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Abstract 
 
 
In this thesis, we propose a modified version of the Beer Game with two participants at 

each echelon that have conflicting incentives regarding the order decision. One 

participant (the sales manager) has backorder cost as his performance measure, whereas 

the other (the supply manager) has inventory holding cost. We conducted beer game 

experiments with human participants using the modified and standard game settings. 

We find that the conflict in the modified game, which reflects the sales/operations 

conflict in real firms, can dampen the bullwhip effect. We also develop multiple linear 

regression models to explain participants’ order decisions based on factors including 

incoming demand, backlogs, on-hand inventory levels and outstanding orders. Overall, 

we identify “supply risk” as an important cause of the bullwhip effect. 
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KAMÇI ETKĐSĐ ÜZERĐNE YENĐ BAKIŞ AÇILARI 

 
 

Özlem ÇOBAN 
 

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2010 
 

Tez Danışmanı: Yrd. Doç. Dr. Murat KAYA 
 
 

Anahtar Kelimeler: Kamçı etkisi, bira oyunu deneyleri, davranışsal operasyonlar, 
tedarik zinciri yönetimi   

 
 

 
 

Bu tezde, her seviyesinde çıkarları birbiriyle çelişen iki oyuncunun bulunduğu modifiye 

bir “Bira Oyunu Deneyi” üzerinde çalıştık. Bu oyunculardan birinin (satış müdürü) 

performans ölçütünü bekleyen sipariş maliyeti, diğerinin performans ölçütünü ise stok 

bulundurma maliyeti olarak belirledik. Modifiye ve standart bira oyununu katılımcılara 

oynatarak sonuçları karşılaştırdık. Gerçek şirketlerin satış ve operasyon departmanları 

arasında gözlemlenen çıkar çatışmasını yansıtan modifiye oyunun kamçı etkisini 

düşürdüğünü gözlemledik. Çalışmamızda ayrıca, oyuncuların sipariş miktarlarını gelen 

talep, bekleyen sipariş, eldeki stok ve tedarik sürecindeki ürünler gibi faktörler 

kullanarak tahmin etmeyi amaçlayan çoklu doğrusal regresyon modelleri geliştirdik. 

Özellikle “tedarik riski” faktörünün kamçı etkisinin önemli bir sebebi olduğunu 

gözlemledik. 
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Chapter 1                                                                                                 

Introduction and Motivation 

“Supply chain, which is also referred to as the logistics network, consists of suppliers, 

manufacturing centers, warehouses, distribution centers and retail outlets, as well as raw 

materials, work-in-process inventory and finished products that flow between facilities” 

(Simchi-Levi et al. 2007). Figure 1-1 illustrates a typical supply chain with four 

echelons: retailer, wholesaler, distributor and factory. Each echelon’s ordering decision 

affects the performance and profit of the other echelons. This situation leads managers 

to face major, real time difficulties in managing dynamic systems. In the process of 

decision making, across all echelons of the supply chain, managers may deviate from 

optimal or rational decisions. Managers, being individuals, possess unique human 

attributes which effect their decision making process. 

 

Figure 1-1:  A Typical Supply Chain1 

 

“Bullwhip effect” defines order variability increases when one goes from “downstream 

echelons” (i.e., the echelons closer to end customers) of a supply chain to “upstream 

echelons” (i.e., the echelons closer to raw material sources). Forrester (1958) first 

identified the effect, but did not refer to it with the term “bullwhip effect”. Croson and 

                                                 
 
1 Simchi-Levi et al. (2007) 

Customer  Retailer  Wholesaler   Distributor   Factory 
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Donohue (2003) state that the effect is described by oscillation, amplification and time 

lag. As seen in Figure 1-2, oscillations of orders mean that at each supply chain 

echelon, fluctuation occurs over time. Amplification means that when one goes from 

downstream to upstream echelons, oscillations increase. Time lag means that 

amplifications of oscillations propagate with a time lag when one goes from 

downstream to upstream echelons.   

 

 

 

Figure 1-2: Order and Inventory Levels over Time 

 

The term “bullwhip effect” was first coined by Procter & Gamble (P&G) in 1990s (Lee 

et al. 1997a). The company observed that the diaper orders given by the distributors 

exhibit a degree of variability that cannot be explained by consumer demand 

fluctuations alone. Likewise, Hewlett-Packard (HP) observed that the orders placed to 

the printer division by resellers have a much higher variation than the variation in 

customer demands (Lee et al. 1997b). Other examples include Eli Lilly and Bristol-

Myers Squibb from pharmaceutical industry (Lee et al. 1997b), and Barilla SpA from 

pasta industry (Hammond 2008). Chen and Lee (2010) reports that bullwhip effect is 

observed in automobile (Blanchard 1983), cement (Ghali 1987), basic metal (Fair 

1989), perishable foods (Fransoo and Wouters 2000) and electronics (De Kok et al. 

2005) industries. Bullwhip effect was also known to be a major reason behind Cisco’s 

Time Time Time Time 

Time Time Time Time 

Order Level Order Level Order Level Order Level 

Inventory Inventory Inventory Inventory 

0 0 0 0 

Retailer Wholesaler Distributor Factory 

Downstream echelons Upstream echelons 
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well-known $2.2 billion inventory write-off in 2001.2 A recent (January 27, 2010) Wall 

Street Journal article about Caterpillar, the world’s largest manufacturer of construction 

and mining machines, illustrates that the bullwhip effect continues to affect supply 

chains even today.3  

 

As these industry examples and theoretical studies (for example, Machuca and Barajas 

2004, Metters 1997, Disney and Lambrecht 2007, Munson et al. 2003) illustrate, the 

bullwhip effect causes high supply chain costs. This is because each firm observes high 

variability in its demand, leading to difficulties in forecasting and production planning. 

Firms need to have extra capacity and hold extra inventory in order to accommodate 

high demand variation. In the end, as seen in Figure 1-2, inventory shortages or excess 

inventory occurs, and utilization level of workers and equipment will be low. 

Consequently, reduction of the bullwhip effect in a supply chain is critical for its 

performance.  

 

Two main groups of causes can explain occurrence of the bullwhip effect. One group 

refers to operational causes; while the other group refers to behavioral causes as briefly 

listed in Table 1-1 (Lee et al. 1997a, Croson and Donohue 2006).  

 

Table 1-1: Causes of the Bullwhip Effect  

Operational Causes Behavioral Causes 

Demand signal processing 
Order batching 
Rationing game 
Price fluctuations 

Visibility of supply chain 
Coordination problem 

Underweighting the supply line 
Psychology of decision makers 

 

 

Lee et al. (1997a) determine the four common “operational causes” of the bullwhip 

effect as demand signal processing, order batching, rationing game, and price variations. 

Demand signal processing means that managers use past demand information to update 

their forecasts. That is, if demand goes up in a time, it is used as a signal of forthcoming 

high demands in forecasting. Order batching means that managers have a tendency to 
                                                 
 
2 http://www.cio.com/article/30413/What_Went_Wrong_at_Cisco_in_2001 
3 http://online.wsj.com/article/SB10001424052748704509704575019392199662672.html 
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batch orders if fixed ordering and transportation costs are nonzero. When supply 

shortage is anticipated in the chain, the strategic ordering behavior of buyers is referred 

to as shortage gaming. In the case of expected shortages, if the supplier allocates 

products to buyers in proportion to the order of each buyer, buyers order more than they 

need to achieve the actual quantity they need. Price fluctuations are generally results of 

promotions on the purchasing prices of products. When there is a promotion, the buyers 

tend to order more than needed, which is also known as forward buying. These factors 

cause sudden increases or decreases in order levels, which causes fluctuation. 

 

In addition to operational causes, the bullwhip effect is also known to have “behavioral 

causes” that are related to human decision-making in dynamic systems. These were first 

mentioned by Forrester (1958). Then, Sterman (1989a) explained the main behavioral 

reasons of the bullwhip effect as “misperceptions of feedback” and “participants’ 

tendency to underweight the supply line”. Misperception of feedback means that when 

decisions have delayed and indirect effects on each other, participants find it 

challenging the control the dynamics. Underweighting the supply line means that 

participants often undervalue the orders that were previously made and that are still in 

the supply line. Consequently, they place higher orders than necessary.  

 

The bullwhip effect can be observed in the well-known “Beer (distribution) Game” 

experiments. The beer game was invented by Sloan’s system dynamics group in the 

early 1960s as part of Jay Forrester’s research on industrial dynamics.4 Sterman (1989a) 

was the first to use the beer game to test the existence of the bullwhip effect in an 

experimental context. The standard beer game experiments (see Chapter 3 for details) 

are played by four participants, representing four echelons of a beer supply chain similar 

to the one presented in Figure 1-1. Each participant determines how much to order from 

his upstream echelon at each period. The orders arrive at the upstream echelon after a 

specific “ordering delay”, and that echelon fulfils the order if he has sufficient inventory 

on hand. Unmet order is backlogged. The shipments arrive at the requesting echelon 

after a “shipping delay”.  

 

                                                 
 
4 http://web.mit.edu/jsterman/www/SDG/beergame.html 
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In his ordering decisions, the participant at each echelon faces the fundamental trade-off 

between over-ordering and under-ordering.  At the end of each period: 

• If he has inventory on hand, he incurs an inventory holding cost. 

• If he has backlog, he incurs a backlog cost.  

 

Each participant’s individual performance measure is the total inventory holding and 

backlog costs over all periods. This requires him to strike a balance between the two 

sides of the trade-off. However, the time lag due to the ordering and shipping delays 

(which is 4 periods in the standard beer game) makes it difficult to handle the trade-off. 

In addition, supply is not guaranteed. If the upstream echelon does not have sufficient 

inventory on hand when the order arrives, he will not be able to meet the order. The 

time lag and supply uncertainty make it difficult to judge the trade-off. Due to the 

operational and behavioral factors we mentioned, participants generally over-order. This 

over-ordering propagates through the supply chain, leading to the bullwhip effect.  

 

Given this discussion, the main research question we ask in this thesis is: Can the 

bullwhip effect be mitigated, if there exists two participants at each echelon whose 

performance measures represent the two sides of the trade-off ? 

 

To address this question, we conducted a modified version of the beer game in which 

there are two participants at each echelon with the following roles: 

• The supply manager whose performance measure is the inventory holding cost. 

• The sales manager whose performance measure is the backlog cost.  

 

At each period, these two participants make a single joint order decision for their 

echelon.  Note that the two participants have conflicting incentives. The supply manager 

would prefer lower order quantities leading to lower inventory holding cost, whereas the 

sales manager would prefer higher order quantities leading to lower backlog cost (due to 

higher product availability). With focused incentives and different performance 

measures representing the two sides of the trade-off, we expect the order decisions in 

this modified beer game to cause less bullwhip effect than a standard game. For 

instance, because the supply manager’s performance is measured solely on the 

inventory holding cost, he would react to “over-ordering” attempts of the other 
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participant. Likewise, the supply manager is more likely to keep track of orders that are 

in the pipeline. The sales manager, on the other hand, can better focus on forecasting.  

Our modified beer game captures the well-known operations/ sales conflict observed in 

real firms. In a firm, an operations manager aims to match supply with demand by 

deciding how much of a product to supply, whereas a sales manager aims to create and 

satisfy customer demand. Firms perceive the operations department as a cost center and 

the sales department as a revenue center (Jerath et al. 1997, Harps 2002). Hence, the 

incentive of operations people are towards cutting costs by minimizing inventories, 

whereas the incentive of the sales people is towards increasing revenue by having 

sufficient stock on hand (Ackoff 1967, Oliva and Watson 2007). The performance 

measures of the operations and sales managers reflect these incentives.   

 

The joint decision making process at each echelon of our modified game is somehow 

similar to the sales and operations planning processes (S&OP) applied by firms. S&OP 

refers to the integrated supply chain management planning process across all 

departments of a firm. Despite having incentive conflicts, sales, operations and finance 

departments regularly hold meetings to update sales plans, customer demand forecasts, 

inventory plans or other strategic plans together. In meetings, making forecast decisions 

together with shared information increases the trust among the departments and 

improves the demand forecast accuracy of the firm.  

 

When two human beings make a joint decision, one needs to consider the “group 

decision making” dynamics. We mention related research in Section 2.4. The two 

participants in our modified beer game experiments have conflicting incentives and they 

need to come to an agreement at each period. Another aspect of having two participants 

at each echelon is that “Two heads are better than one”. That is, one might expect 

improvements in the beer game outcomes when the single decision maker is replaced 

with two decision makers simply because two people can make better decisions. This 

may be because of their higher total “attention” or “intelligence”. To analyze this effect 

in isolation, one can design an experiment with two participants at each echelon that 

share the same performance measure of total inventory holding and backup costs 

minimization (i.e., no different roles, and no incentive conflict). We leave this to further 

study. In this thesis, our objective is to observe the joint effects of “incentive conflict” 

and “two heads better than one” factors. 
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In the second study we report, we aim to determine the behavioral factors that affect the 

ordering decision of the participants in the standard beer game experiments. Given the 

role of the behavioral factors, we wanted to assess their relative magnitudes in 

participant’s decision making. The factors that we consider include the on hand 

inventory (or backlog) level, whether the echelon is in backlog or not, the demand faced 

at the period, outstanding order quantity, whether there is an increase in demand over 

the last two periods, and whether the upstream firm has been able to meet previous 

orders. We conduct multiple linear regression analysis to determine how much weight, 

if any, the participants place on such factors in determining their order quantity in a 

period.  

 

This thesis is organized as follows: In Chapter 1, we discussed the causes and the 

consequences of the bullwhip effect and we explain the beer game experiments. Next, in 

Chapter 2, we provide a review of the related literature. In Chapter 3, we first explain 

the beer game experiment procedure. We then present our experimental data analysis, 

focusing on the comparison between the standard and modified beer games. In Chapter 

4, using regression analysis, we analyze the behavioral factors affecting the participants’ 

ordering decisions. We discuss the implications of our work, conclude and provide 

future research directions in Chapter 5.  
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Chapter 2                                                                                                          

Literature Survey 

The bullwhip effect has been studied extensively using empirical, theoretical and 

experimental methods. In empirical studies, researchers generally collect industry level 

sales and inventory data to measure the strength of the bullwhip effect. In theoretical 

studies, researchers quantify and generalize the effects of causes and improvements of 

proposed systems through, for example, game-theoretic models or simulation models.  

 

In experimental studies, researchers (such as Croson and Donohue 2003, Cantor and 

Macdonald 2009, Wu and Katok 2006) conduct variations of the beer game experiments 

to study the bullwhip effect in laboratory settings. The game can be conducted either on 

a physical board or with computers (see Chapter 3 for detailed discussion). Kaminsky 

and Simchi Levi (1998) designed a computerized version of the game, which allows 

playing different modes. Jacobs (2000) designed a web implementation of the game that 

allows an easier conduct.  In the standard beer game, manufacturing capacity is infinite, 

prices are constant over time and setup times are zero. Therefore, the game alleviates 

the operational causes of the bullwhip effect that Lee et al. (1997a) mention except 

demand signal processing.  

 

Next, we present the literature that studies the operational and behavioral causes of the 

bullwhip effect.  
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2.1 Studies on Operational Causes and Remedies 

Lee et al. (1997b) observe causes of the bullwhip effect and how the companies cope 

with these causes. Then, according to coordination mechanism of echelons, they 

classify remedies for causes under the categories of operational efficiency, information 

sharing and channel alignment.  Operational efficiency refers to the practices that aim at 

reducing the costs as well as lead times of information and materials. Examples include 

computer aided ordering (CAO) and echelon-based inventory control systems. 

Information sharing refers to activities which enable quick information flow from 

downstream echelons to upstream echelons of the supply chain. Under information 

sharing category, sharing sales (POS), inventory and capacity data through electronic 

data interchange (EDI) and other internet technologies are proposed. Channel alignment 

is the coordination of all echelons’ planning, delivery, pricing processes. The most 

known alignment processes are everyday low pricing (EDLP), vendor managed 

inventory (VMI) and continuous replenishment program (CRP). Next, we present 

related literature based on this classification. 

 

2.1.1 Literature on Operational Efficiency 

Lead time reduction for materials or information, order batching, and computer aided 

ordering are some of the methods that increase the operational efficiency of a supply 

chain. Increased operational efficiency might provide less volatile demand through the 

supply chain. Cantor and Katok (2008) show that shorter lead times decrease the 

bullwhip effect.  

 

Holland and Sodhi (2004) are the first to quantify the effects of the three causes (order 

batching, price fluctuations and rationing) of the bullwhip effect. Their results suggest 

that manufacturers should give incentives to retailers to minimize order batching. 

Following Holland and Sodhi (2004), in Potter and Disney (2006)’s simulation study, 

orders are placed in multiple of fixed order batch size under deterministic and stochastic 

demand conditions. They show that the bullwhip effect is mitigated if the batch size is a 

multiple of the average demand.  
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2.1.2 Literature on Information Sharing 

Information sharing is the most recommended solution to mitigate the bullwhip effect. 

If sales or inventory information is not shared among supply chain echelons, upstream 

echelons may make production, capacity and ordering decisions based on distorted and 

delayed demand information. Such inefficient decisions result in excess inventories (due 

to high safety stock levels) or shortages at each echelon of the supply chain. Firms and 

researchers have been studying the role of real time demand or inventory data for 

efficient production planning of upstream echelons. For instance, IBM, Apple and HP 

started to access sell-through data of their retailers (Lee et al. 1997a).  Next, we mention 

the literature on demand and inventory information sharing.  

 

 

Demand Information Sharing 

 

Theoretical studies of Chen et al. (2000a,b) show that accessing the POS data can 

reduce the bullwhip effect when customer demand information is unknown to the 

upstream echelons of the supply chain. When customer demand is stationary and known 

to suppliers, Chen (1999) states that bullwhip effect should not exist. Croson and 

Donohue (2003) observe that even in a stationary demand environment, firms invest in 

information sharing systems. For instance, Home Depot from retail industry invested in 

POS data sharing systems in a relatively stable customer demand environment.  

 

By conducting experiments, Croson and Donohue (2003) investigate the impact of point 

of sales (POS) data sharing in reducing the bullwhip effect in a stationary demand 

environment. They also investigate whether the bullwhip effect still occurs when all 

operational causes are removed. In their research, different from other studies, they 

control and eliminate the demand signaling process. They announce the demand 

distribution to participants, which is stationary and uniform between 0 and 8. Their 

research indicates that the bullwhip effect still exists, even though demand information 

is shared through POS data. Similar to Chen et al. (2000b)’s result, however, the effect 

is dampened. The order oscillations at all echelons of the supply chain, specifically at 

the distributor and factory echelons are reduced. The amplification of the orders are also 

decreased significantly.   
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Steckel et al. (2004) investigate the impacts of changes in order and delivery cycles 

(lags), availability of POS information and pattern of customer demand in an 

experimental context. The authors show that reduction in time lags decrease supply 

chain costs, however the amount of reduction depends on the pattern of demand (step 

up, S-shaped without error, S-shaped with error). POS data sharing is found useful only 

with the step up demand pattern. Contrary to theoretical studies (such as Chen 1999, 

Chen et al. 2000b, Lee et al. 2000 and Raghunathan 2001), sharing POS data is not 

found to be beneficial in terms of total echelon costs.  

 

In a theoretical study, Gaur et al. (2005) analyze the effects of time series structure of 

demand processes on the value of demand information sharing in a supply chain. They 

study a two-echelon supply chain in which the downstream echelon (i.e., the retailer) 

faces autoregressive moving average (ARMA) demand. Autoregressive processes are 

generally similar to the real life demand processes in terms of reflecting seasonality. 

Gaur et. al. (2005) show that safety stock requirement of the upstream echelon (i.e., the 

manufacturer) decreases when he could forecast the demand from the retailer’s orders or 

access demand information through information sharing. However, the safety stock 

requirement of the manufacturer increases when he could only use the most recent 

orders of the retailer in his planning.  

 

 

Inventory Information Sharing 

 

Theoretical research on inventory management (Bourland et al. 1996, Gavirneni et al. 

1999) suggests that inventory information sharing improves supply chain performance 

in a one supplier, multiple retailers two-echelon supply chain. Chen (1998) compares 

two inventory policies (echelon stock and installation stock) in a N-echelon supply 

chain to obtain the value of centralized demand information. The cost difference 

between echelon and installation stock policies refers to the value of centralized 

information. The authors find that when the numbers of echelons, lead times or batch 

sizes increase, value of information has a tendency to increase.  
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Cachon and Fisher (2000) study a setting which includes one supplier and multiple 

retailers under stochastic stationary customer demand. They show that information 

sharing provides two additional benefits: faster and cheaper order processing that leads 

to shorter lead times and smaller batch sizes. They compare the value of information 

sharing and the value of two benefits of information sharing. Results show that 

information sharing reduces supply chain costs by 3.14% whereas reducing lead times 

(or batch sizes) to half decreases supply chain costs by 21%. The authors propose that 

using information sharing technology to smooth and speed up the physical flow of 

materials through a supply chain is more valuable than using information technology to 

expand the flow of information. 

 

In addition to theoretical studies, researchers are also conducting experiments to 

investigate the impacts of inventory information sharing. In their web-based 

experimental study, Machuca and Barajas (2004) show that implementing electronic 

data interchange (EDI) for information transmission along the echelons of a supply 

chain decreases the bullwhip effect and mean inventory costs. This finding is consistent 

with theoretical results.  

 

Croson and Donohue (2005) analyze the effects of sharing the upstream and 

downstream inventory information across supply chain echelons, separately. They 

compare these treatments with their baseline treatment in which the participants cannot 

see other echelons’ inventory information. The authors find that sharing downstream 

information results in a significant reduction in order oscillations.  Croson and Donohue 

(2006) also investigate the impacts of inventory data sharing across the supply chain. 

Similar to Croson and Donohue (2003), they eliminated all operational causes. They 

show that inventory data sharing decreases the oscillation of orders at each echelon of 

the supply chain, specifically at the distributor and factory echelons. Inventory 

information sharing also decreases the amplification between the distributor and 

wholesaler echelons.  

 

The results of implementing inventory information sharing in practice are in line with 

experimental and theoretical studies. Firms in some industries, especially in grocery 

industry, utilize advanced information sharing to share real time inventory information 

throughout their supply chains.  
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In a survey study, Nienhaus et al. (2003) analyze the value of information about a 

downstream echelon (including sales forecasts and promotions) to upstream echelons. 

They ask to operations managers of 200 European companies whether information on 

their downstream echelon (i.e., customer) is valuable for the production planning of 

their own upstream echelon (i.e., supplier). Results indicate that operations managers 

estimate that the customer information is less valuable for their suppliers. Therefore, 

they share their customer information with their suppliers not as frequently as their 

customers share this information with them. 

 

Wu and Katok (2006) study the impact of learning and communication on the bullwhip 

effect. They test the effects of bounded rationality, experiential learning, systems 

learning and organizational learning with six different treatments. They find that 

training or communication separately cannot alleviate the bullwhip effect. However, 

communication and system-wide information sharing together can improve the supply 

chain performance.  

 

2.1.3 Literature on Channel Alignment (Strategic Alliances)  

In Section 2.1.2, we discussed the effects of information sharing in reducing the 

bullwhip effect. Real life implementations, however, show that in order to gain great 

improvements in supply chain performance, both information sharing and collaborative 

planning (such as quick response (QR), continuous replenishment program (CRP) or 

vendor managed inventory (VMI)) are needed (Kurt Salmon Associates 1993, Clark and 

Hammond 1997, Kulp et al. 2004). For example, by implementing information sharing 

and continuous replenishment together, Campbell soup is reported to reduce average 

retail inventories by 66% and cost of products by 1.2% (Cachon and Fisher 1997). 

 

Collaborative planning enables firms to use each other’s knowledge. Suppliers become 

closer to end consumer demand information through retailer’s point of sales data; 

whereas retailers get insight into lead times of products and supply availability. 

Empirical studies mention “strategic alliance” type solutions that provide long term 

benefits for firms. Firms would gain benefits by improving replenishment process of 

goods which leads to decrease inventory levels at the retailer in the long run as observed 
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in Campbell Soup example (Cachon and Fisher 1997). In a quick response relationship, 

the supplier utilizes sales information to improve production plans and to reduce lead 

times. In this type of alliance, orders are determined by the retailer. One step further, in 

a continuous replenishment program, according to sales data, the supplier organizes 

shipments in determined intervals to maintain specific inventory levels. Under a vendor-

managed inventory (VMI) agreement, the supplier manages the inventory levels and 

replenishment policies of the retailer. These alliances require the supplier to employ 

forecasting; inventory control and retail management skills (see Table 2-1). Through 

information sharing and alliances, forecasting quality increases due to the use of real 

sales data, and average inventory levels and order fluctuations decrease because of 

centralized control. All of these contribute the reduction of the bullwhip effect. 

 

Table 2-1: Channel Alignment through Strategic Alliances5 

    Criteria Ordering Decision 

Maker 

Inventory 

Ownership 

�ew Skills Employed 

by the Supplier      Type 

Quick Response Retailer Retailer Forecasting 

Continuous 

Replenishment 

Contractually 
agreed levels 

Either party 
Forecasting and inventory 

control 

Vendor managed 

inventory 
Supplier (vendor) Either party Retail management 

 

 

Next, we summarize the literature on the operational causes of the bullwhip effect in 

Table 2-2. The vertical axis classifies the studies according to Lee (1997b)’s framework. 

The horizontal axis classifies the studies based on their methodologies as being 

empirical, theoretical or experimental. 

 

 

 

 

 

 

                                                 
 
5 Simchi-Levi et al. (2007)  
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Table 2-2: Categorizing the Literature6 

 Empirical Theoretical Experimental 

Operational 

Efficiency 
  

Holland and Sodhi 
(2004),  

Potter and Disney 
(2006) 

Cantor and Katok 
(2008), Steckel et 

al. (2004)  

Information 

Sharing 

Lee et al. (1997a),  
Kurt Salmon Associates 

(1993), 
 Clark and Hammond 
(1997), Kulp et al. 
(2004), Cachon and 

Fisher (1997) 

Chen et al. (2000a,b), 
Chen (1999) ,  

Lee et al. (2000),  
Raghunathan (2001),  

Chen (1998),  
Bourland et al. (1996), 
Gavirneni et al. (1999), 
Cachon and Fisher 

(2000)   

Croson and 
Donohue (2003), 
(2005), (2006), 
Steckel et al. 

(2004), Machuca 
and Barajas (2004) 

Channel 

Alignment 
  

Simchi-Levi et al. 
(2007)  

  

 

2.2 Studies on Behavioral Causes 

Operations management (OM) is large field that includes product development, 

forecasting, inventory management, process design and supply chain management. 

Within the field, there exists a gap between the concepts defined in the theory and the 

rules of thumb applied in the real life. One reason for this gap is that the tools proposed 

by the theory may not take into consideration some important dynamics of real life. 

Another reason is that trust issues, misaligned incentives, or lack of information 

regarding the decision makers may make implementation difficult (Bendoly et al. 2006).  

 

Behavioral research in the field of operations management is highly relevant because 

operating systems are not fully automated, and human behavior has significant 

                                                 
 
6 Lee et al. (1997b) 
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influence on implementation of tools and techniques in practice. Human beings decide 

how operating systems will function. Behavioral research in operations management 

field has been conducted since 1920s. Recently, some researchers have started to 

conduct human experiments to analyze the effects of human decision making in OM 

areas including quality management, production control and supply chain management 

(Bendoly et al. 2006). Within the supply chain management area, experiments are 

mostly conducted on the bullwhip effect, the newsvendor problem and supply 

contracting.  

 

In their experimental study, Croson and Donohue (2003, 2006) show that even all 

operational causes of the bullwhip effect are removed from the supply chain; the effect 

persists due to behavioral factors. Next, we discuss examples of the behavioral causes of 

the bullwhip effect mentioned in literature.  

 

 

Underweighting the Supply Line 

  

Recall that the beer game has ordering and shipping delays (see Figure 3-1 for details). 

These delays represent the “supply line” for a particular echelon. Sterman (1989a) 

observed that participants of the beer game often undervalue the orders that are still in 

the supply line. Therefore, they place orders more than necessary. Sterman (1989a) 

identified this phenomenon as “underweighting the supply line”. 

 

Supply line underweighting is a specific example of misperception of feedback (or time 

delay) in stock management. Misperception of feedback means that when decisions 

have delayed and indirect effects on each other, people find it challenging to control the 

dynamics. Consequently, when making decisions in a dynamic environment, people 

have tendency to ignore the time delays and feedback. Researchers have shown that in 

general this effect is not eliminated by information availability, financial incentives or 

learning opportunities before making decisions (Sterman 1989b, Paich and Sterman 

1993, Brehmer 1992, Diehl and Sterman 1995, Kampmann and Sterman 1998, Sterman 

2006).    
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It is important to understand whether sharing the sales and inventory (including supply 

line) information eliminates the underweighting the supply line effect, because most 

studies in the literature propose information sharing methods to reduce the bullwhip 

effect. In the standard beer game, end customer demand is nonstationary and unknown 

to the echelons except the retailer. Sterman (1989a) report the underweighting of supply 

line effect under this setting. Croson and Donohue (2006) show that underweighting 

still occurs when the customer demand is stationary and its distribution is announced to 

all echelons. In addition to this, Croson and Donohue (2006) also analyze sharing of 

dynamic inventory information. Contrary to expectations, underweighting the supply 

line effect is found to be robust to inventory position information of other echelons. 

However, this result is consistent with the robustness (regarding information 

availability) of the tendency to ignore time delay and feedbacks (Sterman 1989b, Diehl 

and Sterman 1995).  

 

One might think that “learning” over time may mitigate the underweighting of supply 

line. However, Sterman (2006) mentions experimental results of Diehl and Sterman 

(1995), Croson et al. (2005), Wu and Katok (2006) which show that learning is slow in 

dynamic environments. Also note that operational remedies that reduce the lead time 

would mitigate the underweighting the supply line effect through shortening the supply 

line itself.  

 

 

Coordination risk 

 

Croson et al. (2005) report that even customer demand is constant and known to 

participants, supply line underweighting and the bullwhip effect still exist. They 

propose “coordination risk” as a new behavioral cause. Coordination risk refers to the 

tendency of participants to build inventory by deviating from the equilibrium to protect 

themselves against the intuitive risk that other echelons will not behave optimally. 

Croson et al. (2005) show that holding additional on hand inventory and common 

knowledge of optimal policy can decrease the coordination risk but cannot eliminate it 

completely.  
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Safe harbor & Panic strategies 

 

Over periods of the experiments, participants follow some strategies to seek their goals. 

Nienhaus et al. (2006) report two extreme behaviors called “safe harbor” and “panic 

strategy” that increase the bullwhip effect. The authors develop an online beer game that 

computers and humans can play together. During the experiments, some human 

participants order more than actually needed to protect themselves from future demand 

increases. This strategy is known as “safe harbor”, which causes high safety stock costs 

at these echelons. This strategy also pushes upstream echelons to increase their orders or 

to incur stock out costs. One echelon that follows safe harbor strategy negatively affects 

the other echelons of the supply chain.  

 

Contrary to the safe harbor strategy, in the “panic strategy”, some participants continue 

to decrease their stock levels until they face an increase in their customer’s demand. 

This strategy also affects all echelons negatively, because when the customer demand 

increases, a participant that follows the panic strategy needs to order more than a 

participant that has enough safety stock. The authors also show that when the number of 

human players in the experiment increases, the average and range of the total supply 

chain cost increase. When the all players are human in the chain, they find that 

information sharing through the supply chain is beneficial.  

 

Safe harbor and panic strategies proposed by Nienhaus et al. (2006) lead Ruel et al. 

(2006) to study the impacts of personality characteristics related to risk taking on supply 

chain performance. Experimental results show that when all echelons of the supply 

chain consists of low-risk-taking participants, lower inventory costs and higher backlog 

costs are incurred compared to the supply chain in which middle and high-risk-taking 

participants are found. This is because low-risk-taking people react the demand changes 

slower than high-risk-taking people. This late response causes high backlog costs when 

all echelons include low-risk-taking participants. 
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Problem solving approach: Abstract versus concrete  

 

Similar to Ruel et al. (2006), Cantor and Macdonald (2009) analyze the impact of 

personality characteristics on supply chain performance in a beer game setting. 

Specifically, they investigate the effects of abstract versus concrete problem solving 

approaches. A person who has abstract problem solving approach generally asks why-

oriented questions and is concerned with strategic implications. These lead him to adapt 

changes in an environment easily. A person who has concrete problem solving 

approach, on the other hand, asks how-oriented questions, and considers more specific 

details and operational concerns. These lead him to follow given tasks easily. 

Experimental results show that abstract-thinking participants perform better than 

concrete-thinking participants when information sharing is not allowed in the beer game 

setting. However, when information sharing is allowed through the supply chain, the 

effects of problem solving approaches on supply chain performance become negligible.  

 

 

Overreaction to backlogs 

 

Oliva and Gonçalves (2007) analyze the participants’ reactions to backlog and positive 

inventory situations separately. In the standard beer game, the backlog cost is twice the 

holding inventory cost, which leads one to expect that participants may overreact to 

backlogs. Contrary to Oliva and Gonçalves (2007)’s expectations, but consistent with 

Delhoum and Reiter (2009)’s results, Oliva and Gonçalves (2007) show that 

participants do not order more when in backlog. 

 

 

Counterintuitive decision-making patterns 

 

Following Sterman (1989a) and Oliva and Gonçalves (2007), Delhoum and Reiter 

(2009) study behavioral causes of the bullwhip effect such as bounded rationality and 

misperceptions of feedback. Inspired by the beer game, they develop a new simulation 

game (the supply net game) in which four manufacturers produce four distinct products 

each, where some products are jointly produced by two manufacturers. Their 

experiments, containing 130 participants, show that a novel behavioral cause of the 
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bullwhip effect is “counterintuitive decision-making pattern of participants”. Even 

though backlog is building up, some participants do not order, and even though 

inventory level is high, some keep ordering high quantities. 

 

2.3 Operations and Sales Incentive Conflict 

Shapiro (1977) discusses the incentive conflicts between operations and sales managers 

in some areas such as planning the capacity for uncertain sales, determining the breadth 

of product line, introducing new products, and coordinating supply decisions with 

marketing decisions. Among various areas, our study is related to the incentive conflict 

in coordination of supply and demand decisions.  

 

Oliva and Watson (2007) illustrate the benefits of the S&OP process in the case of an 

electronics company. Prior to the S&OP approach, the sales department forecasted the 

sales and shared this information with the operations and finance departments. These 

departments mistrust the sales department’s forecast due to that department’s incentive 

to exaggerate the demand. Hence, the operations department came up with its own 

stable demand forecast using only past sales data, and the finance department forecasted 

the demand according to its own revenue goals. The lack of coordination resulted in 

inventory write offs that amounted to approximately 15% of their annual revenue in 

2002.  

 

2.4 Group versus Individual Decision Making 

Here we mention the literature on “group decision making”. This is relevant because our 

primary research question is concerned with replacing the single decision maker with a 

group of two decision makers. Groups of individuals such as teams, partners, families 

and committees make many important decisions in the society. In a survey study, 

Osterman (1995) determines that work teams exist in 54.5% of U.S. American firms. 

Consistent with Osterman (1995), Dumain (1994) estimates that two-thirds of U.S. 
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firms include work teams. Various companies like P&G, General Motors, Motorola, 

Ford, General Electric and Caterpillar attribute their cost savings and success stories to 

their team-based approach (Manz and Sims 1993).  

 

Groups are expected to make better decisions than individuals (Kocher et al. 2006, 

Ambrus et al. 2009, Blinder and Morgan 2010). In a complex and dynamic world, it is 

not possible for one to know all facts and a human being has limited information 

processing while making decisions. However, individuals in a group can share their 

information with each other, leading to a broader perspective. This allows the group to 

propose more alternative solutions than a single decision maker.  

 

In the literature, various experimental studies in different contexts demonstrate that 

there exist systematic differences between the choices of groups and individuals. In 

some experiments, qualities of decisions are evaluated according to a normative 

criterion. Tasks in these experiments are named as intellective tasks (Laughlin 1980). 

Conversely, non-intellective tasks refer to tasks in which only the personal preferences 

should dictate choice. Increase in quality of decisions made by groups is expected in 

intellective tasks. At first, the differences between decisions of groups and individuals 

observed in non-intellective tasks are surprising. However, various experimental studies 

determine that people act more selfishly in a group than when making a decision 

individually, and groups have tendency to take risky decisions (Ambrus et al. 2009). 

Kocher et al. (2006) report that in their beauty contest game experiments, 60% of the 

participants preferred to make decision in a team.  

 

Experiments including intellective tasks demonstrate that “two heads are generally 

better than one head” in different contexts. Kocher and Sutter (2005) show that groups 

learn faster, have ability to better anticipate and make better judgments in beauty contest 

games. Cooper and Kagel (2005) determine that groups play more strategically than 

individuals in signaling games. By conducting two experiments in different settings, 

Blinder and Morgan (2010) show that groups are not slower than individuals in reaching 

decisions, and that without additional information, groups make better decisions than 

individuals. 
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2.5 Measurement of the Bullwhip Effect 

Here we outline the ways researchers measure the three characteristics of the bullwhip 

effect: 

 

1) Oscillation: Generally, to measure the oscillation of orders within each echelon, one 

may calculate the variance of orders placed over the periods of the experiment.  

 

2) Amplification: To measure the amplification of orders, one calculates the 

amplification ratio by dividing an upstream echelon’s variance by downstream 

echelon’s variance (see, for example Croson and Donohue 2006).  As such, three 

amplification ratios are calculated for a four echelon supply chain as follows: 

Amplification ratios:  
σ

σ
2

2

retailer

wholesaler     
σ

σ
2

2

wholesaler

rdistributo      
σ

σ
2

2

rdistributo

factory  

 

An amplification ratio greater than 1 indicates that orders are amplified by the echelon. 

These are not the only measures of the bullwhip effect. Fransoo and Wouters (2000), for 

example quantify the amplification effect as the ratio of coefficient of variation (CV) 

out and in. “Out” refers to orders placed to upstream echelon and “in” refers to orders 

received from downstream echelon.  

 

3) Time lag: The third component of the bullwhip effect, time lag, is somewhat more 

difficult to characterize. Sterman (1989a) compares the periods of the peak order level 

at each echelon.  

 

While the bullwhip effect itself can be measured in terms of “orders placed”, its 

consequences show themselves as inventory/ backlog levels at each echelon. 

Alternatively, one can measure the costs of inventory/ backlog at each echelon and use 

this as a measure of the detrimental effect of the bullwhip effect (see, for example 

Machuca and Barajas 2004). After all, one of the major reasons to control the bullwhip 

effect is to control the underage/ overage costs that it causes.  
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Table 2-3 illustrates the different measures that researchers use to quantify the bullwhip 

effect. 

 

Table 2-3: Types of Measures 

Types Of Measures Researchers 

Mean of Orders Machuca and Barajas (2004) 

Standard Deviations of Orders 

Cantor and Katok (2008), 

Machuca and Barajas (2004), 

Wu and Katok (2006) 

Variance of Orders (VO) 

Cantor and Macdonald (2009), 
Croson and Donohue (2003), 

(2005), (2006) 

Amplification Ratio = VO at Upstream /  

                                      VO at Downstream 

Croson and Donohue (2003), 
(2005), (2006) 

Ratio = Factory Order Variance / 

                 Customer Demand Variance 
Manyem and Santos (1999) 

Coefficient of Variation (CV) of Demand Disney et al. (2004) 

CV out / CV in Fransoo and Wouters (2000) 

Standard Deviations of Costs Machuca and Barajas (2004) 
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Chapter 3                                                                                                                 

The First Study:   Beer Game with Two Participants at Each Echelon 

In the first study, we propose a modified beer game that involves two participants at 

each echelon of the supply chain. One of the participants is in the role of the supply 

manager and the other is in the role of the sales manager. These managers generally 

have incentive conflict in real life. In the modified experiments, these two participants 

together decide a single order quantity for their echelon at each period of the 

experiment. We aim to understand whether this modification will decrease the bullwhip 

effect or not. To this end, we conducted beer game experiments with standard and 

modified experiment types and made statistical comparisons on the outcomes.     

 

3.1 Experimental Design and Implementation 

Our “standard game experiments” follow previous studies with respect to basic 

protocols of the beer distribution game (Sterman, 1989a) with some minor 

modifications on initial inventory level and number of periods of the experiment.  

  

The mechanism of the standard game experiments is as follows:  

 
• The game models a four echelon supply chain, as illustrated in Figure 3-1. The 

echelons are the retailer (R), wholesaler (W), distributor (D) and factory (F).  

• The product that moves in this supply chain is beer, which is measured in “cases”. 

The cases are represented by plastic coins in the board game.  
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Figure 3-1: The Beer Game7 

                                                 
 
7 http://web.mit.edu/jsterman/www/SDG/beergame.htm 
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• The experiment continues for 24 “periods”. 

• At each period, each follows a sequential procedure which can be summarized as 

follows: The echelon receives his incoming orders from his upstream echelon, 

observes demand from his downstream echelon, tries to fulfill this demand as much 

as possible from on-hand inventory, records his inventory/ backlog level, and places 

a new order (which can be zero cases) to his upstream echelon.  

• Customer demand at the retailer echelon is exogenously given. It is equal to 4 cases/ 

period during the first 4 periods, and 8 cases/ period during periods 5-24. This 

demand stream is unknown to participants and it is revealed to the retailer period by 

period. 

• Demand at each other echelon consists of the orders of the respective downstream 

echelon. For example, the orders of the retailer become the demand of the 

wholesaler. 

• When an echelon places an order to his upstream echelon, the upstream echelon 

receives the order two periods later. This “ordering delay” reflects the order 

processing lead time. To keep track of the cases in ordering delay, the board game 

has two “ordering delay” boxes between consecutive echelons. These boxes are 

initialized with 4 cases each to reflect orders in process at the beginning of the 

experiment.  

• When an upstream echelon fulfills the orders received from a downstream echelon, 

the downstream echelon receives cases two periods later. This “shipping delay” 

reflects the shipping lead time. To keep track of the cases in shipping delay, the 

board game has two “shipping delay” boxes between consecutive echelons. These 

boxes are initialized with 4 cases each to reflect incoming orders in transportation at 

the beginning of the experiment.  

• The factory echelon, which does not have an upstream echelon, places a “production 

order” to himself. A production order takes three periods to materialize. This 

“production delay” reflects the production lead time. To keep track of the cases in 

production delay, the board game has three “production delay” boxes next to the 

factory echelon. These boxes are initialized with 4 cases each to reflect production 

in progress at the beginning of the experiment.  

• If an echelon cannot meet the demand he faces in a given period, this demand is 

backlogged. Backlogged demand is met when inventory becomes available.   
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• Each echelon places his order by writing it in an order card and placing this order 

card into his “orders placed” box.  

• At the end of each period, each echelon records his order quantity into a record sheet 

(see Appendix A). Inventory on hand incurs a holding cost of $1/ case/ period 

whereas backlog incurs a backlog cost of $2/ case/ period.  

• At the beginning of each period, the cases in ordering delay, shipping delay and 

production delay are moved in the relevant directions by the participants. This 

represents the flow of information and materials in the supply chain.  

• At the end of the experiment, for each echelon, the sum of the inventory holding and 

backlog costs over all periods is calculated. The team-objective of each four-

participant team is to minimize the total supply chain cost, corresponding to the sum 

of the four echelons’ costs. 

 

At each period of the experiment, every echelon has to follow the following sequential 

procedure. It is critical that all participants follow these steps simultaneously to avoid 

confusion in the experiment. This process received special attention of our experiment 

facilitators. 

 

• Receive cases from shipping delay.  

• Fulfill the orders of the downstream echelon as much as possible. 

• Record the backlog or inventory in the record sheet (see Appendix A).  

• Retailer, Wholesaler, Distributor echelons: Move the order cards.  

Factory echelon: Move the production card.  

• Place a new order to upstream echelon and record in the sheet.  

 

The beer game can be conducted in a laboratory or classroom environment either with 

computers or as a board game. We run the board version. Figure 3-2 presents a photo 

taken during one of our experiments. The board game provides a more realistic 

environment for participants to feel the atmosphere and understand the dynamics of the 

supply chain. On the other hand, the board game has the disadvantage of being open to 

human errors in moving cases and in recording data in sheets.  
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Figure 3-2: One of Our Experiments 

 

We conducted two types of experiments as summarized in Table 3-1. The standard 

experiments followed the procedure we explained. Each standard experiment is played 

by a four-participant team. At each echelon the participant (manager) who is responsible 

for both inventory holding and backlog costs determines the order quantity at each 

period. 

 

Table 3-1:  Design of Experiments 

Experiment 

Type 

�umber of 

Participants at 

Each Echelon 

The Role(s) of 

Participants 
Incentives of Participants 

Standard 1 Manager 
Minimize the sum of 

inventory and backlog costs 

Modified 2 

Supply Manager Minimize inventory costs 

Sales Manager Minimize backlog costs 
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The modified experiments are different only in one aspect: In each of the four echelons, 

there are two participants instead of one (adding up to eight participants in an 

experiment). They determine the order quantity together at each period. One of these 

participants plays the role of supply manager, whose performance measure is the 

inventory holding cost. The other participant plays the role of the sales manager whose 

performance measure is the backlog cost. Naturally, the supply manager prefers smaller 

order sizes whereas the sales manager prefers larger ones. We are interested in 

determining the effect of this incentive conflict (at each echelon) on the bullwhip effect. 

We expect that the discussions between the two managers will make it less likely to 

place large orders (because the supply manager will object to this) leading to a decrease 

in the bullwhip effect. 

 

The participants in the experiments were Sabanci University students. Four groups of 

senior students between 2008 and 2010 helped us as “experiment facilitators”, as part of 

their graduation project. Detailed participant information can be found in Appendix B. 

We paid attention to make sure that no participant has prior experience with the beer 

game. Data acquisition process details are presented in Appendix C. 

 

At the beginning of the experiment, participants are randomly assigned to echelons and 

roles. We go over the mechanics of the game and explain each participant’s role in 

detail. In particular, we explain that the inventory/ backlog level should be recorded as 

cumulative (that is, it is carried over from one period to the next). For the modified 

experiments, we explain the two managers’ incentives in detail. The participants know 

that the overall goal of the team is to minimize the total supply chain cost.  

 

After we make sure that all participants understand the goals and the mechanics of the 

game, we conduct a pilot experiment that takes 3-4 periods. During the pilot periods, 

our facilitators answer questions from participants and check whether they are playing 

correctly. The pilot period results are not recorded. After the pilot experiment, we start 

the real experiment. We announce there will be no communication between echelons 

during the experiment. 

 

During the experiment, our facilitators observe the participants and intervene if they see 

something wrong. In particular, they make sure that all participants follow the 
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sequential procedure we described. We announce that the experiment will take 32 

periods, however, we end the experiment at 25th period to avoid “end of experiment” 

behavior. At the end of the experiment, we calculate total supply chain costs for each 

team. We announce the winner team and the winner sales and supply managers 

separately. We also made the participants fill in a post-experiment survey. This survey 

is provided in Appendix D. 

 

We compare the modified and standard experiments in terms of the orders, total cost, 

inventory cost and backlog cost. At the end of each period, an echelon incurs either an 

inventory holding cost or backlog cost. We sum these costs over periods to determine 

the inventory cost and the backlog cost of the echelon. The total cost refers to the sum 

of these two costs. We calculate and report both the mean values and the variances of 

these measures.  

 

3.2 Experimental Results and Analysis 

After conducting the beer game experiments, we entered the experimental data from 

record sheets into MS Excel. Next, we checked the data against invalid entries. We 

eliminated some team’s data due to inconsistencies at this stage. Then, we further 

eliminated data using outlier analysis. Finally, we compared the standard and modified 

experiments through descriptive analysis and hypothesis testing, and applied formal 

statistics test to observe significance of difference. 

 

Before explaining the details of our experimental data analysis, we first present our 

outlier elimination process and the hypothesis tests we use. 

 

3.2.1 Outlier Analysis 

Before conducting statistical analysis on data, we determined and eliminated the 

outliers. Grubbs (1969) defines an outlier as: “An outlying observation, or outlier, is one 

that appears to deviate markedly from other members of the sample in which it occurs”. 
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Eliminating outliers is crucial for our study, because we measure the bullwhip effect 

through the variance of orders, which is very sensitive to large data values. Therefore, 

we considered teams that have very high variance or amplification ratio as an outlier.  

 

Various methods are found to detect outliers. In the bullwhip effect literature, Wu and 

Katok (2006) conduct Grubbs’ outlier detection method for each echelon and each 

experiment type separately. Machuca and Barajas (2004) detect outliers by observing 

box plots of variables. Massart et al. (2005) states that box plots are more robust to the 

presence of outliers than classical methods based on normal distribution, such as 

Grubb’s method. Similar to Machuca and Barajas (2004), we used box plots according 

to the variance of orders and amplification ratio variables for each echelon and 

experiment type separately.  

 

A box plot allows one to observe important features of data like spread, center and 

outliers. It represents batches of data through five values (McGill et al. 1978): As seen 

in Figure 3-3, the bottom of the box shows the lower quartile (25th percentile), the top of 

the box shows the upper quartile (75th percentile) and the line near the middle of the box 

shows the median (50th percentile) of the data. Interquartile range (IQR) is the range 

between the lower and upper quartiles. The ends of the whiskers (vertical lines) 

represent the lowest and highest values that are within 1.5 times the IQR (box width). 

Values that are between 1.5 and 3 times the IQR are named as outliers and values that 

are more than 3 times the IQR are named as “extremes”.  

   

Figure 3-4 presents the box plot for the order variance data for teams in our standard 

experiments. The stars denote extremes and the circles denote possible outliers. The 

numbers denote the team numbers. We created such box plots for the order variance and 

amplification values. We marked the teams that cause extreme values in any one of their 

four echelons. We eliminated a team if it causes two or more extreme values in total 

(according to the variance of orders or the amplification ratios, combined). Other box 

plots are presented in Appendix G.   
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 Figure 3-3: Sample Box Plot8  
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Figure 3-4: Box Plot of Variance of Orders for Standard Experiments 

                                                 
 
8  http://www.information-management.com/issues/20050801/1033566-1.html 
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The data for the analysis was carried out through a long and strenuous effort that 

spanned over a period of 24 months. Four student groups conducted 39 experiments for 

the modified game, and 23 experiments (with a total of 62 teams) for the standard game 

as a part of their senior projects. The groups handed in the collected data, together with 

the hardcopies of the record sheets to the supervisors, before the thesis started. For the 

2008-2009 academic year, the data and the sheets were handed in by the two groups at 

the end of the semester, after all the experiments were completed. A very detailed data 

validation procedure was carried out by the supervisors. Unfortunately, the data for all 

12 experiments (teams) of one of the groups was found to be unusably dirty unreliable. 

The other group of the 2008-2009 academic year had conducted 16 experiments, but 

only 10 of these teams were found to be recorded correctly. Thus, out of all the 

experiments carried out in 2008-2009 academic year, only the data of 10 experiments 

was judged to be reliable and valid. The main reason of unreliability in the dirty data 

were the unavailability of hard copy record sheets to cross-check with the data in the 

Excel spreadsheets for validation. Another reason was the re-entry of the data of one 

group by the other in their Excel sheets. Other sources of errors include wrong levels of 

initial inventory, inconsistency between columns, and data that was "too regular", 

giving the impression of being generated, rather than being collected. 

   

The failure in data collection in the first year of the project guided the data collection 

and validation procedure in the second year. In the 2009-2010 academic year, data was 

validated by the supervisors and the author of this thesis as it was collected. This new 

procedure resulted in much more reliable data, initially resulting in the collection of data 

of 34 experiments. Since the validation of the data cannot be done during the 

experiments in the board game version of the beer game, some game data was found to 

be unreliable in this academic year, as well. Out of the 34 valid experiments, 29 of them 

were found to be reliable and included in the analysis. Eventually, a total of 39 teams 

were considered to be included in the data analysis for this thesis, and a final validation 

check was carried out. Hence, our outlier analysis started with 23 modified and 16 

standard teams. After outlier elimination (Appendix G), we are left with a total of 33 

(19 modified and 14 standard) teams for further analysis. 
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3.2.2 Preliminary Observations 

Here, we present our preliminary observations regarding the existence of the bullwhip 

effect. To observe whether bullwhip effect exists for an experiment, we first plot the 

order data for each team and echelon. These are presented in Appendices E and F. A 

typical example is provided in Figure 3-5, which shows the orders placed by each 

echelon of one of our teams over the periods of the experiment.  

 

 

Figure 3-5: Orders Placed over Periods of the Experiment (for team 39) 

 

The figure exhibits the three characteristics of the bullwhip effect as mentioned in 

Chapter 1. We observe “oscillation of orders”: Each echelon’s orders have a zigzagging 

pattern. We observe “amplification of oscillations”: The variance of oscillations 

increase as one goes from downstream to upstream echelons. We observe the “time lag” 

between order increases: The order pattern shifts with a time lag as one moves towards 

the upper echelons. For instance, we observe the peak orders for retailer, wholesaler, 

distributor and factory at periods 9, 13, 19, 21 respectively.  

 

In order to understand the nature of oscillations of orders, we graph the “effective 

inventory level” of each echelon of the same team in Figure 3-6. Recall that at each 

period of the experiment, an echelon either is in backlog (negative effective inventory) 

or has on hand inventory (positive effective inventory). For the team in the figure, the 
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retailer and the wholesaler experienced their first backlog at period 8, whereas the 

distributor and factory fell in backlog at periods 11 and 13 respectively.  

 
 

 

Figure 3-6: Effective Inventory Levels over Periods (for team 39) 

 

Next, in Figure 3-7, we present the order and effective inventory plots together for each 

echelon. We observe that when effective inventory levels decrease very much, the order 

quantities increase at the same and at the following periods. In other words, for each 

echelon, peak effective inventory levels and peak order quantities occur around the 

same time period. The participants react to their backlog and increase their order levels 

to compensate their backlogs.  

 

It is interesting to observe that the retailer experiences a huge backlog. Being 

exogenous, the retailer’s demand is the most stable of all; hence, one does not expect 

the retailer to experience high levels of backlog. The explanation lies in “supply 

uncertainty”. The retailer increases his orders over time, but that does not guarantee that 

the orders will be delivered by its upstream echelon, the wholesaler. In fact, because the 

wholesaler himself is in deep backlog, the retailer’s supply is highly uncertain. The 

same is true for the wholesaler, who is supplied by the distributor. Among all echelons, 

the only one that does not experience this supply risk is the factory. The factory is sure 

that once he places an order, the order will be produced by himself in three periods. This 

“supply uncertainty” factor turned out to be very strong in our experiments, and we will 

mention its effects later in the thesis. 
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Figure 3-7: Order and Effective Inventory Levels of the Echelons (for team 39) 
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We discussed these observations using a single team data. Most of the other teams’ data 

also exhibit the bullwhip effect, as can be seen in Appendices E and F. We should note 

that there are also some teams for which the bullwhip effect was not pronounced.  

 

Before comparing the standard and modified experiments, we also provide a support on 

the existence of amplification in our experiments. Similar to Croson and Donohue 

(2006), we perform a sign test to measure differences in order variances between 

adjacent echelons. The sign test is applicable to compare two related samples when one 

wants to show that two populations are different. The test assumes that the variable has 

a continuous distribution and does not make any assumptions on the type of the 

distribution. The test focuses on the direction of the differences. Under the null 

hypothesis, one expects half of the differences to be negative and half to be positive. 

One can reject the null hypothesis if too few differences of one sign occur (Siegel 

1956). We state our hypothesis as follows:  

 

Hypothesis 1: Amplification occurs in both the standard and modified experiments. 

 

We assign a positive sign for an increase in order variances between adjacent echelons 

(retailer/ wholesaler, wholesaler/ distributor, distributor/ factory pairs), and a negative 

sign for a decrease. Data reveals that the rate of the positive signs is 90% in the standard 

((= 42, x= 4, p< 0.001)9 and 89% in the modified experiments ((= 57, x= 6, p< 0.0001) 

which supports our hypothesis. Thus, the increase in the variance of orders between 

adjacent echelons is significant. There is statistical evidence for the existence 

amplification in both standard and modified experiments.  

 

3.2.3 Comparison of the Standard and the Modified Experiments 

Here, we compare the standard and modified experiments visually, as well as with 

descriptive analysis and hypothesis tests.  

 

                                                 
 
9  We obtain one-sided p values from sign test table D (Siegel 1956)  
    ( refers to number of pairs, x refers to number of fewer signs.    
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First, we make a visual comparison. Figure 3-8 and Figure 3-9 illustrate the order 

variances at each echelon for standard and modified experiments respectively. Each 

color represents one team. In both figures, we observe that the order variance increases 

from downstream to upstream echelons. We also note that the variance values within an 

echelon exhibit strong difference from team to team. Comparing the two figures, we 

observe that the average order variance in modified experiments is less than the average 

order variance in standard experiments.  

 

 

Figure 3-8: Order Variances in the Standard Experiments 

 

 

Figure 3-9: Order Variances in the Modified Experiments  

 

Next, we analyze the average values of variables over different teams for each 

experiment type and echelon. For instance, by “average of mean orders over teams” we 

refer to the average of “mean of orders placed over periods” over different teams. 
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Following this descriptive analysis, we present our hypothesis-testing results regarding 

comparisons between the standard and modified games. To this end, we use the “Mann 

Whitney U test” (Siegel 1956). 

 

Mann Whitney is a “nonparametric” test. Nonparametric tests do not assume any 

particular distribution regarding the population, whereas parametric tests assume that 

we are testing the random samples based on normally distributed. The cost of this 

generality is the reduced power of nonparametric tests due to not benefiting from all the 

information provided by the sample. However, the power loss is not large for small 

sample sizes. Consequently, nonparametric tests are preferred when the sample size is 

small and the underlying distribution is not normal.  

 

In the Mann Whitney U test, the null hypothesis suggests that the two populations have 

the same distribution. To this end, the test combines observations from two samples and 

ranks these in an increasing order. The test provides a test statistics, U, based on the 

rank-order of the observations. According to sample sizes (n and m), the test calculates a 

statistic “z” and the related significance level “p”. If the p10 value is smaller than the 

selected significance level (α= 0.05), one can reject the null hypothesis.  

 

 

3.2.3.1   Oscillation Comparison 

 

 

Table 3-2 presents the average order variances at each echelon. We observe that 

variance at each echelon in the modified game is lower than its counterpart in the 

standard game. As seen in the Table 3-2, the largest reduction in the average of order 

variances is observed at factory echelon with a ratio of 62%. However, the retailer, 

wholesaler and distributor echelons experienced 44%, 40% and 24% decreases 

respectively. Observing larger reductions at downstream (retailer, wholesaler) echelons 

than the distributor is interesting in terms of the oscillation aspect of the bullwhip effect. 

Appendices H and I provide detailed tables of order comparisons.  

                                                 
 
10   ** refers to strongly significant difference in the test  (p < 0.05). 
  * refers to weakly significant difference in the test (0.05< p< 0.10).  
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Table 3-2: Order Variance Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Avg. of Order Variances 
over Teams 

Standard 63.26 180.53 444.32 1225.13 

Modified 35.12 107.87 336.03 469.58 
 

 

Next, we provide the related hypothesis test. 

 

Hypothesis 2: The modified experiments will decrease the order variance (i.e. 

oscillations) compared to the standard experiments.  

 

Table 3-3 presents the p values for the order variance comparisons. The reduction in 

order variance is strongly significant for the whole supply chain (SC) (n= 56, m= 76, 

U= 1762, p= 0.046), and for the upstream (D, F) echelons (n= 28, m= 38, U= 396, p= 

0.039). In contrast, the downstream echelons (R, W) could not enjoy a significant 

decrease (n= 28, m= 38, U= 442, p= 0.124). This is consistent with Croson and 

Donohue (2006) who study the effect of inventory information sharing. The only 

echelon-by-echelon reduction that has significance is the one in factory echelon, and 

this is weakly significant.  

 

Table 3-3: P Values of Hypothesis Tests for Order Variances  

 

 

3.2.3.2   Amplification Comparison 

 

Next, we compare the amplification ratios across the experiment types. Recall that, this 

ratio is calculated by dividing an upstream echelon’s order variance by downstream 

echelon’s order variance. From Table 3-4, we observe that the “average of amplification 

ratios” is decreased by 10% and 25% in the wholesaler/ retailer, and distributor/  

Echelon SC R, W D, F R W D F 

Order Variances 0.046** 0.124 0.039** 0.179 0.23 0.152 0.099* 
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wholesaler pairs. In the factory/ distributor pair, we observe an increase (11%). See 

Appendices H and I for details. 

Table 3-4: Amplification Ratio Comparison 

Measurement Unit 
Experiment 

Type 
W / R D / W F / D 

Avg. of Amplification 
Ratios over Teams 

Standard 4.08 3.76 2.43 
Modified 3.65 2.84 2.69 

 

 

Next, we provide the related hypothesis test. 

 

Hypothesis 3: The modified experiments will decrease the amplification ratios 

between adjacent echelons of the supply chain compared to standard experiments. 

  

The Mann-Whitney test p values presented in Table 3-5 indicate that we could not find 

support for Hypothesis 3.    

 

Table 3-5: P Values of Hypothesis Tests for Amplification Ratios 

Echelon Pairs SC W/ R D/ W F/ D 

Amplification Ratio 0.423 0.493 0.179 0.327 

 

 

3.2.3.3   Time Lag Comparison 

 

Compared to oscillation and amplification, time lag is different to define and quantify. 

We analyze the time lag using the following measures: 

• The periods (and magnitudes) of peak order levels  

• The periods (and magnitudes) of peak backlog levels 

• The first period to experience backlog 

 

The first two are similar to Sterman (1989a). Here, we present the average values of 

these measures over all teams. Individual team values are presented in Appendix H. 

Also recall that the team graphs are found in Appendices E and F.  
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Table 3-6 shows that the average period of peak order level (and the average magnitude 

of peak orders) increases as one moves upstream. This is true for both the standard and 

modified experiments. We observe a slight decrease in the average period of peak order 

levels from standard to modified experiments.  

 

Table 3-6: Peak Orders Comparison 
 

Measurement Unit 
Experiment 

Type 
R W D F 

Avg. Period of 
Peak Orders 

Standard 13.57 14.57 16.00 17.29 

Modified 12.26 14.47 15.79 16.47 

Avg. Magnitude of 
Peak Orders 

Standard 24.64 40.36 71.07 110.00 

Modified 19.89 34.42 55.79 72.63 

 

 

The situation is different for the backlogs. The average period of peak backlog values 

are closer to each other compared to the average period of the peak order values.  For 

standard experiments, there is no particular trend between the four average values, 

whereas for the modified experiments the average periods decrease as one moves 

upstream. Combining these observations with Table 3-7 suggests that the downstream 

echelons increase their orders before the upstream echelons, however, due to supply 

risk, they cannot recover from the backlog earlier than the upstream echelons. The 

average peak backlog magnitudes do not indicate any particular ordering between the 

echelons.  

 

Table 3-7: Peak Backlogs Comparison 
 

Measurement Unit 
Experiment 

Type 
R W D F 

Avg. Period of 
Peak Backlogs 

Standard 17.93 17.36 18.79 18.36 

Modified 18.89 18.11 17.53 16.95 

Avg.Magnitude of 
Peak Backlogs 

Standard -39.50 -107.29 -94.86 -91.86 

Modified -47.11 -76.37 -78.00 -52.84 
 

 

Finally, we observe that the average period of first backlog occurrence increases as one 

moves upstream. This is consistent with our expectations. 
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Table 3-8: First Backlogs Comparison 
 

Measurement Unit 
Experiment 

Type 
R W D F 

Avg. Period of  
First Backlogs 

Standard 6.3 6.4 9.0 9.9 

Modified 5.9 7.1 8.4 9.5 
 

 

3.2.3.4   Mean Order Comparison 

 

Next, we compare the mean order over period values. Note that the mean order over 

periods for an echelon is not directly related to the three aspects of the bullwhip effect. 

As demonstrated in Table 3-9, the “averages of mean orders” at every echelon of the 

supply chain are less in the modified experiments relative to the standard experiments. 

However, the reduction is not symmetric. Modified experiment reduced the average of 

mean orders with a ratio of 29% for upstream echelons, while this ratio becomes 21% at 

downstream echelons. This result is not surprising, since in the standard experiments, 

upstream echelons face with high orders which are already amplified by the retailer and 

the wholesaler. However, in the modified experiments, because the orders are amplified 

less by the downstream echelons, the upstream echelons do not need to amplify as well.  

  

Table 3-9: Mean Order Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Avg. of Mean Orders 
over Teams 

Standard 11.15 14.27 18.13 21.27 

Modified 8.88 11.20 12.86 15.13 

 

 

Next, we provide the related hypothesis test. 

 

Hypothesis 4: The modified experiments will decrease the mean orders compared to 

the standard experiments.  
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Table 3-10 presents the p values for the mean order comparisons. The reduction in mean 

orders is strongly significant for the whole supply chain (SC) (n= 56, m= 76, U= 1521, 

p= 0.002), for the downstream (R, W) echelons (n= 28, m= 38, U= 365, p= 0.015) and 

upstream (D, F) echelons (n= 28, m= 38, U= 344.5, p= 0.007). The echelon-by-echelon 

comparison finds that the reduction in mean orders was strongly significant for the 

distributor echelon, whereas it was weakly significant for the other three echelons.  

 

Table 3-10: P Values of Hypothesis Tests for Mean Orders11 

 

 

In particular, the reduction in mean orders becomes more significant as one goes from 

the retailer echelon to the distributor echelon. However, the order mean reduction in the 

factory level is less significant (i.e., has higher p value) than the distributor echelon. 

This result is somewhat expected. As Croson and Donohue (2006) mention, even 

though the factory is the uppermost echelon in the supply chain, it is not necessarily the 

one that is most affected by the bullwhip effect. This is because the factory does not 

face supply uncertainty whereas the other echelons do. The factory is sure to receive 

products after a three period delay, once he places a production order. The other 

echelons depend on the inventory status of their upstream echelon. We observe that for 

supply chains that experience high backlog, supply uncertainty might become a critical 

determinant of the bullwhip effect.  

 

 

3.2.3.5   Cost Comparison 

 

Next, we compare the costs between the standard and modified experiments in Table 

3-11. Recall that the total cost consists of backlog and inventory costs. The cost 

comparison is important because the costs quantify how much the firms suffer from the 

bullwhip effect. We expect the reductions in order averages to lead to a decrease in total 

                                                 
 
11 P values are one sided.  
   

Echelon SC R, W D, F R W D F 

Mean Orders 0.002** 0.015** 0.007** 0.07* 0.052* 0.026** 0.065* 
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costs of each echelon. Before moving on to the detailed results, we briefly list our main 

observations about the cost changes across the experiment types.  

 

Table 3-11: Cost Comparison  

Measurement Unit 
Experiment 

Type 

Retailer Wholesaler 
Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Avg. of Mean Cost over 

Teams 

Standard 5.59 31.29 36.88 3.82 68.68 72.5 
Modified 1.80 40.61 42.41 4.49 49.85 54.34 

Avg. of Cost Variance 

over Teams 

Standard 296.46 978.32 1086.85 175.36 10648.65 10475.32 

Modified 33.50 1208.10 1108.81 155.45 3719.11 3499.54 

 

Measurement Unit 
Experiment 

Type  

Distributor Factory 
Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Avg. of Mean Cost over 

Teams 

Standard 6.74 51.48 58.22 9.73 36.11 45.84 
Modified 7.22 45.97 53.19 13.18 18.65 31.83 

Avg. of Cost Variance 

over Teams 

Standard 494.97 5373.63 5255.32 594.59 4898.53 4873.64 

Modified 297.81 4329.11 4083.11 576.17 1313.59 1487.24 

 

 

We observe that the backlog cost dominates the inventory cost in both the standard and 

modified experiments, at every echelon. This happens because the per unit cost of 

backlog is twice the per unit cost of holding inventory, and also because the echelons in 

most of our experiments stay in backlog for long periods. In the modified experiments, 

relative to the standard experiments: 

• The total cost decreased at all echelons except the retailer. However, the increase at 

the retailer is quite small.  

• The backlog cost decreased by 27%, 11% and 48% at the wholesaler, distributor and 

factory echelons respectively. It increased in the retailer echelon, but slightly.  

• The inventory cost increased by 18%, 0.07%, 36% at the wholesaler, distributor and 

factory echelons respectively.  It decreased at the retailer echelon.  

In the modified experiments, at the wholesaler, distributor and factory echelons, the 

“averages of mean total costs” are reduced relative to standard experiments by 25%, 9% 

and 31% respectively. In contrast, the retailer echelon has not experienced a reduction 

in total costs. This is because the retailer is the closest echelon to the customer and he 

does not experience the bullwhip effect as much as the other echelons. After a number 

of periods, the retailer participants possibly figure out that the customer demand they 
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face is flat at 8 cases per period. Understanding this, as Figure 3-10 and Figure 3-11 

illustrate, the retailers generally decrease their orders after around 15 periods of the 

experiment (especially in the modified experiments). This decrease affects the other 

echelons with some delay.   

 

Anticipating the flat nature of the demand does not isolate the retailer from the bullwhip 

effect. This is because of his supply uncertainty. Recall that wholesaler often cannot 

supply the retailer’s orders from his stock and falls into backlog. These backlogged 

orders will be met once the wholesaler obtains sufficient units from the distributor, 

which also takes time. As soon as these backlogged “high” orders are satisfied, they 

start pouring on the retailer, subject to the shipping delay. The retailer’s late “break” on 

the orders can only mitigate the bullwhip effect. 

 

We analyze the cost variances as well. The fluctuation of costs would be relevant for a 

risk averse manager. A “risk neutral manager” considers the mean value of the cost 

whereas a “risk averse manager” considers not only the mean but also the cost variance. 

In real life, managers are generally known to be risk averse in making decisions and 

they are afraid of the cost variances. As demonstrated in Table 3-11, in the modified 

experiments, “average of total cost variances” and “average of backlog cost variances” 

are decreased at wholesaler, distributor and factory echelons whereas they are increased 

at the retailer echelon relative to the standard experiments. Every echelon experienced 

the reduction in inventory cost variance. Appendices H and I provides detailed tables of 

cost comparisons. 

 

Next, we provide the related hypothesis tests. 

 

Hypothesis 5: The modified experiments will decrease the mean and variance of the 

total, inventory and backlog costs compared to the standard experiments. 
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Figure 3-10: Orders Placed by Each Retailer in Standard Experiments
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Figure 3-11: Orders Placed by Each Retailer in Modified Experiments
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We make comparisons across the total cost as well as the inventory and backlog costs 

separately. We do not list each hypothesis one by one because indicating the 

significance of reduction is the basic idea for all of the variables. From Table 3-11, 

recall that we could not observe reductions in the average values of some cost variables. 

Considering this, we perform one tailed hypothesis tests to show significance of 

reductions for variables in which we observed decreases. For variables in which we 

observed an increase, our aim is to show that the increase is not significant. 

 

Total (the sum of inventory and backlog) cost results are presented in the first row of 

Table 3-12. We observe that the decrease in the mean total costs of the supply chain 

(SC) is not significant (n= 56, m= 76, U= 1956.5, p= 0.216), whereas the decrease for 

the upstream echelons (D, F) is weakly significant (n= 28, m= 38, U= 422, p= 0.078). 

    

Table 3-12: P Values of Hypothesis Tests for Total Costs 

Variables \ Echelon SC R, W D, F R W D F 

Mean Total Costs 0.216 0.287 0.078* 0.099* 0.340 0.253 0.076* 

Total Cost Variances 0.094* 0.371 0.024** 0.152 0.314 0.143 0.045** 

 

 

Table 3-13 presents the p values regarding the inventory cost comparisons. The 

significant decreases were found at the retailer and wholesaler echelons.  

 

Table 3-13: P Values of Hypothesis Tests for Inventory Costs 

Variables \ Echelon SC R, W D, F R W D F 

Mean Inventory Costs 0.500 0.478 0.417 0.055* 0.072* 0.475 0.411 

Inventory Cost Variances 0.375 0.501 0.313 0.103 0.135 0.432 0.353 

 

 

Table 3-14 presents the p values regarding the backlog cost comparisons. We observe 

strongly significant reductions for the upper echelon, the factory, and the retailer 

echelons. Together with Table 3-13 results, we observe that the modified experiments 

achieve inventory cost reduction in the retailer echelon, and backlog cost reduction in 

the upstream echelons.  
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Table 3-14: P Values of Hypothesis Tests for Backlog Costs 

Variables \ Echelon SC R, W D, F R W D F 

Mean Backlog Costs 0.204 0.244 0.04** 0.045** 0.286 0.209 0.048** 

Backlog Cost Variances 0.180 0.199 0.028** 0.057* 0.408 0.219 0.033** 

 

 

Overall, the supply-chain (SC) p values are not illustrating a significant reduction. The 

significant reductions we observed in the mean orders and order variances did not lead 

to significant reductions in total, backlog or inventory costs of the total supply chain. 

We expect that we may observe a significant reduction by increasing our sample sizes 

through conducting more experiments.  

 

 
 

3.2.3.6   Analysis with Median Values  

  

So far, we have reported the “averages” of observed values. An alternative is to use the 

“median”, which is defined as the middle value when the observations are ordered from 

smallest to largest in magnitude (Devore 1995). One advantage of median over average 

is that it is less affected by the extremes values in data. We chose to report our main 

findings using averages, because this is the more common approach in literature. Wu 

and Katok (2006) and Croson et al. (2005) are among the researchers that report median 

values in their bullwhip effect studies.  

 

Table 3-15, Table 3-16, Table 3-17, Table 3-18, Table 3-19, Table 3-20 and Table 3-21 

report the median values. Comparing these tables with Table 3-2, Table 3-4, Table 3-6, 

Table 3-7, Table 3-8, Table 3-9 and Table 3-11, we observe that the general results are 

consistent to what is obtained with the average values. The median values are increasing 

as one moves upstream in the supply chain in both game types. The values in the 

modified game are generally lower than their counterparts in the standard game. As 

expected, the median values are less than their average counterparts because our data 

has a number of large values even after outlier elimination.  
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Table 3-15: Median Order Variance Comparison 

Measurement Unit 

Experiment 

Type 
R W D F 

Median of Order 
Variances over Teams 

Standard 43.91 88.47 368.8 555.14 

Modified 28.75 64.81 116.9 292.52 
 

 

Table 3-16: Median Amplification Ratio Comparison 

Measurement Unit 
Experiment 

Type 
W / R D / W F / D 

Median of Amplification 
Ratios over Teams 

Standard 2.58 2.26 1.56 
Modified 2.63 1.99 1.98 

 

 

Table 3-17: Median Peak Orders Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Median Period of  
Peak Orders 

Standard 13.00 15.50 17.00 19.00 

Modified 12.00 14.00 15.00 16.00 

Median Magnitude of 
Peak Orders 

Standard 22.50 35.00 75.00 95.00 

Modified 18.00 30.00 40.00 60.00 

 

 

Table 3-18: Median Peak Backlogs Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Median Period of  
Peak Backlogs 

Standard 18.00 17.50 19.00 19.00 

Modified 19.00 18.00 17.00 17.00 

Median Magnitude of 
Peak Backlogs 

Standard -43.50 -72.00 -91.00 -79.50 

Modified -50.00 -70.00 -66.00 -55.00 
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Table 3-19: Median First Backlogs Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Median Period of  
First Backlogs 

Standard 6.0 6.5 9.0 10.0 

Modified 6.0 8.0 9.0 9.0 
 

 

Table 3-20: Median Orders Comparison 

Measurement Unit 
Experiment 

Type 
R W D F 

Median of Mean Orders 
over Teams 

Standard 10.06 12.10 17.13 19.65 

Modified 8.04 10.38 11.63 13.92 

 

 

Table 3-21: Median Cost Comparison 

Measurement Unit 
Experiment 

Type 

Retailer Wholesaler 
Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Median of Mean Cost 

over Teams 

Standard 1.29 29.67 33.85 1.40 52.50 53.79 
Modified 0.79 42.42 43.04 2.92 50.08 53.00 

Median of Cost 

Variance over Teams 

Standard 10.67 927.21 899.17 5.77 2864.43 2658.03 

Modified 2.52 1202.75 1091.01 22.17 2679.82 2182.78 

 

Measurement Unit 
Experiment 

Type  

Distributor Factory 
Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Inv. 

Cost 

Backlog 

Cost 

Total 

Cost 

Median of Mean Cost 

over Teams 

Standard 5.48 45.08 59.06 7.92 26.58 35.00 
Modified 5.25 38.75 45.25 7.33 17.33 26.63 

Median of Cost 

Variance over Teams 

Standard 143.32 3949.61 3638.16 348.51 2322.46 2146.75 

Modified 68.46 2442.72 2086.61 100.93 874.75 1171.64 
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Chapter 4                                                                                                                      

The Second Study:   Determining the Behavioral Factors Affecting Order 

Decisions 

In the second study, we aim to determine the behavioral factors that affect the ordering 

decisions of the participants. Understanding these factors might enable supply chain 

managers to develop effective policies to counter the bullwhip effect. For instance, 

Croson and Donohue (2006) show that participants often underweight the supply line. 

That is, they do not value the orders that are already coming, or they forget about them 

while they are placing a new order. If one can show this effect on participant data, one 

can then recommend policies to practitioners that would address this behavioral factor. 

For example, the firms might invest in supply chain visibility software that would 

remind decision makers what orders are already coming, and when they will come.  

 

To obtain insights about the participants’ decision-making strategies, we conducted a 

post-experiment survey. We asked the participants what their ordering strategy was 

during the experiment. The most frequent answers were:  

 

• I followed the orders I received from my downstream partner (i.e., I ordered what 

was demanded from me)  

• I tried to simultaneously minimize the backlog and inventory levels. 

• I tried to keep some safety stock against backlogs because the cost of a backlog is 

twice the cost of inventory holding.  
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Even these responses indicate that the ordering polices of participants might be quite 

different from each other. The participants are not equal in terms of the importance they 

place in achieving the trade-off between backlogs and inventory holding. They also 

seem to react differently to the delays in the system that makes matching supply and 

demand difficult. These observations suggest that it is not easy to determine generally-

applying weights on behavioral factors that determine the ordering decision. Hence, our 

study will focus on the ordering strategy of each individual separately. We will then try 

to see if some general conclusions can be drawn.  

 

In the post-experiment survey, we also asked the participants to draw their prediction of 

the exogenous customer demand that the retailer echelon faced. The retailer participants 

knew that demand was 4 cases/ period in the first four periods, and 8 cases/ period 

afterwards. However, almost all other participants came up with a prediction more or 

less similar to the one below, which was submitted by a factory participant: 

 

       

Figure 4-1: Predicted Customer Demand Drawn by One of Factory Participants   

 

This prediction confirms the existence of the bullwhip effect. After the initial 4-5 

periods, all echelons thought that the orders will be increasing. Anticipating the true 

pattern of the customer demand (which is flat at 8 cases/ period) after a number of 

periods, the retailer stopped placing high orders but this took some time to propagate in 

the supply chain. 

Customer Order 

Periods 
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4.1 The Candidate Factors 

The key to understanding the bullwhip effect is to determine what factors the 

participants at different echelons considered in their ordering decisions. To this end, we 

developed a number of multiple linear regression models to predict O(t), the order 

placed at the end of period t. The following is a list of the candidate independent 

variables for the regression model, (i.e., the candidate factors): 

 

• The demand faced at period t, D(t) : The participant observes the demand that he 

needs to satisfy before making his own order decision. It is natural to expect that a 

high demand will positively affect the order quantity.  

 

• Inventory/backlog level: This measures the inventory/ backlog level after the 

incoming shipment is taken in and after the faced demand is met. We predict that in 

general, the higher the current inventory level, the less the need to place a high 

order. Because the echelon might either have on hand inventory or may be in 

backlog, we use three different variables:  

o Effective inventory at period t, EI(t) : This is positive when there is on-hand 

inventory and negative when there is backlog. Using this variable alone 

ignores the fact that the cost of the backlog is twice the cost of on hand 

inventory. As a result, we also considered the following two separate 

variables: 

o On hand inventory level, I(t), which is the positive when there is on-hand 

inventory, and zero in case of backlog 

o Backlog level, B(t), which is positive if there is backlog, and zero in case of 

positive on hand inventory.  

 

• Whether in backlog or not, (If B(t)>0): Independent of the size of the backlog, being 

in backlog alone might cause the participants to panic and increase their order size. 

This factor is defined as a 1/ 0 variable.  

 

• Outstanding orders, O(t-1), O(t-2), O(t-3): Outstanding orders refer to orders that 

were placed at the previous periods and that are currently on the supply line of an 



 56

echelon (i.e., not received yet). When a participant in the retailer, wholesaler, or 

distributor echelon places an order to his upstream echelon, he receives cases after 4 

periods due to the ordering and shipping delays. If the upstream echelon does not 

have sufficient inventory, the order might be backlogged and further delayed. 

Because of these delays and uncertainties in supply, the participants discount the 

value of their outstanding orders. Sterman (1989a) and Croson and Donohue (2006) 

show that participants undervalue, or simply forget incoming orders in the supply 

line while making order decisions. We aim to see how much underweighting our 

participants made. To this end, we used the outstanding order quantities placed 

three, two and one period ago as independent variables. Recall that the order placed 

four periods ago arrives at the echelon in the beginning of the period t (if it was 

filled by the upstream echelon).  

 

• The increase in demand over the last two periods, (D(t)-D(t-1)): The long delays 

and supply uncertainty forces participants to forecast the demand for future periods. 

In particular, the increases in demand may lead the participants to assume an 

increasing trend to follow. This would make them increase their order sizes.  

 

• Whether there is an increase in demand over the last two periods, (If  D(t)>D(t-1)): 

This is the 1/ 0 version of the variable described above.   

 

4.2 The Regression Models 

Similar to Sterman (1989a) and Croson and Donohue (2006), we run regression analysis 

for each participant individually to detect how much weight, if any, participants place 

on these factors. To collect sufficient data points for each participant, we conducted 

“long experiments”, which take 50 periods. The long experiments are played by four-

participant teams, with one participant at each location (i.e., we are not interested in the 

modified experiment type here). The cost parameters and the experimental procedures 

are the same as the standard experiments of our first study, explained in Chapter 3. 

Different from the standard experiment, the long experiments begin with 12 cases on 

hand at each echelon. We conducted 7 of these long experiments with 28 participants.  
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Table 4-1 summarizes the 11 multiple linear regression models that we constructed to 

explain the ordering behavior of the participants. The table shows which independent 

variables (the factors that we explained above) were in a particular model, and what the 

average adjusted R
2 value of the model is, over 28 participants.  

 

The 11 models can be divided into two. The first 7 models use “effective inventory 

EI(t)”. The last 4 models use “On hand inventory I(t)” and “Backlog B(t)”. Next, we 

provide details on two models from each group. 

 

Table 4-1: Regression Models Summary 

Model Independent Variables 
Average 

Adj. R
2
 

1 EI(t) D(t)          0.524 

2 EI(t) D(t)  O(t-1) O(t-2) O(t-3)   0.623 

3 EI(t) D(t)  O(t-1)+O(t-2)+O(t-3)       0.574 

4 EI(t) D(t)  O(t-1)+O(t-2)+O(t-3)  If D(t)>D(t-1)     0.589 

5 EI(t) D(t)  O(t-1)+O(t-2)+O(t-3)  (D(t)-D(t-1))     0.600 

6 EI(t) D(t)  If B(t)>0        0.555 

7 EI(t) D(t)  If B(t)>0 O(t-1) O(t-2) O(t-3) 0.641 

8 B(t) D(t)  I(t)       0.573 

9 B(t) D(t)  I(t) O(t-1)     0.624 

10 B(t) D(t)  I(t) O(t-1) O(t-2) O(t-3) 0.650 

11 B(t) D(t)  I(t) O(t-1)+O(t-2)+O(t-3)     0.618 

 

 

We choose models 3 and 11 as the examples on which to provide analysis details, 

because the weights obtained from these two models have the best consistency between 

participants. Also, both of these models consider the sum of all outstanding orders as a 

factor, rather than each order separately. This may be more realistic because the 

participants are more likely to remember the total outstanding orders than remembering 

each individual order separately.  
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4.2.1 Observations on Model 3 

This model aims to explain the orders placed at period t by using  

1) the effective inventory at period t 

2) demand faced at period t  

3) total outstanding orders (the supply line) as of period t 

 

Factors 1 and 3 was to give us an idea about the level of supply line underweighting.  

  

Before beginning the analysis, we checked a number of regression assumptions. The 

details can be found in Appendix J. In summary, we found that regressions are highly 

significant (p<0.05) for 26 out of 28 participants. Normality assumption of residuals 

does not hold for 6 out of 26 participants. These six participants were eliminated from 

further analysis. All VIF values are found to be less than 10, which indicates that there 

is no multicollinearity. Durbin Watson tests show that there is no autocorrelation 

between the residuals.  

 

For the remaining 20 participants, Table 4-2 shows the adjusted R
2 values and 

standardized beta coefficients. The average adjusted coefficient of determination (adj. 

R
2) value over 20 participants is 59.7%. Given the complexity of the game and the 

number of potential behavioral factors, we believe that this is a reasonable adjusted R
2
 

value. In fact, other researchers have also achieved similar R2 values (see, for example 

Croson and Donohue 2006). 

 

Next, we check the signs of the (beta) coefficients. In parallel with our expectations, the 

demand coefficients are positive for most participants (19 participants). The average 

demand coefficient of 0.26 seems reasonable. The effective inventory coefficients are 

negative for most participants (19 participants). The average effective inventory 

coefficient of -0.40 also looks reasonable.   
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Table 4-2: Standardized Beta Coefficients for Model 3 

Participants Echelon Adj. R2 
Standardized Coefficients 

EI(t) D(t)  ∑O(t-i) 

1 Factory  60.71% -0.39 0.40 0.13 

2 Distributor 60.93% -0.51 0.12 0.23 

3 Wholesaler 72.61% -0.23 0.39 0.46 

4 Retailer 23.90% 0.07 0.06 0.55 

5 Factory  68.37% -0.44 0.57 -0.17 

6 Distributor 86.90% -0.58 0.48 -0.05 

7 Wholesaler 42.04% -0.12 0.42 0.30 

8 Retailer 55.85% -0.51 0.12 0.33 

11 Wholesaler 83.67% -0.41 0.21 0.39 

12 Retailer 82.76% -0.61 0.12 0.37 

15 Wholesaler 59.61% -0.56 0.33 0.20 

16 Retailer 23.17% -0.31 0.13 0.27 

18 Distributor 24.15% -0.63 -0.36 0.13 

19 Wholesaler 68.60% -0.24 0.13 0.55 

21 Factory  75.85% -0.26 0.44 0.32 

22 Distributor 62.52% -0.30 0.45 0.35 

25 Factory  82.18% -0.20 0.52 0.32 

26 Distributor 81.88% -0.25 0.50 0.29 

27 Wholesaler 61.41% -0.70 0.13 0.05 

28 Retailer 18.17% -0.73 0.01 -0.43 
 

 

However, in contrast to expectation, the outstanding orders coefficients are positive for 

most participants (17 participants). This means that the orders have a tendency to be 

larger when the outstanding orders are large. Ideally, when one has a high value of 

outstanding orders, he does not need to order more, given that these orders will be 

arriving in the following periods. However, the general ordering behavior of the 

participants is to increase their orders in the first half of the experiment, and decrease in 

the second half. Thus, higher orders are likely to follow each other. One might think this 

behavior to cause “autocorrelation” between the residuals in the regression analysis, 

however, as we mentioned in the beginning, autocorrelation is not found in the data of 

these 20 participants.  
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After conducting regression analysis, we try to detect whether there exists a significant 

difference in adjusted R2 values across echelons or not. Therefore, we conduct Mann 

Whitney tests for each echelon pair. Hypothesis tests show that there is not a significant 

difference in R2 values across echelons.   

 

4.2.2 Observations on Model 11 

This model aims to explain the orders placed at period t by using  

1) inventory on hand at period t 

2) backlog at period t 

3) demand faced at period t  

4) total outstanding orders (the supply line) as of period t 

 

Note that this model is different from Model 3 in that the inventory and backlog values 

are taken as separate factors. We expected the beta coefficient for factors 1 and 4 to be 

negative and the coefficient for factors 2 and 3 to be positive. The relation between the 

magnitudes of factors 1 and 2 shall give us an idea about the powers of the two sides of 

the inventory/ backlog trade-off.  

 

Similar to analysis of the Model 3, before beginning the analysis, we checked a number 

of regression assumptions. The details can be found in Appendix J. Regressions are 

highly significant (p<0.05) for 26 out of 28 participants. The two participants with 

insignificant results are the same ones in Model 3. Normality assumption of residuals 

does not hold for 8 out of 26 participants. For one participant, (VIF) value of the 

backlog variable is greater than 10 which indicates multicollinearity. These nine 

participants were eliminated from further analysis. Durbin Watson tests show that there 

is no autocorrelation between the residuals.  

 

For the remaining 17 participants, Table 4-3 shows the adjusted R
2 values and 

standardized beta coefficients for each participant. The average adjusted coefficient of 

determination (adj. R
2) value over 17 participants is 66.5%.  
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As expected, the demand and backlog coefficients are positive for most participants (14 

and 16 participants out of 17, respectively) and the inventory coefficients are negative 

for most (16 participants out of 17). Similar to Model 3, the average demand coefficient 

is 0.26. The average backlog coefficient is 0.32, whereas the average inventory 

coefficient is -0.24. We observe that contrary to our expectation and similar to Model 3, 

the outstanding orders’ coefficients were mostly positive (14 participants).  

 

 

Table 4-3: Standardized Beta Coefficients for Model 11 

Participants  Echelon Adj. R
2
 

Standardized Coefficients 

B(t) I(t)  D(t) ∑O(t-i) 

2 Distributor 60.26% 0.44 -0.12 0.12 0.23 

3 Wholesaler 73.61% -0.02 -0.22 0.40 0.55 

4 Retailer 22.21% -0.05 0.03 0.06 0.55 

6 Distributor 86.63% 0.55 -0.07 0.48 -0.05 

7 Wholesaler 41.88% 0.19 -0.03 0.38 0.26 

8 Retailer 59.80% 0.24 -0.49 0.12 0.27 

11 Wholesaler 85.40% 0.50 -0.39 0.00 0.18 

12 Retailer 83.06% 0.16 -0.56 0.12 0.33 

13 Factory  82.79% 0.34 -0.03 0.63 0.01 

16 Retailer 23.54% -0.06 -0.37 0.18 0.28 

19 Wholesaler 75.51% 0.75 -0.10 0.11 0.03 

20 Retailer 41.61% 0.39 -0.48 0.26 -0.15 

21 Factory  82.22% 0.39 -0.12 0.29 0.28 

22 Distributor 79.45% 0.76 -0.04 0.33 -0.07 

25 Factory  85.04% 0.33 -0.20 0.35 0.22 

26 Distributor 87.71% 0.43 -0.29 0.39 0.05 

27 Wholesaler 60.56% 0.18 -0.59 0.13 0.05 

 

 

Similar to Model 3, there is not a significant difference in adjusted R2 values across 

echelons in Model 11.   
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4.2.3 Observations on Stepwise Regression Models 

We also conduct stepwise regression analysis for each participant in order to show that 

the factors that affect ordering decisions might change from person to person. The first 

stepwise regression model (SRM1) uses independent variables of Models 1 to 7 (see 

Table 4-1). The second stepwise regression model (SRM2) uses independent variables 

of Models 8 to 11 (see Table 4-1).  

 

Average adjusted R2 over 28 participants is 60.40% in the SRM1. Consistent with our 

expectations, we find that different factors are important for different participants. 

However, the effective inventory (16 out of 28), demand (16 out of 28) and orders 

placed one period ago (13 out of 28) are the factors that are important for most of the 

participants as seen in  

Table 5-27.  

 

Average adjusted R2 over 28 participants is 59.69% in the SRM2. Similar to SRM1, 

backlog (15 out of 28), demand (14 out of 28), inventory (10 out of 28) and the orders 

placed one period ago (14 out of 28) are the factors that are important for most of the 

participants as seen in Table 5-28.  
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Chapter 5                                                                                                                

Conclusions and Directions for Future Research 

In this thesis, we present two studies related to the bullwhip effect. In the first study, we 

proposed a version of the beer game with two participants at each echelon with 

conflicting incentives regarding the order decision. To the best of our knowledge, this 

has not been studied in the literature. Such a decision structure reflects the well-known 

incentive conflict between the sales and operations functions of a firm, particularly in 

the Sales and Operations Planning process. Our expectation was that with two 

participants that represent the two sides of the order decision trade-off, the bullwhip 

effect will be dampened relative to a standard beer game. Our observations in this study 

are as follows: 

 

1) Bullwhip effect exists. We observed the three characteristics of the bullwhip effect in 

most of our experiments. Order levels are oscillating, these oscillations are amplified 

towards upstream echelons and there exist time lags between echelons.  

 

2) The results exhibit high level of variation among teams. Hence, generalizations are 

difficult. Studies that report regression models that are based on multiple participant 

data should be carefully interpreted.  

 

3) On average, in the modified experiments, relative to the standard experiments  

• Order variances (oscillations) reduced at each echelon of the supply chain. The 

reduction is strongly significant at the supply chain and upstream echelons level.  

• The amplification ratio decreased between wholesaler/ retailer and distributor/ 

wholesaler echelons. However, the reductions are not statistically significant. 
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• The participants reach their peak order levels faster.  

• The total cost and backlog cost decreased at all echelons except the retailer. 

Most of the decreases are not statistically significant.  

 

Supply risk turned out to be an important factor for the bullwhip effect. Supply risk for 

the factory is zero because the factory knows that it will receive its orders for sure. 

Other echelons’ orders, however, may not be filled by their upstream partner, which 

causes them to place even larger orders in return. This turned our supply chains into 

“backlog chains” where most echelons’ effective inventory levels are negative for many 

number of periods, and where inventory holding costs are dwarfed by the backlog costs.  

 

In the second study, we tried to determine the behavioral factors affecting the 

participants’ ordering decisions. We tried a number of different regression models and 

focused on the most promising two that have quite consistent coefficient signs across 

participants. The results of the second study are as follows. 

 

We observed that the participants are seriously underweighting the supply line, 

consistent with Sterman (1989a) and Croson and Donohue (2006)’s results. In fact, 

contrary to expectations, the coefficient of outstanding orders in regressions turned out 

to be positive for most participants. We believe the explanation is related to supply risk. 

Orders are not satisfied, which lead to the placement of higher orders. Hence, there 

exists some level of autocorrelation in order series, although it is not at a level to hinder 

the regression study.  

 

With the exception of Oliva and Gonçalves (2007), the literature studies effective 

inventory as a single factor in regression studies. In some of our models, we analyzed 

the participants’ reactions to backlog and inventory separately. Oliva and Gonçalves 

(2007) pooled all participants’ data to conduct a single regression; whereas we studied 

participant-level regressions. These authors found that the subjects do not react to 

backlogs different from on-hand inventory. Our results indicate the opposite. The 

average absolute value of the backlog coefficient is higher than that of the on-hand 

inventory coefficient (which is negative). This holds true for most of the participants at 

the participant level as well.  
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Our study has certain weaknesses, and it can be extended in a number of directions. We 

discuss these in what follows.  

 

Practicing managers as subjects 
  
We conducted a high number of experiments with human decision makers from 2008 to 

2010, using students from different departments. One might question the 

representativeness of students’ results to the real managers’ behaviors. Croson and 

Donohue (2006) report that their experimental results with students and real managers 

do not exhibit a significant difference. In a newsvendor experiment setting, Bolton et al. 

(2008) show that managers perform similar ordering behavior to the students. Yet, we 

are planning to conduct the same experiments with practicing managers for external 

validity. In particular, we aim to use practicing operations and sales managers to fill 

these roles experiments.  

 

Other demand patterns and experiment settings 

 

In our experiments, similar to the standard beer game, the customer demand to retailer is 

4 cases/ period in periods 1 to 4, and 8 cases/ period afterwards. One might argue that 

this demand pattern is not realistic. Steckel et al. (2004) conduct experiments under 

different demand patterns and showed that the value of POS sharing and the impact of 

time lag reduction depend on the pattern of demand data. We also suspect that our 

results will depend on the demand pattern. However, we chose to stick to the standard 

step-up pattern in order to be able to compare our results with the literature. Likewise, a 

change in other experiment settings (such as the ratio of inventory holding and 

backorder costs, or the length of time delays) would also affect our results.  

 

Computerized experiments 

 

We conducted board game experiments. The board game environment offers its own 

advantages, allowing lively discussion between participants which is at the core of our 

modified experiments. In the future, we may conduct computerized versions of the 

game, keeping the same discussion environment in place. This would help us greatly in 

the data collection process and overcome manual data entry errors.  
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Contamination effect 

 

Our experiments spanned a time period from 2008 to 2010. We could not have 

conducted all at once for practical reasons. Given this setting, there is the possibility 

that participants from earlier experiments share their knowledge with later players. This 

would undermine our assumption of using participants with zero experience. To 

overcome this, we asked the participants not to discuss their strategy with others. More 

effectively, there was usually plenty of time between different sets of experiments, 

which minimized the strength of any such knowledge transfer.  

 

Monetary incentives 

 

We did not provide monetary incentives to participants. We motivated them by 

announcing the winner team (and the winner supply and sales manager) at the end of the 

experiments. Although the participants indicated that they did not have a motivation 

problem, we may offer monetary incentives to formalize the process. This, of course, 

requires funding. 

 

Future analysis 

 

This study can be extended in many different directions. We provide two such 

directions as examples. First, we may conduct an “intertemporal” analysis by comparing 

the decisions among different time windows (such as periods 1-6, 7-12, 13-18, 19-24 in 

a 24-period experiment). This would give us better results regarding the “time lag” 

aspect of the bullwhip effect. Second, we can try to establish connections between 

personality characteristics of the participants and the bullwhip effect. We have already 

collected this information in post-experiment surveys, yet, we have not had a chance to 

analyze it as part of this thesis.  
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Appendix A: Record Sheet 

 

 

 

 
 

 
Figure 5-1: Record Sheet of One of Our Participants 
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Appendix B: Participants Information  

 

 
Table 5-1: Participants Information  

 

        

  Total �umber of Participants 208   

      
  Gender    

  Female 42%   

  Male 58%   

      
  Age    

  Average over All Participants 21.7   

      
  University    

  Sabanci University  82%   

  Other  18%   

      

  Department    

  Industrial Engineering 70%   

  Other Departments 30%   

      
  Motivation to Play the Game    

  Liked the Game (0: No - 10: Yes) 7.5   

        
 

 

 
Table 5-2: Attitude towards Risk and Service 

 

Questions \ Average over All Participants Average 

Perception of Service Quality (0: Dissatisfied - 10: Satisfied) 6.6 

Attitude towards Stock out (0: Angry - 10: Relaxed) 4.5 

Tendency to Hold Inventory (0: No - 10: Yes)  5.0 

Willingness to Wait (0: Not wait - 10: Wait) 4.3 
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Appendix C: Data Acquisition Process 
 

 

 

 

1. Four graduation project groups helped us in conducting the experiments since 

2008. 

2. We trained the facilitators. 

3. We arranged around 200 participants and organized the experiments. 

4. Training and pilot experiments before real ones. 

5. After the experiments, data is transferred to MS Excel, controlled and filtered. 

Some data eliminated at this stage. 

6. Outlier elimination. 

7. Descriptive analysis in MS Excel. 

8. Statistical analysis with SPSS and Matlab. 
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Appendix D: Post-Experiment Survey 

 

 

 

Figure 5-2: Post Experiment Survey 

        

      

  Name Surname     

  Team Name      

  Echelon     

  Gender     

  Work     

  What is your favorite game?      

  What is your favorite color?      

  What is your favorite football team?      

  Do you like the beer game? (0: No - 10: Yes)      

  Perception of service quality (0: Dissatisfied - 10: Satisfied)     

  Attitude towards stock out (0: Angry - 10: Relaxed)     

  Tendency to hold inventory (0: No - 10: Yes)      

  Willingness to wait (0: Not wait - 10:Wait)     

  What was your ordering strategy ?     

        

        

      

  Please draw your prediction of the exogenous customer demand    

  that the retailer echelon faced.     

      

  

 

Orders 
 

   

      

      

      

      

      

      

      

      

      

      

      

      0       5       10       15        20       25        30         35         40       45   Period   
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Appendix E: The Graphs of the Standard Experiments 

 

 
Order Level and Effective Inventory of Team 14 

 
 

 
Order Level and Effective Inventory of Team 16 
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Order Level and Effective Inventory of Team 29 

 

 
Order Level and Effective Inventory of Team 37 



 73

 
Order Level and Effective Inventory of Team 38 

 
Order Level and Effective Inventory of Team 39 
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Order Level and Effective Inventory of Team 43 

 

 
Order Level and Effective Inventory of Team 46 
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Order Level and Effective Inventory of Team 49 

 

 
Order Level and Effective Inventory of Team 50 
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Order Level and Effective Inventory of Team 53 

 

 
Order Level and Effective Inventory of Team 54 
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Order Level and Effective Inventory of Team 55 

 

 
Order Level and Effective Inventory of Team 60 
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Appendix F: The Graphs of the Modified Experiments 
 

 
Order Level and Effective Inventory of Team 3 

 
 

 
Order Level and Effective Inventory of Team 5 
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Order Level and Effective Inventory of Team 7 

 

 
Order Level and Effective Inventory of Team 8 
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Order Level and Effective Inventory of Team 11 

 

 
Order Level and Effective Inventory of Team 12 
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Order Level and Effective Inventory of Team 30 

 

 
Order Level and Effective Inventory of Team 31 
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Order Level and Effective Inventory of Team 34 

 

 
Order Level and Effective Inventory of Team 35 
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Order Level and Effective Inventory of Team 36 

 

 
Order Level and Effective Inventory of Team 40 
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Order Level and Effective Inventory of Team 44 

 

 
 Order Level and Effective Inventory of Team 45 
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 Order Level and Effective Inventory of Team 56 

 

 
 Order Level and Effective Inventory of Team 57 
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 Order Level and Effective Inventory of Team 59 

 

 
Order Level and Effective Inventory of Team 61 
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 Order Level and Effective Inventory of Team 62 
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Appendix G: Box plots of Variance of Orders and Amplification Ratios  
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Figure 5-3: Box Plot of Amplification Ratios for Standard Experiments 
 
 

23232323N =

Echelon

4.003.002.001.00

V
a

ro
fO

rd
e

r

10000

8000

6000

4000

2000

0

-2000

32.00

58.00

13.00

32.00

11.00

13.00

11.00
4.00
13.00

58.0011.00
4.00

 
 

Figure 5-4: Box Plot of Order Variances for Modified Experiments 
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Figure 5-5: Box Plot of Amplification Ratios for Standard Experiments 
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Appendix H: Descriptive Comparison Detail Tables 
 
 
 
 
 
 
 
 
 

Table 5-3: Order Variances 
 

Standard Experiments  Modified Experiments 

Team R W D F  Team R W D F 

14 65.3 399.1 817.4 2089.0  3 21.2 61.0 145.7 200.8 

16 56.1 155.2 470.1 1027.5  5 79.1 304.2 472.3 883.2 

29 59.8 83.5 107.4 171.1  7 8.5 55.9 51.7 80.9 

37 82.3 112.0 390.2 587.2  8 44.3 58.8 116.9 455.0 

38 6.5 56.5 347.4 523.0  11 113.3 380.6 2772.1 1537.4 

39 7.4 40.9 94.4 131.4  12 32.7 101.2 189.1 292.5 

43 8.7 21.7 59.5 62.6  30 17.4 28.9 60.1 147.9 

46 56.0 935.2 1512.2 2324.5  31 10.1 55.0 101.1 589.4 

49 88.6 120.1 95.3 101.9  34 56.1 96.4 106.0 158.3 

50 21.5 42.9 94.8 235.2  35 20.4 68.2 47.5 203.6 

53 22.4 47.2 572.9 2592.6  36 11.5 201.4 32.7 300.9 

54 26.4 70.3 828.5 6272.2  40 49.0 94.9 112.1 273.3 

55 31.8 93.5 92.2 388.7  44 21.1 29.1 102.3 92.8 

60 352.7 349.4 738.3 644.8  45 7.6 18.3 43.1 67.9 

       56 49.5 258.8 654.9 2202.3 

       57 38.3 64.8 975.0 302.0 

       59 27.8 73.0 136.9 369.1 

       61 30.8 41.2 133.1 502.8 

       62 28.8 57.6 132.1 261.8 

Average  

over Teams 

     

 

     

63.3 180.5 444.3 1225.1  35.1 107.9 336.0 469.6 
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Table 5-4: Amplification Ratios  
 

Standard Experiments   Modified Experiments 

Team W/ R D/ W F/ D  Team W/ R D/ W F/ D 

14 6.1 2.0 2.6  3 2.9 2.4 1.4 

16 2.8 3.0 2.2  5 3.8 1.6 1.9 

29 1.4 1.3 1.6  7 6.6 0.9 1.6 

37 1.4 3.5 1.5  8 1.3 2.0 3.9 

38 8.7 6.1 1.5  11 3.4 7.3 0.6 

39 5.5 2.3 1.4  12 3.1 1.9 1.5 

43 2.5 2.7 1.1  30 1.7 2.1 2.5 

46 16.7 1.6 1.5  31 5.5 1.8 5.8 

49 1.4 0.8 1.1  34 1.7 1.1 1.5 

50 2.0 2.2 2.5  35 3.3 0.7 4.3 

53 2.1 12.1 4.5  36 17.5 0.2 9.2 

54 2.7 11.8 7.6  40 1.9 1.2 2.4 

55 2.9 1.0 4.2  44 1.4 3.5 0.9 

60 1.0 2.1 0.9  45 2.4 2.4 1.6 

      56 5.2 2.5 3.4 

      57 1.7 15.0 0.3 

      59 2.6 1.9 2.7 

      61 1.3 3.2 3.8 

      62 2.0 2.3 2.0 

Average 

over Teams 

    

 

    

4.1 3.8 2.4  3.7 2.8 2.7 
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Table 5-5: The Period of Peak Order Levels  

 

                          

  Standard Experiments  Modified Experiments   

  Team R W D F  Team R W D F   

  14 13 16 16 18  3 13 12 15 16   
  16 15 3 5 7  5 12 12 14 17   
  29 9 15 17 21  7 12 22 14 16   

  37 9 11 15 11  8 10 9 12 14   
  38 10 16 18 19  11 19 20 24 19   
  39 21 16 19 21  12 6 10 15 14   
  43 9 18 7 9  30 14 18 13 15   

  46 16 15 17 19  31 22 13 9 9   
  49 19 21 23 23  34 22 23 18 20   
  50 13 14 18 18  35 9 20 16 19   
  53 20 12 19 21  36 12 18 15 19   

  54 9 17 17 20  40 8 10 13 16   
  55 10 11 14 16  44 8 14 17 17   

  60 17 19 19 19  45 10 9 17 14   

        56 19 14 20 22   
        57 7 10 20 11   

        59 9 14 16 18   
        61 13 16 19 22   

        62 8 11 13 15   

  Average 

over Teams 

            
   13.6   14.6   16.0   17.3     12.3   14.5   15.8   16.5    

  Median 

over Teams 

 13.0   15.5   17.0   19.0     12.0   14.0   15.0   16.0    
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Table 5-6: Peak Order Magnitudes 
 

                          

  Standard Experiments  Modified Experiments   

  Team R W D F  Team R W D F   

  14 28 70 100 190  3 18 30 40 55   

  16 25 50 100 150  5 40 60 60 100   

  29 25 40 35 45  7 10 35 25 35   

  37 35 40 95 100  8 25 30 40 70   

  38 12 25 70 90  11 40 60 250 180   

  39 14 20 40 40  12 16 36 50 60   

  43 10 15 20 20  30 15 20 30 40   

  46 30 100 150 150  31 15 30 30 80   

  49 40 50 40 40  34 25 40 40 50   

  50 16 20 35 55  35 18 30 25 60   

  53 20 25 100 200  36 15 50 20 50   

  54 20 30 80 300  40 20 35 30 50   

  55 20 30 30 60  44 15 20 40 40   

  60 50 50 100 100  45 10 15 20 30   

        56 24 50 80 200   

        57 20 35 150 50   

        59 16 30 50 70   

        61 20 22 40 100   

        62 16 26 40 60   

  Average 

over Teams 

            

   24.6   40.4   71.1   110.0     19.9   34.4   55.8   72.6    

  Median 

over Teams 
 22.5   35.0   75.0     95.0     18.0   30.0   40.0   60.0    
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Table 5-7: The Period of the Peak Backlog Level  

 

                          

  Standard Experiments  Modified Experiments   

  Team R W D F  Team R W D F   

  14 18 18 20 18  3 19 21 20 17   

  16 13 13 22 8  5 18 15 15 16   

  29 17 15 23 23  7 22 20 18 16   

  37 18 14 14 17  8 21 19 17 15   

  38 14 12 18 20  11 23 23 22 19   

  39 21 17 20 21  12 18 16 15 14   

  43 7 12 13 11  30 19 17 17 15   

  46 20 18 17 19  31 13 12 9 9   

  49 24 24 24 24  34 23 24 24 20   

  50 16 16 20 19  35 18 20 22 18   

  53 22 21 19 17  36 18 18 16 19   

  54 21 19 19 21  40 17 17 16 17   

  55 18 20 15 18  44 22 17 18 19   

  60 22 24 19 21  45 19 17 15 14   

        56 18 18 18 19   

        57 19 13 15 22   

        59 21 19 17 15   

        61 14 20 23 22   

        62 17 18 16 16   

  Average 

over Teams 

            

   17.9   17.4   18.8   18.4     18.9   18.1   17.5   16.9    

  Median 

over Teams 
 18.0   17.5   19.0   19.0     19.0   18.0   17.0   17.0    
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Table 5-8: Peak Backlog Magnitudes 
  

                          

  Standard Experiments  Modified Experiments   

  Team R W D F  Team R W D F   

  14 -42 -132 -189 -96  3 -57 -96 -82 -55   

  16 -20 -58 -85 -125  5 -55 -104 -151 -71   

  29 -45 -99 -90 -67  7 -75 -64 -58 -32   

  37 -54 -182 -101 -40  8 -50 -107 -57 -82   

  38 -23 -18 -39 -111  11 -49 -213 -174 -100   

  39 -45 -31 -42 -41  12 -38 -54 -91 -63   

  43 -4 -12 -6 -24  30 -48 -49 -36 -31   

  46 -60 -103 -115 -190  31 -23 -17 -22 -35   

  49 -84 -173 -154 -26  34 -53 -67 -116 -35   

  50 -25 -50 -50 -39  35 -38 -89 -66 -49   

  53 -37 -77 -91 -92  36 -27 -30 -31 -21   

  54 -45 -67 -91 -153  40 -48 -108 -119 -59   

  55 -23 -62 -101 -53  44 -64 -72 -68 -58   

  60 -46 -438 -174 -229  45 -59 -40 -14 -13   

        56 -50 -74 -157 -116   

        57 -52 -61 -53 -23   

        59 -51 -70 -87 -57   

        61 -28 -70 -52 -56   

        62 -30 -66 -48 -48   

  Average 

over Teams 

            

  -39.5 -107.3 -94.9 -91.9   -47.1 -76.4 -78.0 -52.8   

  Median 

over Teams 
-43.5 -72.0 -91.0 -79.5   -50.0 -70.0 -66.0 -55.0   
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Table 5-9: First Backlog Periods 

 

                          

  Standard Experiments  Modified Experiments   

  Team R W D F  Team R W D F   

  14 6 4 10 11  3 6 6 9 15   

  16 8 3 4 5  5 6 8 6 9   

  29 7 3 5 8  7 5 9 5 5   

  37 6 8 8 11  8 5 8 11 13   

  38 6 5 8 6  11 6 10 4 6   

  39 8 8 11 13  12 6 8 10 12   

  43 7 5 8 9  30 5 9 9 12   

  46 5 9 11 11  31 7 4 4 5   

  49 6 9 11 13  34 6 3 8 5   

  50 6 7 10 9  35 6 4 9 5   

  53 6 6 12 15  36 6 6 8 8   

  54 6 10 8 9  40 6 6 8 8   

  55 5 5 8 4  44 5 7 10 14   

  60 6 8 12 14  45 5 9 11 12   

        56 6 9 11 13   

        57 6 9 11 11   

        59 6 8 11 12   

        61 7 4 4 6   

        62 7 8 11 9   

  Average 

over Teams 

            

     6.3     6.4     9.0     9.9       5.9     7.1     8.4     9.5    

  
Median 

over Teams 
   6.0     6.5     9.0   10.0       6.0     8.0     9.0     9.0    
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Table 5-10: Mean Orders 
 

Standard Experiments  Modified Experiments 

Team R W D F  Team R W D F 

14 12.8 25.3 27.3 33.6  3 9.2 11.9 11.4 12.2 

16 13.3 18.3 24.1 23.3  5 8.0 13.0 16.9 22.7 

29 10.2 13.6 15.9 14.7  7 6.8 6.2 7.8 7.5 

37 11.3 10.2 10.3 11.9  8 10.8 9.7 11.9 14.9 

38 6.7 9.8 18.4 20.2  11 15.3 21.5 28.3 16.9 

39 6.8 8.9 10.3 10.9  12 7.8 9.7 12.2 13.5 

43 6.2 7.5 9.1 9.2  30 7.5 8.8 10.0 11.1 

46 9.9 23.0 30.4 33.6  31 7.5 7.1 8.1 12.8 

49 11.8 11.8 9.4 8.5  34 11.5 10.4 10.5 9.3 

50 8.2 11.3 11.9 14.3  35 8.3 12.3 10.5 14.0 

53 10.9 12.4 19.8 31.2  36 7.3 15.7 9.2 19.3 

54 9.7 13.1 28.5 46.0  40 11.0 17.4 17.8 19.3 

55 9.2 10.6 13.8 19.1  44 6.4 6.2 7.5 9.0 

60 29.2 24.0 24.8 21.4  45 6.2 6.0 8.0 10.3 

       56 11.0 15.8 21.6 31.3 

       57 8.0 8.1 13.2 13.8 

       59 8.0 11.1 11.6 13.9 

       61 9.4 12.6 15.3 19.7 

       62 8.67 9.33 12.75 16.08 

Average  

over Teams 

     

 

     

11.1 14.3 18.1 21.3  8.9 11.2 12.9 15.1 
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Table 5-11: Mean Inventory Costs 

 

Standard Experiments   Modified Experiments 

Team R W D F  Team R W D F 

14 5.2 3.9 1.0 5.8  3 0.8 0.8 2.6 14.5 

16 42.0 0.8 9.0 14.7  5 3.9 15.7 18.4 19.0 

29 6.3 0.4 0.6 4.5  7 0.7 2.7 3.0 6.9 

37 3.8 1.3 9.2 24.8  8 0.7 2.2 19.0 24.8 

38 0.8 9.8 12.6 4.5  11 0.8 1.5 2.0 18.3 

39 1.0 0.8 0.8 1.9  12 5.3 12.0 10.0 6.1 

43 9.3 12.5 7.0 16.5  30 0.5 4.7 1.3 11.9 

46 4.3 14.0 14.5 7.8  31 0.8 10.8 25.5 65.5 

49 0.7 0.7 2.2 3.3  34 0.7 3.5 1.5 7.3 

50 1.0 1.8 2.5 8.0  35 4.5 0.7 1.3 1.8 

53 0.8 0.6 16.6 16.6  36 0.8 5.6 7.3 4.0 

54 1.0 4.7 3.9 15.8  40 3.5 2.1 2.0 3.5 

55 1.5 0.8 12.0 10.9  44 0.7 1.5 5.3 4.1 

60 0.7 1.5 2.5 1.1  45 0.7 2.5 7.4 8.7 

       56 2.8 2.9 3.5 4.3 

       57 0.7 4.7 11.0 28.2 

       59 1.3 7.7 5.3 6.4 

       61 1.5 0.8 0.4 0.8 

       62 3.9 2.9 10.5 14.3 

Average  

over Teams 

     

 

     

5.6 3.8 6.7 9.7  1.8 4.5 7.2 13.2 
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Table 5-12: Mean Backlog Costs 
 

Standard Experiments   Modified Experiments 

Team R W D F  Team R W D F 

14 28.1 112.4 105.1 24.5  3 52.5 75.6 74.2 9.5 

16 8.2 23.3 63.8 75.7  5 38.5 56.8 78.3 17.8 

29 27.0 80.3 70.0 38.8  7 68.0 41.1 26.9 7.1 

37 36.3 97.2 40.3 6.8  8 44.2 96.7 31.0 20.3 

38 19.2 8.1 25.8 33.9  11 46.3 111.0 94.0 30.4 

39 33.4 23.9 25.3 16.8  12 29.5 32.4 42.9 20.5 

43 1.3 4.9 1.3 4.0  30 42.4 28.8 19.8 7.6 

46 47.3 52.5 42.8 64.5  31 17.9 6.9 8.7 9.8 

49 74.8 99.3 77.9 16.8  34 50.2 25.4 48.4 11.8 

50 21.3 41.2 24.8 12.1  35 26.9 56.8 59.6 21.2 

53 31.3 52.5 44.3 28.7  36 22.0 10.3 17.3 8.8 

54 39.9 47.5 45.9 53.3  40 38.4 87.9 107.3 38.9 

55 24.0 53.8 54.5 19.0  44 60.0 61.3 38.8 17.3 

60 46.1 264.8 98.8 110.7  45 55.1 22.9 8.5 2.9 

       56 40.3 51.4 98.3 58.8 

       57 47.0 32.3 18.6 8.5 

       59 43.9 47.9 40.0 22.5 

       61 23.3 51.5 37.5 28.7 

       62 25.3 50.1 23.6 12.1 

Average 

over Teams 

     

 

     

31.3 68.7 51.5 36.1  40.6 49.9 46.0 18.6 
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Table 5-13: Mean Total Costs 
 

Standard Experiments   Modified Experiments 

Team R W D F  Team R W D F 

14 33.3 116.3 106.1 30.3  3 53.3 76.4 76.8 24.0 

16 50.2 24.0 72.8 90.4  5 42.4 72.5 96.7 36.8 

29 33.3 80.8 70.6 43.3  7 68.7 43.8 29.9 14.0 

37 40.1 98.5 49.5 31.6  8 44.8 98.8 50.0 45.1 

38 19.9 17.8 38.4 38.4  11 47.0 112.5 96.0 48.8 

39 34.4 24.8 26.1 18.8  12 34.8 44.4 52.9 26.6 

43 10.5 17.4 8.4 20.5  30 43.0 33.4 21.0 19.5 

46 51.6 66.5 57.3 72.3  31 18.8 17.8 34.1 75.3 

49 75.5 100.0 80.1 20.0  34 50.8 29.0 49.9 19.1 

50 22.3 42.9 27.3 20.1  35 31.4 57.5 60.9 22.9 

53 32.0 53.1 60.8 45.3  36 22.8 16.0 24.6 12.8 

54 41.0 52.2 49.8 69.1  40 41.9 90.0 109.3 42.4 

55 25.5 54.5 66.5 29.9  44 60.7 62.8 44.0 21.4 

60 46.8 266.3 101.2 111.8  45 55.8 25.5 15.9 11.6 

       56 43.0 54.3 101.8 63.2 

       57 47.7 36.9 29.6 36.7 

       59 45.2 55.6 45.3 28.9 

       61 24.8 52.3 37.9 29.4 

       62 29.2 53.0 34.1 26.4 

Average 

over Teams 

     

 

     

36.9 72.5 58.2 45.8  42.4 54.3 53.2 31.8 
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Table 5-14: Inventory Cost Variances 
 

Standard Experiments   Modified Experiments 

Team R W D F  Team R W D F 

14 308.0 271.7 2.3 248.8  3 2.5 3.0 20.2 164.5 

16 3328.9 3.0 347.2 482.7  5 79.6 1330.1 1804.2 1431.6 

29 128.0 1.4 2.1 59.3  7 2.3 20.5 19.9 44.7 

37 66.8 5.4 195.7 796.5  8 2.3 14.2 844.5 985.2 

38 2.3 333.8 1626.1 77.4  11 2.4 6.1 8.8 1494.9 

39 3.5 2.1 2.3 6.8  12 111.8 502.8 337.7 74.4 

43 105.3 401.1 89.2 417.5  30 1.8 85.0 3.7 297.2 

46 174.7 1285.8 1755.0 376.7  31 2.8 256.1 810.5 3910.0 

49 2.3 1.7 8.8 15.2  34 2.3 29.4 6.8 100.9 

50 4.5 26.5 28.0 320.3  35 129.0 1.9 4.7 10.5 

53 2.4 1.5 2044.0 2099.3  36 2.4 274.6 296.4 83.4 

54 5.2 112.2 195.5 2601.5  40 99.1 21.8 13.9 55.6 

55 16.2 2.6 624.8 819.9  44 2.3 7.7 68.5 32.2 

60 2.3 6.2 8.8 2.3  45 2.3 11.4 179.3 103.2 

       56 59.6 22.2 50.6 73.3 

       57 2.3 46.8 559.5 1502.7 

       59 5.8 269.6 110.7 84.9 

       61 12.3 3.1 1.4 2.0 

       62 113.6 47.3 517.3 496.2 

Average  

over Teams 

     

 

     

296.5 175.4 495.0 594.6  33.5 155.5 297.8 576.2 
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Table 5-15: Backlog Cost Variances 

 

Standard Experiments    Modified Experiments 

Team R W D F  Team R W D F 

14 850.6 11047.3 17409.4 2463.0  3 1811.6 4856.7 4657.4 699.9 

16 181.5 1099.1 3757.5 9518.8  5 1646.0 5956.1 11786.9 1416.1 

29 1003.8 4851.7 3477.6 2181.9  7 2679.3 1929.7 1454.6 260.5 

37 1253.4 11273.7 4320.8 329.0  8 1202.8 6187.7 2147.8 2458.3 

38 277.5 143.1 875.4 3522.3  11 1275.6 19855.3 15885.2 3451.8 

39 1221.7 640.2 1031.9 713.0  12 753.8 1603.5 4399.6 1455.0 

43 6.2 48.7 7.5 133.6  30 1119.3 1245.2 608.1 249.4 

46 1603.4 4125.3 5272.0 9484.6  31 247.1 117.6 201.3 427.9 

49 3833.0 14860.8 9384.2 344.3  34 1451.8 1943.5 4581.6 326.4 

50 364.5 1512.7 1095.3 641.2  35 654.6 3650.4 2726.9 874.8 

53 668.5 3095.4 4141.7 2912.2  36 361.0 301.8 460.4 150.9 

54 1026.6 2633.5 3713.2 7771.4  40 1156.9 6693.7 8768.6 2038.3 

55 337.7 1975.1 5434.5 1043.8  44 2259.8 3171.4 2442.7 949.4 

60 1068.0 91774.6 15309.8 27520.2  45 1597.6 675.8 125.7 56.0 

       56 1218.9 2960.9 15307.9 6549.2 

       57 1154.1 1928.8 1151.5 281.8 

       59 1426.6 2679.8 3021.2 1392.4 

       61 379.4 2208.4 1215.7 1214.5 

       62 557.8 2696.9 1309.9 705.6 

Average  

over Teams 

     

 

     

978.3 10648.6 5373.6 4898.5  1208.1 3719.1 4329.1 1313.6 
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Table 5-16: Total Cost Variances 
 

Standard Experiments  Modified Experiments 

Team R W D F  Team R W D F 

14 853.3 10400.1 17183.2 2413.6  3 1727.3 4728.3 4277.7 576.1 

16 2794.6 1065.7 2911.3 7678.9  5 1414.2 5428.0 10583.5 2142.3 

29 779.7 4783.2 3388.3 1879.9  7 2587.0 1721.6 1308.3 203.0 

37 1035.9 11008.7 3743.0 772.5  8 1143.6 5764.8 1760.4 2393.2 

38 249.8 312.5 1823.1 3281.1  11 1205.6 19513.9 15493.5 3783.0 

39 1155.5 600.6 992.4 652.5  12 539.8 1297.3 3841.7 1267.4 

43 87.3 322.0 77.1 413.3  30 1073.2 1050.2 560.3 358.0 

46 1354.2 3872.6 5734.5 8806.8  31 218.7 217.3 551.3 3005.2 

49 3731.2 14715.8 9033.9 244.4  34 1384.3 1785.0 4436.8 247.5 

50 324.6 1388.9 993.7 759.8  35 530.9 3568.3 2571.0 807.9 

53 621.9 3032.9 4654.2 4019.4  36 329.0 455.1 494.5 161.2 

54 945.0 2283.1 3533.4 8613.4  40 975.4 6333.3 8325.5 1809.6 

55 276.7 1893.6 4694.4 1432.5  44 2178.7 2987.1 2086.6 833.9 

60 1006.2 90974.7 14812.0 27262.7  45 1523.2 565.7 174.1 106.2 

       56 1044.0 2670.1 14640.9 6090.4 

       57 1091.0 1661.5 1284.3 1284.8 

       59 1317.9 2182.8 2693.7 1176.0 

       61 318.6 2122.0 1184.5 1171.6 

       62 465.0 2439.3 1310.4 840.3 

Average  

over Teams 

     

 

     

1086.9 10475.3 5255.3 4873.6  1108.8 3499.5 4083.1 1487.2 
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Appendix I: Hypothesis Test Results 
 

Table 5-17: Results for the Supply Chain (R, W, D, F) 
 

• Order level comparison 

Ranks

56 77.34 4331.00

76 58.51 4447.00

132

56 73.04 4090.00

76 61.68 4688.00

132

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
a

1521.000 1762.000

4447.000 4688.000

-2.795 -1.685

.005 .092

.005 .092

.002 .046

.000 .000

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypea. 

 

• Total cost comparison 
 

Ranks

56 69.56 3895.50

76 64.24 4882.50

132

56 71.63 4011.00

76 62.72 4767.00

132

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

1956.500 1841.000

4882.500 4767.000

-.790 -1.321

.430 .186

.432 .188

.216 .094

.001 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypea. 
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• Inventory cost comparison 
 

Ranks

56 66.49 3723.50

76 66.51 5054.50

132

56 67.74 3793.50

76 65.59 4984.50

132

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

2127.500 2058.500

3723.500 4984.500

-.002 -.320

.998 .749

.999 .751

.500 .375

.001 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypea. 

 
 

• Backlog cost comparison 

Ranks

56 69.72 3904.50

76 64.13 4873.50

132

56 70.07 3924.00

76 63.87 4854.00

132

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

1947.500 1928.000

4873.500 4854.000

-.831 -.921

.406 .357

.408 .360

.204 .180

.001 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypea. 
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Table 5-18: Results for Downstream Echelons (R, W) 
 

• Order level comparison 

 

Ranks

28 39.46 1105.00

38 29.11 1106.00

66

28 36.71 1028.00

38 31.13 1183.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
a

365.000 442.000

1106.000 1183.000

-2.167 -1.168

.030 .243

.030 .247

.015 .124

.000 .003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypea. 

 
 

• Total cost comparison 
 

Ranks

28 31.93 894.00

38 34.66 1317.00

66

28 32.57 912.00

38 34.18 1299.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

488.000 506.000

894.000 912.000

-.571 -.337

.568 .736

.575 .742

.287 .371

.004 .005

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypea. 
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• Inventory cost comparison 

Ranks

28 33.66 942.50

38 33.38 1268.50

66

28 33.50 938.00

38 33.50 1273.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

527.500 532.000

1268.500 1273.000

-.058 .000

.953 1.000

.956 1.000

.478 .501

.003 .003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypea. 

 
 

• Backlog cost comparison   

Ranks

28 31.57 884.00

38 34.92 1327.00

66

28 31.14 872.00

38 35.24 1339.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

478.000 466.000

884.000 872.000

-.701 -.856

.484 .392

.488 .398

.244 .199

.002 .004

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypea. 
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Table 5-19: Results for Upstream Echelons (D, F) 
 

• Order level comparison 

Ranks

28 40.20 1125.50

38 28.57 1085.50

66

28 38.36 1074.00

38 29.92 1137.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
a

344.500 396.000

1085.500 1137.000

-2.433 -1.764

.015 .078

.014 .079

.007 .039

.000 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypea. 

 

• Total cost comparison 

Ranks

28 37.43 1048.00

38 30.61 1163.00

66

28 38.96 1091.00

38 29.47 1120.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

422.000 379.000

1163.000 1120.000

-1.427 -1.985

.154 .047

.155 .047

.078 .024

.001 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypea. 
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• Inventory cost comparison 

Ranks

28 32.91 921.50

38 33.93 1289.50

66

28 34.86 976.00

38 32.50 1235.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

515.500 494.000 413.000

921.500 1235.000 1154.000

-.214 -.493 -1.544

.830 .622 .123

.834 .627 .125

.417 .313 .062

.003 .002 .002

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInvent

oryCost

VarInvent

oryCost

CVInvento

ryCost

Grouping Variable: GameTypea. 

 

 

• Backlog cost comparison 

Ranks

28 38.32 1073.00

38 29.95 1138.00

66

28 38.75 1085.00

38 29.63 1126.00

66

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
a

397.000 385.000

1138.000 1126.000

-1.752 -1.907

.080 .056

.080 .057

.040 .028

.001 .001

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypea. 
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Table 5-20: Results for Retailer Echelons  
 

• Order level comparison 

Ranks

14 19.93 279.00

19 14.84 282.00

33

14 18.86 264.00

19 15.63 297.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
b

92.000 107.000

282.000 297.000

-1.494 -.947

.135 .344

.142 .358

.139 .358

.070 .179

.002 .009

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypeb. 

 

• Total cost comparison 

Ranks

14 14.43 202.00

19 18.89 359.00

33

14 14.93 209.00

19 18.53 352.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

97.000 104.000

202.000 209.000

-1.311 -1.056

.190 .291

.199 .304

.199 .304

.099 .152

.006 .008

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypeb. 

 
 



 111

• Inventory cost comparison 

Ranks

14 20.14 282.00

19 14.68 279.00

33

14 19.50 273.00

19 15.16 288.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

89.000 98.000

279.000 288.000

-1.616 -1.284

.106 .199

.114 .212

.109 .205

.055 .103

.002 .003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypeb. 

 

 

• Backlog cost comparison 

Ranks

14 13.64 191.00

19 19.47 370.00

33

14 13.86 194.00

19 19.32 367.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

86.000 89.000

191.000 194.000

-1.712 -1.603

.087 .109

.091 .114

.091 .114

.045 .057

.003 .004

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypeb. 
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Table 5-21: Results for Wholesaler Echelons 
 

• Order level comparison 

Ranks

14 20.21 283.00

19 14.63 278.00

33

14 18.50 259.00

19 15.89 302.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
b

88.000 112.000

278.000 302.000

-1.639 -.765

.101 .444

.106 .461

.104 .461

.052 .230

.002 .011

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypeb. 

 

• Total cost comparison 
 

Ranks

14 17.86 250.00

19 16.37 311.00

33

14 18.00 252.00

19 16.26 309.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

121.000 119.000

311.000 309.000

-.437 -.510

.662 .610

.679 .627

.679 .627

.340 .314

.013 .013

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypeb. 
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• Inventory cost comparison 

Ranks

14 14.11 197.50

19 19.13 363.50

33

14 14.79 207.00

19 18.63 354.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

92.500 102.000

197.500 207.000

-1.477 -1.129

.140 .259

.142 .271

.144 .271

.072 .135

.003 .008

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypeb. 

 

• Backlog cost comparison 

Ranks

14 18.14 254.00

19 16.16 307.00

33

14 17.50 245.00

19 16.63 316.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

117.000 126.000

307.000 316.000

-.583 -.255

.560 .799

.577 .815

.571 .815

.286 .408

.006 .014

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypeb. 
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Table 5-22: Results for Distributor Echelons 
 

• Order level comparison 

Ranks

14 20.82 291.50

19 14.18 269.50

33

14 19.07 267.00

19 15.47 294.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
b

79.500 104.000

269.500 294.000

-1.949 -1.056

.051 .291

.050 .304

.051 .304

.026 .152

.001 .008

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypeb. 

 

• Total cost comparison 

Ranks

14 18.36 257.00

19 16.00 304.00

33

14 19.14 268.00

19 15.42 293.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

114.000 103.000

304.000 293.000

-.692 -1.093

.489 .274

.506 .287

.506 .287

.253 .143

.011 .008

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypeb. 
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• Inventory cost comparison 

Ranks

14 16.86 236.00

19 17.11 325.00

33

14 17.36 243.00

19 16.74 318.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

131.000 128.000

236.000 318.000

-.073 -.182

.942 .855

.957 .872

.950 .864

.475 .432

.007 .007

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypeb. 

 
 

• Backlog cost comparison 

Ranks

14 18.64 261.00

19 15.79 300.00

33

14 18.57 260.00

19 15.84 301.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

110.000 111.000

300.000 301.000

-.838 -.801

.402 .423

.418 .439

.418 .439

.209 .219

.010 .011

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypeb. 
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Table 5-23: Results for Factory Echelons 
 

• Order level comparison 

Ranks

14 20.00 280.00

19 14.79 281.00

33

14 19.57 274.00

19 15.11 287.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgOrderLev

VarOrderLev

N Mean Rank Sum of Ranks

 

Test Statistics
b

91.000 97.000

281.000 287.000

-1.530 -1.311

.126 .190

.132 .199

.130 .199

.065 .099

.002 .006

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgOrderLev VarOrderLev

Grouping Variable: GameTypeb. 

 

• Total cost comparison 

Ranks

14 19.86 278.00

19 14.89 283.00

33

14 20.36 285.00

19 14.53 276.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgTotalCost

VarTotalCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

93.000 86.000

283.000 276.000

-1.457 -1.712

.145 .087

.152 .091

.152 .091

.076 .045

.005 .003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgTotalCost VarTotalCost

Grouping Variable: GameTypeb. 
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• Inventory cost comparison 

Ranks

14 16.54 231.50

19 17.34 329.50

33

14 17.79 249.00

19 16.42 312.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgInventoryCost

VarInventoryCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

126.500 122.000

231.500 312.000

-.237 -.401

.813 .689

.815 .706

.823 .706

.411 .353

.007 .013

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgInventory

Cost

VarInventory

Cost

Grouping Variable: GameTypeb. 

 

• Backlog cost comparison 

Ranks

14 20.29 284.00

19 14.58 277.00

33

14 20.64 289.00

19 14.32 272.00

33

GameType

.00

1.00

Total

.00

1.00

Total

AvgBacklogCost

VarBacklogCost

N Mean Rank Sum of Ranks

 

Test Statistics
b

87.000 82.000

277.000 272.000

-1.676 -1.858

.094 .063

.098 .065

.096 .065

.048 .033

.002 .003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AvgBacklog

Cost

VarBacklog

Cost

Grouping Variable: GameTypeb. 
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Table 5-24: Results for Amplification Ratio Comparisons 
 

• The supply chain (W/ R, D/ W, F/ D) 

  

Ranks

42 50.67 2128.00

57 49.51 2822.00

99

GameType

.00

1.00

Total

AmpRatio

N Mean Rank Sum of Ranks

 

Test Statistics
a

1169.000

2822.000

-.198

.843

.846

.423

.003

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AmpRatio

Grouping Variable: GameTypea. 

 
 

• Amplification ratio between wholesaler and retailer echelons (W/ R) 

 

Ranks

14 16.93 237.00

19 17.05 324.00

33

GameType

.00

1.00

Total

AmpRatio

N Mean Rank Sum of Ranks

 

Test Statistics
b

132.000

237.000

-.036

.971

.986

.986

.493

.014

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AmpRatio

Grouping Variable: GameTypeb. 
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• Amplification ratio between distributor and wholesaler echelons (D/ W) 
 

Ranks

14 18.86 264.00

19 15.63 297.00

33

GameType

.00

1.00

Total

AmpRatio

N Mean Rank Sum of Ranks

 

Test Statistics
b

107.000

297.000

-.947

.344

.358

.358

.179

.009

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AmpRatio

Grouping Variable: GameTypeb. 

 
 

• Amplification ratio between factory and distributor echelons (F/ D) 

 

Ranks

14 16.07 225.00

19 17.68 336.00

33

GameType

.00

1.00

Total

AmpRatio

N Mean Rank Sum of Ranks

 

Test Statistics
b

120.000

225.000

-.474

.636

.653

.653

.327

.013

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Exact Sig. (2-tailed)

Exact Sig. (1-tailed)

Point Probability

AmpRatio

Grouping Variable: GameTypeb. 
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Appendix J: Regression Results 

 

Coefficient of Determination: Adjusted R
2 

 

Coefficient of determination refers to the proportionate reduction of the total variation 

in the response data (dependent variable) that can be obtained by the use of independent 

variables (Neter et al. 1996). 

 

In our study, we obtain 59.7% average adjusted R
2 in Model 3, and 64.6% in Model 11. 

The values exhibit variation among participants. The range for adjusted R
2 is 18.17%- 

86.90% in Model 3,  and 22.21% - 87.71% in Model 11. 

 

Next, we outline the stages of our regression study. 

 

F Test: P value 

 

Analysis of variance approach to regression analysis is based on dividing the sums of 

squares and degrees of freedoms associated to each dependent variable. This approach 

requires conducting F tests for regression models (Neter et al. 1996). 

 

The overall significance of the regression can be checked with F test. In the F test, null 

hypothesis states that coefficient of each independent variable is equal to zero. This 

means that there is no relationship between dependent variable and the independent 

variables. If the p value (smallest level of significance that would lead to the rejection of 

the null hypothesis) is smaller than the selected significance level (α= 0.05), one can 

reject the null hypothesis.  

 

Durbin Watson Test: D statistics 

 

Residuals from a linear regression should be independent. Durbin Watson test is used to 

detect the existence of autocorrelation in the residuals. The null hypothesis suggests that 

there is no autocorrelation in the data. Generally, the residuals tends to show positive 

autocorrelation, therefore alternative the hypothesis supports positive autocorrelation in 

the data. Upper and lower critical values are found from the Durbin Watson critical 
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values table according to the significance level, the number of observations and the 

number of independent variables in the regression model (Montgomery et al. 2001). The 

test statistic D is compared to lower and upper critical values. At significance level α, 

decision rule is as follows:  

• If D< Dl,α, the residuals are autocorrelated. 

• If D> DU,α, the residuals are not autocorrelated. 

• If Dl,α < D < DU,α, the test is inconclusive. 

 

In Model 3, 20 out of 28 regressions’ residuals are not statistically autocorrelated. For 

the 8 out of 28, the test is inconclusive. Since there is not enough evidence for rejecting 

or not rejecting the null hypothesis, we could assume that inconclusive tests refer to no 

autocorrelation. In Model 11, 18 out of 28 regressions’ residuals are not statistically 

autocorrelated. For the 10 out of 28, the test is inconclusive.  

 

Variance Inflation Factor: VIF 

 

Multicollinearity is the dependency (correlation) of independent variables to each other. 

Detecting multicollinearity in regression analysis is crucial to obtaining correct and 

reliable beta coefficients for the model. “The VIF value shows that how much the 

variances of the estimated regression coefficients are inflated in comparison to the case 

that the independent variables are not linearly related” (Neter et al. 1996). When the VIF 

value is greater than 10, this refers to excessive multicollinearity.  

 

In Model 3, we observe that all VIF values are smaller than 10. In Model 11, the VIF 

value of the only one participant’s backlog independent variable is greater than 10. We 

exclude this participant from our further analysis.  

 

�ormal Probability Plot: P-P plot  

 

Normal probability plot is a graphical technique which can be used to evaluate whether 

the data set is normally distributed or not (Chambers et al. 1983). Residuals should be 

normally distributed in the linear regression analysis. Therefore, each residual is plotted 

against its expected value under normality (Neter et al. 1996). If the data set is normally 

distributed, the line in the graph should be approximately linear.  
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We graph probability plots of residuals for each regression. Figure 5-6 shows one of our 

regressions’ probability plot. P-P plot column in Table 5-25 and Table 5-26 show the 

results of our normality checks. “Nor” means that residuals are normally distributed, 

“Not” means that residuals are not normally distributed.          

 

 
 

 

Figure 5-6: Normal P-P Plot of Residuals of One of Our Regressions  
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Bold numbers refer to the regressions that cannot pass the test of the related column. 
 

Table 5-25: Regression Results for Model 3 

 

Participants Echelon Adj. R
2
 
Standardized Coefficients 

D P 
Variance Inflation Factor (VIF) P-P   

Plot EI(t) D(t)  ∑O(t-i) EI(t) D(t)  ∑O(t-i) 

1 Factory  60.71% -0.39 0.40 0.13 2.01 0.00** 1.55 2.09 1.98 Nor 

2 Distributor 60.93% -0.51 0.12 0.23 1.81 0.00** 4.23 1.78 3.24 Nor 

3 Wholesaler 72.61% -0.23 0.39 0.46 1.16 0.00** 2.17 1.29 1.84 Nor 

4 Retailer 23.90% 0.07 0.06 0.55 1.19 0.00** 1.72 1.31 1.40 Nor 

5 Factory  68.37% -0.44 0.57 -0.17 2.02 0.00** 5.23 3.23 3.02 Nor 

6 Distributor 86.90% -0.58 0.48 -0.05 2.32 0.00** 9.38 2.22 6.73 Nor 

7 Wholesaler 42.04% -0.12 0.42 0.30 1.73 0.00** 2.37 1.99 1.30 Nor 

8 Retailer 55.85% -0.51 0.12 0.33 1.15 0.00** 1.63 1.28 1.84 Nor 

9 Factory  41.87% -0.38 0.22 0.24 2.20 0.00** 1.76 1.34 1.40 �ot 

10 Distributor 65.50% 0.50 1.21 0.04 1.53 0.00** 6.34 4.91 2.39 �ot 

11 Wholesaler 83.67% -0.41 0.21 0.39 1.20 0.00** 3.65 2.07 2.81 Nor 

12 Retailer 82.76% -0.61 0.12 0.37 1.36 0.00** 2.60 1.57 2.88 Nor 

13 Factory  80.50% -0.16 0.75 0.11 2.30 0.00** 2.54 1.58 1.83 �ot 

14 Distributor 42.83% -0.06 0.72 -0.14 2.06 0.00** 2.16 2.21 2.18 �ot 

15 Wholesaler 59.61% -0.56 0.33 0.20 1.74 0.00** 1.74 1.08 1.80 Nor 
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16 Retailer 23.17% -0.31 0.13 0.27 2.13 0.00** 1.24 1.30 1.53 Nor 

17 Factory  83.40% -0.24 0.26 0.70 2.34 0.00** 1.09 1.28 1.19 �ot 

18 Distributor 24.15% -0.63 -0.36 0.13 2.47 0.00** 3.70 2.61 1.77 Nor 

19 Wholesaler 68.60% -0.24 0.13 0.55 1.36 0.00** 2.80 1.65 3.03 Nor 

20 Retailer 40.50% -0.66 0.27 -0.06 1.42 0.00** 2.03 1.54 2.55 �ot 

21 Factory  75.85% -0.26 0.44 0.32 1.19 0.00** 1.39 2.64 2.39 Nor 

22 Distributor 62.52% -0.30 0.45 0.35 1.46 0.00** 1.32 1.07 1.33 Nor 

23 Wholesaler 0.02% -0.19 -0.13 0.13 1.51 0.40 1.16 1.15 1.13 �ot 

24 Retailer -1.11% -0.18 0.02 0.10 1.42 0.49 1.07 1.03 1.08 �ot 

25 Factory  82.18% -0.20 0.52 0.32 1.75 0.00** 2.44 2.40 1.61 Nor 

26 Distributor 81.88% -0.25 0.50 0.29 1.31 0.00** 3.02 1.77 2.42 Nor 

27 Wholesaler 61.41% -0.70 0.13 0.05 1.45 0.00** 2.42 1.22 2.11 Nor 

28 Retailer 18.17% -0.73 0.01 -0.43 1.60 0.01 2.75 1.68 2.67 Nor 
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Table 5-26: Regression Results for Model 11 

 

Participants  Echelon 
Adj. R

2
 

 

Standardized Coefficients 
D P 

Variance Inflation Factor (VIF) P-P 

Plot B(t) I(t)  D(t) ∑O(t-i) B(t) I(t)  D(t) ∑O(t-i) 

1 Factory  61.78% 0.14 -0.33 0.42 0.11 2.08 0.00** 1.57 1.45 2.11 2.01 �ot 

2 Distributor 60.26% 0.44 -0.12 0.12 0.23 1.81 0.00** 3.34 1.76 1.81 3.25 Nor 

3 Wholesaler 73.61% -0.02 -0.22 0.40 0.55 1.24 0.00** 2.85 1.28 1.31 2.37 Nor 

4 Retailer 22.21% -0.05 0.03 0.06 0.55 1.19 0.00** 1.72 2.62 1.76 1.45 Nor 

5 Factory  67.66% 0.33 -0.18 0.57 -0.17 2.02 0.00** 12.13 1.28 5.54 4.73 Nor 

6 Distributor 86.63% 0.55 -0.07 0.48 -0.05 2.32 0.00** 8.37 1.45 2.22 6.73 Nor 

7 Wholesaler 41.88% 0.19 -0.03 0.38 0.26 1.73 0.00** 2.15 1.42 2.14 1.42 Nor 

8 Retailer 59.80% 0.24 -0.49 0.12 0.27 1.11 0.00** 1.13 1.62 1.28 1.92 Nor 

9 Factory  47.87% 0.38 -0.27 0.13 0.17 2.43 0.00** 1.48 1.59 1.46 1.48 �ot 

10 Distributor 65.74% -0.44 0.27 1.34 0.08 1.61 0.00** 6.32 2.78 6.74 2.55 �ot 

11 Wholesaler 85.40% 0.50 -0.39 0.00 0.18 1.27 0.00** 7.47 2.56 4.45 5.04 Nor 

12 Retailer 83.06% 0.16 -0.56 0.12 0.33 1.46 0.00** 1.43 2.38 1.57 3.16 Nor 

13 Factory  82.79% 0.34 -0.03 0.63 0.01 2.19 0.00** 3.41 1.37 2.09 2.28 Nor 

14 Distributor 43.62% 0.30 0.03 0.67 -0.30 2.00 0.00** 4.36 1.50 2.38 3.53 �ot 

15 Wholesaler 61.98% 0.40 -0.34 0.25 0.11 1.77 0.00** 2.26 1.73 1.30 2.07 �ot 
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16 Retailer 23.54% -0.06 -0.37 0.18 0.28 2.17 0.00** 1.82 1.80 1.41 1.53 Nor 

17 Factory  85.30% 0.34 0.06 0.22 0.60 2.23 0.00** 2.06 1.73 1.35 1.69 �ot 

18 Distributor 22.60% 0.60 -0.08 -0.37 0.14 2.49 0.00** 3.72 1.20 2.63 1.78 �ot 

19 Wholesaler 75.51% 0.75 -0.10 0.11 0.03 1.47 0.00** 6.28 1.31 1.66 6.93 Nor 

20 Retailer 41.61% 0.39 -0.48 0.26 -0.15 1.44 0.00** 1.91 1.66 1.54 2.94 Nor 

21 Factory  82.22% 0.39 -0.12 0.29 0.28 1.67 0.00** 1.92 1.33 2.97 2.42 Nor 

22 Distributor 79.45% 0.76 -0.04 0.33 -0.07 2.27 0.00** 2.90 1.23 1.16 2.42 Nor 

23 Wholesaler 1.90% 0.33 0.13 -0.08 0.07 1.51 0.31 1.58 1.55 1.21 1.22 �ot 

24 Retailer -2.71% -0.06 -0.22 0.05 0.11 1.43 0.61 1.56 1.50 1.14 1.10 �ot 

25 Factory  85.04% 0.33 -0.20 0.35 0.22 1.97 0.00** 2.87 1.96 3.31 1.96 Nor 

26 Distributor 87.71% 0.43 -0.29 0.39 0.05 1.59 0.00** 2.54 2.52 1.96 3.44 Nor 

27 Wholesaler 60.56% 0.18 -0.59 0.13 0.05 1.45 0.00** 1.61 2.21 1.24 2.18 Nor 

28 Retailer 19.09% 0.07 -0.84 -0.06 -0.54 1.54 0.01 1.23 4.15 1.85 3.18 �ot 
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Table 5-27: Results for SRM1 
 

Participants Echelon Adj R2 

Standardized Coefficients 

EI(t) D(t)  ∑O(t-i) O(t-1) O(t-2) O(t-3) 
D(t)- 

D(t-1) 

In 

backlog 

(1,0) 

D(t)- 

D(t-1)  

(1, 0) 

1 Factory  65.10% -0.34 0.62         -0.25     

2 Distributor 60.20% -0.78                 

3 Wholesaler 80.40%   0.35   0.70           

4 Retailer 39.90%       0.64           

5 Factory  68.00% -0.30 0.57               

6 Distributor 87.10% -0.53 0.49               

7 Wholesaler 39.60%               0.64   

8 Retailer 67.80% -0.29     0.51       0.21   

9 Factory  65.10%   0.59         -0.58 0.37   

10 Distributor 66.20% 0.46 1.21               

11 Wholesaler 84.80% -0.41     0.55           

12 Retailer 83.80% -0.42     0.56           

13 Factory  81.40% -0.25 0.82             -0.15 

14 Distributor 47.70%   0.58             0.23 

15 Wholesaler 63.10% -0.48 0.32   0.32           
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16 Retailer 45.40% -1.28 0.49           -1.02   

17 Factory  89.50% -0.23 0.53 0.26     0.34 -0.32     

18 Distributor 24.80% -0.75 -0.43               

19 Wholesaler 66.20%     0.82             

20 Retailer 43.50% -0.41     0.34           

21 Factory  82.30%   0.23   0.52       0.25   

22 Distributor 67.20%   0.45   0.36       0.31   

23 Wholesaler 8.20%       0.32           

24 Retailer 10.60%       0.35           

25 Factory  84.60%   0.63   0.38     -0.14     

26 Distributor 84.30%   0.48   0.54           

27 Wholesaler 61.70% -0.79                 

28 Retailer 22.70% -0.61         -0.38       
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Table 5-28: Results for SRM2 

 

Participants Echelon Adj R2 
Standardized Coefficients 

B(t) D(t)  I(t) ∑O(t-i) O(t-1) O(t-2) O(t-3) 

1 Factory  61.40% -0.40 0.54           

2 Distributor 59.60% 0.65   -0.21         

3 Wholesaler 80.40%   0.35     0.70     

4 Retailer 39.90%         0.64     

5 Factory  68.10% -0.19 0.74           

6 Distributor 86.80% 0.52 0.50           

7 Wholesaler 46.70%   0.48     0.39     

8 Retailer 67.00% 0.19   -0.29   0.52     

9 Factory  47.20% 0.47   -0.38         

10 Distributor 62.40%   0.80           

11 Wholesaler 87.10% 0.40   -0.32   0.34     

12 Retailer 83.00%     -0.38   0.60     

13 Factory  83.50% 0.36 0.64           

14 Distributor 44.30%   0.67           

15 Wholesaler 58.50% 0.51       0.34     
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16 Retailer 24.50%     -0.29 0.36       

17 Factory  89.30% 0.28 0.28   1.21   -0.62   

18 Distributor 24.40% 0.74 -0.41           

19 Wholesaler 75.00% 0.87             

20 Retailer 40.60%     -0.33   0.42     

21 Factory  85.00% 0.34 0.20     0.48     

22 Distributor 79.90% 0.72 0.34           

23 Wholesaler 8.20%         0.32     

24 Retailer 10.60%         0.35     

25 Factory  83.40%   0.55     0.46     

26 Distributor 88.60% 0.35 0.38 -0.22   0.19     

27 Wholesaler 61.50%     -0.56   0.28     

28 Retailer 24.40%     -0.66       -0.45 
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