic phase error with a peak value of π/4 radi-

ans is negligible [3], the maximum position error along the aperture which cause a

negligible phase error can be obtained through:

φmax =
π

4
=

4π

λw

∆dmax (2.28)

which leads to

∆dmax =
λw

16
(2.29)

This result shows that the defocus effect of a range position error up to one sixteenth

of a wavelength is negligible. Another implication of Equation (2.28) is that only

one wavelength of relative range error corresponds to a phase error of 4π radians.

It is important here to point out that a constant error in range position measure-

ment for all pulses does not have a defocus effect in the reconstructed image. The

defocus arising in the reconstructed image is due to the deviation on the range po-

sition measurement error from pulse to pulse. Usually, phase errors arising due to

SAR platform position uncertainties are slowly-varying (e.g., quadratic, polynomial)

phase errors, whereas phase errors induced by propagation effects are much more

irregular (e.g., random ) [3]. Quadratic phase errors cause spreading the mainlobe

of the impulse response of a point target whereas the random phase errors raise its

sidelobes which results in a loss of contrast in the image.

While most phase errors encountered are 1D cross-range varying functions, it is

possible to encounter both range and cross-range varying 2D phase errors as well.

For instance, in low frequency UWB SAR systems, severe propagation effects may
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appear through the ionosphere, including Faraday rotation, dispersion, and scintil-

lation [26] which cause 2D phase errors, defocusing the reconstructed image in both

range and cross-range directions. Moreover, waveform errors such as frequency jitter

from pulse to pulse, transmission line reflections and waveguide dispersion effects

may cause defocus in both range and cross-range direction [27]. 2D phase errors can

in principle be handled in two sub-categories as separable and non-separable errors,

but it is not common to encounter 2D separable phase errors in practice.

For these three types of phase error functions, let us investigate the relation-

ship between the phase-corrupted and error-free phase history data in terms of the

observation model.

2.2.1 2D Non-separable Phase Errors

In the presence of 2D non-separable phase errors, all sample points of the K × M

phase history data, denoted matrix R in Section 2.1.2, are perturbed with different

and potentially independent phase errors. Let Φ2D−ns be a 2D non-separable phase

error function. The relationship between the phase-corrupted and error-free phase

histories are as follows:

Rε(k,m) = R(k,m)ejΦ2D−ns(k,m) (2.30)

Here, Rε denotes the phase-corrupted phase history data. To express this relation-

ship in terms of the observation model, first we define the vector φ2D−ns

φ2D−ns =
[

φ2D−ns(1), φ2D−ns(2), ..., φ2D−ns(S)
]T

(2.31)

which is created by concatenating the columns of the phase error matrix Φ2D−ns

under each other. Here, S is the total number of data samples and equal to the

product MK. Using the corresponding vector forms, the relationship in (2.30)

becomes

rε = D2D−nsr (2.32)

where D2D−ns is a diagonal matrix:

D2D−ns = diag
[

ejφ2D−ns(1), ejφ2D−ns(2), ..., ejφ2D−ns(S)

]

(2.33)
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In terms of observation model matrices, the relationship in (2.32) is as follows

C (φ2D−ns) f = D2D−nsCf (2.34)

where, C is the initially assumed model matrix by the imaging system and C (φ2D−ns)

is the model matrix that takes the phase errors into account. The equations (2.32)

and (2.34) can be expressed in the following form as well.

rε(s) = ejφ2D−ns(s)r(s)

Cs (φ2D−ns) f = ejφ2D−ns(s)Csf for s = 1, 2, ....., S (2.35)

Here, r(s) denotes s − th element of the vector r and Cs denotes s − th row of the

model matrix C.

2.2.2 2D Separable Phase Errors

A 2D separable phase error function is composed of range varying and cross-range

varying 1D phase error functions as follows:

Φ2D−s(k,m) = ξ(k) + γ(m) (2.36)

Here, ξ, representing the range varying phase error, is a K × 1 vector; and γ,

representing the cross-range varying phase error, is a M×1 vector. The S×1 vector

for 2D separable phase errors φ2D−s, is obtained by concatenating the columns of

Φ2D−s as follows:

φ2D−s =

[

ξ(1) + γ(1)
︸ ︷︷ ︸

φ2D−s(1)

, ..., ξ(K) + γ(1)
︸ ︷︷ ︸

φ2D−s(K)

, ξ(1) + γ(2)
︸ ︷︷ ︸

φ2D−s(K+1)

, ..., ξ(1) + γ(M)
︸ ︷︷ ︸

φ2D−s((M−1)K+1)

, ..., ξ(K) + γ(M)
︸ ︷︷ ︸

φ2D−s(S)

]T

(2.37)

A 2D separable phase error function affects the observation model matrix in the

following manner:

rε = D2D−sr

C (φ2D−s) f = D2D−sCf (2.38)

Here, D2D−s is a diagonal matrix:

D2D−s = diag
[

ejφ2D−s(1), ejφ2D−s(2), ..., ejφ2D−s(S)

]

(2.39)
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2.2.3 1D Phase Errors

We mentioned before that most encountered phase errors are functions of cross-

range only. In other words, for a particular cross-range position the phase error is

the same at all range positions. Let φ1D be the 1D cross-range varying phase error.

φ1D is a vector of length M :

φ1D =
[

φ1D(1), φ1D(2), ..., φ1D(M)
]T

(2.40)

In the case of 1D phase errors, the relationship between the error-free and the phase-

corrupted data can be expressed as:

rε = D1Dr

C (φ1D) f = D1DCf (2.41)

Here, D1D is a S × S diagonal matrix defined as:

D1D = diag

[

ejφ1D(1), ..., ejφ1D(1)

︸ ︷︷ ︸

K

, ejφ1D(2), ..., ejφ1D(2)

︸ ︷︷ ︸

K

, ..., ejφ1D(M), ..., ejφ1D(M)

︸ ︷︷ ︸

K

]

(2.42)

These relationships can also be stated as follows:

r̄εm
= ejφ1D(m)r̄m

C̄m (φ1D) f = ejφ1D(m)C̄mf for m = 1, 2, .....,M (2.43)

Here, r̄m and C̄m are the error-free phase history data and the assumed model

matrix for the m − th cross-range position. Note that, in a 1D cross-range phase

error case, there are M unknowns, in a 2D separable phase error case there are

M + K unknowns, and in a 2D non-separable phase error case there are S = MK

unknowns. Hence, correcting for 2D non-separable phase errors is a much more

difficult problem than the others.

2.3 Existing Autofocus Techniques

2.3.1 Conventional Approaches

Inverse Filtering

Inverse filtering technique uses the amount of defocus on a single point target to

estimate phase errors. Before we mentioned that the implication of 1D phase errors
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in the image domain is the convolution of (each range line of) the image with a 1D

blurring kernel in the cross-range direction. Mathematically, this can be expressed

as follows:

F̃ (a, b) = h̃ (b) ⊗ F (a, b) (2.44)

where

h̃ (b) = IFFTm

{
ejφ(m)

}
(2.45)

Here, F̃ denotes the defocused image, and a and b are range and cross-range image

domain indices, respectively. ⊗ denotes circular convolution operation and m is the

cross-range index in the frequency domain. Inverse filtering approach is based on

the assumption that a single point target can be isolated in the defocused image.

This technique estimates phase errors by finding such an isolated strong point target

in the defocused image and then using the defocus information on that point target.

Let us consider a simple scenario in which only a single point target exists at the

center of the scene. In this case, the corresponding image can be expressed as

F (a, b) = κδ (a, b) (2.46)

where

δ (a, b) = 1 if b = 0 a = 0

δ (a, b) = 0 if b 6= 0 a 6= 0 (2.47)

κ denotes the complex point target reflectivity. According to this image model, the

defocused image becomes

F̃ (a, b) = κ IFFTm

{
ejφ(m)

}
⊗ δ (a, b)

= κ IFFTm

{
ejφ(m)

}
(2.48)

Now the phase error φ (m) can be obtained by taking the Fourier transform of the

defocused image along the cross-range direction and then measuring its phase.

φ̂ (m) = 6

{

FFTb

{

F̃ (a, b)
}}

= 6
{
κejφ(m)

}

= 6 κ + φ (m) (2.49)
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Here, 6 κ is a constant phase and does not have any effect. By multiplying the

phase-corrupted data with the complex conjugate of the phase error estimate, the

phase error is removed:

R̂ (k,m) = Rε (k,m) e−jφ̂(m) (2.50)

Although inverse filtering technique is a simple and fast approach to phase error

estimation, in practice it may be very difficult to find such an isolated strong point

target in the SAR images. Generally there are other point targets and clutter in the

environment surrounding it.

Subaperture-based Techniques

These techniques use the data from subapertures to estimate phase errors. These

techniques are also known as map-drift autofocus techniques. The main assumption

of these techniques is that the phase error function is a polynomial.

For a quadratic phase error function of the form φ (m) = ηm2, where m is the

index for cross-range (aperture) position and η is an unknown coefficient, these

techniques first divide the data from the whole aperture into two pieces so that

each subaperture data contains half of the quadratic phase error. Since half of a

quadratic phase error includes a linear component as displayed in Figure 2.6, and

since a linear phase error function only shifts the image proportional to its slope, the

two low-resolution defocused images reconstructed from the two subaperture data

are shifted versions of the original image in reverse directions. For every π radians

of peak quadratic phase error, images are shifted by one pixel. By cross-correlating

the two low-resolution images and finding the location of maximum correlation, the

amount of shift and consequently the coefficient η can be determined.

2.3.2 Phase Gradient Autofocus (PGA)

The basic idea of Phase Gradient Autofocus (PGA) [3] is similar to inverse filter-

ing but in contrast to inverse filtering, PGA estimates the phase error function by

averaging across many range lines, based on the fact that every target in the im-

age is corrupted by the same blur function. This averaging operation is performed

within the formalism of maximum likelihood estimation. PGA is a non-parametric

25



Figure 2.6: Linear components of a quadratic phase error function

technique unlike map-drift autofocus techniques. For phase error estimation, the

algorithm aims to isolate a number of single targets in the image. Isolation of single

targets is performed via center shifting and windowing operations. Since using the

targets with strong reflectivities provides a much better phase error estimation than

using the targets with weak reflectivities, PGA selects the strongest target on each

range line and circularly shifts it to the scene center. At the end of this shifting

operation a new image is obtained. All of the targets which will be used in the

estimation process, lie in the center of the cross-range dimension of this new image.

PGA includes a windowing operation in the next step, the purpose of which is to

preserve the information contained in the blur footprints of the center-shifted tar-

gets and at the same time to reject information from all other surrounding targets

with weak reflectivities. After center-shifting, the necessary information, contained

in the support of the blur footprint, is extracted through windowing. The important

part of this windowing operation is to determine the window width. If the window

width is selected smaller than the blur footprint then some part of the necessary

information cannot be captured. On the other hand, if the window width is wider

than the blur footprint then the noise level increases. There are multiple ways to

determine the window width. In the first approach, the window width is determined

by summing the magnitudes of pixels in the circularly shifted image along the range
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direction for every cross-range position as follows:

s(b) =
A∑

a=1

|F (a, b)|2 (2.51)

Here, a and b represent range and cross-range indices in the image domain, respec-

tively. A is the total number of range lines. s(b) will have its maximum at the

center and will exhibit a plateau having approximately the same width as the blur

footprint [3]. It is expected that the s(b) significantly decreases outside the plateau.

Therefore, the borders of this plateau-like region can be used to determine the win-

dow width. For this purpose, s(b) is thresholded at some level, which is typically

selected as 10dB lower than the peak. This approach for determining the window

width is mostly suitable for slowly varying, particularly quadratic, phase error func-

tions. Since these types of errors broaden the main lobe of the point target response,

they cause a regular blur footprint, in which the strength of the reflectivity decreases

smoothly in the direction from the center to the two sides. However, since rapidly

varying phase error functions (e.g., random) raise the sidelobes of the impulse re-

sponse function, they cause contrast-loss in the image, which means that the target

energy is spread through the entire image along the cross-range. Therefore, the

first approach used to determine the window width is not suitable for these types

of errors. In this case, a progressive windowing scheme where the window width is

reduced at each iteration by a pre-determined rate, is used instead [3]. Once the

window width is selected and the windowing operation is performed. Then, by tak-

ing the 1D Fourier transform of each range line, the range-compressed data Yw for

the center-shifted and windowed image, used for phase error estimation, is obtained.

The phase error is estimated by taking the phase differences between two succesive

pulses and the phase difference is estimated with a maximum likelihood scheme as

follows [3]:

∆φ̂(m) = 6

A∑

a=1

{Y ∗
w(a,m − 1)Yw(a,m)} (2.52)

Here, Y ∗
w(a,m−1) is the complex conjugate of Yw(a,m−1). After all ∆φ(m) values

are obtained, the phase error for the particular cross-range position is found by

summing ∆φ̂(m) values up to that cross-range position as follows:

φ̂(m) =
m∑

j=2

∆φ̂(j) φ̂(1) = 0 (2.53)
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The degraded range-compressed data is corrected via multiplying it by the complex

conjugate of the phase error estimate as follows:

Yc(a,m) = Yε(a,m)e−jφ̂(m) (2.54)

Here, Yc(a,m) is the corrected data. Then by taking 1D inverse Fourier transform

of each range line, the corrected range-compressed data is transformed back to the

image domain. All of these steps are repeated until the root mean square value of

the estimated incremental phase error function in any iteration is less than a pre-

determined threshold. The flow for the algorithm of PGA is shown in Figure 2.7 [3].

2.3.3 Autofocus Techniques based on the Optimization of

the Sharpness Metrics of the Defocused Image Inten-

sity

There are many autofocus techniques which optimize various sharpness metrics on

the conventionally reconstructed defocused image intensity. The intensity of each

pixel for a 2D image is defined as

`(a, b) = |F (a, b)|2 (2.55)

Commonly used metrics are square or entropy of the image intensity, which are

shown in (2.56) and (2.57) respectively.

µs = −
∑

a

∑

b

`(a, b)2 (2.56)

µe = −
∑

a

∑

b

`(a, b) ln `(a, b) (2.57)

The phase-error estimate is found by following an optimization routine for mini-

mizing the particular sharpness metric. If we let Γ [`(a, b)] be a function of image

intensity and µ be a general sharpness metric, µ can be expressed as follows:

µ =
∑

a

∑

b

Γ [`(a, b)] (2.58)
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Figure 2.7: Algorithm of PGA
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Then the gradient of this metric with respect to the phase error can be computed

as follows [7]:

∂µ

∂φ(m)
=
∑

a

∑

b

∂Γ [`(a, b)]

∂`(a, b)

∂`(a, b)

∂φ(m)
(2.59)

where

∂`(a, b)

∂φ(m)
=

|F (a, b)|2
∂φ(m)

= (2/B) Im
[
F ∗(a, b)Y (a,m)e(j2πmb/B)

]
(2.60)

Here, F ∗(a, b) is the complex conjugate of F (a, b) and Y (a,m) is the range-compressed

data. Regarding Equation (2.60), the relation in (2.59) can be expressed as:

∂µ

∂φ(m)
= (2/B)

∑

a

Im

[

Y (a,m)

{

FT

[

F (a, b)
∂Γ

∂`(a, b)

]}∗]

(2.61)

The partial derivatives for Γ [`(a, b)] = `(a, b)2 and for Γ [`(a, b)] = `(a, b) ln `(a, b)

are given in (2.62) and in (2.63), respectively.

∂Γ [`(a, b)]

∂`(a, b)
= 2`(a, b) (2.62)

∂Γ [`(a, b)]

∂`(a, b)
= ln `(a, b) + 1 (2.63)

After the phase error is estimated, the range-compressed data are corrected using

this estimate.

2.3.4 Multi-Channel Autofocus (MCA)

In the SAR autofocus problem, each range line of the image is defocused by the

same 1D blurring kernel. To solve the autofocus problem, Multi-Channel Autofocus

(MCA) uses this multichannel structure, displayed in Figure 2.8 with a graphical

illustration. The rows F [a] can be viewed as a bank of parallel filters which are cir-

cularly convolved with the same input signal h̃(b). This fact can be mathematically

expressed as

F̃ = H
{

h̃
}

F (2.64)
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Figure 2.8: Graphical illustration of the multi-channel nature of the SAR autofocus

problem.

where F̃ and F are the defocused and focused images, respectively and H
{

h̃
}

is a

circulant matrix of the following form:

H
{

h̃
}

=











h̃ [0] h̃ [M − 1] . . . h̃ [1]

h̃ [1] h̃ [0] . . . h̃ [2]
...

...
. . .

...

h̃ [M − 1] h̃ [M − 2] . . . h̃ [0]











(2.65)

Likewise, the solution space of the problem can be mathematically expressed as:

F̂ (h) = H {h} F̃ (2.66)

Here, h is the correction filter and F̂ is the restoration. The goal is to find h by

creating a subspace for the focused image F , spanned by a basis constructed from

the given defocused image F̃ [14]. To create a basis using the defocused image,

first the correction filter is expressed in terms of the standard basis {em}M−1
m=0 , i.e.,

em[b] = 1 if m = b, and 0 otherwise, as follows [14]:

h =
M−1∑

m=0

hmem (2.67)
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Based on the linearity property of circular convolution, the following relation is

obtained:

H {h} =
M−1∑

m=0

hmH {em} (2.68)

Consequently, any image F̂ in the subspace can be expressed in terms of a basis

expansion as follows [14]:

F̂ (h) =
M−1∑

m=0

hmϕ[m](F̃ ) (2.69)

where

ϕ[m](F̃ ) = H {em} F̃ T (2.70)

In a matrix-vector multiplication form, the relationship in (2.69) can be written as

vec
{

F̂ (h)
}

= Ψ(F̃ )h (2.71)

where

Ψ(F̃ ) =
[

vec
{

ϕ[0](F̃ )
}

, vec
{

ϕ[1](F̃ )
}

, ..., vec
{

ϕ[M−1](F̃ )
}]

(2.72)

is the basis matrix and vec
{

F̂ (h)
}

denotes the vector obtained by concatenating

columns of F̂ (h). To obtain a unique solution the basis matrix Ψ(F̃ ) must have

rank M . If all of the conditions are satisfied, the perfectly focused image in terms

of the basis can be expressed as

vec {F} = Ψ(F̃ )h∗ (2.73)

where h∗ is the true correction filter satisfying F̂ (h∗) = F . By imposing a constraint

to the linear system in (2.71), the unknown correction filter h∗ can be directly solved

for. This constraint is obtained by the assumption that F is approximately zero-

valued for some regions in the scene and this assumption can be mathematically

expressed as follows:

F [a, b] =







FΩ[a, b], for a, b ∈ Ω

F Ω̄[a, b], for a, b ∈ Ω̄
(2.74)

Here, FΩ[a, b] are low-return pixels and Ω is the set of low-return pixels. Similarly,

F Ω̄[a, b] are the pixels with nonzero values and Ω̄ is the set of nonzero pixels (i.e.,
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the complement of Ω). These nonzero pixels constitute the region of support (ROS).

In practice, the desired image support condition can be achieved by exploiting the

spatially limited illumination of the antenna beam, or by using prior knowledge of

low-return regions in the image [14]. Regarding the low-return region, the relation

in (2.73) can be expressed as follows:



vec
{
FΩ
}

vec
{
F Ω̄
}



 =





{

Ψ(F̃ )
}

Ω{

Ψ(F̃ )
}

Ω̄



h∗ (2.75)

{

Ψ(F̃ )
}

Ω
are the rows of Ψ(F̃ ) that correspond to the pixels in the low-return region

and
{

Ψ(F̃ )
}

Ω̄
are the rows of Ψ(F̃ ) that correspond to the unknown nonzero pixels

in the region of support. When vec
{
F Ω̄
}

is exactly zero, the correction filter h∗ can

be directly determined up to a scaling constant by solving the following equation.

{

Ψ(F̃ )
}

Ω
h = 0 (2.76)

The solution ĥ is the unique vector spanning the nullspace of ΨΩ(F̃ ) as follows [14]:

ĥ = Null
(

ΨΩ

(

F̃
))

= eh∗ (2.77)

Here, e is a complex constant. The phase error estimate which is used to correct

the defocused image is the phase of the Fourier transform of ĥ.

φ̂[m] = −6

(

DFTb

{

ĥ [b]
})

(2.78)

When
∣
∣FΩ(a, b)

∣
∣ 6= 0 or when there is an additive noise in the image, the solution

ĥ cannot be obtained by solving for the nullspace of ΨΩ

(

F̃
)

. In this case, to find

a solution, the singular value decomposition of ΨΩ

(

F̃
)

is performed to obtain the

vector that produces the minimum energy solution in the l2 sense as follows:

ĥ = arg min
‖h‖2=1

∥
∥
∥ΨΩ

(

F̃
)

h
∥
∥
∥

2
(2.79)

The solution is given by ĥ = Ṽ [M ], in which Ṽ [M ] denotes the right singular vector

corresponding to the smallest singular value of ΨΩ

(

F̃
)

[14]. It is important to note

that a necessary condition for MCA to produce a unique and correct solution is as

follows:

rank
(

F Ω̄
)

≥ M − 1

M − M̄
(2.80)

Here, M − M̄ is the number of low-return columns as seen in Figure 2.9.
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Figure 2.9: Region of support condition for MCA.

2.4 Regularization Based Image Reconstruction

In image reconstruction and restoration problems, the goal is to find an estimate

of a 2D field from its indirect observations. From this point of view, image recon-

struction and restoration problems can be regarded as general observation problems

which we meet in most situations of engineering interest. Assuming that the math-

ematical relation between the observations and the field is obtained by a linear

integral equation, in discrete form an observation system can be expressed as

g = Cf + v (2.81)

where g and f are vectors of samples from observations and the field, respectively.

C is the meausurement model matrix and v is the measurement noise. To find

an estimate f̂ of f looks simple and it seems that just multiplying the inverse of

the matrix C with the observations vector g, is sufficient. However, there are four

main problems that this approach can not handle. First, due to the observation

noise, there may not exist any f which solves this equation exactly. Second, if the

null-space of C is nonempty which means that there are not as many independent

observations as unknowns, then the solution is not unique. Third, there is a stability

problem. The estimate of f is desired to remain same despite the perturbations in the

observations. The fourth issue is that the need to incorporate any prior knowledge

of f to the solution [28].
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2.4.1 Least Squares Solutions

To overcome the first problem, a reasonable approach is to find a least-squares

solution. The solution is the best fit to the observed data in the least-squares sense.

f̂ls = argminf ‖g − Cf‖2
2 (2.82)

If C has full column rank, the estimate is unique and is obtained as

(CT C)f̂ls = CT g (2.83)

When C does not have full column rank, which means that there is not a unique

solution and that some components of f are not observable in g, the simple idea to

find the estimate of f is to choose the one with minimum energy among all solution

candidates. This solution is called generalized solution and defined as:

f̂gen = argminf ‖f‖2
2 s.t. min ‖g − Cf‖2

2 (2.84)

However, this solution does not guarentee to reconstruct components of the image

that are unobservable in the data. Another drawback of generalized solution is that

it can not deal with stability problem. If the model matrix C is ill-conditioned

(the ratio of the largest eigenvalue to the smallest is very large), small changes in

the data lead to large changes in the solution. These problems are solved by using

prior knowledge about the field f . This is known as ‘regularization’. Regularization

provides stable and reasonable estimates of the field f .

2.4.2 Tikhonov Regularization

Tikhonov regularization is the well-known method for regularization. Incorporating

of the prior knowledge of the field f is performed by including an additional term

to the original least squares cost function.

f̂tik = argminf ‖g − Cf‖2
2 + λ ‖Df‖2

2 (2.85)

Here, the first term of the cost function provides the information in the data, whereas

the second term, which is called side constraint, provides the prior knowledge of the

field. λ is known as the regularization parameter which determines the weight of

the prior knowledge in the estimation process. If D is choosen as identity matrix
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then the side constraint becomes simply the energy of f , which prevents the pixel

values of f from becoming too large. D can be chosen also as a derivative operator.

In this case, the side-constraint forces the solution to have limited high-frequency

content which means that the prior information included in the cost function forces

the estimate to be smooth.

2.4.3 Nonquadratic Regularization

Many engineering problems admit a sparse representation in some domain. Let

us consider an imaging problem, in which the field of interest is sparse, i.e., there

are few nonzero pixels. In such a case, a solution with great energy concentration

is needed. In Tikhonov regularization, we said that for D being an identity ma-

trix, we obtain energy preserved solutions. However, experience has shown that

non-quadratic side-constraints provides image reconstructions with greater energy

concentration relative to quadratic Tikhonov approaches. There is a variety of non-

quadratic choices to use as the sideconstraint. The general family of lp-norms is one

of them [28].

‖f‖p =

(
N∑

i=1

|fi|p
)1/p

(2.86)

In spectral analysis, lp-norm constraints, where p < 2, have been shown to result

in higher resolution spectral estimates compared to the l2-norm case. Moreover,

smaller value of p implies less penalty on large pixel values as compared to larger

p. Based on these observations, lp-norm constraints with p < 2 are good choices to

obtain sparse solutions.

From a statistical point of view, this problem corresponds to a maximum a

posteriori (MAP) estimation problem as follows [23]:

f̂MAP = arg max
f

[
log
(
pf/g (f/g)

)]

= arg max
f

[
log
(
pg/f (g/f)

)
+ log (pf (f))

]
(2.87)

Here, log (.) denotes the natural logarithm. Maximizing the posterior density pf/g(f/g),

or its logarithm are equivalent, due to the monotonicity property of the logarithm.

Since the observation noise v is assumed to be independent identically distributed
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(i.i.d.) Gaussian noise, the likelihood pg/f (g/f) can be described as follows:

pg/f (g/f) ∝ e(−
1

2ϑ2 ‖g−Cf‖2
2) (2.88)

Here, ϑ2 is proportional to the noise power. Let the prior probability density function

for the field f be given by:

pf (f) ∝ e(−ϕλ2‖f‖p
p) (2.89)

Substituting (2.88) and (2.89) into (2.87), and then converting the maximization to

a minimization through a sign change, the MAP estimation problem can be written

as follows [23]:

f̂MAP = arg min
f

[
1

2ϑ2
‖g − Cf‖2

2 + ϕ
(

λ2 ‖f‖p
p

)]

(2.90)

Letting ϕ = 1
2ϑ2 the MAP estimation problem becomes the following:

f̂MAP = arg min
f

[

‖g − Cf‖2
2 + λ2 ‖f‖p

p

]

(2.91)

If p = 2 is chosen, f is assumed to have a Gaussian distribution and if p = 1 is

chosen then f is assumed to have a Laplacian distribution.

37



Chapter 3

Sparsity-Driven Autofocus (SDA)

In this chapter, we present our approach to the SAR autofocus problem and explain

our technique, which we call sparsity-driven autofocus (SDA), in details. Moreover,

we present experimental results on various synthetic scenes as well as on two public

datasets provided by the U.S. Air Force Research Labaratory (AFRL): the ‘Slicy’

data from the ‘MSTAR’ dataset [29] and the ‘Backhoe’ dataset [30]. We also provide

qualitative as well as quantitative results for comparison of our approach with three

state-of-the-art autofocus techniques: Phase Gradient Autofocus (PGA), entropy

minimization based autofocus, and Multi-channel Autofocus (MCA).

3.1 Principles and Development of SDA

In conventional imaging, the image is formed by interpolating the SAR phase his-

tory data (2.9) from the polar grid to a rectangular grid and then taking its 2D in-

verse Fourier transform. Images formed by conventional imaging usually suffer from

speckle and sidelobe artifacts. Furthermore the resolution of the images is limited

by the SAR system bandwidth. On the other hand, we know that regularization-

based image formation techniques can deal with these problems and they have been

succesfully applied to SAR imaging. As explained in Section 2.4, these techniques

formulate image formation as an optimization problem. The cost function is com-

posed of a least-squares data fidelity term, as well as a side constraint or regulariza-

tion term which incorporates information about the structure of the scene (sparsity,

smoothness etc.) into the optimization problem. Incorporation of prior information
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about the scene provides feature enhanced images with increased resolution, reduced

sidelobes, and reduced speckle. In the context of SAR imaging of man-made objects,

the underlying scene, dominated by strong metallic scatterers, is usually sparse, i.e.,

there are few nonzero pixels. To impose sparsity, often nonquadratic side constraints

are incorporated into the cost function. There are a variety of nonquadratic terms to

use as the side constraint. The general family of lp−norms is one of them. Although

l0−norm is in principle, the right choice to obtain sparse solutions, using l0−norm

results in a combinatorial optimization problem. Therefore, generally, instead of

l0 − norm, lp − norm of the field (0 < p ≤ 1) is used to obtain sparse solutions.

These types of constraints have been used in SAR imaging to obtain superresolution

[31]. However, in most applications p = 1 is selected since using l1 − norm of the

field results in a convex optimization problem which is easier to solve. Moreover,

recently it has been shown that under certain conditions, l0 − norm and l1 − norm

yield identical solutions [32]. This observation has sparked much recent interest

both in theory and in applications of sparse representations, coverage of which is

beyond the scope of this dissertation.

Sparsity-driven radar imaging has already found use in a number of contexts

[33–45]. In SAR applications, there is widespread use of sparsity-based imaging due

to the advantages such as super-resolution and artifact suppression it provides. Such

techniques assume that the observation model is known exactly. In the presence of

phase errors and an additive measurement noise induced by the SAR system, as

discussed in Section 2.2, the observation model becomes

g = C(φ)f + v (3.1)

where v stands for measurement noise, which is assumed to be white Gaussian noise

(the most commonly used statistical model for radar measurement noise [46, 47]),

and g is the noisy phase-corrupted observation data. Here, φ refers to one of the

three types of phase errors introduced in Chapter 2.

Based on these observations we propose a nonquadratic regularization-based

method for joint imaging and phase error correction. While existing sparsity-driven

SAR imaging methods assume that data contain no phase errors, our approach

jointly estimates and compensates such errors in the data, while performing sparsity-

driven image formation. In particular, we pose the joint imaging and phase error
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estimation problem as the problem of minimizing the following cost function:

J(f, φ) = ‖g − C(φ)f‖2
2 + λ ‖f‖1 (3.2)

Here, λ is the regularization parameter, which specifies the strength of the contri-

bution of the regularization term into the solution.

This is a difficult optimization problem over f and φ. Developing effective and

efficient algorithms for such problems involves several research challenges. In this

work, we propose and use a coordinate descent based numerical algorithm for solving

this problem. The given cost function is minimized jointly with respect to f and

φ. The algorithm is an iterative algorithm, which cycles through steps of image

formation and phase error estimation and compensation. Every iteration involves

two steps. In the first step, the cost function is minimized with respect to the field

and in the second step the phase error is estimated given the field estimate. Before

the algorithm passes to the next iteration, the model matrix is updated using the

estimated phase error. This flow is outlined in Algorithm 1.

In Algorithm 1, n denotes the iteration number. f̂ (n) and φ̂(n) are the image and

phase error estimates at iteration n, respectively. Note that the knowns in this algo-

rithm are the noisy phase-corrupted data g and the initially assumed model matrix

C. The unknowns are the field f and the phase error φ together with the associated

model matrix C(φ) that takes the phase errors into account. It is worth noting here

Algorithm 1 Algorithm for the Proposed SDA Method

Initialize n = 0 f̂ (0) = CHg and C(φ̂(0)) = C

1. f̂ (n+1) = arg minf J(f, φ̂(n))

2. φ̂(n+1) = arg minφ J(f̂ (n+1), φ)

3. Update C(φ̂(n+1)) using φ̂(n+1) and C.

4. Let n = n + 1 and return to 1.

Stop when
∥
∥
∥f̂ (n+1) − f̂ (n)

∥
∥
∥

2

2
/
∥
∥
∥f̂ (n)

∥
∥
∥

2

2
is less than a pre-determined threshold.

In this work, the value of the threshold is chosen as 10−3.

that the use of the nonquadratic regularization-based framework contributes to the

accurate estimation of the phase errors as well. Although nonquadratic regulariza-

tion by itself cannot completely handle the kinds of phase errors considered in this

work, it exhibits some robustness to small perturbations on the observation model
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matrix [48]. In the context of our approach, the nonquadratic regularization term

in the cost function provides a small amount of focusing of the estimated field in

each iteration. This focusing then enables better estimation of the phase error. This

in turn results in a more accurate observation model matrix, which provides better

data fidelity and leads to a better field estimate in the next iteration.

Next, we provide the details of the algorithm for the three classes of phase errors

described in Chapter 2.

3.1.1 Algorithm for 1D Phase Errors

In the algorithm for 1D phase errors, φ = φ1D as described in Section 2.2.3, in the

first step of every iteration the cost function J(f, φ1D) is minimized with respect to

f . This is the image formation step and same for all types of phase errors.

f̂ (n+1) = arg min
f

J(f, φ̂
(n)
1D) = arg min

f

∥
∥
∥g − C(φ̂

(n)
1D)f

∥
∥
∥

2

2
+ λ ‖f‖1 (3.3)

To avoid problems due to nondifferentiability of the l1−norm at the origin, a smooth

approximation is used [20]:

‖f‖1 ≈
I∑

i=1

(|fi|2 + σ)1/2 (3.4)

where σ is a nonnegative small constant. Here, note that the smaller σ is chosen the

more the total number of iterations becomes since as σ decreases, the nondifferen-

tiability increases. On the other hand, for big σ values, the approximation diverges

from the l1 − norm. In this work, σ is chosen as 10−5.

In each iteration, the field estimate is obtained as

f̂ (n+1) =
(

C(φ̂
(n)
1D)HC(φ̂

(n)
1D) + λW (f̂ (n))

)−1

C(φ̂
(n)
1D)Hg (3.5)

where W (f̂ (n)) is a diagonal matrix:

W (f̂ (n)) = diag






1

(
∣
∣
∣f̂

(n)
i

∣
∣
∣

2

+ σ)1/2

..................
1

(
∣
∣
∣f̂

(n)
I

∣
∣
∣

2

+ σ)1/2




 (3.6)

The matrix inversion in (3.5) is not carried out explicitly, but rather numerically

through the conjugate gradient algorithm. Note that, this algorithm has been used
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in a variety of settings for sparsity-driven radar imaging, and has been shown to be

a descent algorithm [49].

The second step involves phase error estimation, in which a different procedure

is implemented for each type of phase errors. For 1D cross-range varying phase

errors, given the field estimate, the following cost function is minimized for every

cross-range position [50, 51],

φ̂
(n+1)
1D (m) = arg min

φ1D(m)
J(f̂ (n+1), φ1D(m))

= arg min
φ1D(m)

∥
∥
∥ḡm − e(jφ1D(m))C̄mf̂ (n+1)

∥
∥
∥

2

2
for m = 1, 2, ....,M (3.7)

where φ̂
(n+1)
1D (m) denotes the phase error estimate for the cross-range position m

in the iteration (n + 1). In (3.7), the K × 1 vector ḡm is the noisy SAR data at

the m − th cross-range position. After evaluating the norm expression in (3.7) (see

appendix for details), we obtain

φ̂
(n+1)
1D (m) = arg min

φ1D(m)

(

ḡH
m ḡm − 2

√
<2 + =2 cos

[

φ1D(m) + arctan

(−=
<

)]

+f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)

)

(3.8)

where

< = Re
{

f̂ (n+1)H

C̄H
m ḡm

}

= = Im
{

f̂ (n+1)H

C̄H
m ḡm

}

(3.9)

We know that negative cosine has its minimum at zero and integer multiples of 2π,

so if we set the argument of the cosine to zero, we can find the phase error estimate

in closed form as given in (3.10) for the corresponding aperture position.

φ̂
(n+1)
1D (m) = − arctan

(−=
<

)

(3.10)

Using the phase error estimate, the model matrix is updated as follows:

C̄m(φ̂
(n+1)
1D (m)) = e(jφ̂

(n+1)
1D

(m))C̄m for m = 1, ....,M (3.11)

We increment n and turn back to the optimization problem in (3.3).

Moreover, note that, phase updates are performed after each step of the f-

iteration in (3.5), as a result of which, the overall computational load of our approach

is not significantly more than that of just image formation.
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3.1.2 Algorithm for 2D Separable Phase Errors

In case of 2D separable phase errors, the field estimate is obtained via minimizing

the following cost function:

f̂ (n+1) = arg min
f

J(f, φ̂
(n)
2D−s) = arg min

f

∥
∥
∥g − C(φ̂

(n)
2D−s)f

∥
∥
∥

2

2
+ λ ‖f‖1 (3.12)

Given the field estimate, first, the phase error in the cross-range direction, γ, is esti-

mated by minimizing the following cost function using the 1D phase error estimation

procedure described in Section 3.1.1:

γ̂(m)(n+1) = arg min
γ(m)

J(f̂ (n+1), γ(m)) = arg min
γ(m)

∥
∥
∥ḡm − e(jγ(m))C̄mf̂ (n+1)

∥
∥
∥

2

2

for m = 1, 2, ....,M (3.13)

Then this estimate is used to update the model matrix as follows:

C̄m(γ̂(m)(n+1)) = e(jγ̂(m)(n+1))C̄m for m = 1, 2, ....,M (3.14)

Then, to estimate the phase error in the range direction, the elements of the data

vector g and the rows of the model matrix C(γ̂(n+1)) are ordered in such a way

that the elements and rows corresponding to the same range position lie under

each other. Let these modified data vector and modified model matrix be gmod

and Cmod, respectively (i.e., the phase history matrix is row-stacked rather than

column-stacked). Using these new variables, the phase error estimate ξ̂ for the

range direction is found repeating the same procedure as in cross-range direction,

this time for every range position. This can be expressed as follows:

ξ̂(k)(n+1) = arg min
ξ(k)

J(f̂ (n+1), ξ(k)) = arg min
ξ(k)

∥
∥
∥ḡmodk

− e(jξ(k))C̄modk
f̂ (n+1)

∥
∥
∥

2

2

for k = 1, 2, ...., K (3.15)

C̄modk
(ξ̂(k)(n+1)) = e(jξ̂(k)(n+1))C̄modk

for k = 1, 2, ...., K (3.16)

Here, ḡmodk
and C̄modk

represent the parts of gmod and Cmod corresponding to a

particular range position k, respectively. To return to the original form, the rows

of the matrix Cmod(ξ̂
(n+1)) are rearranged so that the rows corresponding to the

same cross-range position lie under each other. This rearranged matrix is denoted

by C(φ̂
(n+1)
2D−s) which is used in the next iteration to find the next field estimate.
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3.1.3 Algorithm for 2D Non-separable Phase Errors

In a more general case in which we consider 2D non-separable phase errors, the

image formation step of the algorithm is essentially identical to its counterpart in

previous cases. To obtain the field estimate, the following cost function is minimized

with respect to f .

f̂ (n+1) = arg min
f

J(f, φ̂
(n)
2D−ns) = arg min

f

∥
∥
∥g − C(φ̂

(n)
2D−ns)f

∥
∥
∥

2

2
+ λ ‖f‖1 (3.17)

Using the same point of view as in the previous two cases, in the phase error esti-

mation step, the following cost function is minimized [51, 52].

φ̂
(n+1)
2D−ns(s) = arg min

φ2D−ns(s)
J(f̂ (n+1), φ2D−ns(s))

= arg min
φ2D−ns(s)

∥
∥
∥g(s) − e(jφ2D−ns(s))Csf̂

(n+1)
∥
∥
∥

2

2
for s = 1, 2, ...., S

(3.18)

Here, φ̂
(n+1)
2D−ns(s) denotes the phase error estimate for the s − th data sample in

iteration (n+1). This step is solved in closed form in a similar way to that in (3.7).

In particular, the solution of the optimization problem in (3.18) is as follows:

φ̂
(n+1)
2D−ns(s) = − arctan

(−=
<

)

(3.19)

where

< = Re
{

f̂ (n+1)H

CH
s g(s)

}

= = Im
{

f̂ (n+1)H

CH
s g(s)

}

(3.20)

Using the phase error estimate, the model matrix is updated through:

Cs(φ̂
(n+1)
2D−ns(s)) = e(jφ̂

(n+1)
2D−ns

(s))Cs for s = 1, ...., S (3.21)

If the phase error type (i.e., 1D, 2D separable, or 2D nonseparable) is known,

then it is natural to use the corresponding version of the proposed algorithm for

best phase error estimation performance. If the phase error type is not known a

priori, then the version of our algorithm for the 2D nonseparable case can be used,

since this is the most general scenario. For any of these three types of phase errors,

our algorithm does not require any knowledge about how the phase error function

varies (randomly, quadratically, polynomially, etc.) along the range (in 2D cases)

or cross-range (in 1D and 2D cases) directions. We demonstrate the effectiveness of

our approach on data corrupted by various phase error functions.
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Table 3.1: SAR System Parameters used in the synthetic scene experiment whose

results are shown in Figures 3.1 and 3.2.

carrier frequency (ω0) 2π × 1010 rad/s

chirp rate (2α) 2π × 1012 rad/s2

pulse duration (Tpulse) 4 × 10−4sec.

angular range (∆θ) 2.3o

3.2 Experimental Results

We have applied the proposed SDA method in a number of scenarios and present

our results in the following two subsections. In Section 3.2.1 we present our results

on various types of data and demonstrate the improvements in visual image quality

as compared to the uncompensated case. In Section 3.2.2 we provide a quantitative

comparison of our approach with existing state-of-the-art autofocus techniques.

3.2.1 Qualitative Results and Comparison to the Uncom-

pensated Case

To present qualitative results for the proposed method in comparison to the uncom-

pansated case, several experiments have been performed on various synthetic scenes

as well as on two public SAR data sets provided by the U.S. Air Force Research Lab-

oratory (AFRL): the Slicy data, part of the MSTAR dataset [29]; and the Backhoe

data [30].

To generate synthetic SAR data for a 32× 32 scene we have used a SAR system

model with the parameters given in Table 3.1. The resulting phase history data lie

on a polar grid. As observation noise, complex white Gaussian noise is added to the

data so that SNR is 30dB. We have performed experiments for four different types

of phase errors. The original synthetic image is shown in Figure 3.1(a). For the data

without phase errors, conventional and sparsity-driven reconstructions are given in

Figure 3.1(b) and (c), respectively. In this paper, in all of the experiments, the

polar-format algorithm is used for conventional imaging. Results by conventional

imaging and by the proposed method for different types of phase errors are shown
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Figure 3.1: (a) The original scene. (b) Conventional imaging from the data without

phase errors. (c) Sparsity-driven imaging from the data without phase errors.

in Figure 3.2. Conventionally reconstructed images suffer from degradation due to

phase errors. The results show the effectiveness of the proposed method. As seen

in Figure 3.2, it is not possible to visually distinguish the images formed by the

proposed method from the original scene.

To demonstrate the performance of SDA in the presence of speckle, we present

some results on a 128×128 synthetic scene, in Figure 3.3. To create speckle, random

phase is added to the reflectivities of the underlying scene. The corresponding

SAR data are simulated by taking a 32 × 32 band-limited segment from the 2D

Fourier transform of the scene. Then a 1D cross-range varying random phase error,

uniformly distributed in [−π, π] has been added to the data. Speckle is clearly

visible in the conventional image reconstructed from the data without phase errors

in Figure 3.3(a). The images reconstructed by conventional imaging and sparsity-

driven imaging when the data are corrupted by phase errors are shown in Figures

3.3(b) and (c), respectively. The result in Figure 3.3(d) demonstrates that SDA can

effectively perform imaging and phase error compensation in the presence of speckle.

In Figure 3.4 we present the images reconstructed from the Slicy data without

phase errors. The Slicy target is a precisely designed and machined engineering test

target containing multiple simple geometric radar reflector static shapes. The data

used in the experiments have been collected with a squint angle of 330o. Figure 3.4

(a) shows the photo of the Slicy target, Figure 3.4(b) shows the image reconstructed

conventionally and Figure 3.4(c) shows the result of sparsity-driven imaging. As

seen in the figures, sparsity-driven imaging provides high resolution images with
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Figure 3.2: Left- Phase error. Middle- Images reconstructed by conventional imag-

ing. Right- Images reconstructed by the proposed SDA method. (a) Results for

quadratic phase error. (b) Results for an 8th order polynomial phase error. (c)

Results for a phase error uniformly distributed in [−π/2, π/2] .

enhanced features (in this particular example, this means locations of dominant

point scatterers). Figure 3.5(a) and (b) show the results on the Slicy data for a 1D

quadratic and a 1D random phase error which is uniformly distributed in [−π, π].

The images in the middle row correspond to direct application of the sparsity-driven

imaging technique of [20] without model error compensation. The significant degra-

dation in the reconstructions show that sparsity-driven imaging without model error

compensation cannot handle phase errors. From the images presented in the bottom

row we can see clearly that the images formed by the proposed SDA method inherit

and exhibit the advantages of sparsity-driven imaging (see Figure 3.4(c)) and in the

meantime the phase errors are removed as well. In Figure 3.6(a) and (b), the results

for 2D separable and non-separable random phase errors are displayed. 2D phase
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(a) (b)

(c) (d)

Figure 3.3: Experimental results on a speckled scene. (a) Conventional image recon-

structed from noisy data without phase error. (b) Conventional image reconstructed

from noisy data with phase error. (c) Image reconstructed by sparsity-driven imag-

ing from noisy data with phase error. (d) Image reconstructed by the proposed SDA

method.

48



(a)

(b) (c)

Figure 3.4: (a) Photo of the Slicy target. (b) Conventional imaging from the data

without phase error. (c) Sparsity-driven imaging from the data without phase error.

errors cause a dramatic degradation on the reconstructed images. However, the

proposed SDA method successfully corrects the 2D phase errors as well, and pro-

duces images that exhibit accurate localization of the true scatterers and significant

artifact suppression.

Here, note that, it is possible to estimate a 2D separable phase error function by

using the algorithm for 2D non-separable phase errors. However, we know that a 2D

separable phase error function has a structure and to obtain the two 1D phase error

functions separately we need to use this structure information during the estimation

process since it is difficult to separate a 2D phase error function into 1D phase error

functions due to the nonuniqueness. In the previous experiments for 2D separable
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(a) (b)

Figure 3.5: Top- Images reconstructed by conventional imaging. Middle- Images

reconstructed by sparsity-driven imaging. Bottom- Images reconstructed by the

proposed SDA method. (a) Results for a 1D quadratic phase error. (b) Results for

a 1D phase error uniformly distributed in [−π, π].
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(a) (b)

Figure 3.6: Top- Images reconstructed by conventional imaging. Middle- Images

reconstructed by sparsity-driven imaging. Bottom- Images reconstructed by the

proposed SDA method. (a) Results for a 2D separable phase error composed of

two 1D phase errors uniformly distributed in [−3π/4, 3π/4]. (b) Results for a 2D

non-separable phase error uniformly distributed in [−π, π].

51



phase errors, the phase error estimation is done as explained in Section 3.1.2, i.e., in

every iteration first the phase error in the cross-range direction and then the phase

error in the range direction is estimated and compansated. To get an intuition about

whether the order of these estimation steps has any effect on the solution, we have

performed an experiment. In this experiment, a 2D separable phase error composed

of two 1D phase errors, one of which is uniformly distributed in [−π, π] and the other

is uniformly distributed in [−π/2, π/2], has been applied to the Slicy data. Results,

produced by using the original SDA algorithm for 2D separable phase errors, and the

SDA algorithm with a phase error estimation step in reverse order, i.e., the phase

error estimation is done first for the range direction and then for the cross-range

direction, are displayed in Figure 3.7(b) and (c), respectively. In Figure 3.7(d) and

(e), the difference between the phase error estimates of these two cases are shown

for the cross-range and range dependent phase error functions, respectively. Based

on the results of this experiment, it seems that changing the order of the phase error

estimation does not have a remarkable effect on the performance of the algorithm.

The phase error estimates for two cases are almost the same and the difference

between these estimates is at most 0.0215 radians which is negligible. However,

we acknowledge this is a limited experiment, and this issue can be examined more

rigorously.

We present 2D image reconstruction experiments based on the AFRL ‘Backhoe

Data Dome, Version 1.0’, which consists of simulated wideband (7-13 GHz), full

polarization, complex backscatter data from a backhoe vehicle in free space, as

well. The backscatter data are available over a full upper 2π steradian viewing

hemisphere. In our experiments, we use VV polarization data, centered at 10 GHz,

and with an azimuthal span of 110o. The data we use in our experiments have

a bandwidth of 1 GHz. To deal with the wide-angle observation in the Backhoe

dataset, we incorporate the subaperture-based composite imaging approach of [53]

into our framework. The composite image is formed by combining the subaperture

images so that each pixel value of the composite image is determined by selecting the

maximum value for that pixel across the subaperture images. For this experiment,

phase error estimation and correction are performed for every subaperture image.

In Figure 3.8 we show the facet of the Backhoe vehicle and, the conventionally and
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Figure 3.7: Results for a 2D separable phase error composed of two 1D phase errors,

one of which is uniformly distributed in [−π, π] and the other is uniformly distributed

in [−π/2, π/2]. (a) Conventional imaging. (b) Image reconstructed by the proposed

SDA method (the order of phase error estimation process: 1)for cross-range direc-

tion 2)for range direction). (c) Image reconstructed by the proposed SDA method

(the order of phase error estimation process: 1)for range direction 2)for cross-range

direction). (d) Difference between the cross-range dependent phase error estimates

of two cases. (e) Difference between the range dependent phase error estimates of

two cases.
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sparsity-driven reconstructed images for the data without phase error. The results on

Backhoe data for 1D and 2D separable random phase errors are presented in Figure

3.9. In the top and middle rows of Figure 3.9, the artifacts due to phase errors are

clearly seen in the images reconstructed by conventional imaging and sparsity-driven

imaging, respectively. However, both 1D and 2D phase errors are compensated

effectively by the proposed method. From the given examples so far we see that the

proposed SDA method corrects the phase errors effectively and provides images with

high resolution and reduced sidelobes, thanks to the nonquadratic regularization-

based framework.

We mentioned that regularization-based imaging gives satisfying results in cases

of incomplete data as well. We explore this aspect in the presence of phase errors

performing two experiments on Slicy data with frequency band omissions. In the

first experiment, the data from 30% of frequencies were randomly set to zero, i.e.,

only 70% of the spectral data within that bandwith are available, and then a 1D

random phase error function, uniformly distributed in [−π, π] was applied to the

data. The results of this experiment are presented in Figure 3.10 and Figure 3.11.

In the second experiment, this time, data with 70% frequency band omissions were

used and a 1D quadratic phase error function was applied to the data. The images

of the second experiment are displayed in Figure 3.12 and Figure 3.13. As seen

from the reconstructions, the proposed method produces feature-enhanced images

and removes phase errors effectively even when the data are partially available.

Now we want to demonstrate how the nonquadratic regularization functional

in our framework supports phase error compensation, through a simple experiment

in which we compare the results of our approach with a quadratic regularization

scheme. In this experiment, we have applied a 1D cross-range varying random phase

error, uniformly distributed in [−π, π] to the data from a synthetic scene simulated

just by taking its 2D Fourier transform. To construct a quadratic regularization-

based scheme, we have replaced the l1 − norm in our approach with an l2 − norm

without changing the phase error estimation piece. We present the results of this

experiment in Figure 3.14. As seen from images, with the quadratic regularization

approach, it is not possible to correct phase errors, whereas the image reconstructed

by our nonquadratic regularization-based SDA algorithm is perfectly focused.
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(a)

(b) (c)

Figure 3.8: (a)The facet of the Backhoe vehicle. (b) Conventional imaging from the

data without phase error. (c) Sparsity-driven imaging from the data without phase

error.
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(a) (b)

 

 

Figure 3.9: Top- Images reconstructed by conventional imaging. Middle- Images

reconstructed by sparsity-driven imaging. Bottom- Images reconstructed by the

proposed SDA method. (a) Results for a 1D phase error uniformly distributed in

[−π/2, π/2]. (b) Results for a 2D separable phase error composed of two 1D phase

errors uniformly distributed in [−3π/4, 3π/4].
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(a) (b)

Figure 3.10: Experiments on the Slicy data with 30% frequency band omissions :

(a) Conventional imaging from the data without phase error. (b) Sparsity-driven

imaging from the data without phase error.

(a) (b) (c)

Figure 3.11: Experiments on the Slicy data with 30% frequency band omissions and

1D random phase error uniformly distributed in [−π, π]: (a) Conventional imaging.

(b) Sparsity-driven imaging. (c) Proposed SDA method.
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(a) (b)

Figure 3.12: Experiments on the Slicy data with 70% frequency band omissions :

(a) Conventional imaging from the data without phase error. (b) Sparsity-driven

imaging from the data without phase error.

(a) (b) (c)

Figure 3.13: Experiments on the Slicy data with 70% frequency band omissions and

1D quadratic phase error: (a) Conventional imaging. (b) Sparsity-driven imaging

(c) Proposed SDA method.
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(a) (b)

(c) (d)

Figure 3.14: Results of the experiment for testing the effect of the nonquadratic

regularization term in the proposed SDA method on phase error compensation.

(a) The original scene. (b) Conventional imaging from the data with phase error.

(c) Image reconstructed in the case of replacing the l1 − norm in our approach

with an l2 − norm without changing the phase error estimation piece. (d) Image

reconstructed by the proposed SDA method.
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Before going to the next section, it is useful here to discuss the effect of the

regularization parameter λ on the solution. To obtain satisfactory results, it is im-

portant to choose a proper regularization parameter. According to the size and

the type of the data and the observation model and according to the noise-level, a

different regularization parameter value needs to be selected. In this thesis, regular-

ization parameters in all experiments are selected heuristically. Actually, there are

many methods proposed for the automatic selection of the regularization parameter

and they have been applied also to SAR imaging [54, 55]. These techniques can

be integrated into our method to determine the regularization parameter automati-

cally. However, since these techniques have been developed for regularization-based

imaging with an observation model without any errors, they may not give the opti-

mum result in the problems with model errors. These techniques may be integrated

into our method in an adaptive way, i.e., in each iteration a new regularization pa-

rameter can be selected using the parameter selection techniques. Of course, using

an automatic regularization parameter selection method would bring some extra

computational load.

To give an idea of how the regularization parameter selection changes the so-

lution, in Figure 3.15 we present results obtained for different λ values, from the

noisy, phase-corrupted data of a 64 × 64 synthetic scene. In this experiment, the

data have been obtained by taking the 2D FFT of the synthetic scene and as phase

error, a 1D random phase error function, uniformly distributed in [−π/2, π/2], has

been applied. The input SNR is 16dB. For this experiment, we see that in terms of

both phase error compensation and noise suppression, reasonable results have been

obtained for λ values between 2.5 and 2000.

3.2.2 Quantitative Results in Comparison to State-of-the-

art Autofocus Methods

In the second part of the experimental study, we present results for comparison of

the proposed technique with existing autofocus techniques. In Figure 3.16 we show

comparative results for a 64 × 64 synthetic scene. The SAR data are simulated by

taking a band-limited segment on a rectangular grid from the 2D discrete Fourier
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.15: (a) The original scene. (b) Conventional imaging from noisy data

with phase error. Results of the proposed SDA method for various regularization

parameter (λ) values. (c) λ = 0.5. (d) λ = 1. (e) λ = 1.5. (f) λ = 2.5. (g) λ = 25.

(h) λ = 50. (i) λ = 100. (j) λ = 2000. (k) λ = 2500. (l) λ = 4000.

61



transform (DFT) of the scene. Then complex white Gaussian noise is added to

the data so that the input SNR is 10.85dB. Then a 1D cross-range varying random

phase error, uniformly distributed in [−π, π] is added to the data. The performance

of the proposed technique is compared to the performance of PGA [4] and entropy

minimization techniques [5, 7–9]. For entropy minimization we have used the pro-

cedure given in [7]. For this particular experiment, the results suggest that all three

methods do a good job in estimating the phase error. However in terms of image

quality, while PGA and entropy minimization are limited by conventional imag-

ing, the proposed SDA method demonstrates the advantage of joint sparsity-driven

imaging and phase error correction, and produces a scene that appears to provide a

very accurate representation of the original scene. For the same synthetic scene we

(a) (b) (c)

(d) (e) (f)

Figure 3.16: (a) The original scene. (b) Conventional imaging from noisy data

without phase error. (c) Conventional imaging from noisy data with phase error.

(d) Result of PGA. (e) Result of entropy minimization. (f) Result of the proposed

SDA method.

62



have also performed experiments with different input SNRs. For each SNR value we

have applied 20 different random 1D phase errors, all of them uniformly distributed

in [−π, π]. For each experiment we compute 3 different metrics. These are the MSE

between the original image and the image resulting from the application of the aut-

ofocus technique considered, target-to-background ratio, and metrics for the phase

error estimation error. These metrics are computed as follows:

MSE =
1

I

∥
∥
∥|f | −

∣
∣
∣f̂
∥
∥
∥

∣
∣
∣

2

2
(3.22)

Here, f and f̂ denote the original and the reconstructed images, respectively. I is

the total number of pixels.

Target-to-background ratio is used to determine the accentuation of the target

pixels with respect to the background:

TBR = 20 log10




maxi∈T

∣
∣
∣f̂i

∣
∣
∣

1
IB

∑

j∈B

∣
∣
∣f̂j

∣
∣
∣



 (3.23)

Here, T and B denote the pixel indices for the target and the background regions,

respectively. IB is the number of background pixels.

To compare the phase error estimation performance of the proposed method to

other techniques, we first compute the estimation error for phase errors:

φe = φ − φ̂ (3.24)

Here φe is effectively the phase error that remains in the problem after correction

of the data or the model using the estimated phase error. To evaluate various

techniques based on their phase error estimation performance, it makes sense to

first remove the components in φe that either have no effect on the reconstructed

image, or that can be easily dealt with, and then perform the evaluation based on

the remaining error. We first note that a constant (as a function of the aperture

position) phase shift has no effect on the reconstructed image [3]. Second, a linear

phase shift does not cause blurring, but rather a spatial shift in the reconstructed

image. Such a phase error can be compensated by appropriate spatial operations on

the scene [6], which we perform prior to quantitative evaluation. To disregard the

effect of any constant phase shift in our evaluation, and also noting that the amount

of variation of the phase error across the aperture is closely related to the degree of
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degradation of the formed imagery, we propose using evaluation metrics based on

the total variation (TV) of φe and on the l2 − norm of the gradient of φe:

TVPE =
1

M − 1
‖∇φe‖1 (3.25)

MSEPE =
1

M − 1
‖∇φe‖2

2

Here, ∇φe is the (M−1)×1 vector, obtained by taking first-order differences between

successive elements of φe. M is the total number of cross-range positions.

Now we get back to the quantitative evaluation of the reconstruction of the

scene in Figure 3.16(a) for various SNRs. We present the comparison results for

these three metrics in Figure 3.16. Since TVPE and MSEPE values are similar for

these particular experiments, we show the results for MSEPE only. From the plots

presented, it is clearly seen that the proposed method performs better than the other

techniques, especially for low SNR values. We also note in Figure 3.16(a) that the

proposed SDA method yields much better performance in terms of the MSE between

the original and the reconstructed images even at high SNRs. This is due to the fact

that SDA benefits from the advantages of sparsity-driven imaging (unlike the other

techniques) over conventional imaging (see Figure 3.16) in addition to successfully

correcting the phase errors (like the other techniques) at high SNRs.

All of the three algorithms were implemented using non-optimized MATLAB

code on an Intel Celeron 2.13GHz CPU. In the experiment of Figure 3.16, the

computation times required by PGA, entropy minimization, and the proposed SDA

method are 0.6240s, 1.1076s, and 2.1216s, respectively. For the experiments of

Figure 3.17, Figure 3.18 and Figure 3.19, the average computation times for PGA,

entropy minimization, and SDA are 0.3095s, 0.4719s, and 3.4961s, respectively. The

computational load of SDA is relatively more than the other methods, but this can

be justified through the benefits provided by the sparsity-driven imaging framework

underlying SDA, as demonstrated in our experiments.

In Figure 3.20, we display some comparative results on the Backhoe data as well.

For this experiment the applied 1D phase error is a random error with a uniform

distribution in [−π, π]. In this example, for quantitative comparison, we use the

MSE for the phase error. The MSEPE values are shown in Table 3.2. The results

show that the proposed method performs phase error estimation more accurately
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Figure 3.17: MSE evaluation of the reconstruction of the scene in Figure 3.14(a)

for various SNRs. Each point on the curves corresponds to an average over 20

experiments with different random 1D phase errors uniformly distributed in [−π, π].
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Figure 3.18: Target-to-background ratio evaluation of the reconstruction of the scene

in Figure 3.14(a) for various SNRs. Each point on the curves corresponds to an aver-

age over 20 experiments with different random 1D phase errors uniformly distributed

in [−π, π].
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Figure 3.19: MSE evaluation of phase error estimations for the scene in Figure

3.14(a) for various SNRs. Each point on the curves corresponds to an average over

20 experiments with different random 1D phase errors uniformly distributed in [-

π, π].

than PGA and entropy minimization techniques. Furthermore, the proposed method

also exhibits superiority over existing autofocus techniques in terms of the quality

of the reconstructed scene. In particular, the proposed method results in a finer

and more detailed visualization through noise and sidelobe suppression as well as

resolution improvements. The reconstructed images and quantitative comparison

show the effectiveness of the proposed approach.

Finally, we compare our method with the recently proposed multichannel aut-

ofocus (MCA) technique [14]. We have generated a 64 × 64 synthetic scene that

satisfies the requirements of MCA, involving a condition on the rank of the image,

as well as the presence of a low-return region in the scene. The SAR data used in

these experiments are corrupted by a 1D cross-range varying random phase error,

uniformly distributed in [−π, π]. We show the results of the experiments performed

for various input SNR levels in Figure 3.21 and Figure 3.22. We observe that both

MCA and SDA perform successful phase error compensation at the relatively high

SNR of 27 dB (see Figure 3.21(c) and (d)). However when SNR is reduced to 10

dB, MCA is not able to correct the phase error, as shown in Figure 3.21(f). On
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Experiments on the Backhoe data for a 1D random phase error with a

uniform distribution in [−π, π]. (a) Conventional imaging from data without phase

error. (b) Sparsity-driven imaging from data without phase error. (c) Conventional

imaging with phase error. (d) Result of PGA. (e) Result of entropy minimization.

(f) Result of the proposed SDA method.
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the other hand, SDA compensates phase errors, and suppresses noise and clutter

effectively even for this relatively low SNR case, as shown in Figure 3.21(g). Fig-

ure 3.22 contains a plot of MSEs for phase error estimation achieved by MCA and

SDA on this scene for various SNR levels. This plot demonstrates the robustness of

SDA to noise. Average computation times required by MCA and the proposed SDA

method for the experiments displayed in Figure 3.21 and Figure 3.22 are 0.1629s

and 2.5151s, respectively (using non-optimized MATLAB code on an Intel Celeron

2.13GHz CPU). The results of these experiments show that although MCA is a

fast algorithm, working very well in scenarios involving high-quality data, its per-

formance degrades significantly as SNR decreases.

Table 3.2: MSE achieved by various methods in estimating the phase error for the

Backhoe experiment in Figure 3.20.

PGA Entropy Minimization Proposed SDA Method

MSEPE 3.3267 2.1715 2.1382

Finally, note that, in all of the experiments on synthetic scenes, the grid we use

for imaging is the same with the grid on which point targets lie. For the Backhoe

and the Slicy data, we just have access to the phase history data, so the scatterers

in this case may not lie on our imaging grid.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.21: (a) The original scene. (b) Conventional imaging from noisy phase-

corrupted data for input SNR of 27dB. (c) Result of MCA for input SNR of 27dB.

(d) Result of the proposed SDA method for input SNR of 27dB. (e) Conventional

imaging from noisy phase-corrupted data for input SNR of 10dB. (f) Result of MCA

for input SNR of 10dB. (g) Result of the proposed SDA method for input SNR of

10dB.
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Figure 3.22: MSEs for phase error estimation versus SNR.
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Chapter 4

Moving Target Imaging

In synthetic aperture radar (SAR) imaging, uncertainties on the position of the

sensing platform or on the motion of the targets in the underlying scene cause

phase errors in the SAR data and subsequently defocusing in the reconstructed

image. Phase errors arising due to uncertainties in the position of the SAR sensing

platform cause space-invariant defocusing, i.e., the amount of the defocusing in the

reconstructed image is the same for all points in the scene. This problem is handled

in the previous chapter. However, moving targets in the scene induce a space-

variant defocus, i.e., defocusing appears only around the positions of the moving

targets whereas the stationary background is not defocused [27].

In this chapter, we present an extension of the framework of SDA for the space-

variant defocusing problem. In this technique, the problem is handled as an opti-

mization problem, in which besides the constraint on the sparsity of the reflectivity

field, also a constraint on the spatial sparsity of the phase errors is imposed based on

the assumption that motion in the scene is limited to a small number of spatial lo-

cations. The method is performed through iterative minimization of a cost function

of both the field and the phase errors. Each iteration consists of two steps, the first

of which is for image formation and the second is for phase error estimation. For

phase error estimation we present two approaches. The first approach looks for po-

tential motion and estimates the phase errors at all points in the scene. The second

approach aims to improve the computational efficiency of the phase error estimation

procedure by first determining regions of interest for potential motion using a fast

procedure, and then performing phase error estimation only in these regions. Ex-
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perimental results on various synthetic scenes demonstrate the effectiveness of the

proposed method.

4.1 SAR Imaging Model

The phase history data r can be viewed as the sum of the SAR data corresponding

to each point in the scene.

r = Cclmn−1f(1)
︸ ︷︷ ︸

rp1

+ Cclmn−2f(2)
︸ ︷︷ ︸

rp2

+.. + .. + Cclmn−If(I)
︸ ︷︷ ︸

rpI

(4.1)

Here, Cclmn−i is the i− th column of the model matrix C and, f(i) and rpi represent

the complex reflectivity at the i− th point of the scene and the corresponding SAR

data, respectively. I is the total number of points in the scene. The cross-range

component of the target velocity causes the image of the target to be defocused in

the cross-range direction, whereas the range component causes shifting in the cross-

range direction and defocusing in both cross-range and range directions [7, 17]. The

image of a target that experiences significant vibration is defocused in the cross-

range direction as well [56]. The defocusing arises due to the phase errors in the

SAR data of these targets. It is possible to clarify the connection between motion

and phase error further. Regarding that SAR data are approximately 2D Fourier

transform of the underlying scene, the motion-phase error relationship may be better

understood from the Fourier transform perspective. The position of a point in the

scene is captured in the phase of the corresponding frequency domain data. We

know it also from the Fourier transform property which relates a shift in the image

domain with a proportional phase addition in the frequency domain. Therefore, if

a target moves from point a to point b, in the time between two data collection

points, the data collected when the target is in point b would be the same as the

data if the target was at point a but the data are phase corrupted.

Now, let us view the i− th point in the scene as a point target having a motion

which results in defocusing along the cross-range direction. The SAR data of this
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target can be expressed as [7, 17]:
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(4.2)

Here, φi represents the phase error caused by the motion of the target and, rpi

and rpie are the phase history data for the stationary and moving point target,

respectively. In a similar way, this relation can be expressed in terms of the model

matrix C as follows:
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(4.3)

Here, Cclmn−i(φ) is the i-th column of the model matrix C(φ) that takes the move-

ment of the targets into account and Cclmn−im(φ) is the part of Cclmn−i(φ) for the

m − th cross-range position. In the presence of additional observation noise, the

observation model for the overall system becomes

g = C(φ)f + v (4.4)

where, v is the observation noise. In this way, we have turned the moving tar-

get imaging problem into the problem of imaging a stationary scene with phase

corrupted data. Here, the aim is to estimate f and φ from the noisy observation g.

4.2 Proposed Method

We propose a sparsity-driven method for joint estimation of the field and phase errors

caused by the targets moving in cross-range direction [57]. A constant velocity in the
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range direction results in a cross-range shift in the image domain without defocusing

and like other autofocus techniques, our approach is also insensitive to such type

of errors. Therefore, currently, our approach is limited to motions in cross-range

direction. The method is based on a nonquadratic regularization-based framework

which allows the incorporation of the prior sparsity information about the field and

about the phase errors into the problem. The phase errors are incorporated into the

problem using the vector β, which includes phase errors corresponding to all points

in the scene, for all aperture positions.

β =


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(4.5)

Here, βm is the vector of phase errors for the m − th aperture position and has the

following form:

βm =
[
ejφ1(m), ejφ2(m), ...., ejφI(m)

]T
(4.6)

The method is performed by minimizing the following cost function with respect to

the field and phase errors.

arg min
f,β

J(f, β) = arg min
f,β

‖g − C(φ)f‖2
2 + λ1 ‖f‖1 + λ2 ‖β − 1‖1

s.t. |β(i)| = 1 ∀i (4.7)

Here, 1 is a MI × 1 vector of ones. Since the number of moving points is much less

than the total number of points in the scene, most of the φ values in the vector β

are zero. Since the elements of β are in the form of ejφ’s, when φ is zero, β becomes

one. Therefore, this sparsity on the phase errors is incorporated into the problem

by using the regularization term ‖β − 1‖1.

This problem is solved similarly to the optimization problem in the previous

chapter and in a previous work on SAR imaging [58]. The algorithm is iterative and

at each iteration, in first step, the cost function J(f, β) is minimized with respect
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to the field f .

f̂ (n+1) = arg min
f

J(f, β̂(n)) = arg min
f

‖g − C(φn)f‖2
2 + λ1 ‖f‖1 (4.8)

This minimization problem is solved identically to the one in the previous chapter.

In the second step of each iteration, we use the field estimate f̂ from the first step

and estimate the phase errors by minimizing the following cost function for each

aperture position:

β̂(n+1)
m = arg min

βm

J(f̂ (n+1), βm) = arg min
βm

∥
∥gm − CmT (n+1)βm

∥
∥

2

2
+ λ2 ‖βm − 1‖1

s.t. |βm(i)| = 1 ∀i

(4.9)

Here, T is a diagonal matrix, with the entries f̂(i) on its main diagonal, as follows:

T (n+1) = diag
{

f̂ (n+1)(i)
}

(4.10)

In (4.9), 1 is a I × 1 vector of ones. The constrained optimization problem in (4.9)

is replaced with the following unconstrained problem that incorporates a penalty

term on the magnitudes of βm(i)’s.

β̂(n+1)
m = arg min

βm

∥
∥gm − CmT (n+1)βm

∥
∥

2

2
+ λ2 ‖βm − 1‖1 + λ3

I∑

i=1

(|βm(i)| − 1)2

= arg min
βm

∥
∥gm − CmT (n+1)βm

∥
∥

2

2
+ λ2 ‖βm − 1‖1 + λ3 ‖βm‖2

2 − 2λ3 ‖βm‖1

m = 1, 2, ...,M

(4.11)

This optimization problem is solved by using the same technique as in the field

estimation step. In each iteration, β̂m is obtained as

β̂(n̄+1)
m =

[

2
(

CmT (n+1)
)H (

CmT (n+1)
)

+ λ2W1(β̂
(n̄)
m ) + 2λ3W2(β̂

(n̄)
m ) − 2λ3W3(β̂

(n̄)
m )

]−1

[

2
(

CmT (n+1)
)H

gm + λ2W1(β̂
(n̄)
m )1

]

(4.12)

where W1(β̂
(n)
m ), W2(β̂

(n)
m ) and W3(β̂

(n)
m ) are diagonal matrices as follows:
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(4.13)
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W2(β̂
(n̄)
m ) = Λ (4.14)
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(4.15)

Here, n̄ denotes the iteration number in the internal optimization problem and Λ in

(4.14) is the identity matrix. Using the estimate β̂m, the following matrix is created,

B(n+1)
m = diag

{

β̂(n+1)
m (i)

}

(4.16)

which is used to update the model matrix for the m − th aperture position.

Cm(φn+1) = CmB(n+1)
m (4.17)

After these phase estimation and model matrix update procedures have been com-

pleted for all aperture positions, the algorithm passes to the next iteration, by

incrementing n and returning to (4.8).

4.2.1 Phase Error Estimation and Correction by Determin-

ing Regions of Interest (ROI)

The approach we have described in the previous section looks for potential motion

everywhere in the scene. However, moving points usually exist in limited regions of

a scene. Let us consider a scene containing a few moving vehicles. In this case, only

a small portion of the entire scene will contain motion, and all the points belonging

to a vehicle will have the same motion. In order to exploit such a structure both

for computational gains and for improved robustness, we present a modified phase

error estimation procedure. In the phase error estimation step of every iteration to

solve the optimization problem in (4.7), we now propose a two-level approach [59].

In the first level, we determine the range lines that are likely to contain moving

objects. This generates regions of interest which we use in the second level to

estimate the phase error. Assuming that the targets in each of these regions have

the same motion and clutter is not strong, we perform space-invariant phase error

estimation and compensation for each region. Now let us describe the overall phase
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error estimation step in detail. In the first level of the phase error estimation step

the following cost function is minimized with respect to phase errors.

β̂m = arg min
βm

J(f̂ (n+1), βm)

= arg min
βm

∥
∥gm − CmT (n+1)βm

∥
∥

2

2
+ λ2 ‖βm − 1‖1 (4.18)

Note that this optimization problem is slightly different from the one in (4.9) in

the sense that the constraint on the magnitudes of the vector β is missing. This

slight modification leads to significant computational savings. Since the goal of

this first level is just to determine the ROI, rather than estimating β perfectly, the

inaccuracies caused by this modification do not have a significant impact on overall

performance. Using the estimated the βm vectors, a matrix P is created, columns

of which are the phase values of the βm vectors, i.e., the φ values.

P =
[

6 β̂1 6 β̂2 . . . 6 β̂M

]

(4.19)

i-th row of the matrix P corresponds to the phase error vector for the i-th point in

the scene. After taking the absolute value of each element of the matrix P , an I × 1

vector Psum is created by summing the elements in each row.

Psum(i) =
M∑

m=1

abs (P (i,m)) ∀i (4.20)

Let the total number of image domain range indices be A and the total number of

image domain cross-range indices be B. By reshaping the vector Psum to an A × B

matrix and then summing the elements in each column of this matrix, a 1×B vector

V is obtained which includes a phase error-related value for each range line in the

scene. For the range lines in which moving targets exist, this value is relatively

greater than the values for other range lines. The vector V is normalized and the

range lines having a value greater than a pre-determined threshold ς are decided to

be range lines that potentially contain moving targets. This completes the first level

of the phase error estimation step.

The second level involves estimation of the phase error in each region determined

in the first level. We assume that there is a single target on a weak background in

each distinct ROI and adjacent range lines correspond to the same target. Regarding
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this assumption we apply space-invariant focusing for each spatially distinct region.1

This reduces the number of unknown phase error terms as compared to our more

generic approach, and leads to improved robustness in cases where the assumption

that there is a single motion in each spatially connected ROI is valid. To simply

explain the second level of the phase error estimation procedure, let us assume that

there is only one moving target in the scene. Let the parts of the model matrix

and the field corresponding to the region of interest be Creg and freg, and the parts

of model matrix and the field corresponding to the outside of this region be Cout

and fout, respectively. Then the phase error φreg is estimated by minimizing the

following cost function for every aperture position

φ̂(n+1)
reg (m) = arg min

φreg(m)

∥
∥
∥g(n+1)

regm
− ejφreg(m)Cregm

f̂ (n+1)
reg

∥
∥
∥

2

2
(4.21)

for m = 1, 2, ....,M

where greg is the phase history data corresponding to the region of interest and is

given by:

g(n+1)
reg = g − Coutf̂

(n+1)
out (4.22)

The problem in (4.22) is solved in closed form for every aperture position [50, 52].

Using the phase error estimate, the corresponding part of the model matrix is up-

dated.

Cregm
(φ̂(n+1)

reg (m)) = ejφ̂
(n+1)
reg (m)Cregm

for m = 1, ....,M (4.23)

If there are more than one moving targets in the scene, then this procedure is

implemented for all regions with a potentially moving target. After the model matrix

has been updated, the algorithm passes to the next iteration, by incrementing n and

returning to the field estimation step.

Note that, the algorithms developed for moving target indication (MTI) share

the same idea with our approach. In MTI processing, the change in successive pulses

are used since the components of the received signal belonging to a stationary target

1We could apply space variant focusing in each ROI. This would require less computation than

our general approach, described at the beginning of Section 4.2, but more than the space-invariant

approach described here.
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or the stationary background have the same amplitude and phase for each pulse,

where the phase of a moving target component varies due to the changing range. If

the change between successive pulses is greater than a treshold, a moving target is

declared. However, in MTI processing the only information obtained is the presence

or the absence of a moving target in the scene. Moreover, it does not provide

information about the number of targets [60].

4.3 Experimental Results

We present experimental results on various synthetic scenes. To demonstrate the

effectiveness of and highlight the benefits specifically provided by the proposed

method, for all experiments, the images reconstructed by conventional imaging (the

polar format algorithm [27]) and sparsity-driven imaging [20] are presented as well.

Moreover, to show that the algorithms developed for the space-invariant focusing

cannot deal with the space-variant defocusing, for the first two experiments the

results obtained by the SDA method proposed in Chapter 3 for space-invariant fo-

cusing and the well-known PGA method are presented as well. Synthetic scenes

used in the first two experiments include many point targets with different type of

phase errors. To simulate different motions and velocities of the targets, the phase

history data of each target are corrupted by a different phase error function. In the

first experiment, results of which are displayed in Figure 4.1, the phase histories of

the three point targets are corrupted by independent random phase error functions

uniformly distributed in [−π/2, π/2]. The phase histories of the two bigger targets

are corrupted by quadratic phase error functions of different peak values. In the

second experiment, results of which are displayed in Figure 4.2, the scene is con-

structed so that it involves many stationary point targets and a strongly vibrating

rigid-body target. To simulate it, the phase history data corresponding to each point

of this target are corrupted by independent random phase error functions uniformly

distributed in [−π/2, π/2]. From the results of these two experiments, for conven-

tional imaging and sparsity-driven imaging without any phase error correction, the

defocusing and artifacts in the reconstructed images caused by the moving targets

are clearly seen. Besides, we see that space-invariant focusing algorithms cannot
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correct space-variant defocusing. However, with the proposed approach, phase er-

rors are effectively removed and focused images are obtained. The scene for the

third experiment is shown in Figure 4.3(a). There are four targets in the scene one

of which (the leftmost one) is stationary and the other three have different motions.

To simulate different motions and velocities of the targets, the phase history data

of each target are corrupted by a different phase error function. The phase histories

of the two targets lying in the right side of the scene are corrupted by independent

random phase error functions uniformly distributed in [−π/2, π/2] to simulate a vi-

bration effect. The phase history data of the remaining target, third one from right

in the scene, are corrupted by a quadratic phase error function to simulate a con-

stant motion in cross-range direction. In Figure 4.3, the results of this experiment

are displayed. In the results for conventional imaging and sparsity-driven imaging

without any phase error correction, the defocusing and artifacts in the reconstructed

images caused by the moving targets are clearly seen. On the other hand, images re-

constructed by the proposed method are well focused and exhibit the advantages of

sparsity-driven imaging such as high resolution, reduced speckle and sidelobes. For

the next experiments, we establish the physical relationship between the phase error

and the velocity of a target having a constant motion in cross-range direction. In

this part we provide results also for the ROI-based approach. The threshold ς used

in ROI-based approach is chosen as 0.3. In the next experiment, the scene involves

many stationary point targets and two moving targets with constant velocities of

5m/s and 8m/s in the cross-range direction. The SAR system parameters for this

experiment are shown in Table 4.1. For the two moving targets, the cross-range

velocity induced quadratic phase error is computed as follows [7]:

φ(ts) =
4πvcrvpt

2
s

λwd0

(4.24)

Here, ts is the slow-time variable (continuous variable along the cross-range) and vcr

is the constant cross-range velocity of the target. According to this relationship, the

target with velocity 5m/s and the target with velocity 8m/s will induce a quadratic

phase error defined over an aperture −T/2 ≤ ts ≤ T/2 with a center to edge

amplitude of 2.5π radians and 4π radians, respectively. In Figure 4.4, the results

for this experiment are displayed. In this experiment, we present the results of our

general approach as well as our ROI-based approach. As shown in Figure 4.4, the
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Table 4.1: SAR System Parameters for Experiments in Figure 4.4 and Figure 4.5

range resolution ρr 1m

cross-range resolution ρcr 1m

wavelength λw 0.02m

angular range (∆θ) 0.573o

center frequency f0 15GHz.

distance between the SAR platform and patch center d0 30000m

platform velocity vp 300m/s

aperture time T = λwd0

2vpρcr
1s

two approaches produce successful and visually indistinguishable results. In the last

experiment, performed on another synthetic scene involving many point-like targets

and a larger rigid-body target, we again use SAR system parameters displayed in

Table 4.1. The phase history data of the rigid-body target are corrupted with a

quadratic phase error of a center to edge amplitude of 4π radians which corresponds

to a cross-range velocity of 8m/s. In this experiment, we employ our ROI-based

approach. The results presented in Figure 4.5 show the effectiveness of the approach

in estimating and compensating phase errors.
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Figure 4.1: Results of the first experiment. a) Original scene. b) Image recon-

structed by conventional imaging. c) Image reconstructed by sparsity-driven imag-

ing. d) Image obtained by using the PGA method for space-invariant focusing. e)

Image reconstructed by the SDA method for space-invariant focusing. f) Image

reconstructed by the proposed method for space-variant focusing.
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Figure 4.2: Results of the second experiment. a) Original scene. b) Image re-

constructed by conventional imaging. c) Image reconstructed by sparsity-driven

imaging. d) Image obtained by using the PGA method for space-invariant focusing.

e) Image reconstructed by the SDA method for space-invariant focusing. f) Image

reconstructed by the proposed method for space-variant focusing.
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(a) (b)

(c) (d)

Figure 4.3: Results of the third experiment. a) Original scene. b) Image recon-

structed by conventional imaging. c) Image reconstructed by sparsity-driven imag-

ing. d) Image reconstructed by the proposed method.
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(a)

(b) (c)

(d) (e)

Figure 4.4: Results of the fourth experiment. a) Original scene. b) Image re-

constructed by conventional imaging. c) Image reconstructed by sparsity-driven

imaging. d) Image reconstructed by the proposed method. e) Image reconstructed

by the proposed method with phase error estimation for ROI.
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(a) (b)

(c) (d)

Figure 4.5: Results of the fifth experiment. a) Original scene. b) Image recon-

structed by conventional imaging. c) Image reconstructed by sparsity-driven imag-

ing. d) Image reconstructed by the proposed method with phase error estimation

for ROI.
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Chapter 5

Conclusion and Potential Future

Research

5.1 Conclusion

We have proposed and demonstrated a sparsity-driven technique for joint SAR imag-

ing and phase error correction. The method corrects the phase errors during the

image formation process while it produces high resolution focused SAR images,

thanks to its sparsity enforcing nature resulting from the use of a nonquadratic

regularization-based framework. Since image formation and phase error estima-

tion are performed simultaneously, the overall computational load of the proposed

method is not significantly more than that of sparsity-driven imaging without phase

error compensation. The method can handle 1D as well as 2D phase errors. Exper-

imental results on various scenarios demonstrate the effectiveness of the proposed

approach as well as the improvements it provides over existing methods for phase

error correction.

We have presented an extension of this framework for the space-variant defocus-

ing problem as well. In this technique, the problem is handled as an optimization

problem, in which besides the constraint on the sparsity of the reflectivity field,

also a constraint on the spatial sparsity of the phase errors is imposed based on the

assumption that motion in the scene is limited to a small number of spatial loca-

tions. The algorithm involves iterative minimization of a cost function of both the

field and the phase errors. Each iteration consists of two steps, the first of which is
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for image formation and the second is for phase error estimation. For phase error

estimation we have presented two approaches. The first approach looks for poten-

tial motion and estimates the phase errors at all points in the scene. The second

approach aims to improve the robustness of the phase error estimation procedure

by first determining regions of interest for potential motion using a fast procedure,

and then performing phase error estimation only in these regions. Experimental re-

sults on various synthetic scenes have demonstrated the effectiveness of the proposed

method.

5.2 Potential Future Research

There are many potential future research directions.

5.2.1 Application of the Proposed Method to Other Areas

First, in this work we considered SAR, but our model-error formulation makes our

approach applicable in other areas, where similar types of model errors are encoun-

tered, as well. Especially in medical imaging (e.g. Magnetic Resonance Imaging

(MRI), Computerized Tomography (CT)), similar motion-induced errors appear due

to the patient movements during the imaging. The sparsity can be imposed to the

problem using appropriate dictionaries.

5.2.2 Using the Proposed Framework with Other Dictionar-

ies

Other potential extensions may be the formulation of the problem for scenarios

involving sparse representations of the field in various spatial dictionaries (e.g.,

wavelets, shearlets, learned dictionaries) or in other domains with appropriate regu-

larization terms (e.g. for a smooth field, the derivative of the field may be considered

as sparse). Another option is the incorporation of prior information or some con-

straints on phase error. Moreover, the dictionary approach can be used also for

phase error estimation step by creating a dictionary using potential phase values to

be captured in every iteration.
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5.2.3 Adaptive Approaches in Regularization-based Imag-

ing

Some improvement can be obtained in the performance of the SDA technique by

using an adaptive approach in the regularization-based imaging process. An example

may be to select the regularization parameter adaptively, i.e., the regularization

parameter will be not fixed, in every iteration a new regularization parameter will

be determined according to the convergence of the algorithm. Another example of

using an adaptive approach may be to use the weighted l1−norm procedure [61]. The

algorithm consists of solving a sequence of weighted l1-minimization problems where

the weights used for the next iteration are computed from the value of the current

solution [61]. It has been shown that in many situations this ‘weighted’ approach

outperforms l1-minimization in the sense that substantially fewer measurements are

needed for exact recovery [61].

5.2.4 Velocity Estimation using the Corresponding Phase

Error Estimate

The mathematical relationship between the velocity of a moving target and the cor-

responding phase error has been examined and derived before for various motion

types [7, 17, 56]. However, although the mathematical formulation of this rela-

tionship is known, to obtain the velocity information from the corresponding phase

error estimate is not an easy task due to: 1) As explained before in Section 3.2.2,

a constant (as a function of the aperture position) phase shift has no effect on the

reconstructed image and a linear phase shift does not cause blurring, but rather

a spatial shift in the reconstructed image. Since our method (like all other auto-

focus techniques) is insensitive to such type of phase errors, the constant and the

linear components, the phase error estimate may involve should be first removed

to obtain a reliable velocity estimation. 2) The estimated phase error function is

the wrapped version of the original phase error function into the interval [−π, π].

To obtain the velocity information, an unwrapping operation, which is a nontrivial

task, is needed. Therefore, a potential future research topic is the development of

a procedure to deal with the problems mentioned above. If the magnitude of the
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velocity can be estimated perfectly then to determine the direction of the velocity

may be possible as well.

5.2.5 Imaging of Moving Targets with Reflectivities Chang-

ing in Time

In the proposed technique, it is assumed that the reflectivities of the moving targets

do not change during the data collection time. However, in practice, particularly

for wide angle imaging, the reflectivities of the targets may change during the data

collection time. The proposed technique can be extended so that it considers this

fact. Actually, the same problem appears in wide angle imaging of stationary fields

as well. In the experiments on Backhoe data, we have overcome this problem by

combining sub-aperture images via composite imaging, where we have assumed that

the reflectivities inside the time intervals for the sub-apertures do not change but

they can change across sub-apertures. The same composite imaging approach can

be applied to moving target imaging as well. A more challenging alternative would

be to consider data from the entire aperture simultaneously while the reflectivities

of the targets may be changing. Such an idea has been used in wide-angle imaging of

stationary scenes before [62], and could be considered for the moving target imaging

problem as well.

5.2.6 Multi-static SAR Applications

In this dissertation, we considered mono-static SAR. In mono-static SAR, the SAR

sensor system involves one transmitter and one receiver on the same platform. How-

ever, currently, multi-static SAR systems are great of interest. These SAR systems

may include many transmitters and receivers, also on separate platforms and this

helps to collect additional information about the scene. Since such SAR systems

have many transmitters and receivers, the potential to encounter motion-induced

errors increases. Therefore, the model errors arising in multistatic SAR scenarios

are a potential research topic for us.
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5.2.7 Group Sparsity Approach for Moving Target Imaging

In moving target imaging, this version of our approach does not put any constraints

in the phase error vector we get at each aperture position. However, we expect to

get nonzero phase error at the same spatial locations at all aperture positions. This

might motivate a ”group sparsity” approach on the phase error vector based on all

data.
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Appendix A

Appendix

In this appendix, we describe how we get from Eqn. (3.7) to Eqn. (3.8). The cost

function in (3.7) for phase error estimation is as follows:

φ̂
(n+1)
1D (m) = arg min

φ1D(m)
J(f̂ (n+1), φ1D(m)) = arg min

φ1D(m)

∥
∥
∥ḡm − e(jφ1D(m))C̄mf̂ (n+1)

∥
∥
∥

2

2

for m = 1, 2, ....,M

Here, M denotes the total number of cross-range positions. When we evaluate the

norm expression we get

∥
∥
∥ḡm − e(jφ1D(m)) C̄mf̂ (n+1)

∥
∥
∥

2

2
= (ḡm − e(jφ1D(m)) C̄mf̂ (n+1))H (ḡm − e(jφ1D(m)) C̄mf̂ (n+1))

= ḡH
m ḡm − ḡH

me(jφ1D(m))C̄mf̂ (n+1) − f̂ (n+1)H

C̄H
m

(
e(jφ1D(m))

)H
ḡm +

f̂ (n+1)H

C̄H
m

(
e(jφ1D(m))

)H

︸ ︷︷ ︸

e(−jφ1D(m))

e(jφ1D(m))C̄mf̂ (n+1)

= ḡH
m ḡm − ḡH

m [cos(φ1D(m)) + j sin(φ1D(m))]C̄mf̂ (n+1) −

f̂ (n+1)H

C̄H
m [cos(φ1D(m)) − j sin(φ1D(m))]ḡm + f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)

= ḡH
m ḡm − 2Re{cos(φ1D(m))f̂ (n+1)H

C̄H
m ḡm} + 2Re{j sin(φ1D(m))f̂ (n+1)H

C̄H
m ḡm} +

f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)

= ḡH
m ḡm − 2 cos(φ1D(m))Re{f̂ (n+1)H

C̄H
m ḡm} −

2 sin(φ1D(m))Im{f̂ (n+1)H

C̄H
m ḡm} + f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)
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Let Re{f̂ (n+1)H

C̄H
m ḡm} = < and Im{f̂ (n+1)H

C̄H
m ḡm} = =

Since we can write sin(φ1D(m)) as cos(φ1D(m) − π
2
) the equation becomes

∥
∥
∥ḡm − ejφ1D(m)C̄mf̂ (n+1)

∥
∥
∥

2

2
= ḡH

m ḡm − 2[< cos(φ1D(m)) + = cos(φ1D(m) − π

2
)] +

f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)

The cosines in the previous equation can be added with phasor addition rule to a

single cosine. The phasors for the terms < cos(φ1D(m)) and = cos(φ1D(m) − π
2
) can

be seen below.

P1 = Rej0 = < P2 = =e−
jπ

2 = −j=

If we add the phasors

P1 + P2 = < + (−j=) = <− j=

we can find the magnitude and the phase of the new cosine as

magnitude =
√
<2 + =2 phase = arctan(

−=
< )

Finally, we can write

∥
∥
∥ḡm − ejφ1D(m) C̄mf̂ (n+1)

∥
∥
∥

2

2
= ḡH

m ḡm − 2
√
<2 + =2 cos[φ1D(m) + arctan(

−=
< )] +

f̂ (n+1)H

C̄H
m C̄mf̂ (n+1)
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[31] M. Çetin and W. C. Karl, “Superresolution and edge-preserving reconstruction

of complex-valued synthetic aperture radar images,” IEEE Int. Conf. on Image

Processing (ICIP), pp. 701–704, 2000.

[32] D. L. Donoho and M. Elad, “Optimally sparse representation in general (non-

orthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci., vol. 100,

pp. 2197–2202, 2003.

[33] L. C. Potter, E. Ertin, J. T. Parker, and M. Çetin, “Sparsity and compressed
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[52] N. Ö. Önhon and M. Çetin, “Joint sparsity-driven inversion and model er-

ror correction for radar imaging,” IEEE Int. Conf. Acoustics, Speech, Signal

Processing (ICASSP), pp. 1206–1209, 2010.
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