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Abstract

In this paper, we consider a repair shop that fixes failed components from different

k-out-of-n:G systems. We assume that each system consists of the same type of com-

ponent; to increase availability, a certain number of critical components are stocked

as spare parts. We permit a shared inventory serving all systems and/or reserved

inventories for each system; we call this a hybrid model. Additionally, we consider

two alternative dispatching rules for the repaired component. The destination for a

repaired component can be chosen either on a first-come-first-served basis or by follow-

ing a static priority rule. Our analysis gives the steady-state system size distribution

of the two alternative models at the repair shop. We conduct numerical examples min-

imizing the spare parts held while subjecting the availability of each system to exceed

a targeted value. Our findings show that unless the availabilities of systems are close,

the HP policy is better than the HF policy.

Keywords and Phrases: Spare parts, Multiple finite-population queueing systems,

Priority queues, Hybrid policies



1 Introduction

Many complex and technologically advanced systems such as those in the electrical power

industry (Levitin and Amari, 2010) and equipment such as radar or sonar systems used

in mining (de Smidt-Destombes et al., 2004) are k-out-of-n:G systems comprised of

identical components. A k-out-of-n:G system consists of n components each of which can

fail from time to time. The system is deemed functional/available as long as a minimum of k

components are functional. In this paper, we model a repair shop that fixes failed components

from several such systems with spares kept to increase the availability of these systems. Our

research was motivated by a British Columbia based mining company that uses thickeners in

its processes. A thickener is a large tank with a slow turning rake used to settle and remove

precipitated solids. In the acidic, neutral, and clarifying parts of the process, different k-

out-of-n:G systems are utilized, but each uses the same type of rake drive. For settings such

as these, the questions of interest are: (i) Should we reserve a separate spare parts inventory

for each system, or should a single spare parts inventory be shared by all systems, or would

a mixture of the two be more cost effective? (ii) And, when a repaired component from

the repair shop is dispatched, should we choose the destination system/reserved inventory

according to a first-come-first-served (FCFS) rule or could prioritization of systems make

this decision less costly? We develop two alternatives involving a mixed inventory topology

(a shared inventory together with reserved emergency inventories) and a repair shop under

the FCFS and priority-based dispatching policies. We obtain the steady-state system size

distributions at the repair shop; this allows us to compare performance and address the

questions raised above.

Considering repairable components in an k-out-of-n:G system with spares is not new in

the literature. Generally, however, the focus is on a single system; therefore, dispatching

policies (except for 1-out-of-n:G systems) or different inventory structures do not arise from

the problem context. Gupta and Sharma (1981) model such a system as a Markov chain

by introducing operational, repair and installation as possible states for a component that
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is not stored in inventory. Fawzi and Hawkes (1991) revisit the same problem and assume

that the single repair server gives installation of a spare part preemptive repeat priority over

repair. In our study, we consider instantaneous installations; instead, a component is either

operational, in inventory, or in the repair shop (either waiting to be fixed or being repaired).

Assuming also a single server to model the repair shop, Frostig and Levikson (2002) allow

the repair times to follow non-Exponential distributions. In all these studies including ours,

each broken component is sent to the repair shop as soon as it fails. de Smidt-Destombes

et al. (2004), on the other hand, assume that the repair process starts only after a given

number of failed components accumulate.

The case of a 1-out-n:G system can represent a fleet of machines and has been extensively

studied in the literature in machine interference or machine repairperson problems. How-

ever, including a joint repair shop is difficult even when an FCFS dispatching rule is followed

for multiple 1-out-n:G systems. Earlier work addresses this without considering inventories.

Chandra (1986) employs mean value analysis as the only suitable analytical/numerical tech-

nique for the FCFS repair policy for m fleets of machines sharing a single repair shop. He

models the non-preemptive priority policy in the same study. When priorities are also in-

troduced in finite population systems, the analysis becomes more challenging. Miller (1981)

presents recursive computational formulae to obtain the steady-state distributions of cus-

tomers in a two-priority (preemptive and non-preemptive) class Markovian single server

queue. Veran (1984) analyzes the same system assuming a preemptive-resume policy and

avoids the computational complexity of the method as in Jaiswal (1968, p. 71,79). Bitran

and Caldentey (2002) investigate a two-priority class queueing system with state-dependent

arrival rates operating under the preemptive-resume priority policy. They present a gen-

eral approach for computing the steady-state distribution of the number of customers in

the system for each class. Iravani et al. (2007) consider a Markovian finite-population

queueing system with heterogeneous fleets of machines repaired by a single server. They

prove that when preemption is not allowed, a simple static non-preemptive priority policy

is optimal, and they present sufficient conditions to prioritize the classes correctly. Iravani
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and Kolfal (2005) study the same problem when preemption is permitted and show under

which conditions a static preemptive-resume priority policy is optimal.

In this paper, we analyze a Markovian single server queueing system with multiple classes

of customers whose arrival rates are state-dependent. Under the FCFS and the priority

policy, when the exponential service/repair rate is the same for all classes, we obtain the

exact steady-state distribution of the number of customers in the system for each class.

Then, we extend the model in Bitran and Caldentey (2002) to more than 2 priority classes

of customers, in which different exponential repair rates can also be assumed for each class.

An immediate benefit of this extension is that when the optimal repair policy in a system

without inventories is the static preemptive-resume policy, the cost of the system studied by

Iravani and Kolfal with m fleets of machines can be now computed.

More importantly, these models allow a flexible use of spare part inventory structures.

This is important because earlier studies (Graves and Keilson, 1983, Dshalalow, 1991, Ab-

boud and Daigle, 1997) with spare part inventories usually assume a single finite population.

Therefore, reserved inventories for each population have not been compared to a shared in-

ventory for all. Benjaafar et al. (2005) make this type of comparison in systems operating

under the FCFS policy with constant customer arrival rates; they prove that a shared inven-

tory results in a cost less than or equal to that of the alternative with reserved inventories

when the holding cost is the same in both models and the backordering cost rate is the same

for each class. In our case, different inventory levels change the state-dependent arrival rates,

rendering comparison more difficult.

We make this comparison by developing two models serving multiple k-out-of-n:G sys-

tems. First, the HP (hybrid priority) model has a shared inventory for all systems and

may have reserved inventories for some systems. The shared inventory is depleted on an

FCFS basis, and when it is empty, the repair shop dispatches repaired components to sys-

tems/reserved inventories according to their priorities. Second, the HF (hybrid FCFS) model

is similar except that when its shared inventory is depleted, the repair shop dispatches re-

paired components to the system (or the inventory reserved for that system) with the longest
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waiting repair order. Incorporating dynamic priority rules is overly complex, and it is not

studied in this paper.

Since it is not possible to show theoretically when one policy is better than the other one,

we provide the results of our extensive numerical study in Section 3. Our results indicate

that the HP policy is better in most of the examples; however, lower repair capacity degrades

its performance, and if the minimum availabilities set for systems are close, then, the HF

policy is better.

The rest of the paper is organized as follows. In Section 2, we present our problem and

the models we consider. In Section 2.1, we analyze the HF model. In Section 2.2, the HP

model, in which different fleets are given different priorities, is modeled. In Section 3, we

present numerical results comparing their relative performances of these policies.

2 Alternative Policies

We consider a centralized repair shop that serves m systems parameterized by i = 1, ...,m.

Each system i is a ki-out-of-ni:G system comprised of identical components and is available if

ki or more components out of ni are functional. Although components fail from time to time,

they are repairable. Additionally, spare components are kept to increase the proportion of

times these systems are available. Times to failure, that is the periods between installation of

a new or repaired component in system i and the next failure instant of this component, follow

an exponential distribution with rate λi (implying that each repair makes the component as

good as new, and the failure rate only depends on the system using it). Different failure

rates can be due to the type of service a system renders or specific operating

conditions they are subject to. (Note that if the times to failure distribution

has an increasing failure rate, our model operating with exponential times to

failure assumption may provide inaccurate approximations.) When a component

fails, it is sent to a repair shop, which is modeled as an FCFS single server queue where the

repair times are independent and identically distributed (i.i.d.) exponential random variables
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(r.v.s) with rate µ. If there is a stock of critical components kept as spare parts, a spare

component can be installed immediately to replace the failed component. Otherwise, the

number of functional components in that system decreases by 1. When only ki components

are functional and there is no spare available, and if one more component fails, system i

fails and is down until a repaired component can be dispatched from the repair shop (during

such down times, the remaining ki − 1 components do not fail).

In other words, keeping spare part inventories might help increase system availability at

the expense of incurring inventory holding cost. Separate inventories for each system can be

reserved; or due to the same component used, a shared inventory can serve all systems. In

this paper, we model a mixture of the two, with both shared and reserved inventories calling

it the hybrid model. In the hybrid model, by setting shared or reserved inventory levels

to zero, one can create a system of only reserved inventories or of only a shared inventory,

respectively. Therefore, the optimal cost of the hybrid model cannot be strictly higher than

the optimal cost of having solely reserved inventories or only a shared inventory.

The problem also involves a component allocation problem. In this paper, we study the

FCFS and the priority policies which result in two alternative policies, the hybrid FCFS (HF)

policy and the hybrid priority (HP) policy. In both cases, in addition to a reserved inventory

for each system, there is a shared inventory for all systems, and each inventory operates

according to a base-stock policy. First spare parts from the shared inventory are expended,

and only when they are depleted, are the reserved inventories used. Now consider the

periods when the shared inventory is empty, and some reserved inventories are

below their base-stock levels, or some systems do not have all of their compo-

nents functional. When this is the case, the repair shop has pending repair orders from

systems missing functional components or spares in their reserved inventories. Therefore,

each time a repair is finished, a policy needs to be followed to dispatch the fixed

component. We study the HF policy in Section 2.1. In this policy, the repair shop dis-

patches the repaired components in an FCFS manner among systems with pending orders.

Under the HP policy, studied in Section 2.2, the repaired component is used to serve the
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highest priority system among those with pending orders.

2.1 The Hybrid FCFS (HF) Policy

In this section, we analyze the model in which a shared inventory of S > 0 spare parts is

kept for all systems in addition to (emergency) reserved inventory of Si ≥ 0 spare parts for

each system i, i = 1, ...,m. When a component fails, it is sent to the repair shop. If there

is positive stock in the shared inventory, a spare part is installed. If the shared inventory

happens to be empty but the reserved inventory level is positive, a spare part from the latter

is used. Otherwise, system i lacks one more component until a repaired one can be sent from

the repair shop. When ki − 1 functional components remain, system i fails and no more

component failures can be observed until a repaired component can be sent from the repair

shop on an FCFS basis.

Let O(t) be the number of components in the repair shop at time t. If O(t) ≤ S, the

shared inventory level is I(t) = S − O(t) spare parts. All reserved inventories are at their

respective base-stock levels Si, and ni components are functional in each system. Therefore,

whenever a component is repaired, it is placed in the shared inventory, raising its level by 1.

We assume w.l.o.g that O(0) = 0. Letting ςD0 = 0, we define the following stopping times,

ςUm = inf
{
t : O(t) = S|t > ςDm−1

}
,

ςDm = inf
{
O(t) = S − 1|t > ςUm

}
. (1)

In other words, ςUm is a failure instant (equivalently, an arrival instant) of a component

(at the repair shop) when the shared inventory level decreases from 1 to 0, and ςDm is a

repair completion instant when the shared inventory level increases from 0 to 1 for the

mth time since time 0. Thus, D =
∪∞

m=1[ς
U
m, ς

D
m) is the time period during which each

additional component to fail in system i generates a type i repair order. Let Oi(t) be the

number of type i orders at time t. If Oi(t) ≤ Si, the reserved inventory level for system i is

Ii(t) = Si − Oi(t), all ni components are operational, and if Si < Oi(t) ≤ ni + Si − ki + 1,
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system i lacks Oi(t)− Si components. When a repair is done, the component is sent to the

fleet with the longest standing order. Let p(k) := P (O = k) (piHF (k) := P (Oi = k)) be the

steady-state probability of having k components (k type i orders) in the repair shop, and pD

be the proportion of time the HF model is in D.

Consider a separate model, the reserved inventory-FCFS (RIF) model, with exactly the

same parameters (e.g., systems served, failure and repair rates, base-stock levels of the

reserved inventories) but no shared inventory (S = 0). Obviously the HF model during D

is probabilistically identical to the RIF model. If we can obtain the steady-state probability

of having k type i orders in the repair shop in the RIF model, denoted by pi(k), then, the

steady-state probability of having k type i orders in the HF model is simply

piHF (k) = pDp
i(k). (2)

Therefore, the analysis of the RIF model is necessary for the HF model. In the next

section, we derive the steady-state distribution of the number of orders of each type in the

repair shop of the RIF model. Then, we obtain pD (and p(k)) in the HF model in Section

2.1.2. With them, Eq. (2) gives piHF (k), which together with p(k), provides the steady-state

distribution of the number of repair orders in the HF system.

2.1.1 Obtaining pi(k) in the RIF model

In order to obtain pi(k), we start by characterizing the state of the RIF model at an arbitrary

time by the vector (y1, y2, . . . , ym) with yi being the number of type i orders present at the

repair shop. Observe that the failure rate from system i depends only on the number of

components functional in system i. We define this failure rate Λi(yi) as

Λi(yi) =


niλi, if 0 ≤ yi ≤ Si,

(ni + Si − yi)λi, if Si ≤ yi < ni + Si − ki + 1,

0, otherwise.

(3)
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Adding the failure rates from all systems, Λ(y1, y2, . . . , ym) =
∑m

i=1 Λi(yi), gives us the state-

dependent arrival rate of repair orders at the single server queue when the system is in state

(y1, y2, . . . , ym).

Let us consider a state ωj
n with n repair orders at the repair shop, i.e., y1+y2+· · ·+ym = n.

We use a superscript j because there are K such states differing from one another due to

the ordering of repair orders, and the steady-state probability of being in state ωj
n, pn(ω

j
n) =

q(y1, . . . , ym), is the same for all j, j = 1, . . . , K, where

K =

(
n

y1, . . . , ym

)
.

For each one of these K states, summing up local balance equations,

q(y1, . . . , yi, . . . , ym)Λi(yi) = µq(y1, . . . , yi + 1, . . . , ym),

over all i, we obtain

q(y1, . . . , ym) =
µ

Λ(y1, . . . , ym)
(q(y1 + 1, y2, . . . , ym) + q(y1, y2 + 1, . . . , ym)

+ · · ·+ q(y1, y2, . . . , ym + 1)). (4)

However, we are interested in the probability of being in any one of these K states with

y1 orders of type 1, y2 orders of type 2, . . . , and ym orders of type m. We denote this

probability by p(y1, y2, . . . , ym):

p(y1, y2, . . . , ym) =
K∑
j=1

pn(ω
j
n) = Kq(y1, . . . , ym) = q(y1, . . . , ym)

(
n

y1, y2, . . . , ym

)
.

If we multiply both sides of Eq. (4) by K, we arrive at

p(y1, y2, . . . , ym) =
µ

(n+ 1)Λ(y1, . . . , ym)
{(y1 + 1)p(y1 + 1, y2, . . . , ym)

+(y2 + 1)p(y1, y2 + 1, . . . , ym) + . . .

+(ym + 1)p(y1, y2, . . . , ym + 1)}. (5)

Using Eq. (5), we can express all p(y1, y2, . . . , ym) in terms of p
N
, which is the probability

of having N =
∑m

i=1(ni + Si − ki + 1) repair orders in the system (the maximum number of
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components that can be in the repair shop). After employing the normalization constraint,

N∑
n=0

∑
y1+···+ym=n

p(y1, y2, . . . , ym) = 1,

we obtain p
N
and all p(y1, y2, . . . , ym) where yi ∈ {0, 1, . . . , ni +Si − ki +1} for i = 1, . . . ,m.

Then, the steady-state probability of having k type i orders is

pi(k) =
∑

y1, . . . , ym, j ̸= i, yi = k

0 ≤ yj ≤ nj + Sj − kj + 1

p(y1, y2, . . . , ym). (6)

2.1.2 Obtaining pD in the HF model

To obtain pD, we consider the system when the number of orders is less than or equal to S.

The system behaves as a birth-and-death process with the following local balance equations

Λp(k) = µp(k + 1), k = 0, . . . , S − 2

Λp(S − 1) = µp(S) = µpDp0(0),

where, Λ =
∑m

i=1 niλi, and p0(0) denotes the probability that the repair shop is idle and ni

components are running and Si spare parts are available in the inventory for each class i in

the RIF system. With pi(0)’s obtained from Eq. (6), the probability p0(0) is found as

p0(0) =
m∏
i=1

pi(0).

After expressing all p(k) in terms of pDp0(0) as

p(k) = rS−kpDp0(0), k = 0, . . . , S, (7)

where r = µ/Λ, using
∑S−1

k=0 p(k) = 1− pD, we obtain

pD =
1

1 + p0(0)
∑S−1

k=1 r
k
. (8)

With pD in Eq. (8) and pi(k) in Eq. (6), we can compute piHF (k) in Eq. (2). Note that

all these probabilities would change with any change in any S or Si, i = 1, . . . ,m.
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2.2 The Hybrid Priority (HP) Model

The HP model is similar to the HF model except for the dispatching policy employed during

the period D (defined by making use of the stopping times given in Eq. (1)) when O(t) > S,

and Oi(t) > 0 for some i. While in the HF model, the repaired component is sent to the

system with the longest awaiting order, in the HP model, it is sent to the highest-priority

system among those with pending orders. We assume that systems/classes 1 to m are

prioritized from highest to lowest.

To analyze this system, we consider a separate model, called the reserved inventory-

priority (RIP) model, with exactly the same parameters as the HP model but with no

shared inventory (S = 0). The HP model during D is probabilistically identical to the RIP

model. We obtain pi(k)’s of the RIP model in Section 2.2.1, and with p0(0) =
∏m

i=1 p
i(0) in

Eqs. (8 –7), we find pD and p(k) in the HP model. By substituting these in Eq. (2), we

obtain the steady-state probability of having k type i orders in the HP model, piHP (k).

2.2.1 Obtaining pi(k) in the RIP model

We use a matrix approach similar to Bitran and Caldentey (2002) who obtain pi(k)’s for

a two-class preemptive-priority system with state-dependent Poisson arrival rates possibly

with class specific exponential service times. First, we adjust Bitran and Caldentey’s solution

to our problem.

As in Section 2.1.1, let Λi(yi) be the failure rate for class i for i = 1, 2 given that there

are yi orders.

Let Mi = ni + Si − ki + 1, for i = 1, 2. Since for class 1 customers,

Λ1(k)p
1(k) = µp1(k + 1), for k = 0, · · · ,M1 − 1,

holds, the sequence π0 = 1 and πk = (Λ1(k − 1)/µ)πk−1 can be defined such that

p1(k) =
πk∑M1

j=0 πj

, for k = 0, · · · ,M1. (9)
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For class 2, their algorithm is more complex: For a given k for the number of class 2

orders, we define

Ak =



a0,k −µ 0

−Λ1(0) a1,k −µ

−Λ1(1) a2,k −µ

. . . . . . . . .

−Λ1(M1 − 2) aM1−1,k −µ

0 −Λ1(M1 − 1) aM1,k


,

where ay1,k is given by

ay1,k =



N1λ1 +N2λ2, y1 = k = 0,

N1λ1 + Λ2(k) + µ, y1 = 0, k > 0,

Λ2(k) + µ, y1 = M1, k ≥ 0,

Λ1(y1) + Λ2(k) + µ otherwise.

Additionally (M1+1)× (M1+1) matrices Bk = Ak−Λ2(k)(e1e
T) are defined, where e1

is an (M1+1)× 1 vector with 1 as its first entry and 0’s for the rest, and eT is the transpose

of an (M1 + 1)× 1 vector of 1’s. Except for B0, which has a rank M1, all matrices Bk have

full rank. Using P̃, which is the right eigenvector of B0 associated to eigenvalue 0, Bitran

and Caldentey define another sequence of vectors C0 = P̃ and Ck = Λ2(k − 1)Bk
−1Ck−1,

k = 1, · · · ,M2.

Then,

p2(k) =
eTCk∑M2

j=0 e
TCj

for k = 0, · · · ,M2. (10)

We now extend the result to m classes. We compute pi(k)’s in a recursive manner by

adding one new class at a time. Each time a new class is added, we use the two-priority

class model. With Mi = ni + Si − ki + 1, the following Theorem states how pm(k) can be

found, given pi(k) for i = 1, . . . ,m− 1:
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Theorem 1 Given pi(k) for i = 1, . . . ,m − 1, pm(k) (m > 2) is equal to p2(k) in Eq.

(10) of a two-class RIP system with n1 = k1 = 1, S1 = ∞, λ1 =
∑m−1

i=1 Λ̄i where Λ̄i =∑Mi

k=0 Λi(k)p
i(k) and n2 = nm, k2 = km, S2 = Sm, λ2 = λm.

Proof. We obtain pi(k)’s for i = 1, 2 according to two-class priority model. Assume that

pi(k)’s for i = 3, . . . ,m− 1, have been found using the method described in Theorem 1. At

time t, given that there are k repair orders from class i, the probability of failure in the next

∆t time units is Λi(k)∆t. If we remove the condition on the number of repair orders at time

t, Λ̄i∆t =
∑Mi

k=0 Λi(k)p
i(k)∆t is the probability of a failure in system i in the next ∆t time

units. Then, Λ̄i is the mean failure rate from system i; it is also the effective arrival rate

of components from system i at the repair shop. Whether or not the arrival processes of

components from different fleets are independent of each other,
∑m−1

i=1 Λ̄i is the total failure

rate of the classes 1, . . . ,m − 1, which from the point of view of system/class m is a single

high-priority class. Additionally, class m perceives a constant failure rate,
∑m−1

i=1 Λ̄i, for

the single high-priority class while it is itself experiencing a state-dependent failure rate (for

systems with finite and infinite population interactions, see, e.g., Boxma, 1986 and Kaufman,

1984). Then, we can use an equivalent system, i.e., the RIP system with two priority classes

such that n1 = k1 = 1, λ1 =
∑m−1

i=1 Λ̄i and S1 = ∞ (or S1 = M where M is a large integer to

guarantee that there is always one component functional in system 1, and the failure rate is

always λ1), and n2 = nm, k2 = km, S2 = Sm, λ2 = λm. In this case, p2(k) of this equivalent

RIP system gives pm(k).

3 Numerical Experiment

In previous sections, we have analyzed the HF and HP policies. However, we have not

compared the performances of the HF and HP systems. In order to investigate whether we

can have general insight into when to use one policy instead of the other, we have designed a

series of numerical experiments involving two ki-out-of-ni:G systems. These experiments are

set up as optimization problems in which the minimization of the total capital cost tied up
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in keeping spares is the objective function (e.g., Louit et al., 2011, and Sahba and Balcıog̃lu,

2011) and the steady-state availability of each fleet i has to meet a minimum target level Ai.

Let AP,i(S, SI , SII) denote the steady-state availability of system i under policy P which is

AP,i(S, SI , SII) = 1− piP (ni + Si − ki + 1), i = I, II.

Note that under the HP policy, the high-priority system/class 1 could be either system I or

II. Also observe that piP (ni + Si − ki + 1) is a function of S, SI , and SII , as well as the

policy, and is found from Eq. (2) for the HF policy (and for the HP policy, with adjustments

as explained at the beginning of Section 2.2). The optimization problem for HF and HP

policies becomes

min hS + hISI + hIISII ,

subject to

AP,i(S, SI , SII) ≥ Ai, i = I, II,

where h, hI , hII are the holding cost rates due to the capital cost tied up in keeping spares

in shared and reserved inventories, respectively.

Modeling optimization problems of this type is common in the literature (Sasaki et

al., 1977, Yanagi et al., 1981). A common technique to solve these models is presented

by Lawler and Bell (1966). Two other methods are dynamic programming (e.g., Messinger

and Shooman, 1970), and iteratively adding a spare to the system that results in

the highest improvement in the system reliability per dollar spent (e.g., Barlow

and Proschan, 1965, p. 162). One necessary condition to apply these methods is that

AP,i(S, SI , SII) must be monotone non-decreasing in each of the variables S, SI , and SII .

However, while AP,i(S, SI , SII) is non-decreasing in Si, it can be shown to be non-increasing

in Sj (j ̸= i): Adding a unit of spare to the reserved inventory of system i may only improve

its availability, and the proportion of time that system i is down may shorten. Hence, the

failure rate of this system increases, resulting in higher utilization of the repair shop, which,

in turn, lowers the availability of the other fleet. This fact can be used to skip some sub-

optimal solutions in an exhaustive search to find the optimal solution. For instance, let SL
II
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and SL+
II denote the lowest values of SII that satisfy the availability constraints together with

the set {S, SI} and {S, SI+1}, respectively. Then, SL+
II ≥ SL

II , and therefore, {S, SI+1, SL+
II }

cannot be the optimal solution. Note that this approach can be easily extended to problems

involving more than two k-out-of-n:G systems.

3.1 The Summary of the Numerical Results

This section provides a brief summary of the numerical examples conducted to explore how

the HF and HP policies perform with respect to one another. In all numerical examples

discussed in this and subsequent sections, system I is a 90-out-of-100:G system (kI = 90 and

nI = 100) with AI = 0.999, λI = 0.009. The holding cost rates of all inventories are set to

1. By varying a certain parameter of system II or the repair rate, we have generated four

sets of examples, each consisting of 600 examples, to be discussed in more detail in Section

3.2. 300 out of 2,400 were repeating examples, therefore, we ended up with a total of 2,100

examples.

In order to measure the cost decrease due to using the optimal HP policy instead of the

optimal HF policy for 2,000 examples (100 out of 2,100 had an optimal cost of 0 under the

HF policy), we computed

∆HP
HF ≡ C∗

HF − C∗
HP

C∗
HF

.

Table 1: The minimum, mean, median and maximum values of cost reduction due to the

HP policy.

Min(%) Mean(%) Median(%) Max(%)

∆HP
HF -800 38 67 100

From Table 1, we see that although the HP policy results in, on average, 38% less cost

than the HF policy, in some cases it can be costlier (up to 800% of the cost of the HF policy).

Therefore, in the next section, we compare the two policies in more detail.
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3.2 The Relative Performance of the HF and HP Policies

As stated at the beginning of Section 3.1, we generate four sets of examples by choosing

a certain parameter of system II or the repair rate, and assigning the parameter chosen 6

different values. For each parameter value, we increment the target availability for system

II in steps of 0.001 such that AII ∈ {0.9, 0.999}. In other words, in each set, for each

parameter value considered, we obtain the optimal solution under the HF and HP policies

for 100 different AII values.

3.2.1 The Impact of Repair Capacity

In the first set of 600 examples, system II is also a 90-out-of-100:G system (kII = 90 and

nII = 100) with λII = 0.009, i.e., identical to system I. With u ∈ {0.75, 0.8, 0.85, 0.9, 0.95, 0.99},

we vary the repair shop capacity µ as µ = 1.8/u.

0.90.910.920.930.940.950.960.970.980.99
A

II

Figure 1: The cost reduction of the HP system (∆HP
HF%) compared to the HF system when

u = 0.9

In Figure 1, u = 0.9 and µ = 2. We see that the HF policy outperforms the HP policy

for AII ≥ 0.978 only (negative values indicate that the HF policy outperforms the HP

policy). Thus, the HF policy should be preferred only when target availabilities of identical

systems are close. For the examples presented in Figure 1, the HP policy gives priority to

15



system I and stores spare parts – if any – solely in the reserved inventory of system II. For

AII ≤ 0.951, the HP policy does not carry any inventory at all. The HF policy, in contrast,

stores spares in the shared and system I reserved inventories, and no matter how low AII

gets, the inventory levels do not reduce to 0 (hence, ∆HP
HF%=100 for AII ≤ 0.951).

Let Ai (≥ Ai) denote the actual availability system i is provided with when the optimal

number of spares is obtained under a given policy. In Figure 2, we see that under both policies

AII tends to decrease with AII getting smaller until a minimum is met. This minimum is

0.951 for the HP policy, the availability at which it also starts carrying no inventory. The

minimum actual availability under the HF policy, on the other hand, does not decrease below

0.972. At first glance, having a higher actual availability seems better, but from Figure 1,

we recall that the HF policy incurs non-zero cost of carrying spares inventories. In other

words, higher actual availability under the HF policy comes with a cost.

0.90.910.920.930.940.950.960.970.980.99
A

II

 

HP
HF

Figure 2: The actual AII vs. target AII availabilities for system II when u = 0.9

For other u or equivalently µ values, the relative performances of the two policies, as well

as the way inventories are used, remain the same: system I is the high-priority class under

the HP policy that stores all spares – if any – in system II reserved inventory. In contrast,

the HF policy stores the spares in the shared inventory when the target availabilities of

the systems are close. When AII diminishes, the shared inventory level decreases while the
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reserved inventory of system I increases, but their sum, i.e., the total number of spares,

reduces.

1.9 2 2.1 2.2 2.3 2.4 2.5
µ(=1.8/u)

Figure 3: The maximum AII value below which the HP policy outperforms the HF policy

vs. µII

With lower µ, not only do the optimal levels of spares increase, but also the performance

of the HP policy worsens. To see this, let T denote the AII at which the performances (the

optimal costs) of the HP and HF policies are the same. This means that when AII < T ,

the HP policy is more cost-effective. Figure 3 plots the T values for six µ values. At the

smallest capacity considered, when µII = 1.818, we read T = 0.949. This implies that from

the 100 examples optimized for both policies, the HP policy was more cost-effective than the

HF policy in 49 examples when AII ∈ {0.9, 0.948}. Figure 3 shows that with higher µ, T

increases monotonically. At the highest capacity considered, when µII = 2.4, the HP policy

is better in 91 examples out of 100 for AII < 0.991 = T . We conclude that if the repair

capacity is low, AII should be considerably smaller than T < AI = 0.999 in order for the

HP policy to beat the HF policy. With sufficiently high capacity, the HP policy performs

better than the HF policy, even when the difference between AI and AII is not significant.

3.2.2 The Impact of System II Reliability

In the second set of examples, we fix µ = 2 and vary kII ∈ {80, 82, 84, 86, 88, 90} of system

II, which is a kII-out-of-100:G system (nII = 100) with λII = 0.009. Lower kII implies
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higher reliability for system II. Figure 4 plots T (the maximum AII value below which the

HP policy is better than the HF policy) versus kII . Here, we see that lower kII has a similar

impact on the performance of the HP policy as higher µ in Figure 3. In order to prefer the

HP policy, the difference between AI and AII does not need to be large if the system II

reliability is high. For instance, when kII = 80, the HP policy is better in 97 examples out

of 100 for AII < 0.997 = T .

81 82 83 84 85 86 87 88 89 90
k

II

Figure 4: The maximum AII value below which the HP policy outperforms the HF policy

vs. kII

As a side note, when kII decreases, the repair shop utilization may increase which, in

turn, increases the spare part inventory levels and costs. Figure 5 provides such an example

when AII = 0.95.

3.2.3 The Impact of System II Failure Rate

In the third set of examples, we fix µ = 2 but vary nII ∈ {20, 50, 70, 80, 90, 100}, choosing

kII = ⌈0.9nII⌉ (greatest integer less than or equal to 0.9nII). We set λII = 0.9/nII ; in

other words, the components become less reliable as the size of system II decreases. When

nII = 20 for which the components are the least reliable, the HF policy always outperforms

the HP policy. In this case, the HP policy prioritizes system II for AII ≥ 99.2, and system I
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81 82 83 84 85 86 87 88 89 90
k

II

Figure 5: The cost of the HF policy vs. kII when AII = 0.95

otherwise. As λII increases, the HP model tends to give priority to system II. For other nII

values, in Figure 6, we plot T (the maximum AII value below which the HP policy is better

than the HF policy) versus λII . Here, we see that if system II has many and more reliable

components yielding small λII values, the difference between AI and AII does not need to

be large in order the HP policy to beat the HF policy. At nII = 100, with λII = 0.009, the

HP policy is better in 78 examples out of 100 for AII < 0.978 = T .

0.01 0.012 0.014 0.016 0.018 0.02
λ

II
=(0.9/n

II
)

Figure 6: The maximum AII value below which the HP policy outperforms the HF policy

vs. λII
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3.2.4 Increasing µ with nII

In the fourth set of examples, we fix λII = 0.009 but vary nII ∈ {20, 50, 70, 80, 90, 100},

choosing kII = ⌈0.9nII⌉. This time, we set µ = 1+0.01nII ; in other words, the repair capacity

increases with the size of system II. In this set of examples, the HP policy prioritizes system

II only when AII = 0.999. Figure 7 shows that the behavior of T is not monotone. Only for

intermediate values of repair shop capacity (also for medium size system II), do we observe

that the targeted availabilities should be wider apart, in order for the HP policy to perform

better.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
µ(=1+0.01n

II
)

Figure 7: The maximum AII value below which the HP policy outperforms the HF policy

vs. µ(= 1 + 0.01nII)

4 Conclusion and Future Research

In this paper, we have analyzed two repair shop/inventory models, namely, the Hybrid-

Priority (HP) and the Hybrid-FCFS (HF) models, for a spare part provisioning problem.

The arrival rates at the repair shop are state-dependent since the systems served are k-

out-of-n:G systems. Our analysis for the FCFS policy can be easily applied to different

Markovian settings involving multi-classes of customers with state-dependent arrival rates

as long as the service rate is the same for all classes. With our extension, the preemptive-

resume priority policy can be also handled when there are more than two classes of customers
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sharing the same server. The hybrid inventory structure we propose with shared and reserved

inventories for each system can have more potential areas of application, as for example,

production/inventory systems. Finally, we observe, via our numerical study, that the HP

policy is better if the minimum availability expected from each system is not close to the

minimum availability of another system.
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