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Ertuğrul Çetinsoy

ME, Ph.D. Thesis, 2010

Thesis Advisor: Assoc. Prof. Mustafa Ünel
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Abstract

Unmanned Aerial Vehicles (UAVs) are flying robots that are employed
both in civilian and military applications with a steeply increasing trend.
They are already used extensively in civilian applications such as law enforce-
ment, earth surface mapping and surveillance in disasters, and in military
missions such as surveillance, reconnaissance and target acquisition. As the
demand on their utilization increases, novel designs with far more advances
in autonomy, flight capabilities and payloads for carrying more complex and
intelligent sensors are emerging. With these technological advances, people
will find even newer operational fields for UAVs.

This thesis work focuses on the design, construction and flight control of a
novel UAV (SUAVI: Sabancı University Unmanned Aerial VehIcle). SUAVI
is an electric powered compact size quad tilt-wing UAV, which is capable
of vertical takeoff and landing (VTOL) like a helicopter, and flying horizon-
tally like an airplane by tilting its wings. It carries onboard cameras for
capturing images and broadcasting them via RF communication with the
ground station. In the aerodynamic and mechanical design of SUAVI, flight
duration, flight speed, size, power source and missions to be carried out are
taken into account. The aerodynamic design is carried out by considering
the maximization of the aerodynamic efficiency and the safe flight charac-
teristics. The components in the propulsion system are selected to optimize
propulsion efficiency and fulfill the requirements of the control for a stable
flight in the entire speed range. Simulation results obtained by ANSYS and
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NASA FoilSimII are evaluated and motor thrust tests are conducted dur-
ing this optimization process. The power source is determined by taking
the weight and flight duration into account. The wings and the fuselage
are shaped iteratively in fluid flow simulations. Additionally, the verification
of aerodynamic design and maneuverability are assessed in the wind tunnel
tests on the half-body prototype. The mechanical structure is designed to be
lightweight, strong and protective, and to allow easy assembly and disassem-
bly of SUAVI for practical use. The safety factors in the mechanical system
are determined using FEM analysis in ANSYS environment. Specimens of
candidate composite skin materials are prepared and tested for lightness,
strength and integrity in mechanical tests. The ready for flight prototype
SUAVI is produced from the selected composite material.

Dynamical model of SUAVI is obtained using Newton-Euler formulation.
Aerodynamic disturbances such as wind gusts are modeled using the well-
known Dryden wind turbulence model. As the flight control system, a super-
visory control architecture is implemented where a Gumstix microcomputer
and several Atmega16 microcontrollers are used as the high-level and low-
level controllers, respectively. Gumstix computer acts as a supervisor which
orchestrates switching of low-level controllers into the system and is respon-
sible for decision making, monitoring states of the vehicle and safety checks
during the entire flight. It also generates attitude references for the low-level
controllers using data from GPS or camera. Various analog and digital fil-
ters are implemented to smooth out noisy sensor measurements. Extended
Kalman filter is utilized to obtain reliable orientation information by fus-
ing data from low-cost MEMS inertial sensors such as gyros, accelerometers
and the compass. PID controllers are implemented for both the high-level
GPS based acceleration controller and the low-level altitude and attitude
controllers. External disturbances are estimated and compensated by a dis-
turbance observer. Real-time control software is developed for the whole
flight control system. SUAVI can operate in semi-autonomous mode by com-
municating with the ground station. A quadrotor test platform (SUQUAD:
Sabancı University QUADrotor) is also produced and used for the initial
performance tests of the flight control system. After successful flight tests
on this platform, the control system is transferred to SUAVI. Performance of
the flight control system is verified by numerous simulations and real flight
experiments. VTOL and horizontal flights are successfully realized.
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Tez Eş Danışmanı: Doç. Dr. Mahmut Akşit
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Uçuş

Özet

İnsansız Hava Araçları (İHA) hem sivil hem de askeri uygulamalarda
her geçen gün daha çok kullanılan uçan robotlardır. Bu araçlar halihazırda
kanun uygulama, gökyüzünden haritalandırma ve felaketlerde gözlem gibi
sivil uygulamalarda, ve gözlem, keşif, hedef tespiti gibi askeri uygulamalarda
yaygın olarak kullanılmaktadır. Bu araçların kullanımına talep arttıkça oto-
nomi, uçuş yetenekleri ve daha kompleks ve akıllı sensörler taşıma kapa-
sitesi daha da geliştirilmiş yeni tasarımlar ortaya çıkmaktadır. Bu teknolojik
gelişmelerle beraber, insansız hava araçları için daha da yeni kullanım alan-
ları ortaya çıkacaktır.

Bu tez çalışması yeni bir insansız hava aracının (SUAVI: Sabancı Uni-
versity Unmanned Aerial VehIcle) tasarım, imalat ve uçuş kontrolüne odak-
lanmaktadır. SUAVI, helikopter gibi dikey kalkış-iniş, kanatlarını yatırarak
uçak gibi yatay uçuş yapabilen, elektrikle çalışan, küçük boyutlu bir dört-
rotorlu döner-kanat insansız hava aracıdır. Üstünde, yer istasyonuyla kurulan
kablosuz haberleşme yoluyla görüntü yollamak için kameralar taşımaktadır.
SUAVI’nin aerodinamik ve mekanik tasarımında uçuş süresi, uçuş hızı, boyut,
enerji kaynağı ve yürütülecek görevler dikkate alınmıştır. Aerodinamik tasarım,
aerodinamik verimin en üst düzeye çıkarılması ve güvenli uçuş niteliklerinin
elde edilmesi için yapılmıştır. İtki sistemindeki bileşenler itki üretim verimini
eniyilemek ve bütün hız bandında kararlı bir uçuş sağlamak için seçilmiştir.
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Bu süreçte ANSYS ve NASA FoilSimII’de elde edilen benzetim sonuçları
değerlendirilmiş ve itki ölçüm testleri yapılmıştır. Enerji kaynağı, ağırlık
ve uçuş süresi dikkate alınarak belirlenmiştir. Kanatlar ve gövde, döngülü
hava akış testlerinde şekillendirilmiştir. Ayrıca, aerodinamik tasarım ve
manevra yeteneğinin doğrulanması rüzgar tünelinde yarı-gövde prototipin
üzerinde tamamlanmıştır. Aracın mekanik yapısı hafif, sağlam, koruyucu
olacak ve pratik kullanım için kolay montaj-demontaja izin verecek şekilde
tasarlanmıştır. Mekanik sistemin güvenlik katsayıları ANSYS’te sonlu ele-
manlar yöntemi temelli analizlerle bulunmuştur. Kullanılmaya aday kom-
pozit cidar numuneleri hazırlanmış; bu numunelere hafiflik, sağlamlık ve
bütünlüğü koruma bakımından mekanik testler uygulanmıştır. SUAVI’nin
uçuşa hazır prototipi belirlenmiş olan kompozit malzemeden üretilmiştir.

SUAVI’nin dinamik modeli Newton-Euler formülasyonu ile elde edilmiştir.
Rüzgar ve rüzgar akımları gibi aerodinamik bozucular literatürde iyi bilinen
Dryden rüzgar modeliyle modellenmiştir. Uçuş kontrol sistemi olarak Gum-
stix mikrobilgisayarın üst-seviye, bir dizi Atmega16 mikrodenetleyicinin ise
alt-seviye denetleyici olarak kullanıldığı gözetimci bir kontrol mimarisi uygu-
lanmıştır. Gumstix bilgisayar alt-seviye denetleyicilerin sistemdeki anahtar-
lamasını düzenleyen bir gözetimci olarak çalışmanın yanısıra karar verme
işleminden, aracın verilerinin gözlenmesinden ve güvenlik kontrollerinin sürek-
li yürütülmesinden sorumludur. Ayrıca GPS ve görüntü tabanlı kontrol
için alt-seviye denetleyicilere açı referansları üreten bir üst-seviye denet-
leyici görevini yürütmektedir. Gürültülü sensör ölçümlerinin gürültüden
arındırılması için çeşitli analog ve dijital filtreler uygulanmıştır. Jirolar,
ivmeölçerler gibi düşük maliyetli ataletsel MEMS sensörler ve pusuladan elde
edilen verinin tümleştirilmesiyle güvenilir yönelim bilgisi elde edilmesi için
Genişletilmiş Kalman Filtresi (EKF) kullanılmıştır. GPS tabanlı yüksek
seviyeli kontrolör ile düşük seviyeli irtifa ve yönelim kontrolörleri olarak
PID denetleyici kullanılmıştır. Dıştan bozucu etkiler bir bozucu gözlemci
kullanılarak kestirilmiş ve kompanse edilmiştir. Tüm uçuş kontrol sistemi
için gerçek zamanlı kontrol yazılımı geliştirilmiştir. SUAVI yer istasyonuyla
haberleşerek yarı-otonom modda çalışabilir. Uçuş kontrol sisteminin ilk test-
lerinin yürütülmesi için dört-rotorlu helikopter test platformu (SUQUAD:
Sabancı University QUADrotor) üretilmiş ve kullanılmıştır. Bu platform
üzerindeki başarılı uçuş testlerinden sonra kontrol sistemi SUAVI’ye aktarılmış-
tır. Uçuş kontrol sisteminin performansı birçok benzetim ve gerçek uçuş
testiyle doğrulanmıştır. Dikey kalkış-iniş ve yatay uçuşlar başarıyla gerçekleş-
tirilmiştir.
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Assist. Prof. İlyas Kandemir for their feedbacks and spending their valuable

time to serve as my jurors.

I would like to acknowledge the financial support provided by The Scien-

tific & Technological Research Council of Turkey (TÜBİTAK) through the

project “Mechanical Design, Prototyping and Flight Control of an Unmanned

Autonomous Aerial Vehicle” under the grant 107M179.

I would like to thank SUAVI project members Efe Sırımoğlu, Kaan Taha
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Chapter 1

1 Introduction

Technological advances have always played a great role in human life

throughout the history. Robots constitute a very important part of today’s

technology, changing our lives and the methods of production. With the

advances in the computer, sensor, electronics and power generation tech-

nologies, they have evolved from simple teleoperators controlled by humans

for manipulating dangerous materials from a distant place [1–3] to very com-

plex robots, such as humanoids with walking, running, stair climbing abilities

[4–7] and human mimics on the face [8–10], driver robots smart enough to

drive cars in city roads and highways [11–13] and micro air vehicles flying on

a given trajectory and transmitting images of the ground [14–16].

Autonomous mobile robots have been a very significant family of the

robots both in research and the real world applications. These robots can

be categorized in three main items, which are the unmanned ground vehi-

cles, unmanned sea and underwater vehicles, and unmanned aerial vehicles.

Unmanned ground vehicles, that are already in use, are mainly vehicles with

predefined tracks on the roads, where the traffic system and priorities are

well-defined. Some of these vehicles are automated forklifts [17, 18], auto-

mated people movers [19, 20], automated container trucks in the ports [21],

Mars Rover robot [22, 23] and Foster-Miller TALON armed military robots



[24]. There are also competitions and research on fully autonomous ground

vehicles to avoid the requirement for predefined tracks and allow the cars to

go everywhere autonomously [11–13].

Unmanned sea and underwater vehicles are mainly automated boats and

submarines. These vehicles are used in tasks such as sea mine hunting, sea

bottom investigation, ship wreck searching even at impossible depths for

manned submarines, ship bottom failure detection, harbor patrolling, under-

water cable control and also serve as moving targets for military training

[25, 26].

Unmanned aerial vehicles (UAV) are automated forms of already existing

aircraft types, however there are also a rapidly increasing number of UAV

types diverging from the ordinary air vehicle designs and having a variety

of additional capabilities. UAVs are free to move nearly everywhere where

air exists, so they are superior to the ground and sea vehicles in terms of

functionality both in civilian and military surveillance tasks. UAVs have been

attracting considerable interest due to their ability to perform air missions

that are monotonous, dangerous, impractical or unnecessarily expensive to

be performed by a human pilot [27, 28]. They even have the potential to

perform some tasks that are impossible to be performed by other means.

UAVs can be utilized in a variety of civilian applications. They can

constitute a forest patrolling team for early fire detection, alerting and extin-

guishing. They can constitute similar teams for continuous inspection of the

ships against illegal refugee transportation and bilgewater discharge for coast

guard, and the inspection of cars for law enforcement. They can be used as a

surveillance and emergency materials deployment platform in disasters such

as floods, landslides, earthquakes, avalanches, hill climber accidents, traffic
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accidents and when a ship sinks.

UAVs can also perform tasks such as pipeline control, power line control

and repair, harbor patrolling, earth surface, atmosphere and environment

monitoring and mapping of earth surface and geomagnetic field variations

[29, 30]. They can transmit photos and videos from car and sailing boat races

both for broadcasting and refereeing, from an elevation above a place to give

an idea about the sight of a building to be built there, from a film set for

some scene of a movie, from the periphery of a strategic building for security

and from the highway for traffic surveillance [28, 31–33]. They can chase a

car to keep track of a person that escapes from the police and the birds that

fly in the neighborhood of the airports causing bird strikes to the airplanes.

They can even be used for agricultural pesticide spraying, imaging and sensor

deployment in volcanos, explosive deployment into potential avalanche zones

for preventive explosions, heavy lifting as a crane onto the top of skyscrapers

and communication relaying [34].

Military applications are another field for the usage of UAVs. Such appli-

cations are intelligence, surveillance, target acquisition and reconnaissance

[29, 35–39] as an information source. They can also be used for attacking a

target with the bombs or missiles carried on-board. Small size UAVs are very

low cost vehicles when compared with human controlled airplanes. When one

military airplane gets hit, it is disabled from the fighting task at all, whereas

a fleet of some ten UAVs with the same investment as that airplane is nearly

invulnerable, since the rest of them would continue to attack. A military

manned aircraft can carry several missiles that are designed to hit relatively

large targets with generous heat sources and small numbers. When con-

fronted by numerous small UAVs, such an aircraft cannot have great chance
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to survive. This is also valid for military bases, ships and ground vehicles.

A fleet of UAVs for air support would also be a great problem for coastal

enemy defences when a coastal landing operation is to be performed, since

they can attack all these separate targets with that large number of units.

For these reasons, there are debates on the necessity of F-22 Raptor and

F-35 Lightning II airplanes, that are in fact very modern and technologically

superior air vehicles. There are even debates on whether these aircrafts are

the last manned fighters or not [40–46]. UAVs can also be used for mine

detection at low clearances from the ground and can transfer loads between

the ships in a navy fleet in a much more practical manner than the manned

helicopters do.

From the examples expressed for already ongoing tasks and potential

tasks for UAVs, it can be seen that these vehicles have tremendous potentials

for altering the methods of various tasks. Probably the most important

aspect of the usage of these vehicles is that they avoid the requirement for

a trained pilot, very expensive and heavy systems that are safe enough to

protect the pilot, a large place for the pilot in the air vehicle and a large

and expensive propulsion system including the fuel to lift all these things.

Hence, the need for spending big amount of money for carrying some camera,

sensors or other kinds of payload is avoided for various aerial missions.

With the help of the emerging advanced electronic systems that are

smaller, lighter, computationally powerful and able to communicate and nav-

igate, building small size autonomous aircrafts with intelligent features has

become possible. As a result, there have been studies to develop UAVs in

many countries around the world to be independent from the others in this

strategic technology. This led to the emergence of an extensive literature on

4



both the theory and applications of UAVs.

1.1 UAV Studies in the Literature

Although research on UAVs has attracted interest of various research

groups and companies in the last couple of decades, building UAVs is an

old idea extending back to the early 20th century, to the very early days of

powered flight. The first aircraft designated as a UAV is the ”Aerial Tor-

pedo” built in 1916, which was essentially a manned airplane stabilized in

the air by a gyroscope produced by Lawrence and Elmer Sperry [34]. The

aim in this project was to load the airplane with a warhead, make it to fly

to a distant place and dive onto some enemy target, which is a similar idea

with today’s missiles. Due to the frequent technical problems encountered

at those times and disability to control remotely, usage of UAVs could not

become practical even during the World War II [28, 34].

After 1950s, especially during the Vietnam War and the Cold War, the

popularity of UAVs increased with the rise of advanced electronics for remote

control and onboard stabilization. Ryan Firebee was a well-known UAV,

which was essentially designed as a gun practice target for jet pilots and then

also used for reconnaissance. However, the rapid increase in the number of

UAVs is dated to 1990s, when modern long range communication systems,

advanced electronic sensors for flight and computers for image acquisition

and remote control became available. Since then, the level of autonomy and

number of UAVs and UAV designs grew continuously. It is reported that the

number of continuing UAV design projects reached 974 in 49 countries, 85 %

of them being for military utilization [28, 47].

It is apparent that the military use is still the main motivation behind
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the UAV projects. The main reason is obviously that the benefit of UAVs in

battlefield is very promising both for reducing the number of casualties and

for increasing the impact on the enemy [47]. UAVs, especially the small ones,

are generally very cost effective when compared with the other weapons in the

armies. They are also generally much simpler than manned fighter aircraft

and advanced missiles, so the countries that cannot build their own military

aircraft can afford designing their own UAVs to become independent of others

in military technology. An important reason for the low civil usage ratio of

UAVs is that these systems are still costly and not autonomous enough to

be widely accepted in civil use. Also, there is still a lack of civil aviation

regulations for UAVs on the entire world, so a UAV aimed for civil usage can

hardly be commercialized. As a result, the civil usage of UAVs is still mainly

in academic research projects.

With the emergence of advanced computer systems in compact sizes,

there has been a broad research attempt both to automatize and miniaturize

UAVs in the last couple of decades. These research attempts have branched

out UAVs to the main categories, which are the fixed-wing, rotary-wing,

and other designs. Research on fixed-wing UAVs has been the oldest among

all these researches and these aircrafts have been commercialized the most

among all the UAVs. Ranging from a couple of ten centimeters to a couple

of ten meters in wing span, these machines have become important tools of

reconnaissance and even attack departments of the armies [48]. They are

mainly categorized in four size groups which are HALE (High altitude, long

endurance), MALE (Medium altitude, long endurance), SUAV (Small UAV)

and MAV (Micro UAV) [27, 28].

HALE group consists of UAVs that are capable of flying at altitudes more
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than 30000 feet above sea level (MSL) with flight durations of more than 24

hours. This group includes very large UAVs like Northrop Grumman RQ-4

Global Hawk, NASA Helios, Pathfinder and Proteus and Lockheed Martin

RQ-3 Darkstar. MALE group incorporates UAVs that can fly up to 30000

feet MSL with long endurance, some of them being TAI Anka, NASA Altus,

Boeing X-45, General Atomics MQ-1 Predator and IAI Heron. HALE and

MALE UAVs are able to takeoff and land only on runways due to their size

and weights. SUAV group includes UAVs with altitude capabilities of up

to 10000 feet MSL and nearly 2 hours of endurance. This group contains

UAVs that utilize runways, launchers, parachutes or hand launching at the

same time. Some examples for these machines can be given as AAI RQ-

2 Pioneer, Boeing Scan Eagle, Integrated Dynamics Hornet and Luna X

2000. MAV group comprises the smallest UAVs such as Bayraktar Mini

UAV, AeroVironment Wasp, Lockheed Martin Desert Hawk, MiTex Buster

and EMT Aladin. Some examples of fixed-wing UAVs can be seen in Table

1.1.

The advantage of fixed-wing UAVs is that they are relatively simple to

control, are useful for wide-area surveillance and tracking, and have better

endurance [28]. Their disadvantages are their obligation for runway, launcher,

net recovery or parachutes for takeoff and landing [49] and the disability to

operate in urban areas and indoors due to flight speed requirements [50].

The literature of airplane design is filled by hundreds of books and papers,

and generally the autonomous controls for such aircrafts have tremendous

similarities with the already commercialized autopilot systems on commercial

airplanes. Today’s fixed wing UAVs are still generally controlled by a human

pilot at the ground station through wireless connection and use the very
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Table 1.1: Examples of Fixed-Wing UAVs

Category Model

Northrop Grumman RQ-4 Global Hawk

NASA Helios

HALE NASA Pathfinder

NASA Proteus

Lockheed Martin Darkstar

TAI Anka

NASA Altus

MALE Boeing X-45

General Atomics MQ-1 Predator

IAI Heron

AAI RQ-2 Pioneer

Boeing Scan Eagle

SUAV & MAV Bayraktar MINI UAV

AeroVironment Wasp

Lockheed Martin Desert Hawk
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similar design and autopilot systems as manned airplanes. However, there

are new control efforts to improve the path tracking qualities of such aircraft

like the CLF-based and adaptive control based works [51–53], and to enable

automatic landing on runways using [49, 54, 55] and ship boards [56]. In

addition, there are new efforts to incorporate image processing based abilities

into the flight. This second group of research consists of topics like vision

assisted landing [57–59], vision based forced landing site detection [60, 61]

and vision based detection and following of structures and moving vehicles

[62–64].

Research on rotary-wing UAVs began with around 30 years of delay com-

pared to fixed-wing UAVs due to the late emergence of lightweight yaw rate

gyro, which is unconditionally required for autonomous flight of these vehi-

cles [65]. Though, there is a large variety of these drones and research on

them due to their ability to perform aerial tasks in urban areas and indoors.

Rotary-wing UAVs require only some space for takeoff and landing in-

stead of a runway, do not require any forward speed to fly and are highly

maneuverable at all flight speeds [28]. They are very advantageous in these

areas at the expense of not having long flight endurance and high flight speeds

due to the rotating rotor [66] and of generating severe vibration transmit-

ted to the cameras [28]. Additionally, there is a large variety of off-the-shelf

rotary-wing aircrafts available for conversion to UAVs.

Rotary-wing UAVs are mainly categorized based on the rotor number and

configuration instead of size, since their function and control problems are

affected mainly by the configuration, not the size. Some of these categories

are conventional mono-rotor helicopters with tail rotor, coaxial contra rotor

helicopters, and multiple rotor helicopters [66, 67].
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Conventional mono-rotor UAVs are generally the large ones intended for

outdoor utilization due to the fact that the main rotor needs to have a large

diameter to carry reasonable payload consisting of the flight control electron-

ics, cameras and adequate amount of fuel or batteries [68]. Some examples

for this group of UAVs are Baykar Malazgirt, Yamaha R-Max, Zala 421-02,

Schiebel S-100, Helion of National University of Singapore [69, 70], Dragon

Warrior of US Naval Research Laboratories, Northrop Grumman MQ-8 Fire

Scout and Boeing Hummingbird [50, 65].

Coaxial contra rotor UAVs have the advantage of not wasting energy

for yaw-control and lifting useful payload at a more reasonable propeller

diameter when compared with mono-rotor UAVs. For this reason, they can

also be used in indoor applications. Some examples for this group of UAVs

are the µ Flying Robot by Seiko-Epson and Chiba University weighing only

12.3 g with an onboard camera and radio link for image transmission to the

ground station [34], EMT Fancopter [71] and Skybotix CoaX Autonomous

UAV Micro Helicopter.

Multiple rotor helicopters constitute a large proportion of the UAV heli-

copters, especially in the academic research area. These UAVs have several,

generally fixed-pitch airplane propellers, avoiding the requirement of mechan-

ically complex swashplate and transmission structures [72] and the thrusts

generated by the motors are changed through motor rotation speed changes.

There are a variety of them having three tilting rotors [67], three rotors with

only one tilting for yaw compensation [30], coaxial trirotors [47, 73], quad-

rotors [50, 74–78], hexa-rotors [79] and octo-rotors [80], the most popular

ones being quad-rotors that are also commercially available. Some examples

of fixed-wing UAVs can be seen in Table 1.2.
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Table 1.2: Examples of Rotary-Wing UAVs

Category Model

Baykar Malazgirt

Yamaha R-Max

Conventional mono-rotor Zala 421− 02

Schiebel S-100

Helion of National University of Singapore

EADS Sharc

Ezycopter EzyUAV

Seiko-Epson-Chiba University µFRII

Coaxial EMT Fancopter

Skybotix Coax

Trirotor of Université de Technologie de Compiègne

Draganflyer X4

Multi-rotor Microdrones MD4-1000

Quadrotor of Starmac Team

MikroKopter HexaKopter
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The research on these machines has been focused on their control and in-

telligent features rather than their mechanical and aerodynamic design, since

helicopter design has already a well-established theory. Due to the difficult

stability problem, the literature on rotary-wing UAVs is more focused on the

modeling of the flight dynamics [81–88], control [77, 89–93] and intelligent

autonomous flight tasks such as vision based tracking and fully autonomous

indoor flight.

There are numerous control algorithm studies both to improve stability

and maneuverability in all flight conditions and to improve autonomy through

obviating sensor errors using sensor fusion. There have been efforts to add

robustness against wind gusts using hierarchical back-stepping control and

high-gain unknown input observer for disturbance estimation [94], and to

improve stability using inertial measurement based Artificial Neural Network

(ANN) [95], model-independent PD controller, and quaternion based PD2

control with Coriolis force and gyroscopic torque compensation [76].

Full autonomous flight of rotary-wing UAVs is very vulnerable to sensor

measurement errors, especially to the position and orientation measurement

errors and small rotary wing UAVs generally use low cost sensors which can

produce relatively high measurement errors. For this reason, there is still sig-

nificant research on improving measurement qualities of the onboard sensors.

There are studies on fusion algorithms between the data of gyroscopes and

delayed orientation data from an off-board vision system [96], gyroscopes and

accelerometers [97], gyroscopes and inclinometers [98], INS and stereo vision

[95], GPS and INS [99–101], and optical flow sensor and GPS [80] to obli-

gate the drift and measurement nonlinearities of one sensor utilizing another

sensor’s data and studies to substitute some sensors with state observers [23].
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There are also studies on intelligent autonomous flight tasks such as vision

based tracking of a shape on the ground [102–107], vision based landing on

a predefined stationary or moving target [108–115], vision based scanning of

areas to identify injured people on the ground [116], vision based detection

of places in hazardous terrain available for landing [117–120], and even vision

based photogrammetry [121].

Various methods are applied for the path tracking ranging from linear

SISO and PD control [85–87] to non-linear ones like back-stepping, H∞ loop

shaping, state dependent Riccati equation, neural-network based controls [88,

122–129]. There is even a new model and control attempt for an eight-rotor

helicopter [130, 131], which has additional motors to separate the controls of

each DOF. There are also efforts for mono-camera vision-based path tracking

[15, 16, 132, 133] and stereo vision-based path tracking for more precise

localization.

Research on UAVs other than the fixed-wing and rotary-wing vehicles has

a wide-spread spectrum of designs. These UAVs are relatively new designs

and are focused on combining vertical takeoff, landing and flight capabili-

ties of rotary-wing vehicles with long range, high speed flight capabilities of

fixed-wing vehicles [134]. The common strategy of this type of UAVs for

combining these two separate flight types is operating motors vertically to

use motor thrust as a lift source in vertical flight and operating motors as for-

ward propulsion sources and wings as lift sources in horizontal flight. This

strategy generally adds some mechanical complexity and control problems

especially in transition between two flight modes, but combining these two

flight modes is considerably useful, so these features are worth to the encoun-

tered problems. Some examples for this group of UAVs are given in Table
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1.3.

Table 1.3: Examples of other than Fixed-Wing and Rotary-Wing UAVs

Category Model

Bell Eagle Eye

Tilt-rotor Smart UAV of KARI

AVT Hammerhead

AeroVironment SkyTote

Tail-sitter Aurora Flight Sciences Goldeneye 80

T-Wing of University of Sydney

HARVee of Arizona State University

Tilt-wing QTW of Chiba University and G.H. Craft

Tilt-wing UAV of Universita di Bologna

As seen in the table, some of these air vehicles are tilt rotors that only

tilt the rotors for flight mode conversion, such as Bell Eagle Eye [135], Smart

UAV of KARI [136], BIROTAN [137] and AVT Hammerhead, tail-sitters

that takeoff and land pointing upwards and fly pointing forwards such as

AeroVironment SkyTote, Aurora Flight Sciences Goldeneye 80 [30], T-Wing

and Vertigo of University of Sydney [138–140], canard rotor wings that stop

and fix the helicopter main rotor as a wing beyond sufficient horizontal flight
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speed such as Boeing X-50 Dragonfly [66], and tilt-wings that tilt the wing-

rotor groups for flight mode conversion, such as HARVee of Arizona State

University [141], and QTW of Chiba University and G.H. Craft [34, 142].

There are also some examples of morphing wing UAVs that are not intended

for vertical flight, instead are intended for optimizing the wings to a broad

range of flight speeds and altitudes such as Lockheed Martin Cormorant with

folding wings, NextGen Aeronautics MFX-1,MFX-2 with sweep changing

wings, ILC Dover Apteron with inflatable wings [27].

1.2 Motivation

The development of UAVs is an exciting topic for research. It is both a

very critical topic for national security and independence on this key technol-

ogy and an area that has the potential to grow to very far extends in terms

of market and technological jumps. Additionally, research on this topic leads

to research on the operation, problems and solutions to the problems of var-

ious sensors, digital circuits, advanced control systems, vision based control

approaches, codes in real-time systems, power sources, actuators, system

integration, high technology materials with high endurance and low weight,

aerodynamics and optimization. Even though it is difficult to handle all these

aspects, study on this topic is a research on the entire focus of mechatronics.

In this thesis, the aim is to design, produce and fly an electric powered

VTOL (Vertical Takeoff and Landing) UAV, that has high speed and long

endurance capabilities. There have been several designs that could be imple-

mented, some of them being fixed-wing with an additional vertical rotor for

vertical flight, dual or quad tilt-rotor, tail-sitter and dual or quad tilt-wing.

Fixed-wing UAV with an additional vertical rotor has the advantage of
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being a well-known airplane structure, however it requires a complex contra-

rotating vertical rotor mechanism with cyclic control on the rotors for stable

vertical flight. This design would not support a reasonable amount of batter-

ies to be carried for reasonable flight durations. Dual tilt-rotor and tilt-wing

would again require cyclic control on the rotors, which is a mechanically com-

plex system and requires very long diameter propellers to carry reasonable

amount of batteries. Tail-sitter has been a good choice due to its simplicity,

however its body rotates for the transition and the image captured by the

surveillance camera is affected from these motions.

The decision between quad tilt-rotor and quad tilt-wing is given in the

favor of quad tilt-wing since the air flow produced by the rotors is blocked

at a minimum level in tilt-wing structure. Quad tilt-wing also has the ad-

vantage of being a quad-rotor that does not require any cyclic control on the

propellers, which makes it mechanically simple and reliable. Additionally,

the body does not undergo rotations for the transition between the modes,

which makes it appropriate for surveillance through a camera on the body.

Even though, quad tilt-wing UAV with the performance goals determined

in this project is very challenging both in terms of design and control. De-

signing the body lightweight and stiff at the same time with the additional

rotating mechanisms for the wings is very challenging. Determination of the

type of the motors, propellers and batteries is another severe challenge. Since

fixed-pitch propellers are used in both hovering at zero flight speed and at

high speeds, and since the system needs to be somehow optimal in the entire

speed range, motor propeller couples need to be investigated thoroughly. To

meet the design weight specifications, Li-Po batteries are chosen among a

variety of them to find the lowest weight/capacity battery type that is also
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capable of flying this UAV.

Furthermore, designing the flight control electronics and its software, in-

tegrating it with the sensors, actuators and high level control computer in

the supervisory control system, and developing the control methodology for

achieving stable flight on a flight mode switching UAV is a challenge by itself.

The model of the system and consequently the response of the system to the

control efforts changes as the UAV changes its wing angles and horizontal

speed and these changes are quite difficult to predict without experimental

data acquired from the wind tunnel tests. As a result, the control variables

keep up with the air speed of the UAV for stable and smooth flight in the

entire speed range.

1.3 Thesis Organization and Contributions

In Chapter 2, the aerodynamic design and the result of wind tunnel tests

are presented. The aerodynamic design is carried out to maximize the aero-

dynamic efficiency and determine safe flight characteristic of this new type

of air vehicle. The propulsion system components and the power source are

selected for low current consumption in the entire horizontal speed range

and long flight duration. Also, the aerodynamic design of SUAVI is per-

formed utilizing Motocalcr and NASA FoilSimr II, and running a series of

ANSY Sr CFD simulations.

In the wind tunnel tests, first, tests on one wing of SUAVI are conducted

to verify results obtained in the tests by comparing with the ones existing in

the literature. Additionally, the winglet design is optimized testing several

shapes and sizes. After obtaining the optimal design for the winglet, nominal

flight and pitching flight tests are conducted to obtain tabular data on the
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wing angle of attacks and motor driver PWMs for both nominal flight and

flight with nominal values except the pitching moment. These tests are

repeated for 0-17 m/s air speeds.

In Chapter 3, the mechanical system design and the prototyping of SUAVI

are detailed. In the mechanical system design, the material to be used in the

prototype is determined and tested by carrying out mechanical tests in Uni-

versal Testing Machine. Also, the design is conducted taking the weight

and strength requirements into account, and the placement of the parts are

decided based on their functions in the air vehicle and their weights affect-

ing the inertia and stability characteristics of SUAVI. The first prototype is

produced, and after several flight tests, the mechanical system design is re-

vised for better mechanical properties and increased utility. Also, the second

prototype is produced for the usage in flight tests.

In Chapter 4, a dynamical model of the system is obtained using Newton-

Euler formulation. A supervisory control system is designed with the high-

level and low-level controllers. GPS based hovering and GPS based waypoint

navigation are also considered along with low-level attitude and altitude con-

trollers.

In Chapter 5, the design and production of low-level control circuit, its

integration with the sensors and actuators, filters and sensor fusion algorithm

used to obtain reliable orientation estimates are detailed. The overall flight

control system is also discussed.

In Chapter 6, the flight tests of SUAVI with robust hover, vertical takeoff

and landing, and horizontal flight are demonstrated. The performance of the

SUAVI in these tests is evaluated.

Finally, in Chapter 7, the thesis is concluded with several remarks and
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the future directions are indicated.

The contributions of the thesis can be summarized as follows:

• The conceptual design of a novel quad tilt-wing unmanned aerial vehicle

(SUAVI: Sabancı University Unmanned Aerial VehIcle) is carried out

taking the flight duration, flight speed, size, power source and missions

to be achieved into account.

• The actuation system (motor, motor speed controller and propeller

set) is determined to find the most optimal choice in the entire speed

range, from hovering at zero flight speed up to the highest planned

flight speed.

• The aerodynamic design is carried out to maximize the aerodynamic

efficiency and to determine safe flight characteristics.

• The mechanical design of SUAVI is conducted to satisfy criteria such

as strength, lightness and conformity to the missions to be realized.

• SUAVI is prototyped using carbon composite material.

• A half-body prototype of SUAVI is designed and produced for wind

tunnel tests to determine SUAVI’s aerodynamic characteristics.

• A full non-linear dynamical model which includes aerodynamic distur-

bances is obtained using Newton-Euler formulation.

• A supervisory control architecture is implemented on SUAVI, where

a Gumstix microcomputer behaves as a supervisor which orchestrates

switching of low-level controllers into the system. Supervisory control
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is responsible for decision making, monitoring states of the vehicle and

safety checks during the flight.

• The high-level controller generates attitude references for the low-level

controllers using GPS data.

• PID controllers are implemented for both high-level and low-level con-

trol systems.

• A disturbance observer is utilized to estimate and compensate for the

external disturbances acting on SUAVI.

• Various analog and digital filters are implemented to smooth out noisy

sensor measurements.

• Extended Kalman filter is utilized to obtain reliable orientation infor-

mation by fusing data from low-cost MEMS inertial sensors such as

gyros, accelerometers and the compass.

• Real-time control software is developed for the whole flight control

system.

• SUAVI can operate in a semi-autonomous flight mode by communicat-

ing with the ground station.

• A quadrotor test platform (SUQUAD: Sabancı University QUADrotor)

is produced and used for the initial performance tests of the flight

control system.

• Performance of the flight control system is verified by numerous sim-

ulations and real flight experiments. VTOL and horizontal flights are

successfully realized.
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1.4 Notes

This Ph.D. thesis work is carried out in the context of the TÜBİTAK (The

Scientific & Technological Research Council of Turkey) project “Mechanical

Design, Prototyping and Flight Control of an Unmanned Autonomous Aerial

Vehicle” under the grant number 107M179. Five progress reports have been

submitted to TÜBİTAK and all of them are evaluated as being successful.

The project is in its final stage.

1.4.1 Journal Papers

• Design and Development of a Tilt-Wing UAV, E. Cetinsoy, E. Sırımoglu,

K. T. Oner, C. Hancer, M. Unel, M. F. Aksit, İ. Kandemir, K. Gulez,

Turkish Journal of Electrical Engineering and Computer Sciences, (forth-

coming), 2011.

• Mathematical Modeling and Vertical Flight Control of a Tilt-Wing

UAV, K. T. Oner, E. Cetinsoy, E. Sırımoglu, C. Hancer, M. Unel,

M. F. Aksit, K. Gulez, İ. Kandemir, Turkish Journal of Electrical En-

gineering and Computer Sciences, (forthcoming), 2011.

• Aerodynamic Characterization of a Quad Tilt-Wing UAV via Wind

Tunnel Tests (to be submitted)

• Mechanical and Aerodynamic Design of a Quad Tilt-Wing UAV (to be

submitted)

• Hierarchical Control of a Quad Tilt-Wing UAV (to be submitted)
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1.4.2 Published Conference Papers
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15-17, 2010.
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Pozisyon Denetleyici Tasarımı, C. Hançer, K. T. Öner, E. Sırımoğlu,

E. Çetinsoy, M. Ünel, TOK’10: Otomatik Kontrol Ulusal Toplantısı,

İstanbul, September 21-23, 2010.

• LQR and SMC Stabilization of a New Unmanned Aerial Vehicle, K. T.

Oner, E. Cetinsoy, E. Sirimoglu, C. Hancer, T. Ayken, M. Unel, Pro-

ceedings of International Conference on Intelligent Control, Robotics,

and Automation (ICICRA 2009), Venice, Italy, October 28-30, 2009.

• Döner-Kanat Mekanizmasına Sahip Yeni Bir İnsansız Hava Aracının

(SUAVİ) Modellenmesi ve Kontrolü, K. T. Öner, E. Çetinsoy, E.

Sırımoğlu, T. Ayken, M. Ünel, M. F. Akşit, İ. Kandemir, K. Gülez,

TOK’09: Otomatik Kontrol Ulusal Toplantısı, İstanbul, October 13-

16, 2009.

• Yeni Bir İnsansız Hava Aracının (SUAVİ) Prototip Üretimi ve Algılayıcı-

Eyleyici Entegrasyonu, E. Çetinsoy, E. Sırımoğlu, K. T. Öner, T.
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Ayken, C. Hançer, M. Ünel, M. F. Akşit, İ. Kandemir, K. Gülez,

TOK’09: Otomatik Kontrol Ulusal Toplantısı, İstanbul, October 13-

16, 2009. (Best paper award)

• Dynamic Model and Control of a New Quadrotor Unmanned Aerial Ve-

hicle with Tilt-Wing Mechanism, K. T. Oner, E. Cetinsoy, M. Unel,

M. F. Aksit, I. Kandemir, K. Gulez, Proceedings of International Con-

ference on Control, Automation, Robotics and Vision (ICCARV’08),

Paris, France, November 21-23, 2008.

• İnsansız Hava Araçları için Test Düzeneği Tasarımı ve Üretimi, A. Eray

Baran, Cevdet Hançer, Egemen Çalıkoğlu, Emre Duman, Ertuğrul

Çetinsoy, Mustafa Ünel, Mahmut F. Akşit, TOK’08: Otomatik Kon-

trol Ulusal Toplantısı, İstanbul, November 13-15, 2008.

• Yeni Bir İnsansız Hava Aracının (SUAVİ) Dikey Uçuş Kipi İçin Di-

namik Modeli ve Yörünge Kontrolü, Kaan Taha Öner, Ertuğrul Çetinsoy,

Mustafa Ünel, İlyas Kandemir, M. F. Akşit, K. Gülez6, TOK’08: Otomatik

Kontrol Ulusal Toplantısı, İstanbul, November 13-15, 2008.

• Yeni Bir İnsansız Hava Aracının (SUAVİ) Mekanik ve Aerodinamik

Tasarımı, Ertuğrul Çetinsoy, Kaan T. Öner, İlyas Kandemir, Mah-

mut F. Akşit, Mustafa Ünel, Kayhan Gülez, TOK’08: Otomatik Kon-

trol Ulusal Toplantısı, İstanbul, November 13-15, 2008.
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1.5 Nomenclature

Symbol Description

a total acceleration of the aerial vehicle

ai amplitude of the sinusoids in wind model

ax x component of the reference acceleration vector

ay y component of the reference acceleration vector

az acceleration of the aerial vehicle along z axis

axy reference acceleration vector

A area of the wing

Ak state transition matrix

bg bias in gyros

cD drag coefficient

cL lift coefficient

C(ζ) Coriolis-centripetal matrix

D(ζ, ξ) external disturbance vector

ėat along track error rate

ect cross track error

ėct derivative of cross track error

ex position error of the aerial vehicle along x axis

ėx derivative of position error along x axis

ey position error of the aerial vehicle along y axis

ėy derivative of position error along y axis

E rotational velocity transformation matrix

E(ξ)w2 system actuator vector

Fd forces due to external disturbances

FD drag forces

Fg gravity force

FL lift forces

Ft total external force acting on the aerial vehicle

Fth thrust force created by rotors

Fw aerodynamic forces generated by the wings
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Symbol Description

G gravity matrix

Hk observation matrix

Ib inertia matrix of the aerial vehicle in body fixed frame

Ixx moment of inertia around xb in body frame

Iyy moment of inertia around yb in body frame

Izz moment of inertia around zb in body frame

J Jacobian transformation between generalized vectors

Jprop inertia of the propellers about their rotation axis

Kk Kalman gain

Katp proportional gain for along track controller

Kati integral gain for along track controller

Kctp proportional gain for cross track controller

Kctd derivative gain for cross track controller

Kcti integral gain for cross track controller

Kx,p proportional gain for controller along x axis

Kx,d derivative gain for controller along x axis

Kx,i integral gain for controller along x axis

Ky,p proportional gain for controller along y axis

Ky,d derivative gain for controller along y axis

Ky,i integral gain for controller along y axis

ll rotor distance to center of gravity along xb in body frame

ls rotor distance to center of gravity along yb in body frame

Lh horizontal gust length scale

Lv vertical gust length scale

m mass of the aerial vehicle

M inertia matrix

Md torques due to external disturbances

Mgyro gyroscopic torques

Mnom nominal inertia matrix

Mt total torque acting on the aerial vehicle

Mth rotor torques
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Symbol Description

Mw aerodynamic torques due to lift/drag forces

M̃ difference between actual and nominal inertia matrices

ni unit normal vector perpendicular to path P

Ob origin of body fixed frame

Ow origin of inertial (world) frame

O(ζ)w gyroscopic matrix

p angular velocity of the aerial vehicle along xb in body frame

P reference path generated by waypoints

Pw position of the aerial vehicle in inertial (world) frame

Ṗw linear velocity of the aerial vehicle in inertial (world) frame

Pk|k−1 a priori error covariance matrix

Pk|k a posteriori error covariance matrix

q angular velocity of the aerial vehicle along yb in body frame

Q process covariance matrix

r angular velocity of the aerial vehicle along zb in body frame

R measurement covariance matrix

Rx elementary rotation around x axis

Ry elementary rotation around y axis

Rz elementary rotation around z axis

Rwb orientation of body frame wrt. the world frame

Rbw orientation of world frame wrt. the earth frame

St exponentially weighted moving average filtered sonar measurement at time t

St−1 exponentially weighted moving average filtered sonar measurement at time t-1

ti unit tangent vector along path P

T sampling time

ui virtual control inputs

uH high-level input signal

uL low-level input signal

vw time dependent estimate of wind vector

v0
w static wind vector

vx linear velocity along xb in body fixed frame
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Symbol Description

vy linear velocity along yb in body fixed frame

vz linear velocity along zb in body fixed frame

vα airstream velocity

Vw linear velocity of the aerial vehicle in inertial (world) frame

Vb linear velocity of the aerial vehicle in body fixed frame

wi propellers rotational speed

xb x axis of body fixed frame

xd desired reference position

xd
i waypoints of the path P

xk state of the system

x̂k|k−1 a priori state estimate

x̂k|k a posteriori state estimate

xn unit vector along xw in inertial (world) frame

x(t) instantaneous position of aerial vehicle provided by GPS

xw x axis of inertial (world) frame

X position of the aerial vehicle along xw in inertial (world) frame

Ẋ linear velocity of the aerial vehicle along xw in inertial (world) frame

yb y axis of body fixed frame

yH high-level output signal

yL low-level output signal

yn unit vector along yw in inertial (world) frame

yw y axis of inertial (world) frame

Y position of the aerial vehicle along yw in inertial (world) frame

Ẏ linear velocity of the aerial vehicle along yw in inertial (world) frame

Yt−1 raw sonar measurement at time (t-1)

zb z axis of body fixed frame

zd desired reference altitude

zw z axis of inertial (world) frame

Z position of the aerial vehicle along zw in inertial (world) frame

Ż linear velocity of the aerial vehicle along zw in inertial (world) frame

α weighting scale in exponentially weighted moving average filter
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Symbol Description

αw attitude of the aerial vehicle in inertial (world) frame

αi effective angle of attack

α̇w time derivative of attitude in inertial (world) frame

β weighting parameter

∆S difference between two consecutive sensor readings in exponentially

weighted moving average filter

Ωb angular velocity of the aerial vehicle in body fixed frame

Ωi randomly selected frequency in wind model

Ωw time derivative of attitude in inertial (world) frame

φ roll angle, angular position around xw

φref reference roll angle

θ pitch angle, angular position around yw

θref reference pitch angle

ψ yaw angle, angular position around zw

φ̇ time derivative of angular position around xw

θ̇ time derivative of angular position around yw

ψ̇ time derivative of angular position around zw

θi angle of attack for each wing

ρ air density

λi torque/force ratio

ζ generalized velocity vector of the aerial vehicle

ξ position and orientation of the aerial vehicle in inertial (world) frame

ϕi phase shift in wind model

Φh(Ω) power spectral density for horizontal winds

Φv(Ω) power spectral density for vertical winds

σh horizontal turbulence intensity

σv vertical turbulence intensity

ηk process noise

νk measurement noise

τdist total disturbance

τ̂dist estimated disturbance
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Chapter 2

2 Aerodynamic Design and Wind Tunnel Tests

The design of SUAVI is shaped based on the tasks that it will perform.

It is designed as a compact electric powered air vehicle for both outdoor and

indoor applications. It has four tilting wings with the motors mounted on the

mid-span leading edge of the wings. Thus, the wings occlude the rotor slip-

stream at the minimum level all the time. The wings are in vertical position

during hovering, and vertical takeoff and landing. In this configuration, the

rotors produce vertical thrust and steady flight is established using the con-

trol on thrusts generated by RPM control of constant pitch propellers. When

forward motion is required, the wing angle of attacks are reduced based on

the speed requirement and rotor thrusts are adjusted accordingly.

2.1 Aerodynamic Design

The aerodynamic design of SUAVI is made based on the operational re-

quirements. The aircraft is aimed to operate in surveillance missions such as

traffic control, security checks, and disasters including indoor-outdoor fires,

floods, earthquakes. To satisfy the needs of these tasks, it is planned to take-

off and land vertically, hover and fly in an airspeed range of 0-60 km/h both

for stationary and in-motion surveillance.



It is also aimed to be compact for indoor surveillance and mechanically

simple for operational reliability. To meet such flight capabilities with these

features, SUAVI is designed as a quad tilt-wing air vehicle on which all four

motors are mounted on the mid-span leading-edges of the wings and the

wings are tilted in horizontal-vertical position range (Fig. 2.1).

Motors rotate constant pitch propellers for mechanical simplicity, altering

thrust through RPM change. In this design, wings are tilted to vertical

position to form a quad-rotor helicopter using only motor thrusts for lift on

vertical takeoff, landing and hovering.

When horizontal flight is required, wings are tilted gradually to the appro-

priate angles of the desired speed and motor thrusts are adjusted accordingly.

At high speeds, wings are tilted to nearly-horizontal position to generate lift

and motors generate forward thrust, forming a four motor tandem wing air-

plane. The design length and wingspan of the aircraft are both 1 m and the

design weight is 4.5 kg.

The energy source for the propulsion is determined as electric since elec-

tric motors do not produce any poisonous gases enabling indoor flight, are

quieter, more reliable, easier to adapt to computerized control system and

more responsive to instant control requirements for constant pitch propeller

utilization. The vertical flight endurance of SUAVI is planned to reach half

hour whereas its horizontal flight endurance is to exceed one hour. To satisfy

such a demand using electric power, it is necessary both to have an energy-

efficient propulsion system with high capacity Li-Po batteries and a body

shape that is aerodynamically optimized for the task.
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(a)

(b)

(c)

Figure 2.1: CAD model of SUAVI in vertical (a), transition (b) and horizontal
(c) flight modes
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2.1.1 Propulsion System Design

To have an energy-efficient propulsion system for long time endurance of

SUAVI, motor-propeller couples are chosen to have high efficiencies in both

static and dynamic thrust generations in the desired flight speed range.

First, the performances of the electric motor, motor drivers and pro-

pellers are investigated both comparing the technical features of these sys-

tems through the catalogs and using the MotoCalc program. Motocalc is

both a database of electric propulsion equipment and an accurate suggestion

software for electric powered radio controlled (RC) airplanes. This program

has the additional feature of simulating the conditions with selected motor,

motor driver, battery, propeller, transmission, air pressure and air temper-

ature and delivering the air speed, current, voltage, output power, thrust,

motor RPM, the relative speed of the slipstream of the propeller wrt. the

airplane and efficiency of the system for various throttle settings.

In the selection of the motor type, the important criteria are decided

as producing the required thrusts in both vertical and horizontal flights of

the SUAVI drawing the least possible current, being durable in mechanical

aspects lightweight, and having large air passages for effective cooling in

every whether condition during the flight. The motors need to be capable

of rotating the propellers at high RPMs to produce sufficient thrust at the

highest target speed during the horizontal flight, so they need to have high

output power. They are also to produce maximum thrust with some excess

on 4.5
4

( kg
motor

) × √
2 = 1.59 kg

motor
to be able to carry SUAVI even without

contribution of the wing lifts at 45◦ angle of attack. In this formula,
√

2 is

the factor that converts the required vertical force component to the required

motor thrust force that is inclined at an angle of 45◦ wrt. the horizontal.
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The lift of the wings with commonly applied airfoil shapes begin to de-

crease beyond 15◦ angle of attack due to the separation, however it usually

decreases up to 40-50 % at 45◦ angle of attack, depending on the preferred

airfoil type [143]. When a motor with that amount of power is chosen, there

is still excess power safe enough for stabilizing the UAV, which is inevitably

required. Durability is a combined result of simplicity and high-quality man-

ufacturing. To satisfy the durability requirement in an RC hobby type motor,

direct drive motor with a quality brand is the most reasonable choice, which

also increases the transmission efficiency.

Lightness is also an important issue that can be solved by reduction of the

size and usage of lightweight materials. As a consequence of investigations

done both in Motocalc and catalogs, Great Planes Rimfire 42-40-800 is cho-

sen among a variety of RC aircraft electric motors, since it is a high efficiency

direct drive brushless motor with strong Neodymium magnets and large hub

diameter enabling high torque generation with relatively low current require-

ment. It has large cooling holes for effective cooling in long duration flights,

and considerably low weight due to its aluminum body.

As a result of the high torque, this motor can utilize large diameter pro-

pellers increasing the propeller efficiency in the desired flight speed range.

For controlling the motor speeds, Great Planes Electrifly Silver Series 35

motor driver is preferred, which is capable of delivering up to 35 A contin-

uously, which is already higher than the 32 A maximum allowed current of

the chosen motor.

To determine the propeller type to be used on SUAVI, first a thrust test

bench is designed and produced (Fig. 2.2). This thrust test bench is a system

with a pivoted arm that is connected to the motor on one end and to a load
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cell on the other end, both staying perpendicular to the arm. The motor

shaft axis is perpendicular to the ground to be able to test the motor thrust

both without any obstacle at back as in the horizontal flight and with an

obstacle like ground as in the vertical flight especially at low altitudes.

The motor on the test bench can be powered both by a switching power

supply with high current capability for motor thrust tests and by batteries

for collecting data on the battery performance on the propulsion system.

The motor power reference pulses are generated by an electric circuit with a

microcontroller, that is also designed and produced in the project.

Figure 2.2: The motor test bench

For the decision on the propeller type to be used on SUAVI, a variety

of APC electric motor propellers from size 11′′ × 8′′ to 16′′ × 5′′ (former

number: diameter in inch, latter number: pitch in inch) are tested on the

thrust test bench with the selected motor. This size range for the propellers

is determined based on the suggested propeller size range in the technical

specs of the motor and the simulations conducted in Motocalc.

For high static thrust efficiency at vertical flight large diameter low pitch

propeller is preferred, whereas high pitch propeller or very high motor speed

is required to generate sufficient thrust at high speeds. Since constant pitch
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propellers are utilized, the propellers are selected among moderate pitch val-

ues. The motor-propeller couples are tested for maximum thrust (Table 2.1)

and current for nominal thrust per motor during hover (Table 2.2). These

tests are conducted using both 11.1 V and 14.8 V input voltages, which are

the standard voltages of 3-cell and 4-cell in series Li-Po batteries, to de-

termine which battery voltage is more preferable for powering the system.

Table 2.1: Maximum thrust test results

11.1 V 14.8 V

Prop size Current Thrust Thrust/current Power Current Thrust Thrust/current Power

(A) (g) (g/A) (W) (A) (g) (g/A) (W)

11′′ × 8′′ 25.3 1260 49.8 280.8 32.0 1735 54.2 473.6

12′′ × 8′′ 31.5 1577 50.1 349.6 32.0 1860 58.1 473.6

13′′ × 6.5′′ 32.0 1812 56.6 355.2 32.0 2130 66.6 473.6

13′′ × 8′′ 32.0 1690 52.8 355.2 32.0 1955 61.1 473.6

14′′ × 7′′ 32.0 1876 58.6 355.2 32.0 2157 67.4 473.6

14′′ × 8.5′′ 32.0 1728 54.0 355.2 32.0 1964 61.4 473.6

As a result of these tests, the appropriate propeller size is chosen as 14′′×
7′′, which is a moderate pitch propeller size, due to its superior performance

compared with other sizes. The second best propeller with size of 13′′ ×
6.5′′ has 4-5 % less performance in terms of maximum thrust and current

consumption. Likewise, when the maximum speed potentials of these two

propeller sizes are investigated in Motocalc, it is observed that 14" × 7′′

propeller is sufficient to deliver 221 g thrust per motor even at 70 km/h

airspeed, while 13′′×6.5′′ propeller suffices to deliver nearly the same amount
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Table 2.2: Thrust test results for nominal hover flight thrust

11.1 V 14.8 V

Prop size Current Thrust/current Power Current Thrust/current Power Saving
(A) (g/A) (W) (A) (g/A) (W) (%)

11′′ × 8′′ 21.4 52.6 237.5 16.2 69.4 239.8 1

12′′ × 8′′ 18.4 61.1 204.2 13.9 80.9 205.7 1

13′′ × 6.5′′ 14.6 77.0 162.0 11.4 98.7 168.7 4

13′′ × 8′′ 16.3 69.0 180.9 12.5 90.0 185.0 3

14′′ × 7′′ 13.9 80.9 154.3 10.8 104.2 160.0 4

14′′ × 8.5′′ 15.6 72.1 173.2 11.8 95.3 174.6 1

of thrust at 60 km/h.

For yaw balance in flight with high angle of attacks, both clockwise and

counter-clockwise propellers with the selected size are coupled with motors.

This also enables the control of yaw in vertical flight mode through motor

RPM differentiation between clockwise and counter-clockwise rotating pro-

pellers. Additionally, the tests with these two input voltages revealed that

using 11.1 V input voltage results in 4 % less power consumption from the

batteries for the same thrust values.

Usage of 11.1 V is definitely more preferable also for the supply of the

control system. The control system exploits additional energy from the same

battery group and generally the components use either 3.3 V or 5 V. These

low voltages are obtained through the linear regulators on the control sys-

tem, which simply lower the voltages by converting the unneeded amount of

voltage to heat and exhausting it to air. Even if the control system used only

5 V, with a current draw of 1 A by the control system, the heat generated

on the voltage regulators would increase from 6.1 W to 9.8 W. This would
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require larger and heavier heat sinks in the fuselage.

Consequently, 11.1 V is determined as the operating voltage for the mo-

tors, so 3-cell in series Li-Po batteries are used for energy storage. With this

voltage, motor and propeller size combination, the static thrust for nominal

vertical flight is generated through the consumption of 13.9 A current. This

means that hypothetically (13.9 A x 4) x 0.5 h = 27.8 Ah battery capacity

is enough to hover SUAVI for half hour.

However, due to the fact that battery voltage becomes less as its capacity

is exploited, the current requirement increases slightly as time passes. The

voltage drop profile is dependent on several factors like quality, age, inner

impedance of the battery and even the humidity and temperature of the air.

Due to the weight constraints for the batteries in SUAVI, a total of 30 Ah 11.1

V Li-Po battery could be integrated in the system, which constitutes nearly

2.4 kg (53 %) of the total flight weight. Though, 26 minute long vertical only

flight with excess battery charge after the landing is successfully achieved. 30

minutes could also be tested, but this has not been the focus on the project

at that level.

Utilizing the experimental data obtained from the motor performance

tests, the generally observed linear relationship between the thrust and square

of propeller angular velocity (ω2) is verified (Fig. 2.3). This is especially im-

portant for the modeling of the system and implementation of model based

control for flight.

2.1.2 Aerodynamic Design

Aerodynamic optimization of SUAVI begins with the decision that it is

an unmanned aerial vehicle with four wings, two of them placed at front

37



0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

0

200

400

600

800

1000

1200

1400

1600

1800

    ω
i
2 [rad2/s2]

th
ru

st
 fo

rc
e 

[g
]

Figure 2.3: Relationship between the thrust and square of angular velocity
for 14x7 propeller

and two of them placed at rear side of the fuselage. The aim of the aerody-

namic optimization is to minimize air drag while generating sufficient lift for

flight and achieving this goal with the least complicated and most lightweight

structure.

The aerodynamic design of the fuselage is focused on reducing the drag

coefficient (CD) of the fuselage, improving the aerodynamic interaction be-

tween the fuselage and the wings, and reducing the cross section.

The fuselage is designed as a rectangular prism with rounded nose section

and a back section with gradually decreasing thickness for high aerodynamic

efficiency. When looked from the top of the air vehicle, the fuselage resembles

a symmetrical wing with long straight sides (Fig. 2.4 a). This shape has two

main aerodynamic advantages. The first one is the low drag coefficient due

to this shapes resemblance to water drop, that reduces the turbulence at the

front and the back.
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The second one is the behavior of the straight sides as a flow boundary

to prevent additional loss. The fuselage sides behave as spanwise air flow

boundaries at wing roots for up to 20◦ angle of attack with the help of high

placement of the wings. The straight sides extend from the leading edge of

the front wing to the trailing edge of the rear wing at 0◦ angle of attack (Fig.

2.4 b).

(a)

(b)

Figure 2.4: Top (a) and side (b) views of the fuselage

This prevents the rise of additional induced drag due to spanwise vortices

on the wing roots. Additionally, the fuselage dimensions are chosen to be as

small as possible, which is 8 cm wide and 10 cm high, that is just enough

to make room for electronic control systems, onboard camera and the high

torque wing tilting servo motors. There is also a vertical stabilizer at the

back of the fuselage for yaw stabilization.

The shape of the wings is decided taking the speed range, wing span

limitation and efficiency into consideration. First, the wing angle of attacks

are planned to be 3◦, which is the most efficient angle of attack for a wing in

terms of lift to drag ratio [144], at the maximum target speed to make that

speed easily reachable. Second, for deciding on the chord length, camber

ratio and the thickness requirements of the airfoil, various airfoil simulations

are run for a wide range of angle of attacks, flight speeds and atmospheric
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conditions utilizing NASA Foilsim II and Motocalc’s lift and drag coefficient

estimator.

Consequently, an airfoil with 25 cm chord length, 12 % thickness and 4 %

camber value, which resembles to NACA 4412 wing profile, is determined as

a starting point of the wing design for the further simulations that are to be

conducted in ANSYS environment. It is obvious that these results may most

probably not reflect the final shape at all, since they are the considerations

without the effect of additional air flow generated by the motors and are based

on 2D wing model, that takes the advantage of the infinite wing assumption.

However, there is always the problem of initial values to manipulate during

the iterations, and this airfoil design has been a good starting point.

For the preliminary tests, a full scale wing with the determined airfoil

shape is produced using carbon composite tubes and depron. An impor-

tant experiment, in which the test wing is utilized, is the measurement of

additional lift and the loss of the thrust due to the wing occlusion on the

slipstream of the motor (Fig. 2.5).

Figure 2.5: The test system for the effect of wing occlusion on the slipstream

This experiment is performed by adding a precision balance to measure

the instant weight of the wing and measuring the motor current to produce

the hovering nominal thrust (Table 2.3). Wing weight during the running
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of the motor with several choices of both the propeller-leading edge distance

and the spanwise distance of wing occlusion behind the propeller is also

measured.

Table 2.3: Thrust test values for the effect of wing occlusion

Propeller-leading edge distance Wing occlusion behind the propeller Current for nominal vertical flight
(cm) (cm) (A)

4 17.5 13.9

4 22.5 14.3

4 27.5 14.1

4 32.5 14.1

4 37.5 14.3

8 17.5 14.3

8 22.5 14.2

8 27.5 14.2

8 32.5 14.2

8 37.5 14.2

In Table 2.3, it is observed that occluding the propeller slipstream by the

wing fully has a factor of at most 3 % on the motor current, which can be

neglected when the benefit of delaying the air separation on the wing to far

higher angle of attacks is taken into consideration.

It is also understood that setting the propeller-leading edge distance as

4 cm or 8 cm does not have a great effect on the performance. Hence, it is

decided to keep this value as 4 cm to simplify the mechanical design and save

some weight of the linkage parts between the motor and the wing. During

these tests, it is also noted that the measurement of the wing weight is

decreased for around 80 g when the motor runs, which means that the wings

have some tendency to pull SUAVI backwards during hovering with a total

of around 3.2 N.
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To have a more complete insight on the lift and drag forces, torsion and

bending moments generated by the wings, the performance of the vortex de-

creasing winglets at the wing tips and the effects of the consecutively running

motors with contra rotation directions, and to find the optimum wing shape

iteratively, ANSYS air flow simulations are also performed for various angle

of attacks, throttle settings and wind speed. In these tests, the slipstream

backward linear velocity and rotational velocity are taken from the the esti-

mations of the Motocalc program, that has proven to have reasonably accu-

rate estimations when compared with the thrust test bench measurements.

To conduct these simulations, the coordinate data of the airfoil shape are

obtained from the JavaFoilr program (Fig. 2.6).

Figure 2.6: NACA 2410 wing profile

The wings with the determined chord length, wing span and shape, and

the fuselage with a shape providing reasonable aerodynamic features, feasi-

bility of production and sufficient room for the designed electronic control

system and wing tilting mechanisms are drawn in SolidWorksr (Fig. 2.10).

The 3D CAD model of SUAVI is imported into the ANSYS air flow simula-

tion environment, an air flow closed volume is defined for the simulation and

meshing is applied.

The boundaries for the simulation are defined as symmetry at the plane,

which cuts the fuselage vertically into two equal parts, zero air speed on the

surfaces of the UAV due to the stiction, tested air speed at the incoming
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side of the closed volume and ambient air pressure at the outgoing side of

the closed volume. Finally, the solver is run to obtain the results of the

simulations.

As a consequence of all of these simulations, it is observed that using

relatively long chord length with large winglet instead of high wing thickness

is more preferable to increase efficiency. This is due to the facts that at high

angle of attacks large chord length supplies large inclined surface against the

air flow and at high speeds thicker wing causes more drag. In the literature,

it is known that thinner and less cambered wings suffer from leading edge

separation at lower angle of attacks, which causes stall [145]. However, wings

of SUAVI are nearly fully submerged in the slipstream of the propellers and

the high speed slipstream prevents the air separation even at high angle of

attacks and supplies additional lift.

In the simulations, it is revealed that NACA 4412 airfoil generates more

than necessary lift at the expense of additional drag due to the additional

airspeed of 25-36 km/h on the wings caused by the propeller slipstreams.

Hence, the simulations are repeated with NACA 2410 airfoil and this airfoil

shape with 25 cm chord length is selected to be sufficient both for generating

the required lift and for constraining the air drag at a considerable level (Fig.

2.7). This airfoil has a maximum camber line to mean line distance of 4 %

of the chord length at a 40 % chord length distance behind the leading edge

and a maximum thickness of 10 % chord length.

Due to the low aspect ratio (AR=4) and rectangular planform that min-

imizes wing loading through maximizing the area for the limited wing span,

the wings of the air vehicle have tendency to have severe spanwise air flow,

especially at high angle of attacks (Fig. 2.8).
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Figure 2.7: NACA 2410 airfoil

Figure 2.8: Spanwise air flow on wings with high angle of attack

This spanwise air flow reduces the efficiency of the wings by generating

wing tip vortex and reducing pressure difference between the upper and lower

surfaces. This is remarked in the ANSYS simulations, however using elliptical

planform to form lift distribution yielding minimum induced drag [143, 146]

would be impractical due to the very limited wing span and wide usage of

high angle of attacks in the entire speed range. Instead, large winglets are

joined to the wing tips (Fig. 2.9) that also reduce the necessary angle of
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attacks for stable flight for 1◦-2◦ in the simulations.

Figure 2.9: Reduction of the spanwise air flow by winglets

The final shape of the wings with the NACA 2410 airfoil, 25 cm chord

length, 1 m wing span, the selected motor and the winglet is as in Fig. 2.10.

Figure 2.10: Aerodynamic design of the wing

From the ANSYS air flow simulations of the air vehicle with consecutive

wings, it is noticed that the lift of rear wings is negatively affected by the

downwash produced by the front wings (Fig. 2.11). This downwash makes

the rear wings to behave like flying with less angle of attack in the air due to
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the downwash angle, that increases with the angles of the front wings [145–

147]. There are mainly three possible solutions to equalize the lifts of front

and rear wings, that are increasing the rear wing area or thickness, placing

rear wings at a higher place on the air vehicle and using rear wings with

higher angle of attack.

Figure 2.11: Streamlines showing the downwash and its effect on the rear
wing

Increasing the wing area requires extension of the wing span which is

already limited by the compactness requirements or increasing the chord

length, which is not so desirable due to the excessive decrease in aspect

ratio.

Increasing the thickness of the wing can solve the problem with consid-

erable thickness increase, which also adds up to the drag, especially at high

speeds. Placing rear wings at a higher place on the fuselage is a solution

tested in ANSYS simulations, however the results showed that more than

one chord length vertical distance is necessary to equalize the lifts of front
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and rear wings as also stated in the literature [143, 145, 148]. To achieve

this, the fuselage is needed to be built larger in vertical direction leading to

a heavier structure, so this choice conflicts with the weight constraint for the

air vehicle.

To make both the design and production less complicated, the front and

rear wings are determined to be located at the same vertical level and the

rear wings are used with higher angle of attack. In fact, this solution is very

reasonable, since it directly attacks the source of the problem.

According to the simulations, SUAVI can fly most economically at around

40 km/h air speed with 10.5◦ front wing angle of attack and 12.5◦ rear wing

angle of attack, while it can speed up to 68 km/h with 2◦ front wing angle

of attack and 3.7◦ rear wing angle of attack. At 40 km/h, without any

propeller slipstream, the risk of separation exists. However, the slipstream

of the motors increases the airspeed on the wings with additional parallel to

chord air flow and suppresses the risk of any separation on the wings.

2.2 Wind Tunnel Tests

To verify the aerodynamic design of SUAVI and measure the aerodynamic

forces and moments generated in a variety of wing angle of attacks and power

settings, wind tunnel tests are conducted. These tests are performed on a

half-model of SUAVI in Istanbul Technical University’s Gümüşsuyu closed

circuit wind tunnel.

2.2.1 Wind Tunnel Test Facility

The low speed wind tunnel used in the experiments has a rectangular

cross section with 1.1 m width and 0.8 m height. In the case of testing full
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model of the aircraft having 1 m wingspan, there would be only 5 cm gap

between the wing tips and the wind tunnel walls. As a result, wall effect

would prevent realistic observation of the effects caused by the flows on the

wing tips, which are highly effective on the efficiency of the wings.

A half model of SUAVI is designed and produced, which is just one half

of the air vehicle cut on the longitudinal axis of the body through the vertical

plane. Using half model is a common approach in wind tunnels, exploiting

the fact that air flows on two symmetric halves of a body are also symmetric.

Since the wings on the air vehicle are not affected by this division, the wings

that are the same with the wings on the prototype are used. The half body

is designed in CAD environment (Fig. 2.12) with all the connection parts

for the sensor and CNC machined from bulk aluminum with the same outer

shape, but with modifications in the inner shape for strength and connection

to the force sensor (Fig. 2.13).

Figure 2.12: CAD drawing of the wind tunnel and the half model

The carbon composite fuselage has enough strength against bending and

other loads due to its box structure and the wing tilt bearing parts, which

extend from one side wall to the other and apply only lift and forward acting
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forces on the fuselage. In the case of using half body, however, the U shaped

structure cannot effectively withstand torsion on the longitudinal axis and

the bearing parts only have one side to attach, which is not enough to prevent

transmission of the bending moment due to the lift force on the wall.

The aluminum half fuselage is designed to prevent any deflection on the

test model. There are angular scales for simple control of angle of attack on

the sides of the fuselage (Fig. 2.13 a) and the same servo motors with the

ones on the prototype to test the performance of the servos in real operating

conditions. The half fuselage has double roller bearing supports for the tilting

wings to prevent backlash and undesired friction on the wing roots (Fig. 2.13

b).

(a)

(b)

Figure 2.13: Outer (a) and inner (b) view of aluminum half body

An ATI Gamma series SI-130-10 6-DOF load cell is connected to the

ground of the wind tunnel test room and the half model (Fig. 2.14) is con-

nected to the sensor such that the half body is 3 mm above the ground. This

gap prevents any incorrect measurement due to contact of body and ground,

but may cause parasitic flows despite the boundary layer above the ground.

To avoid these parasitic flows, soft acrilic felt is stuck on the walls at the
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ground side of the half body, so there is a conformal material on this gap

(Fig. 2.13 b).

Figure 2.14: Half model in the wind tunnel

2.2.2 Aerodynamic Tests

The aerodynamic tests in the wind tunnel are conducted in two main

stages. First, lift and drag measurements on a single wing without any

motor revolution are obtained. These measurements are performed to acquire

the knowledge about the strength of the wing, about the sufficiency of the

wing tilting servo torques to hold the wings at the desired angle of attack

and to verify the wing profile features and measurement method through

comparisons with the literature.

Second, lift, drag and pitch moment measurements on the complete half

model are obtained to determine the optimum wing tip shape and to acquire

information on both the necessary motor inputs and wing angles wrt. the

body for the steady flight in the full range of flight speeds. These measure-

ments are repeated for several input voltages to understand by how much the

currents and the required motor power control pulses need to be changed for

obtaining the same flight performance when the battery voltage decreases.
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Lift and Drag Measurements on the Half Model with Single Wing

The initial aerodynamic tests are performed on the half model with only

the front wing and without the rotor action (Fig. 2.15). These tests are

conducted with straight cut wing tips. The emphasis on these tests is on

the validation of the measurement method through the comparison of results

with the literature, the strength of the wings in the high speed air flow and

the accuracy of wing tilting servo positioning. Hence, air speeds up to 20

m/s (72 km/h) overshooting the target maximum speed are applied.

Figure 2.15: Half model with single wing in the wind tunnel

When the obtained data on the wing lift (Fig. 2.16) and drag (Fig. 2.17)

coefficients vs. angle of attack are compared with the published data in the

literature, it is seen that the measured values are consistent [146, 148–150].

The measured lift coefficient values, that are corrected for the aspect ratio

of 4 without any vortex reducing device at the wing tip, become near to the

section lift coefficients [145].

In Fig. 2.18, it is observed that the drag coefficient has a nearly vertical

trend after the highest lift coefficient area and becomes very large with lower

lift coefficients. This happens due to the fact that the lift coefficient becomes

lower and drag coefficient increases rapidly as angle of attack is increased
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Figure 2.16: Lift coefficient vs angle of attack graph for one wing
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Figure 2.17: Drag coefficient vs angle of attack graph for one wing
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further beyond the rise of separation. In the wing characteristic charts, this

is generally not evident since these charts do not cover large angle of attacks,

that are not useful for most fixed wing aircrafts.
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Figure 2.18: Drag coefficient vs lift coefficient graph for one wing

In the literature the lift and drag forces are modeled as

FL =
1

2
ρV 2SCL (2.1)

FD =
1

2
ρV 2SCD (2.2)

where ρ is the air density, V is the air speed, S is the plan area of the wing,

FL and FD are the lift and the drag forces, and CL and CD are the lift and the

drag coefficients, [145, 146, 148, 149]. For 10◦, 13◦ and 16◦ angle of attacks

the lift and drag vs air speed graphs can be seen in Fig. 2.19-2.20. As speed
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increases with constant angle of attack, ρ, S, CL and CD do not change, so

lift and drag forces are proportional with the square of the speed. This is

apparent for lift force as in Fig. 2.19. In Fig. 2.20, the curvature of the curve

fitting is not easily seen due to the low signal-to-noise ratio of the obtained

measurement data on the measurement system.
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Figure 2.19: Lift vs speed graph for one wing

Besides validating the measurement method through comparison with

available data in the literature, control of strength is also an important issue

on the wind tunnel test. The wing is tested with 12◦ angle of attack in 20

m/s air speed generating 2.28 kg lift and 0.32 kg drag, where it is normally

loaded with 1.125 kg lift.

Additionally, the wing tilting servos do not have any evident angle change

while coping with the torque load on the wing axis as the speed is increased,

even at very high angle of attacks like 70◦ and 75◦ at 11 m/s air speed. The

wing is pivoted on the quarter-chord length behind its leading edge, so a
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Figure 2.20: Drag vs speed graph for one wing

large moment on the tilting axis due to the area near the trailing edge needs

to be balanced by the servos when abused.

Lift and Drag Measurements on the Complete Half Model

The first stage of the lift, drag and pitch moment measurements on the

complete half model is performed to determine the optimum wing tip shape

and size. To test the air vehicle power consumption for steady flight at the

desired speed range, the wing angle of attacks and motor PWMs are adjusted

such that the drag force on the half model is 0 N, pitch moment is 0 Nm and

the lift is 22 N for balancing the half weight of SUAVI. The wing tip design

is an important factor that can reduce the angle of attack and motor power

requirements on SUAVI, that is an air vehicle with low aspect ratio wings.

For this reason, a series of wing tip shapes and sizes are examined through

nominal flight tests for the wing angle of attack (Fig. 2.21), motor PWM
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(Fig. 2.22) and current consumption (Fig. 2.23). These wing tip shapes

include straight-cut wing tip, short swept-wing alike wing extension and two

different sizes of end-plates.

In the test results, it is observed that the utilization of moderate size

end-plate leads to generally the least values for wing angle of attack, motor

PWM requirements and current consumption.

A wing tip end-plate operates mainly by blocking the spanwise flow of

high pressure air at the lower surface of the wing towards the tip and by

blocking the spanwise flow from the outside into the low pressure area at

the upper surface of the wing. By doing this, it prevents the reduction of

favorable pressure difference that lifts the air vehicle and the increase of

induced drag, especially for an air vehicle that often uses high angles of

attack [144, 146]. Since this favorable pressure difference is generated by

consuming energy for propulsion, using winglets increases the flight range of

the air vehicle.

During the wind tunnel tests of the SUAVI, it is observed that severe

spanwise air flows occur on both upper and lower sides of the wing at up to

80 mm vertical distance from the chord line. For this reason, the effect of

short swept-wing alike wing extension, which does not extend vertically to

the spanwise flow area is not significant. Using a large end-plate with size 420

mm x 440 mm to prevent the effect of these spanwise flows results with the

current draw of 11.2 A for two motors with the expense of carrying giant wall

at the wing tips. On the other hand, using winglet with size 165 mm x 280

mm causes only 0.4 A more for two motors with much less weight and size.

Further reducing the size of the winglets increases the current requirement

with a higher tendency, so this size is determined as an optimum solution,
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Figure 2.21: Front (a) and rear (b) wing angle of attacks in the tests of some
of the wing tip choices

57



7 8 9 10 11 12 13 14 15 16 17
32

34

36

38

40

42

44

46

48

50

52

Speed [m/s]

M
ot

or
 P

W
M

 d
ut

y 
ra

tio
s 

(%
)

 

 
Straight−cut
Swept extension
Small size end−plate
Moderate size end−plate

(a)

7 8 9 10 11 12 13 14 15 16 17
32

34

36

38

40

42

44

46

48

50

52

Speed [m/s]

M
ot

or
 P

W
M

 d
ut

y 
ra

tio
s 

(%
)

 

 
Straight−cut
Swept extension
Small size end−plate
Moderate size end−plate

(b)

Figure 2.22: Front (a) and rear (b) motor PWM duty ratios in the tests of
some of the wing tip choices
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Figure 2.23: Current drawn by two motors for various wing tip choices

regarding both the winglet performance and weight.

The determined winglet is placed such that its back side is coincident with

the trailing edge of the wing, since it is observed that the further horizontal

extension beyond the trailing edge of the wing does not have evident effect

on the performance. Additionally, the winglet’s horizontal midline is 10 mm

lower than the chord line of the wing, since the thickness of spanwise flow at

the bottom of the wing extends more especially at high angle of attacks.

Front side of the winglet is rounded to further decrease the weight and

increase the aerodynamic efficiency of the winglets. Through the utilization

of this winglet, it is calculated that the air vehicle will be able to consume up

to nearly 15 % less energy, increasing the flight duration up to 10-12 minutes.

With the final shape of the winglet, the wing angle of attacks, motor

PWMs and current requirements of the half model are as listed numerically

in Table 2.4 and as depicted in Fig. 2.24-Fig. 2.26.
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Table 2.4: Motor throttle PWM percentages, wing angle of attacks and cur-

rent drawn by two motors for nominal flight

Air speed (m/s) Front motor (%) Rear motor (%) Front wing angle (◦) Rear wing angle (◦) Current (A)

0 62.5 62.5 90.0 90.0 32.0

1 62.5 62.5 88.0 88.0 32.4

2 62.5 62.5 86.0 86.0 32.4

3 54.3 59.0 76.0 86.0 30.8

4 46.9 53.5 68.0 82.0 27.0

5 41.0 46.1 54.0 71.0 22.8

6 41.8 41.8 41.0 51.0 21.0

7 41.8 41.8 31.5 45.0 20.2

8 41.8 41.8 29.0 39.0 20.0

9 38.3 38.3 24.0 30.0 16.7

10 36.7 36.7 16.0 25.0 14.6

11 34.0 34.0 14.5 20.5 12.3

12 34.8 34.8 11.0 15.5 11.9

13 33.6 33.6 10.0 14.5 10.5

14 38.7 38.7 8.0 12.0 12.5

15 42.2 42.2 7.0 9.0 14.1

16 45.7 45.7 5.5 8.0 15.2

17 49.6 49.6 4.5 6.0 17.5

From the nominal flight tests, it is observed that the wing angles (Fig.

2.24) are similar in shape with motor PWM requirements (Fig. 2.25) up to

the airspeed of 6 m/s and beyond that speed the motor PWMs become nearly

the same. At 11-14 m/s air speeds, the PWM values are at the lowest level,

but as the speed further increases the required PWM values become larger

to cope with the increased parasite drag on the air vehicle at high speeds,
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Figure 2.24: Wing angle of attacks for steady flight at various speeds
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Figure 2.25: Motor PWM duty ratios for steady flight at various speeds
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Figure 2.26: Current drawn by the half model for steady flight at various
speeds

despite the continuous decrease in induced drag due to the decrease in wing

angles [147].

From the angle of attack vs. speed graph (Fig. 2.24) it is noted that up

to 2 m/s air speed, the front and rear wing angles are the same because of

the relatively insignificant effect of the air flow. However beyond that speed,

there is a difference between the wing angles making the rear wing angle

higher up to 10◦ at low speeds. This result is expected due to the fact that

the rear wing operates in the downwash and wake of the front wing and the

lift difference becomes very crucial at low speeds due to the larger wake of

the front wing at high angle of attack.

The current graph (Fig. 2.26) is similar to the average of the front and

rear motor PWM results. The lowest power consumption air speed range is

12-13 m/s, where the wing angle of attacks are near to the stall angles for the
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wings, which are the limits for linear increase in both lift and drag. Further

reduction of the airspeed by increasing the wing angles reduces the lift and

exponentially increases the drag, therefore at lower speeds additional motor

thrust is required. Further increase of the airspeed leads to the reduction of

wing angles, but the overall drag on the air vehicle increases with the square

of the speed, therefore at higher speeds additional motor power is required.

During the flight of SUAVI, pitch control is definitely necessary at the

entire speed range. To have a model of pitch moment responses wrt. both

motor power changes and wing angle changes, aerodynamic tests are con-

ducted in the wind tunnel.

In the first step of these tests, the half model is adjusted to the steady

flight configurations at each air speed sample and the front motor PWM is

increased, while the rear motor PWM is decreased to generate positive pitch

moment and vice versa. By doing this, the propeller slipstream speed on

each wing is changed, so the pressure difference that provides the lift on each

wing is affected.

Additionally, the angle of attack of each wing causes the existence of a

vertical force component due to each motor thrust. In the results of this first

test step (Fig. 2.27), it is observed that 1 Nm pitch moment can be generated

through only motor PWM differentiation at up to 11 m/s air speed and the

maximum pitch moment generated through this method declines to around

0.4 Nm gradually.

In the second step of these tests, the half model is adjusted to the steady

flight configurations at each air speed sample, but this time, the front wing

angle is increased, while the rear wing angle is decreased to generate positive

pitch moment and vice versa. By doing this, the lift of each wing is altered
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Figure 2.27: Pitch moment generated at steady flight wrt. front motor (a)
and rear motor (b) combined PWM changes
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through the change of angle of attack. In these tests (Fig. 2.28) it is observed

that even with 2◦ differentiation on both wings, it is possible to generate pitch

moments from 0.6 Nm up to 5.2 Nm depending on the air speed.

It is remarkable that pitch control by only motor PWM differentiation

diminishes as the air speed increases, while pitch control by only wing angle

change becomes very effective in the same circumstance. This is due to the

facts that at high air speeds the thrusts of the engines inevitably become

lower, the vertical thrust component on the lift decreases due to low angle of

attack and change on wing angle of attack influences the lifts dramatically.

It is expected that even 0.5 Nm pitch moment will be sufficient to stabilize

the air vehicle in most cases based on the estimated pitch inertia of 0.4 kgm2.

For the roll, yaw controls and additional pitch control at high speeds, the

elevons and rudder on the tail will serve as control surfaces.

SUAVI is an electric air vehicle that relies on the on-board battery power.

Since the voltage of the batteries decreases as time elapses during the flight,

it is necessary to measure the effect of battery voltage change on the controls

of the air vehicle and compensate for this effect. To develop a method for

compensating this, the stable flight conditions for the entire speed range are

set for a series of power supply voltages (Fig. 2.29).

Since, this is mainly a problem caused by motor power loss, motor PWM

values are updated, instead of making any wing angle change. The current

drawn by the motors on the half model is depicted in Fig. 2.29 b. In these

tests it is observed that the change in consumed power is negligibly small,

so there is an option to regulate the mean values of the motor PWMs in

accordance with the measured current of the motors.
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Figure 2.28: Pitch moment generated at steady flight wrt. front wing (a)
and rear wing (b) combined angle of attack changes
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Figure 2.29: Front, rear motor PWMs (a) and the current drawn by two
motors (b) for steady flight at various speeds under several motor voltages
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Chapter 3

3 Mechanical Design and Prototyping

The main goal of the mechanical design of SUAVI is to obtain the most

lightweight structure that is capable of withstanding the possible loadings in

vertical, horizontal and transition flight modes. To achieve this, carbon fiber

reinforced plastic, which is a material to be known as the best in terms of

strength/weight ratio, is determined to be the production material of SUAVI.

To improve the durability in compression loading, usage of sandwich struc-

ture on the entire body is preferred. In this sandwich structure, lightweight

core material is surrounded by carbon fiber cloth on both sides. This struc-

ture makes the skins of the UAV to perform like an I-beam, in which the

strong material is kept at outer sides to increase the second moment of iner-

tia and low-density material is kept inside just to keep the outer sides parallel

to and apart from each other. By this way, the skins of the UAV can be pro-

duced lightweight and still strong, even against bending and compression.

There are two mechanical designs and prototypes of SUAVI, that have

very similar aerodynamic designs. The first flight tests on SUAVI, especially

the VTOL flights, are mostly conducted on the first prototype, whereas the

second prototype is designed as a much stiffer, lighter and more useful struc-

ture with the tremendous help of experiences gained on both the production

and the flight tests of the first prototype.



3.1 Mechanical Design and Production of the First

Prototype

The mechanical design and production of the first prototype of SUAVI

can be seen as a trial stage for the prototyping of the aerial vehicle. There has

been shortage of experience on building a UAV with such small dimensions

and such strict weight limits. The available core material has been balsa wood

with 1 mm thickness and the shape of both the fuselage and wing skins have

been simplified to simplify the production and to observe the behavior of the

materials utilized in the design. However, the production and flight tests of

this first prototype have provided valuable experiences for the design of the

second prototype.

3.1.1 Mechanical Design of the First Prototype

The fuselage in the first prototype is designed to be produced in one mold

as two symmetrical sides and have relatively simple shapes at front and back

of the fuselage. This is due to the lack of knowledge on how the vacuum

bagging method and plain woven carbon fiber cloth complies to the shape of

the 3D fuselage at the time this design is made. The fuselage is designed to

be a symmetrical wing with vertical orientation, very long chord length and

comparably very small wing span. This form is relatively less complicated

for the production and it also offers low air drag coefficient. The fuselage

consists of two main parts, that are the flat cover on the top of the fuselage

for accessing the electronic system inside and the lower part that is the

backbone of the prototype with U-shaped crosssection. It is obvious that

this design can be weak against torsion on the fuselage, since the upper side
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of the fuselage is a separate part and the box structure cannot be satisfied.

To fight against this weakness, additional ribs are designed to be placed into

the fuselage (Fig. 3.1).

The wings in the first prototype are designed to have upper and lower

skins that encapsulate a pultrusion carbon composite tube wing spar and

small wood parts. These wood parts act as interfaces between the spar and

the wing skins. The inner thickness of the wings at quarter chord length,

where the spars are connected to the wings for the lifting at the lift center,

are 20 mm and the diameter of the wing spars are 10 mm, so these wood

parts fill the gap inbetween to provide homogenous contact (Fig. 3.1).

Figure 3.1: Mechanical design of SUAVI

The wing tilting mechanism is designed to be supported by a delrin block

that is machined to carry the high torque servos of the system and to act as

a bearing for the tube shaped wing spars (Fig. 3.2). The material is selected

to be delrin due to its low friction surfaces for smooth rotation of the wings,

even at high loads transmitted by the wings. These delrin parts are designed

to be produced as one part and fixed to the inner sides of both side skins.

The wings produce large bending moments at the roots and transmit these
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bending moments to the delrin blocks. These delrin blocks transfer only the

lifting and friction forces to the fuselage skins through shear forces on the

glued interfaces. If these bending moments are transmitted directly to the

fuselage’s thin skins, these skins cannot survive even in the presence of small

forces applied by the wings.

Figure 3.2: Mechanical design of the wing tilting mechanism

Additionally, the batteries on the first prototype are planned to be placed

just under the delrin blocks (Fig. 3.1). This place is chosen to improve

the static stability of SUAVI using the weight of the batteries, that is a

large proportion of the total flight weight. Another important reason is that

carrying the batteries as near to the wings as possible minimizes the bending

moments on the fuselage, which are caused again due to the weight of the

batteries.

In the aerodynamic analysis of SUAVI performed in ANSYS Fluid Flow

simulation environment, the aerodynamic pressure distributions on the wings

can also be obtained. When these distributions are fed into the ANSYS

Mechanical Analysis environment, the stresses generated on the wings are

estimated. For the worst case scenario on the wing loadings, 68 km/h air

speed with 10o angle of attack is chosen (Fig. 3.3). Normally, wing angle of

attacks at such high speeds is around 2-3o and at 10o angle of attack both

the lift and drag forces on the wings become 2.5-3 times the nominal values.
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As a consequence, the maximum stress on the wings is estimated as 36.4

MPa, that is observed on the carbon tube at wing root instead of the wing

skin. The mechanical safety factor becomes 8, even with the 292 MPa tensile

stress of the wet lay-up carbon fiber, that is the lowest among the values for

the carbon tube production. The stresses on the wing skins are found to be

very small to mention.

Figure 3.3: Stress analysis of the wing for the worst case scenario

The mechanical analysis for the fuselage of SUAVI are also performed at

2.5 g vertical acceleration (Fig. 3.4). Consequently, the maximum stress on

the fuselage is found to be 4 MPa.

Figure 3.4: Stress analysis of the fuselage under 2.5 g vertical acceleration
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In the tensile tests, that are conducted in the Universal Testing Machine,

the maximum stress that the sandwich structured carbon composite material

with balsa wood core, which was the candidate material for the production

of the first SUAVI prototype, can withstand is found to be approximately 95

MPa. Accordingly, the mechanical design of the fuselage is found to have a

safety factor of approximately 24.

3.1.2 Production of the First Prototype

The production of the first prototype begins with the production of the

molds for the composite manufacturing. The molds are milled from cast

aluminum in a CNC milling machine (Fig. 3.5 a, b) and become ready for

composite production with additional sanding (Fig. 3.5 c-e).

(a) (b)

(c) (d) (e)

Figure 3.5: Production of the molds (a, b), finished mold of the wings (c)
and the molds of the fuselage (d, e)
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The SolidWorks part files are exported into CAM environment, where the

cutting method is defined and the G code is generated, and the G code is

fed into the milling machine or lathe. The CNC machines complete the rest

of the task automatically when the position of the material is introduced to

the machine properly.

In the production of the first prototype, sandwich structured carbon com-

posite material with balsa wood core is used. Balsa is a very lightweight wood

that is also widely used in RC model airplane production. This material is

preferred, due to its low-density, conformity onto the curved shapes of the

wings and availability in the market. The carbon fiber material that sur-

rounds the honeycomb is a 0-90 plain wave carbon cloth. The reason for

using woven carbon fiber is to provide sufficient strength against stresses in

every possible direction. The carbon fiber cloth that is used in the production

has a density of 90 g/m2, which is the lowest available in the market.

The composite parts are fabricated by hand lay-up process on the de-

scribed molds with vacuum bagging technique applied in the curing phase

for higher fiber to resin ratio and better fiber wet-out [151, 152]. This process

is performed by laying up and wetting the outer carbon layer on the mold

with epoxy resin, placing the balsa plates, laying the second carbon layer and

wetting it also with epoxy resin (Fig. 3.6 a, b).

The perforated film is then laid to prevent the resin absorber from sticking

to the carbon cloth and then the resin absorber is laid on the top both to soak

still existing excess resin (Fig. 3.6 c) and to provide the air flow even from

a distant place on the mold from the vacuum pump’s pipe. Thereafter, the

sealant tape is applied to the outer boundaries of the mold and the vacuum

film is covered on the top to provide a vacuum zone (Fig. 3.6 d).
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When air is evacuated from the mold surface, the vacuum film presses

on this multi layer structure and during the curing, the carbon cloths stick

to the core material in a rigid manner (Fig. 3.6 d, e). When curing is

completed after 8 hours, the vacuum film, resin absorber and perforated film

are removed, and the composite part is revealed (Fig. 3.6 f, g). After the

removal of the unwanted excess parts, the composite wing skins become ready

for assembly to constitute the wings (Fig. 3.6 g, h). The carbon fuselage

skins are produced similarly.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Hand lay-up (a, b), vacuum bagging processes (c, d, e, f), cured
skin (g) and finished skin (h)

For the assembly of the wings, first, the wood parts, which act as interface

between the carbon composite spar and the wing skins, are glued on the wing

skin (Fig. 3.7 a). Then the near sides of the wings are glued at the near

ends of the wings (Fig. 3.7 b). The carbon composite spar is fixed on its

place (Fig. 3.7 c) and the other wing skin is joined to form the wing (Fig.
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3.7 d). With the assembly of motor (Fig. 3.7 e), the wing becomes ready to

be assembled on the prototype (Fig. 3.7 f).

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Wood interface parts being attached to the lower wing skin (a),
near sides of the wings being glued (b), carbon composite spar being fixed to
the wing (c), upper skin joining the lower skin (d), motor joining the wing
(e) and the finished wing

The assembly of the fuselage begins with the assembly of the two side

halves. These parts are first matched with each other (Fig. 3.8 a) and

joined using impregnated carbon cloth to form the similar carbon composite

structure also at the joining line (Fig. 3.8 b). The wing tilting mechanism is

prepared through the milling of delrin block and the servo connection arms,

the assembly of the high torque servos and their connection arms (Fig. 3.8 c).

The wing tilting mechanisms are attached on the carbon composite fuselage

(Fig. 3.8 d). The prototype becomes ready for flight with the addition of

the electronic control system, wirings and batteries (Fig. 3.8 e).

The ready for flight weight of the prototype is measured to be 4619 g,

in which a battery group with only 19.2 Ah capacity can be placed. The
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produced SUAVI prototype can be seen in (Fig. 3.9).

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Matching (a) and joining of the two halves of the fuselage (b),

the cover (c), assembly of the wing tilting mechanism (d), attachment of the

wing tilting mechanism on the fuselage (e) and the final assembly (f)

(a) (b)

Figure 3.9: SUAVI prototype in horizontal (a) and vertical (b) flight modes
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3.2 Mechanical Design and Prototyping of the Second

Prototype

During the flight tests of the first prototype of SUAVI, several problems

both in terms of structure and placement of components are observed. For

instance, the weight of the delrin blocks (660 g), the landing gear set and the

carbon composite skin that is not light enough, caused a reduction in battery

capacity. Utilization of less number of batteries than planned to handle even

more energy consumption to lift the heavier than planned prototype resulted

in short flight durations.

Additionally, due to the productional limits, the ribs designed for the

installation into the fuselage could not be placed and to solve the torsion

problem, an aluminum profile was placed between the delrin blocks, which

added more weight on the prototype. The placement of the batteries into the

fuselage caused the rolling inertia of the UAV to be very low, which made

the aircraft less stable in rolling motion.

Most importantly, the separate wing tilting between right and left wings,

and the backlash in the bearings of the wing spars made the accurate wing

angle control of SUAVI impossible. This prevented the trials of horizontal

flight on the first prototype of SUAVI. To solve these problems, a new SUAVI

prototype with lighter and stronger structure, increased battery capacity and

accurate wing angle tilting system is designed.

3.2.1 Mechanical Design of the Second Prototype

For the reduction of weight of the prototype, the reduction of the composite

body weight is an important factor. Hence, the method of carbon composite
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skin production is revised and some commercially available core materials,

which are also used in composite aircraft production, are experimented for

the contribution in terms of strength and weight.

For the experimentation of skin strength, several trials in the breaking

tests with Universal Testing Machine (UTM) are conducted according to

the standards for three point bending tests [153]. In these tests, carbon

composite specimens of 20 mm x 100 mm size with Aramid honeycomb,

balsa and Aeromat cores are placed on the UTM with the distance between

supports set as 50 mm (Fig. 3.10).

The measurements are taken using 10 kN strain gauge and the bending

speed is set as 2 mm/min as the standards dictate (Fig. 3.11). In the three

point bending tests, it is observed that the specimen with Aramid honeycomb

core fails at 24.09 N, whereas the one with Aeromat fails at 18.52 N and

with balsa fails at 16.43 N. The specimen with Aramid honeycomb core

have performed better since it is not layered parallel to the skin material,

so it protects the integrity of the sandwich material even in the existence of

reasonable bending forces.

Figure 3.10: Balsa (a), Aero-mat (b) and Aramid honeycomb (c) in flexure
test

As another advantage, Aramid honeycomb is a lightweight material be-

cause it is only consists of thin strips bound together to form the honeycomb
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Figure 3.11: Specimens with balsa (a), Aero-mat (b) and Aramid honeycomb
(c) core material

shape and the air inbetween, whereas balsa, which is the lightest wood known,

and Aeromat are materials without any air gap to become further lighter.

The weight per area for the produced specimens with Aramid honeycomb is

350 g/m2, whereas it is 450 g/m2 for balsa and 550 g/m2 for Aeromat.

The sandwich structure that carries the stresses on the wings, transmits

the generated forces to the carbon composite tube wing spars. Likewise, the

aluminum elbow connection parts connect the landing arms and the electric

motors to the spars to transmit the landing impact and motor thrusts to the

fuselage through a durable and stiff chassis. The spars are attached to the

inner walls of both the upper and lower wing surfaces, providing nearly all

stresses on the wing surfaces to be in tension and transmitted continuously

to the spars (Fig. 3.12 a).

The motors are mounted nearly at the mid-span of the wings and the

landing arms are placed directly behind the motors to minimize possible

bending moments observed at touchdown instants. There are tail-fin alike

extensions designed for the tips of the landing arms to prevent the failing

of wing tilting servos to keep the wings vertical during possible problematic

touchdowns with some forward motion. The winglets are only fixed to the

spanwise ends of the wing surfaces, since they are not to encounter massive

forces (Fig. 3.12 b).
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Additionally, the Li-Po batteries are located in the wings just behind the

wing spars near to the wing root, where the longer side of the batteries is

in spanwise direction (Fig. 3.12). The reason for such a placement is to

keep the rolling inertia near to pitching inertia and at a reasonable level

for better stability characteristics. The rotational inertia becomes larger as

the dominant weights are placed farther from the rotation center and as

the rotational inertia becomes larger, the effect of a moment on rotational

acceleration becomes lower. Batteries could also be placed at the center of

gravity of the UAV, however this would result in very low rotational inertia

causing the UAV to rotate due to even very small disturbances, which is very

undesirable. Placement of the batteries on the wings also helps reducing the

critical bending moments on the wing roots and the forces on the wing tilting

mechanism, which consequently adds to the reliability of the system.

(a) (b)

Figure 3.12: CAD model of the wing with regionally cut upper skin to reveal
the details (a) and with its final shape (b)

To support the stiffness and lightness of the mechanical structure, carbon

composite tubes, which are produced by wrapping woven carbon cloth with

epoxy resin, are utilized as the backbone. These tubes have 20 mm of di-

ameter and far more resistance against torsion, bending and crushing when

compared with the pultrusion carbon tubes.
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There are three main reasons for this. Increase of the diameter from 10

mm to 20 mm with 1 mm material thickness reduces the maximum stress at

the surface of the material for approximately 18 times.

Additionally, with the increase of the diameter to 20 mm, the carbon

tubes can be fixed in the wing without any interfacing part, directly to the

inner surface of the wing skins.

Finally, it is useful to pass the cabling between the wings and the fuselage

through the carbon composite spars and the rotating shafts in the wing tilting

mechanism (See Fig. 3.19 a in Section 3.2.2). Otherwise, these cables are

damaged by the carbon composite skin of the fuselage after several numbers

of vertical-horizontal transitions during the operation of SUAVI.

To keep the fuselage both lightweight and stiff against bending and tor-

sion, the front and rear wing tilting mechanisms are also connected through

the same type carbon composite tube (Fig. 3.13 a-c). This tube ends at

the front wing tilting mechanism, whereas it extends further beyond the rear

wing tilting mechanism to provide a stiff support for the vertical stabilizer of

the aerial vehicle. This tube is fixed to the outer static structure of the wing-

tilting mechanism (Fig. 3.13 b, c). This outer static structure is charged to

carry the high torque servo near to the rotating shaft and the needle bearings

on which the shaft is rotating, transmit forces from the wings to the body,

and carry the aerodynamic cover.

The servo rotates the shaft, on which the wing spars are fixed, through

a parallel mechanism with around 100o tilting range. The wing spars are in-

serted into the shaft and then screwed to it on matching holes with setscrews

to keep the wings at correct place and angle. An important detail on this sys-

tem is the thin rings stuck on the tips of the wing spars. The outer diameter
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of the carbon composite tubes vary in the order of some 0.1 mm’s.

To prevent the emergence of severe backlash in the wing-shaft joint and

to standardize the wing spar-shaft conformity, the tips of the carbon com-

posite tubes are covered with thin aluminum rings having well-known outer

diameters. These rings also help preventing crack formation and propagation

at the tips of the wing spars that are caused by two point contact loadings

between the inner surface of the shaft and outer surface of the wing spars.

There are also four aerodynamic cover parts produced from sandwich struc-

tured carbon composite material with aramid honeycomb core: the nose, the

stern, the lower mid part and the upper mid part.

(a) (b)

(c)

Figure 3.13: CAD model of the body without covering (a), wing-tilting
mechanism-carbon pipe connection (b) and the wing-tilting mechanism detail
with transparent outer static structure (c)

The CAD model of the improved SUAVI prototype can be seen in (Fig.

3.14).
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(a) (b)

(c)

Figure 3.14: CAD model of SUAVI in horizontal (a), transition (b) and
vertical (c) flight modes

3.2.2 Production of the Second Prototype

The prototyping first begins with the production of the molds and the

aluminum inner parts of SUAVI. The molds are milled from cast aluminum

in a CNC milling machine (Fig. 3.15 a, c, d), whereas the inner parts are

either milled in the milling machine or lathed in CNC lathe depending on

the shape of the parts (Fig. 3.15 b).

For the production of the prototype, sandwich structured carbon com-

posite material with Aramid honeycomb core is utilized. This material is

preferred to fulfill the required strength and weight criteria. The carbon

fiber material that surrounds the honeycomb is 0-90 plain wave carbon cloth

as in the first prototype. The application of the hand lay-up technique is

changed slightly to reduce the weight of the carbon composite skins. This

process begins with the lay up and wetting of the outer carbon layer on the
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(a) (b)

(c) (d)

Figure 3.15: Finished molds and inner parts of the wings (a, b) and the molds
of the fuselage (c, d)

mold, and then soaking the excess resin, which is a useless weight, using a

paper towel. Thereafter, the honeycomb is laid on the outer carbon layer and

the second wet carbon layer, that is also cleansed from excess resin is laid on

the honeycomb (Fig. 3.16 a). The rest of the vacuum bagging process is the

same with the vacuum bagging of the parts in the first prototype.

When curing is completed after 8 hours, the composite part is revealed

(Fig. 3.16 b). After the removal of the unwanted parts that are marked using

some epoxy resin that cures in the grooves on the molds (Fig. 3.16 c, d), the

composite wing skins become ready for assembly to constitute the wings and

the fuselage skins become ready for flight.

For the assembly of the wings, a preassembled wing spar, elbow connector

and landing arm group with the flight-ready cabling of motor throttle pulse

and battery power transmission is fixed on the lower wing skin on the mold

with epoxy (Fig. 3.17 a) and supported through epoxy-glass bubble mixture
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(a) (b) (c) (d)

Figure 3.16: Hand lay-up (a), cured skin (c) and lower and the cutting marks
on the skins (d, e)

near the tangential connection of the wing skin inner surface (Fig. 3.17 b).

Glass bubble is a kind of very tiny glass sphere with around 400 kg/m3

density that is mixed with some epoxy resin to add some volume to the

resin for reducing the density. By applying the epoxy glass bubble mixture,

additional strength at the tangential connection is provided through surface

increase.

There are two inserts on the wing molds for the precise positioning of

these inner parts into the wings. For this reason, the assembly is performed

on the molds. Thereafter, the wing spar is drilled on the milling machine

again with the wing on the mold (Fig. 3.17 c). The positioning of this drilling

operation is crucial, since it determines whether the right and left wings are

parallel or not. They must be precisely parallel to prevent any unwanted

rotations during the flight due to the geometrical faults. The assembly of

the wing is concluded with the joining of the upper skin of the wing (Fig.

3.17 d), the aluminum ring on the wing spar root (Fig. 3.17 e) and the

winglet (Fig. 3.17 f).

The assembly of the fuselage begins with the assembly of the wing tilting

mechanisms. The shaft that tilts the wings is inserted in the outer static

structure through the needle bearings at both sides.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Inner parts being attached to the lower wing skin (a), glass-

bubble epoxy mixture support (b), drilling of the wing spar root for connec-

tion to the wing tilting mechanism (c), joining of the upper skin onto the

wing (d), addition of aluminum ring (e) and joining of the winglet (f)

The needle bearings are joined to the outer static structure both using

shrink-fit metal-metal connection and gluing small wood parts to widen the

connection surface. The high torque wing tilting servo is then assembled on

the outer static structure and connected to the shaft via the pushrod (Fig.

3.18 a).

The wing tilting mechanisms are assembled to the carbon composite tube

using shrink-fit connection and gluing to constitute the skeleton of the fuse-

lage (Fig. 3.18 a, b). Also the vertical stabilizer is mounted at the back of

the fuselage onto the carbon composite tube for strength. At that stage, the

fuselage becomes ready for final assembly (Fig. 3.18 c).
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(a) (b) (c)

Figure 3.18: Wing tilting mechanism (a), the assembly of the fuselage skele-
ton (b), final assembly of the fuselage and the wings (c)

With the addition of the electronic control system, sensors and batteries,

SUAVI becomes ready for flight (Fig. 3.19 b).

The ready for flight weight of the prototype is 4460 g, in which the body

without electronic systems, batteries and motors weighs only 626 g, which is

an impressive value when the size, rigidity and the weight of the aluminum

mechanisms are taken into account (Fig. 3.20 a, b). It is remarkable that

the second prototype is approximately 160 gr lighter than the first one, while

incorporating improved strength, more practicality and increased battery

capacity to allow longer flight durations.

(a) (b)

Figure 3.19: Cable connections during the assembly (a) and addition of elec-

tronic control system and batteries (b)
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(a) (b)

Figure 3.20: SUAVI prototype in horizontal (a) and vertical (b) flight modes
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Chapter 4

4 Dynamical Model and Supervisory Control

Control of a physical system usually starts with some modeling effort.

First principles are often used to develop dynamical system models. Models

are useful for a variety of reasons. Once a model is developed, it can be

simulated to see the response of the system to various input signals. Effi-

cient control system designs can be based on such dynamical models. An

automatic control system is required to fly the air vehicle in fully or semi

autonomous mode. To achieve accurate trajectory tracking, first a full dy-

namical model of the aerial vehicle is derived that covers the effects of the

aerodynamic forces, disturbances, and the propulsion system. A supervisory

control system incorporating both high-level and low-level control is devel-

oped.

4.1 Dynamical Model

SUAVI is a highly coupled nonlinear system that changes the flight mode

to change the horizontal flight speed. This also alters the control laws and

the model significantly due to the fact that the reactions of the air vehicle to

motor thrusts and control surface deflections, and the forces and moments

on the air vehicle change dramatically with the flight mode.



To develop and test the flight control system in simulation environment

without damaging the air vehicle, the dynamical model of the system needs

to be developed. Through simulations, the response of the system to various

control inputs can be estimated in a more effective manner. Additionally,

various control methods can be tested in both linear and nonlinear frame-

works.

4.1.1 Hybrid Frame

For the derivation of the dynamical models for air vehicles, it is a common

practice to express positional dynamics wrt. a fixed world coordinate frame

and the rotational dynamics wrt. a body fixed frame attached to the vehicle.

This is called hybrid frame [154].

Figure 4.1: Coordinate frames of the aerial vehicle

Two reference frames are utilized in the mathematical modeling of the

aerial vehicle, that are also depicted in Fig. 4.1. They are
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• Earth frame W : (Ow, xw, yw, zw)

• Body frame B : (Ob, xb, yb, zb)

In the earth fixed inertial reference frame (world frame) xw is directed north-

wards, yw is directed eastwards, zw is directed downwards and Ow is the

origin of the world frame. Similarly, in the body frame, xb is directed to the

front of the vehicle, yb is directed to the right of the vehicle, zb is directed

downwards and Ob is the origin on the center of mass of the aerial vehicle.

The position and linear velocity of the vehicle’s center of mass in the

world frame are expressed as

Pw = [X, Y, Z]T , Vw = Ṗw = [Ẋ, Ẏ , Ż]T (4.1)

Vehicle’s attitude and its time derivative in the world frame are defined as

αw = [φ, θ, ψ]T , Ωw = α̇w = [φ̇, θ̇, ψ̇]T (4.2)

φ, θ and ψ are named roll, pitch and yaw angles, respectively. The orientation

of the body frame wrt. the world frame is expressed by the rotation matrix

Rwb(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) =




cψcθ sφsθcψ − cφsψ cφsθcψ + sφsψ

sψcθ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ




(4.3)

The transformation of linear velocities between world and body frames is
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formulated as

Vb =




vx

vy

vz


 = RT

wb(φ, θ, ψ) · Vw = Rbw(φ, θ, ψ) · Vw (4.4)

The relation between the angular velocity of the vehicle and the time deriva-

tive of the attitude angles is given by the following transformation

Ωb =




p

q

r


 = E(φ, θ) · Ωw (4.5)

where E is the velocity transformation matrix and defined as

E(φ, θ) =




1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ


 (4.6)

4.1.2 Newton-Euler Formulation

The equations of a 6 DOF rigid body can be derived by several methods.

Newton-Euler formulation is utilized to derive the full mathematical model

of SUAVI.

Considering the aerial vehicle as a rigid body and employing a hybrid

frame, the dynamics of an aerial vehicle can be formed as


mI3x3 03x3

03x3 Ib





V̇w

Ω̇b


 +


 0

Ωb × (IbΩb)


 =


Ft

Mt


 (4.7)
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where the subscripts w and b express the vector and matrix quantities in

world and body frames, respectively. m denotes the mass and Ib denotes

the vehicle’s inertia matrix expressed in body frame. I3x3 and 03x3 matrices

indicate 3× 3 identity and zero matrices respectively. The left hand side of

Eqn. (4.7) is standard for many aerial vehicle types, however total force and

moment terms, Ft and Mt, differ for different aerial vehicle types.

Note that for a quad tilt-wing aerial vehicle, the terms Ft and Mt are

functions of the motor thrusts, forces on the wings and the fuselage, and

also the wing angle of attacks and they act on the vehicle’s center of gravity.

These forces and torques are depicted as in Fig. 4.2.

Figure 4.2: External forces and torques acting on the vehicle

The total external force Ft consists of the motor thrusts Fth, aerodynamic

forces on the wings Fw, gravity force on the vehicle Fg and external distur-

bances such as winds and gusts Fd. These forces are expressed in the body

frame and have to be transformed by Rwb to be expressed in the world frame
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as follows

Ft = Rwb(Fth + Fw + Fg + Fd) (4.8)

where

Fth =




cθ1 cθ2 cθ3 cθ4

0 0 0 0

−sθ1 −sθ2 −sθ3 −sθ4







kω1
2

kω2
2

kω3
2

kω4
2




Fw =




(F 1
D(θ1, vx, vz) + F 2

D(θ2, vx, vz) + F 3
D(θ3, vx, vz) + F 4

D(θ4, vx, vz))

0

(F 1
L(θ1, vx, vz) + F 2

L(θ2, vx, vz) + F 3
L(θ3, vx, vz) + F 4

L(θ4, vx, vz))




and

Fg =




−sθ

sφcθ

cφcθ


 mg

In all these equations, sβ and cβ are abbreviations for sin(β) and cos(β)

respectively and θi denotes wing angles wrt. the body. Note that the motor

thrusts are modeled as

Fi = kω2
i (4.9)

where ωi is the rotor rotational speed [155] and this relation is also experi-

mentally verified in Fig. 2.3.

To simplify the design of the aerial vehicle, left and right wings both at

the back and at the front are tilted together, leading to the relations θ1 = θ2

and θ3 = θ4. The lift forces F i
L(θi, vx, vz) and the drag forces F i

D(θi, vx, vz)

are functions of linear velocities vx and vz, and the wing angle of attacks θi,
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namely 


F i
D

0

F i
L


 = R(θi − αi)




−1
2
cD(αi)ρAv2

α

0

−1
2
cL(αi)ρAv2

α


 (4.10)

where

vα =
√

v2
x + v2

z

αi = θi − (−atan2(vz, vx))

In these equations, ρ is the air density, A is the wing planform area, vα is

the air flow velocity and αi is the effective angle of attack of the wing wrt.

the air flow as depicted in Fig. 4.3.

R(θi − αi) is the rotation matrix for the rotation around y axis that de-

composes the forces on the wings to the body axes. (4.10). The lift coefficient

cL(αi) and drag coefficient cD(αi) are obtained from airfoil models [149, 150].

(see [156] for details)

Figure 4.3: Effective angle of attack αi

The total torque Mt consists of the torques created by the rotors Mth,
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torques created by the aerodynamic forces produced by the wings Mw, torques

created by the gyroscopic effects of the propellers Mgyro and torques due to

the external disturbances Md, namely

Mt = Mth + Mw + Mgyro + Md (4.11)

where

Mth =




lssθ1 − cθ1λ1 −lssθ2 − cθ2λ2 lssθ3 − cθ3λ3 −lssθ4 − cθ4λ4

llsθ1 llsθ2 −llsθ3 −llsθ4

lscθ1 + sθ1λ1 −lscθ2 + sθ2λ2 lscθ3 + sθ3λ3 −lscθ4 + sθ4λ4







kω1
2

kω2
2

kω3
2

kω4
2




,

Mw =




ls(F
1
L(θ1, vx, vz)− F 2

L(θ2, vx, vz) + F 3
L(θ3, vx, vz)− F 4

L(θ4, vx, vz))

ll(F
1
L(θ1, vx, vz) + F 2

L(θ2, vx, vz)− F 3
L(θ3, vx, vz)− F 4

L(θ4, vx, vz))

ls(−F 1
D(θ1, vx, vz) + F 2

D(θ2, vx, vz)− F 3
D(θ3, vx, vz) + F 4

D(θ4, vx, vz))




and

Mgyro =
4∑

i=1

Jprop[ηiΩb ×




cθi

0

−sθi


ωi]

In these expressions, ls and ll denote the spanwise and longitudinal distances

between the rotors and the center of mass of the vehicle, respectively. Jprop

is the rotational inertia of the rotors about their rotation axes and η(1,2,3,4) =

1,−1,−1, 1. The rotor torques are modeled as

Ti = λikω2
i (4.12)
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where λi are torque/force ratios. For clockwise rotating propellers, λ2,3 = −λ

whereas for counterclockwise rotating propellers λ1,4 = λ. In the literature

it is reported that λ for such kind of propellers are 0.01-0.05 [154].

Note that the sum of torques created by the rotors result in a roll moment

in horizontal flight mode (θ1,2,3,4 = 0) and in a yaw moment in vertical flight

mode (θ1,2,3,4 = π/2).

Utilizing vector-matrix notation and including external disturbances, the

dynamics of SUAVI can be rewritten in a more compact form as

Mζ̇ + C(ζ)ζ = G + O(ζ)ω + E(ξ)ω2 + W (ζ) + D(ζ, ξ) (4.13)

where ζ = [Ẋ, Ẏ , Ż, p, q, r]T is the generalized velocity vector and the vector

ξ = [X, Y, Z, φ, θ, ψ]T states the position and the orientation of the vehicle

expressed in the world frame. The relation between ζ and ξ can be formulated

as

ξ̇ = Jζ ⇒




Ẋ

Ẏ

Ż

φ̇

θ̇

ψ̇




=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 sφtθ cφtθ

0 0 0 0 cφ −sφ

0 0 0 0 sφ/cθ cφ/cθ







Ẋ

Ẏ

Ż

p

q

r




(4.14)

It is worth to note that the lower-right hand side 3×3 part of this Jacobian

matrix is the inverse of the E matrix, that is defined in Eqn. 4.6.

The inertia matrix M , the Coriolis-centripetal matrix C(ζ), the gravity
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term G, and the gyroscopic term O(ζ)ω, are defined as

M =


mI3x3 03x3

03x3 diag(Ixx, Iyy, Izz)


 (4.15)

C(ζ) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Izzr −Iyyq

0 0 0 −Izzr 0 Ixxp

0 0 0 Iyyq −Ixxp 0




(4.16)

G = [0, 0,mg, 0, 0, 0]T (4.17)

O(ζ)ω = Jprop




03×1

∑4
i=1[ηiΩb ×




cθi

0

−sθi


ωi]




(4.18)

where Ixx, Iyy and Izz are the moments of inertia of the aerial vehicle around

its body frame axes.

System actuator vector, E(ξ)ω2, is assigned as

E(ξ)ω2 =


RwbFth

Mth


 =




(cφsθcψ + sφsψ)uv + cψcθuh

(cφsθsψ − sφcψ)uv + sψcθuh

cφcθuv − sθuh

(lssθf
− cθf

λ)ufdif
+ (lssθr + cθrλ)urdif

[sθf
ufsum − sθrursum ]ll

(lscθf
+ sθf

λ)ufdif
+ (lscθr − sθrλ)urdif




(4.19)
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where ufdif
= k(ω2

1 − ω2
2), urdif

= k(ω2
3 − ω2

4), ufsum = k(ω2
1 + ω2

2), ursum =

k(ω2
3 + ω2

4), uv = −sθf
ufsum − sθrursum , uh = cθf

ufsum + cθrursum , θf = θ1 = θ2

and θr = θ3 = θ4.

Lift and drag forces that are generated by the wings and the resulting

moments due to these forces are defined as

W (ζ) =




Rwb




F 1
D + F 2

D + F 3
D + F 4

D

0

F 1
L + F 2

L + F 3
L + F 4

L




ls(F
1
L − F 2

L + F 3
L − F 4

L)

ll(F
1
L + F 2

L − F 3
L − F 4

L)

ls(−F 1
D + F 2

D − F 3
D + F 4

D)




(4.20)

The model of SUAVI becomes a quadrotor model when (θ1,2,3,4 = π/2).

The inertia matrix M , the Coriolis-centripetal matrix C(ζ) and the gravity

vector G are irrelevant with the wing angles, so they remain inert. However,

when the wings are tilted vertically, some items in the gyroscopic term O(ζ)w,

system actuator vector E(ξ)w2, and aerodynamic force vector W (ζ) drop.

In this configuration, the wings do not generate any lift force but generate

severe drag forces. The motor thrusts behave as lift sources only due to their

downward slipstream in vertical mode. The resulting dynamic model written

for the vertical flight mode of SUAVI is similar to the quadrotor models

existing in the literature ([154]).

For the vertical flight mode of SUAVI, the sin and cos terms cause the

gyroscopic term O(ζ)ω in Eqn. (4.18), the system actuator vector E(ξ)ω2

in Eqn. (4.19) and the aerodynamic force vector W (ζ) in Eqn. (4.20) to be
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simplified as

O(ζ)ω = Jprop




03×1

∑4
i=1[ηiΩb ×




0

0

−1


ωi]




=




0 0 0 0

0 0 0 0

0 0 0 0

−q q −q q

p −p p −p

0 0 0 0







ω1

ω2

ω3

ω4




(4.21)

E(ξ)ω2 =




(−cφsθcψ − sφsψ)u1

(−cφsθsψ + sφcψ)u1

−cφcθu1

u2

u3

u4




(4.22)

W (ζ) =




Rwb




F 1
D + F 2

D + F 3
D + F 4

D

0

0




0

0

ls(−F 1
D + F 2

D − F 3
D + F 4

D)




(4.23)

where ui are the virtual control inputs and can be defined as

u1 = k(ω2
1 + ω2

2 + ω2
3 + ω2

4) (4.24)

u2 = lsk((ω2
1 + ω2

3)− (ω2
2 + ω2

4)) (4.25)
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u3 = llk((ω2
1 + ω2

2)− (ω2
3 + ω2

4)) (4.26)

u4 = kλ(ω2
1 − ω2

2 − ω2
3 + ω2

4) (4.27)

Consequently, position and attitude dynamics of the aerial vehicle in

quadrotor mode are expressed as follows:

Ẍ = (−cφsθcψ − sφsψ)u1 + cψcθ(F
1
D + F 2

D + F 3
D + F 4

D)

Ÿ = (−cφsθsψ + sφcψ)u1 + sψcθ(F
1
D + F 2

D + F 3
D + F 4

D)

Z̈ = −cφcθu1 + g − sθ(F
1
D + F 2

D + F 3
D + F 4

D)

ṗ =
u2

Ixx

+
Iyy − Izz

Ixx

qr − Jprop

Ixx

qωp

q̇ =
u3

Iyy

+
Izz − Ixx

Iyy

pr +
Jprop

Iyy

pωp

ṙ =
u4

Izz

+
Ixx − Iyy

Izz

pq +
Jprop

Izz

rωp + ls(−F 1
D + F 2

D − F 3
D + F 4

D) (4.28)

The last three rows of the dynamics of SUAVI in quadrotor mode can be

expressed in the earth frame. To this end, Eqn. (4.5) and its time derivative

can be employed, i.e.

Ωb = E(φ, θ) · Ωw ⇒ Ω̇b = ĖΩw + EΩ̇w (4.29)

In steady hover conditions, the following assumptions are valid:

φ, θ, ψ → 0 ⇒ E(φ, θ) =




1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ


 = I (4.30)
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φ̇, θ̇, ψ̇ → 0 ⇒




φ̇

θ̇

ψ̇


 =




0

0

0


 (4.31)

As a result, 


ṗ

q̇

ṙ


 = Ė




φ̇

θ̇

ψ̇


 + I




φ̈

θ̈

ψ̈


 ⇒




ṗ

q̇

ṙ


 ≈




φ̈

θ̈

ψ̈


 (4.32)

The term ls(−F 1
D + F 2

D − F 3
D + F 4

D) in the last equation of (4.28) can be

dropped due to the symmetry of the vehicle. Consequently, in steady hover

conditions the last three rows of Eqn. (4.28) can also be expressed as

φ̈ =
u2

Ixx

+
Iyy − Izz

Ixx

qr − Jprop

Ixx

qωp

θ̈ =
u3

Iyy

+
Izz − Ixx

Iyy

pr +
Jprop

Iyy

pωp

ψ̈ =
u4

Izz

+
Ixx − Iyy

Izz

pq +
Jprop

Izz

rωp (4.33)

The parameters of the vehicle used in mathematical modeling are revealed

in Table 4.1.

4.2 Disturbance Modeling

The effect of aerodynamic disturbances such as winds on the aerial vehicle

flight control can be significant, leading to instabilities. The effects of wind

can be modeled and the generalized wind forces can be estimated to reject

these external disturbances. In this way, the robustness of the positioning

against the disturbances can be improved.
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Table 4.1: Modeling parameters

Symbol Description Dimensions/Magnitude

m mass 4.5 kg

ls rotor distance to cog along y axis 0.3 m

ll rotor distance to cog along x axis 0.3 m

Ixx moment of inertia along x axis 0.405 kgm2

Iyy moment of inertia along y axis 0.405 kgm2

Izz moment of inertia along z axis 0.72 kgm2

λ1,4 torque/force ratio 0.01 Nm/N

λ2,3 torque/force ratio -0.01 Nm/N

For the modeling of the wind, Dryden wind-gust model is utilized [157].

This model defines the wind and gusts as a summation of sinusoidal excita-

tions as

vω(t) = v0
ω +

n∑
i=1

aisin(Ωit + ϕi) (4.34)

where vω(t) is the time dependent wind vector, Ωi are randomly selected

frequencies in the range of 0.1 to 1.5 rad/s, ϕi are phase shifts, n is the

number of sinusoids, ai are the amplitudes of these sinusoids and v0
ω is the

static wind vector.

ai are defined as ai =
√

∆ΩiΦ(Ωi) where ∆Ωi are the frequency intervals

and Φ(Ωi) are the power spectral densities. The power spectral density for

vertical and horizontal winds are different and expressed as

Φh(Ω) = σ2
h

2Lh

π

1

1 + (LhΩ)2
(4.35)
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Φv(Ω) = σ2
v

2Lv

π

1 + 3(LvΩ)2

(1 + (LvΩ)2)2
(4.36)

where σh and σv are horizontal and vertical turbulence intensities respec-

tively. Lh and Lv are horizontal and vertical gust length scales. These

expressions are valid for altitudes up to 1000 feet above sea level [30].

The relations between Lh and Lv, and σh and σv are dependent on the

altitude as observed in the following equations:

Lh

Lv

=
1

(0.177 + 0.000823Z)1.2
(4.37)

σh

σv

=
1

(0.177 + 0.000823Z)0.4
(4.38)

Generalized disturbance forces are calculated by multiplying the square of

these wind velocities with the corresponding aerodynamic drag coefficients

and integrated into the dynamic model in Eqn. (4.13) as external distur-

bances D(ζ, ξ).

4.3 Disturbance Observer

For the control system, a disturbance observer [158] is designed to esti-

mate the total disturbance acting on SUAVI, that incorporates the external

disturbances, nonlinear terms and parametric uncertainties in the dynamics.

The inertia matrix of the aerial vehicle can be written as,

M = Mnom + M̃

where Mnom is the nominal inertia matrix defined as Mnom = diag(m,m, m, Ixx, Iyy, Izz)

and (M̃) is the variation of the actual inertia matrix from the nominal values.
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The compact form of the dynamics of SUAVI in Eqn. (4.13) can be

rewritten in terms of the nominal inertia matrix as

Mnomζ̇ = f + τdist (4.39)

where f presents the actuator inputs and τdist refers to the total disturbance

as

f = E(ξ)ω2

τdist = −M̃ ζ̇ − C(ζ)ζ + G + O(ζ)Ω + W (ζ) + D(ζ, ξ) (4.40)

Note that τdist contains nonlinear terms and the parametric uncertainties

in the dynamics in addition to the external disturbances like winds.

Equation (4.39) incorporates first order differential equations of the form

Mnomi
ζ̇i = fi + τdisti , i = 1, . . . , 6 (4.41)

Taking the Laplace transform these equations become

Mnomi
sζi(s) = fi(s) + τdisti(s) (4.42)

and τdisti can be extracted as

τdisti(s) = Mnomi
sζi(s)− fi(s) (4.43)

For the sζi(s) term in Eqn. (4.43), future values of ζ are required, which

are not available in practice. Therefore, this equation is not applicable.

However, both sides of this equation can be low-pass filtered by multiplying
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with G(s) = g
s+g

as

G(s)τdisti(s) = Mnomi
sG(s)ζi(s)−G(s)fi(s) (4.44)

where sG(s) can be manipulated as

sG(s) = s
g

s + g
= g(1− g

s + g
) = g(1−G(s)) (4.45)

The term G(s)τdisti(s) can be denoted by τ̂disti(s), which becomes the esti-

mated disturbance. Finally, Eqn. (4.43) becomes

τ̂disti(s) = −G(s)fi(s)− gMnomG(s)ζi(s) + gMnomζi(s) (4.46)

which is applicable. When this estimated disturbance is subtracted from the

input term, Eqn. (4.42) becomes

Mnomi
sζi(s) = fi(s) + (1−G(s))τdisti(s) (4.47)

In Eqn. (4.47), at low frequencies G(s) ≈ 1 and the total disturbance on

the system is omitted. Hence, the full dynamics of the aerial vehicle in Eqn.

(4.13) is reduced to a linear model defined in terms of nominal parameters

as follows:

Mnomi
ζ̇i = fi (4.48)

To estimate the total disturbance, a closed-loop disturbance observer is

implemented utilizing Eqn. (4.46). The block diagram of the dynamical

model of the aerial vehicle with the implemented disturbance observer is

depicted in Fig. 4.4.
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Figure 4.4: Block diagram of the closed loop disturbance observer

4.4 Supervisory Flight Control System

Complexity is a very common problem in control systems. To cope with

this problem, decomposition of complex missions into subtasks and combi-

nation of individual solutions through hierarchical control is very crucial.

SUAVI is a complex multiple-input multiple-output (MIMO) system that

suffers from internal and external uncertainties during flight and is designed

to perform complex missions in a safe and efficient manner using a variety of

sensors and actuators.

The supervisory control system is developed that consists of a high-level

controller for GPS and/or vision based position control and low-level con-

trollers for attitude stabilization. (Fig. 4.5).

SUAVI has two fundamental flight modes, which are the vertical and

horizontal flights. The wings are vertical during takeoff, hovering and landing

and tilted when forward motion is required. The tilt angle is determined

based on the requirements of the present flight speed. The control system
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Figure 4.5: Supervisory control architecture

needs to handle all of these factors for accomplishing the stable flight and

successful reference tracking (Fig. 4.6).

Figure 4.6: Different flight modes of SUAVI

The supervisory control system of SUAVI utilizes PID controllers both in

high and low-level controls. The reason for the utilization of PID controllers

is the simplicity and satisfactory performance on linear systems. SUAVI is
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not a totally linear system, however its model can be linearized near some

operating points and corresponding linear control algorithms can be utilized

by switching the control parameters on the appropriate values.

A PID controller is mathematically formulated as (Fig. 4.7),

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)

d(t)
(4.49)

where Kp, Ki and Kd are the tuning parameters for the weights of propor-

tional, integral and derivative control respectively and the error e(t) is defined

as

e(t) = Xref −X(t) (4.50)

Figure 4.7: PID controller

This control formulation is discretized for its implementation in digital

control system as

ur[k] = Kp,re[k] + Ki,rΣ
k
i=0e[k]T + Kd,r

er[k]− er[k − 1]

T
(4.51)

where r = Z, φ, θ and ψ.

Kp tunes the direct effect of the error. It can make the system unstable

if set to a very large value, whereas it may be ineffective if set to a very low

110



value. Ki is a weight for the integration of the error over time. It is mainly

used for reducing the steady-state error of the system. It can however raise

oscillations on the system if tuned to a value that is more than necessary due

to the fact that it is highly dependent on the data from the past. Kd is used

as a damping coefficient on the control system, that reduces the magnitude

of the overshoots and increases the overall stability of the control.

4.4.1 The High-level Controller

The high-level control system is responsible for the generation of feasi-

ble trajectories and corresponding attitude references for the low-level con-

trollers, for the switching of the low-level controllers into the system depend-

ing on the flight mode requirements, forming the communication link with

the ground station and performing all controls including the security control.

It performs estimations of the state variables utilizing the measurements

obtained from the onboard sensors, detects visual objects to track, obtains

the way points for the navigation and generates control signals for the actu-

ators to follow the attitude and trajectory references.

The high-level controller in the supervisory control system of SUAVI is

implemented in a Gumstixr microcomputer. As the high-level controller,

Gumstix utilizes data from the GPS and the camera that is connected to

the camera port of OMAP3530 processor. The image processing based op-

erations are performed utilizing the OpenCV library. The DSP core on the

microcomputer allows the computations of image processing algorithms at

higher speeds. Such a computation would be impossible without such a com-

putationally powerful computer.

The communication with ground station is achieved via an XBee long
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range RF communication module that has a carrier frequency of 900 MHz.

The microcomputer is connected to the XBee and to the low-level control

system via its UART ports (Fig. 4.8).

Figure 4.8: The processor block diagram

The GPS data is received directly from the GPS module and processed

for the acquisition of the coordinate information from the bulky GPS data.

The errors are calculated in earth frame for the generation of accelerations

using PID controllers. Then, the attitude references for the low-level control

system are computed (Fig. 4.9).
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Figure 4.9: Flow diagram of the GPS based control

GPS Based Hovering

For the GPS based hovering, the high-level control system utilizes PID con-

trol algorithms. For xn ve yn being the unit vectors along the x and y axes

of the world frame and x(t) being the instantaneous position of the vehicle

provided by GPS, ex and ey are the position errors along x and y axes. It

follows that

ex = (xd − x(t)) · xn (4.52)

ėx = −v(t) · xn (4.53)

ey = (xd − x(t)) · yn (4.54)

ėy = −v(t) · yn (4.55)

To hover the vehicle at a given position, PID controllers are designed along

both x and y axes (Fig. 4.10), namely

ux = Kx,pex + Kx,dėx + Kx,i

∫ t

0

exdt (4.56)
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uy = Ky,pey + Ky,dėy + Ky,i

∫ t

0

eydt (4.57)

Note that these controllers are acceleration controllers along x and y axes.

To handle the effect of the air vehicle’s heading, ψ, which is the radian value

of the compass heading wrt. north being 0 angle, these accelerations must

be transformed using a 2D rotation matrix, R(ψ), as follows:

axy = R(ψ)(ux · xn + uy · yn) (4.58)

By using equation (4.58), reference attitude angles which allows the vehicle

to hover at a given position are computed using the following formulas [159]:

θref = arcsin(
ax

||a||) (4.59)

φref = − arcsin(
ay

||a|| cos(θ)
) (4.60)

where a is a = (ax, ay, az), ax and ay are the x and y components of the

acceleration vector, axy, defined by Eqn. (4.58). The third component of the

acceleration vector, az, is the acceleration of the vehicle along the z axis and

is computed as az = u1/m. ||a|| is the Euclidean norm of a and is defined as

||a|| =
√

a2
x + a2

y + a2
z (4.61)

Reference attitude angles computed by (4.59) and (4.60) can be low-pass

filtered to be used for the attitude control performed in the low-level control

system.
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Figure 4.10: GPS based hovering control

GPS Based Waypoint Navigation

For the GPS based waypoint navigation, the high-level control system

utilizes similar methods with the GPS based hovering control. A trajectory,

P ∈ NxR3 is generated by N waypoints xd
i . For each trajectory part Pi, the

flight vector of the aerial vehicle is set along the vector from xd
i to xd

i+1. For

the along track and cross track position, a unit tangent vector ti along and

a unit normal vector ni perpendicular to that vector are defined. For x(t)

being the current position of the vehicle measured from GPS, and vd
i being

the desired flight speeds of the vehicle between two consecutive waypoints

i and i + 1, the cross track error ect, its derivative ėct, and the along track

error rate ėat are defined as

ect = (xd
i − x(t)) · ni (4.62)

ėct = −v(t) · ni (4.63)
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ėat = vd
i − v(t) · ti (4.64)

For controlling the speed in along track direction, a PI controller is designed

for the control of speed in the along track direction, whereas a PID controller

is designed for the control of cross track position (Fig. 4.11); i.e.

uat = Kat,pėat + Kat,i

∫ t

0

ėatdt (4.65)

uct = Kct,pect + Kct,dėct + Kct,i

∫ t

0

ectdt (4.66)

These controllers are acceleration controllers along x and y axes. The de-

sired acceleration vector is constructed from the controller outputs (4.65) and

(4.66) as

ades = R(ψ)(uct · n + uat · t) (4.67)

where R(ψ) is a 2D rotation matrix depending on the heading (ψ) for trans-

forming the accelerations in world frame to accelerations on the body frame.

Reference attitude angles which allow the vehicle to navigate on a trajec-

tory are computed by using Eqn. (4.59) and Eqn. (4.60) given in hovering

section.

4.4.2 The Low-level Controller

The low-level control system is responsible for the realization of low-level

control methods as requested by the high-level controller via high-level inputs

(uH) and acquire low-level measurement data (yL) for sending to the high-

level controller. These attitude control and signal acquisition processes can

be accomplished at very high frequencies when compared with the high-level

processes. The low-level controller also behaves as a buffer between these
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Figure 4.11: GPS based waypoint navigation

high-frequency and low-frequency processes.

The low-level control system is implemented in Atmel Atmega16 micro-

controllers that operate as real-time systems. It utilizes PID controllers for

attitude stabilization and gravity compensated PID controller for altitude

stabilization. The PID controller in Eqn. (4.49) can be restated for altitude

(Fig. 4.12) and attitude (Fig. 4.13) control of SUAVI as:

u1 = Kp,zez + Kd,z ėz + Ki,z

∫
ezdt− mg

cφcθ

(4.68)

u2 = Kp,φeφ + Kd,φėφ + Ki,φ

∫
eφdt (4.69)

u3 = Kp,θeθ + Kd,θėθ + Ki,θ

∫
eθdt (4.70)

u4 = Kp,ψeψ + Kd,ψėψ + Ki,ψ

∫
eψdt (4.71)

where u1 is the control effort of the overall thrust for lift, u2 is the effort for

roll, u3 is the effort for pitch, and u4 is the effort for yaw.
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Figure 4.12: PID altitude control system

Figure 4.13: PID attitude control system

As stated before, the PID control equation for the altitude includes an ad-

ditional gravity compensation term. This term cancels the continuous effect

of the gravity on the air vehicle to improve the altitude control performance.

4.5 Overall Supervisory Control System

The overall supervisory control system is depicted as in Fig. 4.14. It is

apparent that the sensors that are very crucial for stabilization of the system

are communicating with the low-level control system directly to prevent un-
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necessary interrupt handling tasks in the high-level controller and guarantee

the real-time utilization of sensor data without time loss.

The data transfer between the low-level and high-level control systems

is accomplished on a multi-directional RS232 communication line. The low-

level control system transmits all the states, sensor data and control variables

to the Gumstix microcomputer, which acts as the supervisor, periodically.

The high-level controller generates the attitude references for the trajectory

tracking and sends these references to the low-level control system.
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Figure 4.14: The schematic of the supervisory control system
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Chapter 5

5 Flight Control System Components

The electronic system of SUAVI is the backbone of the flight; without

an electronic control circuit a control architecture cannot be implemented

and the UAV body is only an object to be controlled. This system contains

sensors and actuators for situational awareness and acting on the mechanical

system, filters to make the sensor data useful, microcontrollers to implement

the low-level controllers and surely the integration of all these systems for

the flight.

5.1 Sensors

To achieve satisfactory stabilization and trajectory tracking, reliable state

estimates need to be acquired by the supervisory control system. For obtain-

ing these reliable state estimates, sensor data is required to be gathered

properly and several filters are needed to be applied.

5.1.1 Inertial Measurement Unit (IMU)

The stabilization of SUAVI during the flight is highly dependent on the

accurate measurement of the roll, pitch, yaw angles and angular velocities



due to the requirements of the control. To provide these measurements, a

sensor bed named as IMU is utilized.

The IMU used in this project is mainly a sensor board containing 3-axis

accelerometer, 3-axis gyro, 3-axis magnetometer and an ARM processor for a

variety of processes (Fig. 5.1). It has some additional features such as RS232

and Bluetooth communications and onboard power regulation to reduce noise

transmitted through the power line.

For accurate conversion of sensor readings to angular position and velocity

data, Extended Kalman Filter is implemented in the ARM processor using

C language and the resultant data is fed to the low-level control system via

the RS232 communication line.

Figure 5.1: Inertial Measurement Unit (IMU) used in the system

5.1.2 Compass

The digital compass is nearly an inevitable sensor for all UAVs, due to

the fact that it delivers very crucial heading data both for yaw stabilization

and navigation. In the project, SparkFun Electronics compass module with

Honeywell HMC6343 tilt compensated compass is utilized (Fig. 5.2). This
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compass includes a three-axis accelerometer and a three-axis magnetometer

in a single chip. It can output tilt-compensated heading measurement, mag-

netometer readings and accelerometer readings all through I2C communica-

tion protocol. It delivers the tilt-compensated heading measurement using

both the magnetometer readings for estimating 3D magnetic direction of the

earth magnetic field and accelerometer readings to estimate its inclination

wrt. the ground.

Figure 5.2: Digital compass used in the system

For the sea vessels, normally, two-axis compass is sufficiently useful, since

they are parallel to the ground all the time except the cruises on very rough

seas, where some periodic rolling and pitching exists. On the air vehicles

however, there are the rolling and pitching actions most of the time, causing

errors on the measurements.

The reason for the error is mainly the inclination of the magnetic field

lines wrt. the ground, that is rarely 0◦. 2D compasses do not measure the

vertical component of the magnetic field. If the compass tilts, this third

component adds or subtracts some magnetic reading (Fig. 5.3). This change

in magnetic reading causes the compass to read the heading with errors that

can be fairly large.
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(a)

(b)

Figure 5.3: The reason for the errors on the heading measurement due to

one axis (a) and two axes (b) inclinations

The tilt compensated compass solves this problem by finding the 3D

magnetic field direction and projecting it on the virtual ground plane that

it estimates through the inclination wrt. the ground. It uses the 3-axis

accelerometer to find this inclination.

However, using only accelerometers to find the inclination is not a perfect

solution for applications, where strong vibrations exist. In SUAVI, there are

severe propulsion system driven vibrations, which add large errors on the

tilt-compensated heading measurements. There is not any analog filtering

pin on the compass chip for plugging some RC components for low-pass
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filtering of the vibrant accelerometer readings in the compass. Hence, only

the magnetometer readings in the chip are taken by the control system and

they are fused with the tilt angle data from the IMU to provide low-noise

heading information (Fig. 5.4).
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Figure 5.4: Compass reading with the noise due to the vibration and without

that noise

An important issue to be careful on using the compass is that magnetic

fields generated by high current flow in the cables and motors affects the

reading of the compass and causes large errors. This is especially very effec-

tive on electric powered UAVs, on which the electric motors draw very high

currents. To solve this problem, the compass should be positioned far from

electric motors and cables, that carry high currents.

125



5.1.3 Sonar

Sonar, which is in fact an ultrasonic range finder is a fairly accurate

distance measuring device. It operates relying on the returning time delay

of the reflected high frequency sound waves. When this sensor is pointed to

the ground, it can be used to measure the height from the ground.

In the electronic control system of SUAVI, Maxbotix EZ4 ultrasonic range

finder is utilized (Fig. 5.5). According to its specs, this sonar has 2.54 cm

(1′′) of resolution for up to 6.45 m distance. For the evaluation of perfor-

mance, several types of sonar with different beam cone angles from widest

to narrowest are tested and EZ4 with the narrowest beam cone angle is pre-

ferred due to its more reliable measurements in this application. This sensor

has one main drawback of being able to operate only on hard surfaces due

to its operating principle, so it cannot be used over grass, water and soil.

Figure 5.5: Ultrasonic distance sensor used in the system

The sonar directly outputs the analog signal that is proportional with the

distance. This feature simplifies the interfacing of the sensor using the mi-

crocontroller, since it does not require any communication protocol, instead

only the usage of an ADC channel on the microcontroller.
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5.1.4 Altimeter

Altimeter is a barometric sensor that provides altitude measurement wrt.

the sea level based on the ambient air pressure. It is widely used in aviation

being the main altitude measurement device in all aircrafts. The key for its

correct measurement is the correct setting of the pressure offset at the sea

level on the place to be flown. In the project, VTI Technologies SCP1000

series barometric pressure sensor is utilized as an altimeter. According to the

specs of this chip, it is sensitive to altitude differences of 10 cm (Fig. 5.6).

Figure 5.6: Ultrasonic sensor used in the system

The communication interface used in this IC is also I2C as in the compass,

however the data length is 19 bits to allow the resolution of 10 cm in the

air, which has a very low density. Hence, the hardware I2C module on the

microcontroller cannot be used for data acquisition from this sensor due to

the register size limitations in the hardware I2C module. As a result, an I2C

communication code is implemented in the C compiler of the microcontroller

to acquire the temperature and pressure data from the pressure sensor.

During the tests of this sensor in comparison with the sonar readings, it

is observed that the measurements of this sensor can have errors of up to

±50 cm and have some delay (Fig. 5.7). At less than 2 m of altitude above

the ground, control of altitude based only on altimeter data may become
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disastrous due to these errors and oscillations rise due to the sensor delay.

For this reason, usage of sonar having much more accurate measurements is

preferred at low altitude and additional D2 control is implemented on the

vertical axis to dampen the oscillations on altimeter usage.
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Figure 5.7: Sonar and altimeter measurements without motor operation (a)

and during the flight (b)

5.1.5 GPS

GPS is yet another navigation tool, that only operates outdoors due to its

dependency on the GPS satellites traveling in the earth orbit. It is a widely

used navigation tool not only in aviation and sailing, but also in road tracking

on the land. The usefulness of this technology makes it very popular, despite

its relatively low data rate of 1-2 Hz and positional accuracy up to few m’s.

In the control system of SUAVI, ADH Technology D2523T GPS unit with

a high-gain active antenna and 50 channel GPS receiver circuits is utilized
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(Fig. 5.8).

Figure 5.8: GPS module used in the system

This sensor can process GPS data at 2 Hz, but it also has the ability to

deliver 4 Hz GPS data applying interpolation on the processed GPS data.

During the initial trials for the positioning accuracy, it is observed that

this module has a positioning error of around 1-2 m when staying statically

on the ground in an average cloudy day in a place where disturbances such

as some trees, lamp posts and buildings exist with large clearances from each

other (Fig. 5.9).

Figure 5.9: GPS measurement deviation in static conditions
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To evaluate the positional accuracy of the GPS, in motion measurements

are also obtained. In low-speed motion test, the GPS module is moved on an

L-shaped track with walking speed and returned on the same track finishing

the test at the initial point. In Fig. 5.10, it can be seen that the results of

the GPS are generally satisfactory.

Figure 5.10: GPS measurement on an L shaped trajectory with low speed

motion

The performance of the GPS module is also evaluated at higher speeds

fixing it on a car and tracking the road around the Sabancı University cam-

pus. Through the mapping of the GPS readings on Google Earth software,

it is observed that the performance of the GPS module is also satisfactory

at higher speeds, which is very crucial at high speeds such as 60 km/h (Fig.

5.11). As a result of these tests, GPS is found to be useful for navigating,

while its altitude measurement can sometimes be slow and unreliable in some

cases.
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Figure 5.11: Visualization of GPS measurement around Sabancı University

at high speed

To obtain the coordinates using the GPS module, it is required to cap-

ture the sequential data sent on RS232 communication line and extract the

coordinates from the line beginning with “GPGGA” in the data with NMEA

protocol. An algorithm is developed to handle the raw data first to find

“GPGGA” and then the commas, since the number of commas does not

change even though data length can change depending on the required num-

ber of digits.

It is also worth to note that the GPS sends data only at some intervals

depending on its data output frequency, and a bulky data is needed to be

processed at those intervals. Additionally, the default settings of the GPS

module dictates the GPS frequency of 1 Hz. To improve the quality of GPS

tracking, codes for 2 Hz GPS reading setting are sent to the GPS at every

startup or a backup battery for feeding the GPS when system is not working
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can be utilized.

5.1.6 Airspeed Sensor with Pitot Tube

The airspeed sensor with pitot tube is a very crucial sensor, especially for

the transition and horizontal flight modes, because the wing angle of attacks

and motor speed controls have to adapt to the airspeed for stable flight. In

the control system of SUAVI, Eagle Tree Airspeed MicroSensor V3 is utilized

(Fig. 5.12).

Figure 5.12: Airspeed sensor with Pitot Tube used in the system

This sensor operates by benefiting from the Bernoulli equations. These

equations state, that the pressure difference between the dynamic pressure

at front and the static pressure at side holes on the Pitot tube is proportional

to the square of the frontal velocity. This airspeed sensor has a differential

pressure sensor with its two pressure inputs connected to the two pressure

lines of the Pitot tube. Using the pressure difference measurement, this

sensor delivers an output of the square root of the measurement with some

predefined offset value. Up to the minimum flight speed it can sense, which

is around 15 km/h for this sensor, it delivers this offset value and beyond

that speed it adds a term proportional to the speed to the offset value. To
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calibrate this sensor, an experiment is conducted, in which this airspeed

sensor and a precise anemometer are placed near to each other in the wind

tunnel and the measurements of these two sensors are compared (Fig. 5.13).
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Figure 5.13: Calibration of the airspeed sensor in comparison with a sensitive

airspeed measurement system

According to the results obtained from this comparison, the conversion

formula from the raw measurement of the sensor to the airspeed value is

determined to be

S =
D − 54.6461

5.0491

where D is the airspeed sensor reading and S is the corresponding air speed.

5.2 Filters

The stabilization of SUAVI during the flight is highly dependent on the

accurate measurement of the roll, pitch, yaw angles and angular velocities

due to the requirements of the control. Since the UAV flies, its angular
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position and velocity data cannot be obtained directly connecting encoders.

Instead, they need to be estimated using inertial sensors on the aerial vehicle,

however there are important obstacles to be hurdled. The first obstacle is the

effect of motor vibrations on the accelerometer measurements, which ruins

the accelerometer measurements and causes the angle data to be useless.

This problem is solved using an analog low-pass filter.

The second obstacle is the effective noise on the sonar readings. Due to

this noise with spikes, the sonar readings cannot be utilized directly. This

problem is handled utilizing a digitally implemented exponentially weighted

moving average filter.

A third very important obstacle is the imperfectness of these sensors. The

zero measurement mean values of both the accelerometers and gyros change

and also there are couplings between the measurements of different motions.

As an instance, the x-axis measurement of an accelerometer changes both by

a linear acceleration in x-direction and a change in pitch angle. Extended

Kalman Filter is utilized for the sensor data fusion to obtain reliable attitude

estimation.

5.2.1 Analog Low-pass Filter

To handle the problem of vibration effect on the accelerometer readings,

a very logical solution is to apply analog low-pass filters on the outputs of

the accelerometers. Usage of analog low-pass filters is reasonable due to two

separate reasons. First, low-pass filtering directly attacks the addition of

the vibration components on the measurements. The main reason of the

vibrations in the propulsion system is the effect of high speed rotation of

unbalanced loads, that is also magnified proportionally with the square of the
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rotation speed. The accelerations caused by these large magnitude vibrations

are added on the real measurements (Fig. 5.14). The rotors rotating with

beyond 4000 RPM rotational speeds cause very high frequency accelerations.

Hence, this vibration effect is to be filtered out through low-pass filtering.
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Figure 5.14: Raw accelerometer readings around x,y,z axes during hover

Second, analog low-pass filtering is superior in the performance to the

digital low-pass filtering because the ADC samples the filtered signal, so the

problem of aliasing is prevented.

The RC low-pass filter is implemented on the IMU between the accelerom-

eter outputs and the ADC inputs of the ARM processor. The cut-off fre-

quency to obtain proper acceleration readings under the existence of the

vibrations is determined to be 0.6 Hz. The inclusion of this low-pass filter

brings reasonable readings for the utilization in the sensor fusion (Fig. 5.15).
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Figure 5.15: Low-pass filtered accelerometer readings around x,y,z axes dur-
ing hover

5.2.2 Digital Exponentially Weighted Moving Average Filter

The raw measurement of the sonar is very noisy with dangerous spikes

under the effect of propulsion system driven vibration, air flow directed to

the ground and even the inclinations at altitudes above 3.5 m making it

impossible to use directly in the altitude control (Fig. 5.16).

A low-pass filter is also not very effective to solve the problem. Hence,

an Exponentially Weighted Moving Average (EWMA) filter is implemented,

in which the filter output is a convex combination of the filter output in the

previous step and the current raw sensor measurement as in equation

Ft = αSt + (1− α)Ft−1 (5.1)

where Ft is the current filtered measurement, Ft−1 is the previous filtered
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measurement, α is the weighting scale and St is the current raw measurement.

In this equation 0 ≤ α ≤ 1 and the weighting of the previous filtered

measurement (1 − α) is increased when the difference between two consec-

utive sonar measurements is very large. When this difference is not large,

the weighting scale α is increased for the incorporation of the current raw

measurement. The formula for the adaptive calculation of α is:

α =
|∆S|

|∆S|δ1 + (|∆S|δ2 + ε)−1
(5.2)

where ∆S=St − St−1, δ1 = 1.4, δ2 = 0.2 and ε = 0.1. Fig. 5.16 reveals

unfiltered and filtered altitude data to show the performance of the filter.
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Figure 5.16: The raw and the filtered altitude measurements from sonar

5.3 Sensor Fusion via Kalman Filter

For accurate conversion of sensor readings to angular position and velocity

data, Extended Kalman Filter (EKF) is implemented in the IMU. Gyros,
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that are utilized in the IMU, have fast response, however it is not possible

to estimate angular position through integrating the gyro readings due to

the gyro drift problem (Fig. 5.17). During the operation, even without any

vibration, the gyro reading zero mean changes. Hence, the integral of the

gyro reading becomes irrelevant with the actual value as time passes.
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Figure 5.17: Drift in the integrated gyro data

Even though the accelerometers are much more reliable than the gyros

in terms of mean value repeatability, their readings are delayed due to the

low-pass filters applied into the system. This is also true for the heading

information obtained from the compass. Additionally, the compass reading

can be affected instantly from the magnetic field changes due to the ferro-

magnetic materials and electrical currents in the area.

EKF is utilized as a reliable attitude estimation tool that fuses the gyro,

accelerometer and compass measurements [160]. By fusing these sensor types,

it combines the fast response characteristic of the gyro measurements with

the low drift feature of the accelerometers and the compass.

In EKF, the state transition and observation models can be nonlinear

functions of states and inputs; there is no obligation for linear functions.
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The system model for the design of the filter is

xk = f(xk−1, uk−1) + ηk−1 (5.3)

zk = h(xk) + νk (5.4)

where ηk and νk are process and measurement noises.

In light of Eqn. (4.5), it follows that

α̇w = Ωw = E−1(φ, θ) · Ωb (5.5)

or, 


φ̇

θ̇

ψ̇


 =




1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ







p

q

r


 (5.6)

Through the discretization using approximate derivative, Eqn. (5.5) becomes

αwk
= αwk−1

+ TE−1(αwk−1
)Ωbk−1

(5.7)

State evolution is conducted as

xk =


αw

bg




k

=


αwk−1

+ TE−1(αwk−1
)Ωbk−1

bg
k−1

+ vg
k−1


 (5.8)

where bg ∈ R3 refers to the bias in gyros and T is the sampling time. EKF

corrects bias term periodically by comparing the estimation of angle with

the measurements from the accelerometers and the compass. The filter has

prediction and correction steps. The prediction part is
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x̂k|k−1 = f(x̂k−1|k−1, uk−1) (5.9)

The four main equations of the Kalman Filter are:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1 (5.10)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (5.11)

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1)) (5.12)

Pk|k = (I −KkHk)Pk|k−1 (5.13)

where Q and R denote process and measurement covariance matrices, and A

and H matrices are defined as

Ak−1 =
∂f

∂x
|x̂k−1|k−1,uk−1

(5.14)

Hk =
∂h

∂x
|x̂k|k−1

(5.15)

Pk|k−1 in Eqn. (5.10) is a priori error covariance matrix. It is used to compute

Kalman gain (Kk) in Eqn. (5.11). The optimal state vector x̂k|k is the sum of

predicted state vector x̂k|k−1 and the correction term Kk(zk−h(x̂k|k−1)). The

correction term is computed using the measurements from the accelerometers

and the compass. Pk|k in Eqn. (5.13) is the posteriori error covariance matrix.

It is utilized to update Pk|k−1 in Eqn. (5.10). Note that EKF requires initial

conditions of x̂0 and P0|0 for the first cycle.

Q and R matrices in EKF can be tuned experimentally to improve the
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performance of the filter.

Q =


0.0001 0

0 0.000001


 , R =


0.2 0

0 0.2


 (5.16)

In the results of the EKF implementation it is observed, that the drift in

the integral of gyro reading is eliminated both in the measurements without

any vibration (Fig. 5.18) and with motor vibration (Fig. 5.19). It is also

remarkable, that the estimations are not affected by the motor vibrations.
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Figure 5.18: Kalman filter results in roll (a) and pitch (b) with hand motion
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Figure 5.19: Kalman filter results in roll (a) and pitch (b) during flight
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5.4 Microcontrollers

For the coded tasks in the low-level control system of SUAVI, Atmel

Atmega16 microcontroller is preferred for its computational and peripheral

features, much easier and faster supply, and broad development support on

the Internet (Fig. 5.20).

Figure 5.20: Atmel Atmega16 microcontroller with DIP package

A microcontroller is an integrated circuit that contains a microprocessor,

a program memory, ADCs, modules for various communication protocols,

PWM modules and peripheral I/O pins for a variety of possible tasks to be

performed.

Atmel Atmega16 microcontroller has 16 MHz clock frequency with single

clock operations, is able to handle 8 channel 10 bit analog to digital con-

versions, analog signal level comparisons, serial, I2C, SPI communications,

2 channel PWM generations, and timer/counter operations.

It is programmed in Assembly or C languages, or as a combination of two,

where C programming brings great ease of coding especially in big mathe-

matical operations and Assembly language delivers precise timing.

142



5.5 Overall Electronic Control System

The electronic control system consists of a Gumstix microcomputer for

high-level control side and four Atmega16 microcontrollers for the low-level

control side. The programming and integration of the high-level computer

into the system and the low-level control circuit design, production and cod-

ing are all performed as a part of this study. The entire electronic control

system including the high-level computer, low-level control system and all

the sensors and actuators is shown in Fig. 5.21.

Figure 5.21: Overall electronic control system

The Gumstix Overo Fire that performs as the high-level computer of the

control system is a very compact (17 mm x 58 mm x 4.2 mm), very lightweight

(6 gr) but computationally powerful microcomputer (Fig. 5.22). It has an 600

MHz Texas Instruments OMAP (Open Multimedia Application Platform)
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3503 microprocessor with floating point capabilities and a 256 MB DDR

RAM memory. To access its peripheral signals, it is mounted on a Gumstix

Overo Summit expansion board, which is also a compact (80 mm x 39 mm)

and lightweight (16 g) circuit, but has power regulation, DVI-D screen port,

three USB ports, sound I/O ports and a forty pin I/O port with serial I/O,

I2C, SPI, PWM, ADC and general purpose I/O signals. Gumstix can operate

embedded Linux distributions and OpenCV, and perform complex tasks such

as GPS based position control.

Figure 5.22: Gumstix Overo microcomputer with its onboard camera

The Gumstix microcomputer receives all flight data to have full informa-

tion of the air vehicle related with control to enable the implementation of

various control algorithms both for recent tests and for the future develop-

ments on the system. This microcomputer transmits the attitude references

to the low-level control system in a sporadic manner. The timing of the data

transmission is highly dependent on the tasks it performs as a high-level

controller. Hence, the low-level control system receives this data utilizing an

interrupt handler not to miss any data transmitted by the high-level con-

troller.
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The tasks of the low-level control are to gather sensor data, perform nec-

essary filterings for reliable state estimations, gather the human operator

inputs on the system, handle the low-level control calculations for the stabi-

lization of SUAVI on the reference orientations demanded by the high-level

controller and generate the control signals for the actuators.

The low-level control circuit, that is designed, produced and programmed

in this study, contains a total of three Atmel Atmega16 microcontrollers (Fig.

5.23). The reason for the existence of that many microcontrollers is that

there are hard real-time, soft real-time and sporadic tasks altogether to be

accomplished without missing any sensor data, any control loop and any

control pulse generation. These microcontrollers have separate tasks and are

named mainly depending on their tasks that are Mixer, Capture & Sensor

and Connect.

The Mixer microcontroller obtains the angle and angular velocity mea-

surements from the IMU and references from the capture, computes the

control commands, mixes the main four control commands, that are the roll,

pitch, yaw and throttle commands, and finally generates the corresponding

motor throttle references for propulsion and the servo control references for

the wing tilting servos and the flaperon servos on the wings. All this opera-

tion is performed at 100 Hz and is hard-real time at all.

This loop is triggered by the end of the angle and angular velocity trans-

mission of the IMU to the Mixer. It runs on interrupt of the RS232 channel

not to miss any data transmitted by the IMU. Since there is no tolerance for

latency on the Mixer’s operation, Mixer-Capture & Sensor communication is

done only by the Mixer’s request. Also the Connect does not disturb the SPI

communication line that is multiplexed between Connect-Capture & Sensor
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Figure 5.23: Low-level control circuit

and Mixer-Capture & Sensor when Mixer is communicating with Capture &

Sensor.

The Capture & Sensor microcontroller obtains 3-axis magnetometer data

from the compass via I2C, airspeed data from the airspeed sensor via soft-

ware coded I2C, barometric pressure and temperature data from the altime-

ter again via software coded I2C, sonar altitude data from the sonar utilizing

its ADC and the control references from the RC control capturing the servo

pulses. It also supports the data exchange between Connect and Mixer, re-

sponding both of them through the SPI communication line and performs the

filtering and conversion tasks of the sensor data. It also generates the alti-

tude control command through fusing the barometric altitude and ultrasonic

altitude, and finding the altitude error.
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The Connect microcontroller provides the bi-directional communication

between the low-level control circuit and the Gumstix high-level control com-

puter. It collects sensor data from the Capture & Sensor microcontroller,

sends the obtained data to the Gumstix and gets the commands of the Gum-

stix computer through the RS232 interrupt, since the time when Gumstix

transmits command message is not very strict. When a command message

from the Gumstix is received, Connect transfers it to the Capture & Sen-

sor for the low-level controller to fulfill the reference commands sent by the

high-level computer.

The I2C communication is used in the interfacing of the compass, the

airspeed sensor and the altimeter that contains both barometer and ther-

mometer. It is noticeable that, the digital output single chip small sensors in

the system communicate through I2C communication and it would not be a

surprise if in the near future also the rest of the sensors use I2C communica-

tion. The advantage of this protocol is that a device such as a microcomputer

or microcontroller can communicate with up to 128 sensors or other devices

only using two wires for communication, one line being for clock and the

other being for data transmission.

This communication is clock synchronized with the master device con-

trolling the clock. Thus, the master device has the ability to determine when

to start, stop or suspend the communication. Both communication lines are

connected to the supply voltage via pull-up resistors, so when a device needs

to transmit its 0 signal on the line, it pulls the line down by connecting the

line to the ground with its inner transistors (Fig. 5.24). I2C is similar to

CANBUS in this aspect.

The servo pulses that are both captured and generated in the control
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Figure 5.24: I2C communication circuit structure

circuit are rectangle waves having 10-20 ms periods and 1-2 ms positive

pulse widths (Fig. 5.25). The excess pulse width beyond 1 ms determines the

position of servos and motor speed controllers in proportional radio control

systems. These pulses can be generated using hardware PWM modules of

the microcontrollers or microcomputers, however 8 bit PWM is too course

to be used since the resolution is only 12-13. 16 bit PWM modules generate

very fine PWM signals that are far finer than required.

There are two 8 bit hardware PWM modules on Atmega16 microcon-

troller. For this reason, a software PWM code is written, in which the counter

variables are assigned with the numbers to be counted back, servo pulse sig-

nals are risen and counters are lowered in every counting period until the 2

ms time counter becomes 0.

When a counter becomes 0 before the 2 ms total time, the signal on

its channel falls. To prevent the fallen channels from decreasing the total

time of 2 ms and the pulse widths of the still risen channels, one clock cycle

long ”nop” commands are added to the conditional statements of the fallen

channels. By this way, 8 servo pulse channels with 3.6 µs resolution are

obtained. This result would even not be achieved by eight 12 bit PWM

channels.

The capturing method of the servo pulses from the RC receiver uses one

148



Figure 5.25: Servo pulse

capture pin on the Atmega16 due to the availability of only one. This method

exploits the fact that RC receivers produce the servo pulses sequentially, so

when one pulse falls, the next pulse rises (Fig. 5.26).

Figure 5.26: Servo control pulses generated by the RC receiver

In this method (Fig. 5.27), a multiplexer with four inputs connected

to the RC receiver’s channels sequentially transfers the signal of the selected

channel to the capture input pin of the microcontroller. At the very beginning

of the operation, the first channel is selected and the interrupt source of the

capture pin is defined as rising edge. The capture module generates an

interrupt, when the signal of the first channel is risen.

In the interrupt code, first the capture timer count is cleared and then

if the valid channel number is 1, the interrupt source of the capture pin is

defined as a falling edge. This is done since up to the end of the capturing

of all channels, only the falling edge of the valid channels will be detectable.

After up to 2 ms time, the next interrupt is taken meaning that the signal
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Figure 5.27: Pulse width capturing operation

of the first channel is fallen. With this interrupt, the timer value is backed

up into a register for channel1 capture result, the channel selection of the

multiplexer is increased by 1 and timer value is cleared. The operation in

this second interrupt is repeated up to the last captured RC channel. When

all channels are clear, the channel selection of the multiplexer is set to 1 and

the interrupt source of the capture pin is defined as rising edge again.
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Chapter 6

6 Simulations and Experiments

For the evaluation of the developed control algorithms, first, simulations

are performed in Matlabr environment. When a control simulation is eval-

uated as successful, the codes are implemented into the electronic control

system of a quadrotor helicopter test platform and then into the SUAVI for

further testing and addition on the system.

6.1 Simulation Results

For the development of control algorithms and for the very first performance

tests, a simulation environment of SUAVI is built in Matlab Simulink with

VR Toolbox utilizing the developed dynamical model of the aerial vehicle.

Before trying the GPS codes in the flight tests, numerous GPS based control

simulations are performed in this environment both for GPS based hovering

and waypoint navigation. The results of these tests are found to be promising.

6.1.1 GPS Based Hover

For the evaluation of the hovering performance, the PID type GPS based

hovering control algorithm, which is explained in Chapter 4, is employed on

the dynamic model of SUAVI. The simulations in Simulink environment are

performed with the external disturbances applied on the system utilizing the



Dryden wind model. The performance of the hovering control is found to be

satisfactory with the implementation of the parameters given in Table 6.1

and disturbance observer.

Table 6.1: Implementation Parameters for Hovering Control

Control Kp Kd Ki

Roll 30 10 0.1

Pitch 30 15 0.1

Yaw 10 4 0.1

Altitude 40 15 0.1

X position 25 40 8

Y position 25 40 8

Figures 6.1 and 6.2 depict the hovering and the attitude tracking perfor-

mances with disturbance rejection. The disturbance observer, that is pro-

posed in Chapter 4, is used to estimate the effect of the wind on the aerial

vehicle and reject it. In the hovering simulations, SUAVI takes off from just

below the reference position for hovering and is controlled for staying on the

reference position in the existence of winds and gusts.

It should be noted that the position reference in x-y plane is tracked with

some error that is bounded by 20 cm and the altitude reference is tracked

with error that is less than 10 cm. The tracking errors of attitude angles do

not exceed ±2◦. Moreover, it is apparent in Fig. 6.2 that the aerial vehicle

follows its constant heading reference, ψref = 0◦, with less than 1◦ error. As

Figure 6.3 depicts, the required motor thrusts do not exceed 16 N, that is

the limit of the motor-propeller couples utilized in SUAVI.
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Figure 6.1: Hovering performance with disturbance observer
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Figure 6.2: Attitude performance with disturbance observer

153



0 10 20 30 40 50 60 70 80 90
0

10

20

time [s]

F
1 [N

]

0 10 20 30 40 50 60 70 80 90
0

10

20

time [s]

F
2 [N

]

0 10 20 30 40 50 60 70 80 90
0

10

20

time [s]

F
3 [N

]

0 10 20 30 40 50 60 70 80 90
0

10

20

time [s]

F
4 [N

]

Figure 6.3: Motor thrust forces with disturbance observer

Figures 6.4 and 6.5 depict the wind forces on the aerial vehicle, that are

generated by the Dryden wind model, and the estimation of the disturbances

by the disturbance observer. The effecting force due to the winds is up to

6 N. Note that the estimation of the disturbance is very similar to the low-

pass filtered shape of wind forces. This is due to the fact that winds have

dominance on the total disturbance acting on the vehicle.

In the presence of the disturbance observer, the PID control system is

able to hover the aerial vehicle in the close vicinity of the horizontal reference

position despite the negative effects of the winds (Fig. 6.6).

The aerodynamic effects acting on the aerial vehicle reduce the perfor-

mance of the hovering control, when these forces are not estimated and han-

dled accordingly. The benefit of the disturbance observer becomes evident

when the simulation is repeated without disturbance rejection (Fig. 6.7, 6.8).
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Figure 6.4: Wind forces acting as disturbance

Figure 6.5: Estimated disturbance
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Figure 6.6: Hovering performance with disturbance observer (motion in the
horizontal plane)
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Figure 6.7: Hovering performance without disturbance observer

156



0 10 20 30 40 50 60 70 80 90
−50

0

50

time [s]

φ 
[d

eg
]

 

 

φ
φ

ref

0 10 20 30 40 50 60 70 80 90
−20

0

20

time [s]

θ 
[d

eg
]

 

 

θ
θ

ref

0 10 20 30 40 50 60 70 80 90
−5

0

5

time [s]

ψ
 [d

eg
]

 

 

ψ
ψ

ref

Figure 6.8: Attitude performance without disturbance observer

In this simulation, it is observed that the position errors in horizontal

plane and attitude deviations are larger when compared with the results in

Figures 6.1, 6.2. It is also evident, that the controller cannot keep the position

and attitude errors of the aerial vehicle low when large disturbances, such

as the one occurring at 86th second, exist. Consequently, the aerial vehicle

moves away from the desired position as depicted in Figure 6.9.

6.1.2 GPS Based Trajectory Tracking

For the evaluation of the GPS based position control on a desired trajec-

tory, the PID type GPS based trajectory tracking control algorithm, which

is explained in Chapter 4, is employed on the dynamic model of SUAVI. The

simulations in Simulink environment including the Dryden wind model based

external disturbances are performed on elliptic and rectangular trajectories.
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Figure 6.9: Hovering performance without disturbance observer (motion in

the horizontal plane)

Since the disturbance rejection implies a linear model with nominal pa-

rameters, PID type controllers prove to be satisfactory. The implementation

parameters are set as in Table 6.2.

Table 6.2: Implementation Parameters for Waypoint Navigation

Control Kp Kd Ki

Roll 30 10 0.1

Pitch 30 15 0.1

Yaw 10 4 0.1

Altitude 40 15 0.1

Along track 1 0 0.1

Cross track 25 40 8
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In the first simulation, the 3-D cartesian reference trajectory is defined

as an ellipse, in which the aerial vehicle gains altitude up to a limit and then

stays at constant altitude (Fig. 6.10). For this trajectory, the position of

the aerial vehicle along with references and attitude angles are depicted in

Figures 6.11 and 6.12.
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Figure 6.10: Elliptic trajectory tracking performance

It is worth to note that the position and angle references are tracked with

reasonably small errors, where the position references are tracked with small

phase shift due to the inertia and continuously changing position reference.

The tracking errors of attitude angles do not exceed ±2◦. Moreover, the

aerial vehicle follows its constant heading reference, ψref = 0◦, with less than

1◦ error. The cross track error and the along track speed reference tracking

performance are depicted in Figures 6.13, 6.14.

In these figures it is apparent, that the cross track error at steady state is

less than 0.5 m, whereas the along track speed oscillates around its constant

reference at a magnitude of 1.5 m/sec. As Figure 6.15 depicts, the required
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Figure 6.11: Position tracking performance
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Figure 6.12: Attitude tracking performance
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Figure 6.13: Cross track error
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motor thrusts do not exceed 16 N, that is the limit of the motor-propeller

couples utilized in SUAVI.
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Figure 6.15: Thrust forces created by rotors

Figures 6.16 and 6.17 depict the wind forces on the aerial vehicle, that

are generated by the Dryden wind model, and the estimation of the distur-

bances by the disturbance observer. It is obvious that the estimation of the

disturbance is very similar to the low-pass filtered shape of wind forces. This

is due to the fact that winds have dominance on the total disturbance acting

on the vehicle.

In the second simulation, the cartesian reference trajectory is defined as a

square. Figure 6.18 depicts the reference trajectory and the trajectory of the

aerial vehicle. In this figure it is apparent that the error increases at sharp

corners, where very instant reactions from the aerial vehicle are required to
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keep the error at minimum level. Instead, a feasible reference trajectory, that

does not have such sharp corners, can be defined for further improving the

tracking performance.
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Figure 6.18: Square shaped trajectory tracking performance

6.2 Experimental Results

For developing control algorithms on the onboard control system of SUAVI,

tuning the control variables and testing the performance of the supervisory

control system, real flight experiments are performed both indoors and out-

doors. The VTOL flight experiments are done first on a quadrotor platform,

SUQUAD, that is developed as a by-product in this project (Fig. 6.19).

This platform is a quadrotor helicopter with a relatively simple structure,

high tolerance for hard landings and simple repairing opportunities when
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compared with SUAVI. It is equipped with the same control system, actuators

and sensors and has also the same parameters in terms of dimensions and

very similar weight and inertia values. It is a useful test platform not to

risk SUAVI at every flight test. An advance in the control system is directly

transferred to SUAVI if it proves to be safe and successful during flight tests.

Figure 6.19: SUQUAD test platform

6.2.1 Vertical Flight Stabilization Tests

The initial flight tests of SUAVI are focused on achieving stable vertical

flights with SUAVI. In these tests both altitude and attitude stabilization

performances are evaluated.

Figure 6.20 reveals the altitude reference tracking performance of the

gravity compensated PID altitude controller during a stable hover of SUAVI.

It is obvious that the aerial vehicle follows the reference with some oscilla-

tions despite the wind and the latency in the altitude measurements. These

oscillations do not cause any instability though.

Figure 6.21 shows the attitude stabilization performance of the aerial

vehicle. In this figure, it is apparent that the roll and pitch angle deviation is

bounded by 2◦. The vehicle is affected by the ground effect, which is caused
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Figure 6.20: Altitude stabilization using PID

by the additional disturbance of the airflow reflection from the ground at

altitudes less than 0.5 m. Even though, the attitude deviations do not exceed

3◦ in the presence of the ground effect. The snapshots of the test flight can

be seen in Figure 6.22.
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Figure 6.21: Attitude stabilization using PID
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Figure 6.22: Snapshots during a vertical flight
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6.2.2 GPS Based Hover during Vertical Flight

The GPS based hovering controller explained in Chapter 4 is implemented

and tested on SUAVI after several successful tests on SUQUAD. Hovering

tests in several open areas of Sabancı University under average winds and

gusts are depicted in Figures 6.23, 6.24, 6.25 and 6.26. In these tests, the

actual flight performance of SUAVI is found to be close to simulation results

and the stability is proven to be high.

6.2.3 Horizontal Flight Tests

After the vertical flight tests with very good stabilization performance,

horizontal flight tests on SUAVI are also conducted. During these tests, suc-

cessful flights with up to 15 km/h horizontal speed are accomplished and

SUAVI is landed safely. Snapshots from two horizontal flight tests are pre-

sented in Figures 6.27 and 6.28.
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Figure 6.23: Outdoor hover test with SUAVI in helicopter field
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Figure 6.24: Outdoor hover test with SUAVI in university campus
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Figure 6.25: Outdoor hover test with SUAVI in university campus
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Figure 6.26: Outdoor hover test with SUAVI in amphitheater
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Figure 6.27: Horizontal flight snapshots of SUAVI
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Figure 6.28: Horizontal flight snapshots of SUAVI
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Chapter 7

7 Concluding Remarks and Future Work

In this work, design, construction and flight control system of a con-

ceptually new type of unmanned aerial vehicle (SUAVI: Sabancı University

Unmanned Aerial VehIcle) are presented. The conceptual design of SUAVI is

carried out taking the VTOL and horizontal flight capabilities, flight duration

goals, and the power source and size limits into account. The aerodynamic

design including the selection of the propulsion system components is car-

ried out to maximize the aerodynamic efficiency and guarantee safe flight

characteristics of the quad tilt-wing air vehicle. Several fluid flow simulation

programs and test systems such as a test bench designed in the project and

the wind tunnel test facility are utilized in this design and optimization pro-

cess. The mechanical design of SUAVI is conducted to satisfy the strength,

lightness and conformity to the mission criteria. Mechanical properties of

several candidate materials are tested for the selection of the most appropri-

ate production material. The design is performed in 3D CAD environment

for accurate detailing of the mechanical design before production and for sim-

ulations performed in ANSYS. SUAVI is prototyped using carbon composite

material with Aramid honeycomb core and CNC machined parts.

A full non-linear dynamical model including aerodynamic disturbances is

developed using Newton-Euler formulation. A supervisory control architec-



ture is implemented on SUAVI where a Gumstix microcomputer behaves as a

supervisor and orchestrates switching of low-level controllers into the system.

Supervisory control is responsible for decision making, monitoring states of

the vehicle, checking the safety during the flight and generating attitude ref-

erences for the low-level controllers using GPS data. Various analog and

digital filters are implemented to smooth out noisy sensor measurements. To

obtain reliable orientation information by fusing data from low-cost MEMS

inertial sensors such as gyros, accelerometers and the compass, Extended

Kalman filter is implemented in the control system. For the execution of the

flight controls, real-time control software is developed and tested.

To evaluate the performance of the control system on the SUAVI, nu-

merous simulations and real flight tests are conducted. For the real flight

tests, the developed control algorithms are implemented on the air vehicle

through the supervisory control system. Initial tests are carried out on a

quadrotor test platform (SUQUAD: Sabancı University QUADrotor), which

is also produced in this work. SUAVI is tested with the proven control al-

gorithms to verify the flight control system. In these tests hovering, VTOL

and horizontal flights are successfully realized.

Future work includes fully autonomous flight of SUAVI from the takeoff

to the landing based on the given flight trajectory reference.
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