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ABSTRACT 
 
 

MOLECULAR ANALYSIS OF GLYPHOSATE AND OSMOTIC STRESS 
RESPONSIVE GENES 

 
 

Özge Cebeci Yalçınkaya 
Biological Sciences and Bioengineering 

PhD Thesis, 2010 
 
 

Assoc. Prof. Hikmet Budak (Thesis Supervisor) 
  
 
Keywords: cross species hybridization, Festuca, glyphosate, autophagy, Atg8, 
Brachypodium, osmotic stress 

 
 

Cross species hybridization can provide a tool for elucidating biological pathways 
conserved among organisms. Based on sequence conservation among grass species, we 
selected Affymetrix GeneChip® wheat genome array as a tool to analyze changes in 
gene expression profiles of three Festuca species in response to varying levels of 
glyphosate. Differences in transcript expression upon glyphosate application at 5% and 
20% of the recommended rate were recorded. Differences highlighted metabolic 
categories, including photosynthesis, protein synthesis, and stress responses. Expression 
levels of a larger number of transcripts altered with 20% glyphosate. RT-PCR analysis 
was conducted for experimental validation. This is the first report to analyze the 
potential of cross species hybridization in Festuca species and the data help extend our 
knowledge on the cellular processes affected by glyphosate. 

 
Autophagy related gene, Atg8 has been used for monitoring autophagy in various 
organisms. In this study, Atg8 gene was identified in Brachypodium distachyon (named 
as BdAtg8) under osmotic stress. Expression profile of BdAtg8 was examined in a 
variety of tissues of different ages and osmotic stress conditions. Expression level of 
BdAtg8 elevated with osmotic stress, especially in the roots. BdAtg8 complemented 
atg8∆::kan MX yeast mutants grown under starvation conditions. 
Monodansylcadaverine was used to observe autophagosomes, and autophagy was 
shown to be constitutively active in Brachypodium. Autophagy was more active in 
plants exposed to osmotic stress. BdATG8 protein was expressed in yeast and analyzed 
with western blotting. In conclusion, under osmotic stress conditions, BdAtg8 gene is 
required for induction of autophagy in Brachypodium.  
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ÖZET 
 
 

GLĐFOSAT VE OZMOTĐK STRESE CEVAP VEREN GENLERĐN MOLEKÜLER 
ANALĐZĐ  

 
 

Özge Cebeci Yalçınkaya 
Biyoloji Bilimleri ve Biyomühendislik 

Doktora Tezi, 2010 
 
 

Doç. Dr. Hikmet Budak (Tez Danışmanı) 
  
 
Anahtar Kelimeler: çapraz tür hibridizasyonu, Festuca, glifosat, otofaji, Atg8, 
Brachypodium, ozmotik stres 

 
 

Çapraz tür hibridizasyonu organizmalar arası korunan biyolojik yolakların açıklığa 
kavuşturulmasında bir araç vazifesi görebilir. Çim türlerindeki sekans korunumu baz 
alınarak, “Affymetrix GeneChip® buğday genom array”i, üç Festuca türünün gen 
ekspresyon profillerinde glifosatın değişen seviyelerine karşılık meydana gelen 
değişiklikleri analiz etmek için bir araç olarak kullanılmıştır. Uygulanması tavsiye 
edilen değerin %5 ve %20’si düzeyindeki glifosat uygulamasıyla, transkript 
ekspresyonunda meydana gelen değişiklikler kaydedilmiştir. Bu değişiklikler, metabolik 
kategorilerden olan fotosentez, protein sentezi ve stres tepkilerine dikkat çekmiştir. %20 
glifosat uygulamasıyla, daha fazla sayıda transkriptin ekspresyon seviyeleri değişmiştir. 
RT-PCR analizi, deneysel doğrulama için yürütülmüştür. Bu rapor, çapraz tür 
hibridizasyonu tekniğinin Festuca türündeki potansiyelini analiz eden ilk rapor olmakla 
birlikte, bu analizler glifosatın etkilediği hücresel süreçlerdeki bilgi dağarcığımızı 
genişletmekte yardımcı olacaktır 

 
Otofajiyle ilgili bir gen olan, Atg8 bir çok organizmada otofajiyi izlemek için 
kullanılmaktadır. Bu çalışmada, Atg8 geni ozmotik stres koşullarındaki Brachypodium 
distachyon türünde tanımlanmıştır (BdAtg8 olarak isimlendirilmiştir). BdAtg8 geninin 
ifade profili farklı yaşlardaki çeşitli dokularda ve ozmotik stres koşullarında 
incelenmiştir. Ozmotik stresle, BdAtg8 geninin ifade seviyesinin özellikle köklerde 
arttığı gözlenmiştir. BdAtg8 geninin açlık koşullarında büyüyen atg8∆::kan MX maya 
mutantlarını komplement ettiği gösterilmiştir. Otofagozomları gözlemlemek için 
“monodansylcadaverine” kullanılmış ve otofajinin Brachypodium’da temel olarak aktif 
olduğu gösterilmiştir. Otofajinin, ozmotik strese maruz kalmış bitkilerde daha aktif 
olduğu gösterilmiştir. BdATG8 proteini mayada eksprese edilmiş ve “western blot” 
tekniği ile analiz edilmiştir. Ozmotik stres koşullarında, BdAtg8 geninin 
Brachypodium’da otofajinin indüklenmesi için gerekli olduğu sonucuna varılmıştır.  
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ABSTRACT 
 
 
 
 

Glyphosate is an herbicide mainly used for weed control. It has been shown to act as an 
inhibitor of an aromatic amino acid biosynthetic pathway, while other processes and 
pathways affected by glyphosate are not known. In the absence of whole genome 
sequences, cross species hybridization can provide a tool for elucidating biological 
pathways conserved among organisms. Comparative genome analyses indicated a high 
level of colinearity among grass species and Festuca, on which we focus here, and 
showed rearrangements common to the Pooideae family. Based on sequence 
conservation among grass species, we selected the Affymetrix GeneChip® Wheat 
Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) 
species with contrasting tolerances to varying levels of glyphosate. Differences in 
transcript expression upon foliar glyphosate application at 1.58 mM and 6.32 mM, 
representing 5% and 20% of the recommended rate for weed control, respectively, were 
recorded. Differences highlighted categories of metabolic processes, such as 
photosynthesis, protein synthesis, and stress responses. Expression levels of a larger 
number of transcripts altered in response to 20% glyphosate application. Differential 
expression of genes encoding proteins involved in the shikimic acid pathway could not 
be identified by cross species hybridization. RT-PCR analysis was conducted for 
experimental validation of result of a selected transcript. This is the first report to 
analyze the potential of cross species hybridization in Fescue species and the data and 
analyses help extend our knowledge on the cellular processes affected by glyphosate. 
This study is also crucial for opening the way for better understanding of the 
mechanisms and pathways regulated by glyphosate in Fescue species. 

 
 
Keywords  cross species hybridization, fescue, glyphosate 
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ÖZET 

 
 
 
 

Glifosat yabani ot kontrolünde kullanılan başlıca herbisitlerdendir. Glifosatın aromatik 
aminoasit biyosentetik yolağında inhibitör olarak rol aldığı gösterilmiş olmakla birlikte, 
glifosatın etkileyebileceği diğer süreç ve yolaklar bilinmemektedir. Tüm genom sekansı 
olmadığı durumlarda, çapraz tür hibridizasyonu organizmalar arası korunan biyolojik 
yolakların açıklığa kavuşturulmasında bir araç vazifesi görebilir. Karşılaştırmalı genom 
analizleri, çim türleri ve bizim bu çalışmada odaklandığımız Festuca arasında yüksek 
düzeyde bir doğrudaşlık olduğuna işaret etmiş ve Pooideae familyasında ortak olan 
rearanjmanları göstermiştir. Çim türlerindeki sekans korunumu baz alınarak, 
“Affymetrix GeneChip® buğday genom array”i, glifosatın değişen seviyelerine 
toleransları zıtlık gösteren üç Festuca (fescue) türünün ekspresyon profillerini analiz 
etmek için bir araç olarak kullanılmıştır. 1.58 mM ve 6.32 mM düzeyindeki glifosatın 
(yabani ot kontrolünde uygulanması tavsiye edilen değerin, sırasıyla, %5 ve %20’si) 
yapraktan uygulanmasıyla transkript ekspresyonunda meydana gelen değişiklikler 
kaydedilmiştir. Bu değişiklikler, metabolik süreç kategorilerinden olan fotosentez, 
protein sentezi ve stres tepkilerine dikkat çekmiştir. %20 glifosat uygulamasıyla, daha 
fazla sayıda transkriptin ekspresyon seviyeleri değişmiştir. Ekspresyonları farklılık 
gösteren genlerin kodladığı proteinlerden şikimik asit yolağıyla ilgili olanlar çapraz tür 
hibridizasyonuyla tanımlanamamıştır. Seçilen bir transkript sonucu, RT-PCR analizi ile 
deneysel olarak doğrulanmıştır. Bu rapor, çapraz tür hibridizasyon tekniğinin Fescue 
türündeki potansiyelini analiz eden ilk rapor olmakla birlikte bu analizler glifosatın 
etkilediği hücresel süreçlerdeki bilgi dağarcığımızı genişletmekte yardımcı olacaktır. Bu 
çalışma, glifosatın Fescue türünde regüle ettiği mekanizmaların ve yolakların daha iyi 
anlaşılmasına yol açması bakımından da önemlidir 
 
 
Anahtar kelimeler  çapraz tür hibridizasyonu, fescue, glifosat 
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1 I�TRODUCTIO� 

 
 

 
 

Glyphosate® (N-phosphonomethylglycine) is a broad spectrum herbicide that 

affects plants systemically after application to the leaf surface. It is phytotoxic and 

prevents further growth by blocking aromatic amino acid production, leading to the 

arrest of protein synthesis and secondary compound formation. It specifically inhibits 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), a nuclear encoded chloroplast-

localized enzyme in the shikimic acid pathway of plants and microorganisms 

(Steinrücken and Amrhein 1980).  

 
Weed control and overall management in turf courses has emerged as a 

substantially important field in agriculture. Although, glyphosate is relatively 

inexpensive and less toxic to non-target organisms, it has not been extensively used in 

turfgrass weed management programs due to its possible adverse effects on turfgrass 

growth, like provoking injuries on desired turfgrass (Hart et al. 2005). Until now, 

glyphosate usage has been limited to spot treatments. However, in the presence of 

natural glyphosate-tolerant turfgrass species, such as cool-season perennial turfgrass, 

there is an increased reliance on the usage of glyphosate for weed control (Hart et al. 

2005). Recently, transgenic glyphosate tolerant creeping bent grass (Agrostic stolonifera 

L.) has been developed (Reichman, et al., 2006). Under the light of these novel findings, 

the development of cultivars with more tolerance to glyphosate is considered to be a 

good alternative for weed control using this environmentally friendly herbicide in 

lawns, golf courses and other turf areas. Additionally, determination of the effective 

glyphosate rate that can be directly used on turfgrass fields to control weeds is essential 

for extensive usage of this herbicide. Evolution of resistance to other herbicides with 

different modes of action, increased reliance on the herbicide glyphosate for weed 

control (Baylis 2000). A better understanding of its action on turfgrass species is 
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essential for the development of future management strategies both to slow down the 

evolution of resistance and to control existing populations.  

 
The Affymetrix GeneChip® Wheat Genome Array was selected to identify global 

gene expression changes in three selected fescues. The rationale for selecting the wheat 

genome array for the CSH experiment was based on the close relatedness of perennial 

ryegrass, which is relatively similar to fescues, to the Triticeae (Jones et al. 2002). In the 

same study, the existence of synteny and colinearity among the genetic maps of ryegrass 

and Triticeae cereals has been postulated. Triticeae, ryegrass, and fescues reside in the 

same subfamily, Pooideae of the Poaceae family (Soreng and Davis 1998). High level 

of similarity in terms of gene order among these families makes it feasible to consider 

CSH to reveal the cross species conservation of biological processes and their genetic 

control mechanisms. Festuca species were selected for their differential glyphosate 

tolerance based on dry matter production, chlorophyll content, and shoot concentration 

of shikimic acid (Su et al. 2009). Based on these morphological and physiological data, 

selected genotypes were used to analyze and understand global expression changes 

upon glyphosate treatment. Large-scale functional profiling of Festuca species with 

differential tolerance to glyphosate treatment will be a beneficial resource for future 

investigations concerning biochemical effects of glyphosate on turfgrasses.  
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2  OVERVIEW 

 
 
 
 

2.1  General information on fine leaf fescues 
 

 
 
2.1.1  Fine leaf fescues and their relation to Triticeae 
 
 

Fine fescues are named as “fine”, since they have very narrow (fine) leaves. 

Fescue is a large genus belonging to the grass family, Poaceae (Clayton and Renvoize, 

1986). This genus is closely related to ryegrass (Lolium). Triticeae, ryegrass, and 

fescues reside in the same subfamily, Pooideae of the Poaceae family (Soreng and Davis 

1998). In a previous study, close relatedness of perennial ryegrass, which is relatively 

similar to fescues, to the Triticeae has been reported (Jones et al. 2002). In the same 

study, the existence of synteny and colinearity among the genetic maps of ryegrass and 

Triticeae cereals has been postulated.  A recent study also reported that meadow fescue 

(Festuca pratensis) genome was highly orthologous and colinear with those of ryegrass, 

oat, maize, and sorghum (Alm et al., 2003). These studies have documented that there is 

a high level of conservation at macro-syntenic scale among the members of Pooideae 

saubfamily of Poaceae family.     

 
 
 
2.1.2  Fine leaf fescues as turfgrass 
 
 

Five fine fescue species are commonly used as turfgrass (Turgeon, 2002). 

Especially, they are used for turf in northeastern U.S. lawns (Jauhar, 1993). In addition 

to their usage for turf, fine fescues are also used for forage and conservation purposes. 

Fine fescues display huge variation in terms of their morphology, growth habits, and 

cytology. Most commonly used fine fescues used for turf include strong creeping red 
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fescue (Festuca rubra ssp. rubra), slender creeping red fescue (Festuca rubra ssp. 

littoralis), chewing’s fescue (Festuca rubra ssp. commutata), hard fescue (Festuca 

longifolia), and sheep fescue (Festuca ovina). Strong creeping red fescue (Festuca 

rubra ssp. rubra) produces long and abundant rhizomes and has 56 chromosomes. 

Slender creeping red fescue (Festuca rubra ssp. littoralis) produces shorter rhizomes 

and has 42 chromosomes. Among the fine fescues, chewing’s fescue (Festuca rubra 

ssp. commutata) is the variety which tolerates most lower mowing height. Hard fescue 

(Festuca longifolia) is a bunch type grass and well adapted to moist soils. It has stiff 

leaves. Sheep fescue (Festuca ovina) has bluish green color and has higher adaptation to 

dry and gravelly soils. Fine leaf fescues are extensively used in turfgrass breeding 

programs, because of their ease in turf management. They generally require less water, 

fertility and mowing in comparison to other turfgrass varieties (Meyer and Funk, 1989). 

Recently, numerous genetically improved cultivars have been developed with better 

characteristics, such as higher tolerance to acidic and infertile soils, moderate shade or 

full-sun conditions. In recent years, fine leaf fescues have received attention of investors 

in United States and European turfgrass industry in use of fine fescues for golf turf, 

lawn, and road-side settings (Ruemmele et al., 1995).  

 
 
 
2.1.3  Importance of weed management 
 
 

Conservation of turfgrass settings is essential for life quality of human. 

Especially, in lawns and road-site settings, weed is a key problem. Herbicide use has 

been the most prevalently used strategy to control weeds in turfgrass areas. Although 

there is an ongoing debate about the challenges of herbicides in terms of health and 

environmental issue, herbicide use stays as the best alternative for weed control in both 

public and private turfgrass setting.  

 

One of the major weeds which populate golf course turf is annual bluegrass (Poa 

annua L.). This grass cultivar has an ability to grow in putting greens and fairways in 

golf course areas (Gaussoin and Branham, 1989). Selective removal of this weed has 

not been achieved yet, since consistently effective herbicide for selective removal of 

this weed is not available.  
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Glyphosate is an herbicide which is relatively inexpensive and less toxic to non-

target organisms. However, it has not been extensively used in turfgrass weed 

management programs due to its possible adverse effects on turfgrass, like provoking 

injuries (Hart et al. 2005). Until now, glyphosate usage has been limited to spot 

treatments. However, with the presence of natural glyphosate-tolerant turfgrass species, 

cool-season perennial turfgrass, and the development of transgenic glyphosate-tolerant 

creeping bent grass (Agrostic stolonifera L.) (Reichman, et al., 2006), demand for the 

usage of glyphosate for weed control has increased (Hart et al. 2005). Additionally, 

evolution of resistance to other herbicides with different modes of action, increased 

reliance on the herbicide glyphosate for weed control (Baylis, 2000). Use of 

environmentally friendly glyphosate for weed control in lawns, golf courses and other 

turf areas depends on the development of cultivars with greater tolerance to glyphosate. 

Additionally, determination of the effective glyphosate rate that can be used directly on 

turfgrass fields to control weeds is essential for extensive usage of this herbicide. Future 

biochemical studies which will shed light on the mode of action of this herbicide on 

turfgrass should be performed. 

 
 
 

2.2  What is Glyphosate? 
 
 
2.2.1  Glyphosate application  
 
 

Glyphosate® (N-phosphonomethylglycine) is an herbicide which is widely used 

in the world. It was first introduced to the market in 1974. With novelties in agricultural 

practices, the usage of glyphosate has ascended in the 2000s. Additionally, its cheap 

price was another factor which induced its extensive usage in agriculture (Savela and 

Hynninen, 2004).  

 
 
 
2.2.2  Properties of glyphosate 
 
 

Glyphosate is a non-volatile substance, which is not prone to photochemical 

degradation. Table 2.1 summarizes the physical and chemical properties of glyphosate. 
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Table 2.1   

Physico-chemical properties of glyphosate  

Parameter Glyphosate a 

Chemical structure 

 

Chemical name [(N-phosphonomethyl)glycine] 

Empirical formula C3H8NO5P 

Molar mass 169.08 

KOWLogP < -3.2 (pH 2-5, 20°C) 

Water solubility  (20°C) 

Vapour pressure 7.5x10-8 mmHg 

pKa pKa1 0.8 pKa2 3.0 pKa3 6.0 and 

pKa4 10.0 

Freundlich sorption coefficient (Kf) 0.6-303 L kg-1b 

Photodegradation in soil Not substantial over 31 days 

Photodegradation in water DT50< 28 days 

Half-life in soil (field) DT50 3-174 days 

Half life in water DT50 5-91 days 

a Tomlin 2000 

b Vereecken 2005 

 

 
 
 
2.2.3  Glyphosate mode of action  
 
 

Glyphosate is a systemic herbicide whose foliar application is effective on plants. 

After absorbtion from the foliage, it is successively translocated to other body parts of 

the plants via phloem (Laitinen, 2009). The major mode of action of glyphosate on plant 

growth is inhibition of aromatic aminoacid synthesis via competitive inhibition of EPSP 
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synthase enzyme (Steinrücken and Amrhein 1980). EPSP synthase is an essential 

enzyme, which plays a key role in skimic acid pathway for the production of essential 

aromatic amino acid precursor, chorismate. With inhibition of synthesis of essential 

aromatic aminoacids, phenylalanine, tyrosine and tryptophan, protein synthesis is 

blocked in glyphosate sensitive species. The major determinants of efficiency of 

glyphosate are its ability to translocate to sensitive body parts of plants through phloem 

and inhibition of activity of essential enzymes in plants. Shikimic acid pathway is 

absent in animals, which take aromatic amino acids via their diet, so animals are not 

sensitive to the mode of action of glyphosate (Giesy et al., 2000; Monheit, 2000).  

 

Previous studies reported that glyphosate is not degradable at all in plants or the 

degradation rate is insignificant (Eberbach and Bowner, 1995). However, 

metabolization of glyphosate to aminomethylphosphonicacid (AMPA) in plants was 

reported in FAO evaluation in 1997.   

 
 
 
2.2.4  Glyphosate toxicity  
 
 

Glyphosate has been postulated to be non-toxic to terrestrial and aquatic 

organisms in low doses (Giesy et al., 2000; Monheit et al., 2004). Contradictory results 

came from a study by Relyea (2005). In this study, application of commercial 

glyphosate product, Roundup® to amphibians was shown to be toxic. These results 

were heavily discussed by the scientific community in terms of abnormal application 

rates, unrealistically high aquatic exposure, and limitations in experimental set-up 

(Borggaard and Gimsing 2008). 

 

Surfactants are generally added to herbicides in order to enhance penetration of 

the active molecule through the plant cuticle. Polyethoxylate tallowamine (POEA) is the 

surfactant added Roundup® for the stated purpose. Some surfactants can enhance the 

toxicity of herbicides or can be toxic themselves more than the active ingredient of the 

herbicide. For instance, it has been proposed that the major reason for acute toxicity of 

Roundup® to amphibians might have been caused by POEA, rather than Roundup®, 

itself (Giesy et al., 2000; Monheit et al., 2004). 
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2.3  Introduction to Cross Species Hybridization (CSH) microarray technology 
 
 
 
2.3.1  Species Specific Hybridization vs Cross Species Hybridization 
 
 

A microarray is a solid support (usually a glass slide or a nylon membrane) to 

which oligonucleotides or cDNA probes are permanently fixed  and to which 

fluorescently labeled cDNA samples synthesized from mRNA pool of a target species 

are hybridized. Co-hybridization of two samples, labeled with two different 

fluorophores, allows the comparison of transcriptome levels of each sample. Expression 

differences retrieved from this hybridization are given as a set of ratio representing fold 

differences between the two samples for each “feature” on the microarray.  In most of 

the microarray experiments, oligonucleotides and cDNA probes fixed to the array and 

fluorescently labeled cDNA samples are coming from the same species. Hybridizations 

in which the target and reference species are the same are named as Species-Specific 

Hybridization (SSH) (Bar-Or et al. 2007). SSH is a valuable tool to analyze whole 

genome expression changes upon any treatment, for species whose array platform is 

present. However, for organisms lacking genomic sequence information, no commercial 

array platform is available. On the contrary, this condition is no longer a limitation to 

perform transcriptomic analysis in such organisms. It has become more explicit that 

there exists sufficient sequence homology for a number of genes within 

phylogenetically close or distant species. This allows the fact that genomic sequence 

information of one species can be utilized to investigate gene expression patterns in 

other species. The number of studies utilizing probes from one species to investigate 

expression levels of another species is growing. One of the primary reasons for this fact 

is that fabricating a new microarray is time- consuming and costly task. Therefore, if an 

array platform for a closely related species is present, cross species hybridization is 

suggested to be an effective technique, since a few hybridizations are sufficient to get 

high-throughput gene expression information.   

 

Several challenges encountered while performing a CSH study are: The level of 

sequence divergence between target and reference species, the nature of the probes on 

the array, the choice of experimental design, filters used in data analysis and validation 

of CSH data (Bar-Or et al., 2007; Buckley 2007). 
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2.3.2  The level of sequence divergence between target and reference species in 
CSH 
 

 
Selection of a suitable array platform for a given target species is suggested to 

depend on phylogenetic relatedness of target and reference species. However, studies 

contributed contradictory evidences about this assumption. A study by Renn et al. 

(2004) supported this view and suggested that more consistent results could be gathered 

by CSH of closely related species. In another study by Rise et al. (2004), similar results 

were obtained. In this study, co-hybridization of RNAs from two fish species to an array 

comprising expressed sequence tags (EST) from two other fish species was performed. 

The results of this study suggested that with increasing phylogenetic closeness, 

hydridization performance increased. Although, efficiency of hybridization decreased 

with decreasing evolutionary relatedness, there remains substantial amount of 

hybridization. Contradictory evidence came from a study by Gilad et al. (2005) which 

suggested that these CSH results might be biased even in studies of species having only 

~1% sequence divergence. Hybridization of human and chimpanzee RNA to an array 

consisting of probes of both species was performed and the results of this hybridization 

study demonstrated that even a small sequence divergence, in evolutionary manner, 

might affect hybridization performance and contribute a bias to CSH results. However, 

the source of this difference in hybridization efficiency might be gene-based differences 

rather than the genome sequence divergence which was not fully considered in this 

study. 

 
 
 
2.3.3  Matching degree of target transcripts and probes  
 
 

The number of hybridizations does not always reflect the quality of a CSH study. 

The major factor that determines the success of a CSH study is the degree of similarity 

between the sequences of target transcripts and the probes. In a CSH experiment, a 

number of probes might perfectly match with target transcripts, or make a low match, or 

cross hybridize to transcripts of  several genes of the target transcripts, or make no 

match (Bar-Or et al. 2007). In other words, the degree of similarity of target and probe 

sequences might play an important role in the CSH quality depending on the number of 
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such imperfect hybridizations. Outcomes of the matching degree differences will be 

discussed below. 

 
 
 
2.3.3.1  Cross hybridization 
 
 

One of the main reasons for debates going on in the scientific community 

regarding reproducibility and reliability of microarray studies is cross hybridization 

(Draghici et al., 2006). Cross hybridization is defined as hybridization of a probe to 

more than one gene of the transcripts of the target organism. Since the sequence 

similarity between probe and transcripts in CSH studies is relatively low in comparison 

to SSH studies, the number of cross hybridizing probes in CSH is much greater. In a 

study by Bar-Or et al. (2006) it was postulated that ~16% of potato transcript sequences 

matched to more than one tomato microarray cDNA probe sequences in BLAST. 

Therefore, this might result in a bias in CSH studies. 

 
 
 
2.3.3.2  Low hybridization signal 
 
 

Low amount of matching between the sequences of target and probe in CSH 

might decrease the number of hybridizations to a single spot, and hence the signal 

intensity. There are a number of studies in the literature supporting this view (Ji et al., 

2004; Renn et al., 2004; Moore et al., 2005; Bar-Or et al. 2006). In one study (Ji et al., 

2004), hybridization of human, cattle, dog, and pig RNA to human Affymetrix 

microarray resulted in lower hybridization signals in CSH experiments in comparison to 

SSH. In another study (Renn et al., 2004), RNAs from 8 different fish species was 

hybridized to a brain specific cDNA array of African cichlid fish. A decrease in the 

number of hybridized spots was reported especially for pylogenetically distant fish 

species. The explanation for this observation was that the extent of sequence mismatch 

among target and probe sequences increases with phylogenetic distance. Therefore, 

extra measures should be taken in order to calculate the power of CSH in detection of 

expression level differences in other species, since the sensitivity of array analysis to 

detect differences in gene expression decreases with increasing phlylogenetic distance. 
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Another study supporting this conclusion reported that signal reduction might result in a 

bias in gene expression profiles obtained with CSH studies (Bar-Or et al. 2006). 

 
 

 
2.3.3.3  Reproducibility 
 
 

Another criterium which is crucial for high performance of a CSH study is the 

extent of its reproducibility. Several studies reported that CSH data are reproducible 

(Nuzhdin et al., 2004; Bar-Or et al., 2006; Donaldson et al., 2005; von Schalburg et al., 

2005). For example, Donaldson et al. (2005) reported that hybridization of bovine and 

ovine RNAs to bovine innate immune microarray resulted in 56% and 52% of 

hybridization, respectively. Presuming same set of genes are expressed in the two 

species, the bovine innate immune microarray detects 94% of the transcripts from ovine, 

which is an indicative of high degree of reproducibility of CSH. However, 

reproducibility is not always sufficient for biological validity of CSH results. Draghici 

et al. (2006) proposes that although CSH data are reproducible, they might not be 

biologically meaningful and significant. 

 
 
 
2.3.4 Criteria for a successful CSH 
 
 

To overcome these challenges and enhance efficiency of CSH analyses, a number 

guideline should be followed. These include the compatibility of the microarray 

selected, experimental design, hybridization conditions, data analysis and validation. 

 
 
2.3.4.1  Compatibility of microarray selected 
 
 

One of the essential requirements for the high performance of CSH studies is the 

evaluation of compatibility of the target species to the reference microarray platform. 

Sequence divergence is the primary determinant in selection of suitable array platform 

for CSH study, since differentiation of hybridization due to imperfect matches and those 

due to real expression profile differences is crucial for extracting valid biological data 

from CSH studies. One important point which should be considered with caution is the 
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fact that phylogenetic relatedness does not always reflect the divergence at the gene 

level. If sufficient genome sequence data are not available for a target species, 

hybridization of genomic DNA of target species to the microarray platform of the 

potential reference species might be helpful to quantify the effect of sequence 

divergence on efficiency of hybridization. For example, in a study (Ranz et al. 2003), 

genomic DNAs from Drosophila melanogaster and Drosophila simulans were 

hybridized to D. melanogaster array. Hybridization efficiency of D. melanogaster DNA 

was 4.2% greater than that of D. simulans, which was in good correlation with sequence 

divergence among those species (3.8% sequence divergence).  

 

If there is sufficient genomic data for the target species, it is possible to determine 

the sequence divergence of target and reference species directly. In a study by Saetre et 

al. (2004), the genomes of dog and human were compared to assess genome-wise 

similarity between the two organisms before hybridizing dog RNA to human 

Affymetrix cDNA microarray. The level of completeness of genome databases will be 

the determining factor in the power of this method for the determination of sequence 

divergence between target and reference species.  

 
 
 
2.3.4.2  �ature of the probes  
 
 

One of the factors which affect the efficiency of CSH is the nature and length of 

the probes on the microarray platform. There are three major probe types used in 

microarray studies: Affymetrix probe sets, longer oligomers (~60-mers) and even longer 

cDNA probes.  Affymetrix probe sets are comprised of 11-20 probe pairs (~25-mers). 

Each probe pair consists of perfect match (PM) probe and mismatch (MM) probe. PM 

probes generates detectable signal when target RNA binds to it. MM probe is utilized to 

eliminate any false and contaminating signal within that measurement 

(http://www.affymetrix.com/). cDNA probes come from cDNA library of a reference 

organism and are generally longer than short oligonucleotide probes (affymetrix 

probes). Affymetrix probes are more prone to sequence mismatches than cDNA probes 

and might lead to cross hybridization. cDNA probes are suggested to be better 

alternatives for identification of differentially regulated transcripts, since cross 

hybridization probability is lower for these longer probes. In the literature, there are 
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several studies supporting this view. In one study, Enard et al. (2002) hybridized several 

primate species RNAs either to human Affymetrix oligonucleotide array or to cDNA 

microarray. The outcome of this study demonstrated that usage of longer probes and 

maintenance of high stringency hybridization conditions lead to less cross hybridization 

than the usage of shorter affymetrix probes. Other supportive evidence came from a 

study by Walker et al. (2006). In this study, macaque monkey (Macaca fascicularis) 

RNA was hybridized either to human Affymetrix 25-mer oligonucleotides or to human 

Applied Biosystems 60-mer oligonucleotide microarray. Higher number of 

differentially regulated transcripts was identified with longer oligonucleotide array with 

a lower false rate.  Under the light of these results, it might be suggested that cDNA 

microarrays are the sole microarray platforms in CSH. However, there exist several 

disadvantages for this array platform. For instance, as stated in a study by Halgren et al. 

(2001), the presence of chimeric clones and contaminating clones in low quality cDNA 

libraries might contribute to an increase in false identification rate of differentially 

regulated transcripts.   

 
 
 
2.3.4.3  Importance of the experimental design 
 
 

Two major experimental designs are utilized in CSH studies. In the first design, a 

microarray platform containing probes from species 1 is utilized to compare expression 

profiles of two different species (2 and 3). In this type of design, there are two factors 

which contribute to the bias in CSH studies: the degree of sequence divergence between 

species 1 and 2, and the degree of sequence divergence between species 1 and 3. In 

some cases species 1 might be the same as species 2 or 3. This type of design is 

suggested to be effective in CSH studies which aim to compare transcriptomic profiles 

of two closely related species. For example, in one study, this type of experimental 

design was employed to investigate sex-dependent gene expression profiles in different 

Drosophila species (Meiklejohn et al., 2003; Ranz et al., 2003). In another study, Gilad 

et al. (2005) demonstrated that sequence divergence might have an important effect on 

comparison of gene expression levels of very closely related species, human and 

chimpanzee. A cDNA microarray comprising probes of human, chimpanzee, orangutan, 

and rhesus macaque monkey was utilized to compare gene expression levels of these 

primates. The results obtained from these hybridizations showed that even a subtle 



 14 

sequence divergence might have an essential effect on comparison of gene expression 

patterns of species that diverged only ~1%, like human and chimpanzee in CSH studies.   

 

In the second experimental design utilized in CSH experiments, two different 

samples from the same species are competitively hybridized to a microarray platform of 

another species. This type of experimental design circumvents the effect of sequence 

divergence between the target species. Only divergence factor, sequence divergence 

between target and reference species, affects the target samples equally and leads to 

acquisition of more reliable and valid data from CSH studies. Target samples might 

differ in terms of type of treatment, time point, tissue, developmental stage or location. 

There are several studies reporting the utilization of this type of design to study 

differences in gene expression profiles. For example, in a study (Renn et al., 2004), 

target brain or muscle samples from 8 different fish species, including African cichlid 

(Astatotilapia burtoni) were hybridized to a cDNA microarray consisting of probes 

from brain ESTs of African cichlid (Astatotilapia burtoni). Competitive hybridization of 

human and brain samples from African cichlid to this cDNA microarray resulted in 

identification of 804 differentially regulated genes between brain and muscle tissue. 

Hybridization of brain and muscle RNA samples from 7 other fish species lead to 

identification of lower number of differentially regulated genes, as the phylogenetic 

distance increased. However, such decrease in the hybridization was not very high, even 

for the most diverged species zebra fish (Danio rerio) (diverged from African cichlid by 

~200 million years). 80% of the differentially regulated genes identified by 

hybridization of African cichlid brain and muscle RNA samples to the African cichlid 

brain array were also identified by hybridization of perciform (diverged from African 

cichlid by 65 million years) brain and muscle samples to the African cichlid cDNA 

array. Only 20% of the differentially regulated transcripts were obtained from zebra fish 

hybridization experiment (the most diverged species). These results supported the 

assumption that CSH is a powerful technique to detect differences in gene expression 

profiles of two target samples from the same species, especially when the sequence 

divergence between the target and reference species is small. 
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2.3.4.4  Data analysis     
 
 

To obtain biologically meaningful results from CSH studies, filtration of probe 

sets is suggested to be essential. There are two major approaches to filter data in CSH 

studies. First approach is genomic-data based filtration and utilized sequence homology 

between probe and the target sequences. Probe pairs showing high homology to target 

species are selected for further data analysis. The ones having lower amount of 

homology are excluded during data analysis. Bar-Or et al. (2006) utilized this approach 

to filter data in CSHs of tomato samples to potato cDNA microarray and potato samples 

to tomato cDNA array. Khavitovich et al. (2004) postulated the use of this filtration 

approach to find out the probe pairs that are matched between human and chimpanzee.  

 
In the second approach, probe pairs with high level of matching to the target 

sample are selected by hybridization of genomic DNA of target species to the reference 

microarray. Several studies reported the usage of this approach to filter CSH data. In a 

study (Ranz et al., 2003), D. simulans gDNA was hybridized to D. melanogaster cDNA 

array. The results of this hybridization analysis demonstrated that there is not much 

difference between these two species in terms of sequence. Therefore, it was deduced 

that CSH of D. simulans RNA to D. melanogaster cDNA array would give biologically 

meaningful data. In another study by Hammond et al. (2005), probe sets were filtered by 

hybridization of gDNA of Brassica oleracea to Arabidopsis thaliana Affymetrix 

microarray. Probe sets having one or more than one perfectly matching probe with 

hybridization levels above a certain threshold were used in data analysis. Probe 

selection enhanced the identification of differentially regulated transcripts in test and 

control samples. This gDNA hybridization based approach seems to be more 

advantageous than genomic-data based filtration approach, because it can also be used 

for probe set selection for species without an available genomic data. 

 
 
 
2.3.4.5  Validation of CSH data  
 
 

As in all microarray experiments, confirmation of expression data with techniques 

of mRNA quantification such as quantitative real time PCR or northern blotting is 
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important. Several CSH studies used these techniques to validate their data (Ji et al., 

2004; Moody et al., 2002; Huang et al., 2000).  

 

Mapping differentially regulated genes to regions on chromosome shown to be 

related to certain biological processes by previous studies is another approach to 

validate CSH data. In a study by Fang et al. (2005), after CSH of rat RNA to mouse 

cDNA microarray, differentially regulated genes were mapped to rat, mouse and human 

chromosomes. Any correlation in mapping of this gene was deduced to be meaningful 

and that gene was considered to be an orthologous gene.  

 
 

 
2.3.5  CSH applications   
 
 
 

CSH is offered as a new and useful tool to perform a large-scale functional 

profiling of a species without an available genome sequence. CSH is an important tool 

for identifying molecular mechanisms and pathways conserved among species (Hughes 

et al. 2000; Ihmels et al. 2005; McCaroll et al. 2004). These studies included CSH 

analysis of highly diverged species, Caenorhabditis elegans and Drosophila 

melanogaster (McCaroll et al. 2004), and of more related organisms Candida albicans 

and Saccharomyces cerevisiae (Ihmels et al. 2005). In a recent study (Sun et al. 2007), 

mechanisms controlling embryonic stem cell (ESC) pluripotency were investigated by 

comparing gene expression patterns of human and mouse ESC orthologous genes. 

Another recent study reported that usage of a multi-species cDNA array identified 

conserved genes expressed in oocytes. Gene sequences from three organisms, bovine, 

mouse and Xenopus laevis, diverged in their evolutionary position, have been utilized to 

design a multi-species cDNA array for the identification of conserved sequences 

playing roles in molecular mechanisms or pathways common to all species (Vallée et al. 

2006). In both studies evolutionarily distant species were selected to identify common 

mechanisms and pathways. Additionally, a comparison of results obtained by CSH with 

species specific hybridization (SSH) proved that biological processes analyzed by CSH 

closely reflected the analysis found by SSH (Bar-Or et al. 2006).  
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CSH is also widely used for comparative genomics in plants to identify 

evolutionary conserved mechanisms and pathways. In such studies, transcripts from 

closely related species are hybridized to a microarray consisting of probes generated 

from one of those species. For instance, in a study, Arabidopsis thaliana GeneChips 

were utilized to study a complex response, zinc hyperaccumulation, in cadmium and 

zinc tolerant close relative, Arabidopsis halleri ssp. halleri (Becher et al., 2004). Via 

this transcriptome-wide analysis, several genes playing key roles in cellular metal 

uptake and detoxification in the shoots were identified. The results of this study 

confirmed the effectiveness of usage of Arabidopsis thaliana oligonucleotide 

microarrays in comparative transcriptomic profiling in A. halleri.  

 

In another study, CSH to tomato cDNA array was utilized for comparative 

transcriptomic profiling in Solanaceae family members, tomato, pepper and eggplant 

(Moore et al., 2005). With this study, apart from the transcripts commonly expressed 

during fruit development, transcripts functioning in a variety of diverged mechanisms 

were also identified. Since the tomato cDNA microarray used in this study only 

represented a small portion of the genes in the tomato genome, acquirement of more 

biologically meaningful data depends on the development of a more extensive array 

platform.        

 

CSH is also utilized for studying complex traits in a target plant species via 

utilization of an array platform of a distantly related species. For instance, in a recent 

study, Rice GeneChip genome array was utilized to study the response of banana (Musa 

ssp.) to drought stress at transcriptomic level (Davey et al., 2009). To identify 

differentially regulated transcripts, Musa RNA was cross hybridized to GeneChip of 

rice, which is distantly related to Musa. Before hybridization, genomic DNA 

hybridization based probe selection strategy was utilized to obtain a more biologically 

relevant data in the end. Of the 2910 transcripts displaying >2 fold expression 

difference in response to drought, many were annotated to function in abitotic stress-

response pathways. In conclusion, the results of this study indicated the feasibility of 

CSH to perform transcriptomic profiling in Musa using an array platform from a 

distantly related species, rice, with a preliminary probe selection step. 
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3  MATERIALS A�D METHODS 
 
 
 
 

3.1  Materials 

 
 
 

3.1.1  Plant material 

 
 

In the experiments, three different turfgrass species, Ambrose (Festuca rubra 

subsp. falax), Cindy Lou (Festuca rubra subsp. littoralis) and Discovery (Festuca 

brevipila) were used.  

 
 
 

3.1.2  Chemicals 

 
 

All chemicals were obtained from Merck (Germany), SIGMA (US), Fluka 

(Switzerland), and Riedel de Häen (Germany). 

 
 
 

3.1.3  Growth Media, Buffers and Solutions  

 
 

The growth media, buffers, and solutions used in this study were prepared 

according to the protocols as outlined by Sambrook et al., 2001. 
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3.1.4  Equipment 

 
 

Equipments used in this research are listed in Appendix. 

 
 
 

3.2 Methods 

 
 

 

3.2.1  Plant growth conditions and glyphosate treatments 
 
 

Seeds of three different turfgrass species, Ambrose (Festuca rubra subsp. falax), 

Cindy Lou (Festuca rubra subsp. littoralis) and Discovery (Festuca brevipila) were 

directly planted on soil and grown under controlled conditions in the greenhouse with 

daytime and nighttime temperatures of 25°C and 20°C, respectively. Glyphosate 

[RoundUp Ultra; acid equivalent (a.e.): 356 g L-1 N-[phosphonomethyl]glycine, 

Monsanto Co.] treatment was performed four weeks after sowing by spraying a total 

volume of 100 ml of either 5% or 20% solution (1.58 mM and 6.32 mM, respectively) 

directly on the leaves under open air conditions. Plants at the three-leaf growth stage 

were sprayed with freshly prepared glyphosate solution until all leaves were fully wet 

(about 10 ml) but without run-off. Control plants were sprayed with distilled water. Leaf 

samples were collected 5 days after treatment. 

 
 
 
3.2.2  Total R�A isolation 
 
 

Total RNA isolations were carried out by Trizol reagent (Invitrogen) according to 

the manufacturer’s instructions with a few modifications. Two hundred mg leaf tissue 

was ground with 1.5 ml Trizol® reagent (Invitrogen) (without adding liquid nitrogen). 

Using a wide bore pipette tip, 1 ml of liquid was taken into an eppendorf tube, which 

was kept on ice while processing the other samples. After processing all the samples, 

they were incubated at room temperature for 10 min, 0.4 ml of chloroform was added 

and the tubes were shaken and incubated at room temperature for 5 min. Then, samples 

were centrifuged at 12,000 rpm for 15 min at 4ºC. The upper layer containing RNA was 
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transferred to a fresh tube. After chloroform extraction, 0.5 ml isopropanol was added to 

precipitate RNA. Samples were then incubated at room temperature for 10 min and spun 

at 12,000 rpm for 10 min at 4ºC. The RNA pellet was washed with 1 ml of 75% ethanol 

after centrifugation. Samples were mixed by vortexing and spun at 7,500 rpm for 5 min 

at 4ºC. The RNA pellet was dried at room temperature for 10 minutes and placed in 20-

50 µl formamide, depending on the size of the pellet, and allowed to sit in the 55ºC 

water bath for an hour to improve suspension.  

 
Three separate RNA isolations were performed for each glyphosate dose of each 

species. RNA concentrations were determined spectrophotometrically and RNA 

qualities were checked by denaturing gel before the microarray analysis. RNA samples 

were treated with Dnase I (Fermentas) according to manufacturer’s instructions. 

  
 
 
3.2.3  Gene chip analysis 
 
 

Microarray analysis was performed using the Affymetrix GeneChip® Wheat 

Genome Array to identify the global gene expression profiles of the turfgrass species 

used in this study. This array contains 61,127 probe sets representing Triticum aestivum, 

T. turgidum, T. turgidum ssp. durum, T. monococcum, and Aegilops tauschii transcripts. 

All hybridizations were performed as biological triplicates of control and glyphosate 

treated samples (RNA isolation and cRNA labeling were done separately for each 

hybridization) of three Festuca genotypes and two glyphosate dosages, for a total of 36 

Affymetrix GeneChip® Wheat Genome Arrays. Labeled cRNAs were synthesized from 

six micrograms of total RNA using the One-Cycle Target Labeling and Control 

Reagents (Affymetrix) according to the manufacturer’s instructions. Synthesized cRNA 

samples were cleaned up, fragmented and hybridized to Affymetrix GeneChip® Wheat 

Genome Array for 16 hours at 45°C and 60 rpm using Hybridization Wash and Stain 

Kit (Affymetrix) in Fluidics Station 450 according to the manufacturer’s instructions. 

Finally, the array was scanned with GeneChip® Scanner 3000 with GeneChip® 

Operating Software script.  
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3.2.4  Data analysis  
 
 

Partek® Genomics Suite version 6.3 Beta (Partek Incorporated) was used to 

analyze cell intensity files using robust multichip average (RMA) normalization. 

Principal component analysis (PCA) and Box&Whiskers plots were utilized to check 

the quality of data obtained from the hybridization experiments. Analysis of variance 

(ANOVA) test was used for further analysis of log transformed expression values 

(p<0.1 and DE<-2 or DE>2). Raw data are submitted to ArrayExpress database 

(http://www.ebi.ac.uk) under E-MEXP-1647. Differentially expressed probes in all 

genotypes and at both glyphosate doses were subjected to cluster analysis using Cluster 

(Eisen et al., 1998) and Treeview programmes (Page, 1996). 

 
 
 
3.2.5  Annotation of Affymetrix GeneChip® probes  
 
 

The target sequences of differentially expressed probes were retrieved from 

NetAffx database. The annotation of the probe sets were performed by BLASTn hits (e 

value < 0.0001) to TC collections of wheat and rice from TIGR database 

(http://www.tigr.org) and to GenBank nr database (NCBI, Release date Feb 20, 2008, 

http://www.ncbi.nlm.nih.gov). Functional categorization was performed using The 

Munich Information Center for Protein Sequences (MIPS) annotation categories 

(http://mips.gsf.de/) and ExPASy proteomics server (Gasteiger et al., 2003). 

 
 
 
3.2.6   RT-PCR Analysis 
 
 

Two micrograms of total RNA isolated from control and glyphosate-treated 

Festuca species were used to synthesize first strand cDNA with the Superscript III 

reverse transcriptase (Invitrogen) according to the manufacturer’s instructions. cDNAs 

were quantified spectrophotometrically and diluted to 400 ngµl-1. One µl of this cDNA 

was amplified with 0.5 µM of gene specific primers and 18S rRNA primers in a total of 

20 µl volume. The primer pair selected for RT validation was specific to alternative 

oxidase, because it was found to be up-regulated in all three species  
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4  RESULTS 

 
 
 
 

                           4.1    Cross Species Hybridization Analysis  
 
 
 

Gene expression profiles of three Festuca species, Ambrose, Cindy Lou and 

Discovery, were examined in response to increasing levels of glyphosate using the 

Affymetrix GeneChip® Wheat Genome Array. The CSH approach led to significant 

differential regulation of only 1337 probe sets (231 probes from Ambrose, 767 from 

Cindy Lou, and 339 probes from Discovery) at the defined threshold expression values 

of p<0.1 and DE<-2 or DE>2.  

 
 
 

4.2 Gene Expression Profiles in Festuca species 
 

 
 

The number of differentially expressed probes increased proportionally at 20% 

foliar glyphosate treatment. CSH with the Cindy Lou led to detection of a larger number 

of probes (Fig. 4.1C), whereas CSH with the Ambrose resulted in detection of the 

lowest number of differentially expressed probes (Fig. 4.1A). The total number of 

differentially expressed probe sets in Discovery was intermediate to that of Ambrose 

and Cindy Lou in response to glyphosate (Fig. 4.1B). Interestingly, the number of 

differential expressed probes was almost constant in cultivar Ambrose irrespective of 

the glyphosate rate. However, the number of probes increased with 20% glyphosate 

treatment for both Discovery and Cindy Lou. This response was stronger in Cindy Lou 

cultivar (Fig. 4.1) 
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Fig. 4.1  Venn diagrams showing the total number of differentially expressed probes in 
three Festuca genotypes in response to two glyphosate doses, 5% and 20%. A) 
Ambrose; B) Discovery; C) Cindy Lou. 
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In Cindy Lou, most of the differentially expressed probes were found to be up-

regulated at the 5% glyphosate application, but this pattern was opposite for the 20% 

glyphosate application (Fig. 4.2C). Transcripts altered with 20% glyphosate applications 

were mostly down-regulated. In contrast, for Ambrose, the number of up-regulated 

probes was more than the down-regulated probes for both glyphosate doses (Fig. 4.2A).  
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Fig. 4.2  The total number of differentially expressed probe sets (p< 0.1) in glyphosate 
treated plants. A) Ambrose; B) Discovery; C) Cindy Lou]. Up-regulated probes are 
represented by black bars, whereas down-regulated probes are represented by white 
bars. 
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The total number of common up-regulated probes in Ambrose and Discovery at 

both glyphosate doses was greater than the number of common probes in Discovery and 

Cindy Lou (Fig. 4.3). These results were opposite for down-regulated probes.  

 

 

 
Fig. 4.3  Venn diagrams showing the total number of differentially expressed probe sets 
common to three Festuca species. A) Up-regulated by 5% glyphosate application B) 
Down-regulated by 5% glyphosate application C) Up-regulated by 20% glyphosate 
application D) Down-regulated by 20% glyphosate application. 
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4.3 Functional Analysis 
 
 
 

Probes with differential expression were annotated by homology searches of 

target sequences using BLASTn in the TIGR wheat and rice genome databases 

(http://www.tigr.org) and the GenBank nr database (http://www.ncbi.nlm.nih.gov). 

Subsequently, we searched for functions using the ExPASy proteomics server 

(Gasteiger et al., 2003) (Fig. 4.4). Differentially expressed probes were grouped into 21 

functional categories according to MIPS functional categories 

(http://www.mips.gsf.de/). The largest probe sets were categorized under 

“Photosynthesis” (~25.3%, average of three genotypes), “Metabolism” (~24.6%), 

“Protein Synthesis” (~19.1%), “Unclassified” (~13.7%), “Transport & Mechanisms” 

(~10.1%), “Energy” (~6.7%), and “Protein Fate” (~6.4%) (Fig. 4.4).  

 

 

Fig. 4.4  Functional annotation of all differentially regulated probes in three Festuca 
species. A) Ambrose, B) Discovery, C) Cindy Lou. 
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The probes in the group, “Photosynthesis” were down-regulated in all three 

genotypes In Ambrose, all differentially expressed probes except the ones in the 

photosynthesis category were found to be up-regulated at both glyphosate rates (Fig. 

4.5A). As for Cindy Lou, the transcript abundance pattern was found to be different 

from Ambrose. A major portion of the probes residing in the listed categories were up-

regulated by the 5% glyphosate application. However, increasing glyphosate treatment 

to 20% resulted in downregulation of most probes (Fig. 4.5C). As for Discovery, most 

probes played roles in protein synthesis, photosynthesis, and transport mechanisms 

which were down-regulated (Fig. 4.5B).  
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Fig. 4.5  Functional categories of largest differentially expressed probe sets in three 
Festuca genotypes. A) Ambrose, B) Discovery, C) Cindy Lou] exposed to 5% and 20% 
glyphosate.  
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Cluster analysis using differentially expressed probes common to all genotypes 

for both glyphosate rates showed that differentially expressed probes in all Festuca 

genotypes in response to 5% (21 probes) and 20% glyphosate (71 probes) treatment 

grouped separately. The Treeview results indicated that differentially expressed probes 

of Cindy Lou and Discovery clustered together for both glyphosate rates (Figs. 4.6A 

and 4.6B). Ambrose was shown to cluster separately from Cindy Lou and Discovery, 

which are proposed to be more tolerant to glyphosate in comparison to Ambrose (Su et 

al. 2009).  

 

 

Fig. 4.6  Cluster analysis of probes with differential regulation in three Festuca 
genotypes. A) 5% glyphosate B) 20% glyphosate. The color saturation reflects the fold 
change where green is for more than 2 fold down-regulated and red is for more than 2 
fold up-regulated probes with p<0.1. 
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4.4 Effects of glyphosate on photosynthesis and detoxification of Reactive Oxgen 
Species (ROS) 

 
 

Analysis of the differentially expressed probes with roles in photosynthesis 

revealed that glyphosate led to the down-regulation of most probes related to 

photosynthesis in all Festuca species at both glyphosate doses. This reduction in gene 

expression was mostly apparent in transcripts functioning in chlorophyll biosynthesis, 

photosystem activities and RuBisCo, a key player in the Calvin cycle (Table 4.1A). The 

decline in transcript abundance was more pronounced for plants treated with the higher 

glyphosate dose. 

 
Transcript profiling of Festuca species via CSH to Wheat Affymetrix Gene Chip 

indicated that glyphosate treatment at both rates led to down-regulation of majority of 

probes functioning in detoxification of ROS in all Festuca species (Table 4.1B).  

 
Transcripts functioning in signal transduction pathways were also found to be 

down-regulated in Cindy Lou at both glyphosate doses. However, both glyphosate rates 

resulted in up-regulation of transcripts playing roles in cell signaling in Discovery 

(Table 4.1C)   
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Table 4.1 List of common or species-specific probes related to (A) photosynthesis, (B) 
oxidative stress, and (C) cell signaling and differentially expressed in response to two 
different doses of glyphosate. Given are the fold changes calculated by ANOVA. Up-
regulation fold changes are given in bold letters, whereas down-regulation by italics. No 
significant differential expression is shown with an empty cell. Ambrose probe fold 
changes are highlighted with red, Discovery with blue Cindy Lou with black. 

           A) 
  Ambrose Discovery Cindy Lou 

  Fold Change 

  5% 20% 5% 20% 5% 20% 

Probe Set 

ID 

Target Sequence       

Ta.27761.
1.S1_x_at 

 

Photosystem I reaction 
center subunit psaK, 
chloroplast precursor 

 

-3,30122 

 

-13,2487 

 

-3,01112 

 

-37,0513 

 

- -6,62621 

 

Ta.27751.
3.S1_x_at 

 

Photosystem I reaction 
center subunit XI, 

chloroplast precursor 
 

- -3,53086 

 

-3,03125 

 

-6,11773 

 

- -5,63676 

 

Ta.28750.
1.S1_at 

 

Photosystem II 10 kDa 
polypeptide  chloroplast 

precursor 
 

- -2,6278 

 

-4,16983 

 

-17,2639 

 

- -8,04824 

 

Ta.1161.1.
S1_at 

 

Photosystem II subunit 
PsbS 

 

- -3,47497 

 

- -11,5118 

 

- -3,58749 

 

Ta.1139.1.
S1_at 

 

Precursor of CP29, core 
chlorophyll a/b binding 

(CAB) protein of 
photosystem II 

 

-5,04791 

 

-28,6882 

 

-7,37361 

 

-46,5839 

 

- -18,6875 

 

Ta.28265.
1.S1_at 

 

Oxygen-evolving enhancer 
protein 3-1, chloroplast 

precursor (OEE3) 
 

 

- 

 

-8,69806 

 

 

-3,77085 

 

 

-5,07437 

 

 

- 

 

-10,209 

 

Ta.30702.
1.S1_x_at 

 

Chlorophyll a/b-binding 
protein WCAB precursor 

 

-40,9861 

 

-58,6499 

 

-64,5336 

 

-98,1407 

 

-10,1345 

 

-119,736 

 

Ta.20639.
3.S1_x_at 

 

Chlorophyll a/b-binding 
protein precursor 

 

-3,23933 

 

-6,25985 

 

-6,19484 

 

-18,7793 

 

- -2,68378 

 

TaAffx.12
8414.219.
S1_x_at 

 

Rubisco large subunit 
 

-9,75494 

 

-16,4849 

 

-3,08632 

 

-10,8861 

 

- -37,5039 

 

Ta.2752.2.
S1_x_at 

 

Ribulose-1,5-bisphosphate 
carboxylase/oxygenase 

small subunit 
 

- -14,2542 

 

- -27,3256 

 

- -7,39744 
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B) 

  Cindy Lou Discovery 

  Fold Change 

Probe Set ID Target 

Sequence 

5% 20% 5% 20% 

Ta.28714.1.S1_at 
 

Thioredoxin 
peroxidase 

 

- -10,1624 

 

-2,57569 

 

-17,9772 

 

Ta.6572.1.S1_a_at 
 

Peroxiredoxin Q 
 

- -17,3425 

 

-4,85985 

 

-7,80475 

 

Ta.18063.2.S1_at 
 

Putative 
glutathione 
peroxidase 

 

-2,69247 

 

-5,38618 

 

- - 

Ta.547.1.S1_at 
 

Cytosolic 
glutathione 
reductase 

 

- - 9,12843 
 

11,6039 
 

Ta.14644.2.S1_x_at 
 

Superoxide 
dismutase [Cu-

Zn] 4A 
 

- - 2,52839 
 

2,62177 
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C) 

  Cindy Lou Discovery 

  Fold Change 

Probe Set ID Target Sequence 5% 20% 5% 20% 

Ta.6269.1.S1_at 
 

Putative 
serine/threonine 

kinase 38 
 

- -3,59976 

 

- - 

Ta.991.1.S1_a_at 
 

Serine/threonine-
protein kinase SAPK8 

 

- -7,70463 

 

- - 

TaAffx.86456.1.S1_s_at 
 

Putative 
calcium/calmodulin-
dependent protein 

kinase CaMK 
 

- -6,76413 

 

- - 

Ta.11837.1.S1_at 
 

Calmodulin 
 

- -5,03177 

 

- - 

Ta.6979.1.S1_s_at 
 

Phosphatidylinositol 
3-and 4-kinase family-

like, 
 

- -40,9189 

 

- - 

Ta.1890.1.S1_x_at 
 

Nt-iaa28 deduced 
protein 

 

-2,85957 

 

-2,85957 

 

- - 

Ta.6968.2.S1_a_at 
 

Ethylene-responsive 
small GTP-binding 

protein 
 

- -2,60726 

 

- - 

Ta.25390.1.S1_s_at 
 

(Q91W51) WASP 
family 1 

 

- - 3,49126 
 

4,82506 
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4.5  Reverse transcriptase (RT) PCR analysis 
 
 

 
RT-PCR was performed on cDNA generated from total RNAs of both control and 

three 5% glyphosate-treated Festuca to validate our CSH results. The candidate probe, 

TA.233.1.S1_AT was found to have homology to “Alternative Oxidase” by functional 

analysis and was differentially expressed in all three genotypes. Sequencing of this 

product amplified in Fescue showed a high level of similarity (Triticum aestivum, E 

value 1e−90) with wheat. Amplification of this probe was shown to be enhanced with 

5% glyphosate treatment, in accordance with the CSH data (Fig. 4.7).  

 

 
Fig. 4.7  A representative picture of validation of microarray result using RT-PCR for 
one common Festuca probe set. 

 
.   

 

 

 

 

 

 

 

 

  



 36 

 
 
 
 
 

 
5  DISCUSSIO� 

 
 
 
 
5.1  The percentage of hybridization was low as a result of CSH to wheat genome 

array 
 
 

A total of 1337 festuca probes with either > 2 fold or <-2 difference in expression 

levels were identified as a result of CSH analysis. Although only 2.2% of the probes in 

total stayed above the threshold, biologically meaningful information could be extracted 

from this data set, which could be used to elucidate conserved mechanisms responsive 

to glyphosate common to fescues and wheat. The low percentage of hybridization might 

be explained by the presence of interspecies differences between the probe and target 

sequences. The single nucleotide polymorphisms may result in alteration of probe-

hybridization affinities and hence, generate lower hybridization signal intensities 

(Benovoy et al. 2008). Low percentage of hybridization, which is also detected in our 

CSH study, might be eliminated by probe set filtration which is based on hybridization 

of genomic DNA of target species to the reference microarray. This approach has been 

employed by several researchers for better CSH data (Ranz et al., 2003; Hammond et 

al., 2005). Additionally, much higher hybridization ratios have been reported in recent 

studies exploiting CSH with cDNA arrays (Sun et al., 2007; Vallée et al. 2006,) because 

cDNA platforms are likely more suitable for CSH studies owing to the longer cDNA 

probes. The wheat array platform chosen in our study appears to provide a benefit in 

that it enabled the detection and identification of highly conserved biological processes 

common to fescues and wheat, such as photosynthesis or reactive oxygen species 

scavenging. 
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5.2 Gene expression profiles of Festuca species differed after glyphosate 
treatment  

 
 

The numbers of differentially expressed probes for 20% foliar glyphosate 

treatment were proportionally increased with previously detected glyphosate tolerance 

levels of Festuca species (Su et al., 2009) used in this experiment. Hybridization with 

the most tolerant genotype Cindy Lou (Festuca rubra subsp. littoralis) led to detection 

of larger number of probes, whereas the most sensitive cultivar Ambrose (Festuca rubra 

subsp. falax) ended up with the lowest number of differentially expressed probes. This 

number in Discovery (Festuca brevipila) was in between the number of probe sets in 

Ambrose and Cindy Lou in accordance with the glyphosate tolerance levels of these 

three genotypes. The results indicated that the higher the tolerance to glyphosate, the 

larger was the portion of probe sets differentially expressed in Festuca genotypes used. 

Interestingly, the number of probes with differential expression was almost constant in 

cultivar Ambrose irrespective of the glyphosate rates, whereas the number of probes 

increased with 20% glyphosate dosage for both Discovery and Cindy Lou with a strong 

response in the later. Although very speculative, this observation might represent the 

direct relationship between the molecular response and the tolerance capacity where 

better tolerance requires more effective change in gene expression profile to minimize 

toxic effects of glyphosate on plant metabolism.  

 
20% glyphosate application rate was found to down-regulate the differentially 

expressed probes. Additionally, the number of common down-regulated probes in Cindy 

Lou and Discovery was greater than the number of up regulated probes. The 

mechanisms controlled by common down-regulated probe sets are likely more 

conserved among Cindy Lou and Discovery and appear to initiate a response to the 

higher doses of glyphosate.  

  
 

 
5.3  The largest differentially expressed probe sets were categorized under 

“Photosynthesis” in Festuca 
 
 

As could be expected, the probes in the largest functional category, 

“Photosynthesis” were down-regulated in all genotypes, since one of the secondary 

responses of plants to glyphosate is the inhibition of photosynthesis via several routes 
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(Geiger et al. 1986; Servaites et al. 1987; Tan et al. 2006; Wong 2000). Up-regulation of 

majority of the differentially expressed probes except the probes in “Photosynthesis” 

category in Ambrose suggested that most biological processes, except photosynthesis, 

were active in this genotype or showed enhanced expression. Majority of the 

differentially expressed probes with 5% glyphosate application were found to be up-

regulated in Cindy Lou. However, when the level of glyphosate applied was raised to 

20%, most of the probes were down-regulated. These results support our proposal that 

glyphosate leads to the induction of a more profound down-regulatory response when it 

is applied at a relatively higher dose (20%) in Cindy Lou. This result was expected 

based on a previous report indicating that glyphosate led to the inhibition of many 

biological processes, including chlorophyll synthesis, plant tissue ion fluxes, and 

activity of anti-oxidative enzymes (Sergiev et al. 2006). The probes residing in “Protein 

Synthesis”, “Photosynthesis” and “Transport&Mechanisms” categories were down-

regulated. Inhibition of protein synthesis was an expected response, because the major 

mode of action of glyphosate is inhibition of aromatic amino acid biosynthesis, and 

hence protein synthesis (Amrhein et al. 1980). 

 
 
 

5.4  Differentially expressed probes of Cindy Lou and Discovery clustered together 
for both glyphosate rates 

 
 

Similarities and differences between three Festuca cultivars with differential 

tolerance to glyphosate were sought by clustering of differentially expressed probes 

common to all genotypes for both glyphosate rates, 5% glyphosate (21 probes) and 20% 

glyphosate (71 probes). Clustering results indicated that differentially expressed probes 

of Cindy Lou and Discovery clustered together for both glyphosate rates. Glyphosate 

sensitive genotype, Ambrose, was shown to cluster separately from Cindy Lou and 

Discovery, which are proposed to be more tolerant to glyphosate with respect to 

Ambrose.  In other words, transcriptome changes in cultivar Cindy Lou and Discovery 

with both glyphosate rates resembled each other. Clustering of glyphosate sensitive 

genotype, Ambrose from glyphosate tolerant genotypes, Cindy Lou and Discovery 

indicated that glyphosate responses of tolerant and sensitive genotypes are distinct.  
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5.5  Glyphosate treatment led to down-regulation of photosynthesis related genes 
 
 

A closer look to the differentially expressed probes showed that glyphosate led to 

the down-regulation of probes functioning in chlorophyll biosynthesis, photosystem 

activities and RuBisCo, a key player in the Calvin cycle (Table 1).  

 
A major mode of action by glyphosate affects the aminolevulinic acid (ALA) 

pathway, or the porphyrin biosynthesis pathway. In the ALA pathway, glyphosate 

interferes with the activity of aminolevulinate synthase preventing the conversion of 

succinyl CoA (from the tricarboxylic acid cycle) to ALA. Blockage of this step in 

porphyrin biosynthesis leads to a decline of compounds containing porphyrin, such as 

chlorophyll (Kitchen et al. 1981). Additionally, it has been reported that leaf chlorophyll 

content of plants exposed to sub-lethal doses of glyphosate is lower (Tan et al. 2006; 

Wong 2000). Hence, one of the primary reasons for the decline in expression levels of 

probes playing a role in photosynthesis might be related to the deleterious effect of 

glyphosate on chlorophyll. Glyphosate treatment was also shown to inhibit 

photosynthesis by blocking  the allocation of carbon to starch (Geiger et al. 1986), and 

resulted in an immediate and rapid decline in the level of ribulose bisphosphate and 

associated photosynthetic carbon metabolism in sugar beet (Servaites et al. 1987). These 

studies are consistent with the reduction in the levels of transcripts related to 

photosynthetic pathways being linked to the inhibitory effect of glyphosate in Festuca 

species.  

 
 
 

5.6..Regulation of detoxification of reactive oxygen species (ROS) is genotype 
dependent 

 
 

ROS generation causes oxidative damage to membrane lipids, DNA, and proteins 

(Apel and Hirt 2004). CSH-based transcript profiling of Festuca species indicated that 

glyphosate treatment at different rates leads to the down-regulation of transcripts 

involved in the detoxification of ROS. The major strategy used by plants to tolerate 

oxidative stress is the production of anti-oxidative enzymes that convert ROS to less 

toxic compounds. In a previous study, it has been shown that glyphosate will exert its 

deleterious effects on maize plants by amplifying lipid peroxidation of biomembranes 
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(MDA) (Sergiev et al. 2006). Additionally, a small number of changes appeared in lipid 

peroxidation and antioxidative defense mechanisms in susceptible and resistant soybean 

cultivars exposed to sub-lethal doses of glyphosate (Moldes et al. 2008). In this study, 

probes with homology to antioxidative enzymes, such as putative glutathione 

peroxidase, thioredoxin peroxidase, and peroxiredoxin Q were down-regulated. The 

major reason for down-regulation of these peroxidases might be the inhibition of ALA 

by glyphosate action.  

 
 
 

5.7  RT PCR validated CSH results 
 
 

As shown in Fig. 4.7, RT-PCR result showed the same trend, and expression level 

of “Alternative Oxidase” agreed with the results of the CSH experiment.  
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6  CO�CLUSIO� 
 
 
 
 

Maintenance of turfgrass in landscapes has a great impact on human life from a 

visual, functional, and economic point of view. Despite its economic and social 

importance, there have been no genome-wide studies in fescues for understanding 

molecular mechanisms regulated by glyphosate. Additionally, availability of sequence 

information is limited for fescues. Furthermore, despite the growing knowledge of 

genes acting in responses of plants to herbicides, a big picture of key cellular processes 

that determine plant tolerance to herbicides has not been defined yet. Therefore, it is 

likely that the study of fescues from a global point of view will aid in identification of 

key biological mechanisms active in glyphosate responses of fescues and might 

constitute a rich resource for future studies in the pursuit of identification of herbicide 

tolerance genes and markers in plants. 

 

This is the first report to analyze the potential of cross species hybridization in 

Fescue species and the data and analyses will help extend our knowledge on the cellular 

processes affected by glyphosate. Cross hybridisation of fescue RNAs to the Affymetrix 

GeneChip® Wheat Genome Array identified 1337 transcripts (probe-sets) displaying 

either <-2 or >2-fold difference in expression levels in response to glyphosate. Gene 

annotations based on wheat and rice databases indicated that many of these transcripts 

were involved in highly conserved biological processes common to fescues and wheat, 

such as photosynthesis or reactive oxygen species scavenging. Functional categorization 

and clustering analysis of the differentially expressed probes demonstrated that the 

pattern of gene expression regulation was similar in glyphosate tolerant fescues, Cindy 

Lou and Discovery, in contrast to glyphosate sensitive fescue, Ambrose. RT results 

mostly agreed with the CSH microarray data, which confirmed the proficiency of CSH 

in comparative transcriptome analysis.  
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This study is important for paving the way to better understand the mechanisms 

and pathways regulating glyphosate responses of Festuca species. Data presented here 

will also help researchers to determine the effective rate of glyphosate that should be 

used for weed control in turfgrass areas. In the long term, the results of this study might 

help in development of future turfgrass management strategies both to slow down the 

evolution of herbicide resistance and to control existing weed populations.  
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APPE�DIX  
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Deionized water:            Millipore, MilliQ Academic, FRANCE 

 

Electrophoresis:   Biogen Inc., USA 
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Gel documentatiton:       UVITEC, UVIdoc Gel Documentation System,UK 

 

                                        BIO-RAD, UV-Transilluminator 2000, USA 

 

Heating block:                Bioblock Scientific, FRANCE 

                                        Bio TDB-100 Dry Block Heating Thermostat, HVD Life 
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Thermocycler:                 PE Applied biosystems, GeneAmp PCR System 9700,  
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 51 

Water bath:                      TECHNE, Refrigerated Bath RB-5A, UK 

 

                                         JULABO, TW 20, USA 

 



 52 

 
 
 
 
 
 

CHAPTER II 
 
 

CLONING AND FUNCTIONAL ANALYSIS OF Brachypodium Atg8, 
AUTOPHAGY-RELATED GENE, UNDER OSMOTIC/DROUGHT STRESS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
  

 



 53 

 
 
 
 

ABSTRACT 
 
 
 
 

Autophagy, literally means self eating, is an evolutionary conserved catalytic process 
for vacuolar or lysosomal degradation of cytoplasmic contents. Double membraned 
vesicles, called autophagosomes, containing cytoplasmic components are formed and 
targeted to vacuole or lysosome for degradation upon induction of autophagy. As an 
evolutionary conserved mechanism, autophagy is widely studied in yeasts, mammals 
and plants. Among 30 identified autophagy genes, one of the mostly widely studied 
genes, Atg8 has been also used for monitoring autophagy in a variety of organisms. In 
plants, autophagy has been related to abiotic stress factors, including nutrient starvation, 
oxidative stress, salt stress and osmotic stress. In this study, for the first time to our 
knowledge, Atg8 gene was identified in Brachypodium distachyon (named as BdAtg8). 
Expression profile of BdAtg8 was examined in a variety of tissues of different ages and 
under osmotic stress conditions. Expression level of BdAtg8 was observed to 
profoundly increase with osmotic stress treatment, especially in the roots. Further 
functional analyses of BdATG8 were performed. BdAtg8 gene was shown to 
complement atg8∆::kan MX  yeast mutants grown under starvation conditions in yeast 
complementation experiments. Monodansylcadaverine (MDC), a convenient marker to 
monitor autophagy in plant cells, has been used to observe autophagosomes in 
Brachypodium and autophagy was shown to be constitutively active in Brachypodium. 
Moreover, with MDC staining, autophagy was shown to be more active in plants 
exposed to osmotic stress in comparison to the plants grown under normal conditions. 
For further functional analysis, Brachypodium ATG8 protein was expressed in yeast and 
analyzed with western blotting. We conclude that, under osmotic stress conditions, 
BdAtg8 gene is required for induction of autophagy in Brachypodium.  
 
 
Keywords  autophagy, Atg8, Brachypodium, osmotic stress, drought 
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ÖZET 
 
 
 

 
Kendi kendini yeme anlamına da gelen “Otofaji”, sitoplazma içeriğinin kofullarda veya 
lizozomlarda parçalanmasını sağlayan ve de evrimsel olarak korunan katalitik bir 
süreçtir. Otofajinin indüklenmesiyle, sitoplazmik bileşenleri içeren ve “otofagozom” 
olarak isimlendirilen çift zarlı vesiküller oluşturulurlar ve parçalanmak üzere koful veya 
lizozoma yönlendirilirler. Evrimsel olarak korunan bir mekanizma olarak otofaji, maya, 
memeli ve bitki sistemlerinde yaygın olarak çalışılmaktadır. Tanımlanmış 30 otofaji 
geni arasında en yaygın olarak çalışılanlardan biri olan Atg8 geni, bir çok organizmada 
otofajiyi izlemek için de kullanılmaktadır. Bitkilerde otofaji; besin açlığı, oksidatif stres, 
tuz stresi ve ozmotik stresi de içeren çeşitli abiyotik stres faktörleriyle 
ilişkilendirilmiştir. Bu çalışmada, bizim bilgimiz dahilinde ilk defa, Atg8 geni 
Brachypodium distachyon türünde tanımlanmış ve BdAtg8 olarak isimlendirilmiştir. 
BdAtg8 geninin ifade profili farklı yaşlardaki çeşitli dokularda ve ozmotik stres 
koşullarında incelenmiştir. Ozmotik stres uygulamasıyla BdAtg8 geninin ifade 
seviyesinin özellikle köklerde ciddi miktarda arttığı gözlenmiştir. BdATG8 proteinin 
fonksiyonel analizleri yürütülmüştür. Maya komplementasyon deneylerinde BdAtg8 
geninin açlık koşullarında büyüyen atg8∆::kan MX maya mutantlarını komplement 
ettiği gösterilmiştir. Bitki hücrelerinde otofajiyi izlemek için elverişli bir markör olan 
“monodansylcadaverine” (MDC), Brachypodium’da otofagozomları gözlemlemek için 
kullanılmış ve otofajinin Brachypodium’da temel olarak aktif olduğu gösterilmiştir. 
Ayrıca, MDC boyamasıyla, otofajinin, ozmotik strese maruz kalmış bitkilerde normal 
koşullarda büyüyen bitkilerdekine göre daha aktif olduğu gösterilmiştir. Fonsiyonel 
analizlere ilaveten Brachypodium ATG8 proteini mayada eksprese edilmiş ve “western 
blot” tekniği ile analiz edilmiştir. Ozmotik stres koşullarında, BdAtg8 geninin 
Brachypodium’da otofajinin indüklenmesi için gerekli olduğu sonucuna varılmıştır.  

 
Anahtar kelimeler  otofaji, Atg8, Brachypodium, ozmotik stres, kuraklık 
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1 I�TRODUCTIO� 

 
 

 
 

Plants use a variety of mechanisms to cope with biotic and abiotic stress factors. 

Autophagy is a mechanism utilized by plants to respond to such stress conditions. It has 

been shown to be active in responses of plants to oxidative stress, salt stress, drought 

stress and viral infection (Xiong et al., 2007a, 2007b; Liu et al., 2009, Liu et al., 2005). 

Arabidopsis, tobacco and rice are most widely studied plant species for both monitoring 

and understanding molecular basis of autophagy. Arabidopsis has been utilized as a 

model organism for all flowering plants for decades. However, it does not share 

biological features in agronomic terms with temperate grasses, since it is a dicot plant. 

Rice has been offered as a model species for all temperate grass species, including 

wheat, barley and rye. However, rice harbors more practical limitations for being a 

convenient model for grasses such that it does not have a rapid life cycle, inbreeding 

reproductive strategy, simple growth requirements, besides the transformation of rice 

plants is not easy. Brachypodium distachyon (L.) Beauv. is a temperate wild grass with 

more suitable characteristics for being a model system for all temperate grasses. It has 

agricultural traits more similar to temperate grasses than Arabidopsis and rice (Ozdemir 

et al., 2008). In addition, it has a small genome, short growth cycle, self-fertility, many 

diploid accessions, and simple growth requirements (Ozdemir et al., 2008; Ozdemir, 

2009). Another important feature of this species is its close relationship to cereals. 

These characteristics of this species make it a more suitable model system for temperate 

grass species, especially for crop species. Hence, there is a growing interest for 

gathering genomics information about B. distachyon, including linkage and genetic 

linkage maps (Garvin et al., 2010), and whole genome sequencing (The International 

Brachypodium Initiative, 2010). In this study, B. distachyon will be extensively studied 

for understanding responses of cereals to shock drought stress which is one of the major 

abiotic stress factors limiting crop yields worldwide. Since autophagy has been shown 

to play roles in responses of other plant species to abiotic stress conditions, like 



 53 

oxidative stress, salinity, and osmotic stress, the potential role of autophagy process in 

responses of B. distachyon plants to the abiotic stress factors should be investigated. 

The results of this study will give us a clue about the potential role of autophagy in 

responses of grass species to drought and pave the way to understand the molecular 

basis of abiotic stress responses of economically important crop species.  
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2  OVERVIEW 

 
 
 
 

2.1  General information on Brachypodium distachyon 
 

 
 
2.1.1  Brachypodium distachyon as a model to temperate grasses 

 
 

Brachypodium distachyon (L.) Beauv, also known as “purple false broom”, has 

recently been introduced as a model species to temperate cereals and forage grasses of 

high economical value (Draper et al., 2001). Temperate cereals constitute the most 

valuable source of food for humankind. However, cereals, such as wheat and barley, 

have huge and complex genomes which limit researches being conducted in genomics 

and molecular breeding areas. Therefore, there has been an increasing demand for a 

suitable model to the cereals in plant molecular biology research. B. distachyon has 

several desirable attributes and genome characteristics to be offered as a potential model 

representative of temperate cereals and forage grasses, which will be discussed here. 

 
 
 
2.1.2  Diploid species of Brachypodium genus has the simplest genome in grasses 

 
 

Haploid genome size of B. distachyon is around 355 Mbp, which is among the 

smallest genome size in the Poaceae family. A number ploidy levels for B. distachyon is 

available which has the basic chromosome number of 5 (n=5) (Filiz et al., 2009; Vogel 

et al., 2009; Filiz et al., 2008). Diploid accesion of B. distachyon has 10 chromosomes 

(2n=10). Small genome size of diploid B. distachyon is a valuable attribute for proposal 

of this species as model representative of cereals such as wheat and barley with huge 

genome size.  
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2.1.3  Diploid B. distachyon has suitable physical, growth and life cycle 

characteristics 

 
 

B. distachyon is a self fertile inbreeding annual with a small size (~20 cm) and 

lacks seed shattering (Draper et al., 2001). In addition to their small size, diploid B. 

distachyon ecotypes have suitable growth and life cyle characteristics. B. distachyon 

ecotypes, with undemanding growth requirements, can be grown in tissue culture and 

have short life cycles which range from 11 to 18 weeks (Filiz et al., 2009). Under 

optimal conditions, they can be grown in a much shorter time, 8 weeks (Vogel et al., 

2006). The ease of genetic transformation of B. distachyon has been reported in several 

studies (Christiansen et al., 2005; Vogel et al., 2006)  

 
 
 
2.1.4  Brachypodium is a more suitable model to cereals in comparison to 

Arabidopsis and rice 

 
 

Arabidopsis thaliana has been the most widely studied model plant species so far. 

It possesses several attributes that should be present in a model species: Small size, 

short life cycle, simple growth requirements which make it suitable for high-throughput 

screening studies. Arabidopsis is also easily transformable with the present 

transformation methods. Additionally, The Arabidopsis Genome Initiative has 

announced the completion of whole genome sequence of Arabidopsis genome, which is 

stated to be 125 Mbp (The Arabidopsis Genome Initiative, 2000). These characteristics 

of Arabidopsis have accelerated the discoveries which contributed a substantial amount 

of information to cereal genomics studies. However, as a dicot species, it is 

phylogenetically distant to the Poaceae, which harbours temperate cereals and forage 

grasses (Keller and Feuillet, 2000). Additionally, most of the essential agronomic traits 

of cereals are not shared by Arabidopsis. Several studies demonstrated that Arabidopsis 

genome could not be used as an “anchor” genome for chromosomal mapping in cereals 

(Bennetzen et al. 1998; Devos et al., 1999). Under the light of these data, Oryza sativa 

(Rice) as a monocot has been introduced to plant genomics area as the model 

representative of cereals. It has a number of useful properties to be proposed as a model 

species, including compact genome (~441 Mbp; Bennett et al., 2000) and complete 
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genome sequence (Dickson and Cyransoski; 2001). Additionally, rice genetic maps, 

EST databases and considerable germplasm collections are available. The possibility of 

the use of rice genome as a reference genome for chromosomal mapping studies in 

cereals has been investigated in several studies (Gale and Devos, 1998). However, rice 

is phylogentically distant from the Poaceace, including temprate crops, such as wheat, 

barley and forage grasses (Kellogg, 2001). Additionally, microsynteny is not always the 

case while locating genic region in cereal genomes taking rice genetic map as a 

reference. There are also technical handicaps of rice as a model species, including large 

pyhical size, long life cycle with demanding growth requirements. Rice also has 

outbreeding reproductive strategy and is not easily transformed with routine 

transformation methods. Besides these technical difficulties, several agronomic traits 

specific to temperate cereals such as resistance to specific pathogens, freezing tolerance, 

vernalization, perenniality, wear and injury tolerance, sward behaviour, and post-harvest 

biochemistry of silage are not present in rice. Under the light of such facts, the need for 

identification of a grass species that posseses the desired attributes to be developed and 

offered as model representative of cereals is evident. Phylogenetic studies have shown 

that the genus Brachypodium has diverged from ancestral Pooideae subfamily just prior 

to the radiation of modern “core pooids”, including temperate cereals and forage grasses 

(Shi, 1991; Shi et al., 1993; Catalan et al., 1995, 1997; Catalan and Olmstead, 2000). 

Screening conserved repetitive DNA sequences in the pursuit of identification of 

archetypal centrome sequences among Triticum aestivum (bread wheat), rice, maize, 

and Brachypodium has been performed using Brachypodium sylvaticum (Aragon-

Alcaide et al., 1996). Members of the genus Brachypodium differs from the other 

members of Poaceae with their atypical chromosome base number (n=5, 7, 8 or 9) (Shi 

et al., 1993). Other genome characteristics of Brachypodium that make it a suitable 

model for cereals are its small genome size, low percentage of highly repetitive DNA 

regions, small 5S rDNA spacer region (150 bp), simple rDNA repeat unit with a low 

degree of methylation (Shi, 1991; Shi et al., 1993; Catalan et al., 1995).    
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2.1.5  Advances on Brachypodium genomics 

 
 

The draft genome sequence of B. distachyon genotype Bd21 has been completed 

in 2007, by whole-genome shotgun sequencing project funded by US Department of 

Energy (DOE). This project was coupled to a project aiming to generate 250.000 ESTs. 

Data from these projects are available in BrachyBase (http://www.brachybase.org). Data 

collected in this database will allow the researchers to identify novel genes linked to 

essential traits in B. distachyon and to carry out comparative genomics studies in other 

grass species, including cereals of high economical value. 8X coverage of new B. 

distachyon sequence is now available to community (The International Brachypodium 

Initiative, 2010). 

  

Bacterial Artificial Chromosome (BAC) based physical maps of B. distachyon are 

being developed by John Innes Center (Norwich, UK) (Bevan, 2006) and University of 

California and US Department of Agriculture (USDA) (Luo et al., 2007). It has been 

proposed that establishment of physical map of B. distachyon will accelerate the efforts 

for developing BAC-based physical map of Chinese Spring bread wheat genome.  

 

Presence and distribution of plant transposable elements have been searched in B. 

distachyon genome (Kalendar and Schulman, 2006). Since transposable elements, 

especially retrotransposons, constitute the intergenic regions in the huge genomes of 

cereals, determination of retrotransposon sequences will aid in development of 

retrotransposon-based molecular markers, like IRAP, REMAP; SSAP, and RBIP 

markers (Ozdemir et al., 2008). It has been found that there exists a few 

retrotransposons in the small genome of B. distachyon.  

  

MicroRNAs (miRNAs) are small RNAs which are known to play crucial roles in 

regulation of genes acting in physiological and developmental processes in plants 

(Bartel and Bartel, 2003; Bartel, 2004; Rhoades et al., 2006). 12 putative Brachypodium 

miRNAs have been recently identified in small RNA transcriptomes obtained by the 

usage of deep sequencing technology (Wei et al., 2009). In another study, 26 novel B. 

distachyon miRNAs belonging to 19 miRNA families have been predicted in expressed 

sequence tag (EST) and genomic survey sequence databases using computational 
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approaches (Unver and Budak, 2009). By high-throughput sequencing of Brachypodium 

small RNA libraries, 27 conserved miRNAs and 129 predicted miRNAs have been 

identified in response to cold stress. Additionally, 3 conserved and 25 predicted 

miRNAs have been found to be differentially regulated in response to cold stress 

(Zhang et al., 2009).   

 

A genetic linkage map of B. distachyon genotype Bd21 has also being developed 

by the International Brachypodium Initiative (Bevan et al., 2007). Anchor points on 

genetic linkage map of B. distachyon genotype Bd21 will aid the researchers to link the 

Brachypodium genome to the genomes of important cereals and biofuel crops.  

 
371-kb region in B. sylvaticum genome has also been sequenced. Comparison of 

orthologous regions of B. sylvaticum genome with those of wheat and rice has indicated 

that there exists a perfect macrocolinearity among Brachypodium and wheat genomes, 

whereas this deduction was not valid for the comparison of wheat and rice genomes 

(Bossolini et al., 2007). Phylogenetically, Brachypodium and wheat have been proposed 

to diverge from each around 35-40 million years ago. However, divergence of wheat 

and rice has been estimated to be earlier (~50 million years) (Paterson et al., 2004). 

Microcolinearity has been also shown to be conserved between orthologous regions of 

wheat and B. sylvaticum genomes (Charles et al., 2006; Foote et al., 2004).   

  

All these efforts going on in Brachypodium genomics will accelerate gene 

discovery studies in economically valuable cereals, like wheat, barley, and rye, and 

hence present novel opportunities for improvement of cereal production. Molecular 

genetic analyses of this model species have great potential to understand molecular 

processes occuring in cereals with huge and complex genomes which hinder gene 

discoveries in those species. 

 
 
 

2.2  General introduction to drought stress 

 
 
 

World population is increasing at an enormous rate and it is estimated to be 

around 6 billion by 2050. On the other hand, average yield of crop plants is declined by 
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limitations in water resources worldwide. It has been estimated that, drought stress and 

salinity, being the major abiotic stress factors, decline productivity of major crop plants 

by more than 50 percent (Bray et al., 2000). Plants have developed several strategies to 

survive and reproduce under these abiotic stress conditions. Understanding the plant 

tolerance to drought stress is one the major concerns of the scientific community. 

Primary aim of many plant breeding programs has been the development of drought 

tolerant crops.  

  

Plant responses to drought can be divided into escape, avoidance, and tolerance 

strategies (Chaves, et al., 2003). Escape strategies of plants involve shortening life 

cycle, increasing growth rate, effective use of storage and use of reserves for seed 

production. Avoidance strategies involve minimizing water loss (stomatal closure, 

reduction in leaf area, senescence in old leaves) or maximizing water uptake (enhanced 

root growth). Tolerance to water scarcity involves osmotic adjustments or more rigid 

cell walls. Plants adjust the osmotic potential decreased by drought via accumulation of 

osmolytes such as proline, glycine betaine, mannitol, trehalose or myo-inositol (Bartels 

and Sunkar, 2005; Valliyodan and Nguyen 2006; Barnabas et al., 2008). Drought 

tolerance has been also related to the reactive oxgen species (ROS) scavenging (Sairam 

and Saxena, 2000). Enzymes like superoxide dismutase are synthesized and antioxidants 

like glutathione and ascorbic acid are produced in order to prevent or alleviate the toxic 

effects of ROS (Shinozaki and Yamaguchi-Shinozaki, 2007). Glutathione S-transferase 

and superoxide dismutase enzymes, key enzymes in ROS detoxification, have been 

identified in subtractive cDNA library screening performed in drought-tolerant wild 

emmer wheat genotype, TR39477, drought-sensitive wild emmer wheat genotype, TTD-

22 and modern wheat variety, Kiziltan grown under slow drought conditions (Ergen and 

Budak, 2009). Comparative transcriptome analysis of drought-tolerant and sensitive 

wild emmer wheat genotypes grown under shock drought stress using the Affymetrix 

GeneChip® Wheat Genome Array has showed that antioxidative-enzyme glutathione S-

transferase is differentially regulated in drought tolerant wild emmer wheat genotype 

(Ergen et al., 2009).  

 

When plants are exposed to drought stress, they develop responses at 

physiological, biochemical and molecular levels. The response to drought stress at 

cellular level begins with perception of the water deficiency by specific receptors. After 
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plants sense the presence of water loss, they induce several signal transduction 

pathways inside the cell. Signaling of water deficient in plants is a complex process. 

Signal transduction pathways, induced by water deficieny signal, involve several 

phosphatases and kinases which carry out dephosphorylation and phosphorylation 

events, respectively (Kaur and Gupta, 2005; Mishra et al., 2006; Ergen et al., 2009). 

Transcripts coding calcium or calmodulin binding proteins, and protein kinases were 

found to be similarly regulated in drought responses of wild emmer wheat genotypes 

and modern wheat cultivar with subtractive cDNA library screening approach. These 

findings indicated that protein phosphorylation or dephosphorylation and other signal 

transduction elements are conserved in wild emmer wheat genotypes with differential 

drought tolerance and modern wheat cultivar (Ergen and Budak, 2009).   

 

Activation of protein kinases and dephosphotases cause further activation of 

transcription factors (Kaur and Gupta, 2005; Nakashima and Yamaguchi-Shinozaki, 

2005). Complex expression patterns of the drought-activated transcription factors are 

indicators for very intricate regulation of drought stress responses of plants at 

transcriptional level.   

 

Many genes responsive to drought stress have been identified from different plant 

species involved in stress response mechanisms (Zhu, 2001; Ergen and Budak, 2009). 

One of the major consequences of drought stress is the increase in the production of 

reactive oxygen species (ROS) in plant cells (Tsugane et al., 1999). Autophagy has been 

suggested to play roles in degradation of oxidized proteins in Arabidopsis in response to 

oxidative stress (Xiong et al., 2007a). However, the potential role of autophagy in 

responses of plants to drought stress has not been studied extensively. Recently, 

induction of autophagy by salinity and osmotic stress has been reported in Arabidopsis 

(Liu et al., 2009). Cereals, including wheat, rice and maize are the major components of 

human diet worldwide. However, the molecular responses of these economically 

valuable plants to drought stress have not been fully elucidated yet. Investigation of 

roles of autophagy in B. distachyon; a suitable model for cereals, would be beneficial 

for the studies in the pursuit of enlightnment of complex molecular responses of cereals 

to drought stress.  
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Polyethylene glycol (PEG) has become a popular agent for reduction of water 

potential of nutrient solutions of plants without being taken up by the plants. In other 

words, PEG stimulates osmotic stress in the growth medium acting as a non-penetrating 

osmotic agent. It has been widely used to induce water stress in several plants (Kerepesi 

and Galiba, 2000; Murillo-Amador et al., 2002; Abebe et al., 2003; Liu et al., 2004; 

Turkan et al., 2005 ).   

 
 

 
2.3  General introduction to plant autophagy 

 
 
 

Autophagy (self-eating) is a cellular content degradation process which aims 

either recycling of cytoplasmic components or elimination of damaged or toxic 

molecules inside the cell. In autophagy, cytoplasmic components, including long-lived 

proteins and organelles are taken up either by vacuoles or lysosomes/endosomes and 

degraded inside these compartments (Klionsky and Ohsumi, 1999; Klionsky, 2005). 

Autophagy is an evolutionarily conserved mechanism among mammalian, yeast and 

plant cells (Bassham, 2009; Mitou et al., 2009).    

 

Plant cells have two different types of vacuoles with different fuctions: storage 

and lytic vacuoles. Autophagy takes place in lytic vacuoles inside plant cells, 

corresponding to lysosomes where autophagy takes place in mammalians and vacuoles 

where autophagy takes place in yeast. When plants are exposed to adverse 

environmental conditions, they develop responses to cope with such stress conditions 

and survive. One of the major processes exploited by plant cells for this purpose is 

autophagy. Stress conditions inducing autophagy include sucrose, nitrogen and carbon 

starvation, oxidative stress, drought and salt stress, and pathogen infection (Aubert et 

al., 1996; Bassham et al., 2006; Rose et al., 2006; Xiong et al, 2007a, 2007b; Shin et al., 

2009, Liu et al., 2009). Autophagy is also constitutively active during several 

developmental processes such as vacuole biogenesis in plant cells, senescence and 

innate immune response (Yano et al, 2007; Thompson and Vierstra, 2005; Seay et al, 

2006; Yoshimoto et al., 2009). 
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2.3.1  Autophagy pathways in plants  

 
 

There are two major autophagy pathways in plant cells: macroautophagy and 

microautophagy. This classification is based on the mechanism of transport and 

degradation of cytosolic constituents. In macroautophagy, in addition to cytoplasmic 

portions, organelles such as mitochondria, peroxisome, plastid, endoplasmic reticulum 

and golgi stacks are sequestered into double-membrane bounded vesicles called 

“autophagosomes” or “autophagic vesicles”. Cellular content to be degraded is then 

released into vacuoles upon fusion of outer membranes of autophagosomes to tonoplast. 

The cytoplasmic content to be degraded is surrounded by inner membrane inside the 

vacuole and called “autophagic body”. Vacuolar hydrolases degrade these bodies and 

the degradation products are recycled back to cytoplasm. Macroautophagy has been 

shown to be the major process for cytoplasmic content degradation during starvation 

and senescence conditions in several plant species. Sucrose starvation has been reported 

to induce autophagy in rice (Chen et al., 1994), sycamore (Aubert et al., 1996), and 

tobacco-cultured cells (Moriyasu and Hillmer, 2000). Carbon starvation also has been 

shown to induce autophagy in maize plants (Brouquisse et al., 1998).  

 

In microautophagy, cytoplasmic content to be degraded is directly engulfed by 

vacuole and degraded after disintegration of membrane (Mortimore et al., 1988; Dunn et 

al., 2005). Microautophagy has been observed in wheat plants during the accumulation 

of storage proteins in seeds (Levanony et al., 1992; Shy et al., 2001). Microautophagy 

has been also shown to be active in cotyledon cells of vigna mungo seedlings for 

degradation of starch granules and other cellular components (Toyooka et al., 2001).  

 

Autophagy pathways differ in different plant species (Figure 2.1). In Arabidopsis, 

outer membranes of autophagosomes fuse with tonoplast and autophagic bodies are 

released into the vacuole for subsequent degradation by vacuolar hydrolases. However, 

in tobacco cells, autophagy occurs in two different patways. Either the autophagosomes 

are directed to vacuoles or can fuse with lysosomes/endosomes for subsequent 

degradation of their contents. When cysteine protease inhibitor, E64 was used to inhibit 

autophagy, autophagic bodies accumulated inside vacuoles in Arabidopsis cells 

(Bassham, 2007). Growth of tobacco cells in the presence of E64 lead to accumulation 
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of autophagic bodies in smaller organelles called autolysosomes outside the vacuoles 

(Inoue et al, 2006).  

 

 

Figure 2.1  Different autophagy pathways inside plant cells (Modified from Mitou et al., 

2009) 

 
 
 
2.3.2  Autophagy machinery in plants 

 
 

With the advances in yeast genetics, proteins having roles in autophagy 

mechanism have been identified. A group of autophagy defective yeast mutants have 

been isolated as a result of extensive studies on yeast autophagy (Harding et al., 1995; 

Thumm et al., 1994; Tsukada and Ohsumi, 1993; Wang and Klionsky 2003; Noda et al., 

2002). Study of these mutants contributed to understanding of molecular mechanism of 

autophagy (Klionsky et al., 2003). Until now, ~30 autophagy related genes 

(nomenclatured as Atg) have been identified in yeast investigating these mutants 

(Klionsky et al, 2003). Conservation of autophagy pathways across species helped 

researchers to identify orthologs of yeast Atg genes in plants. Based on sequence 

similarity, homologs of yeast proteins have been identified in Arabidopsis. Knockout 

mutants of Atg genes have been studied in Arabidopsis and showed increased sensitivity 

to nitrogen deficiency and displayed early senescence symptoms (Doelling et al., 2002; 

Hanaoka et al., 2002; Surpin et al., 2003). In Arabidopsis, 25 Atg genes which are 

orthologs of 12 of yeast Atg genes were identified (Hanaoka et al., 2002; Doelling et al., 
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2002, Yoshimoto et al., 2004; Thompson et al., 2005). Different from yeast, many 

Arabidopsis ATG proteins are encoded by small gene families (Doelling et al., 2002; 

Hanaoka et al., 2002). Residual differences are present within each ATG protein family 

in terms of aminoacid sequence. These findings suggest that autophagy mechanism is 

more complex in plant systems in comparison to yeast and ATG isoforms might have 

distinct expression patterns and functions.   

  

Functional domains are very well conserved in corresponding ATG proteins in 

plants, suggesting that autophagy takes place in a similar fashion to mammalian and 

yeast autophagy in plants from mechanistic point of view. Autophagy mechanism can 

be divided into five phases: induction, nucleation, vesicle expansion and completion, 

fusion and degradation, and recycling (Thompson and Vierstra, 2005).  

 
 
 
2.3.2.1  Induction 

 
 

In this phase of autophagy, signaling pathways acting upstream of autophagy 

machinery induce autophagy. Target of rapamycin (TOR) protein (a serine/threonine 

kinase) is stated to be the key protein acting in this phase and downregulation of this 

protein has been shown to stimulate autophagy (Noda and Ohsumi, 1998). Under 

nutrient rich growth conditions, TOR protein is active and hyperphosphorylates ATG1 

and ATG13 proteins. Upon hyperphosphorylation, ATG1-ATG13 protein complex is 

dissociated and became inactive. However, under starvation conditions, ATG13 is 

dephosphorylated and ATG1-ATG13 complex is reactivated with increasing affinity of 

ATG13 for ATG1. Reformation of the complex leads to autophosphorylation of ATG1 

resulting in induction of autophagy (Matsuura et al., 1997; Kamada et al., 2000; 

Abeliovich et al., 2003). TOR protein is conserved in plants. Recently, a gene that is 

homologous to TOR in yeast and mammals has been discovered in Arabidopsis 

(Menand et al., 2002). This discovery supported the assumption that TOR pathway 

exists in plants. However, there is still little evidence for direct relation of TOR pathway 

existing in plants to autophagy. Only evidence for action of TOR on autophagy in 

photosynthetic organisms comes from a study on green algae, Chlamydomonas 

reinhardtii. Rapamycin (inhibitor of TOR) was found to inhibit growth of this 



 65 

organism, proposed to be due to inhibition of TOR pathway (Crespo et al., 2005). 

Additionally, localization studies indicated that TOR localizes to endoplasmic reticulum 

or other microsomal structures. This finding also confirmed the view that TOR plays a 

role in autophagy induction (Diaz-Troya et al., 2008). 

 
 
 
2.3.2.2  �ucleation 

 
 

Building up of autophagomal membranes starts at autophagy organization site 

named as preautophagosomal structure (PAS). However, the lipid donors of the 

autophagosomal membranes could not been clarified yet. PAS is located next to the 

vacuole in yeast. A protein complex involving VPS34, a class III phosphatidylinositol 

3-OH kinase (PI3K), and Atg6/Vps30 plays a role in initiation of nucleation. Atg6 

containing complex together with other regulatory proteins regulates VPS34 protein 

activity, which is accumulation of phopshatidyl inositol 3-phosphate (PI3P). 

Accumulation of this molecule induces recruitment of proteins such as Atg18 and Atg2 

to PAS for activation of autophagosome formation (Kihara et al. 2001; Xie and 

Klionsky 2007).  

 
 
 
2.3.2.3  Vesicle expansion and completion 

 
 

There are two major protein conjugation systems which are offered to function in 

autophagy of yeast, plant and mammals: Atg8 and Atg12 conjugation systems 

(Mizushima et al., 1998; Ichimura et al., 2000). Both systems are similar to ubiquitin-

conjugation system. In the first system, ATG12 (ubiquitin-like protein) is conjugated to 

ATG5 protein. C-terminal glycine residue of ATG12 is conjugated to Lys-149 of ATG5 

by sequential action of ATG7 (E12-like enzyme) and ATG10 (E2-like enzyme) via an 

isopeptide bond. This conjugate is further linked to ATG16 to form ATG12-ATG5-

ATG16 complex (Mizushima et al. 1999; Suzuki et al. 2001; Kuma et al. 2002). 

Assembly of this complex precedes ATG8 processing and ATG8-PE conjugate 

formation and might enhance lipidation of ATG8. With concerted action of both 



 66 

conjugation systems and remaining ATG components, autophagic bodies are deposited 

in vacuoles in yeast and plants.  

 

In the second conjugation system, ATG8 (a ubiquitin fold protein) is primarily 

processed by the cysteine protease, ATG4 (Kirisako et al., 2000). C-terminal arginine 

residue of ATG8 is removed and a glycine residue is exposed. ATG7 (E1-like enzyme) 

and ATG3 (E2-like enzyme) catalyze the conjugation of phosphatidylethanolamine 

(PE), a lipid moiety, to the C-terminal glycine residue of ATG8 via an amide bond, in a 

sequential manner (Klionsky et al., 2003). Arabidopsis was shown to possess the genes 

encoding for the proteins functioning in Atg8 conjugation system. Two different forms 

of ATG8 proteins were identified in Arabidopsis, namely, form I and form II. Faster 

migration of form II than form I in SDS-PAGE suggested that form II is the PE-

conjugated form of ATG8 (Yoshimoto et al., 2004). AtATG4 double mutants, AtATG5 

and AtATG7 single mutants of Arabidopsis showed enhanced chlorosis, accelerated 

bolting, enhanced dark-induced senescence of detached leaves, and reduced seed yield 

under starvation conditions (Thompson, 2005). The AtATG7C558S mutant showed 

hypersensitive phenotype to starvation conditions and premature leaf senescence 

(Doelling et al., 2002). Autophagosomes were not detected in AtATG4 double mutants 

and AtATG8s were not delivered to the vacuole under nitrogen deficiency conditions 

(Yoshimoto et al., 2004) AtAtg genes encoding for Atg8 conjugation system proteins 

were reported to be upregulated transiently by sucrose deficiency (Rose et al., 2006). 

Atg8 conjugation system has also been identified in other plant species. OsAtg8 and 

OsAtg4 genes have been identified in rice (Wei et al., 2006). This study suggested that 

Atg8 conjugation system is conserved in rice too. In yeast, the ATG8-PE conjugate 

binds to the autophagic membrane via the lipid moiety and appears to help membrane 

expansion during vesicle formation (Kirisako et al. 1999). However, the processes 

acting downstream of the conjugate formation has not been clarified yet, in plants. 

Results of a recent study by Ketelaar et al. (2004) offered a relation between ATG-PE 

conjugate and microtubules in Arabidopsis. It has been postulated that ATG-PE 

conjugate functions in transport of autophagosomes upon interacting with microtubules.  
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2.3.2.4  Fusion  

 
 

In yeast, a vesicular trafficking system is in charge of docking of autophagosomes 

to tonoplast. This system is comprised of proteins such as vesicle-soluble n-

ethylmaleimide-sensitive factor adaptor protein receptor (v-SNARE) VTI1, the VAM3 

syntaxin, and YKT7, a small GTP-binding protein of the Rab family (Fischer von 

Mollard and Stevens, 1999). Orthologs of VTI1 were found in Arabidopsis with similar 

functions (Sanmartin et al., 2007), and VTI12 is suggested to be the ortholog 

functioning in autophagy. Alterations in morphology of vacuoles were observed in vti12 

mutants, suggesting a role for VTI12 in the formation of autophagosomes and their 

fusion to tonoplast (Surpin et al., 2003). 

 

In mammals, autophagosomes can fuse with lysosomes/endosomes for subsequent 

degradation of their contents. A Vps complex and Rab GTPases play roles in this phase. 

It has been postulated that formation of SNARE protein complex is the next step 

(Darsow et al., 1997) This complex then acts as a connector between 

lysosome/endosome and vacuole (Ungermann and Langosch, 2005). Presence of fusion 

with lysosomes before targeting to vacuole in tobacco cells offered that there might be a 

similar fusion mechanism in plant systems from molecular point of view (Inoue et al., 

2006). 

 
 
 

2.3.2.5  Degradation and recycling 

 
 

After fusion of autophagosome outer membrane to the lysosomes or vacuoles, 

lipases such as ATG15 catalyzes degradation of the autophagic body membrane. 

Degradation of contents of autophagosomes by lytic enzymes is the next step (Kim et 

al., 2007). Plant vacuoles contain various enzymes for degradation of autophagic body 

including proteases and peptidases, nucleases and gluconases (Marty, 1999). One of the 

proteases active in this phase is vacuolar processing enzyme (VPE)-γ. A recent study 

showed that this enzyme is synthesized in an inactive form and it should be translocated 

to vacuole for further maturation possibly via a cytoplasm-to-vacuole (CVT) pathway 
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(Rojo et al., 2004). Similar to PEP4 in yeast, it might aid in proteolytic processing of 

other hydrolases which play roles in degradation of other constituents in autophagic 

bodies.   

 

Building blocks of degraded components are recycled to cytosol for future use. 

Lysosome associated membrane proteins LAMP-1 and LAMP-2 are implicated in this 

phase (Eskelinen 2006). 

 

Some autophagy proteins in plants are not specific for autophagy pathway and 

have more broad functions. For instance, AtATG6 protein has a role in vacuolar 

trafficking and Arabidopsis AtATG6 knockout mutant was found to be defective in 

pollen tube germination (Qin et al., 2007; Fujiki et al., 2007).  

 
 
 

2.3.3  Roles of autophagy in plants 

 
 

Autophagy is suggested to play a variety of roles in plant metabolism and 

development. These include seed development, vacuole biogenesis, nutrient recycling 

during starvation conditions, senescence, apoptotic processes, hypersensitive response 

of plants to pathogen infection, and responses of plants to abiotic stress conditions 

(Thompson and Vierstra, 2005; Xiong et al., 2007a, 2007b; Liu et al., 2009).  

 
 
2.3.3.1  Autophagy in plant development 

 
 

Early studies suggested that autophagy does not play a significant role in plant 

developmental processes, since Arabidopsis ATG mutants did not show developmental 

phenotypes. However, recent studies suggested role for autophagy in development of 

several plant species. For instance, results of a recent study indicated that autophagy 

plays a role in seed development in wheat (Ghiglione et al., 2008). Number of fertile 

florets decreases in wheat plants grown under long-day conditions. Analysis of those 

aborted florets with electron microscopy indicated that there were autophagosomes in 

enlarged vacuoles. Supporting evidence came from expression studies which 
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demonstrated that expression levels of several ATG genes, in concert with some 

proteases and cell death-associated genes were higher in aborted florets. All these 

results indicated that autophagy takes place in aborted florets.  

  

Autophagy also has a role during vacuole biogenesis. In a recent study by Yano et 

al. (2007), it has been postulated that the formation of vacuoles from tobacco BY-2 

protoplasts involves an autophagy like process. Newly formed vacuoles were found to 

possess cytoplasm in the presence of cysteine protease inhibitor which indicated that 

vacuole reformation depends on autophagy. However, this process could not be 

inhibited via autophagy inhibitors, 3-methyladenine (3-MA) and wortmannin, 

suggesting that autophagy taking place during vacuole reformation differs from 

constitutive autophagy taking place under normal conditions and autophagy induced by 

stress conditions. 

 
 
 
2.3.3.2  Autophagy as a response to abiotic and biotic stress   

 
 

Autophagy has been shown to be induced by a variety of stress conditions in 

plants. Plants utilize autophagy to recycle nutrients during nitrogen and carbon 

deficiency (Hanaoka et al. 2002; Surpin et al. 2003; Yoshimoto et al. 2004; Xiong et al. 

2005; Fujiki et al. 2007; Qin et al. 2007). In addition to the role of autophagy in nutrient 

recycling, plants also utilize this process to respond to both biotic and abiotic stress 

factors. Induction of oxidative stress via H2O2 addition or methyl violagen application 

led to development of a rapid and strong autophagy response in Arabidopsis seedlings 

(Xiong et al., 2007a). Transgenic Arabidopsis plants, whose AtAtg18a gene was 

silenced, were found to be defective in autophagosome formation and displayed an 

enhanced sensitivity to oxidative stress. Since oxidized proteins could not be degraded 

via autophagy pathway, they accumulated inside the cells of transgenic plants. These 

data suggested that autophagy is essential for degradation of damaged proteins inside 

the cells. When concanamycin A was used to inhibit vacuolar degradation in 

Arabidopsis plants, it was shown that oxidized proteins accumulated in wild-type plants. 

However, oxidized proteins could not be transferred to vacuole for degradation and 

stayed in cytoplasm of transgenic plants. This result supported the view that oxidized 
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proteins are transferred to vacuole for degradation in the presence of oxidative stress. 

However, the role of autophagy in degrading oxidized proteins during abiotic stress 

conditions remains to be elucidated. In a recent study, it has been postulated that 

autophagy is induced by high salinity and drought (Liu et al., 2009) in Arabidopsis. 

Arabidopsis plants having silenced ATG18a gene were shown to be more sensitive to 

salt and osmotic treatments. Retardation in growth of RNAi-ATG18a plants was greater 

than wild type plants after NaCl and mannitol treatments. Silenced plants were more 

chlorotic in comparison to wild type plants, which were still green, after salt and 

mannitol treatment. Chlorophyll and anthocyanin contents were higher in RNAi-

ATG18a plants than wild type plants, after salt and mannitol treatments, respectively. 

The results of the same study suggested that autophagy is differentially regulated in 

responses of plants to salt and osmotic stress. Autophagy was found to be regulated by 

NADPH-oxidase-dependent pathway in response to salt stress. However, regulation of 

autophagy in osmotic stressed plants was found to be independent of NADPH-pathway. 

All these results indicated that autophagy is involved in responses of plants to salt and 

osmotic stress. However, exact function of autophagy in salt and and osmotic stress 

responses of plants should be further investigated.    

 
Autophagy plays a role in response of plants to pathogen infection. From the 

study of tobacco atg6 (also called BECLI:1) mutant plants infected with tobacco 

mosaic virus, it was found that autophagy has a role in restricting programmed cel death 

(PCD) triggered by hypersensitive response close to the site of pathogen infection (Liu 

et al., 2005). atg6 mutants showed enhanced senescence phenotype, similarly to other 

autophagy mutants. Additionally, tobacco BECLI:1 gene was shown to complement 

yeast atg6 mutants, implementing a role for tobacco BECLI:1 gene in autophagy. atg6 

mutants having a silenced BECLI:1 gene were found to possess expanded lesions 

throughout the plant, even on the uninfected upper leaves. This observation suggested 

an important role for BECLIN1 for restriction of PCD to the pathogen infection site. 

However, the mechanism by which autophagy restricts spread of cell death beyond 

infection site still remains to be elucidated.  
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2.3.3.3  Autophagy as a programmed cell death mechanism 

 
 

Although, autophagy seems to contribute to survival of cells during abiotic stress 

conditions, autophagy also acts in PCD in plant cells. Since plants have a rigid cell wall, 

apoptosis is not the mechanism utilized by plants to degrade cellular components before 

cell death. During PCD in plants, vacuole and cell size increase, organelles are taken up 

by vacuole and subsequently degraded, and finally vacuole lyses resulting in cell death. 

These events overlap with the major characteristics of autophagy in plants. These events 

were observed by electron microscopic analysis of cells of soybean and foxglove 

nectaries (Horner et al., 2003; Gaffal et al., 2007) in response to termination of nectar 

production.  

 
 
 
2.3.3.4  Constitutive autophagy in plants 

 
 

In addition to the role of autophagy in responses of plants to both abiotic and 

biotic stress factors, there exists constitutive autophagy in plants grown under normal 

conditions. As a result of incubation of Arabidopsis or barley roots in nutrient rich 

media containing protease inhibitor, E64d (to be able to detect accumulation of 

autophagic bodies), accumulation of cytoplasmic inclusions inside vacuoles of 

meristematic cells could be detected. This was an indication for constitutive autophagy 

taking place under nutrient-rich conditions (Moriyasu et al., 2003). Incubation of 

Arabidopsis and barley root tips in a growth medium containing autophagy inhibitor, 3-

MA led to partial inhibition of accumulation of cytoplasmic components inside vacuole 

(Inoue et al., 2006). Expression of GFP (green fluorescent protein) fusion construct of 

Atg8f, autophagy marker in Arabidopsis plants resulted in accumulation of the fusion 

protein inside vacuole under normal conditions and this fusion protein was detected in 

autophagic bodies in the presence of concanamycin A, blocker of vacuolar degradation 

(Slavikova et al., 2005) The role of constitutive autophagy in degradation of damaged or 

oxidized molecules was confirmed by the study of Arabidopsis mutants, AtAtg18a. 

These mutants were found to produce greater amounts of oxidized proteins and lipids in 

comparison to wild-type plants. Plants can generate reactive oxygen species through 
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photosynthetic electron transport chain and substantial amount of oxidative damage can 

take place under normal conditions. Increased amount of oxidized protein and lipid 

generation in Atg18a silenced plants indicates the important role of autophagy in 

degradation of oxidized molecules inside plant cells (Xiong et al., 2007b).  

 
 

 

2.3.4  Monitoring plant autophagy 

 
 

To detect autophagy in plant cells, a variety of techniques are utilized. These 

techniques include the use of earliest tools such as transmission electron microscopy 

(TEM) and the novel molecular tools which have been introduced recently. Use of these 

tools for monitoring autophagy in plant systems will be explained below. 

 
 
 
2.3.4.1  GFP-Atg8 dot formation 

 
 

Markers have been developed to specifically label autophagosomes. Fusion of 

GFP with Atg8, autophagy marker gene has being used by many researchers to label 

autophagosomes. GFP-ATG8 fusion protein was expressed in Arabidopsis root cells 

and observed by confocal laser scanning microscopy. Fusion proteins were observed as 

many ring-shaped and punctuate structures corresponding to autophagosomes and 

intermediates, respectively in wild-type Arabidopsis root cells under normal growth 

conditions. These structures could not been observed in Atatg4a4b-1 double-mutant 

plants expressing GFP-AtATG8, since autophagy is defective in these mutants. Fusion 

protein was also detected in vacuolar lumen of root cells under nitrogen starvation 

conditions. However, fusion protein could not be delivered to vacuoles in Atatg4a4b-1 

double-mutants. These results indicated that ATG4 is essential for processing and 

possibly conjugation of ATG8 to PE, and GFP: AtATG8 is a convenient marker for 

monitoring autophagy in plant cells (Yoshimoto et al., 2004). In another study, 

accumulation of GFP-ATG8 labelled autophagic bodies has been demonstrated to be 

enhanced after nitrogen starvation in Arabidopsis wild type cells, but blocked in 

Arabidopsis atg7-1 mutants (Thompson et al., 2005). In Arabidopsis atg7-1 mutants, 
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punctuate structures representing GFP-ATG8 labelled autophagic vesicles could not be 

detected after nitrogen starvation concomitantly performed with concanamycin A 

treatment, by fluorescence confocal microscopy. In a similar study, atg5-1 and atg10-1 

mutants have been shown to fail accumulation of ATG8-GFP labelled autophagic 

vesicles after nitrogen starvation and concurrent concanamycin A treatment. GFP signal 

was detected as a diffused signal in cytoplasm in hypocotyl cells of mutant Arabidopsis 

plants whereas GFP-ATG8 labelled vesicles appeared as punctuate structures in 

nitrogen starved and concanamycin A treated wild type Arabidopsis cells (Phillips et al., 

2008). These results confirmed the assumption that GFP-ATG8 labelled vesicles were 

actually autophagic vesicles and, hence can be used to monitor autophagy in plant 

systems. 

 
 
 
2.3.4.2  Electron microscopy 

 
 

TEM is one of the first tools utilized to monitor autophagy in cells (Ashford and 

Porter, 1962). Although TEM is offered as the most reliable tool to monitor autophagy, 

special precaution is required for interpretation of TEM data. Use of TEM to detect 

autophagic bodies in plant cells has been reported in several studies (Liu et al., 2005; 

Rose et al., 2006; Ghiglione et al., 2008). In one study, it has been postulated that 

autophagosomes and autolysosomes fusing with vacuoles were observed in uninfected 

tissue surrounding hypersensitive response programmed cell death area of :icotiana 

benthamiana using electron microscopy (Liu et al., 2005). In another study, electron 

microscopy has been used to detect autophagy in Arabidopsis cells. Electron 

micrographs of cells of Arabidopsis plants grown in sucrose replete and sucrose starved 

media showed that the number of autophagic vesicles was greater in cells of sucrose 

starved plants in comparison to the ones grown in complete medium (Rose et al., 2006). 

In another recent study, autophagic vesicles in aborted floret cells of wheat have been 

observed by TEM (Ghiglione et al., 2008). Double membraned dense globular bodies 

have been detected in cells of aborted florets under electron microscopy, suggesting 

early phase of autophagy. However, it was also shown that when these bodies moved 

towards the tonoplast and fused with it, dense bodies were observed as single 

membraned or no membrane surrounded indicating later phases of autophagy. All these 
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results indicated that TEM is a reliable and successful tool to monitor autophagy in 

plant cells.  

 
 
 
2.3.4.3  Visualization of autophagy by fluorescent dyes  

 
 

Autophagosomes can also be labeled with the acidotrophic fluorescent dyes, 

LysoTracker Red (Moriyasu et al., 2003) and monodansylcadaverine (MDC) (Contento 

et al., 2005).  

 
 
 
2.3.4.3.1  LysoTracker Red 

 
 

Weakly basic amines have the ability to accumulate in acidic compartments inside 

the cell.  LysoTracker Red (LT Red) is an acidotrophic fluorecent dye, which has a 

fluorophore conjugated to a weak base in its structure. In previous studies, LT Red has 

been shown to be concentrated in mammalian lysosomes, which have low pH 

(Lepperdinger et al., 1998; Tarasova et al., 1997). This property of this dye makes it a 

convenient probe to label acidic organelles, like lysosome and vacuole and hence, detect 

autophagy inside a cell. In one study, LT red staining was performed in order to 

visualize autolysosomes accumulating in tobacco cells in the presence of sucrose 

starvation (Moriyasu et al., 2003). In the same study, LT red has been shown to be 

concentrated in several cytoplasmic organelles in sucrose starved and E-64d-treated 

barley root tip cells, which indicated the presence of active autophagy in these cells. In 

another study, occurance of autophagy in Arabidopsis root tip cells has been confirmed 

by LT Red staining (Inoue et al., 2006).  

 

2.3.4.3.2  Monodansylcadaverine 

 
 

Monodansylcadaverine (MDC) is a fluorescent dye that is extensively used to 

monitor autophagy in plant systems. It is an amine which has the capability to pass 

through membranes and accumulate in acidic organelles (Biederbick et al. 1995). It also 
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has the ability to interact with lipid-rich compartments (Niemann et al., 2000). In a 

previous study, MDC staining has been utilized to label autophagosomes in Arabidopsis 

suspension culture cells in the presence and absence of sucrose starvation (Contento et 

al., 2005). The number of stained moving, spherical structures has been shown to be 

greater in sucrose starved suspension culture cells in comparison to non-starved cells. 

The results of this study suggested that MDC stains autophagosomes in Arabidopsis. 

Specificity of MDC staining of autophagosomes was further confirmed by the results of 

a study by Contento et al. (2005). In the same study, sucrose starved Arabidopsis 

protoplasts expressing GFP-AtAtg8e were stained with MDC. Colocalization of GFP-

AtAtg8e and MDC in sucrose starved Arabidopsis protoplasts indicated that MDC 

stained vesicles were likely to be autophagosomes. In another study by Xiong et al. 

(2007a), MDC staining of autophagic vesicles has been performed in order detect 

autophagy induced for degradation of oxidized proteins during oxidative stress in 

Arabidopsis. A study by Patel et al. (2008) also reported the use of MDC to stain 

autophagosomes in Arabidopsis root cells. MDC-stained punctuate structures were 

observed both in the cytoplasm of nitrogen and carbon starved wild type Arabidopsis 

root cells. However, very few MDC stained structures were detected in the starved root 

cells of AtAtg6-AS plants. These results indicated that AtAtg6 is required for induction 

of autophagy in Arabidopsis. MDC staining of autophagosomes was also utilized to 

detect autophagy in rice cells. The number of MDC-stained punctuate structures has 

been found to be lower in OsAtg10b mutant cells when compared to wild-type plants 

after induction of oxidative stress via methyl viologen (Shin et al. 2009). In another 

study, MDC staining of autophagosomes has been performed in order to show that 

AtATG18a is required induction of autophagy by salt and osmotic stress. In RNAi-

AtAtg18a plants grown in MS and treated with NaCl and mannitol to induce salt stress 

and osmotic stress respectively, the number of MDC stained autophagosomes reduced 

significantly, in comparison to wild type plants grown under normal conditions. These 

results indicated that salt and osmotic stress induced autophagy also requires AtATG18a 

(Liu et al., 2009).  
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2.3.4.4  Use of inhibitors to monitor autophagy 

 
 

Since the degradation of cytoplasmic components is very rapid after fusion of 

autophagosomes to vacuole, cysteine protease inhibitors like E64c are used to inhibit 

vacuolar degradation of autophagic bodies. Accumulation of autophagosomes could be 

detected by light microscopy in tobacco cell after treatment with E64c (Moriyasu and 

Ohsumi, 1996). Similar to tobacco cells, accumulation of autolysosomes has been 

detected in E64d treated barley root tip cells (Moriyasu et al., 2003). The results of this 

study suggested that E64d stabilized autolysosome membrane and allowed 

concentration of acidotrophic dye, LT Red, in acidic compartments inside the cells. In 

another study, E64c treatment resulted in detection of higher fluorescence in 

autolysosomes in addition to the fluorescence in central vacuoles of tobacco cells (Yano 

et al., 2004). In a study by Inoue et al. (2006), it has been shown that E64d treatment 

allowed the accumulation of parts of cytoplasm in vacuoles of Arabidopsis root tip cells. 

Same treatment led to the accumulation of parts of cytoplasm in autolysosomes and pre-

existing central vacuoles in barley root tip cells.   

 

Bafilomycin A1 and concanamycin A are inhibitors of vacuolar hydrolases since 

they can inhibit V type ATPases. These inhibitors are known to increase vacuolar pH 

and under such high pH conditions, vacuolar hydrolases can not function. Consequently, 

autophagic bodies accumulate in vacuoles. Autophagy induced by starvation in BY-2 

cells can be inhibited by bafilomycin A1 and concanamycin A. Autophagic bodies have 

been shown to accumulate in BY-2 cells treated with such inhibitors (Robinson et al., 

2004). Similarly, treatment of Arabidopsis roots with concanamycin A lead to 

accumulation of spherical bodies in vacuolar lumen, which correspond to autophagic 

bodies. These structures could be observed with conventional light microscopy. When 

vacuolar lumen of these root cells were observed with electron microscopy, these 

spherical bodies were found to possess cytoplasmic structures such as endoplasmic 

reticulum, golgi body and mitochodria indicating that these spherical structures are 

autophagic bodies (Yoshimoto et al., 2004). In another study, concanamycin A 

treatment led to an increase in GFP fluorescence in GFP-AtAtg8-HA expressing 

Arabidopsis root tip cells. Additionally, a large number of fluorescing spots were also 

observed in vacuoles of these cells, indicating that AtATG8 containing structures are 



 77 

succesfully internalized into the vacuoles in concanamycin A treated Arabidopsis root 

tip cells (Slavikova et al., 2005). In a study by Thompson et al. (2005), accumulation of 

autophagic bodies has been observed inside the vacuoles of nitrogen starved 

Arabidopsis cells using GFP-Atg8a fusion in combination with concanamycin A 

treatment.  

 

Recently, 3-MA has been suggested to block autophagy in cultured tobacco cells 

under starvation conditions (Takatsuka et al., 2004; Inoue and Moriyasu, 2006). In 

another study, it has been shown that 3-MA treatment blocks autophagy by inhibiting 

accumulation of cytoplasm parts in vacuoles of Arabidopsis root tip cells (Inoue et al., 

2006). In summary, treatment of cells with these inhibitors is an easy way to monitor 

autophagy in plant cells.  

 
 
 
2.3.4.5  ATG5/ATG12 conjugate as a marker of autophagy 

 
 

Usage of anti-AtATG12b antibodies that recognize both AtATG12a and 

AtATG12b, and hence AtATG12-AtATG5 conjugate is another way to detect 

occurance of autophagy in plant cells. Conjugates could be detected in wild-type and 

AtATG10/Atatg10-1 (heterozygous) plants. However, they could not be detected in 

Atatg5-1 and Atatg10-1 mutant plants, since AtATG5 and AtATG10 are involved in 

AtATG12/AtATG5 conjugate formation. Conjugate was detected in Atatg4a4b-1 

double mutants, since AtATG4 does not function in formation of this conjugate. 

Treatment of wild-type and AtATG10/Atatg10-1 (heterozygous) roots with 

concanamycin A led to detection of autophagic bodied in vacuoles. However, 

autophagic bodies could not been detected in Atatg5-1 and Atatg10-1 roots treated with 

concanamycin A, suggesting that formation of AtATG5/AtATG12 conjugate is 

necessary for autophagy (Suzuki et al., 2005; Thompson et al., 2005). In summary, 

ATG5/ATG12 conjugate can be used as an autophagy marker in plant 
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2.3.4.6  Test of aminopeptidase I maturation 

 
 

Cellular processes in yeast might also help understand the autophagy in plants. S. 

cerevisiae has evolved a mechanim similar to autophagy to constitutively deliver 

functional vacuolar proteins to lumen. This pathway is called CVT and has been 

proposed to play role in import of functional vacuolar proteins that can not cross the 

tonoplast (Thompson and Vierstra, 2005). One of the proteins in yeast, which is 

synthesized in cytosol as a precursor enzyme (prAPI, 61kDa) and targeted to vacuole 

for maturation via CVT pathway, is aminopeptidase I. Only under starvation conditions, 

prAPI is targeted to vacuole for conversion into mature API (mAPI, 50 kDa) (Klionsky 

and Ohsumi, 1999). It has been also suggested that mAPI appears in the vacuole only 

when autophagic pathway is functional (Ketelaar et al., 2004). Test of API maturation 

has been utilized in several complementation studies of yeast mutants with plant Atg 

genes for assaying functionality of these genes in yeast (Hanaoka et al., 2002; Ketelaar 

et al., 2004).  
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3  MATERIALS A�D METHODS 
 
 
 
 

3.1  Materials 

 
 
 

3.1.1  Plant material 

 
 

In the experiments, B. distachyon genotype, Bd21 was used (Filiz et al., 2009). 

 
 
 
3.1.2 Yeast strain and plasmid 

 
 

Yeast Atg8 mutant strain (BY4741, atg8∆::kanMX, MATa; his3∆1; leu2∆0; 

met15∆0; ura3∆O) and pRS316 plasmid with yeast Atg8 gene used in this study was 

kindly provided by Nakatogawa lab.  

 
 
 
3.1.3 Antibodies  

 
 

Polyclonal anti-API antibody used in this study was a kind gift of Klionsky lab. 
 
 
 
3.1.4  Chemicals 

 
 

All chemicals were obtained from Merck (Germany), SIGMA (US), Fluka 

(Switzerland), and Riedel de Häen (Germany). 
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3.1.5  Growth Media, Buffers and Solutions  

 
 

The growth media, buffers, and solutions used in this study were prepared 

according to the protocols as outlined by Sambrook et al., 2001. 

 
 
 
3.1.6  Equipment 

 
 

Equipments used in this research are listed in Appendix D. 

 
 
 

3.2 Methods 
 
 
 

3.2.1  Plant growth conditions and PEG application 
 
 

Seeds of B. distachyon genotype were planted and grown on solid medium 

[Murashige–Skoog Vitamin and Salt Mixture (Gibco), 2% (w/v) sucrose (Sigma), 0.8% 

phytagar (Gibco BRL)]. All plants were grown under 24 h light for 4 weeks including 

germination period. For induction of osmotic stress, plants will be transferred to solid 

medium containing 20% PEG. When the first symptoms became apparent on plants (~3-

4 days), leaf and root samples were collected and frozen in liquid nitrogen, and stored at 

-80°C until further use. 

 
 
 
3.2.2  Total R�A isolation 
 
 

Total RNA isolations were carried out by TRIzol® reagent (Invitrogen) according 

to the manufacturer’s instructions with a few modifications. Two hundred miligram 

(mg) of leaf tissue was ground with 1.5 ml TRIzol® reagent (Invitrogen). Using a wide 

bore pipette tip, 1 ml of liquid was taken into an eppendorf tube, which was kept on ice 

while processing the other samples. After processing all the samples, they were 

incubated at room temperature for 10 minutes, 0.4 ml chloroform was added and the 
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tubes were shaken and incubated at room temperature for 5 min. Then, samples were 

centrifuged at 12,000 rpm for 15 min at 4ºC. The upper layer containing RNA was 

transferred to a fresh tube. After chloroform extraction, 0.5 ml isopropanol was added to 

precipitate RNA. Samples were then incubated at room temperature for 10 min and spun 

at 12,000 rpm for 10 min at 4ºC. The RNA pellet was washed with 1 ml 75% ethanol 

after centrifugation. Samples were mixed by vortexing and spun at 7,500 rpm for 5 min 

at 4ºC. The RNA pellet was dried at room temperature for 10 min and placed in 20-50 

µl formamide, depending on the size of the pellet, and allowed to sit in the 55ºC water 

bath for an hour to improve suspension.  

 
Three separate RNA isolations were performed for each tissue type (leaf tissue 

and root tissue) and treatment (control and 20% PEG application). RNA concentrations 

were determined spectrophotometrically and RNA qualities were checked by denaturing 

gel. RNA samples were treated with Dnase I (Fermentas) according to manufacturer’s 

instructions. 

 
 
 
3.2.3  cD�A synthesis and degenerate PCR reaction 
 
 

To synthesize the first-strand cDNA, 2 µg total RNA from Bd21 with and without 

PEG application was independently reverse transcribed using the Omniscript reverse 

transcription kit (Qiagen). OligodT primers used in reverse transcription reaction were 

purchased from Invitrogen (0.5 µg /µl). 

 
Amplification of cDNA fragments were performed in 20 µl PCR reactions using 

degenerate primers designed based on well conserved regions of ATG8 proteins 

previously identified in yeast, Arabidopsis, rice and bread wheat. Multiple alignment 

result of ATG8 proteins is given in Fig. 4.1. Sequence information of the degenerate 

BdATG8 primers, named degBdATG8_F and degBdATG8_R is given in Table 3.1. 

Each reaction mixture contained 1 µl (1:5 diluted) first strand cDNA, 2 µl 10X PCR 

buffer (without MgCl2), 2 mM MgCl2,  0.25 mM dNTP mix, 0.5 µM of degBdATG8_F, 

0.5 µM of degBdATG8_R, 1 unit Taq DNA polymerase (Fermentas). The templates 

were amplified at 94°C for 4 min, followed by 40 cycles of amplification (94°C for 45 
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s, 46.5°C for 1min 30s, 72°C for 45 s), then 72°C for 7 min. PCR products were 

analyzed on 1% agarose gels.  

 
 
 
Table 3.1  Nucleotide sequences of primers used for the cloning and expression analysis  
of BdAtg8 gene 

Primer Sequence  

degBdATG8_F 5’ GGN CAR TTY GTN TAY GTN GT 3’ 

degBdATG8_R 5’ CAT RAA NAR RAA NCC RTC YTC   3’ 

HindIII-BdATG8_F 5’AAGCTTCATGGCCAAGACTTCGTTCAAG 3’ 

SacI-BdATG8_R 5’ GAGCTCTTAGGCCAACAAGCCAAATGT 3’ 

SpeI-BdATG8_F 5’ACTAGTGGATGGCCAAGACTTCGTTCAAGC 3’ 

SmaI-BdATG8_R 5’ CCCGGGAAGGCCAACAAGCCAA 3’ 

SmaIF-BdATG8 5’ CCCGGGAGCCAAGACTTCGTTCAA 3’ 

SacIR-BdATG8 5’ GAGCTCGGCCAACAAGCCAAATGT 3’ 

18S rR:A_F 5’ GTGACGGGTGACGGAGAATT 3’ 

18S rR:A_R 5’ GACACTAATGCGCCCGGTAT 3’ 

 
 
3.2.4  D�A extraction from agarose gels 

 
 

Amplicons reamplified in a greater volume (50 µl) were run on 1% agarose gel, 

excised from the gels and then purified using Qiaquick® gel-extraction kit (Qiagen).  

 
 
 
3.2.5  TA cloning  

 
 

PGEM®-T Easy Vector System I (Promega) was used to clone the reamplified 

cDNA fragments bands. E. coli (strain DH5α) competent cells were transformed with 

the recombinant plasmids. Positive clones were selected and used for plasmid 

purification. 
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3.2.5.1  Ligation 

 
 

Reamplified cDNA fragment bands were ligated to pGEM®-T Easy vector 

(Promega) according to the specified amount (3:1 insert/vector ratio) in the pGEM®–T 

Easy kit protocol. Ligation reaction was incubated at room temperature for 1 hour. 

Positive and negative controls of ligations were also performed. 

 
 
 
3.2.5.2  Chemically competent cell preparation 

 
 

Single colony of Escherichia coli (E.coli) DH5α strain was inoculated in 50 ml 

Luria-Bertani (LB) broth and grown overnight (o/n) in a shaking incubator at 37ºC, 250 

rpm. 4 ml from overnight culture was transferred into 400 ml LB in sterile 2L flask and 

grown at similar conditions. When the OD590 of the cells reached ~0.375, culture was 

taken into 50 ml prechilled, sterile falcon tubes and left on ice for 5-10 minutes. The 

tubes were spun at 2700 rpm for 7 minutes at 4ºC. Supernatants were discarded and the 

pellets were gently resuspended in 10 ml ice-cold CaCl2 solution, containing 60 mM 

CaCl2, 15% glycerol and 10 mM PIPES (pH 7.0). The tubes were spun at 1800 rpm for 

5 minutes at 4ºC. Supernatants were discarded and the pellets were resuspended in 10 

ml ice-cold CaCl2 solution, and kept on ice for 30 minutes. Again, the tubes were spun 

at 1800 rpm for 5 minutes at 4ºC. Supernatants were discarded and the pellets were 

resuspended in 2 ml ice-cold CaCl2 solution. 200 µl aliquots were dispensed into 

prechilled, sterile eppendorf tubes, immediately frozen in liquid nitrogen, and stored at -

80ºC. Competency of the cells was checked by transforming 5-10 ng plasmids. 

 
 
 
3.2.5.3  Transformation 

 
 

DH5α strain of E. coli was used for transformation. 2 µl of ligation reaction was 

mixed with 100 µl chemically competent cells according to the manufacturer’s protocol. 

Since the vector contains Ampicillin resistance and LacZ genes, 100 µl of 

transformation culture was plated on LB agar/Amp/IPTG/X-Gal plate and incubated 
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(o/n) at 37ºC. The pUC 18 was transformed to competent cells as a positive control. 

Uncut plasmid was transformed as a negative control. 

 
 

 

3.2.5.4  Colony selection 

 
 

On the basis of blue/white selection, positive clones were selected and replicas of 

these clones were prepared. 

 
 
 
3.2.5.5  Colony PCR 

 
 

Degenerate primers, that were previously used to detect BdATG8 gene, was used 

in colony PCR reaction to confirm that the transformation is correct positive.  

 
 
 

3.2.5.6  Preparation of glycerol stocks of transformants 

 
 

Glycerol stocks of transformants were prepared in 15% glycerol and kept at - 

80ºC. 

 
 
 
3.2.5.7  Plasmid isolation 

 
 

Colonies of positive transformant were inoculated in 5ml (for mini preps) and 200 

ml (for midi preps) of LB broth containing 100 µg/ml of ampicillin in sterile culture 

tubes. Cells were incubated in a shaker incubator (270 rpm) at 37ºC (o/n) (12-16 hours). 

QIAprep® spin miniprep kit (Qiagen) and Genopure plasmid midi kit (Roche) were used 

for plasmid isolation from the (o/n) culture. Isolated plasmids were checked by agarose 

gel electrophoresis and their concentrations were determined by absorption 

spectroscopy.  
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3.2.5.8  Restriction enzyme digestion 

 
 

Purified plasmids containing the differentially expressed cDNAs were digested 

with EcoRI restriction enzyme (Fermentas) for a double check of the transformation and 

results were analysed by agarose gel electrophoresis.  

 
 

 
3.2.5.9  D�A sequence analysis 

 
 

Sequence analyses of isolated plasmids were commercially provided by MCLAB 

(CA, U.S.A.) using M13F or M13R primers. 

 
Sequences were first exposed to ‘VecScreen’ algorithm 

(http://www.ncbi.nlmn.nih.gov/) to remove vector contamination. The BLAST 

algorithm (Altschul et al., 1990; http://www.ncbi.nlm.nih.gov) was used homologs of 

BdATG8 EST sequence.  

 
Clustalw of BdAtg8 translated sequence to B. distachyon protein sequence 

database helped us to obtain full coding sequence of BdATG8 gene.  

 
 
 
3.2.6  RT-PCR analysis 
 
 

Total RNA was isolated from roots and leaves of control and 20% PEG applied 

Bd21 seedlings using the TRIzol reagent (Invitrogen). First strand cDNA synthesis was 

done using the Omniscript reverse transcription kit (Qiagen) as described previously. 

Amplification of cDNA fragments were performed in 20 µl PCR reactions using SpeI-

BdATG8_F and SmaI-BdATG8_R primers. Sequence information of this primer set is 

given in Table 3.1. Each reaction mixture contained 1 µl (1:5 diluted) first strand 

cDNA, 2 µl 10X PCR buffer (without MgCl2), 2 mM MgCl2,  0.25 mM dNTP mix, 0.5 

µM of SpeI-BdATG8_F, 0.5 µM of SmaI-BdATG8_R, 1 unit Taq DNA polymerase 

(Fermentas). The templates were amplified at 94°C for 4 min, followed by 30 cycles of 

amplification (94°C for 45 s, 60°C for 1 min 30 s, 72°C for 45 s), then 72°C for 7 min. 

cDNA fragments amplified with 18S rRNA primers were used as internal control to 
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show the consistent amount of beginning RNA for RT-PCR (18S rRNA primers are 

given in Table 3.1). PCR products were run on 1% agarose gels.  

 
 
 
3.2.7  Quantitative real time PCR analysis 
 
 

2 µg of total RNA were used for first strand cDNA synthesis with the Omniscript 

reverse transcription kit (Qiagen) according to the manufacturer’s instructions. cDNA 

was 1:5 diluted and one 1 µl of this cDNA was amplified with 0.35 µM of SpeI-

BdATG8_F and SmaI-BdATG8_R primers in a total volume of 20 µl using FastStart 

Universal SYBR green PCR master mix (ROCHE) with Icycler Multicolor Realtime 

PCR Detection Systems (BioRad Laboratories). 

 

The templates were amplified at 95°C for 10 min, followed by 40 cycles of 

amplification (95°C for 45 s, 60°C for 1 min). The quantification was performed based 

on previous studies (Muller et al. 2002; Ergen and Budak, 2009) using 18S rRNA as an 

internal reference and two independent PCR results were averaged. Sequences of 18S 

rRNA primers are given in Table 3.1. Quantitative real time PCR analysis was 

performed for BdAtg8 to detect tissue, age and treatment specific differential Atg8 

expression in B. distachyon. 

 
 
 
3.2.8  MDC staining  
 
 

Root tips (~1 cm) of control and 20% PEG treated Bd21 seedlings were excised 

and incubated in 0.05 mM MDC (Sigma) in phosphate buffered saline (PBS) for 20 

min. To get rid of excess stain, root tips were washed two times with PBS (Contento et 

al., 2005). MDC-stained root tips were observed under fluorescence microscopy 

(Olympus, BX-60).  
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3.2.9  Amplification of full CDS of BdAtg8 gene 

 
 

Sequence information of the primers, with restriction sites, used to amplify CDS 

of BdAtg8 gene, named HindIII-BdATG8_F and SacI-BdATG8_R is given in Table 3.1. 

Those primers have been designed to be in frame with GAL1 promoter of pYES2 

(Invitrogen) yeast expression vector. The map of this vector is provided in Appendix B. 

Each reaction mixture contained 1 µl (1:5 diluted) first strand cDNA, 2 µl 10X PCR 

buffer (without MgSO4), 5mM MgSO4,  0.25 mM dNTP mix, 0.5 µM of HindIII-

BdATG8_F, 0.5 µM of SacI-BdATG8_R, 1 unit Platinum® PfxDNA polymerase 

(Invitrogen). The templates were amplified at 94°C for 4 min, followed by 30 cycles of 

amplification (94°C for 45 s, 57°C for 1 min 30 sec, 68°C for 45 s), then 68°C for 7 

min. PCR products were analyzed on 1% agarose gels. PCR products were 

polyadenylated using Taq DNA polymerase for 15 min at 72°C, and run on 1% agarose 

gel. Band of interest was excised and extracted from gel.  

 
 
 
3.2.10  Complementation assay of yeast atg8∆ mutant with BdAtg8 gene  

 
 

Before expression of BdATG8 in yeast, amplicons amplified with HindIII-

BdATG8F and SacI-BdATG8R were ligated into pGEM®-T Easy vector and 

transformed into E. coli DH5α strain as described previously. Positive colonies, selected 

on the basis of blue-white selection strategy, were further confirmed with colony PCR 

and restriction digestion with EcoRI enzyme. Plasmids were isolated from the 

transformants as stated before. Sequence analyses of isolated plasmids were 

commercially provided by MCLAB (www.mclab.com, CA, US) using M13F or M13R 

primers. 

 
The isolated plasmids were double digested with HindIII (Fermentas) and SacI 

(Fermentas) restriction enzymes according to the manufacturer’s instructions. pYES2 

vector (Invitrogen) was also double digested with the same set of restriction enzymes. 

To insert the BdAtg8 CDS under the GAL1 promoter of pYES2 vector, ligation reaction 

was carried out overnight at 16°C following the instuctions of the manufacturer (T4 

DNA ligase, Fermentas). Yeast Atg8 mutant strain (BY4741, atg8∆::kanMX, MATa; 
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his3∆1; leu2∆0; met15∆0; ura3∆O).was used in this study. Detailed information about 

the yeast mutant strain used in this study is given in a study by Kawamata et al. (2005). 

 
pYES2-BdAtg8 recombinant vector was transformed into yeast atg8∆ strain 

according to LiAc/SS-DNA/PEG TRAFO protocol (Gietz and Woods, 2002). As a 

positive control, pRS316 vector with yeast Atg8 gene was transformed to atg8∆ yeast 

mutant strain. Uracil (URA) was used as the auxotrophic marker. 50 µl and 200 µl of 

transformation mixtures were spreaded on SC–URA selective medium (0.67% yeast 

nitrogen base, drop-out (DO) supplement without URA, 2% glucose, 2% agar). After 3-

4 days, positive colonies, growing on SC–URA plates, were screened for the presence 

of pYES2-BdAtg8 by colony PCR using HindIII-BdATG8_F and SacI-BdATG8_R 

primers. Positive colonies were further grown in SC-URA medium containing 2% 

galactose and 1% raffinose o/n. Glycerol stocks of transformants were prepared in 15% 

glycerol and kept at -80ºC. 

 
5 µl of yeast transformants grown in SC-URA medium was spotted in serial 

dilutions (1, 1:5, 1:10, 1:100) on standard rich growth medium (yeast extract, peptone, 

dextrose: YPD) plates for control of equal loading and viability, on YPD with 20% PEG 

plates for detecting the effect of BdATG8 on growth of yeast in the presence of osmotic 

stress, and on synthetic minimal medium without nitrogen (0.67% yeast nitrogen base 

without ammonium sulfate and aminoacids, 2% galactose and 1% raffinose) plates for 

assessment of the complementation potential of BdATG8 in yeast mutants growing 

under starvation conditions.  

 
 
 

3.2.11  Protein expression and western blot analysis with polyclonal anti-
Aminopeptidase I (API) antibody 

 
 

Transformants were selected after 48 hs growth in SC-URA medium. O/N 

cultures were diluted to have an OD600 of 0.4 in 50 ml induction medium without 

nitrogen for mimicking starvation conditions (0.67% yeast nitrogen base without 

ammonium sulfate and aminoacids, 2% galactose and 1% raffinose). BdATG8 

expression was induced by galactose according to the manufacturer’s instructions 

(pYES2 manual, Invitrogen), except few modificatons, such as the expansion of the 

time for galactose induction to 24 and 48 hours. After protein expression, cell lysates 
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were prepared according to the manufacturer’s instructions (pYES2 manual, 

Invitrogen). Lysates were assayed for protein concentration via Bradford analysis using 

bovine serum albumin (BSA) as a standard (0.1 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 

mg/ml). 100 µg of protein was used in western blot analysis.  

 
The proteins were resolved by 12% SDS-PAGE and transferred to a nitrocellulose 

membrane using wet transfer method. After blocking with phosphate-buffered saline 

containing 0.05% Tween 20 and 5% non-fat dry milk for 1 h, the membrane was probed 

with a specific rabbit anti-API antibody (1:1000) o/n at 4°C and then washed and 

exposed to horseradish peroxidase-conjugated anti-rabbit IgG antibodies (1:10000) for 1 

h. The bound antibodies were visualized using ECL western blotting substrate and 

enhancer according to the manufacturer’s instructions (PIERCE, USA). 

 
 

 
3.2.12  Western blot analysis using monoclonal anti-HA antibody 
  
 

BdAtg8 CDS was amplified using SmaIF-BdATG8 and SacIR-BdATG8 primers. 

Sequences of these primers are presented in Table 3.1. These primers have been 

designed to be in frame with truncated ADH1 promoter of pACT2 yeast two-hybrid 

vector (Clontech) pACT2 vector also has a hemaglutinin (HA) epitope tag for western 

analysis. The map of this vector is provided in Appendix C. Each reaction mixture 

contained 1 µl (1:5 diluted) first strand cDNA, 2 µl 10X PCR buffer (without MgSO4), 

5mM MgSO4,  0.25 mM dNTP mix, 0.5 µM of SmaIF-BdATG8, 0.5 µM of SacIR-

BdATG8, 1 unit Pfu DNA polymerase (Fermentas). The templates were amplified at 

94°C for 4 min, followed by 30 cycles of amplification (94°C for 45 s, 60°C for 1 min, 

72°C for 45 s), then 72°C for 7 min. PCR products were analyzed on 1% agarose gels. 

The PCR was reperformed in a greater volume. PCR products were polyadenylated 

using Taq DNA polymerase for 15 min at 72°C, and run on 1% agarose gel. Band of 

interest was excised and extracted from gel.  

 
Before expression of BdATG8 in yeast, amplicons were ligated into pGEM®-T 

Easy vector and transformed into E. coli DH5α strain as described previously. Positive 

colonies, selected on the basis of blue-white selection strategy, were further confirmed 

with colony PCR and restriction digestion with EcoRI enzyme. Plasmids were isolated 
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from the transformants as stated before. Sequence analyses of isolated plasmids were 

commercially provided by MCLAB (CA, US) using M13F or M13R primers. 

 
The isolated plasmids were double digested with SmaI (Fermentas) and SacI 

(Fermentas) restriction enzymes according to the manufacturer’s instructions. pACT2 

vector (Clontech) was also double digested with the same set of restriction enzymes. To 

insert the BdAtg8 CDS under the truncated ADH1 promoter of pACT2 vector, ligation 

reaction was carried out overnight at 16°C following the instuctions of the manufacturer 

(T4 DNA ligase, Fermentas).  

 
pACT2-BdAtg8 recombinant vector was transformed into yeast atg8∆ strain 

according to LiAc/SS-DNA/PEG TRAFO protocol (Gietz and Woods, 2002). Leucine 

(LEU) was used as the auxotrophic marker. 50 µl and 200 µl of transformation mixtures 

were spreaded on SC–LEU selective medium (0.67% yeast nitrogen base, drop-out 

(DO) supplement without LEU, 2% glucose, 2% agar). After 3 days, positive colonies, 

growing on SC–LEU plates, were screened for the presence of pACT2-BdAtg8 by 

colony PCR using SmaIF-BdATG8 and SacIR-BdATG8 primers. Positive colonies 

were further grown in SC-LEU medium containing 2% glucose o/n. Glycerol stocks of 

transformants were prepared in 15% glycerol and kept at -80ºC. 

 
5ml O/N cultures were transferred to 45ml YPD medium and grown until the 

OD600 reaches 0.4-0.6. Yeast pellets were prepared by centrifuging the cultures at 1000 

g for 5 min at 4°C. Yeast total protein extracts were prepared according to the 

manufacturer’s instructions (pYES2 manual, Invitrogen). Protein isolates were assayed 

for protein concentration via Bradford analysis using bovine serum albumin (BSA) as a 

standard (0.1 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 mg/ml). 50 µg of protein was used in 

western blot analysis.  

 
The proteins were resolved by 15% SDS-PAGE and transferred to a nitrocellulose 

membrane using wet transfer method. After blocking with phosphate-buffered saline 

containing 0.05% Tween 20 and 5% non-fat dry milk for 1 h, the membrane was probed 

with a specific mouse monoclonal anti-HA antibody (Origene) (1:1000) o/n at 4°C and 

then washed and exposed to horseradish peroxidase-conjugated anti-mouse IgG 

antibodies (1:10000) for 1 h. The bound antibodies were visualized using ECL western 
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blotting substrate and enhancer according to the manufacturer’s instructions (PIERCE, 

USA). 
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4  RESULTS 

 
 
 
 

4.1  Plant growth 
 
 
 

B. distachyon seedlings were transffered to normal MS and

. PEG treatment resulted in retardation in growth of 

and development of necrotic patches on the bases and sheaths of the old 

Figs. 4.1 and 4.2) When first symptoms appeared on the leaves of the PEG 

plants, leaf and root samples were collected from the plants for 

further molecular analysis. Root samples were also collected for MDC staining 

 

B. distachyon as affected by osmotic stress. Four
to normal MS and MS treated with 20% PEG until the first symptoms 

appeared on the leaves (3-4 days).  
 
 
 

20% PEG Control

transffered to normal MS and 20% 

. PEG treatment resulted in retardation in growth of B. distachyon 

necrotic patches on the bases and sheaths of the old 

rst symptoms appeared on the leaves of the PEG 

leaf and root samples were collected from the plants for 

Root samples were also collected for MDC staining 

 
as affected by osmotic stress. Four-week old plants 

to normal MS and MS treated with 20% PEG until the first symptoms 

Control 



 93 

 

 
Fig. 4.2  A closer look to the stress symptoms on B. distachyon plants treated with 
PEG. Yellow/brown patches became apparent on the older leaves of B.distachyon 
plants after PEG treatment.  

 
 
 

4.2  Identification and isolation of B. distachyon Atg8 gene 
 
 
 

The amino acid sequences of A. thaliana ATG8a (GenBank acc. No.: 

NM118319), T. aestivum ATG8 (GenBank acc. No.: AB073171), O. sativa ATG8, and 

S. cerevisiae ATG8 were aligned using alignment tool of Vector NTI Advance 9 

(Invitrogen) and two well conserved regions were determined (Fig. 4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

Yellow/brown patches 

Control 20% PEG 
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Fig. 4.3  Sequence comparison of TaATG8, OsATG8, AtATG8a, and ScATG8 proteins. 
Conserved residues are boxed. 

  

Two primer pairs (named degBdATG8_F and degBdATG8_R); see Table 3.1) 

were designed based on these conserved regions and were used for PCR amplification. 

cDNAs reverse transcribed from B. distachyon total RNAs [leaf control-L(C), leaf 

stress-L(S), root control- R(C), root stress-R(S)] were used as templates. Size of the 

amplificon was ~250 bp (Fig. 4.4).  

 

                   

Fig. 4.4  PCR with BdAtg8 degenerate primers 

 

   1kb                                                         L (C)    L (S)     R (C)    R(S)  

250 bp 

1% agarose gel, 100V, ~40 min 

GQFVYVV  

EDGFLYM  
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The PCR products (~250bp) were excised, isolated from the gel, and cloned into 

the pGEM®–T Easy vector (Promega) and sequencing analysis was commercially 

provided by MCLAB (www.mclab.com, CA, USA) using M13F or M13R primers. 

Obtained sequence was then used as a query in Blast search of nucleotide sequence 

databases. The result of the Blastn is given in Fig. 4.5. 

 

 

Fig. 4.5 Blastn result of BdAtg8 EST as a query 

 

Translated sequence of BdAtg8 EST was aligned to B. distachyon protein 

sequence database to obtain coding sequence (CDS) of BdAtg8 gene. Sequence of 

BdAtg8 CDS is given in Appendix A. Sequence alignment of BdAtg8 CDS with 

Brachypodium genome sequence revealed that BdAtg8 consists of 5 exons and 4 introns 

(Fig. 4.6). Sequence comparison indicated that BdATG8 shows 97% homology with the 

T. aestivum ATG8, in terms of aminoacid identity. BdATG8 also has high homology to 

rice, Arabidopsis, and yeast ATG8s (90,8% O. Sativa, 82% A. thaliana, 71,7% S. 

cerevisiae) BdATG8 also contains highly conserved C-terminal glycine (Gly) residue 

(Fig. 4.7).  

 

 

 

 

 

FJ445008.1  Zea mays autophagy-related 8c variant 1 (Atg8c) mRNA, complete cds, 
alternatively spliced   e-value: 3e-20 similarity: 80% 
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Fig. 4.6  In silico structural analysis of BdAtg8. Colored and gray boxes represent 
coding and untranslated regions, respectively. Solid lines represent introns. 

 

 

 

Fig. 4.7  Sequence comparison of Brachypodium, bread wheat, rice, Arabidopsis, and 
yeast ATG8s. Conserved glycine (G) residue is boxed.  

 

 
These results demonstrated that autophagy associated gene Atg8 is conserved in B. 

distachyon. 
 
 
 

4.3  Expression pattern analysis 
 
 
 

4.3.1  RT-PCR analysis 

 
 

RT-PCR was performed in order to examine the expression pattern of BdAtg8 in 

control and 20 %PEG treated plants and in different tissues, including leaves of 

different ages [L1 (oldest), L2, L3, L4 (youngest)] and root. As shown in Fig. 4.8, 

BdAtg8 expression was detected in mature leaves, young leaves, and roots in both 

control and 20 PEG% treated plants, indicating that BdAtg8 is constitutively expressed 

in whole plant. However, it was found that BdAtg8 is abundantly expressed in the roots. 

ATG TAA 
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Additionally, expression of this gene was found to be higher in younger leaves in 

comparison to the older leaves in the presence of osmotic stress. 

 

  
 

                                                               BdAtg8                

 
 

            
                                                                            18S rRNA           1% agarose gel, 100V,~40 min 

Fig. 4.8  RT-PCR analysis of BdAtg8 in various tissues [L1 (oldest), L2, L3, L4 
(youngest), leaf and root] of control and osmotic stress (20% PEG) applied Bd21 
seedling. L stands for leaf and R stands for root. 18 rRNA was used as a loading 
control. 

 
 
 

4.3.2  Quantitative real-time PCR 
 
 

Quantitative real time PCR was performed in order to analyze tissue, age and 

treatment specific expression of Atg8 in B. distachyon. 18S rRNA was used as an 

internal reference for normalization of data. The quantification was performed based on 

our previous studies (Cebeci et al., 2008; Ergen and Budak, 2009). Q-RT PCR results 

were in good aggrement with RT-PCR data. BdAtg8 expression was detected in all 

tissues analyzed and under both control and osmotic stress conditions. These results 

revealed that BdAtg8 is constitutively expressed in whole plant. It was found that level 

1 
3 
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    L1      L2      L3      L4       L       R       L1      L2      L3      L4      L        R   

400bp 
300bp 
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of expression of BdAtg8 increases profoundly with osmotic stress treatment, especially 

in the roots. Additionally, expression of this gene was found to be slightly higher in 

younger leaves in comparison to the oldest leaves in the presence of osmotic stress. 

However fold increase in expression of BdAtg8 gene in younger leaves was lower in 

comparison to the BdAtg8 expression changes in roots after osmotic stress treatment. 

When the leaves of Bd21 seedlings were pooled and analyzed by Q-RT PCR, no fold 

change in BdAtg8 gene expression was detected (Fig. 4.9). 

 

 
Fig. 4.9  Fold change in expression level of BdAtg8 in various tissues of Bd21 seedlings 
anayzed by quantitative real-time PCR (18S rRNA was used as an internal reference). 
Q-Gene software was used for calculating mean normalized expression values and fold 
changes.  

 
 
 

4.4  Monitoring autophagy in B. distachyon roots  using the fluorescent dye, 
monodansylcadaverine 

 
 
 

MDC is a fluorescent dye extensively used in plant autophagy monitoring studies 

to observe autophagosomes.To observe autophagosomes in B. distachyon seedlings, 

roots of control and 20% PEG treated plants were stained with MDC. Roots (~10mm 

from the tip) were excised and observed using fluorescence microscopy. Weak staining 

of cell wall and plasma membrane was observed in control roots, in addition to small 

number of MDC stained spherical structures. MDC fluorescence signal was found to be 

higher in roots of plants treated with 20% PEG for four days and the number of MDC 

stained autophagosomes increased in the roots of these plants (Fig 4.10). MDC stained 
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autophagosomes were mainly located in vicinity of the root vascular system (Fig 4.11). 

Additionally, numerous moving MDC stained spherical structures were detected in the 

cytoplasm of the root cells of plants treated with PEG (Fig 4.12). These data indicate 

that autophagy can be induced by osmotic stress in B. distachyon roots.  

 

 

                                     Control                                                       20% PEG                          

 

 

 

 

 

 

 

Fig. 4.10  MDC staining of B. distachyon roots. 4-weeks old B. distachyon plants were 
transferred to control and 20% PEG applied MS medium and grown for 3-4 days, 
followed by staining with MDC.    

 
 
                                                                        20% PEG 

 

Fig. 4.11  MDC staining of roots of B. distachyon plants treated with 20% PEG. Arrows 
indicate MDC-stained autophagosomes localized next to vascular tissue. 
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                                                                     20% PEG 

 

Fig. 4.12  Motile autophagosomes observed in the roots of B. distachyon treated with 
20% PEG. Arrows indicate the direction of motility. 
 

 
 

4.5 Functional analysis of BdATG8 
 

 
4.5.1  Yeast complementation with BdAtg8  
 
 

To test if the BdATG8 protein is a functional homolog of yeast ATG8, yeast 

atg8∆ mutant was complemented with BdAtg8. Functional complementation of yeast 

atg8∆ mutant with BdAtg8 was performed by introducing pYES2 vector containing 

BdAtg8 gene into yeast atg8∆ mutant strain. To check whether pYES2 vector containing 

BdAtg8 could be successfully transformed to yeast atg8∆ mutant, colony PCR was 

carried out. The expected size of the PCR product was ~375 bp (Fig 4.13). 

 

 

 

Fig. 4.13  Colony PCR of yeast transformants with pYES2 vector containing 

BdAtg8 

500bp 
 
250 bp 

1% agarose gel, 100V, ~40 min 
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To induce starvation, and hence autophagy in yeast, yeast transformants were 

grown in the presence of nitrogen deficiency. Galactose was selected as the 

carbohydrate source, since the pYES2 vector has GAL1, galactose inducible promoter. 

pRS316 vector with yeast Atg8 gene was transformed to atg8∆ yeast mutant strain, as a 

positive control. URA was the auxotrophic marker in this experiment. Transformants 

were found to grow better than atg8∆ mutant under starvation conditions. Their overall 

growth performance was similar to yeast transformed with yeast Atg8, indicating that 

BdAtg8 functionally complements the yeast Atg8 gene (Fig. 4.14). 

 

 

 

 

 

 

 

 

 

 

 

                    YPD                                                           -N +URA 

Fig. 4.14 Functional complementation of yeast atg8∆ mutant with BdAtg8 gene. 
Transformants and yeast atg8∆ mutant were grown on standard rich growth medium 
(YPD) plates for control of equal loading and viability. 

 
 

Transformants and yeast atg8∆ mutant were grown on YPD and YPD with 20% 

PEG plates for detecting the effect of BdATG8 on growth of yeast in the presence of 

osmotic stress. However, YPD treated with 20% PEG could not mimic osmotic stress 

conditions, since growth performance of transformants and yeast atg8∆ mutant were 

similar on both YPD and YPD treated with 20% PEG plates (Fig. 4.15).  

        1:1            1:5            1:10         1:100      1:1000  

     1:1         1:5           1:10         1:100        1:1000  
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 atg8∆ 
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Fig. 4.15 Growth of transformants and yeast atg8∆ mutant under standard rich 
conditions (YPD) and YPD + 20% PEG.  
 
 
 
4.5.2 Follow up of maturation of yeast Aminopeptidase I (API)  
 
 

To further investigate complementation of yeast atg8∆ mutant with BdAtg8, 

maturation of API was examined. API is an enzyme synthesized in the cytosol as a 

precursor enzyme, prAPI (61kD). Maturation of this enzyme inside the vacuole into 

mAPI (50kD) depends on the presence of an active autophagy pathway in yeast. To test 

whether BdATG8 is a functional homolog of yeast ATG8, the CDS of BdAtg8 was 

cloned into pYES2 vector, which were transformed into a yeast atg8∆ mutant strain, 

and selected with uracil auxotrophic marker. Transformants were grown under nitrogen 

deficiency to induce autophagy. Next, total protein extracts of transformants and atg8∆ 

mutant were analyzed by western immunoblotting with polyclonal anti-API antibody. 

Maturation of prAPI, which depends on the presence of an active autophagy pathway 

in yeast, was found to be somewhat reduced in BdAtg8 transformants in comparison to 

the transformants with yeast Atg8. However, BdAtg8 gene could still functionally 

complement the yeast Atg8 gene. mAPI could not be detected in yeast atg8∆ mutant, as 

expected (Fig. 4.16).  
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4.5.3 Detection of BdATG8 recombinant protein expressed in fusion to 
GAL4 activation domain and HA epitope tag
anti-HA antibodies 
 
 

To further confirm whether BdATG8 

in yeast, CDS of BdAtg8 

recombinant vector was transformed into yeast 

TRAFO protocol (Gietz and Woods, 2002). Yeast cell lysates were analyzed by 

western blotting with monoclonal anti

vector that we constructed produced fusion protein containing GAL4 activa

(AD) (768-881), an HA epitope tag and BdATG8 protein. When GAL4 AD

BdATG8 fusion protein was expressed in yeast, a 

kDa + size of GAL4 AD/HA tag: ~14 kDa) and 

with monoclonal anti-HA antibody (Fig. 4.17
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investigation of the interaction partners of this pro

 

 

 

 

 

 

Fig. 4.16 Functional complementation of yeast 
monitoring API maturation. Maturation of API was detected only in yeast 
mutant transformed with yeast 
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GAL4 activation domain and HA epitope tag by immunoblot analysis with 
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recombinant vector was transformed into yeast atg8∆ mutant via LiAc/SS

TRAFO protocol (Gietz and Woods, 2002). Yeast cell lysates were analyzed by 

western blotting with monoclonal anti-HA antibody. pACT2-HA-BdAtg8

vector that we constructed produced fusion protein containing GAL4 activa

881), an HA epitope tag and BdATG8 protein. When GAL4 AD

BdATG8 fusion protein was expressed in yeast, a band ~27 kDa (size of BdATG8: ~13 

size of GAL4 AD/HA tag: ~14 kDa) and was recognized by immunoblotting 

HA antibody (Fig. 4.17). This result validated that BdATG

expressed in yeast. This fusion protein will be used as a prey for further 

investigation of the interaction partners of this protein in yeast two-hybrid study

Fig. 4.16 Functional complementation of yeast atg8∆ mutant with BdATG8, 
monitoring API maturation. Maturation of API was detected only in yeast 
mutant transformed with yeast Atg8 and BdAtg8.   

12% SDS-PAGE   100V, ~2h 
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Fig. 4.17  Expression of BdATG8 in yeast 
mutant  tranformed with recombinant expression vector pACT2
2). Yeast cell lysates were analyzed by western blotting with monoclonal anti
antibody. 
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Expression of BdATG8 in yeast atg8∆ mutant (Lane 1) and yeast 
mutant  tranformed with recombinant expression vector pACT2-HA-
2). Yeast cell lysates were analyzed by western blotting with monoclonal anti
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25kDa 
 
27 kDa 

mutant (Lane 1) and yeast atg8∆ 
-BdAtg8 (Lane 

2). Yeast cell lysates were analyzed by western blotting with monoclonal anti-HA 
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5  DISCUSSIO� 

 
 
 
 

A number of study in plants has demonstrated the importance of autophagy in 

responses of plants to abiotic stress conditions, including nutrient deficiency (Hanaoka 

et al. 2002; Surpin et al. 2003; Yoshimoto et al. 2004; Xiong et al. 2005; Fujiki et al. 

2007; Qin et al. 2007), oxidative stress (Xiong et al., 2007a, 2007b) and, most recently, 

the salt and osmotic stress (Liu et al., 2009). In this study, we identified an autophagy 

related gene, Atg8 in B. distachyon, and demonstrated a role for autophagy in response 

of Brachypodium to drought/osmotic stress. First, the mRNA level of BdAtg8 gene was 

found to be higher in roots of Brachypodium in the presence of osmotic stress, which 

revealed that roots are more active in autophagy under osmotic stress conditions. 

Similarly, expression level of BdAtg8 gene was higher in younger leaves of Bd21 

seedlings treated with osmotic stress in comparison to BdAtg8 expression in the same-

aged leaves of control seedlings (Fig. 4.9). Second, the number of MDC-stained 

autophagosomes increased with PEG treatment of the roots of B. distachyon plants, 

which showed the induction of autophagy in those plants during osmotic stress 

conditions (Fig. 4.10). These results suggest that autophagy is involved in responses of 

plants to osmotic stress. It has been demonstrated that salt and drought stress can induce 

autophagy in Arabidopsis plants (Liu et al., 2009). Our data support the expectations 

that autophagy is involved in survival of plants under environmental stress conditions, 

such as osmotic stress.  

 

Sequence alignment of BdAtg8 gene with genomic DNA sequence of 

Brachypodium revealed that CDS of BdAtg8 gene consists of 5 exons and 4 introns (The 

Brachypodium Genome Initiative, 2010). Sequence comparison with orthologous genes 

in bread wheat, rice, Arabidopsis and yeast demonstrated that BdATG8 has 97% 

homology with the T. aestivum ATG8, based on aminoacid sequences. BdATG8 

showed high homology to rice, Arabidopsis, and yeast ATG8s (90,8% O. Sativa, 82% 
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A. thaliana, 71,7% S. cerevisiae). BdATG8 also contains highly conserved C-terminal 

Gly residue. All these data indicated that BdAtg8 gene is highly conserved in 

Brachypodium. Presence of highly conserved Gly residue at the C-terminal of BdATG8 

suggests that this protein is posttranslationally modified as in yeast and other plants 

such as Arabidopsis (Hanaoka et al., 2002) and rice (Wei et al., 2006). 

 

Sequence alignment of BdAtg8 to Brachypodium genome sequence revealed that 

BdAtg8 is located on chromosome 1 of Bd21 genome and its gene label is 

Bradi1g26400 (The International Brachypodium Initiative, 2010). It has been annotated 

as a “beta-tubulin binding, microtubule binding protein”. Previously, it has been shown 

that Arabidopsis ATG8 might be involved in linking the autophagy pathway to the 

microtubule network and relocation of autophagosomes to the vacuole (Ketelaar et al., 

2004). Under the light of these facts, it is an interesting finding that BdATG8 protein 

has a microtubule binding character. Further studies are required to reveal the role that 

microtubule binding character plays in plant autophagy process.  

 

MDC staining of a number of autophagosomes in roots of Brachypodium plants 

growing under normal conditions has revealed that there is constitutive autophagy in 

Brachypodium. Previously, it has been demonstrated that autophagy is constitutively 

present in Arabidopsis plants under normal growth conditions (Slavikova et al., 2005; 

Inoue et al., 2006). Our results contributed to the view that autophagy is a process 

exploited by plants to sustain their survival under normal growth conditions. 

 

 Autophagosomes were found to be mainly located in vicinity of the root vascular 

system (Fig 4.13). Similarly, a recent study has demonstrated that Atg10b gene in rice is 

also strongly expressed in the phloem tissue of old leaves (Shin et al., 2009). 

Mobilization of sugars, aminoacids, hormones, mRNAs, and proteins inside the phloem 

is essential for cell survival in plants. This re-mobilization of organic molecules through 

sieve tube elements becomes more crucial for sustainment of plant survival under stress 

conditions, including osmotic/drought stress. It has also been reported that disturbance 

in autophagy pathway might result in induction of PCD in plants (Phillips et al., 2008). 

Under the light of these data, active autophagy around the vascular tissue might be 

playing a role in delay of PCD, and hence could sustain the effective mobilization of 

degraded organic molecules inside the plant body. 
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We further investigated whether BdAtg8 gene is a functional homolog of yeast 

Atg8 gene. Yeast atg8∆ mutant was complemented with BdAtg8 gene, therefore it is 

likely that Brachypodium Atg8 gene performs a similar function to that of its yeast 

ortholog in Brachypodium autophagy pathway.  

 

Maturation of API inside the vacuole only takes place when there is an active 

autophagy pathway (Ketelaar et al., 2004). In order to find further evidence for 

functionality of BdAtg8 gene in yeast, maturation of API protein has been assayed. We 

demonstrated that yeast Atg8 gene fully complemented yeast atg8∆ mutant under 

starvation conditions, since mature API was detected using western blotting with anti-

API antibody. BdAtg8 gene also complemented yeast atg8∆ mutant, however, in this 

case, to a lesser extent, which implied that BdAtg8 is functional in yeast autophagy 

pathway. Based on these data, it is highly likely that BdAtg8 gene is involved in 

autophagy in Brachypodium via a molecular mechanism quite similar to that of yeast.   

 

GFP-Atg8 is offered as a useful marker to monitor autophagy in plants 

(Yoshimoto et al., 2004). Exploitation of this technique seems to be useful for 

visualization of autophagic bodies in live plant cells. GFP-labelled ATG8s could also 

help following up of autophagosome formation and, additionally, may enable 

purification of these structures for further analysis of their cargo (Thompson et al., 

2005).  

 

We also expressed BdATG8 as a fusion protein in yeast and detected its 

expression by western immunoblotting with anti-HA antibody. This result also 

supported the assumption that BdATG8 could function in yeast. Additionally, BdATG8 

protein expressed in fusion to GAL4 AD could be used as a prey protein for further 

investigation of the interacting partners of this protein in yeast two-hybrid study. These 

studies will allow researchers to identify proteins playing roles in Brachypodium 

autophagy pathway and, hence reveal the details of autophagy mechanism in plant 

systems.  

 

  

  



 108 

 
 
 
 
 
 

6  CO�CLUSIO� 

 
 
 
 

Autophagy is a bulk degradation process for breakdown of cytoplasmic 

components in either lytic vacuoles or lysosomes. Although, autophagy has been found 

to be constitutively active in plants, it is also induced by a variety of abiotic stress 

conditions, including nutrient deficiency, oxidative stress, salinity, and osmotic stress. 

However, there is not any study investigating the role of autophagy in molecular 

responses of economically important cereals to osmotic stress. As a model 

representative of temperate cereals, like wheat, barley, and rye, Brachypodium, opens 

up a new venue for understanding involvement of autophagy process in responses to 

osmotic/drought stress factors.  

 

This study, to our knowledge, is the first to identify an autophagy related gene, 

Atg8, from Brachypodium. Our data also suggest a role for autophagy in the responses 

of Brachypodium plants to osmotic/drought stress. Expression profile analyses 

conducted in various tissues and MDC staining results demonstrate that autophagy is 

active in plants exposed to osmotic stress conditions. MDC staining data also indicate 

that autophagy is a constitutively active process in Brachypodium. Functional studies 

carried out in yeast atg8∆ mutant show that BdAtg8 gene complements yeast atg8∆ 

mutant, which is a strong evidence for functionality of BdATG8 protein in yeast and 

Brachypodium. Presence of a highly conserved Gly residue at the C-terminal of 

BdATG8 protein suggests that BdATG8 is posttranslationally processed and active in 

Brachypodium autophagy with a molecular function as in yeast.  

 

Future investigation of BdATG8 protein might pave the way to better 

understanding of autophagy in Brachypodium at both molecular and physiological 

levels. Identification of novel autophagy related genes in Brachypodium should also 

provide insight into the mechanism of autophagy in plants. Research in Brachypodium 
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autophagy might contribute essential data to ongoing molecular studies in cereals in the 

pursuit of understanding molecular responses to osmotic/drought stress.  
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APPE�DIX A 

 

Full CDS of BdAtg8 gene 

 

5’ 
ATGGCCAAGACTTCGTTCAAGCTCGAGCACCCCATGGAGAGGAGGCAGGCT
GAATCTGCTAGGATCCGAGAGAAGTACCCAGACAGAATTCCTGTGATCGTT
GAGAAGGCGGATAAGTCTGATGTTCCAGAGATTGACAAGAAGAAGTATCTT
GTACCAGCCGACCTAACTGTTGGTCAGTTTGTCTACGTGGTGCGGAAGAGG
ATTAAGCTGAGCCCAGAAAAGGCCATCTTTGTGTTTGTGAACAGCACCTTGC
CACCAACTGCATCTTTGATGTCTGCGATCTATGAAGAGAACAAGGATGAAG
ACGGCTTTCTTTACATGACTTACAGTGGCGAGAACACATTTGGCTTGTTGGC
CTAA 
         3’ 
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APPE�DIX B 

 

Map of pYES2 
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APPE�DIX C 

 

Map of pACT2 
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APPE�DIX D 

 

Autoclave:                      Hirayama, Hiclave HV-110, JAPAN 

 

                                        Nüve, OT 032, TURKEY 

 

Balance:                          Sartorius, BP 221 S, GERMANY  

     

                                        Schimadzu, Libror EB-3200 HU, JAPAN 

 

Centrifuge:                      Beckman Coultier ™ Microfuge® 18 Centrifuge, USA 

 

                                        Eppendorf, 5415D, GERMANY 

                                                    

                                        Eppendorf, 5415R, GERMANY 

 

Cassette:                          Kodak Biomax MS casette, USA 

 

Deep-freeze:                   -80ºC, Thermo Electron Corporation, USA                        

 

                                        -20ºC, Bosch, TURKEY 

 

Deionized water:             Millipore, MilliQ Academic, FRANCE 

 

Electrophoresis:    Biogen Inc., USA 

 

                                         Biorad Inc., USA 

 

                                         SCIE-PLAS, TURKEY 

 

Fluorescence microscope OLYMPUS, BX-60, JAPAN 

 

Gel documentatiton:         UVITEC, UVIdoc Gel Documentation System,UK 
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                                          BIO-RAD, UV-Transilluminator 2000, USA 

 

Heating block:                  Bioblock Scientific, FRANCE 

                                             

                                          Bio TDB-100 Dry Block Heating Thermostat, HVD Life 

                                            

                                          Sciences, AUSTRIA 

 

Ice machine:                      Scotsman Inc., AF20, USA 

 

Incubator:                 Memmert, Modell 300, GERMANY 

 

                                          Memmert, Modell 600, GERMANY 

 

                                          Nüve EN 120, TURKEY 

 

Laminar flow:                   Kendro Lab. Prod., Heraeus, Herasafe HS12, GERMANY 

 

Magnetic stirrer:               VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

 

                                         VELP Scientifica, Microstirrer, ITALY 

 

Micropipette:                     Gilson, Pipetman, FRANCE 

 

                                           Eppendorf, GERMANY 

 

Microwave Oven:              Bosch, TURKEY 

 

pH meter:                           WTW, pH540 GLP Multical®, GERMANY 

 

                                            HANNA, pH213 microprocessor pH meter, GERMANY 

 

Power Supply:                    Wealtec, Elite 300, USA 
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                                            Biogen, AELEX, USA 

 

Real-Time detection system: BIO-RAD, iCyclerĐQ™ Multicolor Real-Time Detection  

                                               System, USA 

 

Refrigerator:                       +4º, Bosch, TURKEY 

 

Shaker:                               Excella E24 Shaker Series, New Brunswick Sci., USA 

 

                                            GFL, Shaker 3011, USA 

 

                                            Innova™ 4330, New Brunswick Sci., USA   

 

Spectrophotometer:             BIO-RAD, SmartSpec™ 3000, USA 

 

                                            VARIAN, Cary 300 Bio Uvi-visible spec., AUSTRALIA 

 

Speed vacuum:                   Savant, Refrigerated Vapor Trap RVT 400, USA 

 

Thermocycler:                     PE Applied biosystems, GeneAmp PCR System 9700,  

                                            USA 

                    

                                             MJ Research, PTC-100, USA 

 

                                             TECHNE, TC 512, UK 

 

Water bath:                          TECHNE, Refrigerated Bath RB-5A, UK 

 

                                             JULABO, TW 20, USA 

 

 


