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Abstract

Bent functions are Boolean functions which have maximum possible nonlinearity
i.e. maximal distance to the set of affine functions. They were introduced by Rothaus
in 1976. In the last two decades, they have been studied widely due to their interesting
combinatorial properties and their applications in cryptography. However the complete
classification of bent functions has not been achieved yet. In 2001 Youssef and Gong
introduced a subclass of bent functions which they called hyper-bent functions. The
construction of hyper-bent functions is generally more difficult than the construction
of bent functions. In this thesis we give a survey of recent constructions of infinite
classes of bent and hyper-bent functions where the classification is obtained through

the use of Kloosterman and cubic sums and Dickson polynomials.
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Ozet

Bent fonksiyonlari olasi en az dogrusalliga sahip olan Boole fonksiyonlardir, yani
afin fonksiyonlar kiimesine olasi en fazla uzakliga sahip olan fonksiyonlardir. Bu kavram
ilk olarak 1976 yilinda Rothaus tarafindan ortaya atilmigtir. Bent fonksiyonlar, krip-
tolojik uygulamalardaki kullanimindan ve ilging kombinatorik ozelliklerinden dolay1
son 20 yil icerisinde genis ilgi ¢cekmistir. Buna ragmen bent fonksiyonlarimin tamami
heniiz siniflandirilamamigtir ve bu miimkiin gozitkmemektedir. 2001 yilinda Youssef ve
Gong, bent fonksiyonlarinin, hiper-bent adini verdikleri bir alt kiimesinin ¢aligilmasini
onerdiler. Bu alt kiimenin insaasi, genelde bent fonksiyonlarin ingaasindan daha zor-
dur. Bu tezde, Kloosterman ve kiibik toplamlar ile Dickson polinomlar1 yoluyla elde
edilen sonsuz elemana sahip bent ve hiper-bent fonksiyon siniflar1 hakkinda son yillarda

yapilan bazi ¢aligmalar1 inceleyecegiz.
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Introduction

Bent functions are Boolean functions which have maximal possible non-linearity. They
have been introduced first by Rothaus [27] in 1976. Lately there is a lot of interest
in them because they do not only have interesting properties, which are particularly
important for applications, but also there are still many open problems about them.
Bent functions play an important role especially in cryptographic applications since
non-linearity is one of the most important design criteria.

Despite extensive recent work on bent functions, full characterization of them has
not been achieved yet and it looks quite hopeless. Booelan functions which can be
expressed as the absolute trace of a single power function are called monomial Boolean
functions. There has been some progress in the last decades in the classification of
monomial bent functions. However, not much is known about the characterization of
bent functions which consist of multiple trace terms. For the case of binomial functions,
in 2009 Mesnager |23] has introduced an infinite class of Boolean bent functions on Fan

defined as:

21

Vo € Fon, fop(z) = Tr?(axr(zm_l)) + Tr%(bx( 3 )).

where a € Fan, b € Fy and ged(r,2™ 4+ 1) = 1. In 2009 Mesnager [21] has also
shown that the functions in the form above with r = 3 are also bent. For the case
of multiple trace terms, in 2009 Charpin and Gong [5] have given a characterization
of bent functions in terms of Dickson polynomials. In 2010, with the help of result
of Charpin and Gong, Mesnager has given a characterization of bent functions with
multiple trace terms defined as
fole) = 3 Tri(a,a@ D) + T3 (™)
reR

where F is the set of representatives of the cyclotomic cosets modulo 2" — 1 with each



coset having the full size n, R C E, b€ Fy and a, € Fom for all r € R.

In 2001 Youssef and Gong [28] have introduced a subclass of bent functions, which
they called hyper-bent functions. Hyper-bent functions have maximal possible distance
to not only affine functions but also to bijective monomials, hence their characterization
is generally harder than the characterization of bent functions. However it turns out
that, the bent functions we mentioned above are also hyper-bent.

In this thesis we give a survey of recent constructions of classes of bent and hyper-
bent functions. In Chapter 1, we give the necessary background, motivation about
studying bent functions and some of the known classes of bent functions. In Chapter
2, we present characterization of Mesnager of binomial bent functions. In Chapter 3,
we focus on hyper-bent functions. We show that the functions presented in Chapter 2
are also hyper-bent and then we give constructions of Mesnager, Charpin and Gong of

hyper-bent functions obtained through Dickson polynomials.



1.1 Preliminaries

Definition 1.1. Let A be any set and k be any positive integer. A function f : A¥ — T,

is called a Boolean function.
In this thesis all functions we study are Booelan functions.
Definition 1.2. For any positive integers n, m such that m divides n, the trace function

from Fyn to Fom, denoted by 7'r is the mapping defined as:

Tr) () :

n
E .
m
E .',UQ s Vo € Fgm
=0

Trace function is one of the most frequently used tools in the theory of finite fields.
In this thesis we are going to use them also since the functions that we are going to
study are expressed in terms of trace. Now we will see the following property of trace

function.

Lemma 1.3. Let n = 2m. We have

S (@ =] O TeEE

where x(f(z)) = (1)@ for any Boolean function f.

Proof. First note that by the transitivity property of trace we have

> x(@riay)) = > x((Tr(ay + (ay)™™))

yeFym yEFgm
Since y is in Fom, we have 2" = y. Then
> x((Triay) = D x(Tri((a+a”)y))

yEFam y€EFam

Now assume a € Fom, then a®” = a. So we have Tr7((a + a*")y) = Tr7(0). Then
Z x((Tri(ay)) = Z 1=2"
yEFom yEFom

Now assume a € Fan \ Fam, then (a + a*")*" = a*" + a which means (a + a*") € Fom.
Therefore (a + a*")y runs through all elements of Fam. Then we have

> x((Tri(ay)) = 0.

yEF2m



Definition 1.4. The Walsh-Hadamard transform of a Boolean function f :
Fon — Fy is defined as follows:

(a) = Z X(f(:ic) + Tr?(aw)), a € Fon. (1.1)

zE€Fon

Moreover, the values f"(a) are called the Walsh-Hadamard coefficients of f.

Definition 1.5. A Boolean function f : Fyn — Fy is bent if fV(a) = £2"/2, for all

a <€ an.

Definition 1.6. An exponent d (always understood modulo 2" — 1) is called a bent

exponent, if there exists an « such that the Boolean function 777 (ax?) is bent.
The following property of a bent exponent will be used later.

Lemma 1.7. [17] Let f(x) = Tr(az?) be a bent function defined on Faon and n = 2m.
Then ged(d, 2™ — 1) # 1. Furthermore either ged(d,2™ — 1) =1 or ged(d,2™ + 1) = 1.

Proof. Suppose ged(d,2" — 1) = 1. Since x — 2% is a permutation on Fyn, we have

YOy = Y x(f(@) + Tri(0.ah) = Y x(Trf(az) = 0.

zE€Fon z€Fon

which is a contradiction to the bent exponent property i.e. the bentness of f.

Now assume ged(d,2" — 1) = s # 1. Let
D ={y € Fanly? =1} = {y € Fanly® = 1}.

Obviously, for any v € F3,., f is constant on all cosets uD. If we represent 3, by cosets
uD, let say there are N many cosets, then 5, = Uf\il w; D. It is clear that Ns = 2" —1

since |D| = s. Therefore we get

Y0y =" x(Tri(az?)

.’Engn

=1+ > x(Tri(au))
uyern
N

s o)

=1

=1 (mod s).



Since d is a bent exponent, f(0) is equal to either 2™ or —2™. Assume f"(0) = 2™
then 2™ = 1 (mod s) which means s divides 2™ — 1. Now assume f"(0) = —2™ then
—2" =1 (mod s) which means s divides 2 + 1. Since ged(2™ — 1,2™ +1) =1, we
have either ged(d,2™ — 1) =1 or ged(d,2™ + 1) = 1. O

We have the following well-known theorem due to Dillon. For the proof we refer

to [7].

Theorem 1.8. [7] Let E;, i = 1,2,...,N, be N subspaces of Fon of dimension m
satisfying E; N E; = {0} foralli,j € {1,2,...,N} withi# j. Let n =2m and f be a
Boolean function over Faon. Assume that the support of f, supp(f) := {x € Fou|f(x) =

1}, can be written as

N
supp(f) = U E?, where E} := E; \ {0}
i=1
Then f is bent if and only if N = 2™~1. In this case f is said to be in PSS~ class.

Kloosterman sums and cubic sums are the two key tools for most of the bentness

characterizations that we consider in this thesis.

Definition 1.9. The binary Kloosterman sums on Fyn are:

K, (a) := Z x(Tri"(az + i)), a € Fam

xe]F;m
Remark 1.10. In this thesis, we consider the so called extended Kloosterman sums

(extended from F3,. to Fam) by assuming that x(Tr7*(1/z)) =1 for z = 0.

Theorem 1.11. [15] Let m be a positive integer. The set { K,,(a), a € Fom }, is the
set of all the integers multiple of 4 in the range [—20m+2)/2 1 1, 2m+2)/2 4 9]

Proof. See the proof in [15]. O

Definition 1.12. The cubic sums on Fyn are:

Cin(a,b) == Z xX(Tri"(az® 4+ bz)), a € Fym, b € Fom.

IEGFQm



1.2 Basic properties of bent functions

Boolean functions have wide applications, espacially in cryptography they play a crucial
role. In cryptography, they have been mostly used for constructing stream ciphers, S-
Boxes in block ciphers and hash functions. When one tries to construct these kind
of cryptographic structures, one of the most important criteria is high non-linearity
because high non-linearity makes cryptographic structures strong against most of the
cryptanalytic attacks such as linear attack [19] and differential attack [3].

In 1976, Rothaus [27] introduced bent functions. They are Boolean functions that
attain maximum possible non-linearity. However, bent functions are not balanced
i.e. their images do not have equal number of zeros and ones. Since being balanced
is another design criteria in cryptography, bent functions are combined with other
structures in order to generate balanced functions and these functions still preserve
the properties of bent functions, such as hash function HAVAL [29] and block cipher
CAST [1].

As we have defined earlier (see Definition , a Boolean function f : Fon — Fy
is bent if fV(a) = £2"/2 for all a € Fan.

Remark 1.13. Note that Walsh-Hadamard coefficients are integers, therefore bent

functions exist only for even n.
Bent functions can be defined in different ways, see the following Remarks|1.14} [1.18]

Remark 1.14. Bent functions can also be defined as follows: A function f in Fan is
called bent if all Walsh-Hadamard coefficients of f have the same absolute value. One

can see that the two definitions above are equivalent due to Parseval’s Identity.

Lemma 1.15. Parseval’s Identity. Let f be a Boolean function defined on Fan.
We have

Z fW((Z)2 _ 22n

a€lFon
Definition 1.16. The linearity of a Boolean function f with respect to Walsh-
Hadamard transform is defined by

Lin(f) = max | " (a)|.

a€lFon



Definition 1.17. Nonlinearity of a a Boolean function f : Fon — [y is defined by:

N(f) =2 = L (max | 7 (a)])

2 CLE]FQ'IL
Remark 1.18. We can give another definition of a Boolean bent function by linearity
as follows: A Boolean function f : Fon — Fy is bent if Lin(f) = 2"/2. Note that this
definition is equivalent with the others because 2"/2 is the minimal linearity that f can

have due to Parseval’s Identity.

Definition 1.19. Another measure of the linearity of a Boolean function f is the

autocorrelation function. It is defined by

ACp(a) = Y x(f(z) + f(z +a)).

zE€Fon

Bent functions can also be defined by their autocorrelation functions. High autocor-
relation values are considered as weakness in [25]. But bent functions have minimum

autocorrelation values which is considered as another good property.

Proposition 1.20. [10] A Boolean function f on Fon is bent if and only if ACy(a) =0

for all non-zero a € Fon.
The following proposition gives another property of bent functions.

Proposition 1.21. [27] If f : Fon — Fy is a bent function, (then n is even) the

algebraic degree of f is at most n/2, except in the case n = 2.
Bent functions are also related to difference sets.

Definition 1.22. Given an abelian group G of order v, a subset D C G of order k
is called a (v, k, A)-difference set in G, if for each non-identity element g € G, the

equation g = xy~! has exactly \ solutions (z,y) in D.

Definition 1.23. Let D be a (v, k, A)-difference set in G. D is Hadamard difference
set if v =4(k — \).
The following characterization shows us how difference sets and bent functions are

closely related.

Proposition 1.24. [7] Let D be a Hadamard Difference set in Fan. Let f be a Boolean
function on Fon defined by f(x) =1 if and only if v € D. Then f is bent. Conversely,
if [ Fon — Fy is bent, then the support of fis a Hadamard difference set of Fon.

Proof. See the proof [7]. O



1.3 Known classes of bent functions

1.3.1 Monomial bent functions

The following characterizations of monomial bent functions have been well-established.

Hence we present these results without proof.

Theorem 1.25. The Gold Case [17] Let o € Fon, r € N andd = 2"+1. The function
f @ Fon — Ty defined by f(z) = Tri(ax?), is bent if and only if a € {x¢ | v € Fon}.

Theorem 1.26. The Dillon Case [7| Let o € Fam, n = 2m and d = 2™ — 1. The
function f : Fou — Fy defined by f(x) = Tri(az?), is bent if and only if K,,(a) = 0.

Proof. We will see this case in the next chapter. See the proof of Theorem O

Theorem 1.27. The Dillon-Dobbertin Case |9] Letn be an even integer coprime
to 3. Let « € Fou, r € N and d = 2%" — 2" + 1 with gcd(r,n) = 1. The function
f i Fon — Fy defined by f(x) = Tri(ax?), is bent if and only if o € {x¢ | x € Fon}.

Theorem 1.28. The Leander Case [17| Let o € Fon. Let 1 be an odd integer with
n=4r and d = 2% — 2"t 1 1. Let 8 be a primitive element of F1g and o = B°. Then,
the function f : Fon — Fy defined by f(z) = Tr(ax?), is bent.

1.3.2 Bent functions with multiple trace terms

The following characterization is given by Charpin and Gong in [5]. We refer the reader

to [5] for proof. But before we state the theorem, we need the following definition.

Definition 1.29. For any integer s, 0 < s < p™ — 1, let r be the smallest integer with
the property that p"*'s = s (mod p"—1). The cyclotomic coset containing s modulo
p" — 1 consists of {s, ps,p?s, p3s, ..., p"s} where each p's is reduced (mod p™—1). The

smallest entries of the cyclotomic cosets are called coset representatives.

Remark 1.30. The cyclotomic cosets partition the integers {0,...,p" — 1}. If s is
relatively prime to p” — 1, then r = n—1. When r = n—1, cyclotomic coset containing

s has the full size n.



Theorem 1.31. [5] Let n =2m and A\ € F},.. Let R be a set of representatives of the
cyclotomic cosets modulo 2™ + 1 of full size n. Let f be a Boolean function defined on

FQn as:

fx) = Trr(A(a@—DE" =D 4 g @+DE™-1))

where 0 < r < m and {2"—1,2"+1} C R. Assume that the function x — Tr*(A\z* +1)
is balanced on Fom, i.e. its image contains an equal number of zeros and ones. Then f

15 bent if and only if

Z X(Tri (=" 4+ x2* ) = 0.

z€Fom
The following characterizations are given by Honggang Hu and Dengguo Feng
in [14]. We refer the reader to [14] for the proofs. Let n be an even positive inte-

ger. Let e be a divisor of n such that n/e is also an even positive integer and m = n/e.

Theorem 1.32. |[14] For any € Fi., the Boolean function defined on Fon as:

m/2—1

=S e e

1s bent function. In particular, for any § € F: the function

on/27
n/2 n/2
fla) = Tri (37

s a bent function.

Theorem 1.33. [14] Let f € Fi. and¢; € Fy, i =1,2,...,m/2. The Boolean function
f defined on Fan as:

m/2—1

f@)= 3" T (B ) 4 e Try/? (B2

i=1
is bent if and only if ged(c(x), ™ + 1) = 1, where

m/2—1
c(r) = Z ci(a" + 2™ + o™

i=1
In particular, cy,jo =1 if f(x) is bent.
The following characterizations are given by Dobbertin, Leander, Canteaut, Carlet,

Felke and Gaborit in [11]. We refer the reader to [11] for proofs. But before we give

their characterizations we need the following definition.

9



Definition 1.34. Let n, m be positive integers such that n = 2m. An exponent d is a

Niho exponent and z? is a Niho power function in Fon if d =1 (mod 2™ — 1).

Dobbertin, Leander, Canteaut, Carlet, Felke and Gaborit have obtained their char-
acterizations through the use of Niho power functions. Let n = 2m be a positive

integer. They consider Boolean functions defined on Fa» as in the form
f(x) =Tr?(oaqx™ + apr™) (1.2)

for aq, ag € Fon such that aq +oz1_1 = ocgl, where d; = (2™ —1)s; + 1, i = 1,2 are Niho

exponents. It is known that if f is bent, then necessarily w.l.o.g.

1

Theorem 1.35. [11] Define do = (2™ — 1)3+ 1. If m = 2 (mod 4), assume that
ay = 35 for some B € Fh.. Otherwise, i.e. if m # 2 (mod 4), let ay € F3. be
arbitrary. Then f defined as in[1.3 s a bent function of degree m.

Theorem 1.36. |[11] Suppose that m is odd. Define dy = (2™ — 1)(1/4) + 1. Then f
defined as in[1.9 is a bent function of degree 3.

Theorem 1.37. [11] Suppose that m is even. Define dy = (2™ —1)(1/6) + 1. Then f
defined as in[1.9 is a bent function of degree m.

10



A New Infinite Class of Boolean Bent Functions

In this chapter we are going to study an infinite class of bent functions which is intro-
duced recently by Mesnager in [23] and [21] . From now on, we assume n = 2m be a
positive integer. Let a € Fan, b € [} and 7 be an integer. Define the set of the Boolean

functions fyb), denoted by S,,, on Fon as:

2" —

fan(@) = Tri(ax"®" D) + Tr?(ba'™s 1)), Vo € Fon (2.1)

In [23], Mesnager has given the characterization of the bentness of the set of the
functions féTb) € S, only for integers r such that ged(r, 2™ 4+ 1) = 1. Then, in [21] she

has also given similar characterization for » = 3 which is not coprime to 2 + 1.

2.1  The characterization of the functions fCETb) € S, where ged(r,2m+1) =1

In this section, set r be a positive integer which is coprime to 2™ 4 1. Now we will see
that it is enough to study the case where a € F},. in order to give a characterization
of the bentness of the set of the functions férb) € $,. But before that we need the

following lemmas.
Lemma 2.1. Let n be an even positive integer and m be an odd positive integer. Then
1. 3 dwides 2™ — 1,

2. ged(2™ —1,3) =1 and ged(2™ +1,3) = 3,

3. If m # 3 (mod 6), then ged(3,25H) = 1.

Proof. 1. We know n = 2k for some k € N. Note that 2% — 1 = (2 — 1)(2%F + 1).

Suppose 2% = 3¢ + r where ¢,7 in N and it is clear that we have either » = 1 or

11



r = 2. Assume 7 = 1, then 3 divides 2¥ — 1. Now, assume r = 2, then 3 divides

2% + 1. Hence 2%¢ — 1 is divisible by 3.

2. We know m = 2k + 1 for some k € N. By the previous case, we have 2% — 1 = 31

for some [ € N. Therefore
22k 3141 o 2%l_@g4+2 < 2%l _1-_¢+1

Hence 2™ — 1 is not divisible by 3. On the other hand 2™ + 1 is divisible by 3.

3. Assume ged(3,25H) £ 1ie. ged(3,255) = 3. Then 2™ +1 =0 (mod 9). Let
m = j (mod 6). Then 2™ + 1 = 2% + 1 for some | € N. Then 2™ + 1 =
(64)'27 +1 =27 + 1 (mod 9) which means j = 3 since we assumed 2™ + 1 = 0
(mod 9).

]

The following lemma is also known as polar decomposition of F,.. It will be used

frequently not only in this chapter but also in the next chapter.

Lemma 2.2. Let m,n be positive integers such that n = 2m. Let U = {x €
F3. | "t = 1}. Then we can represent each x € Fj, uniquely as x = yu where

y €5 andu e U.

Proof. We will show that F3, = F5,.U = {uy | y € F},., v € U}, then the result will

follow.

1. F5. NU = {1}. It holds since there can not be any other elements which has
both order 2™ — 1 and 2™ + 1 at the same time.

2. If 1 = x5 such that 1 = wyy; and x5 = ugys where u; € U and y; € F5,., then
uy; = ug and y; = y. It holds because
Ty =Ty = UY1 = UY2

(Uly1)2m+1 = (U2y2)2m+1 = y% = ?Jg-

The last equality holds since v € U has order 2™ + 1. Now we have y = y2

means y; = yo and therefore u; = us.

12



Now note that |F5..| = 2™ —1 and |U| = 2™+1. By the above properties, it is clear that
|F5n. Ul = (2™ —1)(2"+1) = 2" — 1 = |F3.|. Therefore F}, = F5,.U since F5,.U C F5,..

Uniqueness comes from the second property above. O]

Proposition 2.3. Let fyb) be a Boolean function in the set &, defined as in .

Then we have

{(a,b) | a € Fy, beFy, f) is bent } (2.2)
= {(@ XD WX | d € Fn, b € Fy, A€ Fy, £, is bent } (2.3)

Proof. Let a € F5,, b € Fy and a' € Fh,.. First note that if a = a' A"®"~Y and

b= b/)\L'f1 for some A € F3, and b’ € Fy, then we have for all x € Fon

on

N @) = Trp(a A" D70y 2 (5 A7)

a,

on

) =5, 0)

Since the mapping x — Az is a permutation on Fon we have that fyb) is bent if and
only if fif,)b,. Now it is clear that the set already includes the set . Now we
will show that the set includes the set 2.2 Let a € F5,, b € Fy and U = {z €
F3. | 2"+ = 1}. Note that YA € F,., we have \"@" =) € U. Then by Lemma and
by the fact that ged(r, 2™ + 1) = 1, 3\ € F}, such that a = o' \'@" =1, Moreover since
A e F%, we have that 3b" € F, such that b = K AT5. Hence for any fyb), one can
find the related fé,r’)b/. m

The proposition above enables us to restrict our study to the case where a € F3,..

In the following three sections we will study the following three cases,
1. b =0,
2. b# 0 and m is odd,
3. b# 0 and m is even.
Before we begin to study these cases, we need to have the following lemmas.

Lemma 2.4. Let n = 2m and U = {x € F}, | 2*" T = 1}. For every element u € U,

1

the element uw+u~—" can be uniquely represented by ¢ where ¢ € Fom and Tr*(1/c) =1,

in other words we have {u+u"'|u €U} ={c|c € Fom and Tr"(1/c) =1}

13



Proof. Let ¢ € Fym. Note that y>+yc+1 = 0 has a solution in Fom < (yc)?+yc?+1 =10
has a solution in Fom < (y* + y)c® = 1 has a solution in Fon < y? +y = (1/¢?) has a
solution in Fom < Tr(y? +y) = Tri*(1/c?) ie. Tr*(1/c*) = 0 since Tr"(y* +y) = 0
i.e. Tr(1/c) = 0. Therefore Tr7*(1/c) = 1 if and only if y* + yc+ 1 is irreducible over
Fom.

Define g : U — Fom such that g(u) = u + u?". Note that g is well-defined since
u+u?" € Fom for all u € U. g is zero only for u = 1 and takes exactly twice each value
in U since g(u) = g(u™). Let ¢ = g(y) =y + vy~ !, then yc = y* + 1 has no solution in
Fom if and only if Tr*(1/¢) = 1. Since it is quadratic, the solution has to be in Fan.
Moreover, the solution is in U since y + y~* € Fym is possible only for y € U. Also

there are two solutions. Hence we have the result. O

Here we have another well-known fact which will be used frequently.

Lemma 2.5. Let n = 2m and a € F4,. Let U = {x € T3, | 22"t = 1}. Then the

following equality holds
Z X(Tri(aw)) =1 — K,,(a).

uelU
Proof. By the transitivity property of trace we have

Zx(Tr?(au ZX Tr*(Tr] (au)) ZX Tri*(a(u+u™)))
uelU ucelU uelU

The last equality holds since a®*” = a and w*" = u~!.

ZxTrl (u+ut))) =1+ Z (Tri*(a(u+u™)))

uelU ueU\{1}

=1+ 2< Z X(TTT(@/C)))
c€Fom
Tri(c)=1

The last equality comes from unique trace representation by Lemma [2.4] and the fact
that U\ {1} = 2|{c € Fom | Tr{"(1/c) = 1}|.

- 1+2< 3 X(Tr;n(a/c))) —2( > x(Tri”(a/c)))

c€Fom c€Fom
Tri*(c)=0
=1+0- 2( > X(Tr’ln(a/c))) (2.4)
CEFQ"L
Tri™(c)=0
=1+0- 2( > X(Tr;n(a/c))) —2
cEIE‘;m
Tri*(c)=0

14



It is clear that if Tr"(c) = 0, then ¢ = 3% + 3 for some 3 € Fom. Also one can see that
2|{c € Fsn | Tri"(c) = 0} = |[{B*+ B | B € Fam \ F2}|. Now if we put 52 4 3 instead

of ¢, we have

=—1- )
5€]F22m\F2 B +ﬁ
o1 1
=l Y TG+ )
;:BEFQTI’L\FQ
o
—1- Y 01+ )

0+1=v€Fym \F2

=1 Y T+ )

d€Fym \Fo

- Y T+ )

a
vy=a"16€a"1Fom\a—1F; v

——1- Y AT +)

’yEa*ngm \a*ng

—-1- Y AT+

"{Ga_l/QFQm \a_1/2F2

—-1- Y AT+ ) +2

’*/Ga_l/QIFQm

=1- Kp(a). (2.5)

2.1.1 The case where b=0

When b = 0, félo) becomes a monomial function which has been already considered by
Dillon [7] in 1974. The following theorem has been proved by Dillon in [7,8] using the

results from coding theory.

Theorem 2.6. (7] Suppose that a € F3... The function fé}o) defined on Fan by fé}o) =
Tri(ax®" 1), is bent if and only if K,,(a) = 0 where K,, is the Kloosterman sum on

Fom.

Proof. see the proof of the next theorem or the proof in [7],8] ]
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In 2008, Leander [17] has given another proof which is different than proof of Dillon
and gives more information. However there was a small error in his proof, but then
Charpin and Gong [5] corrected that error. Moreover they have given characterization

of bentness of fé’rg for any r such that ged(r,2™ + 1) = 1.

Theorem 2.7. [5] Let a € F3,. and r be an integer such that ged(r,2™ + 1) = 1. The
function f defined on Faon by f(O = Tr(ax™®"~Y), is bent if and only if K,,(a) =0

where K, is the Kloosterman sum on Fom.

Proof. Let U = {x € F5, | 2*"*! = 1}. By Lemma 2.2} we know Vz € Fj,, Ju e U
and Jy € F3,. such that z = uy.

F 0 = S0 (@) + Trea)) = S x(Tri(aa®" V) + Tri(ca)

zE€Fon zE€Fon

=1+ Z X(Tri(az™@" D) + Tr?(cx))

=130 D (T (@) 4 T (cuy)

2m—+1

. mo__ _
Since u =1, we have u?" ~! = u~2. Then

@ =143 ST X(Tri(au) + Try(cuy))

uelU yGIF;m
=1+ Z X(Trt(au™") Z X((Tr} (cuy))
uelU yEFsm

When ¢ = 0, we have

LS 0) = 14 3 x(Tri(au)) ST X (T (0))

ueU yEFsm,

=14+2" - ZX (Tri(au™2"))

uelU
Since ged(—2,2™ + 1) = 1 and gcd(r,2™ + 1) = 1, the mapping u — u™?" is a permu-

tation on U. Then we have

féfgW(O) =1+ ZX (Tr} (au)

uelU

By Lemma we know Y x(Tr}(au)) =1 — Ky (a). Then we have

FOT0) =14 27" = 1D)(1 = Kpn(a)) = 2"(1 = Kpn(a)) + Kpn(a)

16



If £ is bent then f7)" (0) = +2m. If it is 2™, then K, (a) = 0. If it is —2™,

then K,,(a) = 22::

which is not an integer. Therefore, fyg(O) = 2™ if and only if
K,,(a) = 0. Now we will study the case where ¢ # 0 i.e. ¢ € F3,

When ¢ € F;,., we have

£ (@ =1+ Y x(@rian ) S x(Tri(cuy))

uelU yE]FSm
=14 S rrta ) (3 (@) 1)
uelU yEFom
From Lemma [I.3] we know
n 0 if S € FQm
> x((Tri(sy)) = _
ye]F2m 2m lf S E FQm

In our case, we have

Z x((Tr? (cuy)) = 0 if cugFom & (cu)* ' #1 & u?# 2"~

yEFgm 2™ if cu € Fom & (cu)? =1 u?=c""1!
If we use this information, we have

M =1+ Zx<Tr?<au—2’">>( S (T (euy)) — 1)

uelU

=14+2" Z X(Tr(au™2")) — Z x(Trt(au™?")

ue% uelU
w2=c2™-1

'yerm

Note that there is just one element in U such that u? = ¢*"~!. Then we have

£ (@) = 1+ 2mX(Trf (ac ")) = 3 X(Tr (au ™)

uelU

By the same arguement above we can replace u~2" by u.

£O0 (¢) = 1 27\ (T (ac " =0)) = S (T (aw)

uelU

Again by Lemma [2.5] we have

if féfg is bent, then we have
+2™ = 2"\ (Tr(ac™" " "V)) + K,,(a)

This equality is satisfied if and only if K,,(a) = 0 since we have | K,,(a)| < 2™ according
to Theorem [L.11] O

17



2.1.2 The case where b # 0 and m is odd

In this subsection we will give the characterization of bentness of the set <&, through
the use of the support of fyb) € ,. From now on, m is odd. First we will construct

the support of fyb) € S,

Lemma 2.8. Let m be an odd integer and U = {x € T, | 22"t = 1} Let r be an
integer such that ged(r,2™ + 1) = 1. Let a € F},. and b € F};. Let f be a Boolean
function in the set of &,. We have the following support structure of fmb,

supp(f, U uF5m,  with Sep={uelU| fyb) (u)=1} (2.6)

uESy p
Proof. By Lemma [2.2| we know Vz € F5,, Ju € U and Jy € F3,. such that x = uy.
Also we know that by Lemma [2.1] gcd(3,2™ — 1) = 1 and ged(3,2™ + 1) # 1. Then

we have

Tr (a(uy) @) + Tr(b(uy) =)
= Trj(au®" 1) + Tr (b(uy) >~
Ty

Now we know that f,, ) » only depends on the set U. Moreover f » 1s constant on each
coset of F},.. For some s € U, if favb(s) =1, then fa’b(z) =1 for all z € sF;,.. Hence

we have the result. OJ

Now we can say that, according to Theorem , the set of functions fyb) €S, is

in the PS~ class when m is odd. Moreover we can state the following proposition.

Proposition 2.9. Let n = 2m, m be an odd integer and r be an integer such that
ged(r,2™ +1) = 1. Let Sup = { u e U | férb)(u) =1 }. Then the Boolean function
férb) € S, is bent if and only if wt(fa(L;,)|U) = 2m=1 where wt(f) is the cardinality of its

support i.e. ‘Sa,b| =om-1
Proof. The result follows from Lemma [2.8 and Theorem [.§ O

Now we will restate the previous proposition after we introduce the following sum

)= X(f7 W), V(a,b) € F x . (2.7)

uelU

18



Corollary 2.10. Let n = 2m, m be an odd integer. Then the Boolean function
f(rb) € S, is bent if and only if A(a,b) = 1.

a,

Proof. Let A={uecU | fyb)(u) =1} and B={ue U | férb)(u) = 0}. Then we have

AMa,b) = Y x(fw) = 1->"1

uelU ueB uceA
= |B[ = [A] = |[U| - |A] = |A]

— 2"+ 1—2/A] = 2" + 1 — 2wt(f)|U) (2.8)

By Proposition , fyb) is bent if and only if wt(férb)|U) =2m"1 je A(a,b)=1 [

Now we are going to introduce new sums which will help us to calculate A(a,b) in
terms of Kloosterman sums and cubic sums. Let V be the set {u® | w € U} and ¢ be
a primitive element of the cyclic group U = {z € F3. | 2*" 1 = 1}. Define the sums

Si(a) =Y x(Tr}(a¢'w)), i€{0,1,2}, Va €T, (2.9)
veV

Now we need the following two lemmas to show relations between S;(a) and Kloost-

erman and cubic sums.

Lemma 2.11. [6] Let n = 2m, m be an odd integer and a € F5... We have

2 Z xX(Tr(ac® + ac)) = 20, (a,a) — K,,(a).
ceFym
Tri"(1/c)=1

To prove this lemma, first we need the following lemma.

Lemma 2.12. The cubic equation 23 + x = a where a € Fon, a # 0 has a unique

solution © € Fom if and only if Tr7*(1/a) # Tri*(1).

Proof. Set x = 1/y. Then the equation becomes ay® +y*>+1=10. If weset y = 2z + 1,
then the equation becomes az® + (a +1)2* 4+ az+ 2z =0 or 2° + bz* + z + 1 = 0 where
b= (a+1)/a. So equation (x) 2*> + x + a = 0 has a unique solution if and only if
equation (xx) 23 +bz?+ 2+ 1 = 0 has. If u is a solution of (xx), then v =1/(u+1) or
u = (v+1) /v is a solution of (). Suppose u is a solution of (*x*), then u+bu*+u+1 = 0

ie. u*+bud+u?4+u=0. Then
Tri(ut + bu? 4+ u? +u) = Tr7(0) = 0 = Tr™(u?) + Tr7(bu®) + Tr(u?) + Tri (u)
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Since Tr7(u') = Tri(u?), we have Tr(bu?) = Tr"(u). Also bu® + b*u? + bu+ b =0
implies Tr"(bu®) = Tri*(b). Therefore we have Tr{*(u) = Tri*(b). Since u is a root of

(**)7

1
Wbt rut+rl=0 — bzut +u
u
Then
1 1
B z4+1=0 = z3+%z2+uz2+1+u+ s+2=0
u u

5 u+1 1 5 u+1 I s u+1 Ly,

= (et ) ru(E e ) = (e ) =0

If 22+%l24 1 =0 has no solution, then u is unique solution of (xx) i.e. the

following equation has no solution by setting z = w(*%5) and then w = z
u+1\° (et 1\° 1 I ut
z z=- = ——.
u? u? u u(u+ 1)2

By using the similar arguement as in the proof of Lemma [2.4] we say that there is no

solution if and only if

u4 u3
Trit (22 + 2) # Tr} <—> ie. Try (W) =1

u(u +1)2 u+1
Note that
ud ud N u N u?
= o u
(u+1)2  14wu? u+1l  (u+1)?
Then

T v =Tr"(u) +Tr" E) e v
T\ Trez) T LT EANOEE

Tr] <m) =Tr"(u) =Tr"(b).

Hence if (xx) has a unique solution, then Tr{*(b) = 1 = Tr"(a/(a + 1)) = Tr{*(1) +
Tr*(1/a) ie. Tri*(1/a) # Tri*(1). If (%) has three distinct roots, then Tr{*(1/a) =
Tr*(1). Now we must show that if Tr7(1/a) # Tr7(1), then (x) has a unique
solution.

Let A;, (i = 0,1,3) be the set of a € F,. such that the equation z3 + x = a has i
solutions in Fom. Let X;, (i = 1,3) be the corresponding solution sets. It is obvious
that | X3| = 3| 43| and |X;| = |A;]. Since 0 and 1 are the only solutions of z3 + x = 0,
all elements = € Fom \ Fy must correspond to some nonezero a and X; U X3 = Fom \ Fy.

Let T;, (i = 0,1) be the set of z € Fom \ Fy such that Tr((x + 1)/z) = 1, ie.
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Tri*(1/x) + Tri*(1) = i. We already know that X; C T, X3 C Ty, Ay C T and
Az C Ty U{1}. Note that we have X; U X3 = T7 UTj due to the construction of those
sets. Therefore we have X; = T} and X3 = T, Since |A;| = |X;| = |11, we have
Ay = X, = Ty. Hence if Tri*(1/a) # Tr™(1), then 23 + 2 = a has a unique solution
in Fom. O

Now we can prove Lemma [2.11}

Proof of Lemma . Since m is odd, Tr]*(1) = 1. By Lemma [2.12) we know that
r3+x =1y, y# 0 has a unique solution in Fym if and only if Tr7*(1/y) = 0. Note that

1 1 1 1
T ——— ) =T ) =1
" (m3+x) " <x2+1+x+1+x> r(1/z)

Therefore we have

{2+ x| 2 €T, Tr"(1/z) =0} = {y € Fin | Tr7"(1/y) = 0}
Then for any a € [F5,, we have

Z x(Tri(a(z® + 2))) = Z X (T (ay)) (2.10)

IEGFQm yngm
Tri*(1/xz)=0 Tri™(1/y)=0

By using equations [2.4) and [2.5] we have
Kon(a)

Z X (T (ay)) = 5 (2.11)
yEFam
Trm(1/y)=0
If we combine and we have
K, (a
Z x(Tr(a(z® + 2))) = 2( )
xE€Fym
Trm(1/2)=0
Then
Cnlw) = 3 x(Tr(a® +2) = 22D o S (T a(® + 2)))
J 2 1
z€Fym z€Fym
Tri*(1/z)=1
Hence

2C(a,a) — Ky(a) =2 Z X(Tr}“(a(x?’ + a:)))
/1
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Lemma 2.13. Let a € . and m be odd. Set U = {x € F5, | "1 = 1}. Then we

have

ZX Tri(au®)) =1 — Ky(a) +2C,,(a, a).

uelU

Proof. Using the equality 777" (au®) = au® + (au®)*" and the transitivity rule of trace

function, we have
Tri(au?) = Tri*(Trl (au®)) = Tri* (au® + (au®)*").

. m _ m
Since u?" = u~! and a®*" = a, we have

Zx(Trqf(au ZX Tri(a(u® +u™?)).

uelU uelU
Now by lemmawe can represent every u+u~! by ¢! such that ¢ € F,, and Tr(c) =
1. Now note that (¢7!)3 represents (u +u™ ')} = v +u3 +u+u?t =u?+u3 + ¢!
which means ¢ + ¢t = v® + u™3. Then we have

Zx(Tr{‘(au ) =1+ Z (T (a(u?® +u™?))

uelU ueU\{1}

=142 Z X(Tr(a(c™® + 1))
ceFom
Tri*(c)=1
In the last equality, we use each ¢! twice because when we take sum on each v € U\ {1},
we get same (u® + u™?) two times. Now if we use the fact that the map ¢+ ¢! is a

permutation on Fom, we have

Z X(Tri(au®)) =1+ 2 Z (T (ac® + ac))

uelU c€Fom

Tri*(1/c)=1

Now by lemma [2.11] we have

2 Z X(Tr(ac® + ac)) = 2C,(a,a) — K,,(a).

c€Fgm
Tri*(1/c)=1

Hence we have

Zx(TT?(aug)) =1—-K,(a)+2C,(a,a).
uelU

O

In the following lemma we are going to express S;(a) in terms of Kloosterman sums

and cubic sums.
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Lemma 2.14. Let a € F5,. and m be an odd integer. We have

1 — K, (a) +2C,(a, a) 1 — K, (a) — Cpla,a)

S()(CL) = 3 s Sl(a) = SQ(U,) = 3

Proof. Since there are 3 elements u € U for each v € V such that u® = v (i.e. the map

u— u® is 3 to 1 map on U), we have

ZXTH av) ZXTH au®))

veV uEU

Then by Lemma [2.13 we have

1 —Kp(a)+2C,(a,a)

S()(CL) = 3

(2.12)

Now since {¢u? |ue U} ={¢ w3 |ue U} ={C*"v*" |v=1u?, u e U}, we have

= X(Tri(acv)) = Y x(Tri(ac?" v*"))

veV veV
Now note that (2”2 € V since 3 divides 2 — 2 by Lemma [2.1} then v — ¢?"~20?" =
¢(¥"~2p~! is a permutation on V which gives us
=§:xuvﬂwfﬂﬁﬁ>=§jx(Tﬁ@M%8mﬂﬁm»)=a$mo (2.13)
veV veV

We can write

m

o 2
U={70<3i+j<2", 0<i<

0<j<2} (2.14)

which means U = V UV U (?V, then we have

ST (aw) = 37 3T X(Tr(a¢)) = Sola) + Si(a) + Sa(a)

ueU 7=0 veV

Now by Lemma [2.5] we have

So(a) + Si(a) + Sa(a ZxTrl (au)) =1 — K,,(a)

uelU

Hence by equation [2.12] and [2.13] above, we have

1 — Kp(a) — Cp(a,a)

Sl((l) = SQ(CL) = 3
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Proposition 2.15. Let a € F3,.. and m be an odd integer. Let 3 be a primitive element

of Fy. Then We have

K, (a) +4C(a,a) — 1

et = ; A ) = A, ) = 200 2

3

Proof. First we will find the relation between A(a,b) and S;(a), then by Lemma [2.14]

the result will follow.

b) =S x(fw) = 3" x(Tri(au®" V) + Tr3(bu™s "))

uelU uelU

= DX (T a0 4 Tr (b D)

uelU

= ST ) + T )

uelU

Above we haved used two facts. First, ged(3,2™—1) = 1 which follows from Lemma .
Second, since ged(2™ —1,2™ +1) = 1, the mapping u — u*"~1 is a permutation on U.

Now if we use the decomposition ([2.14)), Va € F,., Vb € F; we have

Z Z X(Tri(a(¢v)) + Tri(b(¢7v) e

))

7=0 veV
= ZX Tri( bC] ZX (Try (ag?™")) (2.15)
Jj=0 veV
= ZX Tr( N (T (aciv) (2.16)
veV

= Zx (Tr2(b¢+*57)) S;(a)

= ZX(TTf(

In we used the fact that v has order (2™ +1)/3. In[2.16)and [2.17 we used the fact
that ged(r,2™ 4+ 1) = 1. Now we will find the value Trl(bCJ ) for each j. Since ¢

) S;(a) (2.17)

is a primitive element of U, C 5~ has order 3 in Fa. which means C 57 is a primitive
element of Fy. Note that Tr#(1) = Tr?(0) = 0, which means other two elements in F,
has trace value 1 i.e. for any b € Fy \ Fy, Tr}(b) = 1. Moreover for any b € IF4 \ Fg, we

have Tr2(b( s )+Tr%(b<’22ms+l) = 1 since we have either bC 3 €T, or ng ey,

in other words one of them is equal to 1. Also recall that by Lemma [2.14] we know
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S1(a) = Ss(a). Hence we have

2Mm 4

Aa, 1) = x(Tri(1))Sola) + X (Tr1(¢ 7)) Sila) + x(Tri(¢
= So(a) — 25, (a)

2M 41
2 3

) S2(a)

+1

Aa. B) = X(Tr3(8)) So(a) + x(Tr3(5¢50)) S1(a) + x(Tr3(5¢3*5)) Sala)

= So(a)
Aa, B%) = x(Tr2(82)) Sola) + x(Tri(B*¢75 7)) Si(a) + x (Tr2(82C**5)) Sy(a)
= So((l)

The following property of cubic sums is useful.
Lemma 2.16. Let m be odd and a € F5.. Then Cy,(a,a) = Cy,(1,a?/3).

Proof. By Lemma , the mapping x — 23 is a permutation on Fym which means

every element a € Fom can be written as a = ¢® s.t. ¢ € Fam. Then we have

Cm(a,a) = Z x(Tri"(az® + az)) = Z X (T ((cz)’ + ax))

zEFym z€Fym

Cula.a) = Y x(Tri'((c2)’ +a**(ex))) = Y x(Tr{"(a* + o)

IIJGFQWL IIJGFQWL
Cim(a,a) = Cp(1, a2/3)
O

The following two results are very useful and we will use them in order to prove
the characterization of bentness. We do not include the proofs here since they are very

long and technical.

Theorem 2.17. [4] Let m be an odd integer. For the cubic sums on Fam, we have
1. Cp(1,1) = (2)20m D72 where (2) is the Jacobi symbol.
2. If Tri*(c) = 0, then Cp,(1,¢) = 0.

8. If Tri"(c) = 1 with ¢ # 1, then Cp(1,¢) = x(Tr7(v* + 7)) (2)2m+D/2 where

2
m

c=v*+~v+1 for some vy € Fon.
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Here we have an interesting fact due to Charpin, Helleseth and Zinoviev.

Lemma 2.18. [6] Let m > 3 be an odd integer and a € F5,... Then
Kn(a)—1=0 (mod3) <= Tr"a?) =0

Now we can give the characterization of bentness of the set of the functions f » €Sy

for the case where b # 0 and m is odd.

Theorem 2.19. Let n = 2m, m be odd and m > 3. Let a € F,. and B be a primitive
element of Fy. Let r be an integer such that ged(r,2™ +1) = 1. Let f s 5’3 and fa 32
be the Boolean functions in the set §,,. Then fyl), farg and f 32 are bent if and only if
K.(a) =4.

Proof. By Lemma we know C,,(a,a) = Cp,(1,a*?) for any a € F,. where m is
odd.

(<) Suppose K,(a) = 4. Then by Lemma [2.18 we have T7(a/?) = 0. Also
Tr(a'/?) = 0 means Tr7"(a*?) = 0. Recall Theorem [2.17] it says if T77"(a*?) = 0
then C,,(1,a%*?) = 0. Also by the arguement at the beginning of the proof we have

Cn(a,a) = 0. Now by Corollary [2.10[ and Proposition [2.15, we can say that f ! férﬁ)
and fgﬂ)Q are bent if and only if (K,,(a) —1)/3 =11e. Ky(a)=4.

(=) We will show it by contrapositive. Suppose K,,(a) # 4. Then By Lemma [2.18|
we have Tr7(a'/?) = 1. Also Tr7(a'/?) = 1 means Tr7(a*?3) = 1. Again recall
Theorem .17, it says if T77"(a*?) = 1 then C,,(1,a*?) = £20"+1/2_ Also by the

arguement at the beginning of the proof we have C,,(a,a) = £2m*Y/2 Now by

Corollary [2.10]and Proposition [2.15 we can say that férg and férgz are bent if and only
if

Aa, ) = Aa, §2) = Bm(@) = 133F 9(m+8)/2

ie. Kpla)=442m+3/2

=1

Also we have the similar arguement for férl That is, f 1 is bent if and only if K,,,(a) =

4 5 2(m+5)/2  Note that by Theorem , we know Kloosterman sum K, takes integer
values in the range [—2(m+2)/2 4 1,20m+2)/2 + 1] But the values that makes f fa 2
and fyf bent are not in the range for any m > 3. Hence f fC(L 52 and fa { are not

bent if K,,(a) # 4. O
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2.1.3 The case where b # 0 and m is even

In the case where m is even, férb) is not constant on [F%,, therefore we can not express
the support of fyb) by cosets of F3,. because in the proof of Lemma , we have used
the fact that ged(3,2™—1) = 1 when m is odd. But we can give the following necessary

condition.

Theorem 2.20. Let n = 2m, m be odd and m > 2. Let a € F},, and b € F};. Let r be
an integer such that ged(r,2™ +1) = 1. Let férb) be the Boolean function in the set .
If férb) is bent, then K,,(a) = 4.

Proof. Suppose f(Tb) is bent, then we must have fyb)W(O) = 4£2™. Now we are going
to calculate f(r) (0). By Lemma , for any x € F3. we can uniquely write x = uy
where v € U and y € F5,.. Then we have

N0 = 3 (@) =1+ 3 x (£ @)

JJEFQH Z'G]F

:1+Zfo()

uelU yeFiy,

=143 S (T (aluy) @) + T (buy) 5 )

uelU yelFi,

=1+ Z X(Tri(au™@" 1)) Z X(Tr%(byL;l))

uelU yGIE‘;m
The last equality holds because of the facts that y>" ! = 1 and that u*5 = 1 since
ged(3,2™ +1) = 1. Now let C = {y* | y € F3..} and 3 € Fom \ C. Then we can
partition F3,, as F3., = C'U BC U B2C. Now if we write fgb)W(O) again, we have

férb)w(() —l—I—ZX T (au"®" V) ZZX Tri(b

uelU 7=0 ceC

)

Now note that 6 5 has order 3 which means it is in F;. Also we know c is a cube of

an element of F,.. If we use these facts, we have

ZZX Tri(b ZZX Tri(

=22 x(Tr()

7=0 ceC ceC j=0 ceC Telfy
—Z(Z ﬂ1»4>
ceC TE€Fy
2m —1
N (1) = .
2 3
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Now we have

W 2m—1 ny (T
fap (0) =1 === x(Tr{(au®" 1))
uelU
We know ged(r,2™ + 1) = 1 and ged(2™ — 1,2™ + 1) = 1, therefore the mappings

1

mo__ .
wr u” and u — u? are permutations on U. Then we have

W 2m —1 n
fan (0) =1 = == x(Tr{(au)
uelU
By Lemma [2.5] we can write it as follows
AW 2m —1
fa) () =1+ (Ko@) = 1)

3
If fgb)W(O) = 2" then K,,(a) = 4. If fgb)W(O) = —2™, then K,,(a) is not an integer

which is impossible. Hence we have the result. O

Now we are going to prove that the bentness of fyb) is equivalent to the bentness

of £,

Proposition 2.21. [24] Let n = 2m, m be odd and m > 2. Let a € F}, and b € F}.
Let r be an integer such that ged(r,2™ + 1) = 1. Let férb) and fyl) be the Boolean

functions in the set ,,. Then férb) is bent if and only if férl) is bent.

Proof. By Lemma[2.1] gcd(3,2™ — 1) = 3, then F; C Fj... Therfore for any b € F} one
can find a € ., such that a5 = b. If we use this fact, we have

2" -1

F (@) = Ty (aa" @0 4 T (b5

_ T?”? (aar(2mfl)xr(2mfl)) + TT‘% (Oé2m371 332”371 )

= ful(ax)

Now by this equality, for any ¢ € F3., we have

%0 = 3 (@) + Tri(ex)

zE€Fon

= > X (£ (ox) + Tri(cx))

Z‘E]FQn

= > X(fi@) + Tri(ca"a))

l’E]FZn
= 1" (ca™)

Above we have used the fact that the mapping = — ax is a permutation on Fon. [
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2.2  The characterization of the functions férb) €S, where r =3

In this section we are going to give the characterization of the bentness of the set of
functions f(gf? € . First, recall the set of the functions ,:
Let n = 2m be a positive integer. Let a € Fon and b € ;. Define the set of the

Boolean functions fégb) , denoted by &, on Fan as:

2" -1

Vo € Fon, f(gb)(x) = Tr?(az®?" V) + Tr2 (b)), (2.18)

a

Remark 2.22. First note that by Lemma 3 divides 2™ + 1 when m is odd.

Now recall Definition and Lemma . Unlike the other bent functions féro) where
ged(r,2™ + 1), f (30) which becomes monomial function is not a bent function since

a,

neither ged(3(2™ — 1), 2™ — 1) nor ged(3(2™ — 1), 2™ + 1) is equal to 1.

Now we can state a proposition which is similar to Proposition[2.3]as in the previous
section. Then we can restrict our study to a smaller set instead of Fy.. However, we
can not restrict our study to Fom since r = 3 is not coprime to 2™ 4 1. For that
restriction, first recall that in[2.14] we partitioned the set U = {z € Fj, | 22"*! = 1}
as U =V UCVUCV where V = {u? | u € U} and ( is a generator of the cyclic group
U. Then by Lemma we can represent any a € F3, uniquely as a = a'*v where

v eV and o € F,..

Proposition 2.23. Let fégb) be a Boolean function in the set S, defined as in (2.18).

Let ¢ be a generator of the cyclic group U = {x € F. | 2*" 1 = 1}. Then we have

{(a,b) | a € F5., b e Fy, f(‘?b) is bent } = (2.19)

a

(@ A3 D AT 0 € Fh, b €T A€ T, 0<i <2, fi?c)i , is bent} (2.20)

Proof. Let a € F5., b € F% and @ € F3,. First note that if a = o ¢'A*®"~1 and

b=b\5" for some \ € F5. and b € %, then we have for all 2 € Fan

on _q on_q

(@) = Tri (@ CNCT 020y L (VA2 5) = 117 ()

a,

Since the mapping x — Az is a permutation on Fo. we have that fé?’b) is bent if and

only if fi,gg - Now it is clear that the set [2.19| already includes the set [2.20, Now we
will show that the set includes the set 2.19] Let a € F5., b € F;. By Lemma [2.2]
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we can say that Ja' € F%,, and Ju € U such that a = a'u, moreover a = a'(*v for some
0<i<2andwv € V. Suppose ¢ is a generator of F3,, then 2”1 is a generator of U.
Also we know v = u? for some u € U. Suppose u = (£2"~1)* for some integer k. Then
v=ud= (§k)3(2m_1) which gives us a = a'¢*(¢%)3?" =Y. One can call €* as X\. Now
note that \*5— € F* since it has order 3. Hence we have found related a'¢* and b for

any a € F3, and b € . ]

Due to result above, from now on we will restrict our study to the bentness of fé? b

with a € F3,..

Lemma 2.24. Let a € F5,., b € F; and m be odd. Define I'(a,b) := ZueUx(fégg(u))
Then f b € S is bent if and only if ['(a,b) = 1.

Proof. See the proof of Corollary since the proof is similar. ]

Now we are going to use the sums defined in (2.9) which will help us to calculate
['(a,b) in terms of Kloosterman sums and cubic sums. Let V be the set {u® | u € U}
and ¢ be a primitive element of the cyclic group U = {z € F3. | 22" ! = 1}. Define
the sums

= Zx(TTIL(aCiv)), i€{0,1,2}, VaeF}. (2.21)
veV

In Lemma [2.14] S;(a) are already expressed in terms of Kloosterman sums and cubic

sums. In the following lemma we will express the relations between S;(a) and I'(a, b).

Lemma 2.25. Let m be odd, a € F.., 5 be a primitive element of Fy and ¢ be a
generator of the cyclic group U = {x € F4, | 22"t = 1}. Assume that m # 3
(mod 6), then for (i,7) € {0,1,2}* we have T'(al’, 37) = —S;(a) where T'(a,b) :=
S ew X1 (1)):

Proof. Since the map u — u*"~! is a permutation of U and (2" —1) = (2™ +1)(2™—1),

we have

L(a¢’, 87) == X (£, (w) =

uelU uelU
ucU

(Tm (aCtu?®" V) 1 Tr2 (B
(

>>

X (Tr}l aCiu?’) + TT%(
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By the set equality (2.14) we can partition U as follows

L(ac’, ) ZZ (Tﬁ a¢'(¢*v) )+T7”f(6j(4kv)(2m3+l))

k=0 veV

Since the set V has order 2m3+1

I(ac’, 5) ZZ( (aC*+0%) + Tr3 (6

k=0 veV

)

By hypothesis m # 3 (mod 6) and Lemma , we have ged(3, 25 ) = 1 which means

v — v? is a permutation on V. Then

T'(a’, 37) ZZ (Tr (aC*+i) + Tr3 (5 2"2“)))
k=0 veV

Since ¢?* € V, v — (v is a permutation on V. Then we have

T(a’, 37) ZZ (Tn a¢'v +Tr%<ﬁf<k<2’”s“>))

k=0 veV

2+1

Note that C =) e F;

) £ 1. Then F; = {7, i¢c*5), pic2*5)). T,
has two elements of absolute trace of value 1 and two elements of absolute trace of
value 0. Since Tr2(0) = 0, in the set {37, 3¢ (25 ), BIc2C5

of absolute trace of value 1 and one element of absolute trace of value 0. Therefore we

+1 2™

9}, there are 2 elements

have

[(ac", 37) =2 Z x(Tri(a¢'v) + 1) + Z x(Tri(a¢'v) +0)

= =23 (T (ac'n)) + Y x(Tri (')
- _ Z x(Tri(al'))

veV
= —5;(a)

]

Now we can state and prove the following theorem which describes the bent func-

tions in the family <,.

Theorem 2.26. Let m be odd, a € F3.., 5 be a primitive element of Fy and ¢ be a
generator of the cyclic group U = {x € F}, | 2"+t = 1}. Let f ot B3 be a function in
the family S, defined as in for (i,7) € {0,1,2}>.
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1. Assume m # 3 (mod 6). Then we have:
o If Tr(a'/?) = 0, then, for every (i,7) € {0,1,2}2, the function fé?ﬁf is
bent if and only if K,,(a) = 4.
o If Tr™(a'/?) =1, then:
(a) ff’ﬂ)] is not bent for any j € {0,1,2}.

(b) For everyi € {1,2}, fii?yﬂj is bent if and only if K,,(a) + Cp(a,a) = 4.

2. Assume m = 3 (mod 6). Then figg,b is not bent for any i € {0,1,2}, a € Fi,,
and b € F.

Proof.

1. Assume m # 3 (mod 6).

o If Tr7(a'/?) = 0, then we have T (a?/?) = 0 since Tr7"(a*?3) = Tr*(a'/?).

If we use 777 (a??) = 0, by lemmas and [2.16, we have C,,(a,a) = 0.
Now recall the Lemma and use the equality C,(a,a) = 0, then we have

K(a) —1
—Si(q) = =~
() = =22
Therefore, due to Lemma
o K, (a)—1
(ot ) = - K=

f Amla=l —

Hence by Lemma [2.24] fégz g 18 bent if and only i

e If Tr7"(a'/3) = 1, then by Lemma and Lemma [2.17, we have C,,(a,a) =
i(z)g(mﬂ)/?_

(a) Let j € {0,1,2}. By Lemma we have I'(a, 87) = —Sp(a), also by
Lemma 2.14] we have

_ 1= Kp(a)+2C,,(a,a)

S()(CL) 3 3

therefore we obtain that
, K, (a) = 1+ (£)20m+3)/2
[(a,p’) = (@) 3 () .

Now by Lemma [2.24] ff/b)’j is bent if and only if

 Kp(a) — 14 (2)20m+3)/2
| = I(q, /) = Kml@) 3(m)
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ie. Kp(a) =4+ (2)20m"3)/2 From Theorem [1.11} we know that the

2
Kloosterman sums take values in the range [—2(Mm+2)/2 4.1 20m+2)/2 | 1]

which tells us that K,,(a) = 4 £ (2)2(m+3)/2 is not possible for m > 3.

2
(b) As in the previous case we have

Kp(a) =14 Cp(a,a)
3

T(al', p7) =
for every i € {1,2} and j € {0,1,2}. Hence by Lemma [2.24] we have

that f{ig)ﬁ] is bent if and only if K,,(a) + Cy,(a,a) = 4.

2. Assume m = 3 (mod 6). From Lemma [2.24] we know that fig) , is bent if and

only if T'(al’,b) = 1 in other words ZueUx(féz) (u)) = 1. Now we will try

ib
(3)

to calculate the sum 37 i, X(f,ci,(u)). Note that we already know 9 divides

a

2™ 4+ 1 by our hypothesis and proof of Lemma [2.1 Then

"ty m_q1y, 271
ZX(fizz’b(U» = Zx(Trl (ag u3(2 1)) + TT%(buS(Q 1).2 ))
uelU wel
Since ged(2m —1,2™+1) = 1, the mapping 2 — 22"~ is a permutation on U and

the mapping « — 2% is 3-to-1 on U, then we have that the mapping z — 233"~

is a 3-to-1 from U to V. Using that fact, we obtain

2mM 4

°))

S X () = 3D X(Tri(a™v) + Tri(by

uelU veV

This sum is not equal to 1 since it is divisible by 3, hence féz) , 1S not bent.
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Hyper-bent Boolean Functions

As we have noted earlier, bent functions have the maximal distance to all the coordinate
functions of affine monomials in the form 77} (az) + € where € € Fy. The idea behind
this property of bent functions comes from S-Boxes, since S-Boxes are designed so that
they can not be approximated by affine monomials. In 1999, Gong and Golomb have
introduced a new criteria for S-Boxes in [12] . They said that S-Boxes should not be
approximated also by bijective monomials. For that reason they have introduced a
new tool called extended Walsh-Hadamard transform. Then, in [28] Youssef and Gong
have shown that those kind of functions which have maximal distance to all coordinate
functions of bijective monomials in the form 77} (ax?)+e where € € Fy ged(j,2"—1) = 1

exist and they called those functions as hyper-bent.

Definition 3.1. A Boolean function f : Fon — 5 is said to be hyper-bent if and
only if the FExtended Walsh-Hadamard transform of f
Y ai) =" x(Tri(az’) + f(x)) = +2"
zE€Fon

for all a € Fon and for all ¢ such that ged(s,2" — 1) = 1.

We can give another useful and more simple characterization of hyper-bent functions
by using relation between Walsh-Hadamard transform and extended Walsh Hadamard-

transform.

Proposition 3.2. A Boolean function f : Fon — Fy is hyper-bent if and only if the
function f(x°) is bent for all i such that ged(i,2"/? — 1) = 1.
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Proof. Extended Walsh-Hadamard transform of f is

M) = x(Tri(az’) + f(x))

z€Fon

= Z x(Tri(az”) + f(z')) where ij =1 (mod 2" —1) (3.1)

y=x'€Fan

= > x(Tri(az) + f(a"))

z€Fan

= Walsh-Hadamard transform of f(x') where ij =1 (mod 2" —1) (3.2)

Equality holds since x + 27 is a permutation on Fy.. Now f is hyper-bent if
and only if fW(a,j) = £2"/2 for all j, gcd(j,2" — 1) = 1 i.e. f(2%) is bent for all i,
ged(3,2" — 1) = 1. O

Remark 3.3. Note that if a function f(z) in the form is bent then f(z%) is also
bent for ¢ coprime to 2" — 1. Therefore, we can say that bent functions we have studied
in Chapter 2 are also hyper-bent by the previous proposition. One can also say directly

that bent functions studied in Chapter 2 are hyper-bent by Proposition (3.5

In the previous chapter we have studied the Boolean bent functions whose expres-
sion is the sum of at most two trace terms. In this chapter we are going to study
hyper-bent Boolean functions with multiple trace terms which have been introduced
by Mesnager in [22]. Let n = 2m and m be an odd integer. Define, denoted by i,
the set of Boolean functions f;, over Fy» which have the polynomial forms as follows:

fol@) == 3 Tri(a,a" @ D) + Tr3(ba™s ) (3.3)
reR
where F is the set of representatives of the cyclotomic cosets modulo 2" — 1 with each

coset having the full size n, R C E, b € F, and a, € Fom for all » € R.

Proposition 3.4. (Youssef and Gong [28]) Let n = 2m be an even integer and o be
a primitive element of Fan. Let f be a boolean function on Fan such that f(0) =0 and
f(@®"Tz) = f(x) for every x € Fou. Then fis hyper-bent if and only if Hamming
weight of the vector (f(l), fla), f(a®),..., f(an)> equals 2™

Proof. See |28, Theorem 1] O
Now we will modify and restate Propositon [3.4]
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Proposition 3.5. Let n = 2m be an even integer and « be a primitive element of Fon.
Let f be a boolean function on Fan such that f(0) = 0 and f(a*"t1x) = f(x) for every
x € Fon. Let ¢ be a generator of the cyclic group U = {x € 3, | 2*" ™ = 1}. Then f
is a hyper-bent function if and only if |{i|f(¢") =1, 0 <i<2m} =2m"1,

Proof. Recall the Proposition [3.4], f is hyper-bent if and only if
{ilfe)=1,0<i<2m}=2m"",

Note that a?”*! is a generator of F3,.. Due to hypothesis, for any r € N, we have
f(®"Hrx) = f((@®t)1x)  Va € Fau. Therefore f is constant on F, (we can
also say it is constant on cosets of F5,.). By Lemma we know that each element
x € Fon can be written uniquely as z = uy where u € U and y € Fom, then a = uy
for some u € U and y € Fom. We see that f(a') = f((uy)") = f(u'). Now it is enough
to show that u is a generator of U. Suppose u® = 1 for some s € N, then we have
a*®" ) = (uy)*@" 1) = y* = 1 which means s = 2™ + 1 since « is a generator of [F},.

Hence we have
{ilfla)=10<i<2} = |[{i|f(u)=10<i<2m}]
One can put any other generator instead of u, then result follows. O

Proposition 3.6. Let f, € S, and U = {x € F3, | 2" = 1}. Then f, is hyper-bent
if and only if ACf) = 1 where A(fy) = e X((1)):

Proof. We will make use of Proposition 3.5 Let us show f; satisfies the assumptions.
It is obvious that f,(0) = 0. We see that 3 divides 2™ + 1 since we have m is odd
and Lemma Then all exponents of x in are multiple of 2™ — 1 which means
fol@® Tz) = fy(x), Yo € Fan. Now by Propositon [3.5] f; is hyper-bent if and only if
the cardinality of the support of f; restricted to U is 2™ — 1. Now note that

Alfe) =D x(fpw) =D (1) =D (1) =|T| =8| = (|U] - |5]) - |9|

uelU teT ses
A(fy) = |U| =2|S| =2" +1-2|5]

where ' = {u € U | fy(u) =0} and S = {u € U | f,(u) = 1}. By the arguement above
we see that f;, is hyper-bent if and only if A(f,) = 1. ]
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3.1 The case where b=0

In this section we will study the characterization of the hyper-bent functions of &, in
the case where b = 0 and m is any integer. This characterization was presented by
Charpin and Gong in [5] in terms of Dickson polynomials. But before we study the

characterization, we need the following definition and proposition.

Definition 3.7. A Dickson polynomial (of the first kind) is defined by

r/2

D (z)=Y (T N Z) 2 =23, (3.4)

e r — 1
=0

Remark 3.8. Dickson polynomials D, € Fy[z| can also be recursively defined by
Diio(z) = 2Diy1(x) + Di(x) where Dy(z) =0 and Di(z) = =. (3.5)
Proposition 3.9. [18] The Dickson polynomials defined by satisfy

1. deg(D;) =1,

3. Di(x+zx7 ) =a"+ 27,
for any positive integers i, j.

A comprehensive reference about Dickson polynomials is the book [18] by Lidl,

Mullen and Turnwald.

Theorem 3.10. [5] Let n = 2m and E' be a set of representatives of the cyclotomic
cosets modulo 2™ + 1 that each class has the full size n. Let f and g be the functions
defined, respectively, on Fon and Fom by

F@) = ST (@@ D) and gla) = 3 Tr(a, Dy (x))

reR reR

where a, € Fom, R C E'. Then f is hyper-bent if and only if

> XTI + g(x) = 2" = 2uwi(g).

LIJEFQWL
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Proof. Let ¢ be a generator of the cyclic group U = {x € F}, | 22"*! = 1}. Re-
call Proposition [3.5 it is clear that f satisfies the assumptions that f(0) = 0 and
f(a®"Tlz) = f(z) for every x € Fon and for some primitive element a of Fon. Then f

is hyper-bent if and only if
N=[{i|f(")=10<i<2m}|=2m""
By transitivity property of trace function we have

FC) = Tri(a,¢m "0y = T (T (a,())

reE’ rek’
_ Z TT';n (aT<72ir + (aTCfQir>2m)
reE’

. mo__ m
Since a?" 1 =1 and ¢?"*! = 1, we have
r )

f(Cz) — Z TT?lTL<ar(C_2iT + CQir))‘
reE’

That means f is hyper-bent if and only if

N={il Y Tri(a (" +¢7)=1,0<i<2m} =2"""

rcE'
Above we replaced ¢? by ¢ since the mapping ¢ — (2 is a permutation on U. Now note

that if we use Proposition |3.9, we have
¢+ ¢ = Dip(C+ (T = D¢+ ¢
also by Lemma we can uniquely represent u + u~! for Vu € U by ¢ € Fom such
that Tr]"(1/¢) = 1. Since ( is a generator of U, we can say
{¢+¢"0<i<2m} ={c€Fm | Tr{"(1/c) = 1}

Now remember g(z) and that there are two ¢* + ¢~ when we go through all i’s. Then

we have

N={i| Y Tr"(a,D,(¢'+ (7)) =1, 0<i < 2"}
reE’

N=2|{c€Fmm |g(c)=1and Tr*(1/c) = 1}|.
Now let wt(g) be the weight of g and denote the function ¢ — Tr*(1/c) by h. The

following is a clear fact that we have

> X(f(@) = ([Fan| = wt(f)) — wt(f) = 2" = 2wt(f). (3.6)

zE€Fom
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Then using that fact, we also have
S \(h(e) + g(x)) = 27 — 2ut(h + g).
zE€Fym
Then
wt(h + g) = wt(h) + wt(g) — 2wt(hg) = 2™ + wt(g) — 2wt(hg)

Last equality holds because the inverse function is a permutation, h(x) = Tr{*(1/z)
and so half of the elements takes value 1 i.e. wt(h) = 2™~ Now see that h(z)g(z) =1

if and only if h(z) = g(x) = 1 which gives us
wt(hg) = |{ ¢ € Fom | g(c) = 1 and Tr{*(1/c) = 1}| = N/2.
If we put everything together, we have

Z X(h(z) +g(x)) =2" = 2wt(h+ g) = 2™ — 2(2’“_1 + wt(g) — N)

z€Fom

> x(h(x) + g(x)) = 2N — 2wt(g)

zE€Fom

We said above that f is hyper-bent if and only if N = 2™!, therefore we have the
result that f is hyper-bent if and only if

> x((@) + g(2)) = 27 — 2wt(g)

z€Fym

3.2 The case where b € [}

From now on we will study the characterization of hyper-bentness of the set of the
functions <, when b # 0. We will construct characterization of hyper-bentness of f,
separately for each element of [}

Let 8 be a primitive element of F; and « be a primitive element of Fon such that
8 = o*5h. Tt is clear that a2™~! has order 2 + 1 which means ¢ =a?’"lisa
2m 1

generator of the cyclic group U = {x € F3, | = = 1}. Now recall equation (2.14)

which gives us U =V UV UC?V where V = {u? | u € U}. Then we define the sums

Si=> x(fo(¢'v)), Vi€0,1,2 (3.7)

veV
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By using the decomposition of U =V UV U %V, we have

> 5= 3 x(how). (35)

uelU

Proposition 3.11. Set A(fy) := >, X(fo(w)). We have the followings:

1. Sl:: Sb;
A(fs) = M fg2) = =50,
(fl) 0 - 251;
Proof. 1. Since Tri(x) = Tr(x?), we have Tri(x) = Tr(x®") by applying m
times. Then we have

:ZTT?(aTxT(Qm_I ZTTl a,z" " _1) ZTTl I e 1))

reR reR reR
foz) = fo(z*")

since a, € Fom, Vr € R. If we use the equality fo(z) = fo(z*"), we have

S1 :ZX(fo " ZX fo(G (¢ 7))

veV veV
By Lemma 2.1] 3 divides 2™ 41 i.e. 3 divides 2 — 2 that means ¢*"~2 is a cube

of U. So the mapping v — (2" ~20%" is a permutation of V. Hence we have

S1 =Y x(fo(C(C" ™) =D x(fo(¢Pv)

veV veV

Now we are going to prove (2) & (3) together.

For all ¢ € 4, define the sum

ZA fo)x(T7?(be)).

belFy

Now we will show an equality that will help us.

ZT x(Tr3(be)) Z ZA (f2)x(Tr3(de))x(Tr?(be))

cEF, celFy delFy
= > Afa) D X(Tri(e(b+d)))
delFy c€lfy
= > A(fa) D X(Tri(e(b+d) + > Afa) D x(Tr5(0))
ddE;z]éF 5; celfy ddGZIF l;l ceFy

=0+ ) A(fa)4=14A(f)

delFy
d=b
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Hence we have the equality

Z T(c)x(Tr?(bc)) (3.9)

cEIF4

Now we will show another equality,

= AIX(TrEbe) = Y Y x(fo(w))x(Tri(be))

beF, beF, uelU

=S S E et )+ Tr%wu”f))xm%(bc))
belF, uelU reR

= ZZ <ZT7‘1 a,u ))>X(Trf(b(c+u2n3l)))
beF4 uelU N reR

= > S X (o) x (T (ble + u*5))
beF4 uclU

= 3" X(fo(w) Y x(Tr3b(e +uT)))
uelU belFy

Now note that
Z X (T3 (b(c + uzn?%l))) —0ifu" 3 #cand 4 otherwise. (3.10)

belFy

Then T(0) = 0 since u" 3 # 0 Yu € U. Now we will check T'(¢) when ¢ # 0.
Since 3 € F, is primitive element, assume ¢ = 3%, i € {0,1,2}. At the beginning
of this section we defined that 6 = o5 and ¢ = o®"~! for some primitive
element o of Fon. So ¢ = C 5 Recall Equatlon therefore it is enough to
calculate T'(c) = T(S") only for uTl = pBi = C . Then we have

T =4 > x(fo(w).

Now note that

2" —1 2™ 1 2™ 41

w3 =73 & (u2'”—1g—l) 5 =1 (u_2 _i) ceVeule C’V

m
Because u?" !

= 1 and only V has elements whose orders are 2m3+1, the last

equivalence holds. Next, we are going to show
u?elVeuelV

Now the fact we need is that the mapping = — 22" is permutation on ¢V

2m41

It holds for two reasons. First one is that 2™~! is coprime to 5= Wwhich is
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the order of ¢’V and second one is that for any (v € ¢V, (C)¥" ' =
CHCIE™ T D2 € 'V since from Lemma 2m=1 — 1 =0 (mod 3) for m
odd. Hence we have the relation

2" -1 2™ 1

w3 =(¢"3 euclV
Now we can write

TR =4 > x(fo(w)=4> x(fo(¢'v)) = 485;.

uelU veV

If we put the results of T(c), ¢ € Fy, into Equality [3.9) we have

2

M) =3 ST (03)

1=0

In detail, we have
A(f1) = Sox(Tr3 (1)) + Six(Tri(B)) + Sax(Tri(6%)),

A(fp) = Sox(Tri(B)) + Six(Tri(5%) + Sax(Tri(1)),
A(fg2) = Sox(Tri(5) + Six(Tri(1)) + Sax(Tri(B)),

Now by the fact that Tr?(1) = 0 and Tri(8) = Tri(8?) = 1 and by part (1), we

have the results.

Now we can state the following Proposition.

Proposition 3.12. Let n = 2m, m be an odd integer and b € Fy. Let 5 be a primitive
element of Fy and set U = {x € F3, | 2*" ' =1} and V = {v € U | v® = 1}. Let
fo € S be a function as (3.3). Then

1. fg is hyper-bent if and only if 3 .\, x(fo(v)) = —1.
2. fg 1is hyper-bent if and only if fg= is hyper-bent.

3. fu is hyper-bent if and only if 23 ., x(fo(v)) = > ,co X(fo(uw)) = 1.

Proof. 1. By Proposition 3.6, fs is hyper-bent if and only if A(fs) = 1 and also
we know A(fz) = —Sp by Proposition [3.11)(1). Therefore fs is hyper-bent if and
only if Sy = —1
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2. It follows by Proposition [3.11f(2).

3. By Equation [.8 and Proposition [3.11](3), we have

25 = 3" x(fo(w))

uelU

A(f1) = So — 251 =28, — ZX(fO(U)) = QZX(fO(U)) - ZX(fo(U))

uelU veV uelU

3.2.1 The case where b is a primitive element of [}

Now we will characterize hyper-bent function fs in terms of Dickson polynomials when
3 is a primitive element of ;. Note that 32 is the other primitive element of . For

more information about Dickson polynomials, see Definition [3.7] and Proposition [3.9]

Lemma 3.13. Let n = 2m, U = { x € Fon | 22"+t = 1} and D,(x) be the Dickson
polynomial of degree r. Let fy € 3, defined on Fon and g be the related function defined

on Fom as

= Z Tr(a,x"®" V) and g(x ZTTI a, D, (x)).

reR reR
Then for any positive integer p, we have

Yox(fow)) =142 Y x(9(Dy(e))-

uelU ceFsm
Tri"(1/c)=1
Proof. By the transitivity property of trace function we have Tr?(z) = Tr* (7 (z)) =
Tri(z + 22™). We know also a?” = a, since a, € Fom. By these facts, we have

S 1) = S S (ot o)

ucU ueU reR

2m—1

Since ged(2™ + 1,2™ — 1) = 1, the mapping = +— x is a permutation of U. We

know also u?" = u~! since u € U. Now if we use these facts, we have

> x(fo(w?)) = ZX(ZTTT(GT(UW + u—“’>)>

uelU uelU reER

Now recall Proposition which is about Dickson polynomials, then we have

S () = (S Dt + 7))

uelU uelU reR

S X(ZTrgn(arDrp(u+u‘l>)>

weU\{1} “reR
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By Lemma , we can replace each u+u~! by 1/¢ € Fam such that Tr]"(c) = 1. Then

we have

S =12 3 A (@ Da/0))
uelU 1/c €F3m reR

Tri*(c)=1
By the fact that the inverse function is a permutation on F3,., we can replace 1/¢ by

c. Also by Proposition 3.9 D,,(z) = D,(D,(z)). Therefore we have

> X (folu?)) =1+2 Py X(ZTTl ar Dy ))

uelU reR
T (1]e)=
=1+2 x(ZTrl a,D,( ())))
c E]Fgm reR
Tri*(1/c)=
> x(fo(u?)) =142 x<g >
uel c eF;m
Tri*(1/c)=

Now we can give the characterization of f, when b is a primitive element of Fy.

Theorem 3.14. Let n = 2m, m be odd integer, 5 be a primitive element of Fy and
D, (z) be the Dickson polynomial of degree r. Let fs € 3, defined on Fon and g be the

related function defined on Fom as

fﬂ _ Z TT?(armr(g"L—l)) + T?"%(BI’L;) and g ZTTI ar

reR reR

Then the followings are equivalent
1. fg 1is hyper-bent

2.3 zeFy, X(g(Dg(a:))) — 9

Triv(1/z)=1

3. ereF;m X(Trin(x_l + g(D3(x)))) = 2" —2wt(go D3) +4

Proof. First we will show that (1) < (2)

= x(folv)) Zx folu (1+2

veV uEU

> x(g<03<a:>>))

z €F3m
Tri*(1/z)=1
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The last equality holds by Lemma [3.13] Now recall Proposition [3.12, we know f3 is
hyper-bent if and only if Y ., x(fo(v)) = —11i.e. fgz is hyper-bent if and only if

_1:%(1+2 > x(g(Dza(x))))

z €F%m
Trir(1/z)=1

—2=" Y x(9(Ds(x)))

x €Fim
Triv(1/z)=1

Now it is enough to show that (2) < (3)

> (o0s) = 5( T xlo0se)) - T rre) + o(osta))

x €F5m z€Fym rE€Fym
Triv(1/xz)=1

This equality holds because when Tr(z~!') = 0 for any x € F}., the right hand side
becomes zero for that particular x, but when Tr(z~!) = 1, the right hand side becomes

X (9(Ds(z))) for that particular z. Now we have the equality

2= %( > x(9Ds(x) = X(TTT(OC_IHQ(D?’(ZE))))

z€Fom z€Fom

> x(g(Ds(@)) +4= > x(Tr7" (@) + g(Ds()))

zE€Fom zE€Fom

Using Equality (3.6)), we have the result

2" — 2wt(go D3) +4 = Z X(Tri(z™") + g(Ds(2))).

LEGFQm

]

Corollary 3.15. Let n = 2m and m be odd integer. Let 5 be a primitive element of

Fy and d be a positive integer. Assume that ged(d, 2m3“) =1. Let fg € S, and hg be

the functions defined on Fon as

folw) = 3T (a,a" ") + Tr (B ™5,
réeR

ha(a) = 3 T (a,a™@" D) + Tr (825 7).
reR

Then fgz is hyper-bent if and only if hg is hyper-bent.
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Proof. By Proposition [3.12 we know that hg is hyper-bent if and only if
> x(ho(v)) = 1.

By hypothesis, we know that the mapping v + v? is a permutation on V. Then we

have

D x(ho(w) =D x(folwh) = D x(fo(v)).

veV veV veV

Due to this equality, we have that hg is hyper-bent if and only if fz is hyper-bent. [

3.2.2 The case where b =1

Now we will characterize hyper-bent functions f, when b = 1 which is the last remaining
case. In this characterization, Dickson polynomials and similar related function are

used as in the previous case.

Theorem 3.16. Let n = 2m, m be odd integer and D, (z) be the Dickson polynomial
of degree r. Let fi € S, defined on Fan and g be the related function defined on Fom as
fi= Z Tr(a,x"@" V) + TT%(xWT_l) and g(z) = Z Tri*(a,D,(x)).

reR reR

Then f1 is hyper-bent if and only if

2 Y x(e(Ds(x) =3 D x(g(x) =2

x €F5m z €F%m
Tri*(1/z)=1 Tri*(1/z)=1

Proof. Tt is clear that > ., x(fo(v)) = 3 > ,cr Xx(fo(u?)). Then we have

23" xUole)) = 3 xfolw) = 5 7 x((w?)) = 3 x(fole)

veV uelU uelU uelU

Now if we use Lemma [3.13] we have

= S X)) — 3 x(ole)

uelU ueU

2
= 5(1 +2 Y X(g(Dg(x)))> - (1+2 > x(g(x)))
2€F%m, T€F)m
Tri*(1/z)=1 Tri*(1/z)=1
1 4
=2tz D xXeDs@)) -2 Y, o)
2E€F z€Fym
Tri*(1/z)=1 Tri*(1/z)=1
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Now recall Proposition [3.12, it says that f; is hyper-bent if and only if

QZX(fo(U)) - ZX(fo(U)) =1

veV ueU

Therefore, we have that f; is hyper-bent if and only if

=142 Y W@ -2 Y x(g@)

3 3
xG]F;m CEGF;m
Tri*(1/z)=1 Tri*(1/z)=1

]

Corollary 3.17. Let n = 2m and m be odd integer. Let B be a primitive element of
Fy and d be a positive integer. Assume that ged(d,2™ + 1) = 3 and m # 3 (mod 6).

Let fg € Sy, and hy be the functions defined on Fon as

fo(x) = S Tri(a,a™®™ D) + Tri (B2 )

reER

2™ 1
3

i) = Y Tri(aa®™®" D) + Tri(a
reR

).
Then fgz is hyper-bent if and only if hy is hyper-bent.

Proof. Set  ho(z) = Y., Tri(a,x™" D). Since ged(d,2™ + 1) = 3, we have

ged(d/3,%5H) = 1. Then the mapping v¥/® — v is a permutation on V ie. the

3 is a permutation on V. Then we have

D xlho(v) =Y x(fowh) =Y x(fo(v*))

veV veV veV

mapping v? s v

Since m # 3 (mod 6), we have ged(3, 25) = 1 by Lemma . Then we have

3

Z X(ho(v)) = Z X(fo(v))

veV veV
Now we will show that {ud | u*" 1 = 1} = {u? | "+ = 1}. Assume that the order
of u? is s in Fyn i.e. s is the least positive integer satisfying u? = 1. That means
lem(d, 2™+ 1) = ds. Since ged(d, 2™ +1) = 3, we have lem(d, 2™+ 1) = (d(2™ +1))/3
ie. ds = (d(2™ +1))/3. Hence we have s = (2™ + 1)/3 which is the order of the
elements in V. Therefore we have

> x(ho(w) =Y x(folu®)) =Y x(fo(u®) = 3 Y x(fo(v)):

uelU uelU uelU veV
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Now we will use these two equalities together,

2> x(ho(v)) = > x(ho(w)) =2 " x(fo(v)) =3 x(fo(v))

veV uelU veV veV
2 x(ho(v)) = > x(ho(w) = = > x(fo(v))
veV uelU veV
By Proposition [3.12] we know that h; is hyper-bent if and only if left hand side is equal
to lie. Y .y x(fo(v)) = —1ie. fzis hyper-bent by Proposition m ]
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