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Özgür Kıbrıs ..............................

DATE OF APPROVAL: 20.07.2012



c© Aysu Okbay 2012

All Rights Reserved



Acknowledgements

I would like to start by thanking my thesis supervisor, Prof. Mehmet Barlo, for

walking me through the whole thesis process without letting me get lost. I would

not have been able to produce a work that I am this proud of without his invaluable

guidance. I would also like to express my gratitude to him for making the process

fun, and never losing, or letting me lose motivation.
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Abstract

In Rubinstein’s (1982) 2–player discounted alternating offers bargaining game,
the subgame perfect equilibrium outcome is unique and equivalent to the Nash bar-
gaining solution. However, when there are more than 2 players, every feasible parti-
tion can be sustained in subgame perfect equilibrium with a sufficiently high discount
factor (Shaked 1986). We prove that when the restriction to one–memory strategies
is employed in the multiplayer version of the game, the subgame perfect equilibrium
is unique and equivalent to the multiplayer generalization of Rubinstein’s. This also
implies that the unique subgame perfect equilibrium outcome corresponds to the
Nash solution in the multiplayer cooperative game.
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Özet

Rubinstein, 1982 tarihli makalesinde, 2–oyunculu iskonto edilmiş sıralı–teklif
pazarlık oyununda, sadece tek bir alt-oyun-yetkin denge olduğunu, ve bu dengede
elde edilen dağılımın, iskonto değeri 1’e yaklaştığında, Nash pazarlık çözümüne
denk olduğunu kanıtlamaktadır. Fakat, oyuncu sayısının 2’den fazla olduğu du-
rumlarda, yeteri kadar yüksek bir iskonto faktörü ile mümkün olan her dağılım, bir
alt-oyun-yetkin denge sonucu olarak elde edilebilmektedir (Shaked 1986). Biz, bu
çalışmada, bahsi geçen oyunun çok-kişili versiyonunda izin verilen stratejilere bir–
hafıza kısıtlaması getirmekte, ve bu kısıt altında alt-oyun-yetkin dengenin tek, ve
Rubinstein’ın 2–kişili oyunda elde ettiği dengenin çok-kişi versiyonları için yapılan
genellemesine eşit olduğunu ispatlamaktayız. Nitekim bu, aynı zamanda tek denge
dağılımının ilgili çok-kişili işbirlikçi oyundaki Nash çözümüne de yüksek iskonto
değerlerinde denk olduğu anlamına gelmektedir.
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1 Introduction

A bargaining situation is described as the interaction between two or more players

trying to reach an agreement among multiple alternatives, in which all of them would

be at least as well off as the case of no agreement. Many interactions that economists

are interested in, like negotiations between labor unions and employers, or actually

almost any kind of trade between parties, can be modeled in this framework. This

is why bargaining has continued to draw the attention of researchers over the years.

It was John Nash, who introduced game theorists to the subject with his pi-

noeering paper “The Bargaining Problem” (Nash 1950), followed by “Two-player

cooperative games” (Nash 1953). The significance of John Nash’s contribution is

that he laid the groundwork for two different approaches to analyzing bargaining

situations, which complement each other.

In the article titled “The Bargaining Problem”, Nash proposes an axiomatic

approach to bargaining, which focuses on the “cooperative game”. To be more

precise, he lists some axioms that seem natural for a solution to have, without

specifying any details about the bargaining procedure. Then, taking as given only the

set of all possible payoff profiles that can be obtained as the outcome of a bargaining

situation, he finds out that the payoff profile satisfying all of these axioms is unique,

which came to be known as the Nash bargaining solution.

In his latter paper, “Two-player cooperative games”, Nash describes a non-

cooperative bargaining game (known as Nash’s simultaneous-move demand game)

specifying all the details of the bargaining process, and analyzes the equilibrium

outcome, which turns out to be the same outcome as the cooperative solution. His

intuition is that non–cooperative games are more basic and analyzing cooperative
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games by solving for the equilibria of a corresponding non–cooperative game might

provide a worthy insight:

We give two independent derivations of our solution of the two–person
cooperative game. In the first, the cooperative game is reduced to a
non-cooperative game. To do this, one makes the players’ steps in ne-
gotiations in the cooperative game become moves in the non-cooperative
model. Of course, one cannot represent all possible bargaining devices
as moves in the non-cooperative game. The negotiation process must
be formalized and restricted, but in such a way that each participant is
still able to utilize all the essential strength of his position. The sec-
ond approach is by the axiomatic method. One states as axioms several
properties that would seem natural for the solution to have, and then
one discovers that the axioms actually determine the solution uniquely.
The two approaches to the problem, via the negotiation model or via the
axioms, are complementary. Each helps to justify and clarify the other.
(Nash (1953, p.128))

This attempt to bridge the gap between the two approaches was later called the

Nash program. The unification of the two approaches provides justification for both,

which they separately lack. As Sutton (1986) argues, the non–cooperative approach

has the problem that the rules of a non–cooperative bargaining game might differ

so extensively from case to case, that in order to obtain any useful insight into the

theory, some principles that hold over a wide range of possible bargaining processes

need to be prescribed. The axiomatic approach is helpful in this respect. However,

“prescribing” such principles, or axioms, normatively is also problematic in turn. In

order to establish the reasonableness of these axioms, one must examine whether or

not they hold in some plausible bargaining processes, and this is done by formulating

some non–cooperative bargaining games and examining their equilibria.

As Serrano (2005) suggests, the basic motivation behind the Nash program is that

the relevance of a concept is enhanced if one arrives at it from different approaches.

Thus, in the Nash program, the most significant research agenda is to find non–

cooperative bargaining games that yield the same, unique equilibrium outcome as

the cooperative Nash bargaining solution. In this regard, one of the most important

contributions was made by Rubinstein (1982), which examines a 2–player discounted

alternating offers bargaining game that uniquely sustains the Nash bargaining solu-
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tion in subgame perfection. What makes Rubinstein’s result significant is that unlike

Nash’s simultaneous-move demand game which relies on uncertainty in obtaining

the uniqueness of Nash equilibrium, Rubinstein’s uniqueness result comes from the

use of credible threats, together with the assumption of impatience (Serrano 2005).

However, later Shaked (1986) proves that these two key features, the use of sub-

game perfection and discounting, do not suffice to obtain a unique equilibrium in

the 3–player version of the same game (restated in Osborne and Rubinstein (1990)).

In fact, he shows that every feasible outcome can be obtained in subgame perfect

equilibrium when there are more than 2 players.

This striking result of Shaked displays that the game theoretic prediction power

of the n ≥ 3 player generalization of Rubinstein’s game, collapses. Moreover, there is

no link between the non–cooperative and cooperative solutions in the n ≥ 3 version

of the game. The multiplicity of equilibria was tried to be eliminated using various

extensions to the game. In Jun (1987), Chae and Yang (1988) and Fershtman and

Seidmann (1993) players are restricted by the offers that they have accepted or

rejected before. In Chae and Yang (1994), Krishna and Serrano (1996) and Suh

and Wen (2006) the bargaining procedure encompasses bilateral negotiations. Yang

(1992) modifies the game to make the offers include only the share of the last player

in the responding order. In Merlo and Wilson (1995), the identity of the proposer

is determined by a stochastic process. Chatterjee and Samuelson (1990) and Stahl

(1990) consider simultaneous offers in the bargaining game, whereas Perry and Reny

(1993) and Sakovics (1993) assume there might be lags before players recognize

and respond to offers. In Baron and Ferejohn (1989), agreement does not require

unanimous consent. Haller and Holden (1990) imposes costs on rejecting an offer.

Binmore, Shaked, and Sutton (1989) and Huang (2002) allow for outside options.

Asheim (1992) employs the notion of “acceptable paths”, where a path is acceptable

if and only if a player cannot profit by rejecting an offer an proposing another one

herself. Baliga and Serrano (2001) and Vannetelbosch (1999) allow players to exit

with partial agreements and the latter analyzes the equilibria using the refinement

of trembling-hand rationalizability.
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One method aiming to eliminate the multiplicity of equilibria in the multiplayer

alternating offers bargaining game concerns the use of bounded rationality. This

method is based on the idea that players prefer to use less “complex” strategies

since learning and implementing them is easier. Different definitions of “complex-

ity” have been used in this regard. The most basic, but just as debated, way of using

“non–complex” strategies is imposing stationarity. When players’ strategies are in-

dependent of the past, Herrero (1985) shows that the subgame perfect equilibrium is

unique, and corresponds to the cooperative solution in the multiplayer cooperative

game. However, using stationary strategies in order to formulate bounded rationality

is disputed due to its extremity. We will elaborate more on this subject in Chapter

4.

Another, less extreme, formulation is based on the number of states of an automa-

ton representing a strategy. We refer the reader to Aumann (1981) for a detailed

discussion about the use of strategies described by finite–state automata in the anal-

ysis of bounded rationality. This particular “counting states” measure, on the other

hand, does not provide a remedy. This is because, the strategy Shaked uses to prove

that every feasible allocation can be obtained in subgame perfect equilibrium is a

finite–state automaton (see Theorem 3 of the current thesis). It only uses n + 1

number of states, where n denotes the number of players. That is, this method does

not solve the multiplicity of equilibria. Hence, Chatterjee and Sabourian (2000) uses

a different formulation of complexity, which they define as: “...if two strategies are

otherwise identical except that in some instances the first strategy uses more infor-

mation than that available in the current “stage” of bargaining and the second uses

only the information available in the current “stage”, then the first strategy is more

complex than the second.”(Chatterjee and Sabourian (2000, p.1493)). However, al-

though shrinking the set of Nash equilibria to some extent, they do not obtain a

unique equilibrium either1.

In this study, we use an alternative and widely accepted notion of bounded ra-

1Because that complexity is associated with some costs, they are obliged to employ modified
notions of subgame perfection as in Rubinstein (1986) and Abreu and Rubinstein (1988).
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tionality in the n–player discounted alternating offers bargaining game. Specifically,

each player is restricted to use “one–memory” strategies. That is, players can base

their actions only on yesterday’s history, and cannot recall the history prior to that.

Employing the restriction to one–memory strategies, we establish that the subgame

perfect equilibrium outcome is unique and equivalent to the multiplayer general-

ization of Rubinstein’s. This also implies that the unique subgame perfect equilib-

rium outcome corresponds to the Nash solution in the multiplayer cooperative game.

Therefore, the main finding of this thesis constitutes a significant contribution to the

Nash program.

It is important to note that, the notion of one–memory does not imply or is

not implied by any of the other complexity formulations mentioned above. In fact,

we show that the strategy used in Shaked’s Theorem (presented as Theorem 3 in

the current thesis which establishes the multiplicity of subgame perfect equilibria)

is not one–memory, although being associated with a finite–state automaton. More-

over, Chatterjee and Sabourian (2000) is about complexity costs and not restricting

history–dependence.

An interesting observation is that in the proof of our main result, we establish that

one–memory subgame perfect equilibrium strategies have to be stationary. Indeed,

the rest of our proof follows Herrero (1985, Proposition 4.2, p.90), which is restated

(and proven for purposes of completeness) as Theorem 4 in the current thesis.

In the next chapter, we introduce our model and make the necessary definitions.

In Chapter 3, we provide an overview of the axiomatic approach to bargaining and

elaborate on some important theorems in non–cooperative bargaining that are rele-

vant to our main result, specifically those of Rubinstein’s and Shaked’s. In Chapter

4, we present our main result, in addition to some auxiliary results.
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2 The Model

The set of players is given by N = {1, . . . , n} and they are bargaining on the partition

of a pie of size one. Only if they unanimously agree upon a partition will they get

their respective shares. Otherwise, each will get none. The bargaining process is as

follows: The game starts in period 0 with an offer

x =
(
x(i)
)
i∈N ∈ X

by player 1, where

X ≡
{
y ∈ [0, 1]n : y(1) + . . .+ y(n) ≤ 1

}
⊂ Rn

+

is the set of all offers. Then all other players respond one by one in the order

2, 3, . . . , n, by either accepting (Y ) or rejecting (N) the offer. If all of them choose

Y , the game ends and everybody gets her agreed share. If any of the players choose

N , the game goes on to the next period, where the same process starts again with

an offer by player 2 and responds by other players in the order 3, 4, . . . , n, 1. This

goes on until there is agreement on an offer.

The set of all histories is denoted by H. The empty history is included in the

set of all histories, i.e. ∅ ∈ H. A one–period history is defined as a history end-

ing in the same period at the beginning of which it started. The set of all one-

period histories is denoted by H1 ≡ {{(x), (x,R)} : R = (r1, . . . , rm) where rk ∈

{Y,N} for k = 1, . . . ,m and m ≤ n− 1}. Similarly, we define H1
1 ≡ {{(x), (x,R)} :

R = (r1, . . . , rm) where rk ∈ {Y,N} for k = 1, . . . ,m and m ≤ n − 2}, and H1
2 ≡
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{{(x,R)} : R = (r1, . . . , rn−1) where rk ∈ {Y,N} for k = 1, . . . , n − 1 and rk′ =

N for at least

one k′ = 1, . . . , n− 1}, and finally H1
3 ≡ {{(x,R)} : R = (r1, . . . , rn−1) where

rk = Y for all k = 1, . . . , n − 1}. In words, H1
1 is the set of all one-period histo-

ries after which one or more players are yet to play for that period to end. H1
2

is the set of all one-period histories after which the period ends, and the next one

starts. H1
3 is the set of all terminal 1–period histories. A t–period history is denoted

by ht = (h0, h1, ..., ht−1), where hs denotes the one-period history covering period

s with hs ∈ H1
2 for all s ∈ {0, 1, . . . , t − 2} and ht−1 ∈ H1. H t is the set of all

t-period histories. Following the above, we let H t
1 ≡ {ht ∈ H t : ht−1 ∈ H1

1}, and

H t
2 ≡ {ht ∈ H t : ht−1 ∈ H1

2}, and finally H t
3 ≡ {ht ∈ H t : ht−1 ∈ H1

3}. The set of all

terminal histories is denoted by Z =
⋃∞
t=1H

t
3.

The concatenation of two histories ht = (h0, . . . , ht−1) ∈ H t
2 and hs = (h′0, . . . , h

′
s−1) ∈

Hs is the operation defined as ht ◦ hs = (h0, . . . , ht−1, h
′
0, . . . ,

h′s−1) ∈ H t+s.

The 1–tail of a history ht is the history starting from and including the last

complete one–period history in ht. Formally, the 1–tail of ht = (h0, h1, ..., ht−1) is

defined as

T 1(ht) =

 ht−2 ◦ ht−1 if ht ∈ H t
1

ht−1 if ht ∈ H t
2 ∪H t

3.

In this setting, a strategy for player i is a function fi mapping any non–terminal

history in which she decides (denoted by H(i)) into the actions allowed for her at

that particular history. The set of all strategies of player i is denoted by Fi. As

usual, F = ×i∈NFi and F−i = ×j 6=iFj. It should be emphasized that f
(i)
j (ht) denotes

the share of player i in the partition offered by player j in history ht, i, j ∈ N and

ht ∈ H t
2 and t ∈ N where (t mod n) + 1 = i. A strategy fi is one–memory if for

all (ht, hs) with t, s ∈ N where (t mod n) = (s mod n) satisfying T 1(ht) = T 1(hs)

we have fi(h
t) = fi(h

s). The set of one–memory strategy profiles is denoted by

F 1 = ×i∈NF 1
i . Hence, a one–memory strategy assigns the same actions to two

histories that are different but have the same 1–tail. Notice that the two histories

7



need not be of same length, i.e. the one–memory restriction does not allow time–

dependence.

Given a strategy fi ∈ Fi and a history h ∈ H we denote the strategy induced by fi

at h by fi|h. Thus, (fi|h)(h̄) = fi(h◦ h̄) for every (h◦ h̄) ∈ H(i). Let f |h = (fi|h)i∈N

and F |h be the set of all such strategy profiles. A strategy profile f induces two

types of terminal histories, the first where players agree upon some partition in a

finite time period, and the second where this does not hold. Players use a common

discount factor δ ∈ (0, 1). In the first type of terminal histories that involve an

allocation x =
(
x(i)
)
i∈N ∈ X agreed upon in period t, the utility of player i, i ∈ N ,

is a function Ui : F → R where Ui(f) is given by ui : X × N → [0, 1] which is

defined by ui(x, t) = δtx(i). In case of no agreement –the second type of terminal

histories– player i gets a utility Ui(f) given by limt→∞ ui(x, t) = limt→∞ δ
tx(i) = 0.

A strategy vector f ∈ F is a Nash equilibrium if Ui(f) ≥ Ui(f̂i, f−i) for all i ∈ N and

f̂i ∈ Fi. Also, f ∈ F is a subgame perfect equilibrium (SPE) if f |h ∈ F |h is a Nash

equilibrium for all h ∈ H. The set of all subgame perfect equilibrium strategy profiles

is denoted by E and those with one-memory by E1, i.e. E1 = E ∩ F 1. It should

be pointed out that, in the current study, the definition of one–memory subgame

perfect equilibrium does not involve only deviations that are one–memory. In fact,

there are no limitations on the magnitude of memory of a strategy that constitutes

a deviation from a one–memory strategy.
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3 The Bargaining Problem

In this chapter, first we will discuss Nash’s cooperative game theoretic solution to

convex bargaining problems employing an axiomatic approach. Then, the well–

known result due to Rubinstein (1982), establishing the uniqueness of subgame per-

fect equilibrium in two player alternating offers bargaining games (with discounting)

will be presented. Moreover, it should be emphasized that the subgame perfect equi-

librium outcome of two player alternating offers bargaining games (with discounting)

converges to the unique Nash solution of the underlying bargaining problem with suf-

ficiently patient players (i.e. when the common discount factor tends to 1).

In general, following Serrano (2005), the Nash program “is an attempt to bridge

the gap between the two counterparts of game theory (cooperative and non-cooperative)”.

In fact, obtaining the Nash bargaining solution in a plausible non-cooperative game

theoretic formulation as the unique (non-cooperative game theoretic) equilibrium

constitutes a noteworthy contribution to the Nash program. Therefore, Rubinstein’s

result is, indeed, a corner stone in the Nash program.

However, when Rubinstein’s setting is generalized to more than two players,

the above discussed and well celebrated result no longer holds. In fact, Shaked

(1986) shows that in the multiplayer bargaining game, also known as the Shaked’s

game, every feasible allocation can be sustained in subgame perfect equilibrium. To

make things worse, this striking result weakening game theoretic prediction power,

is obtained using finite automata strategies, which are the standard modeling tool

to capture bounded rationality. That is, the result in the Nash program with more

than two players is not established even when attention is restricted to the use of

non–complex (finite automata) strategies.
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3.1 Nash’s Barganing Solution

According to the framework established by Nash (1950), a bargaining situation con-

sists of the set of players N = {1, 2}, the set of possible agreements A, the disagree-

ment outcome D, and a preference relation �i for each player i ∈ N on lotteries over

the set of possible agreements and the disagreement outcome, i.e. over A ∪D.

Let the set of lotteries over A∪D be denoted by L = {` ∈ [0, 1]|A∪D| :
∑|A∪D|

i=1 `i =

1}. Players’ preference relations satisfy von Neumann and Morgenstern assumptions.

Thus, the preference relation for each player i can be represented by a utility function

vi : L → R, where a lottery is preferred by player i to another if and only if the

expected utility of that lottery is greater than the expected utility of the other lottery

according to vi.

Let S = {s ∈ R2 : ∃` ∈ L with (v1(`), v2(`)) = (s1, s2)} denote the set of all

possible utility pairs and let d = (v1(D), v2(D)). Nash defines a bargaining problem

as the pair 〈S, d〉, where S ⊂ R2 is compact and convex, d ∈ S, and there exists

s ∈ S with si > di for i = 1, 2. Letting B denote the set of all bargaining problems,

a bargaining solution is defined as a function f : B → R2, assigning a unique element

of S to each bargaining problem 〈S, d〉. 1

The bargaining problem 〈S, d〉 does not specify any details as to the nature of the

bargaining process. Instead of dealing with the details of a given bargaining process,

Nash employs an axiomatic approach. That is, he specifies four properties that he

expects a natural solution to have, and defines the subset of S satisfying all four of

these properties as the solution of the bargaining problem 〈S, d〉. We state these four

axioms below (Osborne and Rubinstein 1990):

1. Invariance to equivalent utility representations : Suppose that 〈S ′, d′〉 is ob-

tained from 〈S, d〉 using the transformation s′i 7→ αisi + βi for some αi, βi ∈ R,

αi > 0, for i = 1, 2, i.e. S ′ = {(α1s1 + β1, α2s2 + β2) : (s1, s2) ∈ S}, and

d′ = (α1d1 + β1, α2d2 + β2). Then fi(S
′, d′) = αifi(S, d) + βi, for i = 1, 2.

1Note that, f here is not the same as the f we used to denote strategies in our model, in
Chapter 2. Here, for the sake of convention, f denotes the bargaining solution. However, outside
this section, f will continue to stand for strategies.
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2. Symmetry : If the bargaining problem is symmetric, i.e. d1 = d2 and (s1, s2) ∈ S

if and only if (s2, s1) ∈ S, then f1(S, d) = f2(S, d).

3. Independence of irrelevant alternatives : If 〈S, d〉 and 〈T, d〉 are bargaining prob-

lems with S ⊂ T and f(T, d) ∈ S, then f(S, d) = f(T, d).

4. Pareto efficiency : Suppose 〈S, d〉 is a bargaining problem and s, t ∈ S are such

that ti > si for i = 1, 2. Then f(S, d) 6= s.

In his seminal paper (Nash 1950), Nash establishes that the bargaining solution

satisfying all four of these axioms is unique. We next present, without proof, this

very well–known result:

Theorem 1 (Nash (1950)) There is a unique bargaining solution fN : B → R2

satisfying the axioms 1-4, which is given by

fN(S, d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)(s2 − d2). (3.1)

It should be emphasized that when the Axioms 1 – 4 are generalized to the case

of n–players, the bargaining solution satisfying all four axioms remains to be unique.

In fact, it is the n–player generalization of 3.1:

arg max
d≤s∈S

n∏
i=1

(si − di). (3.2)

Moreover, it is important to note that, 3.2 gives the solution as equal division

due to Axiom 2 when the bargaining problem is symmetric, which is the case with

the underlying bargaining problem in our model.

3.2 Rubinstein’s Result

We now turn our attention back to non-cooperative bargaining games, which are

the focus of this thesis, as described in our model. In this section, we present the

well-known result of Rubinstein (1982) and its proof, establishing the uniqueness of
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subgame perfect equilibrium in the 2–player discounted alternating offers bargaining

game:

Theorem 2 (Rubinstein (1982)) The bargaining game with two players has a

unique subgame perfect equilibrium f ∗, where (regardless of the history) player 1

proposes a sharing scheme given by x∗ =
(

1
1+δ

, δ
1+δ

)
whenever it is her turn to pro-

pose, and player 2 proposes y∗ =
(

δ
1+δ

, 1
1+δ

)
. Each player accepts an offer if and only

if it delivers a share not less than δ
1+δ

.

Proof. First, we need to show that the strategy profile denoted by f ∗ and

specified in the statement of the Theorem, constitutes a subgame perfect equilibrium.

Consider a subgame starting with an offer by player 1. If player 1 proposes

x 6= x∗, then either x(2) > δ
1+δ

, and x gets accepted, where player 1 will receive

x(1) < 1
1+δ

, or x(2) < δ
1+δ

, which will result in the rejection of x and acceptance of

y∗ the next period, providing player 1 with δ
1+δ

with one period of delay. Thus, the

highest utility player 1 can get, by deviating from x∗ is less than x∗(1). Now suppose

player 2 deviates from choosing Y in the subgame starting after the offer x∗ by player

1. After rejecting x∗, player 2 will propose y∗, and it will be accepted. Player 2 will

get 1
1+δ

with one period of delay, which gives her a utility equal to getting x∗(2) with

no delay. Hence, no player has a profitable deviation. Clearly, the same arguments

apply to the subgames starting with an offer by player 2, or a response by player 1,

establishing that f ∗ is a subgame perfect equilibrium.

Now, we need to show that f ∗ is the unique subgame perfect equilibrium. Let

Gi denote a subgame starting with an offer by player i. Since it is shown above that

the set of subgame perfect equilibria is not empty, we can define:

Mi ≡ sup{δtx(i) : there is an SPE of Gi with outcome (x, t)}

mi ≡ inf{δtx(i) : there is an SPE of Gi with outcome (x, t)}.

In the following steps, we will establish that the present utility that player 1 gets

from every SPE outcome of G1 is x∗(1), and the present utility that player 2 gets

12



from every SPE outcome of G2 is y∗(2), i.e.

M1 = m1 = x∗(1) and M2 = m2 = y∗(2). (3.3)

Step 1 m2 ≥ 1− δM1.

Proof. Suppose player 2 proposes y with y(1) > δM1. Player 1 will get at most

M1 with one period of delay if she rejects, so she will accept any such offer y. Thus,

the minimum utility that player 2 gets in a SPE of G2 must be 1− δM1.

Step 2 M1 ≤ 1− δm2.

Proof. By rejecting an offer by player 1 in G1, Player 2 can guarantee getting at

least m2 the next period. Thus, in any subgame perfect equilibrium of G1 with no

delay, player 2 must get at least δm2, which means player 1 can get at most 1− δm2.

If player 2 rejects the offer by player 1 and agreement is delayed, player 1 gets at

most 1−m2 with one period of delay. Since δ(1−m2) ≤ 1− δm2, the result follows.

Multiplying both sides of Step 1 by δ, and then subtracting both sides from 1

gives 1− δm2 ≤ 1− δ+ δ2M1. This, together with Step 2 implies M1 ≤ 1− δ+ δ2M1,

which is equivalent to M1 ≤ 1
1+δ

. We know that M1 ≥ x∗(1) = 1
1+δ

since f ∗ is SPE.

Hence, it must be M1 = x∗(1). Similarly, multiplying both sides of Step 2 by δ and

subtracting from 1 gives 1−δM1 ≥ 1−δ+δ2m2, which, together with Step 1 implies

m2 ≥ 1
1+δ

. Since it must be that m2 ≤ y∗(2) = 1
1+δ

, we get m2 = y∗(2).

Replacing player 1 with player 2 in the steps and the following argument above

will give m1 = x∗(1) and M2 = y∗(2).

The remaining part is to show that in any subgame perfect equilibrium, the first

offer is accepted. Suppose, to the contrary, player 2 rejects player 1’s first offer. The

next period, an SPE of G2 will be followed. By 3.3, the present value (in G2) of such

an outcome to player 2 is y∗(2). Thus, the present value (in G2) of the same outcome

to player 1 is no more than y∗(1), which makes the present value to player 1 in G1,

δy∗(1) < x∗(1) resulting in a contradiction with 3.3. Hence, in any SPE, the first offer

13



must be accepted, finishing the proof.

Formally, the strategy profile f ∗ employed in the proof of Rubinstein’s result is

defined as the following:

Let zi, i ∈ N be such that z
(i)
i = 1

1+δ
and z

(−i)
i = δ

1+δ
, i.e. z1 = x∗ and z2 = y∗;

x∗, y∗ as specified in the statement of Theorem 2. Then for i ∈ N and for any given

history ht = (h0, . . . , ht−1),

f ∗i (ht) =



zi if i = t mod 2 + 1,

Y if i = t mod 2,

and ht−1 = z with z(i) ≥ δ
1+δ

N otherwise.

(3.4)

The remark below emphasizes an important observation about f ∗.

Remark 1 f ∗ defined by 3.4 is stationary.

3.3 The Multiplayer Case

The result of Rubinstein (1982) (Theorem 2) does not hold when the number of

players is more than 2. In fact, Shaked (1986) shows that in the 3–player bargaining

game, also known as the Shaked’s game, every feasible allocation can be sustained in

subgame perfect equilibrium. This is presented in the following theorem by Shaked,

restated as Theorem 3.4 in Osborne and Rubinstein (1990):

Theorem 3 (Shaked (1986)) When δ ≥ 1
2
, for any partition x∗ ∈ X, there exists

a subgame perfect equilibrium of the 3–player bargaining game, where x is agreed

upon in period 0.

Proof. Following the same notation with Osborne and Rubinstein (1990), we

consider the strategy profile σ∗ represented by automata in Table 3.3. In words,

the strategy profile σ∗ prescribes each player to propose y at state y and accept an
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x∗ e1 e2 e3

1
proposes x∗ e1 e2 e3

accepts x1 ≥ δx∗1 x1 ≥ δ x1 ≥ 0 x1 ≥ 0

2
proposes x∗ e1 e2 e3

accepts x2 ≥ δx∗2 x2 ≥ 0 x2 ≥ δ x2 ≥ 0

3
proposes x∗ e1 e2 e3

accepts x3 ≥ δx∗3 x3 ≥ 0 x3 ≥ 0 x3 ≥ δ

Transitions

If in any state y, any Player i proposes x with xi > yi,

then go to state ej , where j 6= i is the player with the

lowest index for whom xj < 1/2.

Table 3.1: Shaked’s SPE strategy profile σ∗.

offer x if and only if xi ≥ δyi. The game starts at (equilibrium) state x∗, and the

state changes whenever (and immediately after) player i proposes z with zi > x∗i ,

i.e. whenever she proposes a share to herself exceeding the one she is supposed to

obtain in that particular state. In that case, transition occurs to the new state ej

where j is the player with the smallest index for whom player i has proposed a share

less than 1/2. Indeed, ej constitutes the reward state of player j. Notice that, player

j will reject z, since the transition to state ej occurs immediately after z is offered,

and the strategy of player j prescribes her to reject z with zj < δejj = δ at the new

state ej. The state does not change if a player deviates from accepting or rejecting

an offer.

These strategies constitute a subgame perfect equilibrium. To see this, take any

state y, y ∈ {x∗, e1, e2, e3} and player i, i ∈ {1, 2, 3}. At this state, if player i

proposes x with xi > yi, the state changes to some ej with j 6= i, j ∈ {1, 2, 3}, which

means that x will be rejected and the next period ej will be offered and accepted,

giving player i a payoff of 0. If player i proposes x with xi < yi, either it will get

accepted and she will get xi, or it will get rejected and y will be accepted the next

period, giving player i, yi with one period of delay. In both cases, player i gets a

present utility less than yi, so it is not optimal for player i to deviate.

Now suppose at state y, it is player i’s turn to respond to the offer. If she rejects

y, the next period y will be offered again, and accepted. Player i will get y with one
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period of delay, making the deviation unprofitable. Hence, σ∗ is a subgame perfect

equilibrium.

3.4 Finite–State Automata and Bounded Ratio-

nality

It is important to note that the strategy profile σ∗ described in Table 3.3 consists of

a finite–state automaton for each player.

Finite–state automata have been used extensively in the literature as a means

to model complexity of strategies and bounded rationality of players, an idea first

proposed in the economics literature by Aumann (1981) following Simon’s pioneering

formulations. Using such a formulation, Neyman (1985) shows that cooperation can

be sustained even in finitely repeated games when the strategies are restricted to

finite–state automata. Rubinstein (1986) and Abreu and Rubinstein (1988) impose

costs on maintaining an additional machine state, rather than taking finite–state

automata as given. The reasoning behind using finite–state automata is that players

face a tradeoff between maximizing their payoffs in the game and using as simple

strategies as possible. The less number of states an automata has, the less likely it

is to break down, the easier it is to learn, and it requires less time and effort to be

implemented (Rubinstein 1998).

Hence, Shaked’s Theorem (Theorem 3, employing a strategy profile described

by the finite–state autamata given in Table 3.3) establishing that all feasible allo-

cations can be sustained in subgame perfect equilibrium even when the strategies

are restricted to finite–state automata bears a special significance. That is, the set

of subgame perfect equilibria does not shrink even when players are assumed to be

boundedly rational, bounded rationality being modeled as usual in the literature.

Counting the number of states of an automaton associated with a strategy is not

the only method to measure bounded rationality. In fact, it should be emphasized

that finite–state automata are less complex to implement compared to their infinite–

state counterparts, because identifying what to do (i.e. the implied action) under
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such a strategy is simpler. However, in order to identify the state of the game,

players may need to know the entire history. Therefore, finite–state automata do not

restrict, in any way, the history–dependence of strategies, and may require players

to “recall” the entire history of the game. Clearly, this results in an inconsistency

with the essence of complexity and bounded rationality. Hence, another method of

alleviating such complexity involves finite–memory strategies.

3.5 The Loss of Game Theoretic Prediction Power

Rubinstein’s result (Theorem 2) that in 2–player alternating offers bargaining games

with discounting, the subgame perfect equilibrium outcome is unique and converges

to the equal division as the discount factor tends to 1 bears significance due to

a number of facts. One of these is that the uniqueness of the subgame perfect

equilibrium outcome raises the prediction power of the model. Another is that the

unique outcome is plausible, and in fact, desirable. This is due to not only fairness

concerns, but also the fact that, the game precisely implements the Nash bargaining

solution in subgame perfection and hence provides it with a non–cooperative game

theoretic foundation.

However, these desirable properties are not carried over to the game with n ≥ 3

players. Shaked’s result that every feasible allocation can be sustained in subgame

perfect equilibrium means that we have no game theoretic prediction power as to

what the equilibrium outcome of the game will be. Moreover, the Nash bargaining

solution for n ≥ 3 players, which is equal division of the pie, is not implemented in

subgame perfection in an alternating offers bargaining game with n ≥ 3 players. In

turn, this means that the Nash program fails to deliver a desirable result with n ≥ 3

players.

The emerging inconsistency between the conclusions of the 2–player and multi-

player versions of this game, has been well–known in the literature. For more on this

subject, we refer the reader to Osborne and Rubinstein (1990). In fact, many studies

consider modifications to the multiplayer version of the game at hand in order to
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obtain a unique equilibrium that can be associated with the Nash bargaining solu-

tion. In that regard, some of the related studies are (but not restricted to) Binmore,

Rubinstein, and Wolinsky (1986), Jun (1987), Chae and Yang (1988), Baron and

Ferejohn (1989), Binmore, Shaked, and Sutton (1989), Chae and Yang (1990), Stahl

(1990), Chatterjee and Samuelson (1990), Asheim (1992), Yang (1992), Perry and

Reny (1993), Chae and Yang (1994), , Krishna and Serrano (1996), Vannetelbosch

(1999), Chatterjee and Sabourian (2000), Baliga and Serrano (2001), Huang (2002),

Lee and Sabourian (2005), and Suh and Wen (2006). While some of these modifica-

tions feature plausible economic insight, only a few of them are concerned with the

elimination of the inconsistency at hand by employing bounded rationality concerns.

When considering complexity formulations that are aimed to re-evaluate / allevi-

ate these inconsistencies, the standard complexity formulations (based on counting

the number of states of an automaton describing a player’s strategy), do not have

any bite, as the above discussion displays. Therefore, the search for the elimina-

tion of the inconsistencies between the 2–player and multiplayer versions based on

bounded rationality concerns, necessitates considerations of nonstandard complexity

formulations. Indeed, one such study is Chatterjee and Sabourian (2000).

It is useful to remind the reader that the current study considers a complexity

formulation based on restricting players’ memory (recall), the number of consecutive

periods that a player can recall. While it is “a” particular measure of complexity, it

needs to be emphasized that (to our knowledge) this is the pioneering work regarding

the use of memory in alternating offers bargaining games.
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4 One–memory

The sharp contrast between the results of the 2–player and multiplayer versions,

i.e. the inconsistency presented in the previous Chapter, ruining game theoretic

prediction power in the multiplayer version, is due to the fact that in the multiplayer

case one of the players can be rewarded for rejecting a deviant offer. This is an

observation that does not hold in the 2–player case. In fact, this interesting, yet

problematic, contrast holds not only when players’ strategies are unconstrained (i.e.

players are fully rational) but also when players are boundedly rational (i.e. players’

strategies are constrained to finite–state automata).

As mentioned in Section 3.4, the problem with using finite–state automata or

complexity costs such as in Chatterjee and Sabourian (2000) to model bounded

rationality is that they may require players to recall the entire history of the game:

Even though each player’s strategy (described by a finite–state automaton) is, by

definition, a function from a finite set of states into that player’s set of actions, the

identification of the state that the game is in, may necessitate to employ the entire

history of the game, requiring players to have unbounded memory (recall) in turn.

This, clearly, is unappealing. For more on this subject, we refer the reader to Barlo,

Carmona, and Sabourian (2012).

One remedy proposed to solve this issue consists of the use of stationary strategies.

However, that particular method is arguably not that appealing. This is because,

the difference between using strategies described by finite–state automata and sta-

tionary plans of actions would amount to going from the situation where a player

is concerned about the number of states associated with the automaton describing

her strategy, into one where she has to use a strategy that does not depend on any
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past information. Moreover, as Osborne and Rubinstein (1994) argue, it is difficult

to justify the use of stationary strategies only based on their simplicity, considering

that the equilibrium should also be an equilibrium in beliefs and there is no reason

for a player to believe that others will choose the same action, even when many

deviations have occurred before.

Thus, limited memory strategies present themselves as a natural way to model

bounded rationality without being too restrictive; and, when extending the notion of

stationarity to allow history dependence, the next immediate and evident formulation

in the current setting involves the use of one–memory1.

In this chapter, we consider a widely accepted method of restricting players’

strategies on grounds of bounded rationality. Particularly, all players are assumed to

use one–memory strategies, plans of actions that depend only on yesterday’s profile of

choices. It is appropriate to point out that in this setting, each player can condition

her actions not only on the current offer, but also on the outcome of the last stage

(period) of the game. This stage includes both the offer proposed in that particular

period and associated responses made by others. It is also imperative to mention

that deviations from one–memory strategy profiles are not restricted to be of one–

memory. That is, (unlike Rubinstein (1986) and Abreu and Rubinstein (1988)) we

do not use a modified notion of subgame perfection, but employ the standard one.

For more about this distinction, we refer the reader to Kalai and Stanford (1988).

Furthermore, when employing one–memory strategies, a player cannot condition her

actions on calendar time. At this stage, it is appropriate to point out that the notion

of memory employed in this study is the one–period version of those that are used

in the following studies: Sabourian (1989), Sabourian (1998), Barlo and Carmona

(2007), Barlo, Carmona, and Sabourian (2009), and Barlo, Carmona, and Sabourian

(2012). And it differs from the time–dependent versions of Barlo (2003), Cole and

1Notice that the notion of Markov perfect equilibria, subgame perfect equilibria where players’
strategies are restricted to be functions obeying the Markov property, are generally considered the
next step in extending stationarity to allow for history dependence. However, a Markov strategy
necessitates the use of a finite state space, hence, is nothing but a finite–state automaton. There-
fore, as the Chapter3 has depicted, such an extension does not eliminate the inconsistency under
consideration.
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Kocherlakota (2005), Hörner and Olszewski (2006), Hörner and Olszewski (2009),

Mailath and Olszewski (2011).

In what follows, first we show that the strategy profile σ∗ (see Table 3.3) used in

the proof of Theorem 3 is not one–memory. It is worthwhile to remind the reader that

Theorem 3 establishes that for any feasible partition of the pie, there exists a subgame

perfect equilibrium strategy profile where each component strategy is described by

a finite–state automaton. That is, σ∗ is described by finite–state automata, yet is

not one–memory.

Following this, an auxiliary result due to Herrero (1985) is presented and proven

to maintain completeness of this thesis: The stationary subgame perfect equilibrium

is unique and in the multiplayer version, corresponds to the multiplayer generaliza-

tion of Rubinstein’s.

We prove that the one–memory subgame perfect equilibrium outcome displays

the very same properties as the stationary one: It is unique, and in the multiplayer

version, it corresponds to the associated generalization of Rubinstein’s result.

Our main result constitutes a noteworthy contribution to the Nash program be-

cause it provides a remedy based on a widely accepted notion of bounded rationality,

one–memory, eliminating the inconsistency between the conclusions of the 2–player

and multiplayer versions.

In the following section, we elaborate on the main ingredients of our result, includ-

ing a particular notion referred to as confusion by Barlo, Carmona, and Sabourian

(2009). Moreover, Sections 4.2 and 4.3 provide some needed auxiliary results, while

Section 4.4 presents our main contribution.

4.1 Confusion

When attention is restricted to the standard discounted repeated games, one–memory,

the initial step in extending the notion of stationarity to allow history dependence,

delivers striking results. In fact, an immediate observation in this setting is that the

set of stationary subgame perfect equilibria consists of strategy profiles that involve
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the repetition of a given Nash equilibrium of the stage game. That is why stationary

subgame perfect equilibria are not interesting in this setting. On the other hand,

Barlo, Carmona, and Sabourian (2009) establishes that the subgame perfect Folk

Theorem holds with one–memory strategies, when the set of actions in the stage

game of the repeated game is sufficiently “large” for each player, so that each payoff

profile is not isolated. Hence, in such games the set of subgame perfect equilibria gets

considerably richer when players are allowed to use even one–memory. The next ob-

servations about the one–memory Folk Theorem of Barlo, Carmona, and Sabourian

(2009) should be pointed out:

The large action space assumption is critical in establishing these results
because it allows players to encode the entire history of the past into
the previous period’s actions. More formally, with rich action sets any
equilibrium strategy vector in which each player strictly prefers not to
deviate at every history, can be perturbed so that each player chooses
different actions at different histories. With such distinct plays of the
game, at each date the players can use the outcome of the previous period
to coordinate their actions appropriately. Thus, the original equilibrium
can be approximated by another that has one period recall. (Barlo,
Carmona, and Sabourian (2012, p.1))

While one–memory strategies are a considerably rich set of plans of actions, they

also bring about an interesting problem identified in Barlo and Carmona (2007)

and elaborated on Barlo, Carmona, and Sabourian (2009) and Barlo, Carmona, and

Sabourian (2012): Confusion. With one–memory, problems of detecting the latest

deviation and the identity of the deviator arise.

Indeed, the notion of subgame perfection is equivalent to the principle of one–

deviation2 (see Rubinstein (1982), Abreu (1988), and Osborne and Rubinstein (1994))

under certain assumptions which are satisfied in the setting considered in this thesis.

In fact, the use of discounting in the current analysis provides the critical argument

to that regard. It requires the following two critical properties: First, a single player

deviation can be detected and second, the identity of the deviator can be revealed.

If either of the above two properties were not to hold, there may be incentives for

2It is worthwhile to point out that the principle of one–deviation is also referred to as the
principle of optimality or the single deviation principle.
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some player to deviate and manipulate the path of future play. In Barlo, Carmona,

and Sabourian (2009), this is referred to as “confusion-proofness”.

These issues, do not arise with unbounded memory because one can use induction

starting from beginning of the game to identify the latest deviation. With bounded

memory, this inductive reasoning is not feasible. This, indeed, constitutes the main

reason why a strategy described by a finite–state automaton needs not be finite–

memory.

In order to see the issue of confusion in the scope of standard repeated games,

the following example from Barlo and Carmona (2007) is appropriate:

Consider a discounted repeated Prisoners’ Dilemma in which at every
date each player can either cooperate C or defect D, and suppose that
we want to implement a cycle consisting of

((C,D), (D,C))

yielding an average payoff strictly higher than the repetition of (D,D)
forever. The strategy inducing this cycle, denoted by π = {πt}∞t=1, and
involving the play of (D,D) forever for any history inconsistent with the
equilibrium path, is subgame perfect with unbounded memory and with
sufficiently high discount factors. However, the limited–memory versions
of this strategy is not subgame perfect regardless of the magnitude of
memory. This is because, if players can remember at most M periods,
one player prefers to deviate at a history with its last M entries equal
to (a1, π2, . . . , πM) with a1 6= π1 instead of playing the punishment: If
πM = (D,C), then player 1 can play C instead of D, which will make the
play return to the equilibrium outcome in the next period. Notice that
if πM = (C,D) by a similar argument, player 2 would deviate. Hence,
player 1’s continuation payoff in that history strictly exceeds the payoff
he would receive by not deviating. (Barlo and Carmona (2007, p.3))

It is useful to point out that the issue of confusion, while creating cumber-

some obstacles, is not sufficiently strong in the analysis of standard discounted re-

peated games to make the subgame perfect Folk Theorem fail: Barlo, Carmona,

and Sabourian (2009) prove the subgame perfect Folk Theorem with one–memory

strategies and with rich action spaces in the stage game.

An interesting observation about alternating offers bargaining games is that while

not being a discounted repeated game in the standard sense, the stage game still
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involves a rich action space. In fact, in the alternating offers bargaining game (re-

gardless of the number of players), the proposer has the option to encode the entire

history of the game into his offer at a negligible cost. In turn, this also establishes

the observation that the set of one–memory strategies is considerably richer than the

set of stationary strategies3.

In the analysis of the alternating offers bargaining game with discounted utilities,

confusion resulting from the one–memory requirement eliminates the multiplicity of

equilibria featured in Shaked’s Theorem, Theorem 3. It is imperative to indicate that

this observation holds even though the entire history can be recorded into players’

offers.

In what follows, we elaborate on how confusion, brought about by the one–

memory requirement, eliminates all but the stationary subgame perfect equilibrium.

Indeed, what we prove is that one–memory subgame perfect strategies have to be

stationary, which together with Herrero (1985) implies our main finding4.

The first step which is formally presented in Lemma 3, shows that with subgame

perfection and one–memory, each player always proposes the same share to herself

regardless of the past. In order to see this in a 3–player version (for the sake of

simplicity), consider the beginning of the game (the unique history with time period

0) and any history in time period 3. In both of them player 1 proposes. If player

1 were to obtain a strictly higher payoff in the 3–period history, she could deviate

and offer the very same allocation (prescribed by her strategy for that particular

3–period history) in the beginning of the game. This deviant act can be identified

by the other players as a single player deviation. Yet, if player 2 were to obtain a

higher payoff by rejecting that offer at the beginning of the game, she would have

rejected that very same offer in that 3–period history as well, which follows from

3To see this, consider a finite time period and a given nonterminal history in the alternating
offers bargaining game for which all the past offers were given by rational numbers that end in
finitely many digits. Then, the proposer at this stage has the option to come up with an offer
into which the entire history of the game can be recorded after a sufficiently high digit, hence, at
a negligible cost. Therefore, having a large action space may provide players with the capacity to
record the whole history of the game by only using one–memory.

4Recall that Herrero (1985) establishes that the stationary subgame perfect equilibrium is unique
and in the multiplayer version corresponds to the multiplayer generalization of Rubinstein’s.
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the one–memory requirement: The last stage of the history after rejecting player

1’s deviant offer in the beginning of the game, is the same as the last stage of the

history after rejecting player 1’s equilibrium offer in that 3–period history. In other

words, seeing player 1’s deviant offer in the beginning of the game, player 2 does

not find it profitable to punish her because she knows that tomorrow she will be

confused as to which history they have been in, and hence, cannot be rewarded for

punishing player 1. The same reasoning presented for player 2 holds for player 3

as well. Therefore, player 1 has to offer the same share to herself in both of these

histories in any subgame perfect equilibrium. Clearly, following a similar reasoning

for other histories and players establishes the observation.

The second step, presented in Lemma 4, displays that each player must propose

the same offer in every history when employing the notion of subgame perfection

and the requirement of one–memory. In other words, the part of the strategy involv-

ing offers is stationary, which easily implies that the part of the strategy involving

responses is also stationary. Hence, establishing the second step finishes the proof

with the help of Herrero (1985).

To see the intuition behind the second step in a 3–player version of our game,

consider two histories both in which player 1 proposes, and in one of which player

3 gets a strictly higher payoff than the other one. Since both of these offers must

provide player 3 with payoffs that exceed the level that she can obtain by waiting

for 2 periods and proposing herself (which is fixed, as established by the first step),

the offer giving player 3 a strictly higher payoff than the other, also must provide

her a strictly higher payoff than the present value of the fixed amount that player

3 would get by waiting 2 periods and proposing herself. Now, consider the history

where player 3 is supposed to get a strictly higher payoff than the other history and

that player 1 cut player 3’s slack off her share (in a sufficiently small manner) and

distributed it between herself and player 2. At this history, observe that player 2

gets a strictly higher share than what she would get by rejecting. This is because,

by the first step, the next period she will propose herself the same share no matter

what the history has been. Since her share in the original offer (before player 1
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cut the slack off player 3’s share) has to be higher than the present value of what

she would propose to herself in the next period, her share in this new offer must

be strictly higher than what she would obtain by waiting one period and proposing

herself. Thus, player 2 will be better off in this history if the offer gets accepted. For

this to happen, player 3 must also accept, which will happen whenever she gets a

lower payoff in the history after she rejects. However, since player 2 will be proposing

in the next period, the best response property of her strategy (implied by subgame

perfection) requires that she offers player 3 a lower payoff whenever player 3 rejects

player 1’s offer in which player 2 is strictly better off. This general observation is

established in a separate lemma, Lemma 5, for n ≥ 3 players.

It is also useful to notice that, the role that one–memory plays here, is that

player 2 does not find it profitable to punish player 1 for deviating, because she

knows that the next period she will be confused as to the identity of the deviator.

In fact, as established in the first step, she will propose the same share for herself

next period whatever the history of this period turns out to be. Player 3 also does

not punish player 1, since the next period, player 2 will propose only based on the

last period’s history, which means that player 3 must make her decision considering

how her actions will change that one–period history upon which player 2 will base

her proposal the next period.

Therefore, by Lemma 5 the best response property of player 2’s strategy requires

the payoff that player 3 gets by rejecting player 1’s offer to be less than player 3’s

share in player 1’s offer, delivering the conclusion that in the history where player

1 cut the slack off player 3’s share and distributed among herself and player 2,

the offer must be accepted. Then, however, at the history where player 3 gets a

strictly higher share, distributing player 3’s slack between herself and player 2 is a

profitable deviation for player 1, establishing that there cannot be a subgame perfect

equilibrium where player 3 gets two different shares at two different histories both

in which player 1 proposes. The same argument applies to player 2’s shares, and to

histories where player 2 or 3 propose. Hence, each player always proposes the same

offer regardless of the history.
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In the rest of this chapter, we present this and some other results in a formal

manner.

4.2 Shaked’s Strategy is not One–Memory

We show that the subgame perfect equilibrium strategies in the multiplayer bargain-

ing game, described in Theorem 3 are not one-memory. Again, as was the case in the

statement of Theorem 3, the result and the proof are presented for the case of three

players, in order to avoid nonfruitful technicalities. Moreover, it should be noted

that generalizing these results to n ≥ 3 players is trivial.

Proposition 1 The subgame perfect equilibrium strategy profile σ∗ given in Table

3.3 is not one-memory.

Proof. Let x∗ 6= e1 and x∗ 6= e2. Take two histories

h = ((x∗, N, Y ), (e2, N,N)) and h′ = ((e1, N,N), (e2, N,N)).

After history h, the game is at state e1, so σ∗3(h) = e1, whereas after h′, the state is

e2 and σ∗3(h) = e2. Since T 1(h) = T 1(h′) but σ∗3(h) 6= σ∗3(h′), σ∗ is not a one–memory

strategy profile when x∗ 6= e1 and x∗ 6= e2.

We need to check for x∗ = e1 and x∗ = e2 separately. First, we will check for

x∗ = e1. Let

h1 = ((x∗, Y,N), (e2, N,N), (e3, N,N)),

and

h2 = ((x∗, Y,N), ((1/2, 1/2, 0), N,N), (e3, N,N)).

Although T 1(h1) = T 1(h2), we have σ∗1(h1) = e1 6= e3 = σ∗1(h2), which means σ∗ is

not one–memory when x∗ = e1.

The last case to check is x∗ = e2. Take the histories

h3 = ((x∗, Y,N), (x∗, N,N)) and h4 = (((1/2, 1/2, 0), N, Y ), (x∗, N,N)).
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Again, we have T 1(h3) = T 1(h4), but σ∗3(h3) = x∗ 6= e1 = σ∗3(h4).

Hence, σ∗ is not a one-memory strategy profile for any x∗ ∈ X.

4.3 Stationary Subgame Perfect Equilibrium

Next, we present a result by Herrero (1985), to be used in the proof of our main theo-

rem, which establishes that there is a unique stationary subgame perfect equilibrium

in the n–player bargaining game.

Theorem 4 (Proposition 4.2 of Herrero (1985).) The multiplayer alternating

offers bargaining game described in Chapter 2 has a unique stationary subgame perfect

equilibrium f ?. In this equilibrium, each player i always proposes x?i and accepts an

offer y at period t if and only if y(i) ≥ δx
?(i)
(t+1 mod n)+1, where

x?i =
(
x
?(j)
i

)n
j=1

=

(
δ(j−i) mod n

1 + δ + ...+ δn−1

)n
j=1

and x
?(j)
i denotes player j’s share in x?i .

Proof. The proof follows from the next results.

Lemma 1 f ? constitutes a subgame perfect equilibrium.

Proof. Consider a subgame starting with an offer by player i. Suppose player i

offers y with y 6= x?i . If y gets rejected, player (i+ 1) mod n will offer x?(i+1) mod n the

next period, which will be accepted and player i will get the present value

δn

1 + δ + ...+ δn−1
< x

?(i)
i .

If y gets accepted, it means that y(j) ≥ δx
?(j)
(i+1 mod n) for all j ∈ N , j 6= i. Summing

up y(j)’s gives ∑
j 6=i,j∈N

y(j) ≥
∑

j 6=i,j∈N

δx
?(j)
(i+1) mod n =

∑
j 6=i,j∈N

x
?(j)
i
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and therefore y(i) ≤ x
?(i)
i . Hence, player i cannot strictly benefit as a result of a

deviation from x?i to y.

Now, suppose player j ∈ N , j 6= i rejects x?i . The next period, player (i+1) mod n

will propose x?(i+1) mod n, and this will get player j the present value of δx
?(j)
(i+1) mod n,

which is equal to x
?(j)
i . Thus, she does not profit from deviating.

Hence, f ? is subgame perfect.

The rest of the proof shows that the stationary SPE is unique. This is established

in the following lemma:

Lemma 2 The multiplayer alternating offers bargaining game described in Chapter

2 has a unique stationary subgame perfect equilibrium.

Proof. Let f = (fi)
n
i=1 be a stationary subgame perfect equilibrium and let

(xt)
∞
t=0, where xt = f(t mod n)+1(h

t), ht ∈ H t, denote the sequence of subgame perfect

offers induced by f . It is worthwhile to mention that (t mod n) + 1 is the proposer

at period t. Notice that if player i, i ∈ N , will accept an offer xt+1 at period t + 1,

she cannot refuse the present value of the same offer at period t. Then, for i ∈ N

with i 6= (t mod n) + 1, it must be:

x
(i)
t = δx

(i)
t+1. (4.1)

Since

x
(t mod n)+1
t = 1−

∑
i 6=(t mod n)+1

x
(i)
t

it follows from equation 4.1 that:

x
(t mod n)+1
t = 1−

∑
i 6=(t mod n)+1

δx
(i)
t+1. (4.2)

Moreover, observe that due to the stationarity of f , a player always proposes the

same partition when it is her turn. That is, a proposing player always proposes the
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same share to herself in every history that she proposes. For player 1, this means:

x(1)n = x
(1)
0 . (4.3)

Equations 4.1–4.3 imply:

x
(1)
0 = 1−

n∑
i=2

δx
(i)
1 = 1− δ(1− x(1)1 )

= 1− δ + δ2x
(1)
2 = . . . = 1− δ + δnx(1)n

= 1− δ + δnx
(1)
0 .

Hence,

x
(1)
0 =

1− δ
1− δn

=
1

1 + δ + . . .+ δn−1
= x

?(1)
1 . (4.4)

This, together with 4.1–4.3 establishes that for all i ∈ N ,

x
(i)
t = x

?(i)
(t mod n)+1.

Hence, f = f ?, completing the proof of the Lemma and the Theorem.

4.4 One–Memory Subgame Perfect Equilibrium

The main result of this thesis is:

Theorem 5 The multiplayer discounted alternating offers bargaining game has a

unique subgame perfect equilibrium with one–memory, which approaches the equal

split as δ tends to 1. In this equilibrium, each player i proposes x?i irrespective of the

history when it is her turn to propose and accepts an offer y at period t if and only

if y(i) ≥ δx
?(i)
(t+1 mod n)+1, where

x?i =
(
x
?(j)
i

)n
j=1

=

(
δ(j−i) mod n

1 + δ + ...+ δn−1

)n
j=1

and x
?(j)
i denotes player j’s share in x?i .
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Proof. The following Lemma states that every player proposes the same share

for herself.

Lemma 3 For all f ∈ E1, and for all ht, hs ∈ H2, such that (t mod n) + 1 =

(s mod n) + 1 = i, i ∈ N , it must be that f
(i)
i (ht) = f

(i)
i (hs).

Proof. Let f = (fi)i∈N ∈ E1 and let x =
(
x(i)
)
i∈N be the partition offered by

player 1 in period 0 according to f , i.e. x = f1(∅). Since f is subgame perfect, x

should be accepted in period 0. Thus, given that all the players acting before j have

chosen Y , it must be more profitable for player j to choose Y compared to choosing

N . Therefore, for all players to go for Y , the following needs to be satisfied for all

j ∈ N , j ≥ 2:

x(j) ≥ δf
(j)
2 (x, {Ri}ni=2) (4.5)

where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi (x, {Rk}k<i) if i > j.

Now, suppose there is ht ∈ H t
2 in which player 1 proposes, i.e. (t mod n) = 0, and

f1(h
t) = y 6= x. Since f is subgame perfect, y has to be accepted when offered by

player 1 after ht. Again, for all players to choose Y , we have the following condition

for all j ∈ N , j ≥ 2:

y(j) ≥ δf
(j)
2

(
ht ◦ (y, {Ri}ni=2)

)
(4.6)

where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi (h
t ◦ (y, {Rk}k<i)) if i > j.

The requirement of one-memory, i.e. f ∈ F 1, implies that for all j ∈ N

f
(j)
2

(
ht ◦ (y, {Ri}ni=2)

)
= f

(j)
2 (y, {Ri}ni=2) for any Ri ∈ {Y,N} and i ≥ 2. (4.7)
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Therefore, condition 4.6 becomes, for all j ∈ N , j ≥ 2

y(j) ≥ δf
(j)
2 (y, {Ri}ni=2) (4.8)

where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi (y, {Rk}k<i) if i > j.

This means, however, that if player 1 deviates and offers y instead of x in period

0, y will be accepted. This is because of the following: Other players know that if

any one of them chooses N , it will be no different than choosing N to y after the

history ht. In either scenario, all they remember the next day will be the history

of yesterday, which is the same whether it is offered and rejected in period 0 or

after history ht. Then if y gets accepted after history ht according to f , it must be

accepted when player 1 offers it after any history. Thus, for player 1 not to deviate

to proposing y instead of x in period 0, y must give player 1 less than or equal to x,

delivering

x(1) ≥ y(1). (4.9)

Hence, any partition different than x that player 1 offers after some history must

give player 1 less than or equal to x(1). The same argument also works in the other

direction. Suppose player 1 deviates to offering x instead of y after the history ht.

So, since f ∈ F 1, i.e. one-memory, it must satisfy

f
(j)
2 (x, {Ri}ni=2) = f

(j)
2

(
ht ◦ (x, {Ri}ni=2)

)
for any Ri ∈ {Y,N} and i ≥ 2. (4.10)

This, together with 4.5 implies

x(j) ≥ δf
(j)
2

(
ht ◦ (x, {Ri}ni=2)

)
(4.11)
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where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi (h
t ◦ (x, {Rk}k<i)) if i > j.

Therefore, if player 1 deviates and offers x instead of y after history ht, it will get

accepted. But for f to be SPE, this must not be a profitable deviation for player 1,

which implies

y(1) ≥ x(1). (4.12)

Therefore x(1) = y(1), meaning that player 1 always offers the same share for

herself (in any history that she proposes). Clearly, the same arguments also apply to

the other players, delivering the result that each player always offers the same share

for herself irrespective of the history.

The next lemma shows that in any subgame perfect equilibrium, a player’s offer

vector does not depend on the history.

Lemma 4 For all f ∈ E1, and for all ht, hs ∈ H2, such that (t mod n) + 1 =

(s mod n) + 1 = i for some i ∈ N , it must be that f
(j)
i (ht) = f

(j)
i (hs), j ∈ N .

Proof. By Lemma 3, we know players always propose the same share for them-

selves. Let these fixed shares be denoted by α(i) = f
(i)
i (hs), where hs ∈ Hs

2 with

(s mod n) + 1 = i, i ∈ N .

Now, take an arbitrary f ∈ E1 and let f1(∅) =
(
x(i)
)
i∈N , and suppose there exists

ht ∈ H t
2 such that (t mod n) = 0 and f1(h

t) = y 6= x. Due to Lemma 3 and because

that offers have to add up to 1, it must be that x(1) = y(1) = α(1), x(j) < y(j) and

x(i) > y(i) for some i, j ∈ N , i 6= j 6= 1. We will examine this in two cases, one with

i 6= 2 and the other where i = 2, but first we wish to present the following result

which will be used when handling these cases:

Lemma 5 Let x, z ∈ X be such that f1(∅) = x, where f ∈ E1, and z(2) >

x(2) and z(j) ≥ δj−1α(j) for all j ∈ N . Then, for all j = 3, . . . , n, it must be

δf
(j)
2 (z, {Ri}ni=2) ≤ z(j), where Ri equals the following: Y if i is such that 2 ≤ i < j;

N if i = j; and fi(z, {Rk}k<i) if i > j.
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Proof. Suppose not, i.e. there exists j ∈ N , j > 2 with δf
(j)
2 (z, {Ri}ni=2) > z(j),

where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi(z, {Rk}k<i) if i > j.

(4.13)

Consider history h1 = z, i.e. the history in which player 1 offers z 6= x; x, z as

specified in the hypothesis. In what follows we will show that in this particular

subgame there is a player with a profitable deviation, and so f is not subgame

perfect, delivering the conclusion via counter-positive.

Let J be the set of players for whom δf
(j)
2 (z, {Ri}ni=2) > z(j), where for i ≥ 2 the

responses Ri are as specified in condition 4.13. Notice that player 2 is not in J . Then,

after history h1 = z, at least one player in J will choose N . In the next period, by

construction, player 2 will propose f2(h) where h is the last period’s history. Because

that f ∈ E1, f2(h) must be accepted and player 2 will get a present utility of δα(2).

We will show that in this subgame player 2 has a profitable deviation. Consider

a deviation by player 2 to a one-memory strategy, g2, which coincides with f2 with

the exception of the following cases:

δg
(j)
2 (z, {Ri}ni=2) ≤ z(j), for j ∈ J , (4.14)

g
(1)
2 = f

(1)
2 +

∑
j∈J

f
(j)
2 (z, {Ri}ni=2)− g

(j)
2 (z, {Ri}ni=2), (4.15)

where for i ≥ 2 the responses Ri are as specified in condition 4.13. 5 In the subgame

given by h1 = z, player 2 will accept z since (by Lemma 3) g
(2)
2 (z,N, {Ri}ni=3) =

f
(2)
2 (z,N, {Ri}ni=3) = α(2) for all Ri ∈ {Y,N} and z(2) > x(2) ≥ δα(2). For all

players k 6= 1, 2, Y appears in their best responses. This is due to the following:

(1) By construction of g2 (in particular, condition 4.14) covering cases for all players

in J ; and, (2) the observation that for every player k /∈ J and k 6= 1, 2, we have

5It should be pointed out that, in the current study, deviations are not necessarily required to be
one-memory, because our notion of one-memory does not restrict deviations considered to have the
same magnitude of memory. On the other hand, identifying a one-memory deviation to show that
a particular one-memory strategy is not subgame perfect, strengthens the execution to situations in
which limited-memory equilibria were to be defined by considering only limited-memory deviations.
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that δf
(k)
2 (z, {Ri}ni=2) ≤ z(k). Thus, Y resides in player k’s best response, k 6= 1, 2

(regardless of whether or not k is in J) because player 2’s deviation makes sure that

every player (but player 1 who is making the offer) chooses Y given that the others

choosing before do the same. Therefore, player 2 will get the utility of z(2) > δα(2),

and hence, g2 is a profitable deviation for player 2 in history h1 = z. So, f is not

subgame perfect.

Now, we are ready to handle the two cases discussed above.

Case 1 x(j) < y(j) and x(k) > y(k) for some j, k ∈ N , j 6= k 6= 1, k 6= 2.

Since any player can guarantee getting δi−1α(i) for herself by rejecting player 1’s

offer and all other offers until period i − 1, any subgame perfect offer by player 1

must give each player at least an amount of δi−1α(i). Thus,

x(i), y(i) ≥ δi−1α(i). (4.16)

Since x(k) > y(k), condition 4.16 implies x(k) > δk−1α(k).

Define x̃ =
(
x̃(i)
)
i∈N where x̃(i) = x(i)+ x(k)−δk−1α(k)

n−1 for all i ∈ N , i 6= k and x̃(k) =

δk−1α(k). Suppose player 1 deviates and offers x̃ instead of x in period 0. Player 2 will

accept since for all Ri ∈ {Y,N}, x(2) + x(k)−δk−1α(k)

n−1 > δf
(2)
2 (x̃, N, {Ri}ni=3) = δα(2)

due to condition 4.16 and Lemma 3.

Here we use our earlier lemma: Lemma 5 implies that for all j ∈ N , j > 2,

δf
(j)
2 (x̃, {Ri}ni=2) ≤ x̃(j), where for i ≥ 2

Ri =


Y if i < j,

N if i = j,

fi(x̃, {R`}`<i) if i > j.

So, all other players will also accept x̃. Thus, proposing x̃ instead of x in period

0 is a profitable deviation for player 1, which contradicts the assumption that f is

subgame perfect. �

Case 2 x(2) > y(2) and x(j) < y(j) for some j ∈ N , j /∈ {1, 2}.
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Because that y(j) > x(j), condition 4.16 implies y(j) > δj−1α(j).

Let ỹ =
(
ỹ(i)
)
i∈N where ỹ(i) = y(i) + y(j)−δj−1α(j)

n−1 for all i ∈ N , i 6= j and ỹ(j) =

δj−1α(j). Suppose player 1 deviates and offers ỹ instead of y after history ht. Player 2

will accept since for all Ri ∈ {Y,N}, y(2) + y(j)−δj−1α(j)

n−1 > δf
(2)
2 (ỹ, N, {Ri}ni=3) = δα(2)

due to condition 4.16 and Lemma 3.

By Lemma 5, we know that for all j ∈ N , j > 2, δf
(j)
2 (ỹ, {Ri}ni=2) ≤ ỹ(j), where

Ri = Y for all 2 ≤ i < j, Rj = N , and Ri = fi(ỹ, {R`}`<i) for all i > j, so all

the other players will also accept ỹ. Hence, proposing ỹ instead of y is a profitable

deviation for player 1 in the subgame starting at ht. �

Thus, it must be x(j) = y(j) for all j ∈ N , contradicting our initial assumption.

Moreover, clearly the same argument applies to the offers by other players. This

finishes the proof of Lemma 4.

It is appropriate to point out that Lemmas 3 and 4 imply that the strategies

of the proposing players have to be stationary. Then, this, clearly, implies that the

strategies of the responding players must also be stationary. This finding is presented

in the following Proposition, presented without proof:

Proposition 2 One-memory subgame perfect equilibrium strategies are stationary.

It is appropriate to remind the reader that Proposition 4.2 of Herrero (1985) (pre-

sented and proven in Theorem 4 in the current thesis) establishes that stationary

subgame perfect equilibrium is unique and as given in the statement of our Theo-

rem. Thus, Proposition 2 and Theorem 4 establish our result, finishing the proof of

Theorem 5.
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5 Concluding Remarks

To summarize, our result establishes that when we assume players can recall only

yesterday and not the history prior to that, i.e. when we employ the restriction

to one–memory strategies, the subgame perfect equilibrium of the multiplayer dis-

counted alternating offers bargaining game is unique and equivalent to the multi-

player generalization of Rubinstein’s. This also implies that the unique subgame

perfect equilibrium outcome approaches the multiplayer Nash bargaining solution

when the discount factor tends to 1. Hence, we provide a bridge between the multi-

player cooperative and non–cooperative bargaining games, contributing to the Nash

program. Moreover, we show that the unique one–memory subgame perfect equilib-

rium is actually stationary.

Our use of one–memory strategies is an attempt to utilize bounded rationality to

increase the prediction power of the multiplayer version of the game, while avoiding

the “over-simplicity” of stationarity. We consider one–memory as the first step in

allowing some history–dependence to strategies. The next step would be analyzing

the restriction to M -memory strategies, which is our future avenue of research.

37



Bibliography

Abreu, D. (1988): “On the Theory of Infinitely Repeated Games with Discount-

ing,” Econometrica, 56, 383–396.

Abreu, D., and A. Rubinstein (1988): “The Structure of Nash Equilibrium in

Repeated Games with Finite Automata,” Econometrica, 56, 1259–1281.

Asheim, G. B. (1992): “A Unique Solution to n–person Sequential Bargaining,”

Games and Economic Behavior, 4, 169–181.

Aumann, R. (1981): “Survey of Repeated Games,” in Essays in Game Theory

and Mathematical Economics in Honor of Oskar Morgenstern. Bibliographisches

Institut, Mannheim.

Baliga, S., and R. Serrano (2001): “Multilateral Negotiations with Private

Side–Deals: A Multiplicity Example,” Economics Bulletin, 3, 1–7.

Barlo, M. (2003): “Essays in Game Theory,” Ph.D. thesis, University of Min-

nesota.

Barlo, M., and G. Carmona (2007): “Folk Theorems for the Repeated Pris-

oners’ Dilemma with Limited Memory and Pure Strategies,” Sabancı University,

Universidade Nova de Lisboa and University of Cambridge.

Barlo, M., G. Carmona, and H. Sabourian (2009): “Repeated Games with

One Memory,” Journal of Economic Theory, 144(1), 312–336.

(2012): “The Bounded Memory Folk Theorem,” Sabancı University, Uni-

versidade Nova de Lisboa and University of Cambridge.

38



Baron, D. P., and J. A. Ferejohn (1989): “Bargaining in Legislatures,” Amer-

ican Political Science Review, 83, 1181–1206.

Binmore, K., A. Rubinstein, and A. Wolinsky (1986): “The Nash Bargaining

Solution in Economic Modelling,” Rand Journal of Economics, 17, 176–188.

Binmore, K., A. Shaked, and J. Sutton (1989): “An Outside Option Experi-

ment,” Quarterly Journal of Economics, 104, 753–770.

Chae, S., and J. Yang (1988): “The Unique Perfect Equilibrium of an n–person

Bargaining Game,” Economics Letters, 28(3), 221–223.

(1990): “An n–person Bargaining Process with Alternating Demand,” Seoul

Journal of Economics, 3, 255–261.

(1994): “An n–person Pure Bargaining Game,” Journal of Economic The-

ory, 62(1), 86–102.

Chatterjee, K., and H. Sabourian (2000): “Multilateral Bargaining and Strate-

gic Complexity,” Econometrica, 68(6), 1491–1509.

Chatterjee, K., and L. Samuelson (1990): “Perfect Equilibria in Simultaneous

Offer Bargaining,” International Journal of Game Theory, 19, 237–267.

Cole, H., and N. Kocherlakota (2005): “Finite Memory and Imperfect Moni-

toring,” Games and Economic Behavior, 53, 59–72.

Fershtman, C., and D. J. Seidmann (1993): “Deadline Effects and Inefficient

Delay in Bargaining with Endogenous Commitment,” Journal of Economic The-

ory, 60, 306–321.

Haller, H., and S. Holden (1990): “A Letter to the Editor on Wage Bargaining,”

Journal of Economic Theory, 52, 232–236.

Herrero, M. (1985): “A Strategic Bargaining Approach to Market Institutions,”

Ph.D. thesis, University of London.

39



Hörner, J., and W. Olszewski (2006): “The Folk Theorem for Games with

Private Almost-Perfect Monitoring,” Econometrica, 74, 1499–1544.

(2009): “How Robust is the Folk Theorem with Imperfect Public Monitor-

ing?,” Quarterly Journal of Economics, 124, 1773–1814.

Huang, C. Y. (2002): “Multilateral Bargaining: Conditional and Unconditional

Offers,” Economic Theory, 20, 401–412.

Jun, B. H. (1987): “A Structural Consideration on 3–person Bargaining,” Ph.D.

thesis, University of Pennsylvania.

Kalai, E., and W. Stanford (1988): “Finite Rationality and Interpersonal Com-

plexity in Repeated Games,” Econometrica, 56, 397–410.

Krishna, V., and R. Serrano (1996): “Multilateral Bargaining,” Review of Eco-

nomic Studies, 63, 61–80.

Lee, J., and H. Sabourian (2005): “Efficiency in Negotiation: Complexity and

Costly Bargaining,” Birkbeck Working Papers in Economics and Finance No.0505.

Mailath, G. J., and W. Olszewski (2011): “Folk Theorems with Bounded Recall

under (Almost) Perfect Monitoring,” Games and Economic Behavior, 71(1), 174–

192.

Merlo, A., and J. Wilson (1995): “A Stochastic Model of Sequential Bargaining

with Complete Information,” Econometrica, 63(2), 371–399.

Nash, J. F. (1950): “The Bargaining Problem,” Econometrica, 18, 155–162.

(1953): “Two-person Cooperative Games,” Econometrica, 21, 128–140.

Neyman, A. (1985): “Bounded Complexity Justifies Cooperation in the Finitely

Repeated Prisoner’s Dilemma,” Economic Letters, 9, 227–229.

Osborne, M., and A. Rubinstein (1994): A Course in Game Theory. MIT Press,

Cambridge.

40



Osborne, M. J., and A. Rubinstein (1990): Bargaining and Markets. Academic

Press, San Diego, CA.

Perry, M., and P. J. Reny (1993): “A Non-Cooperative Bargaining Model with

Strategically Timed Offers,” Joumal of Economic Theory, 59, 50–77.

Rubinstein, A. (1982): “Perfect Equilibrium in a Bargaining Model,” Economet-

rica, 50, 97–110.

Rubinstein, A. (1986): “Finite Automata Play the Repeated Prisoner’s Dilemma,”

Journal of Economic Theory, 39, 83–96.

(1998): Modeling Bounded Rationality. The MIT Press, Cambridge, MA.

Sabourian, H. (1989): “The Folk Theorem of Repeated Games with Bounded Re-

call (One-Period) Memory,” Economic Theory Discussion Paper 143, University

of Cambridge.

(1998): “Repeated Games with M -period Bounded Memory (Pure Strate-

gies),” Journal of Mathematical Economics, 30, 1–35.

Sakovics, J. (1993): “Delay in Bargaining Games with Complete Information,”

Journal of Economic Theory, 59, 78–95.

Serrano, R. (2005): “Fifty Years of the Nash Program, 1953-2003,” Investigaciones

Economicas, 29, 219–258.

Shaked, A. (1986): “A Three-Person Unanimity Game,” talk given at the Los

Angeles National Meetings of the Institute of Management Sciences and the Op-

erations Research Society of America.

Stahl, D. O. I. (1990): “Bargaining with Durable Offers and Endogenous Timing,”

Games and Economic Behavior, 2, 173–187.

Suh, S. C., and Q. Wen (2006): “Multi-agent Bilateral Bargaining and Nash

Bargaining Solution,” Journal of Mathematical Economics, 41, 61–73.

41



Sutton, J. (1986): “Non-Cooperative Bargaining Theory: An Introduction,” The

Review of Economic Studies, 53(5), 709–724.

Vannetelbosch, V. J. (1999): “Rationalizability and Equilibrium in n–person

Sequential Bargaining,” Economic Theory, 14, 353–371.

Yang, J. (1992): “Another n–person Bargaining Game with a Unique Perfect Equi-

librium,” Economics Letters, 38(3), 275–277.

42


	Introduction
	The Model
	The Bargaining Problem
	Nash's Barganing Solution
	Rubinstein's Result
	The Multiplayer Case
	Finite–State Automata and Bounded Rationality
	The Loss of Game Theoretic Prediction Power

	One–memory
	Confusion
	Shaked's Strategy is not One–Memory
	Stationary Subgame Perfect Equilibrium
	One–Memory Subgame Perfect Equilibrium

	Concluding Remarks

