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ABSTRACT 

 

 

Glyphosate is a non-selective herbicide used widely as the most popular weed management 

tool, especially since the commercialization of glyphosate-resistant crops.  Due to overuse, 

several weed species have evolved resistance towards glyphosate and this trend threatens the 

future of world food production.  Brachypodium distachyon has been proposed as a model 

organism specifically for economically important crops such as wheat and barley.  Thus, 

evaluating the effects of glyphosate on Brachypodium can supply the required information 

about the tolerance of glyphosate among such crops.  In this study, lipid peroxidation, free 

proline content, shikimate accumulation and antioxidant enzyme activities have been 

investigated as biochemical markers of glyphosate damage applied at two different 

concentrations, 5% and 20% of the recommended field rate.  Thirteen Turkish and two 

standard Brachypodium lines were screened part of this study.  There were various levels of 

responsiveness among the lines, suggesting that resistance may arise in this species, as well, if 

they are exposed to continuous applications of glyphosate.  Further physiological and 

molecular analyses are required for a more conclusive result on this subject.  
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ÖZET 

 

 

Özellikle glyphosate dayanıklılığı olan ekinlerin piyasaya sürülmesiyle birlikte, glyphosate 

yabani otların kontrolünde en yaygın kullanılan seçici olmayan herbisid haline almıştır.  Aşırı 

kullanımı glyphosate dayanıklılığı olan yabani otların evrimleşmesine sebep olmakla birlikte, 

bu durum devam ederse dünya gıda üretimini tehdit edebilecek bir hal alabilir.  Brachypodium 

distachyon, özellikle ekonomik önem taşıyan buğday ve arpa gibi ekinler için model 

organizma olarak öne sürülmüştür.  Bu nedenle, Brachypodium üzerinde glyphosate etkilerini 

incelemek bu ekinlerin glyphosate toleransı hakkında gerekli bilgileri verebilir.  Bu 

çalışmada, tavsiye edilen arazi uygulama oranının %5’i ve %20’si olmak üzere iki farklı 

konsantrasyondaki glyphosate uygulamasından kaynaklanan hasarları incelemek için lipid 

peroksidasyonu, serbest prolin içeriği, şikimat birikimi ve antioksidan enzim aktiviteleri 

araştırılmıştır.  Onüç Türkiye kökenli ve iki standart Brachypodium türü bu çalışma 

kapsamında taranmıştır.  Bu türler arasında farklı seviyelerde duyarlılık gözlemlenmiş olup 

eğer glyphosate devamlı olarak uygulanmaya devam edilirse benzer bir dayanıklılığın açığa 

çıkabileceğine işaret etmiştir.  Bu konuda daha kesin sonuçlar elde etmek için daha dazla 

fizyolojik ve moleküler analizlere gerek duyulmaktadır.  

  

 

 



 

vi 

 

Dedication 

 

 

 

 

 

 

 

 

 

 

“For my family and friends…”  



 

vii 

 

Acknowledgement 

 

 

 

I would like to express my gratefulness to my supervisor Hikmet Budak, for his guidance and 

support at every stage of this program. Thanks to his encouragement, I was able to complete 

this study in spite of a series of unfortunate events. His persistence has made sure that I did 

not give up on this project and on myself.  

I would also like to thank Academic Support Program and Sabancı University for all the 

financial support I have received over the past 2,5 years.  

I would like to thank each member of my thesis committee; Assoc. Prof. Devrim Gözüaçık, 

Assist. Prof. Murat Çokol, Assistant Prof. Alpay Taralp, and Assist. Prof. Javed Kolkar for 

their contribution during my thesis and presentation.  

I am grateful for all the help I received from all my colleagues in Budak laboratory, and 

special thanks to Melda Kantar, Ani Akpinar and Duygu Kuzuoğlu for their support during 

this study. I would also like to acknowledge all the members of the Physiology laboratory for 

allowing me use their space and equipment throughout this study.  

I wish to thank my dear friends Selda Kantar, Nurten Ukelgi, Bahar Açıksöz, Nazlı Keskin, 

Asli Çalık and Gökçen Gökçe for helping me go through a very trying time of my life.  

I am eternally grateful to my family; my mother, my father and my brother, Arif Altıntaş, who 

believed in me even when I did not.   



 

viii 

 

Table of Contents 

 

ABSTRACT ........................................................................................................................................... iv 

ÖZET ....................................................................................................................................................... v 

Dedication .............................................................................................................................................. vi 

Acknowledgement ................................................................................................................................. vii 

List of Figures ......................................................................................................................................... x 

List of Tables .......................................................................................................................................... xi 

1. Introduction ..................................................................................................................................... 1 

1.1. Brachypodium distachyon as a model organism ..................................................................... 1 

1.2. Glyphosate, the most commonly used herbicide ..................................................................... 3 

1.3. Glyphosate mode of action ...................................................................................................... 4 

1.4. Glyphosate resistant (GR) crops .............................................................................................. 7 

1.5. Herbicide resistance in weeds ................................................................................................. 7 

1.6. Quantification of damage caused by glyphosate ..................................................................... 9 

1.6.1. Biochemical markers ....................................................................................................... 9 

1.6.2. Hydrogen Peroxide Scavenging Enzymes ..................................................................... 12 

2. Materials and Methods .................................................................................................................. 14 

2.1. Plant Growth.......................................................................................................................... 14 

2.2. Glyphosate Application ......................................................................................................... 15 

2.3. Harvesting ............................................................................................................................. 15 

2.4. Biochemical Markers ............................................................................................................ 16 

2.4.1. Free Proline Content ...................................................................................................... 16 

2.4.2. Lipid Peroxidation MDA levels .................................................................................... 16 

2.4.3. Shikimate Accumulation ............................................................................................... 17 

2.5. Antioxidant Enzyme Assays ................................................................................................. 17 

2.5.1. Extraction ...................................................................................................................... 17 

2.5.2. Bradford Assay .............................................................................................................. 17 

2.5.3. Ascorbate Peroxidase Activity Assay ........................................................................... 18 

2.5.4. Catalase Activity Assay ................................................................................................. 18 

2.5.5. Glutathione Reductase Activity Assay .......................................................................... 18 

2.5.6. Superoxide Dismutase Assay ........................................................................................ 18 

3. Results and Discussion .................................................................................................................. 20 

3.1. Biochemical Markers ............................................................................................................ 20 

3.1.1. Proline Accumulation .................................................................................................... 20 

3.1.2. Lipid peroxidation ......................................................................................................... 22 



 

ix 

 

3.1.3. Shikimate Accumulation ............................................................................................... 24 

3.2. Antioxidant Enzymes ............................................................................................................ 26 

3.2.1. Bradford Assay .............................................................................................................. 26 

3.2.2. Ascorbate Peroxidase Activity ...................................................................................... 28 

3.2.3. Catalase Activity Assay ................................................................................................. 30 

3.2.4. Glutathione Reductase Activity Assay .......................................................................... 32 

3.2.5. Superoxide Dismutase Activity Assay .......................................................................... 34 

3.3. Discussion ............................................................................................................................. 35 

4. Conclusion ..................................................................................................................................... 40 

5. References ..................................................................................................................................... 41 

Appendix A:  Chemical List .................................................................................................................. 45 

Appendix B:  Equipment list ................................................................................................................. 45 

 

 

 

  



 

x 

 

List of Figures 

Figure 1: Brachypodium distachyon grown under greenhouse conditions.   .......................................... 2 

Figure 2:  Shikimate pathway and glyphosate interaction.   .................................................................... 5 

Figure 3: Glyphosate mode of action. ..................................................................................................... 6 

Figure 4: Proline biosynthesis explained in detail. ................................................................................ 10 

Figure 5: Plants regulate reactive oxygen intermediates differently under biotic and abiotic stress 

conditions. ............................................................................................................................................. 13 

Figure 6:  Proline accumulation at different levels of glyphosate application. ..................................... 21 

Figure 7: Lipid peroxidation results.   ................................................................................................... 23 

Figure 8: Shikimate values for each Brachypodium line.   .................................................................... 25 

Figure 9: Standard curve prepared by Albumin Fraction V standards (0-800 g/L). .............................. 26 

Figure 10: Ascorbic peroxidase activity summary. ............................................................................... 29 

Figure 11: Catalase activity summary. .................................................................................................. 31 

Figure 12: Glutathione reductase activity summary. ............................................................................. 33 

Figure 13:  Superoxide dismutase activity summary ............................................................................ 34 

Figure 15: Antioxidant Enzyme Analyses Combined. .......................................................................... 39 

 

  



 

xi 

 

 

List of Tables 

Table 1: Physical and chemical properties of glyphosate........................................................................ 4 

Table 2: Summary of basal nutrients added to each pot. ....................................................................... 14 

Table 3: Experimental design ................................................................................................................ 15 

Table 4: Protein concentrations estimated by Bradford Assay.............................................................. 27 

Table 5:  Summary of the APX responses............................................................................................. 28 

Table 6:  Summary table for CAT response. ......................................................................................... 30 

Table 7:  Summary table for GR response. ........................................................................................... 32 

Table 8: Combined Summary of all analyses. ....................................................................................... 36 

Table 9:  Summary of the correlations suggested by the scatterplots. (R
2
>0.05) .................................. 37 

 

 



 

1 

 

 

 

 

 

 

 

 

 

1. Introduction 

 

1.1. Brachypodium distachyon as a model organism 

 

In molecular biology and genetics, model organisms are developed in order to establish 

information and techniques that may be applicable to phyllogenetically close species, whose 

genomes are more complicated.  For this reason alone, Brachypodium attracts attention as a 

possible model for other economically important grass species, such as wheat and barley.  

Apart from the genetic similarities to cereals, Brachypodium has a rapid life cycle and a small 

genome, making it a suitable organism for research purposes.(Ozdemir et al., 2008) 

Brachypodium distachyon has a small genome of about 355Mbp and less than 15% is highly 

repeated DNA.  Brachypodium growth cycle ranges between 8 weeks to 18 weeks, depending 

on the specific light and temperature conditions.  Previously, rice, Oryza sativa, was the 

closest model used in studying the genomics of weed species.  However, the growth 

requirements of rice are more complicated and the life cycle is much longer when compared 

to Brachypodium.  Brachypodium naturally exists in similar climates as wheat and barley, 

suggesting it is a lot more compatible as a model for these temperate cereals.  Even though the 

rice genome has been sequenced earlier (2002), it is a tropical species and some of the 

physiological attributes may not be as close to temperate grasses as desired.(Draper et al., 

2001; Goff et al., 2002) 

Brachypodium is also ideal as a model grass considering the ease of tissue culture and the 

possibility of transformation by Agrobacterium tumefaciens.  Calluses can be induced from 

mature and immature embryo, as well as, root and shoot tissue under optimized conditions.  
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Agro-transformation of calluses can be carried on with relative ease and transgenic embryo 

can be recovered without much difficulty.(Draper et al., 2001) 

 

 

Figure 1: Brachypodium distachyon grown under greenhouse conditions.  Inbred lines 

show differences in leaf erectness, plant height, seed size and other physical properties. 

(Filiz et al., 2009) 

Just as most cereals are susceptible to pathogen attacks, a good model must have known 

pathogen interactions as well.  Brachypodium has been shown to display blast-like symptoms, 

when exposed to Magnaporthe grisea, the causal agent of rice blast disease.  Highly localized 

necrotic lesions were observed but the disease was stopped from spreading due to an innate 

resistance.  Known resistance to this particular pathogen can be used as a means to study 

resistance pathways responsible for resistance in Brachypodium, whereas for rice the 

symptoms reach lethal levels. (Draper et al., 2001)  

There are several inbred lines available for Brachypodium and depending on the specific 

geographic location they have been collected from, they can show very different traits.  The 

inbred lines exhibit phenotypic diversity in such traits as plant stature, leaf characteristics, 

flowering time, seed size and yield to name a few.  (Filiz et al., 2009)   
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1.2. Glyphosate, the most commonly used herbicide 

 

Since its introduction to the market in 1970s, glyphosate has been the most commonly used 

herbicide due to the fact that it is effective, inexpensive and environmentally benign.  It is a 

broad-spectrum herbicide and it is the only herbicide that inhibits the activity of 5-

enolpyruvul-shikimate-3-phosphate synthase (EPSPS).  Following foliar application, 

glyphosate is absorbed rapidly through the surface.  Even though the uptake rate may vary 

among species, diffusion is the most common mode of transport for glyphosate.  After 

absorption, glyphosate travels to its target tissues, meristems, young roots and leaves, storage 

organs and any other actively growing tissue, via the phloem of target plants.  The efficacy of 

glyphosate is increased by excellent translocation, limited degradation and a slow mode of 

action. (Duke and Powles, 2008) 

The popularity of glyphosate has promoted several developments in the genetically modified 

organism (GDO) research.  Circa 1996, soybean, maize, cotton and canola were introduced as 

the first glyphosate-resistant crops (GRC), carrying a bacterial gene responsible for resistance 

to glyphosate.  GRCs were rapidly adopted as the most efficient weed management choice 

making it possible to diminish the amount of manual labor required in agriculture. Chemical 

and physical properties of glyphosate (Table 1)  allow it to be an efficient and relatively easy 

to use method for weed management.  (Dill et al., 2008; Powles, 2008)  
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Table 1: Physical and chemical properties of glyphosate 

Parameter Glyphosate 

Chemical Structure 

 

Chemical Name N-(phosphonomethyl)glycine 

Empirical Formula C3H8NO5P 

Molar mass 169.08 g mol
-1 

Water solubility 1.01 g/100 ml (20
o
C) 

Vapor pressure 7.5x10
-8

 mmHg 

pKa pKa1 0.8, pKa2 3.0, pKa3 6.0 

and pKa4 10.0 

Half-life in water DT50 3-174 days 

Half-life in soil DT50 5-91 days 

 

 

 

1.3. Glyphosate mode of action 

 

Glyphosate uniquely acts on shikimate pathway via the inhibition of the sixth enzyme, 5-

enolpyruvyl-shikimate-3-phosphate synthase (EPSPS), on the pathway. EPSPS is essential for 

the synthesis of aromatic aminoacids as well as for the synthesis of several other aromatic 

compounds due to its key role in the production of chorismate, the precursor molecule for 

aromatic amino acids, phenylalanine, tyrosine and tryptophan.  In the consecutive reactions 

converting shikimate-3-phosphate (S3P) to chorismate, EPSPS catalyzes the first step, the 

transfer of the enolpyruvyl moiety of phosphoenol pyruvate (PEP) to S3P. (Duke and Powles, 

2008) 
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Figure 2:  Shikimate pathway and glyphosate interaction.  Glyphosate inhibits EPSPS 

and interrupts the downstream production of aromatic amino acids as well as the 

feedback mechanism.  (Duke and Powles, 2008) 

 

The reaction, proceeding via the unusual cleavage of C-O bond, leads to the formation of 

EPSP which will eventually be converted to chorismate. The reaction is considered as 

‘unusual’ due to the C-O bond cleavage given that most PEP-utilizing enzymes act on P-O 

bonds. Being a phosphoenylpyruvate analog, one of the substrates of EPSPS, glyphosate 

competitively inhibits EPSPS versus PEP in a slowly reversible fashion, blocking aromatic 

aminoacid synthesis in glyphosate sensitive species. (Duke and Powles, 2008; Schonbrunn et 

al., 2001) 
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Figure 3: Glyphosate mode of action.(Schonbrunn et al., 2001) 

Though the inhibition of EPSPS by glyphosate is a well-known fact, the actual mechanism 

leading to death of the plant is relatively controversial and appears to be species-dependent. 

Consistent with the slow appearance symptoms, it is generally accepted that glyphosate 

primarily halts protein synthesis via the inhibition of aromatic amino acids, resulting in the 

eventual death of the plant. However, evidence from some studies also suggest that 

accumulation of shikimate which cannot be converted to chorismate since EPSPS is inhibited 

may also play central role in glyphosate-mediated death. High levels of shikimate arrest the 

most of the carbon pool in cells and thus, block carbon flow to other essential pathways. As a 

result, plant suffers from carbon deficiency. Indeed, in sugarbeet, mode of action of 

glyphosate appears to proceed via interruption of carbon fixation, demonstrating the species-

dependent aspect of glyphosate action. (Chen et al., 2001; Velini et al., 2008) 

Whereas algae, higher plants, bacteria, fungi and some parasites are susceptible to glyphosate, 

the fact that mammals lack the shikimate pathway and uptake aromatic amino acids through 

their diet, makes glyphosate an attractive target for antimicrobial and anti-fungal purposes.  

(Schonbrunn et al., 2001).  
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1.4. Glyphosate resistant (GR) crops 

 

Using a non-selective herbicide such as glyphosate involved different strategies in order to 

prevent damage to the crops.  If even a small amount gets in contact with the leaves of a plant, 

it results in phytotoxic effects since glyphosate is potent and such contact should be avoided.  

For a while, glyphosate was applied on the fields before the annual crops, such as wheat, were 

planted in order to damage only the weeds on the field.  However, a new set of weeds can 

grow in the same field afterwards and this required either a combination of methods or a 

clever strategy.  Even though some gadgets were designed to shield the crops from exposure 

to glyphosate that was sprayed on the weeds in the vicinity, this was nowhere near solving the 

problem.  (Duke and Powles, 2008) 

In order to circumvent time limitations on glyphosate use, researchers searched for natural 

resistance against glyphosate.  Agrobacterium was found to possess a naturally resistant form 

of the EPSPS gene, CP4.  When CP4 was transformed into the genomes of certain crops, it 

resulted in high levels of resistance against glyphosate.  Thus, glyphosate resistant soybean 

was produced with the addition of CP4 gene and showed upto 50-fold resistance to field rate 

of glyphosate.  The glyphosate resistant maize was designed by site-directed mutagenesis to 

form GR forms of EPSPS.  Even though transformation with other genes to encode GR forms 

of EPSPS and detoxification enzymes are proposed for future use, currently, most GR crops 

carry the CP4 gene isolated from Agrobacterium.  (Padgette et al., 1996) 

 

1.5. Herbicide resistance in weeds 

 

Herbicide resistance usually refers to the condition that a plant survives the usual field dose of 

the specific herbicide.  Glyphosate is a non-selective herbicide, suggesting that resistance 

does not exist naturally in any higher plants.  However, different levels of tolerance may 

depend on the physiological characteristics of specific plants.  Tolerance may vary among 

different lines of the same species, as well as among different species.  Even though natural 

resistance is rare if not non-existent, evolved resistance is serious threat towards the popular 

use of glyphosate.  In 1997, Bradshaw et al. declared that evolved resistance would be too 

slow a process in nature to even consider dangerous taking into account the complexity of the 

process of producing GR crops.  However, such cases have occurred much more quickly than 

expected following several selections by extensive glyphosate use.  (Reddy, 2001) 
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The number of papers reporting cases of resistance emerging in various species against 

glyphosate following continuous exposure increases every year.  Powles (2010) likens the 

importance of glyphosate in global food production to the role of penicillin in fighting 

disease.  Several documented cases of glyphosate resistance emphasize the rapidness of the 

evolution under the selective pressure of glyphosate overuse.  For example, pigweed, 

Amaranthus palmieri, considerably affects cotton and soybean fields in southern United 

States.  The resistance is caused by the amplification of EPSPS gene in the A. palmieri 

genome upto 160-fold in some cases.  By increasing the copy number of EPSPS massively, 

this species has managed to surpass the inhibitive effects of glyphosate and the plants can 

continue normal metabolic function despite exposure to glyphosate at the usual rates.  Other 

forms of resistance to glyphosate can occur as a mutation in the EPSPS gene preventing the 

glyphosate from bonding to and inhibiting this important enzyme in the shikimate pathway.  

Evolved resistance is a direct result of the reliance upon glyphosate as the sole weed control 

method in glyphosate resistant crop production.  Any plant that can tolerate the applied dose 

of glyphosate possesses a vital advantage allowing it to spread wildly.  If the evolved 

resistance is not managed quickly, glyphosate will seize its importance as the most commonly 

used herbicide and the investment in GR crops will result in huge economic losses. (Gaines et 

al., 2010; Laura D. Bradshaw, 1997; Powles, 2010) 

The weed of interest for this study, Brachypodium was previously reported as resistant to 

triazines.  Following several episodes of exposure in Lower Galilee, Israel, resistance towards 

triazines arose in Brachypodium and the rate of takeover was remarkable.  Gressel et al. 

(1983) suggest that the resistance is maintained by a combination of enhanced metabolism 

and alterations at the target site.  Considering that Brachypodium is a native plant in Turkey 

and it has, in the past, developed resistance to another herbicide, the possibility of glyphosate 

resistance would serve as a local threat, if not add to the global concerns.  Local production of 

GR crops in Turkey would not be feasible if such a resistance would occur.  So far, there are 

no reports of glyphosate-resistance in Brachypodium but this does not conclude that such an 

event may not occur in the near future if glyphosate remains the choice of weed management 

method.    (Jonathan Gressel, 1983; Warwick, 1991) 
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1.6. Quantification of damage caused by glyphosate 

1.6.1. Biochemical markers 

When plants are exposed to environmental stresses, they activate various metabolic pathways 

in order to cope with the external conditions.   Accumulation of sugars and compatible solutes 

is a well-known strategy for plants that are exposed to any kind of abiotic stress.  Compatible 

solutes must be non-toxic molecules, which do not interfere with the steady-state metabolism.  

Some examples maybe listed as amino acids, glycine betaine, sugars or sugar alcohols.  These 

solutes are usually localized to the cytoplasm at high concentrations and play a primary role 

of turgor maintenance.  Other roles have been proposed for these solutes such as stabilization 

of cell structures and scavenging of reactive oxygen species. (Aprile et al., 2009) 

Among all compatible solutes, proline is distributed around the cell most evenly and proline 

accumulation occurs in many other organisms in addition to plants.  Although increased free 

proline content helps with osmotic pressure, it is possible that it can be instrumental in 

protecting the plasma membrane.  Proline has been also proposed to function as a sink of 

energy and reducing power as well as a source for carbon and nitrogen.  Plants may be 

accumulating proline as a way to scavenge the hydroxyl radical, which is produced 

excessively under stress conditions.  (Ahmad and Hellebust, 1988; Mansour, 1998; Smirnoff 

and Cumbes, 1989; Verbruggen et al., 1996) 

Two separate biosynthetic pathways are responsible for the accumulation of proline in plants: 

the ornithine-dependent pathway and the glutamate-dependent pathway.  Under stress 

conditions, the glutamate-dependent pathway dominates proline production by the synthesis 

of L-proline from L-glutamic acid via 
1
-pyrroline-5-carboxylate (P5C) catalyzed by P5C 

synthetase and P5C reductase.  The second pathway has been indicated to function in specific 

growth stages in Arabidopsis and involves the transamination of ornithine.  Apart from these 

two biosynthesis pathways, proline levels are controlled by the oxidation of L-proline by 

proline dehydrogenase to P5C, which is then converted to L-glutamic acid by P5C 

dehydrogenase. (Figure 4) (Bartels and Sunkar, 2005)  
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Figure 4: Proline biosynthesis explained in detail. (Aprile et al., 2009) 

 

Roles of proline accumulation have been mostly verified in osmotic pressure studies by the 

overexpression of various enzymes in the proline biosynthesis pathways.  These studies have 

resulted in increased proline concentrations and improved osmotic stress tolerance.  These 

findings in osmotic stress studies have led scientists to draw conclusions about other biotic 

stress tolerance mechanisms.  For this reason, free proline content is a well-established 

biochemical marker used for plant stress evaluations.  In this study, we propose that 

Brachypodium accumulates proline in order to cope with the abiotic stress caused by the 

glyphosate application.  (Laurent Jouve, 1993) 

 

Since glyphosate interrupts the shikimate pathway, a known consequence is the accumulation 

of shikimate in affected cells.  Glyphosate interrupts the feedback mechanism as well as the 

downstream reactions, resulting in excess shikimate in the cytoplasm.  When shikimate 

reaches high concentrations due to the sudden halt in the pathway, carbon sources are locked 

and the cell functions suffer from this situation.  For this reason alone, shikimate 
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concentration is a good marker for measuring glyphosate related damages in plants. (Buehring 

et al., 2007) 

In addition to specific alterations depending on the type of stress in question, lipid 

peroxidation can be a non-specific marker for the oxidative stress caused by extreme 

conditions of any kind.  Malondialdehyde (MDA) occurs as a secondary product of the 

oxidation of polyunsaturated fatty acids and indicates the level of membrane damage caused 

by free radicals and can be used as an indicator of stress in most stress conditions.(Hodges et 

al., 1999) 
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1.6.2. Hydrogen Peroxide Scavenging Enzymes 

A secondary effect of most abiotic stress conditions exhibits as the increase of reactive 

oxygen species (ROS), such as singlet oxygen, superoxide anion radicals, hydroxyl radicals 

and hydrogen peroxide.  These molecules are mostly produced in the chloroplast during the 

light reactions of photosynthesis.  Mitochondria also contribute to the production of ROS but 

to a lesser extent compared to the chloroplasts.  Once produced, ROS interrupt routine 

mechanisms locally at the chloroplasts, such as repair of photosystem II.  In addition, stress-

enhanced photorespiration and activities of NADPH increase H2O2 accumulation.  Hydrogen 

peroxide can be quite detrimental to the cells by inactivating enzymes through the oxidation 

of thiol groups.  Hydrogen peroxide can be converted into the highly reactive hydroxyl ion in 

the presence of transition metals, such as cuprous and ferrous ions, which may be freed under 

stress conditions.  Hydroxyl ion extensively oxidizes proteins, lipids and nucleic acids once it 

is formed in the cells. (Halliwell, 1999) 

Despite the previous negative reputation of toxicity, reactive oxygen intermediates (ROIs) are 

acknowledged for their role as signaling molecules under stress conditions.  As the excessive 

secretion may be harmful to cellular balance, the concentration of ROIs must be tightly 

controlled at all times.  Homeostasis is maintained by a delicate balance between ROI 

concentration and activities of scavenging enzymes, such as ascorbate peroxidase (APX), 

catalase (CAT), glutathione reductase and superoxide dismutase (SOD).  Apart from these 

enzymes, cells possess an intricate array of metabolites that act as antioxidants, such as 

ascorbic acid, glutathione and caretenoids.  (Mittler, 2002) 

As signaling molecules, ROIs play different roles during biotic and abiotic stress responses.  

When a cell is under pathogen attack, ROI production is enhanced through the membrane 

bound NADPH oxidases.  Specifically, hydrogen peroxide (H2O2) diffuses into the cells 

together with salicylic acid and nitric oxide (NO) in order to activate many plant defense 

mechanisms, including programmed cell death (PCD).  For the activation of PCD, APX and 

CAT are downregulated by plant hormones so that the scavenging mechanisms can be 

instantly inhibited.  Thus, ROIs are produced at a higher rate and are able to accumulate at 

high levels leading to the cell’s inevitable death. (Delledonne et al., 2001; Mittler et al., 1999) 
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Figure 5: Plants regulate reactive oxygen intermediates differently under biotic and 

abiotic stress conditions.(Mittler, 2002)  

Under abiotic stress conditions, plant cells employ a completely different strategy regarding 

the ROIs.  Instead of letting them accumulate as in the PCD activation, cells induce ROI-

scavenging enzymes, such as APX and CAT to keep the ROI concentration under control.  

Figure 5 illustrates this difference clearly by marking the sites of ROI production under each 

condition and the situation of the scavenging enzymes.  However, there are a lot of details that 

are yet to be discovered about these strategies suggested by the question mark in the figure.  

(Mittler et al., 2004) 

An interesting question arises when one considers the defense strategies that might occur 

under a combination of biotic and abiotic stresses.  Several studies have demonstrated that 

higher levels of antioxidant enzymes such as CAT slow down the rate of PCD in the case of 

pathogen attacks and also, imply a lowered resistance towards pathogen infection.(Mittler et 

al., 1999; Polidoros et al., 2001) 
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2. Materials and Methods 

 

2.1. Plant Growth 

 

For this study, 45 pots have been prepared with equal volumes of soil and torf.  Basal 

nutrients were added described in table 2 below. 

Table 2: Summary of basal nutrients added to each pot. 

 

Molecular Element 

Nutrient 

Weight 

Number 

of 

mass 

Solution   each 

pot 

 

molar mass molar mass of each pot Pots Volume   

Ca(NO3)2 236,15 28,0134 N 1,6 50 134,9 g 500 ml 10 Ml 

Fe-EDTA 100 13 Fe 1,6 50 3,08 g 500 ml 10 Ml 

KH2PO4 136,09 30,973761 P 1,6 50 35,15 g 500 ml 10 Ml 

K2SO4 174,27 32,065 S 1,6 50 8,7 g 500 ml 10 Ml 

ZnSO4 287,54 65,409 Zn 1,6 50 0,7034 g 500 ml 10 Ml 

            Pots =1.6 kg (soil + torf) 

           

Into each pot, 4-7 seeds were planted into each pot depending on the number of the available 

seeds.  Fifteen genotypes, BdTr1-13, Bd21 and Bd21-3, were selected for this experiment.  

The experimental setup is described below in table 3 and the study was conducted as 

Experiment 174 in the greenhouse records.  Plants were watered daily.  After germination, 

they were allowed to grow for 8 weeks for the purpose of retaining enough biomass for 

following assays. 
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Table 3: Experimental design 

Genotype ID  5% glyphosate 20% glyphosate Control 

     

Bd Tr-1  21467 21468 21469 

Bd Tr-2  21470 21471 21472 

Bd Tr-3  21473 21474 21475 

Bd Tr-4  21476 21477 21478 

Bd Tr-5  21479 21480 21481 

Bd Tr-6  21482 21483 21484 

Bd Tr-7  21485 21486 21487 

Bd Tr-8  21488 21489 21490 

Bd Tr-9  21491 21492 21493 

Bd Tr-10  21494 21495 21496 

Bd Tr-11  21497 21498 21499 

Bd Tr-12  21500 21501 21502 

Bd Tr-13  21503 21504 21505 

Bd 21  21506 21507 21508 

Bd 21-3  21509 21510 21511 

 

2.2. Glyphosate Application 

 

Plants were allowed to flourish well into vegetative state before any glyphosate was applied.  

A single dose of glyphosate was applied and following the application, plants were exposed to 

direct sunlight to ensure absorption.  Two different concentrations of glyphosate, 5% and 20% 

of the recommended field use, were applied foliarly to Brachypodium.  (RoundUp, Monsanto)   

2.3. Harvesting  

 

In the couple of days following the application of glyphosate directly on the leaves of 

Brachypodium, it was visually evident that the plants were under stress.  Most of the 

glyphosate-applied plants changed color quite rapidly and the samples were collected within 2 

days.   
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2.4. Biochemical Markers 

All the protocols used in this study are standard physiology protocols used by Cakmak 

Laboratory at Sabanci University.  (Cakmak and Marschner, 1992) 

2.4.1. Free Proline Content 

 

Plants were harvested, weighed 70 mg, and ground into powder using tissue lyser. The tissue 

powder was incubated with 1ml 75% ethanol overnight with shaking and then centrifuged at 

10,000g.   An aliquot of each extract (100 µL) was incubated with 900 µL ninhydrin reagent 

(1% w/v ninhydrin, 60% v/v glacial acetic acid, 40% v/v H2O) at 100 °C for 1 h.  Toluene (3 

mL) was added, followed by vortexing and incubation at 23 °C for 24 h. The absorbance was 

measured at 520 nm. The standard curve was prepared with L-Proline. 

 

2.4.2. Lipid Peroxidation MDA levels 

 

It is suggested that lipid peroxidation is a direct result of oxidative stress in cells, which can 

be caused by a number of different conditions.  The MDA level, an index of lipid 

peroxidation, was measured spectrophotometrically as thiobarbituric acid reactive substances 

(TBARS) following a modified version of the protocol outlined by Hodges et al. 1999.   

The original protocol required 0.5g fresh leaf material to be homogenized in 10 ml of 80% 

(v/v)ethanol using mortar and pestle.  However, the brachypodium samples collected weighed 

much less than 0.5g and the protocol was scaled down 10:1 in order to complete the 

experiments with the available material.  Following homogenization the samples are 

centrifuged at 3000g at 4C for 15 minutes, then the supernatant is divided into two new tubes 

as 250 ul aliquots.  Into the first tube, 750 ul of a solution containing, 20% (w/v) 

trichloroacetic acid, TCA, and 0.01% (w/v) butylated hydroxytoluene, BHT is added.  The 

second tube differs from the first tube as the solution to be added contains an extra 

component, 2-thiobarbituric acid, TBA.  Both tubes are vortexed vigorously and incubated at 

95C for 25 minutes.  At the end of the incubation period, the samples are cooled down to 

room temperature and they are centrifuged at 3000g at 4C for 15 minutes.  Using 

microcuvettes, the absorbance is measured at 532, 600 and 440 nm.  The results are calculated 

using the formula below: 

 [(ABS 532+TBA) – (ABS 600+TBA)]-[(ABS 532-TBA)-(ABS 600-TBA)] = A 
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 [(ABS 440+TBA)-(ABS 600+TBA)] x 0.0571 = B 

 MDA equivalents (nmol/ml) = (A-B/157 000)x 10^6 

 

Once the measurement is completed, the raw data is analyzed to observe the changes in the 

MDA levels.  

2.4.3. Shikimate Accumulation 

 

Two-centimeter segments of Brachypodium leaves from all samples were submersed in 1 ml 

of 0.25 M hydrochloric acid and after one hour and a half of incubation at room temperature, 

the leaves lost most green color.  From these extracts, 100 µl aliquots were mixed with 400 µl 

of 0.25 % periodate / 0.25 % meta-periodate and these mixtures were incubated at room 

temperature for one hour.  The reaction was stopped by adding 400 µl of 0.6 M sodium 

hydroxide / 0.22 M sodium sulfite.  Absorbance was measured at 380 nm using a 

spectrophotometer. 

2.5. Antioxidant Enzyme Assays 

2.5.1. Extraction 

Shoot samples were stored at -80
o
C till they were used for antioxidant enzyme analyses.  

From each sample, 0.08 grams were weighed and ground using TissueLyser and titanium 

beads.  During this process, the samples were kept in liquid nitrogen to avoid defrosting and 

degradation.  Onto the ground tissue, 2 ml of 50 mM K-P buffer, pH 7.6, was added and 

samples were centrifuged at 15000 g for 20 minutes.  This extract was diluted 1:5 for use in 

Bradford and antioxidant enzyme assays. 

2.5.2. Bradford Assay 

Home-made Bradford Reagent was prepared by dissolving 0.1 g Commasie-Brilliant Blue 

(G250) in 50 ml absolute ethanol and adding 100 ml ortho phosphoric acid.  The solution is 

filtrated once it is mixed with ddH2O and 100 ml Glycerin is added before it can be 

refrigerated at least 24 hours before use. 

Standards were prepared using Albumin Fraction V diluted in 50 mM K-P Buffer to make 5 

known concentrations, 0 mg, 100 mg, 200 mg, 400 mg, and 800 mg.  Standard curve was 
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prepared by using 100 µl of the standard and 5 ml of Bradford Reagent measured at 595 nm 

spectrophotometrically.  Using this standard curve, the amount of protein in each sample was 

estimated for later reference.  It was important to measure the samples in one hour after 

Bradford assay was added, for coagulates form in the mixture due to the strong affinity of 

Commasie blue for proteins. 

2.5.3. Ascorbate Peroxidase Activity Assay 

Samples prepared according to the extraction method described above are used for this assay.  

Each sample (0.1 ml) was added to 0.7 ml of 50 mM K-P buffer, 0.1 ml 120 mM H2O2 in a 

plastic cuvette and the spectrophotometer was blanked before the addition of L- Ascorbic 

Acid at 290 nm.  For consistency, each sample was observed in a kinetics assay rapidly after 

the addition of Ascorbic acid into the cuvette.  The enzyme activity was observed for 12 

seconds in this assay as activity seemed to disappear once this time frame was completed. 

 

2.5.4. Catalase Activity Assay 

The catalase activity assay is dependent on the known amount of H2O2 being added to the 

extracts in each case.  For this assay, 0.1 ml of sample was added to 0.8 ml of K-P buffer in a 

plastic cuvette and spectrophotometer is blanked at 240 nm.  The kinetics assay was started as 

soon as 0.1 ml of 100 mM H2O2 was added to the cuvette.  The enzyme activity was observed 

for 12 seconds to follow the reaction to the end. 

2.5.5. Glutathione Reductase Activity Assay 

The glutathione reductase activity was measured by first blanking the spectrophotometer at 

340 nm with plastic cuvettes containing 0.7 ml 50 mM K-P Buffere, 0.1 ml oxidized 

glutathione and 0.1 ml of sample.  The kinetics assay was measured for 12 seconds after 0.1 

ml of NADPH (0.8 mg / ml) was added to each sample. 

2.5.6. Superoxide Dismutase Assay 

For the superoxide dismutase assay, 2.9 ml of 50 mM K-P Buffer, 0.5 ml of Na2CO3, 0.5 ml 

of methionine,  0.5 ml of Nitro Blue Tetrazdium and 0.1 ml of sample were mixed in a glass 

bottle that can hold upto 5 ml.  Into this mixture, 0.5 ml Riboflavin was added and they were 

incubated in the growth cabin for 10-15 minutes on top of a mirror for direct light exposure 
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from each angle.  They were removed from direct light as soon as some blue tint appeared.  

The samples were read at 560 nm spectrophotometrically. 

  



 

20 

 

 

 

 

 

 

 

 

3. Results and Discussion 
 

3.1. Biochemical Markers 

3.1.1. Proline Accumulation 

 

In order to quantify the damage caused by glyphosate on the overall cell metabolism, free 

proline concentrations were measured.  The 20% glyphosate applied samples showed a much 

higher proline concentration than the 5% group, both were significantly higher than the 

control group.  Some of the genotypes were affected more severely, whereas others appeared 

almost unharmed. 

Figure 4 is a summary of the free proline contents for the genotypes that showed an increase 

in the level of free proline as the amount of glyphosate was increased.  The other genotypes 

showed insignificant or no increase in the proline concentrations.   

Each genotype exhibits different metabolic properties as it is evident from the starting values 

of the free proline concentrations for the control groups.  Even though Bd Tr 9 appears to 

have the highest free proline after 20% glyphosate application, the starting value is almost 

twice as much as the other lines shown in the figure.  We might compare Bd Tr 9 and Bd Tr 8 

values, for a more accurate understanding and the data suggests that Bd Tr 8 does not 

accumulate as much free proline as Bd Tr 9.  What is more interesting about Bd Tr 8 is that 

the proline content does not increase when the amount of glyphosate is quadrupled.  This may 

be caused by the fact that Bd Tr 8 is highly susceptible to glyphosate damage and the proline 

accumulation method is not sufficient for this line to tolerate the stress conditions.   

On the other hand, it is clear in figure 4 that Bd Tr 6 accumulates the highest amount of free 

proline compared to its control value and Bd 21-3 does not respond with as much proline to 

the same amount of glyphosate.  The differences in the figure are mainly cause by the inert 
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variability among Brachypodium lines that were characterized previously according to several 

morphological, physiological markers.(Filiz et al., 2009) 

 

Figure 6:  Proline accumulation at different levels of glyphosate application. 
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3.1.2. Lipid peroxidation 

 

After glyphosate application, there was a rapid decline in plant health that was visible as 

wilting and color change in the leaves.  Especially, the 20% applied group was severely 

damaged compared to the 5% group.  Visual evidence was the first indicator of cell damage 

and MDA levels were used as an indicator in addition to free proline content.   

Apart from one genotype, Bd 21, all Brachypodium samples showed a significant increase in 

the normalized MDA levels.  Figure 5, below, is a summary of the lipid peroxidation results.  

Bd Tr 3 appears most affected by the 20% glyphosate application by a 2.5 fold increase in 

MDA levels.   Two general trends can be observed in these graphs.  The increase in the MDA 

levels for 5% shows the most variability.  In some cases, it appears relatively small suggesting 

that 5% glyphosate application can be tolerated relatively well.  In others, even 5% appears to 

be detrimental to the cell health, potentially indicating higher susceptibility to glyphosate. 

The most interesting result comes from the Bd 21 line that shows a decrease in MDA levels, 

hinting a tolerance mechanism.  In figure 4, the proline accumulation shows an increase and 

combined with figure 5, the cells are able to overcome the negative effects of glyphosate.  Bd 

21 line should be investigated further to see if the tolerance is the result of experimental error 

or this line has a specific method of coping with this potent herbicide.  
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Figure 7: Lipid peroxidation results.  Increased levels of glyphosate lead to higher 

damage in most genotypes apart from Bd 21. 
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3.1.3. Shikimate Accumulation  

 

Shikimate accumulation is the most direct marker for damage caused by glyphosate 

application.  When a plant is exposed to glyphosate foliarly, even small amounts of the 

herbicide diffuse through the membrane and start affecting the shikimate pathway in a 

negative way.  It is a well-known fact that glyphosate interacts directly with EPSP synthase as 

an inhibitor and interrupts aromatic amino acid synthesis.  In addition, EPSPS plays a role in 

the feedback mechanism for the same pathway.  When these two effects are combined, 

shikimate accumulation occurs rapidly. 

In this study, Brachypodium shoot samples were collected within 2 days post glyphosate 

application and figure 6 suggests that a period of a few days is long enough to accumulate 4-

70 fold shikimate depending on the specific Brachypodium line when plants are exposed to 

20% of the recommended field rate for glyphosate.  Even though the overall increase varies 

among different lines in the study, the general trend is a considerable increase in 20% group 

compared to the control group.  When shikimate accumulates at the rates described in the 

figure, it is imaginable how the overall plant suffers.  Protein production is halted and carbon 

sources are depleted as shikimate contains 7 carbon atoms per molecule. 

On the other hand, the most interesting results were observed in the 5% group.  The 

responsiveness to 5% showed great variability among groups.  For example, Bd Tr 1 seems 

almost unaffected by 5% glyphosate whereas Bd Tr 5 acummulated almost as much shikimate 

as a response to 5% and 20% rates.  This might suggest that for a line, such as Bd Tr5, 5% 

glyphosate is as lethal as 20% and for other lines, such as Bd Tr 1, 5% can be somewhat 

tolerable compared to 20% application.  A different study might address the question of 

varying responses to 5% by trying a gradient using smaller concentrations of glyphosate.   

When all three assays are considered, it is quite clear from this study that even 20% of the 

recommended value was lethal for the Brachypodium lines.  However, in sublethal doses, 

such as 5 % of the recommended rate, the responses vary among the lines.  The experiments 

should be repeated with different amounts and should include molecular analyses to be able to 

classify these differences.  It is possible that there might be genetic or morphological 

differences among these lines that effect the free proline content, MDA levels and shikimate 

accumulation.  Exploring the specific conditions that result in such differences would shed 

some light on the glyphosate tolerance mechanisms of weeds, such as Brachypodium. 
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Figure 8: Shikimate values for each Brachypodium line.  Increases show great variation 

among different genomes. 
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3.2. Antioxidant Enzymes 

3.2.1. Bradford Assay 

 

In order to calibrate the spectrophotometer, absorbance of 5 known standards of Albumin 

fraction V were measured at 595 nm.  As these standards provided with a linear correlation, 

the calibration succeeded and the measurements were carried on for all the samples. (Figure 9) 

Bradford assay was essential for the estimation of protein concentrations in the extracts that 

were used in the enzyme assays.  Table 4 summarizes the protein content of each sample used 

in the following experiments.  These values were used in all following calculations to 

normalize the activity values according to the total protein content of the extracts.  Samples 

contained a wide range of protein even though the starting weight for each sample was 0.08 g.  

Physical disruption of the plant tissue during extraction may have caused these varying 

concentrations, despite all the other steps having been repeated uniformly. 

 

Figure 9: Standard curve prepared by Albumin Fraction V standards (0-800 g/L). 
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Table 4: Protein concentrations estimated by Bradford Assay 

      Sample 
Concentration                                                     

(g/L ) 
      Sample 

Concentration                                                     

(g/L ) 
      Sample 

Concentration                                                     

(g/L ) 

                

Bd Tr 1 C A 91.4 Bd Tr 6 C A 5.7 Bd Tr 11 C A 1.1 

Bd Tr 1 C B 22.1 Bd Tr 6 C B 7.5 Bd Tr 11 C B 63.1 

Bd Tr 1 C C  98.1 Bd Tr 6 C C  13.6 Bd Tr 11 C C  21.2 

Bd Tr 1 5 A 53.5 Bd Tr 6 5 A 8.2 Bd Tr 11 5 A 21.9 

Bd Tr 1 5 B 2.9 Bd Tr 6 5 B 5.8 Bd Tr 11 5 B 27.3 

Bd Tr 1 5 C 88.6 Bd Tr 6 5 C 7.1 Bd Tr 11 5 C 123.8 

Bd Tr 1 20 A 45.7 Bd Tr 6 20 A 57.2 Bd Tr 11 20 A 97.4 

Bd Tr 1 20 B 55.1 Bd Tr 6 20 B 30.6 Bd Tr 11 20 B 53.1 

Bd Tr 1 20 C 76.1 Bd Tr 6 20 C 8.7 Bd Tr 11 20 C 53.8 

Bd Tr 2 C A 14.9 Bd Tr 7 C A 35.8 Bd Tr 12 C A 15.1 

Bd Tr 2 C B 119.5 Bd Tr 7 C B 4 Bd Tr 12 C B 47.4 

Bd Tr 2 C C  102.7 Bd Tr 7 C C  10.7 Bd Tr 12 C C  6 

Bd Tr 2 5 A 60.5 Bd Tr 7 5 A 4.5 Bd Tr 12 5 A 6.2 

Bd Tr 2 5 B 28.4 Bd Tr 7 5 B 10.9 Bd Tr 12 5 B 24.8 

Bd Tr 2 5 C 82.8 Bd Tr 7 5 C 31.2 Bd Tr 12 5 C 25 

Bd Tr 2 20 A 70.8 Bd Tr 7 20 A 0.4 Bd Tr 12 20 A 27.3 

Bd Tr 2 20 B 73.5 Bd Tr 7 20 B 26.6 Bd Tr 12 20 B 67.1 

Bd Tr 2 20 C 95.2 Bd Tr 7 20 C 42.8 Bd Tr 12 20 C 73 

Bd Tr 3 C A 16.2 Bd Tr 8 C A 0.7 Bd Tr 13 C A 24.4 

Bd Tr 3 C B 14.8 Bd Tr 8 C B 14.4 Bd Tr 13 C B 13.6 

Bd Tr 3 C C  4.4 Bd Tr 8 C C  12.5 Bd Tr 13 C C  14.9 

Bd Tr 3 5 A 25.4 Bd Tr 8 5 A 11.7 Bd Tr 13 5 A 6.6 

Bd Tr 3 5 B 15.2 Bd Tr 8 5 B 3.3 Bd Tr 13 5 B 2.7 

Bd Tr 3 5 C 28.5 Bd Tr 8 5 C 19.7 Bd Tr 13 5 C 24.4 

Bd Tr 3 20 A 116 Bd Tr 8 20 A 132.3 Bd Tr 13 20 A 50.7 

Bd Tr 3 20 B 88.8 Bd Tr 8 20 B 87.7 Bd Tr 13 20 B 35.5 

Bd Tr 3 20 C 88.4 Bd Tr 8 20 C 55 Bd Tr 13 20 C 87.8 

Bd Tr 4 C A 53.8 Bd Tr 9 C A 55.3 Bd 21 C A 34.6 

Bd Tr 4 C B 2.3 Bd Tr 9 C B 35.5 Bd 21 C B 27.1 

Bd Tr 4 C C  62.7 Bd Tr 9 C C  38.8 Bd 21 C C  26.9 

Bd Tr 4 5 A 22.1 Bd Tr 9 5 A 20.8 Bd 21 5 A 33.4 

Bd Tr 4 5 B 63.5 Bd Tr 9 5 B 21.5 Bd 21 5 B 20.5 

Bd Tr 4 5 C 6.3 Bd Tr 9 5 C 5.4 Bd 21 5 C 25 

Bd Tr 4 20 A 64.6 Bd Tr 9 20 A 53.1 Bd 21 20 A 48.5 

Bd Tr 4 20 B 56.8 Bd Tr 9 20 B 67.3 Bd 21 20 B 38.4 

Bd Tr 4 20 C 62.6 Bd Tr 9 20 C 71.4 Bd 21 20 C 9.8 

Bd Tr 5 C A 40.2 Bd Tr 10 C A 4.7 Bd 21-3 C A 3.8 

Bd Tr 5 C B 6.6 Bd Tr 10 C B 17.8 Bd 21-3 C B 9.4 

Bd Tr 5 C C  17.2 Bd Tr 10 C C  14.9 Bd 21-3 C C  11.5 

Bd Tr 5 5 A 31.3 Bd Tr 10 5 A 18.8 Bd 21-3 5 B 23.8 

Bd Tr 5 5 B 10.3 Bd Tr 10 5 B 16.2 Bd 21-3 5 B 58.1 

Bd Tr 5 5 C 97.2 Bd Tr 10 5 C 46.1 Bd 21-3 5 C 30.7 

Bd Tr 5 20 A 63.8 Bd Tr 10 20 A 58.6 Bd 21-3 20 A 58.6 

Bd Tr 5 20 B 72.4 Bd Tr 10 20 B 102.9 Bd 21-3 20 B 3.2 

Bd Tr 5 20 C 73.2 Bd Tr 10 20 C 9.2 Bd 21-3 20 C 20 
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3.2.2. Ascorbate Peroxidase Activity 

The first antioxidant enzyme measured in this activity was ascorbate peroxidase (APX) and 

the graphs included in Figure 10 show a general increase in the amount of APX in the plant 

extracts correlated with the amount of glyphosate applied.  The increase ranges from 1.2 fold 

to 18 fold in the 20% group and the increase in less dramatic in the 5% group. 

The reaction of APX activity in response to increasing amounts of glyphosate can be 

categorized into three groups as can be seen in Figure 10.  The first group shows an almost 

linear correlation between the amount of glyphosate applied and the measured APX activity.  

Bd Tr 8, Bd Tr 9, Bd 21 and Bd 21-3 belong to this group.  In the second group(m1<m2), 

including Bd Tr 2, Bd Tr5, Bd Tr 6, Bd Tr 12 and Bd Tr 13, the APX activity increases with a 

modest slope(m1) first until 5% and the increase gets steeper(m2) reaching 20%, suggesting 

these lines may tolerate glyphosate relatively well compared to the more detrimental effects of 

20% glyphosate.  The last group(m1>m2) shows a rapid increase(m1) in the APX levels until 

5% and the slope of the graph is less steep for the second part(m2).  Lines belonging to this 

group appear to exhibit a more sensitive APX response compared to the second group at 

lower concentrations of glyphosate (5%).  Bd Tr 3, Bd Tr 4, Bd Tr 7, Bd Tr 10 and Bd Tr 11 

show the third kind of APX response.  Bd Tr 1, however, seems to show almost no change in 

the APX activity among control, 5% and 20% glyphosate groups.  Table 5 represents an 

overall categorization of APX responses. 

In contrast to upto 18-fold increase observed in the APX activity assay, CAT, GR and SOD 

assays showed relatively minor changes.  However, APX seemed to consistently increase in 

relation to the amount of glyphosate applied but CAT, GR and SOD assays showed varying 

responses. 

 

Table 5:  Summary of the APX responses. 

Group 1 

(linear) 

Group 2 

(m1<m2) 

Group 3 

(m1>m2) 

No Change 

Bd Tr 8 Bd Tr 2 Bd Tr 3 Bd Tr 1 

Bd Tr 9 Bd Tr 5 Bd Tr 4  

Bd 21 Bd Tr 6 Bd Tr 7  

Bd 21-3 Bd Tr 12 Bd Tr 10  

 Bd Tr 13 Bd Tr 11  
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Figure 10: Ascorbic peroxidase activity summary. 
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3.2.3. Catalase Activity Assay 

Catalase(CAT) activity assay results show a variety of patterns compared to the general 

increase in the APX data.  Figure 11 shows the summary of CAT activity assay results for each 

of the fifteen lines used in the assay.  If Brachypodium lines are grouped based on the CAT 

response to the increasing rate of glyphosate application, four general patterns arise.   

First group displays a consistent increase in CAT activity and Bd Tr 2, Bd Tr 5, Bd Tr 8, Bd 

Tr 11, Bd 21 and Bd 21-3 exhibit this response.  For the second group, including Bd Tr 7, Bd 

Tr 10 and Bd Tr 13, a stable decrease is observed.  The third group exhibits first a decreased 

CAT activity for 5% glyphosate application and then back to the same amount of CAT as the 

control for 20% application.  This group includes Bd Tr 1, Bd Tr 3, Bd Tr 9 and Bd Tr 12.  

Interestingly, the fourth pattern observed is the opposite, first an increase for 5% and a smaller 

increase or even a decrease in CAT activity for 20% application.  Bd Tr 4 and Bd Tr 6 exhibit 

the fourth pattern. 

On its own, the CAT activity assay appears to categorize the lines into four general groups, 

suggesting that depending on the line and the level of other antioxidant enzymes, CAT 

response are highly variable in relation to glyphosate dosage. 

Table 6:  Summary table for CAT response. 

Group 1 

(increase) 

Group 2 

(decrease) 

Group 3 

(decrease, 

no change) 

Group 4 

(increase, 

decrease) 

Bd Tr 2 Bd Tr 7 Bd Tr 1 Bd Tr 4 

Bd Tr 5 

Bd Tr 8 

Bd Tr 11 

Bd Tr 10 

Bd Tr 13 

Bd Tr 3 

Bd Tr 9 

Bd Tr 12 

Bd Tr 6 

Bd 21    

Bd 21-3    
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Figure 11: Catalase activity summary. 
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3.2.4. Glutathione Reductase Activity Assay 

As with the CAT activity assay, the varying patterns for glutathione reductase (GR) activity, 

are summarized in Table 7, below.  Graphs representing the change in GR activity relative to 

the amount of glyphosate applied can be found in Figure 12: Glutathione reductase activity 

summary.Figure 12. 

Similar patterns arose in GR and CAT activity assays.  Group one shows increased GR 

activity with increasing glyphosate doses.  Bd Tr 7, Bd Tr 9, Bd Tr 10, Bd Tr 11 and Bd 21-3 

can be included in this group due to their consistently increasing trends.  In the second group, 

the behavior of GR is the opposite, consistently decreasing.  As the amount of glyphosate is 

increased first to 5% and then to 20%, a decrease is observed for Bd Tr 2, Bd Tr 5, Bd Tr 8 

and Bd Tr 13.  The third and the fourth groups show changing behavior based on the 

concentration of glyphosate.  Group three include Bd Tr 3, Bd Tr 4, Bd Tr 6 and Bd Tr 12, all 

exhibiting a decrease at the 5% rate and no change for the 20% rate.  For group four, on the 

other hand, the amount of GR increases at the 5% rate and decreases at the 20% rate of 

glyphosate application.  Bd Tr 1 and Bd 21 belong to the fourth group. 

 

Table 7:  Summary table for GR response. 

Group 1 

(increase) 

Group 2 

(decrease) 

Group 3 

(decrease, 

no change) 

Group 4 

(increase, 

decrease) 

Bd Tr 7 Bd Tr 2 Bd Tr 3 Bd Tr 1 

Bd Tr 9 

Bd Tr 10 

Bd Tr 11 

Bd Tr 5 

Bd Tr 8 

Bd Tr 13 

Bd Tr 4 

Bd Tr 6 

Bd Tr 12 

Bd 21 

Bd 21-3    
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Figure 12: Glutathione reductase activity summary. 
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3.2.5. Superoxide Dismutase Activity Assay 

Among all antioxidant enzyme assays included in the study, superoxide dismutase (SOD) 

activity assay appears to show the least change between lines and according to changing 

amounts of glyphosate.  Most lines showed a slight decrease in SOD activity as the 

glyphosate amount was increased to 5% or 20% of the field application rate.  However, the 

most interesting change was observed for Bd Tr 3, which showed an increase in GR activity at 

the 5% rate and no change for the 20% rate. 

 

Figure 13:  Superoxide dismutase activity summary 
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3.3. Discussion 

 

For this study, two different rates(5% and 20% of field recommendation) of glyphosate were 

applied to fifteen different Brachypodium lines with three replicates.  Samples were collected 

two days after glyphosate application.  In order to compare the different reactions of these 

fifteen lines, physiological analyses were performed, including free proline content, lipid 

peroxidation, shikimate accumulation and antioxidant enzyme assays. 

The overall comparison must have a multidimensional perspective, since these lines 

originated from different locations, thirteen from different geographical areas of Turkey and 

two standard lines originating from Israel.  Each line varies genetically and morphologically 

from the other lines in the study.  Given the diversity of the subjects in the study it was 

expected to receive such a complicated outcome.   

The biochemical analyses were selected for their established use as stress markers in a range 

of abiotic stresses, apart from the shikimate accumulation assay, which is specific to the 

glyphosate stress.  As glyphosate blocks the shikimate pathway, the consistent increase in the 

shikimate concentration proves that these plants were exposed to glyphosate, specifically.  

Shikimate accumulation increased with the amount of glyphosate applied for each line, 

without exception, suggesting that the variability among other results is caused by inert 

differences among different lines. 

As for the other biochemical markers used in this study, they are all regulated under stress 

conditions via crossing pathways, resulting in interrelated observations.  For example, under 

abiotic stress conditions antioxidant enzyme levels increase to prevent further damage caused 

by reactive oxygen species(ROS).  Following this logic, we may conclude that if antioxidant 

enzyme levels increase, then the cells have activated oxidative defense mechanisms.  If the 
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mechanism is successful in disarming ROS, then the cell will receive less damage.  Lipid 

peroxidation assay is used as a marker of damage found in the cell membranes.  The amount 

of damage will differ depending on not only the amount of glyphosate applied but also the 

amount of antioxidant activity within the cell. 

Activities antioxidant enzymes are interdependent and compartmentalized within the cell.  

The concentrations and activities measured show different trends among each other due to the 

differentially active roles these enzymes play in the cell.  Antioxidant enzymes are also 

supported by antioxidant metabolites, such as NO and salicylic acid that play a role as 

secondary messengers in many pathways.  Given the network of various stress pathways, it is 

possible to anticipate the diversity of results that are presented in this study.  Table 18 is 

summary of all the results obtained in this study, presented in a summary form. 

Table 8: Combined Summary of all analyses. 

Glyphosate

Free 

Proline 

Content

Lipid 

Peroxidation

Shikimate 

Accumulation

APX 

Activity

CAT 

Activity

GR 

Activity

SOD 

Activity

5% 4,42 1,13 1,36 0,93 0,46 1,48 0,73

20% 8,84 1,29 6,43 1,15 0,93 0,49 0,62

5% 1,30 1,03 1,97 2,58 1,62 0,85 1,16

20% 2,10 1,37 19,52 11,89 1,89 0,89 1,05

5% 1,25 1,09 16,82 3,64 0,50 0,41 1,90

20% 1,32 2,53 28,71 6,07 1,01 0,83 1,13

5% 1,06 1,10 7,66 3,43 1,57 0,37 0,77

20% 8,54 1,12 20,68 6,30 0,61 1,12 0,88

5% 1,76 1,08 5,73 1,11 1,06 0,84 0,93

20% 0,97 1,33 5,88 1,96 2,85 0,74 0,71

5% 2,43 1,62 6,29 3,63 2,33 0,35 1,02

20% 10,26 1,71 7,65 18,19 1,71 1,46 0,98

5% 0,68 1,23 1,76 1,95 0,85 2,41 1,02

20% 2,82 1,43 3,76 3,41 0,53 3,55 0,92

5% 1,20 1,16 1,82 1,85 1,05 0,32 1,05

20% 1,26 1,40 20,74 5,90 1,87 0,18 1,01

5% 1,57 1,50 1,65 1,46 0,72 1,52 0,97

20% 2,68 2,20 21,59 2,89 1,32 2,15 0,92

5% 0,49 1,14 17,81 2,77 0,84 1,04 0,97

20% 0,43 1,21 48,35 5,13 0,76 1,12 0,90

5% 0,55 0,84 6,99 6,46 1,20 1,15 0,98

20% 0,98 1,01 12,29 12,00 1,77 2,16 0,94

5% 4,56 1,30 4,12 1,41 0,67 0,30 0,89

20% 5,07 1,46 59,93 6,24 0,87 1,01 0,94

5% 2,38 1,38 2,05 2,65 0,61 0,79 0,93

20% 2,04 1,81 10,06 14,94 0,65 0,33 0,85

5% 1,26 0,80 10,69 3,67 1,25 1,29 1,03

20% 2,17 0,81 19,61 8,29 1,39 0,36 0,95

5% 0,57 1,16 5,65 3,94 1,14 1,01 0,96

20% 1,22 1,22 76,61 12,94 1,45 2,77 0,93

Bd Tr 1

Bd Tr 2

Bd Tr 3

Bd Tr 4

Bd Tr 5

Bd Tr 6

Bd Tr 13

Bd 21

Bd 21-3

Bd Tr 7

Bd Tr 8

Bd Tr 9

Bd Tr 10

Bd Tr 11

Bd Tr 12
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In order to examine possible correlation, data sets were plotted against each other.  Error! 

Reference source not found. shows each graph with potential linear equations.  Linear 

equations are included on each graph that best describe the relation, with their corresponding 

R
2
 values.  Most plots appear to be randomly distributed, according to the R

2
 values for each 

of the graphs.  However, a few show relatively consistent trends for the given variables.  

Table 9 summarizes potential correlations obtained from the paired analyses. 

Table 9:  Summary of the correlations suggested by the scatterplots. (R2>0.05) 

Variables Correlation 

Lipid peroxidation Proline + 

APX Proline + 

SOD Proline - 

Shikimate Lipid peroxidation + 

APX Lipid peroxidation + 

APX Shikimate + 

CAT APX + 

Even though some of these trends are expected, the correlations are far from statistically 

significant.  An overall conclusion that might sum up the whole study would be difficult to 

draw with the obtained results.  Further repeats and additional analyses are required to enrich 

the picture and possibly tie all the findings together.  
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Figure 14:   Scatterplot analyses of all data 
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Figure 15 displays the antioxidant enzyme data superimposed in order to give an overall idea 

of the interdepence of these four enzymes, APX, CAT, GR and SOD, which function in the 

same antioxidant defense mechanisms.  For most of the lines, the increase in APX is relatively 

higher in comparison to the changes for the other three enzymes.  It becomes difficult to 

formulate the relationship from these graphs.  However, we can easily observe that the 

changes in the activity of each enzyme vary greatly among the fifteen lines used in this study. 

 

Figure 15: Antioxidant Enzyme Analyses Combined. 

  



 

40 

 

 

 

 

 

 

4. Conclusion 

In conclusion, this study has investigated the effects of glyphosate on Brachypodium using 

four different parameters, lipid peroxidation, free proline content, shikimate accumulation and 

antioxidant enzyme activity.  The results leaves more to be investigated in order to understand 

the differences in these parameters among different lines.  Further studies should include the 

isolation of EPSPS, APX, CAT, GR and SOD genes from these lines to compare sequences 

and realtime analyses to see if these genes have been amplified.  It is quite possible to observe 

that different lines have slightly different versions of these enzymes resulting in the variety of 

responses observed in this study. 
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Appendix A:  Chemical List 

All chemicals and standard solutions were supplied by Merck (Germany), SIGMA (USA), 

Fluka (Switzerland), Applichem (Germany) and Riedel de Häen (Germany). 

 

Appendix B:  Equipment list  

 

Autoclave:   Hirayama, Hiclave HV-110, JAPAN  

Balance:   Sartorius, BP 221 S, GERMANY  

Schimadzu, Libror EB-3200 HU, JAPAN  

Centrifuge:   Beckman Coultier ™ Microfuge® 18 Centrifuge, USA  

Eppendorf, 5415D, GERMANY  

Eppendorf, 5415R, GERMANY  

Deep-freeze:   -80ºC, Thermo Electron Corporation, USA  

-20ºC, Bosch, TURKEY  

Deionized water:  Millipore, MilliQ Academic, FRANCE  

Heating block:  Bioblock Scientific, FRANCE  

Bio TDB-100 Dry Block Heating Thermostat, HVD Life  

Sciences, AUSTRIA  

Ice machine:   Scotsman Inc., AF20, USA  

Magnetic stirrer:  VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY  

VELP Scientifica, Microstirrer, ITALY  

Micropipette:   Gilson, Pipetman, FRANCE  

Eppendorf, GERMANY  

pH meter:   WTW, pH540 GLP Multical®, GERMANY  

HANNA, pH213 microprocessor pH meter, GERMANY  

Refrigerator:   +4º, Bosch, TURKEY  
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Shaker:   Excella E24 Shaker Series, New Brunswick Sci., USA  

GFL, Shaker 3011, USA  

Innova™ 4330, New Brunswick Sci., USA  

Spectrophotometer:  BIO-RAD, SmartSpec™ 3000, USA  

VARIAN, Cary 300 Bio Uvi-visible spec., AUSTRALIA  

Tissue lyser:  Qiagen Retsch, USA  

MJ Research, PTC-100, USA  

TECHNE, TC 512, UK  

Water bath:   TECHNE, Refrigerated Bath RB-5A, UK  

JULABO, TW 20, USA 


