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CONSTRUCTION OF IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
VIA POLYNOMIAL COMPOSITION
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Mathematics, Master Thesis, 2012

Thesis Supervisor: Prof. Dr. Henning Stichtenoth

Keywords: Finite fields, irreducible polynomials, polynomial composition methods,

linearized polynomials, primitive polynomials, composed product.

Abstract

The construction of irreducible polynomials over finite fields is currently a strong
subject of interest with important applications including coding theory and cryptog-
raphy. One of the most popular methods of construction of irreducible polynomials is
the method of composition of polynomials where irreducible polynomials of relatively
higher degrees are generated from irreducible polynomials of relatively lower degrees.
In this thesis, we give some polynomial composition methods and several applications
of them.



SONLU CISIMLER UZERINDE POLINOM BILESIMI METODU ILE
INDIRGENEMEZ POLINOM INSASI

Funda Ozdemir
Matematik, Yiiksek Lisans Tezi, 2012

Tez Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Sonlu cisimler, indirgenemez polinomlar, polinom bilegimi

yontemleri, dogrusallagtirilmig polinomlar, ilkel polinomlar, bileske carpim.

Ozet

Sonlu cisimler iizerinde indirgenemez polinomlarin insasi, kodlama teorisi ve krip-
tografideki onemli uygulamalar1 da dahil olmak {izere son zamanlarda giiclii bir ilgi
odag1 olugturmaktadir. Indirgenemez polinomlarin ingasinda en popiiler yontemlerden
biri olan polinom bilegimi metodunda, diigiik dereceli indirgenemez polinomlardan
yiikksek dereceli indirgenemez polinomlar elde edilir. Bu tezde, bir takim polinom

bilesimi yontemleri ile bunlarin uygulamalarina yer verilmistir.
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Introduction

Let F, be the finite field of order ¢ = p® and of characteristic p, where p is a prime
and s is a positive integer, F; be its multiplicative group which is cyclic. A generator
of the cyclic group Fy is called a primitive element of F, and its minimal polynomial
over [, is called a primitive polynomial.

Throughout this thesis, we assume, unless otherwise specified, that the considered
polynomials are monic, i.e. with leading coefficient 1. Let f(x) be an irreducible
polynomial of degree n over F, and let /5 be a root of f(x). The field F (8) = F,» is a
degree n extension of IF, and can be viewed as a vector space of dimension n over F,.

n—1

Moreover, the conjugates of 3 with respect to F,, namely 3,5%,...,87 , are all the
roots of f(x).

The subject of irreducible polynomials over finite fields along with several construc-
tion methods has been of considerable interest in recent years. Such polynomials, which
have both theoretical and practical importance, are used to perform arithmetic in finite
fields and are found in many applications, including coding theory and cryptography.
One of the most popular methods of construction is the method of composition of poly-
nomials where irreducible polynomials of relatively higher degree are produced from
given irreducible polynomials of relatively lower degrees. There is a detailed literature
on the problem of irreducibility of polynomial composition by several authors including
Cohen, Kyuregyan-Kyureghyan, Varshamov who have approached this problem from
different aspects. In this thesis, we intend to give a survey of works about polynomial
composition methods.

e In Chapter 1, we present the approach of Kyuregyan-Kyureghyan [5] to the con-
struction of irreducible polynomials over F,. Theorem 1.4 is used to obtain
explicit families of irreducible polynomials of degrees n(¢" — 1) and n(¢™ + 1)
over [F,, where n is a natural number. At the end of this chapter, the result of
Cohen [3] which is one of the most applicable results in this area is proved using
Theorem 1.4.

e In Chapter 2, by using the result of Cohen [3] in the previous chapter and some
auxiliary results, the irreducibility of compositions of irreducible polynomials in
the form P(f/g) := (g(z))"P(f(z)/g(x)) is studied for some specified relatively
prime polynomials f and g, and any degree n polynomial P.

e In Chapter 3, we present how to construct recursively irreducible polynomials,
using the irreducibility criteria developed in Chapter 2.

e In the final chapter, we introduce first the notion of composed product by Braw-
ley and Carlitz [2] and state an important theorem, again due to Brawley and
Carlitz [2], which says how to construct irreducible polynomials of degree mn
from irreducible polynomials of degrees m and n with ged(m,n) = 1 through the
use of composed product. Moreover, we restate a result of Varshamov in [10] and
a result in [5] more directly, and we prove them by using a consequence of the
theorem of Brawley and Carlitz.

X



First Composition Method

We say that the degree of an element « over F, is equal to k and write deg,(a) = k
if Fg(a) = Fu or equivalently o € Fyr and o ¢ Fp for any proper divisor v of k.
Similarly, we say that the degree of a subset A = {ay,q,...,0,} C Fpr over Fy is
equal to k and write deg,(oy, ag,...,a,) = k, if for any proper divisor v of k there
exists at least one element «,, € A such that o, ¢ Fv.

We begin with the following well known results which can be found in [6].

Proposition 1.1 ( [6], Theorem 3.46). Let f(x) be a monic irreducible polynomial of
degree n over F, and let k € N. Then f(z) factors into d irreducible polynomials in

F[x] of the same degree n/d, where d = ged(n, k).

Proposition 1.2 ( [6], Corollary 3.47). An irreducible polynomial over F, of degree n

remains irreducible over Fx if and only if k and n are relatively prime.

Given 0 < v <k —1and g(z) = > 1", bz' € F[z], we use the notation

where g(z) = ¢ (z).

Lemma 1.3. Let f(x) be a monic irreducible polynomial of degree dk over F,. Then
there is a monic irreducible divisor g(x) of degree k of f(x) in F[x]. Moreover, every
irreducible factor of f(x) in Fyalx] is given by g (z) for some 0 < v < d—1. In

particular, the factorization of f(x) in F,a(z] is

Fo) = [ (@)

Proof. By Proposition 1.1, f(x) factors into d monic irreducible polynomials in Fa[x]
of the same degree k. Let o € F ar be aroot of f(x). Then all the roots of f(x) are the

conjugates of o with respect to F,, namely «, a4, a?, . ot Let g(x) be a monic

irreducible divisor of f(x) of degree k in IF,q[z] assuming o as a root. Then all the roots

of g(x) are the conjugates of a with respect to I a, which are «, aqd, a?™ . ,oﬂ(k_l)d.

1



Hence we can write the factorization of g(z) and ¢ (z), for 0 < v < d — 1, over Fa

gx) = (@—a)w—a)z—a®) - (z—a”)
g(l)(:v) _ ($ _ aq)(x d+1)<x B aq2d+1> o (QJ B aqdk—d+1)
9P () = (v- quQ)(x N )(x — O/JQ‘”Q) - aqd’“*d“)
g V@) = (z— qud_l)(x - Oéqu_l)(x — aqu_l) v (T — oﬂdk_l)

Both polynomials f(z) and [[?Z ¢*)(z) of the same degree dk have the same dk
distinct roots in F ar. Therefore they are equal.
[

The converse of Lemma 1.3 does not hold in general: Given an irreducible poly-
nomial of degree k over [F 4, the product H g(” (z) is a polynomial over F, , but it
is not necessarily irreducible over F,. To ensure the converse statement, g(z) must be

described precisely as stated in the following theorem.

Theorem 1.4 ( [5], Lemma 1). A monic polynomial f(z) € F,[x] of degree n = dk
is irreducible over Fy if and only if there is a monic irreducible polynomial g(z) =
Zf:o giz' over Foa of degree k such that Fy(go,...,gr) = Fea and f(z) = Hg;(lj g (z)
m ]qu [l‘]

Proof. Suppose f(x) is irreducible over IF,. Then by Lemma 1.3 there is an irreducible
polynomial g(z) = Zf:o gix' of degree k over Fa such that

“ ") (1.1)

over Fa. Next we show that the set of coefficients of g(x) generates Fa. Suppose,
on the contrary, that F,(go, ..., gx) = Fys, for some proper divisor s of d with d = rs.
Then, because of Fys[x] C Fa[x], the polynomial g(x) is also irreducible over Fgs and
by Lemma 1.3

x) = 1:[ A () (1.2)

over F s and h@)(z) = Z;]io hg-wxj, 0 <w < s—1, are distinct irreducible polynomials
of degree rk over Fys. Then, by combining the equations (1.1) and (1.2), we get

s—1 d—1
fla)= [0 @) =[] 9¥(2)

in F[x], which contradicts to the uniqueness of the decomposition into irreducible

factors in Fs[x].



For the proof of the converse, let g(x) = Zf:o g;x' be an irreducible polynomial of
degree k over F o with Fy(go, ..., gx) = Fpa and let o € F ar be a zero of g(x). Further,
let f(x) be the minimal polynomial of « over [F, of degree n. We want to prove that
n = dk. Let | = ged(n,k). Then f has exactly [ irreducible factors in Fa[z]|, by
Proposition 1.1. Since g divides f over F ¢, we get

f@) = [[ o).

However, f factors into [ irreducible polynomials also over F; C F,a. The condition

Fq(g0,---,9x) = Fga forces | = d which means d divides n. Hence we have shown that
F,a is a subfield of Fg» = Fy(a), implying that Fo(a) = Fa(a), i.e. Fgn = Far and
consequently n = dk. O

Now we obtain explicit families of irreducible polynomials of degree n(¢™ — 1) from
a given primitive polynomial of degree n over F,, using Theorem 1.4 and the following

theorem.

Theorem 1.5 ( [1] Chapter 5, Theorem 24 (Dickson’s theorem)). Let ¢ = p°, m be a
diwisor of s and p™ # 2. Suppose 3,0 € F, and 0 is a primitive element of F,. Then
the polynomaial

flz) =2 —0x+

is the product of a linear polynomial and an irreducible polynomial of degree p™ — 1

over IF,.

Theorem 1.6 ( [5], Theorem 7). Let q" > 2,8,y € F,, 5 # —v and f(x) be a primitive
polynomial of degree n over Fy. Set h(z) = f((8+~)z+1) and h*(z) = z"h(). Then
the polynomial

n * -1
Fo) = o= f (=) 4 ) (10 =)
is an irreducible polynomial of degree n(q™ — 1) over F,.

Proof. Let a be a root of f(x). Then

f(z) = ﬁ (3: — oﬂ”) (1.3)

v=0
holds in Fyn[z]. Substituting (z — ) ~*(z7" + ) for x in (1.3), and multiplying both
sides of the equation by (z — )", we get

n—1

(x=7)"f ((x —7)7Ha” + 6)) = (xq” — s+ B+ qu)

Il
=

3 X

)
= (an —aa:+ﬁ+7a>

0

N
Il



Since ¢" > 2 and o is a primitive element in F,., by Theorem 1.5 each of the
polynomials ¢ (z) := (27" — a®"z + f + vya?") is product of a linear polynomial and
an irreducible polynomial of degree ¢" — 1 over Fyn. Also if 6 is a root of g(x) in Fn,
then 07 € F . is a root of g™ (x), where 7 = (8 + vya? )(a? — 1)~L. Thus the linear

factor of ¢®) is x — 69 and the irreducible factor of ¢*) is

2" — o’z 4+ B+t 2l — 07—t (z — 07)
x — 07 B x — 07

QM (z) =

over F,». Note that the constant term of QW (x)is 1—a?, and in particular the degree
of the set of its coefficients is n over F,. Therefore, by Theorem 1.4 the polynomial
[1/=, Q¥(z) is irreducible over F,. To complete the proof observe that (4+7)!(a—1)
is a root of h(z) = f((B+7)x+1) and so 6 = (B+7)(a—1)"1+vis aroot of (h*(z—").
Then in Fyn[z] it holds

which yields

@=f(@=) 7" +5) o

x) = = ) (g
F() 1 (o o7) [[eY @)

Finally, the irreducibility of F'(x) over F, follows from Theorem 1.4. O

Further we use the following result by Sidelnikov [9] that enables explicit construc-

tions of irreducible polynomials of degree n(¢™ + 1) .

Theorem 1.7. Let w € F, and xy € Fp2 \ F, such that 2t = 1. Then the polynomial

f(z) =2 —wa? — (zg+ 2§ —w)zr + 1 € F,[z]

w

1s irreducible if and only if w:ié is a generating element of the multiplicative subgroup
S = {y € Faly™ =1} of Fye.

Theorem 1.8 ( [5], Theorem 9). Let f(x) be an irreducible polynomial of degree 2n
over F, of order e(q™ + 1). Further let y(x) € F,[z] be the minimal polynomial of
B+ B+ 1, where f = a® for a root a € F 2 of f(x). Then the polynomial

g 27 — (BT + B+ )+ 1

is irreducible over Fon. Moreover, (x) and F(x) = x”¢(%) are irreducible

polynomials over IF, of degrees n and n(q" + 1), respectively.



Proof. Since ord(f(z)) = e(¢" + 1) and f(x) is irreducible, we have that a®@"*1) =
B9"+1 = 1. Thus ord,(8) = ¢" + 1 which does not divide ¢* — 1 for k < n but ¢*" — 1.
Hence deg,(8) = 2n. Because 8 € Fpn, (87" + 8+ 1)7" = 87" + 3+ 1 which means
A= B9 +3+1€F. Next we show that deg,A = n. Indeed, suppose that \ € ¥
for some divisor d of n. We have

BA=BTT + 32+ B =1+ 3+ B,

and consequently, 32 + (1 — A\)3 + 1 = 0. Therefore 3 is a root of the quadratic
polynomial 22 — (1 — A)x + 1 over Fq, implying that [Fyn : Fpa] < 2 and thus d = n.
Since ¥(x) is the minimal polynomial of A\, deg(¢(x)) = n.

Next we show that the conditions of Theorem 1.7 are fulfilled also. Indeed, since
B € Fyon \Fyn such that 49"t = 1, choose zy =  and w = —1. It remains to note that
‘:__xf: = __II_BZ,H = B9 generates S. Therefore, by Theorem 1.7, 29"t + 29" — (B7" +
B+ 1)x + 1 is irreducible over F ..

To complete the proof, we show that F(zx) is irreducible of degree n(q" 4+ 1) over

FF,. Since ¥ (x) is the minimal polynomial of 87" + 8 + 1 over F,,

n—1

U(z) = [ = (B" +8+1)7). (1.4)

v=0

Substituting % for z in (1.4), and multiplying both sides of the equation by

", we obtain

g0 4o ] e . . ,

F(z) = 2™ - ) = [ 42 = (B + B+ 1) x4 1)
v=0
n—1

= JT@™ +a7 = (5" + 5+ Dz + D).
v=0

By Theorem 1.4, F(x) is irreducible over F, since 4" 1 + 29" — (87" + 8+ 1)z + 1 is
irreducible over F . and deg, (87" + 8+ 1) = n. ]

The following result by S. Cohen [3] was employed by several authors to give iter-
ative constructions of irreducible polynomials over finite fields and Theorem 1.4 yields

a proof for this result.

Theorem 1.9 ( [3], Lemma 1). Let f(x), g(x) € F,[z] be relatively prime polynomials

and let P(x) € F ] be an irreducible polynomial of degree n. Then the composition

F(z) = g()"P(f(2)/g(x))

is irreducible over Fy if and only if f(x) — Ag(x) is irreducible over Fyn for some root
>\ < Fqn OfP(f,U)



Proof. Let A € Fyn be a root of P(x). Since all the roots of P(x) are the conjugates of
A, the polynomial P(z) is the product [['_}(x — A?") and thus

Fi) = gl P ot = [T (50— o)) =TT (760 20 ”

is irreducible over I, if and only if f(x) — Ag(z) is irreducible over Fyn, by Theorem
1.4. O



Irreducibility of Polynomials of the Form g(z)"P(f(x)/g(x))

Let f(z),g(x) € Fy[z] and let P(x) = Y, c;a’ € Fy[z] of degree n. Then the following
composition

n

P(f/g) = g(@)"P(f(2)/g(x)) = ) cf(x)'g(x)""
i=0
is again a polynomial in F [z]. Theorem 1.9 establishes the conditions under which the

composition poynomial P(f/g) is irreducible over F,[x].

Definition 2.1. For a € Fyn the trace of a, denoted by Trg,,, /r, («), is defined by
Tr, (@) =a+al+-+a 4ot

For convenience, we denote Trg,, /5, = T7n/q-

Definition 2.2. A trinomial is a polynomial with three nonzero terms, one of them

being the constant term.

Definition 2.3. A polynomial of the form

l(x) = i a;z”
i=0

with coefficients in F, is called a linearized polynomial over F,.

Definition 2.4. A polynomial of the form I(z) — b € F,[z], where [(x) is a linearized

polynomial over F, and b € [y, is called an affine polynomial over F,.

Proposition 2.5 ( [7], Lemma 3.4). Suppose that the linearized polynomial l(x) has
no nonzero root in F,. Then for any b € Fy, the affine polynomial [(x) — b has a linear
factor x — A, A€ F,.

Proposition 2.6 ( [7], Theorem 3.5). With the notation of Proposition 77, the trino-

mial xP — x — o s irreducible in Fylx] if and only if Trqp(o) # 0.

Proposition 2.7 ( [7], Corollary 3.6). For a,b € F;, the trinomial x* — ax — b is
irreducible over F, if and only if a = AP~ for some A € Iy and Trqyp(b/AP) # 0.

7



Now we consider some special cases of P(f/g):

(a) f(z) =2*+1 and g(x) = 2. Then P(f/g) = 2"P(x+2~'). We distinguish the
cases: ¢ even and ¢ odd.

Recall that if h(z) is a polynomial of degree k then its reciprocal is the polynomial
h*(z) = 2*h(1/x), and if h(x) = h*(z) then h(z) is said to be self-reciprocal.

Theorem 2.8. Let ¢ = 2™ and let P(x) =Y 1 ;' € Fylx] be irreducible over F, of
degree n and with cy # 0. Then z"P(x + x~') is a self-reciprocal polynomial of degree
2n over Fy, and

(i) 2" P(x + x~ ') is irreducible over Fy if and only if Trys(c1/co) # 0.

(i) " P*(x + 27 ') is @rreducible over Fy if and only if Trqyjs(ca—1/cy) # 0.

Proof. Let R(x) = 2" P(x + 27'). Clearly, R(x) is of degree 2n and
" R(1/x) = 2*"2z "P(z + 2~ ') = R(x)
Thus R(x) is self-reciprocal.
Now we prove (i); the proof of (ii) is similar. By Theorem 1.9, R(x) is irreducible

over F, if and only if 2% 4+ 1 — auz is irreducible over F . for some root o € Fyn of P(x).

By Proposition 2.7, the last condition is equivalent to T o(a™?) # 0. Since
Tronja(a™®) = (Trgp(@™))? = (Trep(Trgnpa(a™)))?
= (Tryp(—c1/eo))?
= (Tryp(a/c))?,
it is also equivalent to (T'rq/a(c1/co)) # 0. O

Part (i) of Theorem 2.8 was obtained by Meyn ( [8], Theorem 6), and part (ii) is
stated as Theorem 3.10(ii) in [7].

Theorem 2.9 ( [8], Theorem 8). Let ¢ be a power of an odd prime and P(x) be an
irreducible polynomial of degree n over F,. Then x"P(x + x~1) is irreducible over F,
if and only if P(2)P(-2) ¢ F;*.

Proof. By Theorem 1.9, 2" P(x 4+ 27') is irreducible over F, if and only if 2% — ax + 1
is irreducible over Fyn, where « is a root of P(x). This is equivalent to the condition
o — 4 ¢ 7, which is true if and only if

-1 = (052 . 4)((1"—1)/2
= {[2—-a)(-2~- Oé)](qn_l)/(q—l)}(q—l)/Q

= ([l - a2 - ) yeb

— {1:[(2 _ Oéqi)(_z _ aqi)}(qfl)/Q
= (P@P(-2)}o D"

8



that is, P(2)P(-2) ¢ F}>. O

Corollary 2.10 ( [7], Corollary 3.12). Let q be an odd prime power and P(x) be an
irreducible polynomial of degree n over F,. Then 2"a"P((x+x~")/2) is irreducible over

Fy if and only if P(1)P(—1) ¢ F;?.
Proof. Let Py(z) = 2"P(x/2) and apply Theorem 2.9 to Py(x). O
(b) f(x) =2P —xz —band g(z) = 1. Then P(f/g) = P(a? —x —b).

Theorem 2.11 ( [7], Theorem 3.13). Let P(z) = 2" + ap_12™ ' + -+ + ag be an
irreducible polynomial over F, of characteristic p and let b € F,. Then the polynomial
P(f/g) = P(a? — x —b) is irreducible over Fq if and only if Trq/,(nb — a,—q) # 0.

Proof. Let a be a root of P(x) in Fyn. By Theorem 1.9, P(z? — x — b) is irreducible
over [Fy if and only if 27 — x — b — « is irreducible over F;». By Proposition 2.6 this is

equivalent to the condition

Trq”/p(b +a) = Trq/p(TTq”/q(b +a))
Tre/p(nb — an_1) # 0.

O

(c) f(x) = l(z) is a linearized polynomial and g(x) = 1. The irreducibility of
these types of polynomials was established by Agou in a series of papers in 1977,

1978, 1980. First we consider the simple case [(z) = 2P — ax, where a € F;. Then
P(f/g) = P(a" - ax).

Theorem 2.12 ( [7], Theorem 3.14). Let P(x) = 2" + ¢, 12" ' + -+ + ¢y be an
irreducible polynomial over Fy of characteristic p and let a be a root of P(x). Then for

any a € F}, P(a? — ax) is irreducible over ¥y if and only if
am /@Y =1 and  Tryp,(a/AP) £ 0,

where ny = ged(n,p — 1) and A € F. such that APY = . In particular, if
A€, then P(aP—AP~'z) is irreducible over Fy if and only if Trqsp(cn-1/AP) # 0.

Proof. By Theorem 1.9, P(2P — ax) is irreducible over F, if and only if 2?7 — az — «
is irreducible over F,n. By Proposition 2.7, this is equivalent to a = AP~! for some
A € Fp and Trgnjp(a/AP) # 0. Clearly, a = AP~" for some A € F, if and only if

ald" =0/ (e=1) _ 1 (2.1)

Since a € Ff,a? ' = 1. Thus (2.1) holds if and only if " = 1, where

-1 q—1 qt—1

q
h = ged ,q—1)=—— gcd
g (p_ q—1) 1 9 (q_1

7p_1)



But (¢"—1)/(¢g—1) = ¢" *+¢"%+---+1 =n (mod p—1). Hence h = ny(q—1)/(p—1).
Moreover, if A € F; then @™ @1/~ = Am(@=1) = 1 holds automatically and

Tronp(afAP) = Tryp(Tren(a/AP))
= Try/p(Trenq(a) /AP)
= _Trq/p(cn—l/Ap)

Therefore, the last assertion also holds. O

Now we turn to the general case, i.e. [(x) is any linearized polynomial. To determine
when P(I(x)) is irreducible for any linearized polynomial [(x), we need some preliminary

results in [7].

Lemma 2.13. Given a linearized polynomial l(x) over F,, there exists another lin-

earized polynomial g(x) over F, and an element r in F, such that
l(z) = g2 — x) + ra.

Proof. Let l(z) = a,a?” + ay_12?" " + -+ + apz. We use induction on v to prove the

lemma. The case v = 0 is trivial. Suppose v > 1 and put

v—1 v— v—2

Z(x) =1l(z) —a,(zP —2)’ = (ay_1+a,)2? ' +a,_ox? T 4.

another linearized polynomial but of degree (at most) p*~!

. By induction, there is a
linearized polynomial g(x) such that I(z) = g(a? — x) + rz. Then I(z) = g(a? — z) +
a,(zP —2)?" +rz. Put g(a? —z) = g(2P — z) + a, (2P — z)?" " where g is the required

linearized polynomial for the conclusion. O]

Lemma 2.14. Suppose the linearized polynomial l(x) over F, has a non-zero root A

in F,. Then there exists a linearized polynomial g(x) such that l(z) = g(zP — AP~'z).

Proof. I(Ax) is a linearized polynomial over IF, with 1 as a root. By Lemma 2.13, there
exists another linearized polynomial §(x) and r € F, such that [(Ax) = g(a? —z) +rz.
In fact, » = 0 because the substitution x = 1 yields 0 = §(0) + r = r. Thus [(Az) =
g(z? — x), which yields that [(z) = g(“j‘#) = g(a? — AP~ 'z) for some linearized
polynomial g(z) = g(-5). O

Lemma 2.15. Suppose l(x) is a linearized polynomial over F, of degree p* with v > 2.
Then for any b in F,, [(x) — b is irreducible over F, if and only if (i) p=v = 2, and
(i) l(x) has the form

() = z(z + A)(2* + Az + B) (2.2)

where A, B € F, such that the quadratics x* + Az + B and x* + Bx + b are both

irreducible over IFy.
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Proof. By Proposition 2.5 we may assume that [(z) has a nonzero root A in F,. Using
Lemma 2.14, we write [(x) = g(2? — AP~ 'x) and put g(z) = g(x) — b for some linearized
polynomial g(x) over F,. Then I(z) — b = g(zF — AP"'z). Next, we apply the last
assertion of Theorem 2.12 with P(z) = g(z) = 2™ + b,_12" ' + --- + byz — b and
n = deg(g(x)) = p*~!. Since g is an affine polynomial, the coefficient b, 1 of z" ' ing
is zero unless p* ' —1 = p”~2 which occurs only if p = v = 2. Hence, Try,(b,—1/A?) = 0
and [(x) — b is reducible except when p = v = 2. Now suppose that p = v = 2, and
g(z) = 2? + Bz, where B € F,. Hence g(z) = 2? + Bz + b and

I(z) = g(2* — Az) = 2(x + A)(2* + Az + B)

By Theorem 2.12 again, [(z) — b = g(z? — Ax) is irreducible over F, if and only if
g(z) = 2* + Bz + b is irreducible over F, and Try,(B/A?) # 0. The latter condition,
by Proposition 2.7, is equivalent to z® + Az + B being irreducible over F,. This
completes the proof. O

Theorem 2.16 ( [7], Theorem 3.18). Let P(x) = 2"+ 1~ cix’ be a monic irreducible
polynomial of degree n over F,, and let [(x) be a monic linearized polynomial over IF, of
degree p* with v > 2. Then P(l(z)) is irreducible over ¥, if and only if (i) p=v =2,
(ii) n is odd, and (i) I(x) has the form (2.2) where A, B € F, and both x* + Ax + B

and 2% + Bx + ¢,_1 are irreducible over F,.

Proof. By Theorem 1.9, P(I(x)) is irreducible over I, if and only if I(z)—a is irreducible
over Fyn, for some o € Fyn such that P(a) = 0. Applying Lemma 2.15 to [(z) — «, we
conclude that P(l(x)) is irreducible over F, if and only if p = v = 2, and I(z) has the
form (2.2) where A, B € F,n» with both 22 + Az + B and z* + Bz + « irreducible over
Fon.

Assume now that p = v = 2. Then deg(l(z)) =4 and deg(l(z)/x) = 3. If I(x)/z is
irreducible over F, or a product of three linear factors over [F,, then it remains so over
Fn. So for I(z)/x to have a quadratic irreducible factor over Fy», it must be a product
of a linear factor and a quadratic irreducible factor over [, and, by Proposition 1.2, n
must be odd so that the quadratic remains irreducible over Fyn. Now assume further
that [(z) is of the form (2.2) where A, B € F;» with both 2? + Az + B and 2* + Bz + «
irreducible over F,». Then A, B € F,, 2>+ Az + B is irreducible over F,, and n is odd.

Finally, by Proposition 2.7, z*> + Br + « is irreducible over F,. if and only if
Trgnsp(a/B?) # 0. But

Trop(a/B?) = Tryp(Tre s (a/B?))
= Tryp(Trene(a)/B?)
= —Tryp(ca-1/B?).
By Proposition 2.7 again, Ty, (c,—1/B?) # 0 if and only if 2* + Bz +¢,_; is irreducible

over [F,. This completes the proof.
O
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Recursive Constructions

Based on the irreducibility criteria developed in the previous chapter, we study how to
recursively construct irreducible polynomials of arbitrarily large degrees.

First we introduce the following recursive construction of Varshamov [10].

Theorem 3.1. Let p be a prime and let f(x) = 2" + 2?2—01
Suppose that there exists an element a € F such that (na + c,—1)f'(a) # 0. Further

let g(z) = 2P — x 4+ a and define fy(z) for k=0,1,2,... recursively by

c;xt be irreducible over F,.

folz) = flg()),
felw) = fialg(x)) for k=1,

where fi_ () is the reciprocal polynomial of fr—1(x). Then for all k > 0, fi(z) is

irreducible over F,, of degree np™*.

Proof. For any k > 0, let degfy(x) = ng and

=0
Denote by (Py) the family of claims:
o b = fila) #0,
e both fi(x) and f/(x) are constant on F,
o fi(z) is irreducible over I,
o ny = nphtl

We prove (P;) by induction on k.
When £ = 0, we have

folz) = f(9(x))g (x)

12



Then

b = (fo())|a=0
= (f'(9(x)g'(x))]2=0
= —f'(a) (since ¢(0) =a,d'(0) = —1)

and
fola) = (f'(9(2))g'(x))]a=a
— /(@) (since g(a)=a,g/(a) = —1)
Thus by = fj(a) = —f'(a) # 0, by assumption. Clearly g(x) is constant on F,
and ¢'(z) = —1, hence both fy(z) = f(g(x)) and fi(x) are constant on F,. Since

degfo(z) = np, ng = np. From Theorem 2.11, fy(z) = f(g(x)) is irreducible over F,, if
and only if T'rp/,(na + ¢,—1) = na + ¢,y # 0. By assumption na + ¢,—1 # 0, so fo(z)
is irreducible over [F,,.

Now assume that (Py) is true for & > 0. We prove that (Py1) is also true. Since f(z)
and f*(z) have the same degree and by induction hypothesis n, = np*, fi 1(z) =
fi(g(x)) is of degree gy = np**?
and also bg; # 0 by induction hypothesis. Thus b,;ol fi(x) is monic and the coefficient
of ™1 is b by # 0. Then

. The constant term byy # 0 since fi(x) is irreducible,

Trysp(nra + bzzolbkl) = Trp/p(npkﬂa + b];()lbkl) = b]:olbkl # 0,

It follows from Theorem 2.11 that fyi1(z) = fi(g(x)) is irreducible over F,. By

definition

Thus

ne—1

fra(z) = Z bri (e — i) g ()™ g ()

ng—1

= 3 buigle™ T (since g/(z) = —1)
i=0
Because g(x) is constant on [, so are fi1(x) and f,,,(x). Moreover,

breis = (fir(@))omo = (i (9(2))g'(2))]am0
= —f(a)
= fila)am?

= filaya



which is nonzero by the induction hypothesis. Similarly,

fii1(a) = (frsa (@)oo = (i (9(2))9' (2)|o=a = = fi (a)

which is again non-zero as above. This completes the proof of (Py1).
By induction (P) holds for all £ > 0. In particular, for all K > 0, fx(z) is irreducible
over F,, of degree npFtt, O

The next construction is over Fy, for ¢ even, and is based on Theorem 2.8.

Theorem 3.2 ( [11], Theorem 10.26). Let ¢ = 2™ and let f(z) = Y . ¢z’ be ir-
reducible over Fy of degree n with coc,, # 0. Suppose that Trys(ci/co) # 0 and
Trqo(cn-1/cn) # 0. For all k > 0, define polynomials recursively:

jb(x) = .f(x)a
fr(x) = m”2k71fk_1(x + x_l) for k>1.

Then fi(x) is a self-reciprocal irreducible polynomial of degree n2* overF, for all k > 1.

Proof. Tt is easily seen by Theorem 2.8 and by induction on k that fi(z) is of degree
n2* for every k > 0 and fi,(z) is a self-reciprocal polynomial for every k > 1. We apply
induction on & to prove that fi(x) is irreducible for every & > 1. Since Trq/2(c1/co) # 0
by assumption, fi(z) = 2" fo(x + 27!) is irreducible by Theorem 2.8. Let k& > 1 and
assume that fi(z) is irreducible. Let nj, = n2% and fi(z) = 7% cga®, k > 0. We

have

fulz) = 2™ fia(z+at)

nEg—1
= gk E ck,l,i(x—l—:c*l)l
1=0

Nk—1

— 1 Z Ck—lﬂ'((l + $2)/x)2

Nkg—1

= E Ck—l,i(l + mQ)Z:L‘"’“*l_Z
=0
ng

= g Crix’.

=0

Thus

Ck0 = Ch—1my,_, and cp1 = Ch_1n, 1 (3.1)

By Theorem 2.8, fii1(z) = 2" fi(z 4+ 2 1) is irreducible over F,

jﬁrq/2<ck1/ck0) §£ 0 (3.2)
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Since f;(x) is self-reciprocal for j > 1, (3.1) implies

Cko = Ck—1np_qy — Ck—1,0 = """ =C10 = Cong = Cn

Ck1 = Ck—1np_1—1 = Ck—11 = """ = C11 = Cong—1 — Cp—1-

Since Trq/a(cn-1/cn) # 0 by assumption, (3.2) is true for k£ > 1, and so friq(x) is
irreducible over F, for k > 1. O

The final construction is over F,, for ¢ odd, based on Corollary 2.10 and is due to
Cohen [4].

Theorem 3.3. Let q be odd and let f(x) be a monic irreducible polynomial of degree
n > 1 over ¥y, where n is even if ¢ = 3 (mod 4). Suppose that f(1)f(—1) ¢ F:>.
Define

folz) = f(z)

frl@) = Q)" fial(x+271/2) for k=1,

where ny, denotes the degree of fy(x). Then fy(x) is an irreducible polynomial over F,

of degree n2F for every k > 1.

Proof. Tt is easy to see by induction on k that fi(z) is of degree n, = n2* for every
k> 0. For kK > 1, we have

e fi(=1) = 2% fra (1)(=2)" froa (1)
= (=)™ 22t fi g (1) frioa (1)

= (—1)"d2f0(1)f0(—1), for some dj € F,,
= cfo(1)fo(=1), for some dj €F,,

because either -1 is a square in F; (when ¢ = 1 (mod 4) ) or n is even. Hence
fe(1) fe(=1) is always a non-square in F}, for k > 0. Hence applying induction on #,
we can prove, by Corollary 2.10, that fi(x) is irreducible over F, for every k > 1. [
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Composed Product of Polynomials

Let f(x) and g(z) be monic polynomials in F,[z]. The composed sum of f and g is the
polynomial defined by

fog=T]IJ@- (@+8) (4.1)
a 8
while the composed multiplication of f and ¢ is the polynomial defined by

fog=111I=- () (4.2)
a B

where the products are taken over all the roots « of f and S of g, including multiplic-
ities.

In 1987, Brawley and Carlitz [2] defined a more general notion of polynomial com-
position, denoted by f ¢ g, for which f @ ¢g and f ® g are special cases.

Let G be a nonempty subset of the algebraic closure F, of IF, with the property that
G is invariant under the Frobenius automorphism a — o(a) = o? (i.e., if « € G, then
o(a) € G), and suppose there is defined on G a binary operation ¢ such that (G, o) is
a group and for all a, 5 € G,

o(aof)=o(a)oo(f) (4.3)

Then for monic polynomials f and g whose coefficients are in [, and whose roots lie

in G, the composed product, denoted by f ¢ g, is the polynomial defined by
feg=111I=~(aop) (4.4)
a B

where again the products are over all roots of « of f and § of g. It is clear that

deg fog=(deg f)(deg g)

and it is also clear that when G = Fq and ¢ is the usual addition (respectively, the
usual multiplication) on F, then (4.4) becomes (4.1) (respectively (4.2)).
The following theorem, which is due to Brawley and Carlitz [2], indicates precisely

when the composed product is irreducible.
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Theorem 4.1. Let (G,©) be a o-invariant group satisfying (4.3) and let f, g be monic
polynomials in F x| with roots in G. If deg f =m and deg g = n, then the composed
product f o g is irreducible in Fy|x] if and only if f and g are both irreducible in IF,[z]
and ged(m,n) = 1.

Proof. See [7], p.56-57. O

Now we state the following easy consequences of Theorem 4.1 which are applied in

the proofs of the next theorems regarding polynomial composition.

Corollary 4.2. Let f and g be irreducible polynomials over F, with deg f = m and
deg g = n, where ged (m,n) = 1, and suppose that o and 3 are respective roots of f

and g. Then

IFq(a> B) = ]Fq(a o f3)
In particular, F,(a, ) = Fy(a + ) = Fy(ap).

Corollary 4.3. Suppose that [F,(a) : F,] = m and [Fy(B) : F,| = n with gcd (m,n) = 1.
Further suppose that F(x) € F,[z] is a polynomial of degree mn such that F(ao ) = 0.
Then F(x) is irreducible in Fy[z].

Now we will apply the results above to prove the following result of Varshamov [10]

which is restated as follows.

Theorem 4.4. Let r be an odd prime number which does not divide q, and r — 1 be
the order of ¢ modulo r. Further let n > 1, ged(n,r—1) =1 and f(z) be an irreducible
polynomial of degree n over F, with ord(f) = t, and ¥ (x) € F,[z] be the minimal
polynomial of " for a zero « of f. Then ¥(z) has degree n and

is an irreducible polynomial of degree (r — 1)n over F,. Moreover, ord(F(x)) = rt.

Proof. First we prove that the degree of ¢ is n. Assume that ¢(z) € Fy[z] is the
minimal polynomial of a” for a zero a of f(x). In order to prove that the degree of ¥
is n, we show that deg,(a”) = n, i.e. Fy(a") = Fyn, by proving that the multiplicative
order of o” is equal to the one of a. By assumption the order of f is ¢t which implies
being order of « is also t. Thus the order of o is m and it is enough to show that
ged(t,r)=1. By the assumption , we have r — 1 # 1 is the smallest i satisfying the

congruence ¢' = 1 (mod r), and ¢ divides ¢" — 1, and further

gcd(qn . Lqrfl . 1) _ qgcd(n,rfl) 1= q— 1.

1

"= —1 and ¢ divides ¢" — 1, we have ged (¢, r) divides ged(¢" —1,¢" —

Since r divides ¢
1) = ¢ — 1. Being r an odd prime implies ged (¢, 7)=1 or r, but r does not divide ¢ — 1.
Hence ged(t, 7)=1.
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Now we consider the polynomial F'(z) = (f(z)) ' (z"). Let 3 be a primitive rth
root of unity over F,. Then the rth cyclotomic polynomial h(z) = 2" ' + 2" 2 + -+ +
x + 1, which is irreducible over FF, if and only if 7 is a prime number and the order
of ¢ modulo 7 is r — 1, is the minimal polynomial of 3 over F,. Now we have two
irreducible polynomials f(z) and h(z) assuming a and (3 as roots, respectively, and
ged(n,r — 1)=1. So by Corollary 4.2, F,(a, 5) = F,(ap), i.e. deg,(af) = n(r —1).
We claim that «f is a root of the polynomial F'(z) = (f(x)) ' (z"). First note that
af is not a root of f(x), otherwise aff = a4 for some 0 < i < n — 1 which implies
B=al"1te F,» and this contradicts to the assumption that ged(n,r — 1) = 1. Then

v((@B)) _ v(e8r)  Y(a”)

FOf) ==ap = Tan) ~ fap) "

Since the degree of F(x) is n(r — 1) and deg,(af) = n(r — 1), F(z) is the minimal

polynomial of af over F,.Hence F(z) is irreducible over F,.

We complete the proof with
ord(F(x)) = ordy(af) = lem(ord(w), ord(5)) = lem(t,r) = rt.
[

Recall that a polynomial of the form L(x) = S a;29" € F,[2] is called a linearized
polynomial over F,. It is easy to see that a linearized polynomial represents a linear

mapping on F,, where F, is considered as a vector space over F,, ie. L(S+ ) =
L(B)+ L(y) and L(cB) = cL(p) for any 3,7 € F, and ¢ € F,. The polynomials

L(z) = Z ax? and I(z) = Z a;x’
i=0 i=0

are called g-associates of each other. More precisely, [(x) is the conventional g-associate

of L(x), and L(z) is the linearized g-associate of ().

Proposition 4.5 ( [6], Theorem 3.63). Let f(x) be irreducible in Fy[x] and let F(z) be
its linearized q-associate. Then the degree of every irreducible factor of v F(z) € F[z]
is equal to ord(f(x)).

The next result, due to Ore-Gleason-Marsh [12], is an immediate consequence of

Proposition 4.5.

Theorem 4.6. Let f(x) = >"_ a,z* € Fylz] and F(x) be its linearized q-associate.
Then f(x) is a primitive polynomial over F, if and only if 7 F(z) =Y n_ja,a? ~* is

irreducible over .

Given an irreducible polynomial of degree n and a primitive polynomial of degree
m over [F,, the next theorem, which is stated in a bit different way in [5] as Theorem

5, yields an irreducible polynomial of degree n(¢™ — 1) over F,,.
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Theorem 4.7. Let ged(n,¢™ — 1) = 1, and L(z) = Y_" ,b,a?" such that its conven-
tional g-associate [(x) # x — 1 is a primitive polynomial of degree m over F,. Further,
let f(x) be an irreducible polynomial of degree n over F, and ¢(z) be the minimal
polynomial of L(c) over F,, for a zero a € Fyn of f(x). Then ¥(z) has degree n and

F(z) = (f(2)) " (L(x))

is an irreducible polynomial of degree n(qg™ — 1) over F,.

Proof. First we prove that the degree of ¢ is n. Assume that ¢(z) € F/[z] is the
minimal polynomial of L(«) for a zero « of f(x). In order to prove that the degree of

¢ is n, we show that deg,(L(a)) = n. Assume on the contrary that for some k < n,

deg,(L(a)) =k = L(a)" = L(«)
= L") = L(a)
= L —a)=0
= o —a isaroot of L(x).

Then o — a is also a root of 7' L(x) since deg,(a) = n implies a4" # a for k < n.

Because [(z) is a primitive polynomial, 2~ L(x) is irreducible over F,, by Proposition
4.5. Let 8 € Fygm-1 be a root of z7'L(z). The roots of 7' L(z) are all the conjugates
of 8, namely 8, 8%, 8%, ... 5 * soa? —a = B for some 0 < j < g™ — 2. This
yields that 87 e F,(a), contradicting to the assumption that ged(n,¢™ — 1) = 1.

Next we show that F(z) = (f(z)) ' (L(z)) is an irreducible polynomial of degree
n(¢g™ — 1). We have two irreducible polynomials f(z) and z~'L(z) with respective
roots a and f3, and respective degrees n and ¢™ — 1 with ged(n,¢™ — 1) = 1. Then by
Corollary 4.2, F,(a, ) = Fy(a + ), i.e. degy(a+ ) = n(¢™ — 1). Now our claim is
that a + 8 is a root of F'(z) = (f(z)) ' (L(z)). First note that o + 3 is not a root of
f(z), otherwise a + 8 = a?" for some 1 < k < n — 1 which vields 8 = a4 —a € Fyn
and this contradicts to the assumption that ged(n,¢™ — 1) = 1. Then

(Lla+B)) _ ¢(Lla) + L(B) _ ¥(L(a))

Fla+p) = = = =0.
@0 ="t p) fa+h)  fla+th)
Since the degree of F(x) is n(¢™ —1) and deg,(a+ ) = n(¢™ —1), F(x) is the minimal
polynomial of a + 3 over F,. Hence F(x) is irreducible over F,. ]
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