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Abstract

The construction of irreducible polynomials over finite fields is currently a strong

subject of interest with important applications including coding theory and cryptog-

raphy. One of the most popular methods of construction of irreducible polynomials is

the method of composition of polynomials where irreducible polynomials of relatively

higher degrees are generated from irreducible polynomials of relatively lower degrees.

In this thesis, we give some polynomial composition methods and several applications

of them.



SONLU CİSİMLER ÜZERİNDE POLİNOM BİLEŞİMİ METODU İLE

İNDİRGENEMEZ POLİNOM İNŞASI

Funda Özdemir

Matematik, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Sonlu cisimler, indirgenemez polinomlar, polinom bileşimi

yöntemleri, doǧrusallaştırılmış polinomlar, ilkel polinomlar, bileşke çarpım.

Özet

Sonlu cisimler üzerinde indirgenemez polinomların inşası, kodlama teorisi ve krip-

tografideki önemli uygulamaları da dahil olmak üzere son zamanlarda güçlü bir ilgi

odaǧı oluşturmaktadır. İndirgenemez polinomların inşasında en popüler yöntemlerden

biri olan polinom bileşimi metodunda, düşük dereceli indirgenemez polinomlardan

yüksek dereceli indirgenemez polinomlar elde edilir. Bu tezde, bir takım polinom

bileşimi yöntemleri ile bunların uygulamalarına yer verilmiştir.
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Introduction

Let Fq be the finite field of order q = ps and of characteristic p, where p is a prime
and s is a positive integer, F∗q be its multiplicative group which is cyclic. A generator
of the cyclic group F∗q is called a primitive element of Fq and its minimal polynomial
over Fp is called a primitive polynomial.

Throughout this thesis, we assume, unless otherwise specified, that the considered
polynomials are monic, i.e. with leading coefficient 1. Let f(x) be an irreducible
polynomial of degree n over Fq and let β be a root of f(x). The field Fq(β) = Fqn is a
degree n extension of Fq and can be viewed as a vector space of dimension n over Fq.
Moreover, the conjugates of β with respect to Fq, namely β, βq, . . . , βq

n−1
, are all the

roots of f(x).
The subject of irreducible polynomials over finite fields along with several construc-

tion methods has been of considerable interest in recent years. Such polynomials, which
have both theoretical and practical importance, are used to perform arithmetic in finite
fields and are found in many applications, including coding theory and cryptography.
One of the most popular methods of construction is the method of composition of poly-
nomials where irreducible polynomials of relatively higher degree are produced from
given irreducible polynomials of relatively lower degrees. There is a detailed literature
on the problem of irreducibility of polynomial composition by several authors including
Cohen, Kyuregyan-Kyureghyan, Varshamov who have approached this problem from
different aspects. In this thesis, we intend to give a survey of works about polynomial
composition methods.

• In Chapter 1, we present the approach of Kyuregyan-Kyureghyan [5] to the con-
struction of irreducible polynomials over Fq. Theorem 1.4 is used to obtain
explicit families of irreducible polynomials of degrees n(qn − 1) and n(qn + 1)
over Fq, where n is a natural number. At the end of this chapter, the result of
Cohen [3] which is one of the most applicable results in this area is proved using
Theorem 1.4.

• In Chapter 2, by using the result of Cohen [3] in the previous chapter and some
auxiliary results, the irreducibility of compositions of irreducible polynomials in
the form P (f/g) := (g(x))nP (f(x)/g(x)) is studied for some specified relatively
prime polynomials f and g, and any degree n polynomial P .

• In Chapter 3, we present how to construct recursively irreducible polynomials,
using the irreducibility criteria developed in Chapter 2.

• In the final chapter, we introduce first the notion of composed product by Braw-
ley and Carlitz [2] and state an important theorem, again due to Brawley and
Carlitz [2], which says how to construct irreducible polynomials of degree mn
from irreducible polynomials of degrees m and n with gcd(m,n) = 1 through the
use of composed product. Moreover, we restate a result of Varshamov in [10] and
a result in [5] more directly, and we prove them by using a consequence of the
theorem of Brawley and Carlitz.
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1

First Composition Method

We say that the degree of an element α over Fq is equal to k and write degq(α) = k

if Fq(α) = Fqk or equivalently α ∈ Fqk and α /∈ Fqν for any proper divisor ν of k.

Similarly, we say that the degree of a subset A = {α1, α2, . . . , αr} ⊂ Fqk over Fq is

equal to k and write degq(α1, α2, . . . , αr) = k, if for any proper divisor ν of k there

exists at least one element αu ∈ A such that αu /∈ Fqν .
We begin with the following well known results which can be found in [6].

Proposition 1.1 ( [6], Theorem 3.46). Let f(x) be a monic irreducible polynomial of

degree n over Fq and let k ∈ N. Then f(x) factors into d irreducible polynomials in

Fqk [x] of the same degree n/d, where d = gcd(n, k).

Proposition 1.2 ( [6], Corollary 3.47). An irreducible polynomial over Fq of degree n

remains irreducible over Fqk if and only if k and n are relatively prime.

Given 0 ≤ ν ≤ k − 1 and g(x) =
∑m

i=0 bix
i ∈ Fqk [x], we use the notation

g(ν)(x) =
m∑
i=0

bq
ν

i x
i,

where g(x) = g(0)(x).

Lemma 1.3. Let f(x) be a monic irreducible polynomial of degree dk over Fq. Then

there is a monic irreducible divisor g(x) of degree k of f(x) in Fqd [x]. Moreover, every

irreducible factor of f(x) in Fqd [x] is given by g(ν)(x) for some 0 ≤ ν ≤ d − 1. In

particular, the factorization of f(x) in Fqd [x] is

f(x) =
d−1∏
ν=0

g(ν)(x)

Proof. By Proposition 1.1, f(x) factors into d monic irreducible polynomials in Fqd [x]

of the same degree k. Let α ∈ Fqdk be a root of f(x). Then all the roots of f(x) are the

conjugates of α with respect to Fq, namely α, αq, αq
2
, . . . , αq

dk−1
. Let g(x) be a monic

irreducible divisor of f(x) of degree k in Fqd [x] assuming α as a root. Then all the roots

of g(x) are the conjugates of α with respect to Fqd , which are α, αq
d
, αq

2d
, . . . , αq

(k−1)d
.
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Hence we can write the factorization of g(x) and g(ν)(x), for 0 ≤ ν ≤ d− 1, over Fqdk
as

g(x) = (x− α)(x− αqd)(x− αq2d) · · · (x− αqdk−d)
g(1)(x) = (x− αq)(x− αqd+1

)(x− αq2d+1

) · · · (x− αqdk−d+1

)

g(2)(x) = (x− αq2)(x− αqd+2

)(x− αq2d+2

) · · · (x− αqdk−d+2

)
...

g(d−1)(x) = (x− αqd−1

)(x− αq2d−1

)(x− αq3d−1

) · · · (x− αqdk−1

)

Both polynomials f(x) and
∏d−1

ν=0 g
(ν)(x) of the same degree dk have the same dk

distinct roots in Fqdk . Therefore they are equal.

The converse of Lemma 1.3 does not hold in general: Given an irreducible poly-

nomial of degree k over Fqd , the product
∏d−1

ν=0 g
(ν)(x) is a polynomial over Fq , but it

is not necessarily irreducible over Fq. To ensure the converse statement, g(x) must be

described precisely as stated in the following theorem.

Theorem 1.4 ( [5], Lemma 1). A monic polynomial f(x) ∈ Fq[x] of degree n = dk

is irreducible over Fq if and only if there is a monic irreducible polynomial g(x) =∑k
i=0 gix

i over Fqd of degree k such that Fq(g0, . . . , gk) = Fqd and f(x) =
∏d−1

ν=0 g
(ν)(x)

in Fqd [x].

Proof. Suppose f(x) is irreducible over Fq. Then by Lemma 1.3 there is an irreducible

polynomial g(x) =
∑k

i=0 gix
i of degree k over Fqd such that

f(x) =
d−1∏
ν=0

g(ν)(x) (1.1)

over Fqd . Next we show that the set of coefficients of g(x) generates Fqd . Suppose,

on the contrary, that Fq(g0, . . . , gk) = Fqs , for some proper divisor s of d with d = rs.

Then, because of Fqs [x] ⊂ Fqd [x], the polynomial g(x) is also irreducible over Fqs and

by Lemma 1.3

f(x) =
s−1∏
ω=0

h(ω)(x) (1.2)

over Fqs and h(ω)(x) =
∑rk

j=0 h
qω

j x
j, 0 ≤ ω ≤ s− 1, are distinct irreducible polynomials

of degree rk over Fqs . Then, by combining the equations (1.1) and (1.2), we get

f(x) =
s−1∏
ω=0

h(ω)(x) =
d−1∏
ν=0

g(ν)(x)

in Fqs [x], which contradicts to the uniqueness of the decomposition into irreducible

factors in Fqs [x].
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For the proof of the converse, let g(x) =
∑k

i=0 gix
i be an irreducible polynomial of

degree k over Fqd with Fq(g0, . . . , gk) = Fqd and let α ∈ Fqdk be a zero of g(x). Further,

let f(x) be the minimal polynomial of α over Fq of degree n. We want to prove that

n = dk. Let l = gcd(n, k). Then f has exactly l irreducible factors in Fqd [x], by

Proposition 1.1. Since g divides f over Fqd , we get

f(x) =
l−1∏
ν=0

g(ν)(x).

However, f factors into l irreducible polynomials also over Fql ⊆ Fqd . The condition

Fq(g0, . . . , gk) = Fqd forces l = d which means d divides n. Hence we have shown that

Fqd is a subfield of Fqn = Fq(α), implying that Fq(α) = Fqd(α), i.e. Fqn = Fqdk and

consequently n = dk.

Now we obtain explicit families of irreducible polynomials of degree n(qn− 1) from

a given primitive polynomial of degree n over Fq, using Theorem 1.4 and the following

theorem.

Theorem 1.5 ( [1] Chapter 5, Theorem 24 (Dickson’s theorem)). Let q = ps, m be a

divisor of s and pm 6= 2. Suppose β, θ ∈ Fq and θ is a primitive element of Fq. Then

the polynomial

f(x) = xp
m − θx+ β

is the product of a linear polynomial and an irreducible polynomial of degree pm − 1

over Fq.

Theorem 1.6 ( [5], Theorem 7). Let qn > 2, β, γ ∈ Fq, β 6= −γ and f(x) be a primitive

polynomial of degree n over Fq. Set h(x) = f((β+ γ)x+ 1) and h∗(x) = xnh( 1
x
). Then

the polynomial

F (x) = (x− γ)nf

(
(x− γ)−1(xq

n

+ β)

)(
h∗(x− γ)

)−1
is an irreducible polynomial of degree n(qn − 1) over Fq.

Proof. Let α be a root of f(x). Then

f(x) =
n−1∏
ν=0

(
x− αqν

)
(1.3)

holds in Fqn [x]. Substituting (x − γ)−1(xq
n

+ β) for x in (1.3), and multiplying both

sides of the equation by (x− γ)n, we get

(x− γ)nf

(
(x− γ)−1(xq

n

+ β)

)
=

n−1∏
ν=0

(
xq

n − αqνx+ β + γαq
ν

)

=
n−1∏
ν=0

(
xq

n − αx+ β + γα

)(ν)

3



Since qn > 2 and αq
ν

is a primitive element in Fqn , by Theorem 1.5 each of the

polynomials g(ν)(x) := (xq
n − αqνx + β + γαq

ν
) is product of a linear polynomial and

an irreducible polynomial of degree qn − 1 over Fqn . Also if θ is a root of g(x) in Fqn ,

then θq
ν ∈ Fqn is a root of g(ν)(x), where θq

ν
= (β + γαq

ν
)(αq

ν − 1)−1. Thus the linear

factor of g(ν) is x− θqν and the irreducible factor of g(ν) is

Q(ν)(x) =
xq

n − αqνx+ β + γαq
ν

x− θqν
=
xq

n − θqn+ν − αqν (x− θqν )
x− θqν

over Fqn . Note that the constant term of Q(ν)(x) is 1−αqν , and in particular the degree

of the set of its coefficients is n over Fq. Therefore, by Theorem 1.4 the polynomial∏n−1
ν=0 Q

(ν)(x) is irreducible over Fq. To complete the proof observe that (β+γ)−1(α−1)

is a root of h(x) = f((β+γ)x+1) and so θ = (β+γ)(α−1)−1+γ is a root of (h∗(x−γ).

Then in Fqn [x] it holds

n−1∏
ν=0

(
x− θqν

)
= h∗(x− γ)

which yields

F (x) =
(x− γ)nf

(
(x− γ)−1(xq

n
+ β)

)
∏n−1

ν=0

(
x− θqν

) =
n−1∏
ν=0

Q(ν)(x)

Finally, the irreducibility of F (x) over Fq follows from Theorem 1.4.

Further we use the following result by Sidelnikov [9] that enables explicit construc-

tions of irreducible polynomials of degree n(qn + 1) .

Theorem 1.7. Let ω ∈ Fq and x0 ∈ Fq2 \ Fq such that xq+1
0 = 1. Then the polynomial

f(x) = xq+1 − ωxq − (x0 + xq0 − ω)x+ 1 ∈ Fq[x]

is irreducible if and only if
ω−xq0
ω−x0 is a generating element of the multiplicative subgroup

S := {y ∈ Fq2|yq+1 = 1} of Fq2.

Theorem 1.8 ( [5], Theorem 9). Let f(x) be an irreducible polynomial of degree 2n

over Fq of order e(qn + 1). Further let ψ(x) ∈ Fq[x] be the minimal polynomial of

βq
n

+ β + 1, where β = αe for a root α ∈ Fq2n of f(x). Then the polynomial

xq
n+1 + xq

n − (βq
n

+ β + 1)x+ 1

is irreducible over Fqn. Moreover, ψ(x) and F (x) = xnψ(x
qn+1+xq

n
+1

x
) are irreducible

polynomials over Fq of degrees n and n(qn + 1), respectively.
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Proof. Since ord(f(x)) = e(qn + 1) and f(x) is irreducible, we have that αe(q
n+1) =

βq
n+1 = 1. Thus ordq(β) = qn + 1 which does not divide qk − 1 for k ≤ n but q2n − 1.

Hence degq(β) = 2n. Because β ∈ Fq2n , (βq
n

+ β + 1)q
n

= βq
n

+ β + 1 which means

λ := βq
n

+ β + 1 ∈ Fqn . Next we show that degqλ = n. Indeed, suppose that λ ∈ Fqd
for some divisor d of n. We have

βλ = βq
n+1 + β2 + β = 1 + β2 + β,

and consequently, β2 + (1 − λ)β + 1 = 0. Therefore β is a root of the quadratic

polynomial x2 − (1− λ)x + 1 over Fqd , implying that [Fq2n : Fqd ] ≤ 2 and thus d = n.

Since ψ(x) is the minimal polynomial of λ, deg(ψ(x)) = n.

Next we show that the conditions of Theorem 1.7 are fulfilled also. Indeed, since

β ∈ Fq2n \Fqn such that βq
n+1 = 1, choose x0 = β and ω = −1. It remains to note that

ω−xq
n

0

ω−x0 = −1−βqn

−1−β = βq
n

generates S. Therefore, by Theorem 1.7, xq
n+1 + xq

n − (βq
n

+

β + 1)x+ 1 is irreducible over Fqn .

To complete the proof, we show that F (x) is irreducible of degree n(qn + 1) over

Fq. Since ψ(x) is the minimal polynomial of βq
n

+ β + 1 over Fq,

ψ(x) =
n−1∏
ν=0

(x− (βq
n

+ β + 1)q
ν

). (1.4)

Substituting xq
n+1+xq

n
+1

x
for x in (1.4), and multiplying both sides of the equation by

xn, we obtain

F (x) = xnψ(
xq

n+1 + xq
n

+ 1

x
) =

n−1∏
ν=0

(xq
n+1 + xq

n − (βq
n

+ β + 1)q
ν

x+ 1)

=
n−1∏
ν=0

(xq
n+1 + xq

n − (βq
n

+ β + 1)x+ 1)(ν).

By Theorem 1.4, F (x) is irreducible over Fq since xq
n+1 + xq

n − (βq
n

+ β + 1)x + 1 is

irreducible over Fqn and degq(β
qn + β + 1) = n.

The following result by S. Cohen [3] was employed by several authors to give iter-

ative constructions of irreducible polynomials over finite fields and Theorem 1.4 yields

a proof for this result.

Theorem 1.9 ( [3], Lemma 1). Let f(x), g(x) ∈ Fq[x] be relatively prime polynomials

and let P (x) ∈ Fq[x] be an irreducible polynomial of degree n. Then the composition

F (x) = g(x)nP (f(x)/g(x))

is irreducible over Fq if and only if f(x)− λg(x) is irreducible over Fqn for some root

λ ∈ Fqn of P (x).

5



Proof. Let λ ∈ Fqn be a root of P (x). Since all the roots of P (x) are the conjugates of

λ, the polynomial P (x) is the product
∏n−1

ν=0(x− λqν ) and thus

F (x) = g(x)nP (f(x)/g(x)) =
n−1∏
ν=0

(
f(x)− λqνg(x)

)
=

n−1∏
ν=0

(
f(x)− λg(x)

)(ν)
is irreducible over Fq if and only if f(x) − λg(x) is irreducible over Fqn , by Theorem

1.4.
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2

Irreducibility of Polynomials of the Form g(x)nP (f(x)/g(x))

Let f(x), g(x) ∈ Fq[x] and let P (x) =
∑n

i=0 cix
i ∈ Fq[x] of degree n. Then the following

composition

P (f/g) := g(x)nP (f(x)/g(x)) =
n∑
i=0

cif(x)ig(x)n−i

is again a polynomial in Fq[x]. Theorem 1.9 establishes the conditions under which the

composition poynomial P (f/g) is irreducible over Fq[x].

Definition 2.1. For α ∈ Fqn the trace of α, denoted by TrFqn/Fq(α), is defined by

TrFqn/Fq(α) = α + αq + · · ·+ αq
n−2

+ αq
n−1

.

For convenience, we denote TrFqn/Fq = Trqn/q.

Definition 2.2. A trinomial is a polynomial with three nonzero terms, one of them

being the constant term.

Definition 2.3. A polynomial of the form

l(x) =
n∑
i=0

aix
qi

with coefficients in Fq is called a linearized polynomial over Fq.

Definition 2.4. A polynomial of the form l(x)− b ∈ Fq[x], where l(x) is a linearized

polynomial over Fq and b ∈ Fq, is called an affine polynomial over Fq.

Proposition 2.5 ( [7], Lemma 3.4). Suppose that the linearized polynomial l(x) has

no nonzero root in Fq. Then for any b ∈ Fq, the affine polynomial l(x)− b has a linear

factor x− A, A ∈ Fq.

Proposition 2.6 ( [7], Theorem 3.5). With the notation of Proposition ??, the trino-

mial xp − x− α is irreducible in Fq[x] if and only if Trq/p(α) 6= 0.

Proposition 2.7 ( [7], Corollary 3.6). For a, b ∈ F∗q, the trinomial xp − ax − b is

irreducible over Fq if and only if a = Ap−1 for some A ∈ F∗q and Trq/p(b/A
p) 6= 0.

7



Now we consider some special cases of P (f/g):

(a) f(x) = x2 + 1 and g(x) = x. Then P (f/g) = xnP (x+x−1). We distinguish the

cases: q even and q odd.

Recall that if h(x) is a polynomial of degree k then its reciprocal is the polynomial

h∗(x) = xkh(1/x), and if h(x) = h∗(x) then h(x) is said to be self-reciprocal.

Theorem 2.8. Let q = 2m and let P (x) =
∑n

i=0 cix
i ∈ Fq[x] be irreducible over Fq of

degree n and with c0 6= 0. Then xnP (x + x−1) is a self-reciprocal polynomial of degree

2n over Fq, and

(i) xnP (x+ x−1) is irreducible over Fq if and only if Trq/2(c1/c0) 6= 0.

(ii) xnP ∗(x+ x−1) is irreducible over Fq if and only if Trq/2(cn−1/cn) 6= 0.

Proof. Let R(x) = xnP (x+ x−1). Clearly, R(x) is of degree 2n and

x2nR(1/x) = x2nx−nP (x+ x−1) = R(x)

Thus R(x) is self-reciprocal.

Now we prove (i); the proof of (ii) is similar. By Theorem 1.9, R(x) is irreducible

over Fq if and only if x2 + 1−αx is irreducible over Fqn for some root α ∈ Fqn of P (x).

By Proposition 2.7, the last condition is equivalent to Trqn/2(α
−2) 6= 0. Since

Trqn/2(α
−2) = (Trqn/2(α

−1))2 = (Trq/2(Trqn/2(α
−1)))2

= (Trq/2(−c1/c0))2

= (Trq/2(c1/c0))
2,

it is also equivalent to (Trq/2(c1/c0)) 6= 0.

Part (i) of Theorem 2.8 was obtained by Meyn ( [8], Theorem 6), and part (ii) is

stated as Theorem 3.10(ii) in [7].

Theorem 2.9 ( [8], Theorem 8). Let q be a power of an odd prime and P (x) be an

irreducible polynomial of degree n over Fq. Then xnP (x + x−1) is irreducible over Fq
if and only if P (2)P (−2) /∈ F∗2q .

Proof. By Theorem 1.9, xnP (x+ x−1) is irreducible over Fq if and only if x2 − αx+ 1

is irreducible over Fqn , where α is a root of P (x). This is equivalent to the condition

α2 − 4 /∈ F∗2qn , which is true if and only if

−1 = (α2 − 4)(q
n−1)/2

= {[(2− α)(−2− α)](q
n−1)/(q−1)}(q−1)/2

= {
n−1∏
i=0

[(2− α)(−2− α)]q
i}(q−1)/2

= {
n−1∏
i=0

(2− αqi)(−2− αqi)}(q−1)/2

= {P (2)P (−2)}(q−1)/2

8



that is, P (2)P (−2) /∈ F∗2q .

Corollary 2.10 ( [7], Corollary 3.12). Let q be an odd prime power and P (x) be an

irreducible polynomial of degree n over Fq. Then 2nxnP ((x+x−1)/2) is irreducible over

Fq if and only if P (1)P (−1) /∈ F∗2q .

Proof. Let P0(x) = 2nP (x/2) and apply Theorem 2.9 to P0(x).

(b) f(x) = xp − x− b and g(x) = 1. Then P (f/g) = P (xp − x− b).

Theorem 2.11 ( [7], Theorem 3.13). Let P (x) = xn + an−1x
n−1 + · · · + a0 be an

irreducible polynomial over Fq of characteristic p and let b ∈ Fq. Then the polynomial

P (f/g) = P (xp − x− b) is irreducible over Fq if and only if Trq/p(nb− an−1) 6= 0.

Proof. Let α be a root of P (x) in Fqn . By Theorem 1.9, P (xp − x − b) is irreducible

over Fq if and only if xp − x− b− α is irreducible over Fqn . By Proposition 2.6 this is

equivalent to the condition

Trqn/p(b+ α) = Trq/p(Trqn/q(b+ α))

= Trq/p(nb− an−1) 6= 0.

(c) f(x) = l(x) is a linearized polynomial and g(x) = 1. The irreducibility of

these types of polynomials was established by Agou in a series of papers in 1977,

1978, 1980. First we consider the simple case l(x) = xp − ax, where a ∈ F∗q. Then

P (f/g) = P (xp − ax).

Theorem 2.12 ( [7], Theorem 3.14). Let P (x) = xn + cn−1x
n−1 + · · · + c0 be an

irreducible polynomial over Fq of characteristic p and let α be a root of P (x). Then for

any a ∈ F∗q, P (xp − ax) is irreducible over Fq if and only if

an1(q−1)/(p−1) = 1 and Trqn/p(α/A
p) 6= 0,

where n1 = gcd(n, p − 1) and A ∈ F∗qn such that Ap−1 = a. In particular, if

A ∈ F∗q then P (xp−Ap−1x) is irreducible over Fq if and only if Trq/p(cn−1/A
p) 6= 0.

Proof. By Theorem 1.9, P (xp − ax) is irreducible over Fq if and only if xp − ax − α
is irreducible over Fqn . By Proposition 2.7, this is equivalent to a = Ap−1 for some

A ∈ F∗qn and Trqn/p(α/A
p) 6= 0. Clearly, a = Ap−1 for some A ∈ F∗qn if and only if

a(q
n−1)/(p−1) = 1 (2.1)

Since a ∈ F∗q, aq−1 = 1. Thus (2.1) holds if and only if ah = 1, where

h = gcd(
qn − 1

p− 1
, q − 1) =

q − 1

p− 1
gcd(

qn − 1

q − 1
, p− 1)

9



But (qn−1)/(q−1) = qn−1+qn−2+· · ·+1 ≡ n (mod p−1). Hence h = n1(q−1)/(p−1).

Moreover, if A ∈ F∗q then an1(q−1)/(p−1) = An1(q−1) = 1 holds automatically and

Trqn/p(α/A
p) = Trq/p(Trqn/q(α/A

p))

= Trq/p(Trqn/q(α)/Ap)

= −Trq/p(cn−1/Ap)

Therefore, the last assertion also holds.

Now we turn to the general case, i.e. l(x) is any linearized polynomial. To determine

when P (l(x)) is irreducible for any linearized polynomial l(x), we need some preliminary

results in [7].

Lemma 2.13. Given a linearized polynomial l(x) over Fq, there exists another lin-

earized polynomial g(x) over Fq and an element r in Fq such that

l(x) = g(xp − x) + rx.

Proof. Let l(x) = aνx
pν + aν−1x

pν−1
+ · · · + a0x. We use induction on ν to prove the

lemma. The case ν = 0 is trivial. Suppose ν ≥ 1 and put

l(x) = l(x)− aν(xp − x)p
ν−1

= (aν−1 + aν)x
pν−1

+ aν−2x
pν−2

+ · · · ,

another linearized polynomial but of degree (at most) pν−1. By induction, there is a

linearized polynomial g(x) such that l(x) = g(xp − x) + rx. Then l(x) = g(xp − x) +

aν(x
p−x)p

ν−1
+ rx. Put g(xp−x) = g(xp− x) + aν(x

p− x)p
ν−1

where g is the required

linearized polynomial for the conclusion.

Lemma 2.14. Suppose the linearized polynomial l(x) over Fq has a non-zero root A

in Fq. Then there exists a linearized polynomial g(x) such that l(x) = g(xp − Ap−1x).

Proof. l(Ax) is a linearized polynomial over Fq with 1 as a root. By Lemma 2.13, there

exists another linearized polynomial g̃(x) and r ∈ Fq such that l(Ax) = g̃(xp−x) + rx.

In fact, r = 0 because the substitution x = 1 yields 0 = g̃(0) + r = r. Thus l(Ax) =

g̃(xp − x), which yields that l(x) = g̃(x
p−Ap−1x
Ap

) = g(xp − Ap−1x) for some linearized

polynomial g(x) = g̃( x
Ap

).

Lemma 2.15. Suppose l(x) is a linearized polynomial over Fq of degree pν with ν ≥ 2.

Then for any b in Fq, l(x) − b is irreducible over Fq if and only if (i) p = ν = 2, and

(ii) l(x) has the form

l(x) = x(x+ A)(x2 + Ax+B) (2.2)

where A,B ∈ Fq such that the quadratics x2 + Ax + B and x2 + Bx + b are both

irreducible over Fq.
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Proof. By Proposition 2.5 we may assume that l(x) has a nonzero root A in Fq. Using

Lemma 2.14, we write l(x) = g(xp−Ap−1x) and put g(x) = g(x)−b for some linearized

polynomial g(x) over Fq. Then l(x) − b = g(xp − Ap−1x). Next, we apply the last

assertion of Theorem 2.12 with P (x) = g(x) = xn + bn−1x
n−1 + · · · + b1x − b and

n = deg(g(x)) = pν−1. Since g is an affine polynomial, the coefficient bn−1 of xn−1 in g

is zero unless pν−1−1 = pν−2 which occurs only if p = ν = 2. Hence, Trq/p(bn−1/A
p) = 0

and l(x) − b is reducible except when p = ν = 2. Now suppose that p = ν = 2, and

g(x) = x2 +Bx, where B ∈ Fq. Hence g(x) = x2 +Bx+ b and

l(x) = g(x2 − Ax) = x(x+ A)(x2 + Ax+B)

By Theorem 2.12 again, l(x) − b = g(x2 − Ax) is irreducible over Fq if and only if

g(x) = x2 + Bx + b is irreducible over Fq and Trq/p(B/A
2) 6= 0. The latter condition,

by Proposition 2.7, is equivalent to x2 + Ax + B being irreducible over Fq. This

completes the proof.

Theorem 2.16 ( [7], Theorem 3.18). Let P (x) = xn+
∑n−1

i=0 cix
i be a monic irreducible

polynomial of degree n over Fq, and let l(x) be a monic linearized polynomial over Fq of

degree pν with ν ≥ 2. Then P (l(x)) is irreducible over Fq if and only if (i) p = ν = 2,

(ii) n is odd, and (iii) l(x) has the form (2.2) where A,B ∈ Fq and both x2 + Ax+ B

and x2 +Bx+ cn−1 are irreducible over Fq.

Proof. By Theorem 1.9, P (l(x)) is irreducible over Fq if and only if l(x)−α is irreducible

over Fqn , for some α ∈ Fqn such that P (α) = 0. Applying Lemma 2.15 to l(x)− α, we

conclude that P (l(x)) is irreducible over Fq if and only if p = ν = 2, and l(x) has the

form (2.2) where A,B ∈ Fqn with both x2 +Ax+B and x2 +Bx+ α irreducible over

Fqn .

Assume now that p = ν = 2. Then deg(l(x)) = 4 and deg(l(x)/x) = 3. If l(x)/x is

irreducible over Fq or a product of three linear factors over Fq, then it remains so over

Fqn . So for l(x)/x to have a quadratic irreducible factor over Fqn , it must be a product

of a linear factor and a quadratic irreducible factor over Fq, and, by Proposition 1.2, n

must be odd so that the quadratic remains irreducible over Fqn . Now assume further

that l(x) is of the form (2.2) where A,B ∈ Fqn with both x2 +Ax+B and x2 +Bx+α

irreducible over Fqn . Then A,B ∈ Fq, x2 +Ax+B is irreducible over Fq, and n is odd.

Finally, by Proposition 2.7, x2 + Bx + α is irreducible over Fqn if and only if

Trqn/p(α/B
2) 6= 0. But

Trqn/p(α/B
2) = Trq/p(Trqn/q(α/B

2))

= Trq/p(Trqn/q(α)/B2)

= −Trq/p(cn−1/B2).

By Proposition 2.7 again, Trq/p(cn−1/B
2) 6= 0 if and only if x2+Bx+cn−1 is irreducible

over Fq. This completes the proof.
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3

Recursive Constructions

Based on the irreducibility criteria developed in the previous chapter, we study how to

recursively construct irreducible polynomials of arbitrarily large degrees.

First we introduce the following recursive construction of Varshamov [10].

Theorem 3.1. Let p be a prime and let f(x) = xn +
∑n−1

i=0 cix
i be irreducible over Fp.

Suppose that there exists an element a ∈ F∗p such that (na + cn−1)f
′(a) 6= 0. Further

let g(x) = xp − x+ a and define fk(x) for k = 0, 1, 2, . . . recursively by

f0(x) = f(g(x)),

fk(x) = f ∗k−1(g(x)) for k ≥ 1,

where f ∗k−1(x) is the reciprocal polynomial of fk−1(x). Then for all k ≥ 0, fk(x) is

irreducible over Fp of degree npk+1.

Proof. For any k ≥ 0, let degfk(x) = nk and

fk(x) =

nk∑
i=0

bkix
i.

Denote by (Pk) the family of claims:

• bk1 = f ′k(a) 6= 0,

• both fk(x) and f ′k(x) are constant on Fp,

• fk(x) is irreducible over Fp,

• nk = npk+1.

We prove (Pk) by induction on k.

When k = 0, we have

f ′0(x) = f ′(g(x))g′(x)
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Then

b01 = (f ′0(x))|x=0

= (f ′(g(x))g′(x))|x=0

= −f ′(a) (since g(0) = a, g′(0) = −1)

and

f ′0(a) = (f ′(g(x))g′(x))|x=a
= −f ′(a) (since g(a) = a, g′(a) = −1)

Thus b01 = f ′0(a) = −f ′(a) 6= 0, by assumption. Clearly g(x) is constant on Fp
and g′(x) = −1, hence both f0(x) = f(g(x)) and f ′0(x) are constant on Fp. Since

degf0(x) = np, n0 = np. From Theorem 2.11, f0(x) = f(g(x)) is irreducible over Fp if

and only if Trp/p(na+ cn−1) = na+ cn−1 6= 0. By assumption na+ cn−1 6= 0, so f0(x)

is irreducible over Fp.
Now assume that (Pk) is true for k ≥ 0. We prove that (Pk+1) is also true. Since f(x)

and f ∗(x) have the same degree and by induction hypothesis nk = npk+1, fk+1(x) =

f ∗k (g(x)) is of degree nk+1 = npk+2. The constant term bk0 6= 0 since fk(x) is irreducible,

and also bk1 6= 0 by induction hypothesis. Thus b−1k0 f
∗
k (x) is monic and the coefficient

of xnk−1 is b−1k0 bk1 6= 0. Then

Trp/p(nka+ b−1k0 bk1) = Trp/p(np
k+1a+ b−1k0 bk1) = b−1k0 bk1 6= 0,

It follows from Theorem 2.11 that fk+1(x) = f ∗k (g(x)) is irreducible over Fp. By

definition

fk+1(x) = f ∗k (g(x)) =

nk∑
i=0

bkig(x)nk−i

Thus

f ′k+1(x) =

nk−1∑
i=0

bki(nk − i)g(x)nk−i−1g′(x)

=

nk−1∑
i=0

bkiig(x)nk−i−1 (since g′(x) = −1)

Because g(x) is constant on Fp, so are fk+1(x) and f ′k+1(x). Moreover,

bk+1,1 = (f ′k+1(x))|x=0 = (f ∗
′

k (g(x))g′(x))|x=0

= −f ∗′k (a)

= f ′k(a
−1)ank−2

= f ′k(a)ank−2,
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which is nonzero by the induction hypothesis. Similarly,

f ′k+1(a) = (f ′k+1(x))|x=a = (f ∗
′

k (g(x))g′(x))|x=a = −f ∗′k (a)

which is again non-zero as above. This completes the proof of (Pk+1).

By induction (Pk) holds for all k ≥ 0. In particular, for all k ≥ 0, fk(x) is irreducible

over Fp of degree npk+1.

The next construction is over Fq, for q even, and is based on Theorem 2.8.

Theorem 3.2 ( [11], Theorem 10.26). Let q = 2m and let f(x) =
∑n

i=0 cix
i be ir-

reducible over Fq of degree n with c0cn 6= 0. Suppose that Trq/2(c1/c0) 6= 0 and

Trq/2(cn−1/cn) 6= 0. For all k ≥ 0, define polynomials recursively:

f0(x) = f(x),

fk(x) = xn2
k−1

fk−1(x+ x−1) for k ≥ 1.

Then fk(x) is a self-reciprocal irreducible polynomial of degree n2k over Fq for all k ≥ 1.

Proof. It is easily seen by Theorem 2.8 and by induction on k that fk(x) is of degree

n2k for every k ≥ 0 and fk(x) is a self-reciprocal polynomial for every k ≥ 1. We apply

induction on k to prove that fk(x) is irreducible for every k ≥ 1. Since Trq/2(c1/c0) 6= 0

by assumption, f1(x) = xnf0(x + x−1) is irreducible by Theorem 2.8. Let k ≥ 1 and

assume that fk(x) is irreducible. Let nk = n2k and fk(x) =
∑nk

i=0 ckix
i, k ≥ 0. We

have

fk(x) = xnk−1fk−1(x+ x−1)

= xnk−1

nk−1∑
i=0

ck−1,i(x+ x−1)i

= xnk−1

nk−1∑
i=0

ck−1,i((1 + x2)/x)i

=

nk−1∑
i=0

ck−1,i(1 + x2)ixnk−1−i

=

nk∑
i=0

ckix
i.

Thus

ck0 = ck−1,nk−1
and ck1 = ck−1,nk−1−1 (3.1)

By Theorem 2.8, fk+1(x) = xn2
k
fk(x+ x−1) is irreducible over Fq

Trq/2(ck1/ck0) 6= 0 (3.2)
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Since fj(x) is self-reciprocal for j ≥ 1, (3.1) implies

ck0 = ck−1,nk−1
= ck−1,0 = · · · = c10 = c0,n0 = cn

ck1 = ck−1,nk−1−1 = ck−1,1 = · · · = c11 = c0,n0−1 = cn−1.

Since Trq/2(cn−1/cn) 6= 0 by assumption, (3.2) is true for k ≥ 1, and so fk+1(x) is

irreducible over Fq for k ≥ 1.

The final construction is over Fq, for q odd, based on Corollary 2.10 and is due to

Cohen [4].

Theorem 3.3. Let q be odd and let f(x) be a monic irreducible polynomial of degree

n ≥ 1 over Fq, where n is even if q ≡ 3 (mod 4). Suppose that f(1)f(−1) /∈ F∗2q .

Define

f0(x) = f(x)

fk(x) = (2x)nk−1fk−1((x+ x−1)/2) for k ≥ 1,

where nk denotes the degree of fk(x). Then fk(x) is an irreducible polynomial over Fq
of degree n2k for every k ≥ 1.

Proof. It is easy to see by induction on k that fk(x) is of degree nk = n2k for every

k ≥ 0. For k ≥ 1, we have

fk(1)fk(−1) = 2nk−1fk−1(1)(−2)nk−1fk−1(−1)

= (−1)nk−122nk−1fk−1(1)fk−1(−1)

= · · ·
= (−1)nd2kf0(1)f0(−1), for some dk ∈ Fq,

= c2kf0(1)f0(−1), for some dk ∈ Fq,

because either -1 is a square in F∗q (when q ≡ 1 (mod 4) ) or n is even. Hence

fk(1)fk(−1) is always a non-square in F∗q, for k ≥ 0. Hence applying induction on k,

we can prove, by Corollary 2.10, that fk(x) is irreducible over Fq for every k ≥ 1.
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4

Composed Product of Polynomials

Let f(x) and g(x) be monic polynomials in Fq[x]. The composed sum of f and g is the

polynomial defined by

f ⊕ g =
∏
α

∏
β

(x− (α + β)) (4.1)

while the composed multiplication of f and g is the polynomial defined by

f � g =
∏
α

∏
β

(x− (αβ)) (4.2)

where the products are taken over all the roots α of f and β of g, including multiplic-

ities.

In 1987, Brawley and Carlitz [2] defined a more general notion of polynomial com-

position, denoted by f � g, for which f ⊕ g and f � g are special cases.

Let G be a nonempty subset of the algebraic closure Fq of Fq with the property that

G is invariant under the Frobenius automorphism α 7→ σ(α) = αq (i.e., if α ∈ G, then

σ(α) ∈ G), and suppose there is defined on G a binary operation � such that (G, �) is

a group and for all α, β ∈ G,

σ(α � β) = σ(α) � σ(β) (4.3)

Then for monic polynomials f and g whose coefficients are in Fq and whose roots lie

in G, the composed product, denoted by f � g, is the polynomial defined by

f � g =
∏
α

∏
β

(x− (α � β)) (4.4)

where again the products are over all roots of α of f and β of g. It is clear that

deg f � g = (deg f)(deg g)

and it is also clear that when G = Fq and � is the usual addition (respectively, the

usual multiplication) on Fq, then (4.4) becomes (4.1) (respectively (4.2)).

The following theorem, which is due to Brawley and Carlitz [2], indicates precisely

when the composed product is irreducible.
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Theorem 4.1. Let (G, �) be a σ-invariant group satisfying (4.3) and let f, g be monic

polynomials in Fq[x] with roots in G. If deg f = m and deg g = n, then the composed

product f � g is irreducible in Fq[x] if and only if f and g are both irreducible in Fq[x]

and gcd(m,n) = 1.

Proof. See [7], p.56-57.

Now we state the following easy consequences of Theorem 4.1 which are applied in

the proofs of the next theorems regarding polynomial composition.

Corollary 4.2. Let f and g be irreducible polynomials over Fq with deg f = m and

deg g = n, where gcd (m,n) = 1, and suppose that α and β are respective roots of f

and g. Then

Fq(α, β) = Fq(α � β)

In particular, Fq(α, β) = Fq(α + β) = Fq(αβ).

Corollary 4.3. Suppose that [Fq(α) : Fq] = m and [Fq(β) : Fq] = n with gcd (m,n) = 1.

Further suppose that F (x) ∈ Fq[x] is a polynomial of degree mn such that F (α�β) = 0.

Then F (x) is irreducible in Fq[x].

Now we will apply the results above to prove the following result of Varshamov [10]

which is restated as follows.

Theorem 4.4. Let r be an odd prime number which does not divide q, and r − 1 be

the order of q modulo r. Further let n > 1, gcd(n, r−1) = 1 and f(x) be an irreducible

polynomial of degree n over Fq with ord(f) = t, and ψ(x) ∈ Fq[x] be the minimal

polynomial of αr for a zero α of f . Then ψ(x) has degree n and

F (x) = (f(x))−1ψ(xr)

is an irreducible polynomial of degree (r − 1)n over Fq. Moreover, ord(F (x)) = rt.

Proof. First we prove that the degree of ψ is n. Assume that ψ(x) ∈ Fq[x] is the

minimal polynomial of αr for a zero α of f(x). In order to prove that the degree of ψ

is n, we show that degq(α
r) = n, i.e. Fq(αr) = Fqn , by proving that the multiplicative

order of αr is equal to the one of α. By assumption the order of f is t which implies

being order of α is also t. Thus the order of αr is t
gcd(t,r)

and it is enough to show that

gcd(t, r)=1. By the assumption , we have r − 1 6= 1 is the smallest i satisfying the

congruence qi ≡ 1 (mod r), and t divides qn − 1, and further

gcd(qn − 1, qr−1 − 1) = qgcd(n,r−1) − 1 = q − 1.

Since r divides qr−1−1 and t divides qn−1, we have gcd(t, r) divides gcd(qn−1, qr−1−
1) = q− 1. Being r an odd prime implies gcd(t, r)=1 or r, but r does not divide q− 1.

Hence gcd(t, r)=1.
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Now we consider the polynomial F (x) = (f(x))−1ψ(xr). Let β be a primitive rth

root of unity over Fq. Then the rth cyclotomic polynomial h(x) = xr−1 + xr−2 + · · ·+
x + 1, which is irreducible over Fq if and only if r is a prime number and the order

of q modulo r is r − 1, is the minimal polynomial of β over Fq. Now we have two

irreducible polynomials f(x) and h(x) assuming α and β as roots, respectively, and

gcd(n, r − 1)=1. So by Corollary 4.2, Fq(α, β) = Fq(αβ), i.e. degq(αβ) = n(r − 1).

We claim that αβ is a root of the polynomial F (x) = (f(x))−1ψ(xr). First note that

αβ is not a root of f(x), otherwise αβ = αq
i

for some 0 ≤ i ≤ n − 1 which implies

β = αq
i−1 ∈ Fqn and this contradicts to the assumption that gcd(n, r − 1) = 1. Then

F (αβ) =
ψ((αβ)r)

f(αβ)
=
ψ(αrβr)

f(αβ)
=
ψ(αr)

f(αβ)
= 0

Since the degree of F (x) is n(r − 1) and degq(αβ) = n(r − 1), F (x) is the minimal

polynomial of αβ over Fq.Hence F (x) is irreducible over Fq.
We complete the proof with

ord(F (x)) = ordq(αβ) = lcm(ord(α), ord(β)) = lcm(t, r) = rt.

Recall that a polynomial of the form L(x) =
∑n

i=0 aix
qi ∈ Fq[x] is called a linearized

polynomial over Fq. It is easy to see that a linearized polynomial represents a linear

mapping on Fq, where Fq is considered as a vector space over Fp, i.e. L(β + γ) =

L(β) + L(γ) and L(cβ) = cL(β) for any β, γ ∈ Fq and c ∈ Fp. The polynomials

L(x) =
n∑
i=0

aix
qi and l(x) =

n∑
i=0

aix
i

are called q-associates of each other. More precisely, l(x) is the conventional q-associate

of L(x), and L(x) is the linearized q-associate of l(x).

Proposition 4.5 ( [6], Theorem 3.63). Let f(x) be irreducible in Fq[x] and let F (x) be

its linearized q-associate. Then the degree of every irreducible factor of x−1F (x) ∈ Fq[x]

is equal to ord(f(x)).

The next result, due to Ore-Gleason-Marsh [12], is an immediate consequence of

Proposition 4.5.

Theorem 4.6. Let f(x) =
∑n

u=0 aux
u ∈ Fq[x] and F (x) be its linearized q-associate.

Then f(x) is a primitive polynomial over Fq if and only if x−1F (x) =
∑n

u=0 aux
qu−1 is

irreducible over Fq.

Given an irreducible polynomial of degree n and a primitive polynomial of degree

m over Fq, the next theorem, which is stated in a bit different way in [5] as Theorem

5, yields an irreducible polynomial of degree n(qm − 1) over Fq.
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Theorem 4.7. Let gcd(n, qm − 1) = 1, and L(x) =
∑m

ν=0 bνx
qν such that its conven-

tional q-associate l(x) 6= x− 1 is a primitive polynomial of degree m over Fq. Further,

let f(x) be an irreducible polynomial of degree n over Fq and ψ(x) be the minimal

polynomial of L(α) over Fq, for a zero α ∈ Fqn of f(x). Then ψ(x) has degree n and

F (x) = (f(x))−1ψ(L(x))

is an irreducible polynomial of degree n(qm − 1) over Fq.

Proof. First we prove that the degree of ψ is n. Assume that ψ(x) ∈ Fq[x] is the

minimal polynomial of L(α) for a zero α of f(x). In order to prove that the degree of

ψ is n, we show that degq(L(α)) = n. Assume on the contrary that for some k < n,

degq(L(α)) = k ⇒ L(α)q
k

= L(α)

⇒ L(αq
k

) = L(α)

⇒ L(αq
k − α) = 0

⇒ αq
k − α is a root of L(x).

Then αq
k − α is also a root of x−1L(x) since degq(α) = n implies αq

k 6= α for k < n.

Because l(x) is a primitive polynomial, x−1L(x) is irreducible over Fq by Proposition

4.5. Let β ∈ Fqqm−1 be a root of x−1L(x). The roots of x−1L(x) are all the conjugates

of β, namely β, βq, βq
2
, . . . , βq

qm−2
, so αq

k − α = βq
j

for some 0 ≤ j ≤ qm − 2. This

yields that βq
j ∈ Fq(α), contradicting to the assumption that gcd(n, qm − 1) = 1.

Next we show that F (x) = (f(x))−1ψ(L(x)) is an irreducible polynomial of degree

n(qm − 1). We have two irreducible polynomials f(x) and x−1L(x) with respective

roots α and β, and respective degrees n and qm − 1 with gcd(n, qm − 1) = 1. Then by

Corollary 4.2, Fq(α, β) = Fq(α + β), i.e. degq(α + β) = n(qm − 1). Now our claim is

that α+ β is a root of F (x) = (f(x))−1ψ(L(x)). First note that α+ β is not a root of

f(x), otherwise α + β = αq
k

for some 1 ≤ k ≤ n − 1 which yields β = αq
k − α ∈ Fqn

and this contradicts to the assumption that gcd(n, qm − 1) = 1. Then

F (α + β) =
ψ(L(α + β))

f(α + β)
=
ψ(L(α) + L(β))

f(α + β)
=

ψ(L(α))

f(α + β)
= 0.

Since the degree of F (x) is n(qm−1) and degq(α+β) = n(qm−1), F (x) is the minimal

polynomial of α + β over Fq. Hence F (x) is irreducible over Fq.
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