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The mechanics of chip formation has again been revisited in order to understand
functional relationships between the process, and the technological parameters. This
has led to the necessity of considering the chip formation process as highly non-
linear with complex inter-relations between its dynamics and thermodynamics. In
this paper a critical review of state-of-the-art of modelling and the experimental
investigations is outlined with a view to how the nonlinear dynamics perception can
help to capture the major phenomena causing instabilities (chatter) in machining
operations. The paper is closed with a case study where stability of a milling process
is being investigated in detail, using an analytical model which results in an ex-
plicit relation for the stability limit. The model is very practical for the generation
of the stability lobe diagrams which is time consuming using numerical methods.
The extension of the model to the stability analysis of variable pitch cutting tools
is also given. The application and verification of the method are demonstrated by
several examples.
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1. Introduction - Why Metal Cutting?

Machining is still the fundamental manufacturing technique and according to the
most trusted prognoses in the next few decades its position remain unchanged, and
the metal cutting being its major branch will enjoy a similar attitude. Moreover, it
is predicted that the ultra precision machining will take an even more significant
role among other manufacturing techniques. According to CIRP approximately a
half of all manufacturing processes is machining, which is a reflection of the achieved
accuracy, productivity, reliability, and energy consumption of this manufacturing
technique. While considering the automated manufacturing centres, manufacturing
flexibility brings an additional important advantage.

However, addressing the new challenges such as environmental issues and cost
reduction while improving quality of final products, drives the metal machining
research into two directions, namely ultra-precision metal cutting and high speed
metal cutting. The first one is strictly related to the current advancement in the
cutting tool technology, where due to the use of diamond tools, their geometries
and the material properties, the tool wear and breakage, have been significantly
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reduced. This has put the ultra-precision machining in the dominant position in
the finishing technologies market. A similar advantage is offered for the high-speed
metal cutting due to low specific cutting energy consumption, resulting in smaller
cutting forces at high cutting speeds, where the machine tools are pushed to operate
at very high rpm, often above the spindle main resonance corresponding to high
stability. Since the dynamic stiffness of the machine tool is being explored in such
a way, all process and structural nonlinearities having influence on the dynamic
stiffness must be appropriately evaluated and included.

In the search for a significant improvement in accuracy and productivity of ma-
chining processes, the mechanics of chip formation has been revisited in order to
understand functional relationships between the process and the technological pa-
rameters. This has led to the necessity of considering the chip formation process
as highly nonlinear with complex inter-relations between its dynamics and thermo-
dynamics. The understanding of these relations will be reflected in the design of
new machine tools, not necessarily heavier and stiffer accommodating the needs of
current competition race for more accurate, productive and cheaper technologies.
However the major requirement is to perform the technological operation under the
chatter free conditions, which can guarantee achieving the required geometry and
surface finish of the machined parts.

In this paper, a detail account on state-of-the-art in modelling and experimental
investigations of the cutting process mechanics and different chatter mechanisms
will be provided. Finally a practical case study where stability of a milling process
is being investigated using an analytical model will be given.

2. Cutting Process Mechanics
(a) Physical phenomena in the cutting zone

In general, the cutting process is a result of the dynamic interactions between
the machine tool, the cutting tool and the workpiece. Therefore its mathematical
description should take into account its kinematics, dynamics, geometry of the chip
formation, and workpiece mechanical and thermodynamical properties. Mechanics
of the cutting process and chip formation is being recognised even more now than
ever before as the key issue in the development of machining technologies. The
complexity of the cutting process is due to the interwoven physical phenomena
such as elasto-plastic deformations in the cutting zones, variable friction between
the tool and the chip and the workpiece, heat generation and transfer, adhesion and
diffusion, and material structural and phase transformations, to name but a few. A
simplified schematic locating all important phenomena in the cutting zone is shown
in Figure 1. Understanding the relationships between those phenomena is the most
important issue in the modelling of the cutting processes. It is worth pointing out
here that most of the phenomena listed are strongly nonlinear and interdependent.
For example, the friction between the chip and the tool and between the tool and the
workpiece is a nonlinear function of the relative velocity. In addition, it generates
heat which in turn changes the shear strength and lubrication conditions.

Article submitted to Royal Society



Nonlinearities and Chatter 3

Secondary shear

Primary shear zone and friction zone
- elasto-plastic - plastic deformation
deformation - friction

- heat generation
- phase transformation

- heat generation
- adhesion and diffusion

Tool flank deformation
and friction zone

- elastic deformation

- friction

- heat generation

Workpiece

Figure 1. Physical phenomena in the cutting zone

(b) Piispanen’s and Merchant’s model

Studies on metal cutting processes have been carried out as early as 1800’s.
The first significant research work was published by Taylor (1907). However only in
the mid forties and fifties, two researches Piispanen (1937, 1948) Merchant (1944,
1945a and 1945b) had described the flow of metal chips. Based on this concept
of orthogonal cutting, continuous chip is formed by a cutting process, which was
understood to be confined to a single shear plane extending from the cutting edge
to the shear plane. Those investigations were restricted to a model of orthogonal
or two-dimensional metal cutting, which is shown in Figure 2. Here the uncut layer
(initial depth of cut), hg, of the workpiece in the form of continuous chip without
built-up edge is seen to be removed along the shear plane. Subsequently, the chip
of thickness, h, flows along the face of the tool where it encounters friction on the
tool-chip interface. The width of the chip remains unchanged, therefore the stress
field can be considered in two dimensions. The force system shown is required
to plastically deform the uncut layer, hg, to the final thickness, ¢, (Eggleston et
al., 1959). The cutting force, F,. and the thrust force, F; determine the vector R,
which represents the resistance of the material being cut acting on the cutting
tool. In stationary cutting conditions this force is compensated by the resultant
force generated from the shear stress field, and the friction on the rake surface, the
position is determined by the rake angle, a.

The chip formation mechanism is controlled by instant cutting parameters such
as feed, velocity, and depth of cut. Any change in these parameters during cutting,
instantaneously changes the value of the normal force, IV, the friction force, F,
and the relative velocity between the chip and the workpiece, v., thus effecting the
dynamics of the system (Wu and Liu, 1985a and 1985b).

The process of the shear deformation can be illustrated by the successive dis-
placement of cards in a stack as shown in Figure 3. Each card is displaced forward
by a small distance with respect to its neighbours as the cutting tool progresses.
Establishing a relationship between the card thickness and the relative displace-
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Figure 2. Model of orthogonal metal cutting

ment between the neighbouring cards leads to the shearing strain, which has been
so-called the natural strain (Merchant, 1945a). The product of it by the mean shear
strength of the workpiece gives the work done per volume of metal removed. This

Workpiece

Figure 3. Piispanen’s model of chip formation

concept which was originally put forward by Piispanen (1937) was later analytically
(1944) and experimentally (1945a and 1945b) investigated by Merchant. The force
diagram developed by Merchant (1944) has been extensively used. The basic idea
behind this elegant approach is that the force R coming from the workpiece and
acting on the chip is compensated by the force R’ coming from the cutting tool.
The force vector R’ is composed of two components, the cutting force, F,, and the
thrust force, F;. The material resistance force has also two components, the shear-
ing force, Fs, and the friction force, F;, as depicted in Figure 4. The key variable in
the Merchant’s approach (Merchant, 1944) is the shear angle, ¢. By knowing this
angle and a few constant process parameters, the force R can be calculated from
F

R= oy (2.1)
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Workpiece

Figure 4. Merchant’s force diagram

where Fy; = 04A,, A, is the cross-section of the shear plane, o, is the shear flow
stress, and a and 7 are the rake and friction angles respectively. The cross-section
A can be also expressed in terms of the shear angle as A; = wh/sing, which leads
to the formula

_ oswhg
r= cos(T — a+ @) sing’ (22)

Having established Equation (2.2) the cutting and thrust forces can be evaluated
from the following equations

cos(T — a)
cos(T — a+ @) sin g’

F. = Rcos(t — a) = ogswhg (2.3)

sin(r — )
cos(T — a+ @) sing’

F; = Rsin(r — a) = ogswhg (2.4)
In the Merchant’s approach it was assumed that the cutting process mechanics
can be entirely explained by the angle ¢. This has led to the determination of the
optimum shear angle, which is based on the minimum energy principle (Merchant,
1945a) as

¢:%—T+a. (2.5)

This simple formula allows to determine the friction angle 7 by a direct measure-

ment of the shear angle ¢. By substituting the above equation (2.5) to the formulae
for the cutting and the thrust forces, Equations (2.3) and (2.4) leads to

cos(T — a)

Fc = Us’LUhO )
sin” ¢

(2.6)
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sin(r — a)

sin? 10) 27)

F, = o,why

As has been demonstrated, Merchant has developed an elegant model based on the
the shear angle, and despite of the fact that this approach has not correlated too
well with the experimental results, this research has left a significant impact in the
field.

(¢) Kudinov’s model

The model of dynamic cutting characteristics developed by Kudinov (1955, 1963,
1967) has been widely used in the Soviet Union and the eastern Europe. It assumes
that chatter and variation of the cutting and thrust forces are due to the dynamic
changes of chip thickness and relative kinematics between the tool and workpiece.
The starting point of his scheme is the cutting force, F., which is evaluated for
steady state conditions from the following semi empirical formula given by Loladze
(1952)

F. = CCO"U)fh(), (28)

where C, and & = h/hg are material constant and chip thickness ratio respectively.
Assuming an arbitrary depth of cut, h, the above equation takes form

F.=C.owh. (2.9)

If the material properties remain unchanged a dynamic component of the cutting
force can be calculated by differentiation of the steady state force with h and £ as
independent variables

dF, = C.ow(&dh + hodf), (2.10)

where hg and & are nominal values of the depth of cut and chip thickness ratio.
The chip thickness ratio can be calculated from the chip geometry (see Figure 5(a))
as

& =cotgcosa +sina. (2.11)

To evaluate the shear angle, ¢, a formula based on the force equilibrium on the
shear plane and rake surface developed by Zorev (1956) was used

I = %[tanT + tan(é — a)]h, (2.12)

where m = sg/s, n =1, /1, the distances I, lg, s and sg are shown in Figure 5.

It was experimentally observed (Kudinov, 1961 and 1967) that the ratio m/n is
kept, constant in a wide range of the contact length variation. Also it was assumed
that tanT + tan(¢ — a) & tan¢, which in the authors’ view has neither strong
physical or mathematical justification. This has led to an approximate relationship
between the shear angle, and the chip thickness and contact length

m h
tp = ——. 2.1
cotg= 2 (213)
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Workpiece

Figure 5. Schematic for calculation of the shear angle, ¢

Equations (2.12) and (2.13) have been obtained for a steady state cutting pro-
cess. If the process is unsteady, i.e. the depth of cut and chip contact length vary,
the following formulae was proposed by Kudinov (1967)

dl = %[‘canr + tan(¢ — a)|dh, (2.14)

which in fact is a total differential of Equation (2.12). Assuming as previously that
tan7 + tan(¢ — a) & tan ¢ leads to

m dh
cotp = ——. 2.15
¢=— (2.15)
For the general case, the following approximate formula was proposed to describe
the relationship between the shear angle, ¢, and two independent variables such as
dh

aT and a

1
ot N ———————. (2.16)
nl+= %(a —7)
Taking a total differential of the above equation and assuming that the chip velocity

is almost constant for small chip thickness variations, i.e.

dl = 2dt (2.17)

&o
leads to a relationship for d¢, which in turn is substituted into Equation (2.10). This
finally allow us to obtain the expression for the cutting force, F.. As the last part of
the original derivation is not rigorous and even confusing, the authors have taken

liberty to sketch a simple substitute. Thus one can compute a total differential of
Equation (2.15) as

dcot ¢ = %d (%) . (2.18)

Assuming a small angle o and calculating a total differential of Equation (2.11)
leads to

d¢ = dcot ¢. (2.19)
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This together with (2.17) are substituted first to Equation (2.18) and then to Equa-
tion (2.10) to obtain the formula for a dynamic change of the cutting force

dF, = Coow <§0dh + hO%i—Oddh> . (2.20)
Similarly an expression for a dynamic thrust force can be developed as

dF; = Cyow <£0dh + ho— f—Odalh> , (2.21)

0—
n Ve

where C} is the thrust force constant.
In the original work by Kudinov (1963), the Equations (2.20) and (2.21) are
transformed to the Laplace space

1
Fi. = Kph , 2.22
P Y Tp (2.22)
Fl = Kph L (2.23)
1 + Ttp’

where K is the cutting coefficient (Kudinov, 1955), p is Laplace operator, and T,
and T; are chip formation time constants for the cutting and thrust forces respec-
tively.

(d) Hasting’s and Ozley’s model

The main deficiency of the models by Merchant and his ealier followers (e.g. Lee
and Shaffer, 1951, Thomsen et al., 1955 and 1959), and by Kudinov was a difficulty
to verify the theoretical predictions with the experiments. This was mainly due
to the fact that the chip formation process was represented by a single velocity
discontinuity, as has been rightly pointed out in a paper by Hastings, Matthew and
Oxley (1980).

The later work by the Thomsen’s group (e.g. Cumming, Kobayashi and Thom-
sen, 1965), where a plastic deformation zone and nonlinear models were introduced,
have tried to resolve this problem. However, without a proper account for the tem-
perature and strain-rate dependent properties of the workpiece, the explanation of
the complicated phenomena is hardly possible. To illustrate the complexity of this
problem a brief description of the chip fragmentation hypothesis (Recht, 1985) is
given below.

For certain temperatures and workpiece materials, mechanical properties are
not capable of sustaining a steady-stress field, chip segmentation and the resulting
fluctuating stress and temperature fields occur. Referring to Figure 6(a), as the
workpiece is approached by the tool, it experiences a stress field, which changes
with time. The chip segment enclosed within lines 1, 3, 4 and 5 is being plasti-
cally deformed by the tool, and stress, strain, and temperature fields are building
up in the workpiece. As the material begins to shear along line 5, these fields de-
velop conditions leading to thermoplastic instability, and a very thin shear-localised
band absorbs the buck of further strain. Then the chip segment moves up the ramp

Article submitted to Royal Society



Nonlinearities and Chatter 9

formed by the workpiece material on the workpiece side of 5. As the tool moves
into the ramp, a new segment begins to form. Its upper surface, represented by line
5, becomes the surface through which the tool upsets the material. As upsetting
progresses, this surface becomes that identified by lines 3 and 4, the latter of which
is being pressed against the tool face. Until a new localised shear zone forms due to
thermostatic instability, the increasing portion of line 4 (a hot sheared surface) that
lies on the rake face remains at rest. Shearing between segments along line 3 ceases
when the next localised shear zone forms along line 5, due to the build-up of the
stress, strain, and temperature fields. Once deformation and shearing have ceased
the chip segments pass up the rake face. Chip sliding behaviour on the rake face
is therefore, characterised by a start-stop motion. Considering the pressures, tem-
peratures, and heat transfer conditions at the tool-chip interface, sliding resistance
would be expected to be much greater for the segmented chips than for continuous
chips. When frictional forces and speed are sufficient to produce localised melting
temperatures at asperities within the tool-chip interface, segmented chips produce
much higher friction coefficients, interface temperature, and tool wear rates, than
do the continuous chips. As described above segmented chips experience stick-slip
motion. Under very high compression, molten regions in the interface may quench
and freeze. Weld bonds in the interface must be sheared producing high friction
forces. This was confirmed by using scanning electron microscopy to determine a
chip segment surface (Figure 6(b)).

Figure 6. (a) Schematic of the segmented chip formation, (b) SEM image of the
segmented chip

An interesting approach explaining the influence of the temperature and the
strain-rate dependent properties of the workpiece has been given in the paper by
Hastings, Matthew and Oxley (1980), where plane strain and steady-state condi-
tions as in the Merchant’s model are considered. For the convenience of the further
analysis let us assume an auxiliary angle, K = ¢ + 7 — a, which in fact is the angle
between the shear force F; and the resultant force R. By applying the appropri-
ate stress equilibrium equation along the shear plane, it can be shown that for
0 < ¢ < im, the angle  is given by

tank = 1+2(%7r— ¢) —Chn, (2.24)
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in which C' is an empirical constant and n is the strain-hardening index calculated
from the empirical strain-stress relation

05 = 01(8int, Yint)€", (2.25)

where o and € are the uniaxial flow stress and strain and oy is constant defining
the stress-strain curve for given values of strain rate, 4 and temperature, 6. The
maximum shear strain rate, 7; can be calculated from

_ Cuy
"~ hosing’

Vs (2.26)

where v, is the shear velocity. The temperature on the shear plane can be calculated
by knowing the initial temperature of the workpiece, 8,, from the following equation

1-8(v.) Fscosa

bs = 0u pShow cos(¢p — a)’

(2.27)

in which n € (0, 1) is a coefficient accounting for how much of the plastic deformation
has occurred on the shear plane, p and S are the density and specific capacity of the
workpiece respectively, and §(v.) is the empirical non-dimensional function used to
determine a portion of the heat conducted into the workpiece from the shear zone.
In a similar manner the average temperature at the cutting tool - chip interface,
O;nt is calculated

1-B(v.) Fscosa
pShow cos(¢p — a)

Oint = 0y + + Y0, (2.28)
where 6,, is the maximum temperature rise in the chip and ¢ € (0,1) is a constant
allowing 6;,; to have an average value. The average temperature rise in the chip,
0. and the thickness of the plastic zone d can be calculated from a combination of
numerical and empirical formulae

Fsing
c = s 2.2
pShw cos(¢ — a) (2:29)
6 Roh\°? Rgh
Ig (9_m> = 0.06 — 0.1965 (Ta> +0.51g % (2.30)

where ¢ is the ratio between the thickness of the plastic zone in the chip and the
chip thickness, Ry is a non-dimensional thermal coefficient and [ is the cutting tool
- chip contact length, which can be calculated from the moment equllibrium on the

shear plane
hgsink Cn
l= 1 . 2.31
cosAsinqs( +3(1+o.57r—2¢—0n)> (2.31)

To complete this mathematical model one more equation is required, i.e. a relation
for the maximum shear strain rate at the cutting tool - chip interface

ve  sing

Oh cos(¢p— a)” (232)

Yint =
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The above set of analytical and empirical expressions allowed for the first time to
calculate the temperature and the strain rate at the cutting tool - chip interface and
the corresponding shear flow stress. This is used then to determine the cutting and
thrust forces from Equations (2.3) and (2.4). The only reservation one should have
is the empirical nature of some of the formulae and the fact that the non-monotonic
nonlinear relation between the flow stress again the chip temperature (Figure 7(a))
is hardly reflected in the cutting/thrust force versus cutting speed characteristics
(Figure 7(b)). A similar approach was taken in the paper by Wu (1988), where the
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Figure 7. (a) Flow stress versus the chip temperature, (b) Cutting force against the
cutting speed [after Hastings, Matthews and Oxley, 1980]

mathematical model was constructed perhaps more rigorously. According to the
dislocation theory, the shear flow stress is influenced by two effects, namely work-
softening and work-hardening (Wright, 1982). The work-softening effect is governed
by thermal processes mainly dependent on temperature. In turn the work-hardening
mechanism is a function of shear flow strain. A general constitutive law for the shear
flow stress is given by the formula

o= f(O)7*7", (2.33)

where 6 is the temperature, a the hardening exponent, b the shear flow rate expo-
nent, and f(6) is an Arhenius type of function.

There is a large body of research following broadly speaking these three distinct
directions where additional effects, for example, waviness of the surface and relative
vibration between the tool and the workpiece (e.g. Wu, 1986 and Lin and Weng,
1991) have been introduced. Also more complex processes such as oblique cutting or
advanced engineering methods (for instance a FEM approach by Komvopoulos and
Erpenbeck, 1991) have been tried to acquire a deeper insight into the mechanics of
the chip formation. It is the authors view that despite of the significant progress
made in perceiving the complex mechanism of the chip formation made up to date
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by using linear models, a proper understanding will only be possible when the

nonlinear nature of the chip formation phenomena are unveiled and appropriately
modelled.

3. Chatter Mechanisms

From the very beginning metal cutting has had one troublesome obstacle in increas-
ing productivity and accuracy, namely chatter. In machining, chatter is perceived
as unwanted excessive vibration between the tool and the workpiece resulting in a
poor surface finish and an accelerated tool wear. It also has a deteriorating effect
on the machine tool life, the reliability and safety of this machining operation. The
first attempts to described chatter were made by Arnold (1946), Hahn (1953), and
Doi and Kato (1956), however a comprehensive mathematical model and analysis
was given by Tobias and Fishick (1958). In general chatter can be classified as
primary and secondary. Another classification distinguishes frictional, regenerative,
mode coupling and thermo-mechanical chatter.

Chatter is one of the most common limitations for productivity and part qual-
ity in milling operations. Especially for the cases where long slender end mills or
highly flexible, thin-wall parts such as air-frame or turbine engine components are
involved, chatter is almost unavoidable unless special suppression techniques are
used or the material removal rate is reduced substantially. The importance of mod-
elling and predicting stability in milling has further increased within last couple
of decades due to the advances in high speed milling technology (Tlusty, 1986).
At high speeds, the stabilizing effect of process damping diminishes, making the
process more prone to chatter. On the other hand, high stability limits, usually
referred to as stability lobes, exist at certain high spindle speeds which can be used
to increase chatter-free material removal rate substantially provided that they are
predicted accurately (Smith and Tlusty, 1993). As a result, chatter stability analysis
continues to be a major topic for machining research. The first accurate modeling
of self-excited vibrations in orthogonal cutting was performed by Tlusty (1963) and
Tobias (1958, 1965). They identified the most powerful source of self-excitation and
regeneration, which are associated with the structural dynamics of the machine
tool and the feedback between the subsequent cuts on the same cutting surface.
These and some other following fundamental studies (Merritt, 1965) are applicable
to orthogonal cutting where the direction of the cutting force, chip thickness and
system dynamics do not change with time. On the other hand, the stability analysis
of milling is complicated due to the rotating tool, multiple cutting teeth, periodi-
cal cutting forces and chip load directions, and multi-degree-of-freedom structural
dynamics. According to Cook (1959) in a typical metal cutting operation three
processes occur simultaneously: shearing, sliding between chip and tool face, and
sliding between workpiece and tool flank. In addition there is a regeneration effect
caused by a variable chip thickness, and each of these processes can be responsible
for chatter generation. As mentioned earlier there are also four different mecha-
nisms of machining chatter, namely: variable friction, regeneration, mode coupling
and thermo-mechanics of chip formation. These mechanisms however are interde-
pendent and can generate different types of chatter simultaneously, however there
is not an unified model capable explaining all phenomena observed in machining
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practice. Therefore in this section all important nonlinearities will be spelled out
and a systematic review of main chatter mechanisms will be given.

(a) Nonlinearities in metal cutting

As has been indicated in the previous sections the metal cutting process in-
volves a number of strongly nonlinear phenomena which can be classified into two
distinct dynamical systems, namely mechanics and thermodynamics of chip forma-
tion. Functional inter-relationships between these two systems are shown in Figure
8 in a form of closed-loop model. The idea of portraying the dynamic interactions
in the metal cutting as a system of automatic control has originated from the work
by Merritt (1965), Kegg (1965) and Kudinov (1967). However all three have looked
only at the mechanical part of the problem and assumed linear dynamics. Grabec
(1988), Lin and Weng (1991), and Wiercigroch (1994, 1997a) considered mechanical
models with nonlinear cutting forces. The model proposed in this paper consists
of two unseparable subsystems, mechanical and thermodynamical. The mechanical
part is comprised of two major blocks, Cutting and Thrust Force Generation Mech-
anism (CTFGM) and Machine Tool Structure (MTS). The inputs to the CTFGM
are the required geometry, GG, and kinematics, K, a feedback from the MTS in a
form of the dynamical vector X (t), and a feedback from the Thermodynamically
Equivalent Chip Volume (TECV) in the form of the shear flow stress, o5(t), and
the friction and shear angles, 7(t) and ¢(¢). The output from the CTFGM are
the cutting and thrust forces, F.(t) and Fi(t), which together with the vector of
initial conditions, Xo(t) act on the MTS producing the dynamic vector of displace-
ments and velocities, X (t). The thermodynamic part also consists of two blocks,
Heat Generation Mechanism (HGM) and as introduced above, Thermodynamically
Equivalent Chip Volume. The HGM is fed with the initial values of o(0), 7(0) and
#(0), and a feedback path of current temperature of the chip, 6(t).

MECHANICS
K.G , X . X(1)
> Cutting and Thrust Force > Machine Tool >
) Generation Mechanism F,F@) _ Structure
T
o.,T Y O',T(t)‘
. . -0 Thermodynamically >
Heat Generation Mechanism —— Equivalent Chip Volume ()
r AUN ! p >
THERMODYNAMICS

Figure 8. Closed-loop model of dynamic and themodynamic interaction in the metal
cutting system

The system depicted in Figure 8 can accommodate all sorts of nonlinearities. In
particular the strain hardening and softening (Hastings, Matthew and Oxley, 1980),
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thermal softening (Davies, Burns and Evans, 1997), strain rate dependence (Oxley,
1963), variable friction (Wiercigroch, 1997a), heat generation and conduction, feed
drive hysteresis, intermittent tool engagement (Tlusty and Ismail, 1981), structural
and contact stiffness in machine tool structure (Hanna and Tobias, 1969), and time
delay (Stepan, 1998). As an example, a model combining the structural nonlineari-
ties and time delay has been proposed by Hanna and Tobias (1974), and thoroughly
investigated by Nayfeh, Chin and Pratt (1997) is given below

T4 268 + wo (2 + Prsd® + Posi®) = —wo[E — 21 + Bup(& — 27)? + Bap (& — 27)?],
(3.1)

where 2y = Z(t — T'). Here % is the non-dimensionalized relative displacement
between the cutting tool and the workpiece, £ the viscous damping of the machine
tool structure, wg the fundamental natural frequency, (515 and (25 are nonlinear
stiffness constants, 1), and 3, are nonlinear cutting constants, and 7" is the time
delay which means a period of one revolution.

(b) Frictional chatter

The effects of the frictional vibration between the tool flank and workpiece has
been studied in detail by Cook (1959, 1966), Kegg (1965) and Bailey (1975), and
which can be elegantly summarized, after Cook (1966), as rubbing on the clearance
face excites vibration in the direction of the cutting force and limits in the thrust
force direction. Marui et al. (1988a, b and ¢) compared the size and orientation of
the vibratory locus (trajectory of the cutting edge) for the primary (frictional) and
secondary (regenerative) chatters. The distinction between them can be easily made
as the regenerative locus is approximately ten times bigger than the frictional one,
and also through its spatial orientation. The analytical and experimental studies
on the primary chatter reveal that the excitation energy is generated from both the
friction force between the workpiece and tool flank, and between the chip and the
rake surface (e.g. Hamdan and Bayoumi, 1989). The friction force on the tool face
is generally considered to be a force required to shear the welds formed between
the sliding surfaces. Knowing that shear stress varies with the temperature and the
shear rate one can estimate the friction force dependence on the cutting velocity, v..
By analysing results presented by Cook (1959), it is apparent that the shear flow
stress and the friction force decrease with an increase of chip velocity. Therefore if
there are relative oscillations between the cutting tool and the chip, there will be a
net energy input to the system which can sustain the vibration. A straightforward
analysis of a simple one degree-of-freedom system (Wiercigroch and Krivtsov, 2001)
gives conditions for the self-excited vibration (frictional chatter). The amount of
viscous damping in the system determines the amplitude of the oscillations. A very
strong damping effect can be generated if the vibration velocity exceeds the cutting
speed. This is caused by an intermittent contact between the tool and the workpiece
(see for an example Wiercigroch, 1997a), i.e. the tool is in contact with the chip
during a part of the cycle.

(¢) Regenerative chatter

The most common form of self-induced vibration is regenerative chatter. It
occurs so often because the majority of cutting operations involve overlapping cuts
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and although the machine tool structure is stable itself, amplitude of the forced
vibrations resulting from shaving a wavy surface from the previous cut can be
significantly amplified (Boothroyd, 1975). The experimental work by Kaneko et
al. (1984) and Marui et al. (1988a) provides a clear evidence how dominating the
regenerative effect can be when compared to other types of chatter. Kudinov (1955)
in his work on the dynamic characteristics of the cutting process has experimentally
observed that the cutting force is a function of the depth of cut, and the rake, a
and clearance, 8 angles, which can be written as

F, = F.(h,a, B). (3.2)

Assuming that this function has a total differential, he proposed a formula for the
dynamic variation of the cutting force in the following form
OF, OF, OF,

dh + —Sda + —LdB. (3.3)

dbe = i+ 5 dat 55

A similar approach of modelling the dynamic variation of the cutting force was
adopted in the famous paper by Tobias and Fishwick (1958), where the cutting
force in turning was assumed to be a function of the depth of cut, h, the feed rate,
r, and the rotational speed, () representing the cutting speed, v.. The dynamic
variation was given as

OF. OF, OF,

where the chip thickness variation was calculated from

dF,

dh = x(t) — px(t = T). (3.5)

Here p is the factor of overlapping between the previous and present cuts, and 7' is
a period of one revolution. For the first time the stability of a simple two degree-
of-freedom system excited by a cutting process was elegantly formulated and rigor-
ously analysed. They described the threshold of stability by a set of transcendental
equations

w?2 k 2w
o T (L peos =) =0, (3.6)
kl wo . 2w 47Tk'2 wo 2]€3 wo

£+ =0, (3.7)

Tt T r e TR R
where k;, ko and ks are machining conditions (Tobias and Fishwick, 1958), and R is
the instantaneous workpiece radius. Equations (3.6) and (3.7) are used to construct
the regenerative stability charts. The nonlinear regenerative chatter caused delay
has been most recently by Stepan (1998, 2001) and Kalmar-Nagy, Stepan and Moon
(2001).

(d) Mode coupling

The mode coupling type of chatter exists if vibration in the thrust force direction
generates vibration in the cutting force direction and vice versa. This results in
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simultaneous vibration in the cutting and thrust force directions. Physically it is
caused by a number of sources such as friction on the rake and clearance surfaces as
has been descriptively explained by Cook (1959) and mathematically described by
Wiercigroch (1997a), chip thickness variation (Tlusty and Ismail, 1981), shear angle
oscillations (Knight, 1970 and Wu, 1986), and regeneration effect (Jemielniak and
Widota, 1988, and Budak and Altinitas, 1995). The necessary condition is that the
cutting and thrust forces have components (feedback) of other directions. This has
been elegantly captured for a two degree-of-freedom model by Wu and Liu (1985a)
shown in Figure 9 in the form of two expressions for the cutting and thrust forces

Figure 9. Two degree-of-freedom model of the metal cutting system

By, . . Cy, . . Kuw .
M + cp & + kpx = 2wos(xo — )[(Az — Crvo) + 7(3@ —Zo) — 7(:9 —%o)] — waa
(3.8)

mij + ey + by = 200,20 — 2)[(Ay — Cyve) + 226 —do) — L~ )], (39)
where m is the equivalent vibrating mass, ¢, and ¢, the viscous damping coefficients,
k. and k, the machine structure stiffness constants, v. the cutting speed, and K
is the damping coefficient evaluated from the ploughing force acting on the tool
nose (see for example Moriwaki and Narutaki, 1969 or Kegg, 1969). The remaining
constants in Equations (3.8) and (3.9), (A;, 4y, Bs, By, C; and C)) are called
the dynamic force coefficients and are fully described in Wu and Liu (1985a).

(€) Thermomechanical chatter

The first approach to comprehensively describe the thermo-mechanics has been
made by Hastings, Matthew and Oxley (1980), where an approximate machining
theory was formulated to account for the effects of temperature and strain-rate
in the plastic deformation zone on the overall mechanics of chip formation. The
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theory was applied to two plain carbon steels by using the flow stress data ob-
tained from high speed cutting (high speed compression rates), and a good agree-
ment between theory and experiment has been shown for predicting the cutting
and thrust forces. The approach is based on the so-called tool-chip plastic zone
thickness, predicted from a minimum work criterion, which is central to explain an
experimentally observed a clear decrease in chip thickness with increase in cutting
speed. The mathematical model outlined in the previous section can be used to
generate velocity dependent chatter (see Grabec, 1986), however it fails to explain
formation of segmented chips. As mentioned earlier Recht (1985) came up with an
interesting hypothesis, where all important stages of the segmented chip forma-
tion are explained descriptively. The first real mathematical justification explaining
the mechanism of segmented chips formation was proposed by Davies, Burns and
Evans (1997), where a simplified one-dimensional thermo-mechanical model of a
continous, homogenous material being sheared by a rigid tool was used. In this
model the following main assumptions have been made: (i) the workpiece is in a
form of a continous one-dimensional slab with thermal softening and strain-rate
hardening, (ii)interactions between the workpiece and the tool obey local, elasto-
plastic strain-stress law, (iii) only stresses parallel to the shear plane are considered,
(iv) the momentum of the chip is ignored, (v) the tool is rigid and non-conductive,
and (vi) the specific heat, conductivity and density of the workpiece are constant.
By considering the stress and heat transfer equilibria of a discretized model (Davies
and Burns, 2001), a mathematical model in the form of a set of three partial differ-
ential equations and one ordinary differential equation has been derived. Numerical
simulations of this model shows that, as cutting speed is increased, a transition from
continuous to shear-localized chip formation takes place with an initial, somehow
disordered, phase. With increasing cutting speed further, the average spacing be-
tween shear bands becomes more regular asymptitically approaching a limit value
as was observed in experimental studies.

4. Case Study: Chatter Elimination in Milling Process
(a) Background

In the early milling stability analysis, Tlusty (1967) used his orthogonal cutting
model to consider an average direction and average number of teeth in cut. An im-
proved approximation was performed by Opitz et al. (1968, 1970) Later, however,
Tlusty and Ismail (1981) showed that the time domain simulations would be re-
quired for accurate stability predictions in milling. Sridhar et al. (1968) performed
a comprehensive analysis of milling stability which involved numerical evaluation
of the dynamic milling system state transition matrix. On a two-degree-of-freedom
cutter model with point contact, Minis et al. (1990, 1993) used Floquet’s theo-
rem and the Fourier series (Magnus and Winkler, 1966) for the formulation of
the milling stability, and numerically solved it using the Nyquist criterion. Budak
(1994) developed a stability method which leads to an analytical determination of
stability limits. The method was verified by experimental and numerical means,
and was demonstrated to be effective for the generation of stability lobe diagrams
(Budak and Altintas, 1998). This method was also applied to the stability of ball-
end milling by Altintas et al. (1996). Another method of chatter suppression in
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milling is the application of cutting tools with irregular spacing, or variable pitch
cutters. The basic idea behind these cutters is to eliminate or reduce regeneration
in chip thickness by altering the phase between successive vibration waves on the
cutting surface. Variable pitch cutters are particularly useful in cases where high
stability lobes cannot be utilized due to speed limitations for the machine or work
material (Budak, 2000).

The effectiveness of variable pitch cutters in suppressing chatter vibrations in
milling was first demonstrated by Slavicek (1965). He assumed a rectilinear tool
motion for the cutting teeth, and applied the orthogonal stability theory to irregu-
lar tooth pitch. By assuming an alternating pitch variation, he obtained a stability
limit expression as a function of the variation in the pitch. Opitz et al. (1966)
considered milling tool rotation using average directional factors. They also con-
sidered alternating pitch with only two different pitch angles. Their experimental
results and predictions showed significant increase in the stability limit using cutters
with alternating pitch. Another significant study on these cutters was performed
by Vanherck (1967) who considered different pitch variation patterns in the analy-
sis by assuming rectilinear tool motion. His detailed computer simulations showed
the effect of pitch variation on stability limit. Later, Tlusty et al. (1983) analyzed
the stability of milling cutters with special geometries such as irregular pitch, and
serrated edges, using numerical simulations. Their results confirmed the previous
observations that for a certain pitch variation, high improvements in stability can
be achieved only for a limited speed and chatter frequency ranges. Altintas et al.
(1999) adopted the analytical milling stability model to the case of variable pitch
cutters which can be used to predict the stability with variable pitch cutters ac-
curately. Recently, Budak (2000) developed an analytical method for the optimal
design of pitch angles in order to maximize stability limit. In this section, the an-
alytical chatter stability method presented by Budak and Altintas (1998) will be
summarized. The original model considers the dynamic interaction between tool
and workpiece including variation in dynamics and mode shapes along the axial
direction. This introduces a non-linearity to the system as the system dynamics,
and thus the characteristic equation, depend on the depth of the cut which is the
solution sought after. The details of this solution can be found in Budak et al. (1994,
1998) and will not be considered here. Instead, a case of simple point contact will
be analyzed. The extension of the method to variable pitch cutter stability will also
be presented. Application of the models will be demonstrated through numerical
and experimental examples.

(b) Stability of milling for regular cutters

In this analysis, both milling cutter and workpiece are considered to have two
orthogonal modal directions as shown in Figure 10.

Milling forces excite both cutter and workpiece causing vibrations which are
imprinted on the cutting surface. Each vibrating cutting tooth removes the wavy
surface left from the previous tooth resulting in modulated chip thickness which
can be expressed as follows

hj(¢) = sysing; + (v;-)c — v?w) — (vj. —vj,), (4.1)
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Figure 10. Dynamic model of milling

where the feed per tooth, s; represents the static part of the chip thickness, and
¢; = (j —1)¢p + ¢ is the angular immersion of tooth (j) for a cutter with constant
pitch angle ¢, = 27/N and N teeth as shown in Figure 10. ¢ = Qt is the angular
position of the cutter measured with respect to the first tooth and corresponding
to the rotational speed Q[rad/sec]. v; and v? are the dynamic displacements due
to tool and workpiece vibrations for the current and previous tooth passes, for the
angular position ¢;, and can be expressed in terms of the fixed coordinate system

as

vj, = —TpSing; — yp Cos P;, (p=rc w), (4.2)

where w and ¢ indicate workpiece and cutter, respectively. The static part in equa-
tion (4.1), s;sin¢g; is neglected in the stability analysis. It should be noted that
even though the static chip thickness varies in time as the milling cutter rotates, it
does not contribute to regeneration, and thus can be eliminated in chatter stability
analysis. However, it should also be noted that the static chip thickness is of impor-
tance for non-linear stability analysis as it determines when the contact between
the cutting tooth and the material is lost due to vibrations. Since we are interested
in determining the stability limit where the system is still stable and the contact
between the cutter and the chip is not lost, this non-linearity will not be consid-
ered. If equation (4.2) is substituted in equation (4.1), the following expression is
obtained for the dynamic chip thickness in milling

hj(¢) = [Azsin¢; + Ay cos ¢;], (4.3)
where

Ay = (ye —¥2) — (Yw — ¥),
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in which (z., y.) and (., y.) are the dynamic displacements of the cutter and the
workpiece in the x and y directions, respectively. The dynamic cutting forces on
tooth (j) in the tangential and the radial directions can be expressed as follows

th (¢) = Ktahj(¢)7 FT‘]' = K’I"Ft]‘ (¢)a (45)

where a is the axial depth of cut, and K; and K, are the cutting force coefficients
which are experimentally identified (Armarego et al., 1985, Budak et al., 1996).
After substituting h; from equation (4.1) into (4.5), and summing up the forces
on each tooth (F' = " F}), the dynamic milling forces can be resolved in z and y

directions as
1
By 2 Qyz  Qyy Ay

where the directional coefficients are given as

N
App = — Z sin 2¢] + K, (]- - COS2¢j) )
=1

N

j
Upy = — Z (14 cos2¢;) + K, sin 2¢;,

= (4.7)
aye = — y. — (1 —cos2¢;) + K, sin2¢;,

=1

N
ayy = — Y —sin2¢; + K, (1+ cos2¢;).

j=1

The directional coefficients depend on the angular position of the cutter which
makes equation (4.6) time-varying

{F()) = SaKAD] {AW), (19

in which the matrix [A(t)] is the periodic function at the tooth passing frequency
w = NQ and with corresponding period of T' = 27 /w. In general, the Fourier series
expansion of the periodic term is used for the solution of the periodic systems
(Magnus & Winkler, 1966). The solution can be obtained numerically by truncating
the resulting infinite determinant. However, in chatter stability analysis inclusion
of the higher harmonics in the solution may not be required, as the response at the
chatter limit is usually dominated by a single chatter frequency. Starting from this
idea, Budak & Altintas (1994, 1995, 1998) have shown that the higher harmonics
do not affect the accuracy of the predictions, and it is sufficient to include only the
average term in the Fourier series expansion of [A(t)]

T
ol = 7 [14)] (4.9)
0

As all the terms in [A(t)] are valid within the cutting zone between start and exit
immersion angles (ds;, ¢ee), equation (4.9) reduces to the following form in the
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angular domain

e
1 N [ oz a
[Ao] = ¢_p¢/ [A(¢)] do¢ = o [ o ayz ] , (4.10)

where the integrated, or average, directional coefficients are given as
o = 3 [c082¢ — 2K, ¢ + K, sin 2]
Oy = % [—sin2¢ — 2¢ + K. cos 2¢]¢”
oy = 3 [—sin2¢ + 2¢ + K, cos 2¢]$f (4.11)
gz = 3 [~ c082¢ — 2K, ¢ — K, sin 2¢]j;§j

Substituting equation (4.11), equation (4.8) reduces to the following form

[F(9) = aK[40] {A(0) (1.12)

Chatter Stability Limit
The dynamic displacement vector in equation (4.12) can be described as

{AD} = {re} = {r2}) = ({ru} —{ra}) (4.13)
where
{rp} = H{ap} 1" (p=c,w). (4.14)

The response of the both structures at the chatter frequency can be expressed as
follows

{rp(iwe)} = [Gp(iwe) [ {F} et (p = c,w), (4.15)

where F represents the amplitude of the dynamic milling force F'(t), and the transfer
function matrix is given as

G G
Gl=| o @ . 0= cow) (4.16)

The vibrations at the previous tooth period, i.e. at (t—T'), can be defined as follows
{ro} = Hap(t = D) }Hyp(t - )N,
{rp} =e T {r},

By substituting Equations (4.13)—(4.17) into the dynamic milling force expression
given in equation (4.12), the following is obtained

(p = c,w). (4.17)

{F}elvet = %aKt (1 — e ™) [Ag][G (iwe){ F}e<, (4.18)
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where
(Gliwe)] = [Geliwe)] + [Guliwe)] (4.19)
has a non-trivial solution only if its determinant is zero,
det [[I] + A[Go(iw.)]] = 0, (4.20)
where [I] is the unit matrix, and the oriented transfer function matrix is defined as
[Go] = [Ao]IG], (4.21)
and the eigenvalue A in Equation (4.20) is given as

N —iwe
A= - —Ka (1—e Ty, (4.22)

If the eigenvalue A is known, the stability limit can be determined from equation
(4.22). A can easily be computed from equation (4.20) numerically. However, an
analytical solution is possible if the cross transfer functions, G,, and G, are
neglected in equation (4.20)

1
A= % <a1 +4/a? — 4a0> , (4.23)

where

ap = G (iwe)Gyy (iwe) (Qaz 0ty — Qzyaya),
(4.24)
a1 = QpaGaa(iwe) + 0y Gyy (iw,).

This is a valid assumption for the majority of the milling systems, i.e. the cross
transfer functions are negligible, such as slender end mills and plate-like workpieces.

Since the transfer functions are complex, A will have complex and real parts.
However, the axial depth of cut (a) is a real number. Therefore, when A = Ag+iAf
and e"%T = cosw,T — isinw.T are substituted in equation (4.22), the complex
part of the equation has to vanish yielding

A sin w.T'

= AR - 1—cosw.T"

(4.25)

The above can be solved to obtain a relation between the chatter frequency and
the spindle speed (Budak & Altintas, 1995, 1998)

wT = e+ 2km,
e=m—2, 1) =tan "k, (4.26)
n=60/(NT),

where ¢ is the phase difference between the inner and outer modulations, & is an
integer corresponding to the number of vibration waves within a tooth period, and n
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Table 1. Dynamics properties of 3-flute end mill
we (Hz)  k (kH/m) ¢
X 603 5600 0.039
Y 666 5700 0.035

is the spindle speed (rpm). After the imaginary part in equation (4.22) is vanished,
the following is obtained for the stability limit (Budak & Altintas, 1995, 1998)

_ 27TAR 9
Qi = K, (1 + K ) . (4.27)

Therefore, for given cutting geometry, cutting force coefficients, tool and workpiece
transfer functions, and chatter frequency w., Ay and A can be determined from
equation (4.23), and can be used in equations (4.26) and (4.27) to determine the
corresponding spindle speed and stability limit. When this procedure is repeated
for a range of chatter frequencies and number of vibration waves, k, the stability
lobe diagram for a milling system is obtained.

Ezample 1

Demonstration of the method will be done on a 2-DOF end milling example
given in Budak et al. (1998). The dynamic properties of the 3-flute end mill in two
orthogonal directions were identified in (Weck et al., 1994), and are given in Table
1.

The aluminum workpiece is considered to be rigid compared to the cutter.
The experimental stability limits (Weck et al., 1994) and simulations for a half-
immersion (up milling) case are shown Figure 11. As it can be seen from this fig-
ure, the stability limit predictions using zero order or higher order approximations
are very close. Furthermore, there is a very good agreement between the numer-
ical time-domain solution and the analytical predictions. It should be noted that
the analytical stability diagram can be generated in a few seconds whereas time
domain simulations usually take several hours (up to a full day) depending on the
precision required. In time domain simulations, dynamic system equations have to
be simulated over several tool rotations using very small time steps.

(¢) Stability of milling for cutters with non-constant pitch

The fundamental difference in the stability analysis of milling cutters with non-
constant pitch angle is that the phase delay between the inner and the outer waves,
is different for each tooth and can described as

g5 = UJCT]' (J = 1, ..,N), (428)

where Tj is the j* tooth period corresponding to the pitch angle ¢,;. The dynamic
variation of chip thickness and the cutting force relations given for the standard
milling cutters apply to the variable pitch cutters, as well. The directional coeffi-
cients given in equation (4.10) are evaluated at the average pitch angle to simplify
the formulation. Then, the characteristic equation given in equation (4.22) is valid
for the variable pitch cutters, however the eigenvalue expression will take the fol-
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Figure 11. Analytical and experimental stability diagrams for a 2-DOF milling system
considered in the example

lowing form due to the varying phase
a N
A=K ) (1—emT), 4.29
aatt Pt ( € ) ( )

The stability limit can be obtained from equation (4.29) as

47 A
vp
alim - Kt N — C + IS’ (430)

where
it (4.31)

Since the eigenvalue is a complex number, if A = Ag+ A is substituted in Equation
(4.30), the following formula is obtained
al? __4_71' (N—C)AR+SA] i(N—C)A]—SAR
lim = gy (N-C)2+ 52 (N —-C)? + 52

(4.32)

As ajim is a real number, the imaginary part of Equation (4.32) must vanish, there-
fore

A
N-C=5-% (4.33)
Ar
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By substituting the above expression into Equation (4.32), ajiy, simplifies to

47 A]
= 4.34
Alim Kt S ( )
It is interesting to note that the stability limit obtained for the equal pitch cutters,
Equation (4.27), can be put into a similar form by substituting & from Equation
(4.25)

vp 471' A]

s 4.
Ulim K; Nsinw.T (4.35)

Note that for equal pitch cutters, S = > sinw.T in equation (4.34) becomes
Nsinw,T in Equation (4.35) as the phase (w.T') is the same for all the teeth.
The stability limit with variable pitch cutters can be determined using equations
(4.33) and (4.34). Unlike for the equal pitch cutters, in this case the solution has
to be determined numerically since an explicit equation for the chatter frequency-
spindle speed relation cannot be obtained from Equation (4.33). Also, the cutter
pitch angles have to be known in advance. However, optimization of pitch angles
for a given milling system has more practical importance than the stability analysis
of an arbitrary variable pitch cutter. Therefore, the rest of the analysis focuses on
the optimization of the pitch angles to maximize the stability against chatter.

Equation (4.34) indicates that in order to maximize the stability limit, |S| has
to be minimized. From equation (4.31), S can be expressed as follows:

S =siney + siney + sines + ... (4.36)

where €; = w.Tj. The phase angle, which is different for every tooth due to the
non-constant pitch, can be expressed as follows

gj=e1+Agj, (j=2,N), (4.37)

where Ag; is the phase difference between tooth (j) and tooth (1) corresponding
to the difference in the pitch angles between these teeth. Considering the number
of vibration waves in one cutter revolution, m, can further develop this relation

We
m=—, 4.38
- (438)
where (2 is the spindle speed (rad/sec). Note that m is the summation of full number
of waves and the remaining fraction of a wave, and thus it is, in general, a non-
integer number. If  is defined as the tooth immersion angle corresponding to one

full vibration, it is determined as

o 270
g=""="" (4.39)

m We

Therefore, the pitch angle variation AP corresponding to Ae can be determined
from

6= EAE. (4.40)

AP = —
2w We
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Thus, AP and Ae are linearly proportional. Equation (4.36) can be expanded as
follows by using Equation (4.37) to

S = sine; + sine; cos Aes + sin Aes coser+

4.41
+ sinep cos Aesz + sin Aez cosey + ... ( )

There are many solutions for the minimization of |S|, i.e. (S = 0). For example, for
even number of teeth S = 0 when Ae; = jm. This can easily be achieved by using
linear or alternating pitch variation

Linear : Po, PO + AP, PO + QAP, PO + 3AP

Alternating : Py, Py + AP, Py + AP, ... (4.42)

A more general solution can be obtained by substituting a specific pitch variation
pattern into S. For the linear pitch variation S takes the following form

S = sine (14 cosAe + cos2Ae +...) +

+ cose; (sin Ae +sin2Ae +...). (4.43)

Intuitively it can be predicted that in Equation (4.43), S = 0 for the following
conditions
2

As:kﬁﬁ, (k=1,2,..,N—1). (4.44)
The corresponding AP can be determined using Equation (4.40). The increase of the
stability with variable pitch cutters over the standard end mills can be determined
by considering the ratio of stability limits. For simplicity, the absolute or critical
stability limit for equal pitch cutters are considered. The absolute stability limit
is the minimum stable depth of cut without the effect of lobing, which can be
expressed as follows from equation (4.35)

47TA[
o = — . 44
a NE, (4.45)
Then the stability gain can be expressed as
up
ay N
== 4.46
r=Lr=g (4.46)

r is plotted as a function of Ae in Figure 12 for a 4-tooth milling cutter with linear
pitch variation. The phase € depends on the chatter frequency, spindle speed and
the eigenvalue of the characteristic equation, and therefore the stability analysis has
to be performed for the given conditions. However, this can only be done for a given
cutting tool geometry i.e. pitch variation pattern. Therefore, three different curves
corresponding to different €1 values are shown Figure 12 to demonstrate the effect
of phase variation on r. As expected, 1 has a strong effect on r, and 37/2 results
in the lowest stability gain. Also, as predicted by equation (4.44), r is maximized
for integer multiples of 27 /N, i.e. for (1/4,1/2,3/4) x 2m. Ae + k27 (k =1,2,3,...)
are also optimal solutions. However, they result in higher pitch variations which is
not desired since it increases the variation in the chip load from tooth to tooth.
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Figure 12. The effect of Ae on stability gain for a 4-fluted end mill with linear pitch
variation

The optimal pitch variation can be determined if the chatter frequency and the
spindle speed are known before the cutter is designed. This can be done by simple
acoustic measurements using an equal-pitch-cutting-tool to determine the chatter
frequency. The chatter frequency may vary with the introduction of the variable
pitch cutter, or due to the changes in the machine condition, part clamping and
workpiece dynamics. Modal analysis of the part-tool-spindle system is usually very
useful to determine the other important modes.

As can also be seen from Figure 12, for linear pitch variation, a minimum of
r = 4 gain is obtained for a 4-tooth cutter for 0.5m < Ae < 1.57. Thus, the target
for Axw should be 7, which is one of the optimal solutions for the cutters with
even number of flutes, but it is also in the middle of the high stability area. Other
variation types were also tried, however they gave smaller high-stability gain area
than linear variation. Therefore, the optimal pitch variation can be determined as

AP = Wwﬂ for even N,
) (4.47)
AP = wﬂw for odd N.
we N
The pitch angles have to satisfy the following relation
Py+ (Py + AP) + (Py + 2AP) + ... + [Py + (N — 1)AP] = 2r. (4.48)
Py can be determined from equation (4.48) as follows:
Py = r_(N-DAP (4.49)

N 2

Ezample 2
In this example the milling of an airfoil made out of Titanium alloy, Ti6A14V,
is considered. The stability limit of the process is extremely small due to highly
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flexible workpiece and cutting tool. A 6-fluted carbide taper ball end mill with
length-to-average diameter ratio of over 10 is used on a 5-axis machining center.
For one of the finishing passes, the axial depth of cut is over 100 mm. This is very
much higher than the stability limit of the process, thus a very low spindle speed
is used to maximize process damping. However, even at 300 rpm severe chatter
vibrations are experienced with the equal pitch cutter. For the 420 Hz chatter
frequency, P=>55,57,59,61,63,65 pitch variation is obtained from (4.47) and equation
(4.49) (for 300 rpm). This cutter suppresses the chatter completely. As a result, the
surface finish is significantly improved as shown in Figure 13.

Figure 13. Surface improvement due to variable pitch cutter in Example 2

5. Synopsis

In this paper a critical review of state-of-the-art of modelling and the experimen-
tal investigations has been presented, with a view to how the nonlinear dynamics
perception could help to capture the major phenomena causing instabilities in ma-
chining operations.

In general the cutting process is a result of the dynamic interactions between
the machine tool, the cutting tool and the workpiece. Therefore, its mathematical
description should take into account its kinematics, dynamics, geometry of the
chip formation, and the workpieces mechanical and thermodynamical properties.
Mechanics of the cutting process and chip formation are being recognised even more
now than ever before, as the key issue in the development of machining technologies.
Complexity of the cutting process is due to the interwoven physical phenomena such
as elasto-plastic deformations in the cutting zones, variable friction between tool
and chip and workpiece, heat generation and transfer, adhesion and diffusion, and
material structural and phase transformations, to name but a few. Understanding
of these relationships is the most important issue in the modelling of the cutting
processes as the majority of the phenomena listed here are strongly nonlinear and
interdependent.

Studies on metal cutting processes have been carried out as early as the 1800’s.
However only in the mid forties and fifties had two researchers Piispanen (1937,
1948) Merchant (1944, 1945a and 1945b), described the flow of metal chips. Based

Article submitted to Royal Society



Nonlinearities and Chatter 29

on this concept of orthogonal cutting, the continuous chip is formed by a cutting
process, which was understood to be confined to a single shear plane extending
from the cutting edge to the shear plane. The force diagram developed by Merchant
(1944) has been extensively used up until now.

The model of dynamic cutting characteristics developed by Kudinov (1955, 1963,
1967) has been widely used in the Soviet Union and the eastern Europe. It assumes
that chatter, variation of the cutting and thrust forces are due to variations of chip
thickness and relative kinematics between the tool and workpiece. The starting
point of his scheme was that the cutting force, which was evaluated for steady
state conditions from a semi empirical formula (Loladze, 1952). Then a functional
relationship describing the cutting force was established assuming that it is a total
differential. In the original work by Kudinov (1963) the dynamic forces are given
in the Laplace space (see Equations (2.22) and (2.22). This approach was further
developed by other Russian researchers such as Abakumov et al. (1972) and Zharkov
(1985), who have included regenerative effects in the model.

An interesting approach explaining the influence of the temperature and the
strain-rate dependent properties of the workpiece has been given in the paper by
Hastings, Matthew and Oxley (1980), who assumed plane strain and steady-state
conditions as in the Merchant’s model. They proposed a set of analytically empir-
ical equations allowing us for the first time, to calculate the temperature and the
strain rate at the cutting tool - chip interface in addition to the expressions for the
cutting and thrust forces. The only reservation one should have is the empirical
nature of some of the formulas and the fact that the non-monotonic nonlinear re-
lation between the flow stress again the chip temperature is hardly reflected in the
cutting/thrust force versus cutting speed characteristics (see Figure 7).

From the very beginning metal cutting has had one troublesome obstacle in
increasing productivity and accuracy, namely chatter. In machining chatter is per-
ceived as unwanted excessive vibration between the tool and the workpiece result-
ing in a poor surface finish. It has also a deteoriating effect on the reliability and
safety of this machining operation. The first attempts to describe chatter was made
by Arnold (1946), Hahn (1953), and Doi and Kato (1956), however a comprehen-
sive mathematical model and analysis was given by Tobias and Fishwick (1958).
In general chatter can be classified as primary and secondary. Another classifica-
tion distinguishes frictional, regenerative, mode coupling and thermo-mechanical
chatter. Chatter is one of the most common limitations for productivity and part
quality in milling operations. Especially for the cases where long slender end mills
or highly flexible, thin-wall parts such as air-frame or turbine engine components
are involved, chatter is almost unavoidable unless special suppression techniques
are used or the material removal rate is reduced substantially.

There are also four different mechanisms of machining chatter, namely: vari-
able friction, regeneration, mode coupling and thermo-mechanics of chip formation.
These mechanism however are interdependent and can generate different types of
chatter simultaneously, however there is not an unified model capable explaining
all phenomena observed in machining practice.

Metal cutting process involves a number of strongly nonlinear phenomena which
can be classified into two distinct dynamical systems, namely mechanics and ther-
modynamics of chip formation. Functional inter-relationships between these two
systems are shown in Figure 8 in the form of a closed-loop model. The proposed
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system can accommodate all sorts of nonlinearities, in particular, the strain harden-
ing and softening (Hastings, Matthew and Oxley, 1980), thermal softening (Davies,
Burns and Evans, 1997), strain rate dependence (Oxley, 1963), variable friction
(Wiercigroch, 1997a), heat generation and conduction, feed drive hysteresis, inter-
mittent tool engagement (Tlusty and Ismail, 1981), structural and contact stiffness
in machine tool structure (Hanna and Tobias, 1969), and time delay (Stepan, 1998).

To illustrate the problem of chatter in real engineering practice a case study on
chatter suppression in milling using an analytical model for milling stability has
been presented. The time varying dynamics of the system is approximated using
only the constant term in the Fourier series expansion of the periodically varying
directional coefficients. The resultant analytical expression is demonstrated to pre-
dict the stability limit accurately. This is mainly due to the relatively slow growth of
regenerative chatter which seems to be insensitive to the higher harmonics. Appli-
cation of the model to the stability of variable pitch cutters results in an analytical
expression for the optimal pitch angles. The model eliminates the need for time con-
suming numerical simulations in optimizing cutting conditions and tool geometry
in order to maximize chatter free material removal rate.

Authors would like to thank Dr. Y. Altintas from British Columbia University for the
helpful suggestions. The Russian sources have been consulted with Dr. E.E. Pavlovskaia
from Aberdeen University.
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