VnSA: Variable negative stiffness actuation based on nonlinear deflection characteristics of buckling beams

Yalçın, Mustafa and Uzunoğlu, Bircan and Altıntepe, Elif and Patoğlu, Volkan (2013) VnSA: Variable negative stiffness actuation based on nonlinear deflection characteristics of buckling beams. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, Japan

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/IROS.2013.6697140


We present variable negative stiffness actuation (VnSA), an alternative method of achieving variable stiffness actuation based on the nonlinear deflection characteristics of buckling beams. The approach exploits transverse stiffness variations of axially loaded beams around their critical buckling load to achieve an actuator with adjustable stiffness. In particular, transverse stiffness of buckled beams are positive under tensile loading and for compressive loading below their first critical buckling load, while they display negative stiffness above this critical value. Furthermore, for small deflections transverse stiffness of buckled beams depends linearly on the amount of axial loading. Consequently, the stiffness of a variable stiffness actuator can be modulated (i) by decreasing the transverse stiffness through an increase of the axial compressive loading on a beam, up to values above the first critical buckling load where the overall stiffness of the actuator approaches its lowest negative value, and (ii) by increasing the transverse stiffness through application of tensile axial loading. Capitalizing on the concept of negative stiffness, the lowest stiffness of VnSA can be set arbitrarily close to zero or even to negative values (when counterbalanced), while very high stiffness values are also achievable by tensile loading of the beam. As a result, VnSA can modulate its stiffness over a uniquely large range that includes zero and negative stiffness values. Furthermore, thanks to the negative stiffness characteristics, the stiffness of VnSA can be kept very low without sacrificing the mechanical integrity and load bearing capacity of the actuator. We introduce the design of VnSA, theoretically analyze its stiffness modulation response, and provide implementation details of a prototype. We also provide experimental results detailing range of stiffness modulation and force tracking performance achieved with this prototype and discuss its correspondence with the- theory.

Item Type:Papers in Conference Proceedings
ID Code:23785
Deposited By:Volkan Patoğlu
Deposited On:07 Jan 2014 10:34
Last Modified:07 Jan 2014 10:34

Repository Staff Only: item control page