
SABANCI UNIVERSITY

Orhanlı-Tuzla, 34956 Istanbul, Turkey

Phone: +90 (216) 483-9500

Fax: +90 (216) 483-9550

http://www.sabanciuniv.edu
http://algopt.sabanciuniv.edu/projects

May 12, 2013

A Strong Preemptive Relaxation for
Weighted Tardiness and Earliness/Tardiness Problems on

Unrelated Parallel Machines
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Abstract: Research on due date oriented objectives in the parallel machine environment is at best scarce compared to objectives such

as minimizing the makespan or the completion time related performance measures. Moreover, almost all existing work in this area is

focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total

weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for the

TWT and TWET problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally

effective Benders decomposition algorithm for solving the preemptive relaxation formulated as a mixed integer linear program. The

optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs

to the machines, and then we exploit recent advances in solving the non-preemptive single machine TWT and TWET problems for

constructing non-preemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with

instances up to 5 machines and 200 jobs.

Keywords: unrelated parallel machines; weighted tardiness; weighted earliness and tardiness; preemptive relaxation; Benders decom-

position; transportation problem; lower bound; heuristic.

1. Introduction The prevalence of actual manufacturing environments where a set of tasks has to be executed on a

set of alternate resources attests to the practical relevance of the parallel machine scheduling environment. For instance,

many production steps in semiconductor manufacturing feature unrelated parallel machines because existing machines

are augmented over time with machines of newer technology for ramping up production (Shim and Kim, 2007a). Another

setting observed in the inspection operations in semiconductor manufacturing creates the context for a recent work by

Detienne et al. (2011) on unrelated parallel machines with stepwise individual job cost functions. Several other industries,

such as the beverage, printing, and pharmaceutical industries, require processing steps performed by a set of parallel

machines (Biskup et al., 2008). Therefore, a thorough understanding of the trade-offs that govern the parallel machine

environment is fundamental for the successful operation in many different manufacturing settings.

The scheduling literature is often criticized for its emphasis on the single machine environment which is arguably

not encountered frequently in today’s complex shop floors. However, virtually every scheduling algorithm conceived

for multi-stage production systems does either generalize or depend upon the fundamental principles derived from

the basic single machine scheduling problems. A similar argument is valid for the parallel machine environment

as well. Decomposition algorithms devised for multi-stage systems, such as Lagrangian relaxation, Dantzig-Wolfe

reformulation, Benders decomposition, and the shifting bottleneck heuristic, give rise to either single- or parallel machine

scheduling subproblems that have to be solved many times in an iterative framework. The ultimate performance of such

decomposition approaches depends critically on our ability to solve these subproblems with a high solution quality in

short computational times. Moreover, from a theoretical perspective the study of parallel machines is the immediate

logical extension of single machine scheduling. For a given partition of the set of jobs over the set of machines, a parallel
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machine scheduling problem is just a collection of independent single machine scheduling problems. Therefore, parallel

machine scheduling problems are generally regarded as set partitioning problems where the complexity of calculating

the cost of a partition depends on the difficulty of the underlying single machine scheduling problem. Motivated by these

practical and theoretical considerations, our primary objective in this paper is to devise fast and effective mathematical

programming based heuristics for two fundamental due date related objectives on unrelated parallel machines.

Most of the studies in the scheduling literature are typically concerned with developing algorithms for a single

objective function. The proposed approaches tend to be highly specialized and not easily extensible to other objectives

and settings. Ultimately, scheduling software is tailored to individual settings, and scheduling research is fragmented.

In this context, we emphasize that in this paper we attack two popular scheduling objectives TWT and TWET within a

single algorithmic framework. The TWT objective is a special case of the TWET objective; however, observe that TWET

is non-regular while TWT is regular. It is well-established that non-regular objectives give rise to new theoretical and

computational issues (Baker and Scudder, 1990, Kanet and Sridharan, 2000), and we point out that it is uncommon to

tackle both objectives simultaneously. Formally, we characterize the problems we consider as Rm//
∑

j π jT j (Rm-TWT)

and Rm//
∑

j π jT j + ǫ jE j (Rm-TWET) for minimizing the TWT and TWET on a set of m unrelated parallel machines,

respectively, following the three field notation of Graham et al. (1979) in classifying scheduling problems. The notation

Rm in the first field stands for a bank of m unrelated machines. The earliness and tardiness of job j are represented by E j

and T j, respectively, and ǫ j and π j are the associated unit weights. Both Rm-TWT and Rm-TWET are strongly NP-hard

because the strongly NP-hard single machine scheduling problem 1//
∑

π jT j (Lenstra et al., 1977) is a special case of

both of these problems. We next summarize briefly our motivation and main contributions in this paper.

The review of the related literature in Section 2 identifies the lack of strong lower bounds as a major impediment to

the development of exact algorithms and the performance analysis of heuristics for the TWT and TWET objectives in the

parallel machine environment. All promising existing results assume that the machines are identical and often exploit

this fact in some way; e.g., by aggregating the machine capacity constraints. Clearly, such approaches do not necessarily

extend to or yield similar results for unrelated parallel machines. In this paper, we set out to provide tight lower

bounds and near-optimal solutions for the TWT and TWET objectives in the unrelated parallel machine environment.

To this end, we propose a new preemptive relaxation that explicitly assigns jobs to specific machines. This preemptive

relaxation generalizes and builds upon the success of the related previous studies on the single machine weighted

tardiness and weighted earliness/tardiness scheduling problems (Bülbül et al., 2007, Pan and Shi, 2007, Şen and Bülbül,

2012, Sourd and Kedad-Sidhoum, 2003). The resulting lower bound is tight, and perhaps more importantly, the job

partition retrieved from the (near-) optimal solution of the preemptive relaxation provides us with sufficient information

to construct feasible non-preemptive schedules of high quality for the original problem. That is, we recognize that the

main practical difficulty of solving Rm-TWT and Rm-TWET to (near-) optimality is determining a good job partition, and

we directly incorporate this aspect of the problem into our rationale for developing this particular relaxation. Once a

job partition is available, we rely on recent advances by Tanaka et al. (2009) and Tanaka and Fujikuma (2012) to solve m

independent single machine TWT or TWET problems, respectively, to construct a non-preemptive solution of high quality

to the original unrelated parallel machine scheduling problem. The downside of our preemptive relaxation is that it is

formulated as a difficult mixed integer linear program. A key contribution of this paper is devising a computationally

effective Benders decomposition algorithm that can handle very large instances of this formulation. Here, the lazy

constraint generation scheme of IBM ILOG CPLEX (2011) proves instrumental for a successful implementation. Moreover,

as we point out in the previous paragraph, both objectives TWT and TWET are tackled successfully by the same algorithm.

In the next section, we review the related literature and put our work into perspective. We introduce and formulate the

proposed preemptive relaxation in Section 3 and then develop our solution approach based on Benders decomposition

in Section 4. This is followed in Section 5 by an extensive set of computational experiments. We conclude and discuss

potential future research directions in Section 6.



Şen, Bülbül: A Preemptive Relaxation for Unrelated Parallel Machines
Sabancı University, c©May 12, 2013 3

2. Review of Related Literature Early research on parallel machine scheduling is primarily concerned with the

makespan and total (weighted) completion time objectives (Cheng and Sin, 1990). We refer the reader to Pinedo (2008)

for a comprehensive discussion of the polynomially solvable cases and structural results of interest for these problems.

Some of the more recent and well-known examples of the papers that study NP-complete problems in this domain in-

clude van den Akker et al. (1999), Chen and Powell (1999b), Azizoglu and Kirca (1999b), and Azizoglu and Kirca (1999a).

Studies on due date related performance measures in the parallel machine environment commenced in earnest in the

1990’s and picked up more significantly during the last decade. In this review, we mainly restrict our attention to the

literature on parallel machine tardiness and earliness/tardiness scheduling problems with job dependent due dates. This

part of the literature creates the context for our study, and we provide a few important pointers otherwise. The great

majority of the existing studies on due date related performance measures assumes that the machines are identical, and

only a handful of papers consider the case of unrelated parallel machines. For most of the proposed exact approaches,

computational scalability remains an issue due to the lack of strong lower bounds. We will delve into this discussion

further when we introduce our preemptive relaxation in Section 3.

The first exact approach for minimizing the total tardiness with distinct due dates on identical parallel machines is

due to Azizoglu and Kirca (1998). The authors integrate some dominance rules and a simple bounding technique into a

branch-and-bound (B&B) procedure for this problem Pm//
∑

j T j, where Pm in the first field indicates a set of m identical

parallel machines. The algorithm is able to handle instances with up to 15 jobs and 3 machines. For the same problem,

Yalaoui and Chu (2002) devise another B&B scheme. The limit of this algorithm appears to be 20 jobs and 2 machines

within a time limit of 30 minutes. The series of papers by Liaw et al. (2003), Shim and Kim (2007a), and Shim and Kim

(2007b) develop a set of closely related optimal methods. Liaw et al. (2003) attack the problem Rm//
∑

j π jT j of minimizing

TWT on unrelated parallel machines. This study appears to be the first exact approach for this problem. The lower

bounding scheme is very similar to that in Azizoglu and Kirca (1999b) with a simple enhancement based on the structure

of the tardiness objective; however, the method does not scale beyond 4 machines and 18 jobs. Shim and Kim (2007a)

tackle the unweighted version Rm//
∑

j T j in the same machine environment. The proposed B&B method employs some

of the existing dominance properties in addition to new ones. The lower bounding technique of Liaw et al. (2003) is

adopted, and an alternate lower bound is obtained by reducing the original problem into a single machine problem by

modifying the processing times appropriately and using a previously existing result for the single machine total tardiness

problem. The largest problem size that can be handled successfully within 1 hour is 5 machines and 20 jobs. In a similar

work, Shim and Kim (2007b) address the problem Pm//
∑

T j, and instances with up to 5 machines and 30 jobs are solved

optimally within 1 hour. Jouglet and Savourey (2011) devise dominance rules and filtering methods for the problem

Pm/r j/
∑

j π jT j, where the notation r j in the second field indicates that the release dates may be non-identical, and embed

these into a B&B procedure along with an existing lower bound. The authors argue that the lack of good lower bounds

prevents them from solving instances with more than 20 jobs and 3 machines. All of the optimal methods discussed

so far base their lower bounding efforts on combinatorial arguments that rely on simple properties of the scheduling

objectives under consideration. The resulting bounds are generally loose. Tanaka and Araki (2008) take a different path

and apply Lagrangian relaxation to the time-indexed formulation of the problem Pm//
∑

T j in an effort to develop tighter

lower bounds. Instances with up to 25 jobs and 10 machines are solved optimally. The average gap of the initial lower

bound is 2.4% for the instances not solved at the root node. Souayah et al. (2009) take on the weighted version of the

problem and study Pm//
∑

j w jT j. With a mix of combinatorial, mathematical programming, and Lagrangian relaxation

based lower bounds, about half of the instances with up to 35 jobs and 2 machines are solved to optimality within 20

minutes. The study by Pessoa et al. (2010) is by far the most successful exact algorithm to date. A branch-cut-and-price

algorithm applied to an arc-time-indexed formulation delivers optimal solutions to instances of Pm//
∑

w jT j with up to

100 jobs and 4 machines. In another recent study, Detienne et al. (2011) investigate the problem Rm/r j/
∑

j f j(C j), where

f j(C j) represents a stepwise cost function associated with job j. This problem subsumes Rm-TWT; however, the focus of
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the authors is on job cost functions with a few steps. For the tardiness objective, the first jump occurs at the due date

with subsequent jumps at every time point. We refer the interested reader to the review paper Sen et al. (2003) where the

tardiness literature on multi-machine systems is briefly addressed as well. Following this discussion, two observations

are due regarding the state of the literature. First, there is a clear need for studying the tardiness related objectives in

the unrelated parallel machine environment; we can pinpoint only two studies which focus on the unrelated parallel

machine environment. Second, more than 20 to 30 jobs and a few machines seems to be beyond reach for the existing

exact methods. Several authors (see Section 3) attribute this fact to the lack of strong lower bounds. We hope to provide

a potential remedy to this issue in this paper.

Several heuristics have been proposed for minimizing the total (weighted) tardiness on parallel machines. Many of

these apply list scheduling based on some priority index and sometimes enhance the initial schedule by local search.

Yalaoui and Chu (2002) review several heuristics of this kind. An interesting deviation from the mainstream here is the

decomposition heuristic by Koulamas (1997). The author heuristically extends the well-known decomposition principle

valid for 1//
∑

T j to the problem Pm//
∑

T j with very good results. At each iteration, the position of one job in the overall

schedule is fixed, where the subproblems in the decomposition are solved by a fast and effective heuristic for Pm//
∑

T j

that observes the decomposition principle for the individual machine schedules. Furthermore, a hybrid simulated

annealing heuristic is devised which is outperformed by the decomposition heuristic based on the solution quality and

time trade-off. The results for 100-job instances indicate that the proposed heuristics are on average about 10-11% away

from optimality with respect to a lower bound. A recent list scheduling heuristic by Biskup et al. (2008) for Pm//
∑

T j

yields somewhat better results than those of Koulamas for large instances with up to 5 machines and 200 jobs. An absolute

assessment of the solution quality is not available due to the lack of a good lower bound or a scalable exact method. For

the weighted version, i.e., the problem Pm//
∑

π jT j, Armentano and Yamashita (2000) design a tabu search heuristic. For

evaluation purposes, they benchmark their feasible solutions against the Lagrangian relaxation based lower bound by

Luh et al. (1990). This lower bound is obtained by dualizing the machine capacity constraints in an integer programming

formulation of the problem, similar to that by Tanaka and Araki (2008) discussed before. In the original paper, Luh et al.

include very limited computational experience, but the results of Armentano and Yamashita (2000) for instances with

up to 10 machines and 150 jobs are promising. For instances with 100 jobs, the average optimality gap with respect to

the Lagrangian lower bound of Luh et al. (1990) is 8.14% which drops to 5.80% for 150-job instances. On the flip side,

Armentano and Yamashita report that computing the lower bound of Luh et al. takes about 3 hours for 100- and 150-job

instances. For unrelated parallel machines, we are aware of only three papers by Zhou et al. (2007), Monch (2008), and

Lin et al. (2011) which focus on heuristics for Rm//
∑

j π jT j. The first two studies rely on ant colony optimization and

benchmark their algorithms against simple heuristics which makes it difficult to evaluate the solution quality in absolute

terms. Lin et al. propose a genetic algorithm and two simpler heuristics. The genetic algorithm outperforms all others

in the computational experiments and deviates from the optimal solution by 1.8% on average for small instances with 4

machines and 20 jobs. The heuristic that we develop in this paper is scalable to large instances with up to 200 jobs and

simultaneously produces both lower and upper bounds of high quality. As evident from the discussion here, this is a

significant edge over those in the literature, and we make a valuable contribution to the (unrelated) parallel machine

scheduling research with tardiness objectives.

To the best of our knowledge, no exact algorithm has been designed to date for the problem of scheduling a set of

independent jobs on a bank of unrelated parallel machines with the objective of minimizing the total (weighted) earliness

and tardiness. However, various studies investigate special cases of this problem. One of the prime examples is due

to Chen and Powell (1999a). In this paper, a set partitioning model of the problem Pm/d j = dl/
∑

j ǫ jE j + π jT j, where

dl stands for an unrestrictively large common due date, is obtained through Dantzig-Wolfe reformulation. The linear

programming (LP) relaxation of the set partitioning reformulation yields tight lower bounds, and instances with up to 60

jobs and 6 machines are solved to optimality. In a related study Chen and Lee (2002), the authors extend their approach
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by incorporating a common due date window and instances with up to 40 jobs and any number of machines are solved to

optimality within reasonable times. Rios-Solis and Sourd (2008) consider the same problem as Chen and Powell (1999a),

except that they allow for the common due date to be restrictively small. The main contribution of this work is a

pseudo-polynomial time dynamic programming algorithm that can identify the best schedule in an exponential-size

neighborhood of the current solution. Plateau and Rios-Solis (2010) is the only study available on common due date

problems in the unrelated parallel machine environment that designs an optimal algorithm. The authors develop convex

quadratic reformulations to solve both Rm/d j = dl/
∑

j ǫ jE j + π jT j and Rm/d j = dr/
∑

j ǫ jE j + π jT j exactly. For the first

problem, the approach is successful. Instances with up to 4 machines and 50 jobs are solved optimally in at most one

hour, and the bounds provided by the root relaxation are of high quality. However, the results for the latter restrictive

case are not satisfactory. For further information and additional references on the common due date problems, the reader

is referred to the survey paper by Lauff and Werner (2004) and the literature review in Rios-Solis and Sourd (2008).

The most closely related works to our problem Rm-TWET are by Kedad-Sidhoum et al. (2008), Mason et al. (2009), and

Al-Khamis and M’Hallah (2011). Kedad-Sidhoum et al. focus on lower bounds for the problem Pm/r j/
∑

j π jT j + ǫ jE j

by recognizing that the main difficulty in solving earliness/tardiness scheduling problems stems from the lack of strong

lower bounds. The authors extend two classes of lower bounds originally proposed for the single machine case to the

identical parallel machine environment. We will elaborate on these further in Section 3 when we introduce our preemptive

relaxation. In addition, Kedad-Sidhoum et al. obtain upper bounds through a simple local search. Experimental results

attest to the quality of both the lower and upper bounds. The average optimality gap attained for instances with up to six

machines and 90 jobs is around 1.5%. The moving block heuristic of Mason et al. (2009) for Pm//
∑

E j+T j is tested against

an integer programming formulation over instances with up to 40 jobs and 4 machines. The heuristic identifies feasible

solutions which are on average better than the incumbent for 20- and 40-job instances. Like Kedad-Sidhoum et al.,

Al-Khamis and M’Hallah tackle the weighted version of the problem. Their integer programming formulation points

out and corrects an error in that of Mason et al. (2009). The limit of the formulation appears to be instances with no

more than 20 jobs. In addition, several new heuristics are introduced. The best performing contender turns out to be a

hybrid heuristic which is benchmarked against the lower and upper bounds of Kedad-Sidhoum et al. (2008). The hybrid

heuristic improves some of best known solutions for the instances of Kedad-Sidhoum et al.; however, it yields slightly

worse solutions on average. The median gap of the hybrid heuristic ranges from 1.4% to 6.1% with respect to the lower

bounds of Kedad-Sidhoum et al. (2008) depending on the problem size. It is evident that there is a gap in the literature

with respect to the parallel machine earliness/tardiness scheduling problems with distinct due dates. To the best of our

knowledge, our work provides the first viable solution approach for the unrelated parallel machine environment in this

context.

3. Problem Formulation We consider a bank of m unrelated parallel machines and n jobs, which are all ready at time

zero. Each job is processed on exactly one of the machines, where the processing of job j on machine k requires an integer

duration of pkj time units. The completion time of job j is denoted by C j. A due date d j – also assumed to be integral –

is associated with each job j, and we incur a cost π j per unit time if job j completes processing after d j. Thus, the total

weighted tardiness over all jobs is determined as
∑

j w jT j, where the tardiness of job j is calculated as T j = max(0,C j − d j).

For the problem Rm//
∑

j π jT j + ǫ jE j, the objective additionally penalizes the completion of job j prior to its due date d j

at a rate of ǫ j per unit time, where the earliness of job j is defined as E j = max(0, d j − C j). All machines are available

continuously from time zero onward, and a machine can execute at most one operation at a time. An operation must be

carried out to completion once started, i.e., preemption is not allowed.

We first present a time-indexed integer programming formulation for Rm-TWT and Rm-TWET. Time-indexed formu-

lations were initially introduced for single machine scheduling problems by Dyer and Wolsey (1990). On the one hand,

the LP relaxations of these formulations are strong and provide very tight bounds. On the other hand, however, the
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size of a time-indexed formulation grows with the length of the planning horizon and is therefore pseudo-polynomial.

From a computational perspective, the solution effort expended increases rapidly with longer processing times, and

eventually even solving the LP relaxation becomes challenging as we also experience in Section 5. Nevertheless, in

the absence of scalable alternate solution approaches for Rm-TWT and Rm-TWET in the literature, the lower and upper

bounds retrieved from the formulation presented below prove useful for measuring the quality of our lower bounds and

feasible solutions in small to moderate size instances of Rm-TWT and Rm-TWET. The time-indexed formulation (TI) for

Rm-TWT and Rm-TWET is given next, where the binary variable z jkt takes on the value 1 if job j starts its processing at

time t on machine k. The first set of constraints (2) prescribe that each job is started exactly once in the planning horizon

on one of the m available machines. The machine capacity constraints (3) ensure that no more than one job is in process

at any time instant on any machine.

(TI) minimize
n

∑

j=1

m
∑

k=1

H−p jk
∑

t=0

c jktz jkt (1)

subject to
m

∑

k=1

H−p jk
∑

t=0

z jkt = 1, j = 1, . . . ,n, (2)

n
∑

j=1

t
∑

l=(t−p jk+1)+

z jkl ≤ 1, k = 1, . . . ,m, t = 0, . . . ,H − 1, (3)

z jkt ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m, t = 0, . . . ,H − p jk, (4)

The notation (w)+ stands for max(0, w), and the objective function coefficients are defined as

c jkt = ǫ j(d j − (t + p jk))+ + π j((t + p jk) − d j)+ (5)

without a loss of generality. For Rm-TWT, we set ǫ j = 0 for all jobs j.

In the model (TI), the time period t represents the time interval [t, t + 1), and consequently in any optimal schedule all

jobs finish processing no later than in period H − 1, where

H =































































n
∑

j=1

max
k
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p jk
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/m





















+ pmax for Rm-TWT, and





















n
∑

j=1

max
k
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p jk

)

/m





















+ pmax + dmax for Rm-TWET.

(6)

The end of the planning horizon H is determined based on the following observation. For Rm-TWT with a regular

objective function, all machines are continuously busy until some time t′ ≤
⌈

∑n
j=1 maxk

(

p jk

)

/m
⌉

if at least m jobs are still

not completed. Therefore, after time t′ the remaining m − 1 jobs are finished in at most pmax = max j,k

(

p jk

)

time periods.

The end of the planning horizon may thus be set to the value in the first row of (6). An optimal solution of Rm-TWET,

on the other hand, may include unforced idleness, and the argument just described is only valid if we conservatively

assume that all jobs are started at dmax = max j d j. Clearly, pmax may be omitted from (6) in the case of a single machine.

3.1 Preemptive Relaxation Shim and Kim (2007a) attack the unweighted version of Rm-TWT, the problem

Rm//
∑

j T j. As we detail in Section 2, their B&B algorithm does not scale beyond 5 machines and 20 jobs. In their

concluding remarks, the authors recognize that the development of stronger lower bounds would be a major step for-

ward toward solving problems of larger size and state “..., further research is needed if one needs to solve problems of

larger or practical sizes. One way may be to develop more effective or tighter lower bounds since the lower bound used in

the B&B algorithm suggested in this study does not seem to be very tight.” More generally, in their effort to compute strong

LP based bounds for a class of parallel machine scheduling problems with additive objectives, van den Akker et al. (1999)

observe that “additive objective functions pose a computational challenge because it is difficult to compute strong lower
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bounds.” These comments provide a strong motivation for this study, and in this section we first briefly review the exist-

ing lower bounding methods for parallel machine scheduling problems with additive tardiness and earliness/tardiness

objective functions and then introduce our preemptive lower bounding scheme for Rm-TWT and Rm-TWET. We define

two primary design goals for our preemptive relaxation. The tightness of the lower bound is clearly a major concern.

Equally important is the information that can be extracted from the optimal solution of the preemptive relaxation to

construct feasible solutions of high quality for the original non-preemptive problem. We attain both of these goals –

somewhat more successfully for Rm-TWT than for Rm-TWET from a computational perspective – and demonstrate the

effectiveness of the proposed lower and upper bounds in Section 5.

Baptiste et al. (2008) provide a taxonomy of the lower bounding techniques for identical parallel machine scheduling

problems with regular objective functions and release dates. We generally agree and follow suit with their classification.

A very common and simple set of lower bounds relies on determining a lower bound for the jth smallest job completion

time C[ j], j = 1, . . . ,n, among the set of all feasible schedules. These lower bounds on the completion times are then

matched with the weights and the due dates in some appropriate order so that the resulting expression yields a lower

bound for the problem under consideration. For the problem Pm//
∑

T j, Azizoglu and Kirca (1998) denote the jth

largest processing time and the jth largest due date by p[ j] and d[ j], respectively. Then, we have
∑ j

i=1
p[i]

m ≤ C[ j], and
∑n

j=1 max
(

0,
∑ j

i=1
p[i]

m − d[ j]

)

is a lower bound on the optimal objective value of the original problem. The validity of the

expression
∑ j

i=1
p[i]

m ≤ C[ j] is established by recognizing that the term on the left hand side is the makespan required to

carry out the first j shortest jobs by allowing a job to be split and processed simultaneously on all machines. A more

sophisticated version of this idea is devised for Rm//
∑

w jT j by Liaw et al. (2003). The completion times are bounded

from below by using similar concepts; however, they are matched to the jobs by solving an assignment problem. Lower

bounding techniques based on such minimal completion times are developed or employed in several other papers with

tardiness related objectives (Koulamas, 1997, Shim and Kim, 2007a,b, Souayah et al., 2009, Yalaoui and Chu, 2002). There

is a consensus in the literature that this class of lower bounds is not strong in general. Furthermore, in problems with

earliness/tardiness objectives the presence of unforced idle time renders similar lower bounding techniques invalid.

The most promising lower bounds for parallel machine total (weighted) tardiness and earliness/tardiness problems

are derived through mathematical programming techniques. For instance, the LP relaxations of the set partitioning

formulations of these problems solved by column generation yield a prominent class of tight lower bounds. To the best

of our knowledge, so far this approach has only been successfully applied to common due date / common due window

earliness/tardiness problems (Chen and Lee, 2002, Chen and Powell, 1999a). Bounds obtained from various relaxations

of time-indexed formulations are also popular in parallel machine scheduling. An arc-time-indexed formulation whose

LP relaxation is tackled by column generation is at the heart of the highly efficient branch-cut-and-price algorithm of

Pessoa et al. for Pm//
∑

w jT j. Kedad-Sidhoum et al. (2008) and Tanaka and Araki (2008) apply Lagrangian relaxation to

the time-indexed formulations of their respective identical parallel machine scheduling problems Pm/r j/
∑

j π jT j + ǫ jE j

and Pm//
∑

T j with successful numerical results (see Section 2). The best bound attained by solving the Lagrangian

dual problem in these relaxations is equivalent to that provided by the LP relaxation of the time-indexed formulation

(Baptiste et al., 2008, Kedad-Sidhoum et al., 2008). However, solving the Lagrangian dual problem – generally by subgra-

dient optimization – is often computationally more efficient. We also attest to the rapidly increasing computational effort

required to solve the LP relaxation of (TI) in Section 5. Kedad-Sidhoum et al. experiment with various relaxations of

the problem Pm/r j/
∑

j π jT j + ǫ jE j and report that the Lagrangian relaxation obtained by dualizing the machine capacity

constraints in the time-indexed formulation outperforms others, taking into account both the solution quality and gap.

Tanaka and Araki employ the same Lagrangian relaxation as well. We cite two good reasons for not following a similar

path. First, the machine capacity constraints (3) may be aggregated in the identical parallel machine environment, and

this renders the number of dual variables in the Lagrangian relaxation independent from the number of machines in

the problem. This, however, is not possible for Rm-TWT and Rm-TWET, and relaxing the constraints (3) would result
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in mH dual variables instead of just H. Consequently, solving the Lagrangian dual problem would quickly become a

formidable task with an increasing number of machines. Second, the solution retrieved from the Lagrangian relaxation

does offer little information on how to identify near-optimal job to machine assignments. The job start times provided by

the Lagrangian relaxation for a given set of dual multipliers form the basis for a dispatch rule in Tanaka and Araki (2008);

however, both these authors and Kedad-Sidhoum et al. need to devise independent heuristics in order to obtain feasible

solutions of high-quality for their original problems. The interested reader is referred to Luh et al. (1990), Souayah et al.

(2009) for further examples of Lagrangian relaxation applied to TWT problems with identical parallel machines.

Another class of highly efficient lower bounds based on a particular preemption scheme was developed for single

machine tardiness and earliness/tardiness scheduling problems during the last decade (Bülbül et al., 2007, Şen and Bülbül,

2012, Sourd and Kedad-Sidhoum, 2003). The key idea of these preemptive relaxations is to divide up jobs with integer

processing times into jobs of unit-length and associate a cost with the completion of each of these unit-length jobs. That

is, jobs may only be preempted at integer points in time. In this setting, the problem of solving the preemptive relaxation

is formulated as an assignment or a transportation problem, where the length of the planning horizon depends on the

magnitude of the due dates and the sum of the processing times. Therefore, the formulation size is pseudo-polynomial.

On the up side, the availability of very fast algorithms for the assignment and transportation problems does still render

this lower bounding technique viable. The formulation (TR) below is due to Kedad-Sidhoum et al. (2008), where the

original approach in the single machine environment is extended to m identical parallel machines.

(TR) minimize
n

∑

j=1

H
∑

t=1

c′jtx jt (7)

subject to
H

∑

t=1

x jt = p j, j = 1, . . . ,n, (8)

n
∑

j=1

x jt ≤ m, t = 1, . . . ,H, (9)

0 ≤ x jt ≤ 1, j = 1, . . . ,n, t = 1, . . . ,H. (10)

If a unit job of job j is executed during the time interval (t − 1, t], the decision variable x jt assumes the value one, and the

objective is charged a cost of c′
jt
. The constraints (8) mandate that each job j receives p j units of processing. To observe

the machine capacities, constraints (9) require that no more than m unit jobs are processed simultaneously in a given

period. Note that the machine index is omitted from the processing times because they are all identical for a given job.

Furthermore, no integrality is imposed on the decision variables due to the total unimodularity of the constraint matrix

of (TR). The optimal objective function value of (TR) is a lower bound on that of Pm//
∑

j π jT j + ǫ jE j, as long as the

objective function coefficients satisfy

t
∑

s=t−p j+1

c′js ≤ ǫ j(d j − t)+ + π j(t − d j)+ j = 1, . . . ,n, t = p j, . . . ,H. (11)

That is, the total cost incurred in (TR) by any job that is scheduled non-preemptively is no larger than that in the

original non-preemptive problem (Bülbül et al., 2007). Naturally, the strength of the lower bound depends on the

objective coefficients c′
jt
, and this is where the existing works in the literature take different paths. For instance, the

cost coefficients of Sourd and Kedad-Sidhoum (2003) satisfy (11) as an equality. Bülbül et al. (2007) characterize and

develop an expression for the cost coefficients that are the best among those with a piecewise linear structure with

two segments. For these cost coefficients, (11) holds as a strict inequality for some values of t. For the one machine

problem, these authors also show that the lower bound retrieved from (TR) is no better than that provided by the LP

relaxation of the time-indexed formulation. Conversely, Pan and Shi (2007) prove the existence of a set of objective

coefficients for (TR) so that the LP relaxation of the time-indexed formulation and (TR) yield identical lower bounds.
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However, computing the values of these cost coefficients is no less time consuming than solving the LP relaxation of the

time-indexed formulation. We also note that the empirical performance of the algorithms based on this set of relaxations

is more than satisfactory (Bülbül et al., 2007, Pan and Shi, 2007, Şen and Bülbül, 2012, Sourd and Kedad-Sidhoum, 2003).

They strike a good balance between solution quality and time.

Factoring in all arguments in this section, the set of preemptive relaxations discussed in the previous paragraph

emerges as a strong candidate for deriving strong lower bounds for our problems of interest Rm-TWT and Rm-TWET.

However, one hurdle remains in the pursuit of our second design goal of constructing non-preemptive solutions of

high quality directly based on the information retrieved from the optimal solution of the preemptive relaxation. In

the optimal solution of (TR), the unit jobs of job j cannot overlap in time, but they can be processed on different

machines. Consequently, no explicit assignment of the jobs to the machines is available. This is a major drawback

because it complicates the task of obtaining a non-preemptive feasible solution to the original problem. In the sequel, we

demonstrate that overcoming this difficulty allows us to attain good upper bounds in addition to good lower bounds.

The downside of (TR) is that the optimal solution does not guarantee that we can assign all unit jobs of a job to the same

machine. Such a requirement is incorporated in the following model (TR −A) at the expense of additional variables and

destroying the desirable polyhedral structure of the transportation problem. The binary variable y jk takes the value 1 if

job j is assigned to machine k, and is zero otherwise. In addition, the x−variables and the associated objective coefficients

are supplemented with a machine index k to allow us to assign a unit job of job j explicitly to machine k in period t.

(TR −A) minimize
n

∑

j=1

m
∑

k=1

H
∑

t=1

c′jktx jkt (12)

subject to
H

∑

t=1

x jkt = p jky jk, j = 1, . . . ,n, k = 1, . . . ,m, (13)

n
∑

j=1

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,H, (14)

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (15)

x jkt ≥ 0, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H, (16)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (17)

(TR −A) differs from (TR) in two main aspects. The capacity constraints (14) appear in a disaggregated form, and all

unit jobs of job j are performed on the same machine by constraints (13) and the job partitioning constraints (15). As

we hinted at earlier, the cost coefficients c′
jkt

are of critical importance for the strength of the lower bounds provided by

the preemptive relaxation. In this research, we stick with the cost coefficients by Bülbül et al. (2007) given in (18) and

adapted in an obvious way to the unrelated parallel machine environment for two reasons. They empirically outperform

those by Sourd and Kedad-Sidhoum (2003) on average (Bülbül et al., 2007, Kedad-Sidhoum et al., 2008), and computing

the best set of cost coefficients for a given instance by the method of Pan and Shi (2007) is expensive.

c′jkt =



















ǫ j

p jk

[

(d j −
p jk

2 ) − (t − 1
2 )
]

for t ≤ d j, and
π j

p jk

[

(t − 1
2 ) − (d j −

p jk

2 )
]

for t > d j.
(18)

We next provide a proof that the optimal solution of (TR −A) with the cost coefficients given above provides a lower

bound on the optimal objective function value of (TI). The result is a corollary of Bülbül et al. (2007, Theorem 2.2), where

the authors show that the cost coefficients in (18) satisfy (11). Now, let S
P

represent a feasible schedule for problem (P)

with a total cost of TC
(

S
P

)

. The notation (P(y)) stands for problem (P) in which the jobs are assigned to the machines a

priori, but the individual machine schedules for this job partition y are to be optimized. An optimal schedule is denoted

by an asterisk in the superscript.
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Proposition 3.1 The optimal objective function value of (TR −A) with the cost coefficients given by equation (18), TC
(

S∗
TR−A

)

, is

a lower bound on the optimal objective function value TC
(

S∗
TI

)

of (TI).

Proof. For any given fixed job partition y, both the original non-preemptive problems Rm-TWT and Rm-TWET and

the preemptive relaxation decompose into m independent single machine problems. Therefore, we have TC
(

S∗
TI(y)

)

=

∑m
k=1 TC

(

S∗
TI(yk)

)

and TC
(

S∗
TR−A(y)

)

=
∑m

k=1 TC
(

S∗
TR−A(yk)

)

, where S∗
TI(yk)

and S∗
TR−A(yk)

stand for the optimal non-preemptive

and preemptive schedules on machine k under y, respectively. By Bülbül et al. (2007, Theorem 2.2), TC
(

S∗
TR−A(yk)

)

≤

TC
(

S∗
TI(yk)

)

for k = 1, . . . ,m, and we have

TC
(

S∗
TR−A(y)

)

=

m
∑

k=1

TC
(

S∗
TR−A(yk)

)

≤

m
∑

k=1

TC
(

S∗
TI(yk)

)

= TC
(

S∗
TI(y)

)

.

This relationship is independent from y and does also hold for the optimal job partition y∗ which concludes the proof.

�

Our overall strategy for obtaining near-optimal feasible solutions and good lower bounds for Rm-TWT and Rm-

TWET is now clear. We first solve (TR −A), retrieve the job partition, and then build m individual machine schedules

independently. Several heuristics with excellent empirical performance are available for both 1//
∑

j π jT j and 1//
∑

j π jT j+

ǫ jE j to perform the latter task. However, in this work we rely on the recent powerful optimal algorithms of Tanaka et al.

(2009) and Tanaka and Fujikuma (2012) to handle the single machine problems as we mentioned in Section 1. Our

computational experiments in Section 5 ultimately support this decision. Thus, only one major challenge remains. The

formulation (TR −A) is a mixed integer programming problem that is time consuming to solve based on our preliminary

computational experiments. However, for a fixed job partition it decomposes into m independent LPs – m independent

transportation problems –, and these LPs are solved to optimality very efficiently. These observations suggest that

(TR −A) is amenable to Benders decomposition (Benders, 1962), and developing a Benders decomposition algorithm

with strengthened cuts for (TR −A) is our main methodological contribution in this paper.

One final remark is due before we delve into the specifics of our solution method for (TR −A). For Rm-TWT, the

formulation may be strengthened by the load balancing constraints (19) which assert that the workloads of two machines

cannot differ by more than pmax in an optimal solution of the original non-preemptive parallel machine scheduling

problem. Otherwise, we could transfer the final job on one of these machines to the other one without degrading the

objective function value. Note that similar concepts have been incorporated into various properties and dominance rules

elsewhere in the literature (Azizoglu and Kirca, 1999b, Theorem 1). However, for Rm-TWET with a non-regular objective

function, we can easily create instances for which no optimal solution satisfies (19).

−pmax ≤

n
∑

j=1

p jky jk −

n
∑

j=1

p jly jl ≤ pmax, k = 1, . . . ,m − 1, l = k + 1, . . . ,m. (19)

These cuts are added to the preemptive formulation (TR −A) when solving Rm-TWT and help speed up the solution

process for large instances.

4. Benders Decomposition Parallel machine scheduling problems have a partitioning and a scheduling component.

That is, if we assign jobs to machines by fixing the variables y jk, j = 1, . . . ,n, k = 1, . . . ,m, so that the constraints (15)

are satisfied, then the model (TR −A) decomposes into independent transportation problems. We exploit this key

observation to design an algorithm based on Benders decomposition for solving (TR −A) efficiently. Define the set of

jobs to be processed on machine k as Jk = { j | y jk = 1} for k = 1, . . . ,m, and set the last period of processing on machine k as

appropriate based on (6). Then, we can reformulate (TR −A) for a fixed y as below, where the dual variables associated

with the constraints (21) and (22) are indicated in parentheses to the left of their respective constraints:

z(y) = minimize
m

∑

k=1

















∑

j∈Jk

Hk
∑

t=1

c′jktx jkt

















(20)
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(u jk) subject to
Hk
∑

t=1

x jkt = p jky jk, j ∈ Jk, k = 1, . . . ,m, (21)

(vkt)
∑

j∈Jk

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,Hk, (22)

x jkt ≥ 0, j ∈ Jk, k = 1, . . . ,m, t = 1, . . . ,Hk. (23)

The dual of the model (20)-(23) is then formulated as:

z(y) = maximize
m

∑

k=1

∑

j∈Jk

p jky jku jk +

m
∑

k=1

Hk
∑

t=1

vkt (24)

subject to u jk + vkt ≤ c′jkt, j ∈ Jk, k = 1, . . . ,m, t = 1, . . . ,Hk, (25)

vkt ≤ 0, k = 1, . . . ,m, t = 1, . . . ,Hk. (26)

Consequently, we obtain the following restricted Benders master problem (RMP − S), where the current number of

cuts is denoted by C, and the optimal values of the dual variables u jk, j ∈ Jk, k = 1, . . . ,m, and vkt, k = 1, . . . ,m, t = 1, . . . ,Hk,

in the cut generation subproblem for cut c, c = 1, . . . ,C, are represented by uc
jk

and vc
kt

, respectively. The auxiliary variable

η indicates the objective function value of (RMP − S) and is a lower bound on the optimal objective values of (TR −A)

and (TI):

(RMP − S) minimize η (27)

subject to
m

∑

k=1

y jk = 1 j = 1, . . . ,n, (28)

η ≥

m
∑

k=1

∑

j∈Jk

p jkuc
jky jk +

m
∑

k=1

Hk
∑

t=1

vc
kt c = 1, . . . ,C, (29)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (30)

Note that (20)-(23) is feasible and (24)-(26) is bounded for any y that satisfies constraints (15). Therefore, no feasibility

cuts are required, and only optimality cuts are generated and added iteratively to (RMP − S) during the course of the

algorithm. Furthermore, the cut generation subproblem (20)-(23) decomposes by machine as alluded to at the beginning

of this section:

z(y) =
m

∑

k=1

zk(y), (31)

where

(TRk) zk(y) = minimize
∑

j∈Jk

Hk
∑

t=1

c′jktx jkt (32)

(u jk) subject to
Hk
∑

t=1

x jkt = p jky jk, j ∈ Jk, (33)

(vkt)
∑

j∈Jk

x jkt ≤ 1, t = 1, . . . ,Hk, (34)

x jkt ≥ 0, j ∈ Jk, t = 1, . . . ,Hk. (35)

Thus, we solve m independent single machine transportation problems for generating a single cut of the form given in

(29). Alternatively, we can obtain a stronger multi-cut version of the restricted master problem, (RMP −M), by defining

ηk, k = 1, . . . ,m, and disaggregating the cuts we generate at the expense of more computational effort for solving the

restricted master problem at each iteration:

(RMP −M) minimize
m

∑

k=1

ηk (36)
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subject to (28), (30), (37)

ηk ≥
∑

j∈Jk

p jkuc
jky jk +

Hk
∑

t=1

vc
kt k = 1, . . . ,m, c = 1, . . . ,C. (38)

In our preliminary testing, the cut generation algorithm based on (RMP − S) was clearly inferior to that based on the

multi-cut version (RMP −M) in terms of speed, and we only relied on the latter formulation in our computational study

in Section 5. Thus, the rest of the paper is exclusively focused on (RMP −M). The pseudo-code of the cut generation

procedure is stated in Algorithm 1 at the end of the next section following the discussion of our cut strengthening method.

4.1 Validity and Strengthening of the Benders Cuts The validity of Benders decomposition (Benders, 1962) de-

rives from the independence of the feasible region of the dual of the cut generation subproblem – referred to as the

dual slave problem – from the values of the integer variables. For a mixed integer programming problem of the form

minimize
{

gx + hy : Gx +Hy ≥ b, x ∈ R+, y ∈ Z+
}

, where all matrices and vectors have appropriate dimensions, the dual

slave problem for a given y is stated as maximize
{

wT(b −Hy) : wTG ≤ g, w ∈ R+
}

, where w is the vector of dual vari-

ables of appropriate size. In other words, the dual slave problem is always solved over the same dual polyhedron
{

wTG ≤ g, w ∈ R+
}

, and only the objective function depends on the values of the integer variables. As a consequence,

the maximum number of cuts to be generated is bounded from above by the number of extreme points of the dual

polyhedron. For our Benders decomposition scheme laid out before, these issues need a closer look. The dual slave

problem for machine k is obtained by taking the dual of (TRk):

(DSk) maximize
∑

j∈Jk

p jky jku jk +

Hk
∑

t=1

vkt (39)

subject to u jk + vkt ≤ c′jkt, j ∈ Jk, t = 1, . . . ,Hk, (40)

vkt ≤ 0, t = 1, . . . ,Hk. (41)

For computational efficiency, the cut generation subproblems only include the set of jobs Jk currently assigned to machine

k, and the planning horizon Hk is determined accordingly. However, this amounts to solving the dual slave problem

over different feasible regions every time and contradicts the basic pillar of Benders decomposition. Therefore, in order

to establish the validity of our approach we must show that an optimal solution of (DSk) can always be translated to an

optimal solution of (DSk − F):

(DSk − F) maximize
n

∑

j=1

p jky jku jk +

H
∑

t=1

vkt (42)

subject to u jk + vkt ≤ c′jkt, j = 1, . . . ,n, t = 1, . . . ,H, (43)

vkt ≤ 0, t = 1, . . . ,H. (44)

In the sequel we argue that an optimal solution of (DSk) is not always feasible with respect to (43)-(44). That is, the cuts

(29) and (38) may be invalid. This issue does only arise for Rm-TWET, and the cut strengthening technique discussed

next offers a remedy.

Several papers in the literature report that a straightforward implementation of Benders decomposition yields a dismal

performance from a computational point of view (Fischetti et al., 2010, Magnanti and Wong, 1981, Üster and Agrahari,

2011, Van Roy, 1986, Wentges, 1996). This is often rooted in the primal degeneracy in the cut generation subproblem

which implies the existence of multiple optimal solutions to the dual slave problem. That is, possibly several alternate

cuts may be generated based on the same master problem solution, and the particular choice has a profound impact on

the computational performance. These concerns are also valid for us because the transportation problem suffers from

a well-known primal degeneracy. To address these issues, we initially adapted the generic Benders cut strengthening

method introduced recently by Fischetti et al. (2010) to our problem. These authors argue that identifying a small set



Şen, Bülbül: A Preemptive Relaxation for Unrelated Parallel Machines
Sabancı University, c©May 12, 2013 13

of constraints in the subproblem that allows us to cut the current master solution is of practical interest to enhance the

computational performance. To this end, they pose the cut generation subproblem as a pure feasibility problem and

look for a minimal infeasible subsystem of small cardinality. However, applying this technique to our problem does not

preserve the transportation problem structure in the cut generation subproblems. This results in substantially prolonged

subproblem solution times with ultimately uncompetitive overall performance for Benders decomposition. Instead,

here we follow an approach that is similar to those of Üster and Agrahari (2011), Van Roy (1986) to strengthen our

Benders cuts, which also resolves the issue regarding their validity pointed out in the previous paragraph. We reap great

savings in solution time from this enhancement. In fact, our algorithm exhibits very poor convergence without this cut

strengthening.

The key to showing the validity of our decomposition as well as strengthening the Benders cuts is to prove that we can

always augment an optimal solution of (DSk) to obtain a feasible solution of (DSk − F) with the same objective function

value. This would establish that the augmented solution is optimal for (DSk − F) because y jk = 0 for all j < Jk and vkt ≤ 0

for all t = Hk+1, . . . ,H (see Proposition 4.1). Compared to (38), the benefit is that we can produce a strengthened Benders

cut of the form

ηk ≥

n
∑

j=1

p jku′′jky jk +

H
∑

t=1

v′′kt (45)

from an optimal solution (u′′
k
,v′′

k
) of (DSk − F) so that u′′

jk
, 0 for j < Jk in general. We first need the following result to

attain our goal.

Lemma 4.1 There exists an optimal solution (u′
k
,v′

k
) to (DSk) such that maxt=1,...,Hk

v′
kt
= 0.

Proof. Assume that an optimal solution (uk,vk) to (DSk) is available. The claim holds trivially if there are idle periods

in the schedule – which would typically be true for an instance of Rm-TWET – because for any idle period t we have

vkt = 0 due to complementary slackness. We set (u′
k
,v′

k
) = (uk,vk).

Otherwise, assume that there is no idleness in the schedule, i.e., Hk =
∑

j∈Jk
p jk. Define vmax

k
= maxt=1,...,Hk

vkt ≤ 0 and

construct a new solution u′
jk
= u jk− | v

max
k
|, j ∈ Jk, v′

kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk. Observe that (u′

k
,v′

k
) is feasible with

respect to (40)-(41) because

u′jk + v′kt = u jk− | v
max
k | +vkt+ | v

max
k |= u jk + vkt ≤ c′jkt, j ∈ Jk, t = 1, . . . ,Hk,

by the feasibility of (uk,vk) for (DSk), and v′
kt
= vkt+ | v

max
k
|≤ 0 for all t = 1, . . . ,Hk, by the definition of vmax

k
. Furthermore,

the objective function value associated with (u′
k
,v′

k
) is identical to that of (uk,vk):

∑

j∈Jk

p jky jku′
jk
+

Hk
∑

t=1
v′

kt
=

∑

j∈Jk

p jk

(

u jk− | v
max
k |

)

+

Hk
∑

t=1

(

vkt+ | v
max
k |

)

=
∑

j∈Jk

p jku jk− | v
max
k |

∑

j∈Jk

p jk +

Hk
∑

t=1

vkt+ | v
max
k | Hk

=
∑

j∈Jk

p jky jku jk +

Hk
∑

t=1

vkt.

Therefore, (u′
k
,v′

k
) is an alternate optimal solution, and maxt=1,...,Hk

v′
kt
= maxt=1,...,Hk

{

vkt+ | v
max
k
|
}

= 0 by the definition of

vmax
k

. �

Assume that we are given an optimal solution (u′
k
,v′

k
) of (DSk) which satisfies the property in Lemma 4.1. Moreover, we

can always extend the planning horizon in (DSk) to 1, . . . ,H, and augment this optimal solution with zeros as necessary

and still preserve the optimality. Therefore, without loss of generality assume that an augmented optimal solution

(u′
k
,v′′

k
) is available to (DSk), where v′′

kt
= v′

kt
for t = 1, . . . ,Hk, and v′′

kt
= 0 for t = Hk + 1, . . . ,H. Based on this augmented
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optimal solution, we next explain how an original Benders cut of the form (38) is strengthened and then prove that this

strengthened cut corresponds to an optimal solution of (DSk − F).

The variables u jk, j < Jk, do not appear in (DSk) and are implicitly assumed to be zero. Consequently, no term appears

on the right hand side of a Benders cut (38) for the jobs that are assigned to other machines in the current restricted master

solution y. However, y jk = 0 for all such jobs j < Jk, and we can produce a stronger cut by incorporating y jk, j < Jk, into

the right hand side of (38) with positive coefficients p jku′′
jk
, j < Jk, if possible. In order to compute a good set of values

u′′
jk
, j < Jk, we solve the following optimization problem for a given augmented optimal solution (u′

k
,v′′

k
) of (DSk):

maximize
∑

j<Jk

p jku jk (46)

subject to u jk ≤ c′jkt − v′′kt, j < Jk, t = 1, . . . ,H. (47)

The constraints (47) are required to establish that the coefficients of the strengthened cut correspond to an optimal solution

of (DSk − F) – see Proposition 4.1. Clearly, (46)-(47) decomposes by job, and the optimal solution is determined as:

u′′jk = min

{

min
t=1,...,Hk

(c′jkt − v′′kt), min
t=Hk+1,...,H

c′jkt

}

, j < Jk. (48)

For an instance of Rm-TWT, the cost coefficients c′
jkt

are non-decreasing over t = 1, . . . ,H. In addition, we have

maxt=1,...,Hk
v′′

kt
= 0. Then,

min
t=1,...,Hk

(c′jkt − v′′kt) ≤ max
t=1,...,Hk

c′jkt ≤ min
t=Hk+1,...,H

c′jkt. (49)

Consequently, (48) simplifies to

u′′jk = min
t=1,...,Hk

(c′jkt − v′′kt), j < Jk, (50)

for Rm-TWT.

For Rm-TWET, we have to differentiate between two cases because the cost coefficients c′
jkt
, 1, . . . ,H, are not non-

decreasing over time:

u′′jk =



























min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkHk+1

)

if Hk ≥ d j

min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkd j

)

if Hk ≤ d j − 1



























, j < Jk. (51)

Thus, the strengthened cut finally takes the form specified in (45), where u′′
jk
= u′

jk
for j ∈ Jk and u′′

jk
, j < Jk, is calculated

based on either (50) or (51), respectively, depending on whether we solve an instance of Rm-TWT or Rm-TWET. We next

prove that this augmented solution (u′′
k
,v′′

k
) is optimal for (DSk − F).

Proposition 4.1 The dual variables (u′′
k
,v′′

k
), which produce a strengthened Benders cut (45), are optimal with respect to (DSk − F).

Proof. Recall that (u′′
k
,v′′

k
) is constructed by augmenting an optimal solution (u′

k
,v′

k
) of (DSk) which satisfies the

property in Lemma 4.1. Therefore, u′′
jk
+ v′′

kt
≤ c′

jkt
, j ∈ Jk, t = 1, . . . ,Hk, and v′′

kt
≤ 0, t = 1, . . . ,Hk, hold automatically. In

addition, v′′
kt
, t = Hk + 1, . . . ,H, are set directly to zero. Therefore, we only need to verify that u′′

jk
+ v′′

kt
≤ c′

jkt
, j ∈ Jk, t =

Hk + 1, . . . ,H, and u′′
jk
+ v′′

kt
≤ c′

jkt
, j < Jk, t = 1, . . . ,H, to show the feasibility of (u′′

k
,v′′

k
) for (DSk − F). The latter inequalities

are enforced directly by the constraints (47). For the former, note that for any job j ∈ Jk the end of the planning horizon

Hk is larger than d j in both Rm-TWT and Rm-TWET. Then, by a similar argument that leads to (49), u′′
jk
≤ maxt′=1,...,Hk

c′
jkt′

and we obtain u′′
jk
+ v′′

kt
= u′′

jk
≤ maxt′=1,...,Hk

c′
jkt′
≤ c′

jkt
for all time periods t = Hk + 1, . . . ,H, as desired.

The optimal objective function value of (DSk − F) is bounded from above by that of (DSk) because all constraints

(40)-(41) are present in (43)-(44), y jk = 0 for j < Jk, and
∑H

t=Hk+1 vkt ≤ 0. This completes the proof since the objective

function value associated with (u′′
k
,v′′

k
) in (DSk − F) is clearly identical to that associated with the optimal solution (u′

k
,v′

k
)

in (DSk). �
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The pseudo-code of our Benders decomposition scheme with the cut strengthening feature for solving (TR −A) is

stated in Algorithms 1-2, and Proposition 4.1 proves its correctness. Skipping the cut strengthening step implicitly

implies that an optimal solution (u′
k
,v′

k
) of (DSk) that conforms with Lemma 4.1 is augmented with zeros as necessary. It

is a simple matter to show that this augmented solution is feasible with respect to (DSk − F) if we are solving an instance

of Rm-TWT because the cost coefficients c′
jkt

are non-negative and non-decreasing over time. However, u′′
jk
= 0, j < Jk,

is not necessarily feasible for (DSk − F) for an instance of Rm-TWET according to (51) if Hk ≤ d j − 1 because c′
jkd j
< 0 for

p jk > 1. Consequently, the resulting cut (38) is invalid. Alternatively, producing a strengthened cut of the form (45) out of

the augmented solution (u′′
k
,v′′

k
) obtained by employing either (50) or (51) ensures that the dual slave problem is always

solved over the same feasible region and the generated Benders cuts are valid. The cut strengthening specified by the

Steps 3-6 in Algorithm 2 has a pseudo-polynomial time complexity of O(nH) with an overall complexity of O(mnH) for

m machines. In practice, it is very fast.

Algorithm 1: Solving (TR −A) by Benders decomposition and lazy constraint generation.

// Initialization

1 Create (RMP −M) with (36), (28), (30). Add the load balancing constraints (19) for Rm-TWT;

2 repeat // To improve the initial objective value of (RMP −M).

3 Construct a feasible assignment y of jobs to m machines by some heuristic.

4 [cuts, z1(y), . . . , zm(y)] = generate_cuts(y) ; // cuts is a collection of m cuts.

5 Add cuts to (RMP −M) as lazy constraints;

6 until some termination condition is satisfied; // We run a simple dispatch rule once.

// Main loop

7 Invoke CPLEX on (RMP −M);

8 repeat

9 Identify a new candidate incumbent solution y with an objective value of
∑m

k=1 ηk;

10 accept_candidate = true;

11 [cuts, z1(y), . . . , zm(y)] = generate_cuts(y) ; // cuts is a collection of m cuts.

12 for k = 1 to m do

13 if ηk < zk(y) then // y violates some of the missing Benders cuts.

14 Add cutsk to (RMP −M) as a lazy constraint, accept_candidate = false;

15 end

16 until CPLEX determines that the relative optimality gap of the current incumbent is less than some threshold;

17 The best available job partition y∗ for (TR −A) is retrieved from CPLEX. If desired, the associated preemptive

machine schedules are obtained by solving (TRk) with y∗ for k = 1, . . . ,m.

In classical textbook applications of Benders decomposition, the current restricted master problem is solved to opti-

mality and then cuts generated based on this optimal solution are added to it before the restricted master problem is

re-optimized. This loop is repeated until the optimality gap – for (RMP −M) the expression z(y)−
∑m

k=1 ηk
∑m

k=1 ηk
– is smaller than

a prespecified tolerance level, where the current optimal objective
∑m

k=1 ηk of (RMP −M) is a lower bound on that of

(TR −A) and z(y) is the objective value of a feasible solution of (TR −A). The primary drawback of this classical scheme

is that a new search tree is constructed every time the restricted master problem is solved (Rubin, 2011). Consequently,

valuable time may be expended toward re-evaluating the same nodes over and over again. In contrast, using the lazy

constraint technology offered by the state-of-the-art solvers allows us to execute the entire algorithm on a single search

tree (IBM ILOG CPLEX, 2011). In Step 11 of Algorithm 1, we invoke the lazy constraint callback routine for every candidate
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Algorithm 2: Procedure generate_cuts.

input : A feasible partition y of jobs to machines.

output: Returns zk(y) and the strengthened cuts of the form (45) for k = 1, . . . ,m.

1 for k = 1 to m do

2 Solve (TRk), retrieve zk(y) and the dual optimal solution (uk,vk);

/* Calculate an alternate dual optimal solution (u′
k
,v′

k
) for (TRk) that satisfies Lemma 4.1 by

following the construction in the proof. */

3 vmax
k
= maxt=1,...,Hk

vkt;

4 if vmax
k
< 0 then u′

jk
= u jk− | v

max
k
|, j ∈ Jk, v′

kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk else (u′

k
,v′

k
) = (uk,vk);

// Construct a dual optimal solution (u′′
k
,v′′

k
) for (DSk − F).

5 v′′
kt
= v′

kt
, t = 1, . . . ,Hk, and v′′

kt
= 0, t = Hk + 1, . . . ,H;

6 u′′
jk
= u′

jk
, j ∈ Jk, and u′′

jk
, j < Jk, is calculated based on either (50) or (51), respectively, depending on whether we

solve an instance of Rm-TWT or Rm-TWET;

7 Generate and add (45) to cuts;

8 end

incumbent solution. The callback routine either identifies a missing Benders cut violated by the candidate solution and

introduces it as a lazy constraint into the model or certifies the candidate as valid. Ultimately, no integer solution is

evaluated multiple times during the course of the algorithm. Moreover, labeling the generated cuts as lazy informs the

solver that most of such constraints are not expected to be active at the optimal solution. Thus, we fully exploit the

capabilities of the solver and allow it to apply the generated cuts as it deems necessary. The use of the lazy constraint

technology appears to be relatively rare in the operations research literature, and we hope that it will be employed more

frequently in the future given that it may unleash the power of a cut generation algorithm which seems impractical

otherwise.

5. Computational Results Outstanding among the accomplishments of this research is that both Rm-TWT with a

regular scheduling objective (see Section 5.1) and Rm-TWET with a non-regular scheduling objective (see Section 5.2) are

tackled successfully by the exact same solution approach. For both problems, the overarching goal of our computational

study is to demonstrate that the proposed Benders-type method solves the preemptive relaxation (TR −A) to (near-)

optimality in short computation times and provides tight lower bounds as well as high quality job partitions for the

original problems. Very large instances of both problems are within the reach of our algorithm; however, we concede

that the performance is somewhat better for Rm-TWT than for Rm-TWET.

The size of an instance is determined by the parameters m and n′ so that the number of jobs is set to n = mn′. For each

job j ∈ {1, . . . ,n}, the processing time p1 j on the first machine is randomly drawn from the discrete uniform distribution

U
[

pmin, pmax
]

. The processing times pkj for k ∈ {2, . . . ,m} are then created as max
(

1,
⌊

U [1 − θ, 1 + θ] p1 j

⌋)

. The earliness

weight per unit time ǫ j is generated from a discrete uniform distribution U [ǫmin, ǫmax], and the corresponding unit

tardiness weight is computed as
⌈

U
[

α, β
]

ǫ j

⌉

. For Rm-TWT, all unit earliness weights are then set to zero. We generate

the due dates by following a popular scheme in the literature (Liaw et al., 2003, Lin et al., 2011, Shim and Kim, 2007a).

The integral due date d j of job j is calculated as
⌊

U
[

P
(

1 − TF − RDD
2

)+
,P

(

1 − TF + RDD
2

)

]⌋

, where the tardiness factor TF

controls the tightness of the due dates and the due date range factor RDD determines their spread. P =
∑

j

∑

k pkj

m2 may be

considered as the average load per machine. The parameters of the instance generation procedure are summarized in

Table 1.

There are 12 combinations of the TF, RDD values and for each combination, 5 instances are generated. Therefore, we
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Table 1 Instance generation parameters.

m n′
[

pmin, pmax
]

θ [ǫmin, ǫmax]
[

α, β
]

TF RDD

{2, 3, 4, 5} {20, 30, 40} [25, 100] 0.25 [1, 10] [1.5, 3.0] {0.4, 0.6, 0.8, 1.0} {0.2, 0.4, 0.6}

create 60 instances for each pair of m, n′ values and a total of 720 instance pairs. The instances in a pair are identical,

except that ǫ j = 0, j = 1, . . . ,n, in the Rm-TWT instance. This data generation scheme allows us to draw clear conclusions

about the relative difficulty of Rm-TWET with respect to Rm-TWT. As pointed out by Kedad-Sidhoum et al. (2008), the

motivation for the relatively large TF and small RDD values is that in most practical production environments the due

dates are not loose and not distant from each other. The rationale behind the selected
[

α, β
]

values reflects that the

earliness cost is typically regarded as a finished goods inventory holding cost and should be less than the cost of loss of

customer goodwill or a contractual penalty represented by the tardiness cost.

The computational results are obtained on a personal computer with a 3.80 GHz Intel Core i7 920 CPU with Hyper-

Threading enabled and 24 GB of memory running on Windows 7. Algorithms 1-2, which are collectively referred to

as (TR −A) - BDS in this section, were implemented in C++ using the Concert Technology component library of IBM

ILOG CPLEX 12.4. The cut generation procedure in Algorithm 2 is parallelized through the Boost 1.51 library. More

specifically, when a new integer feasible solution is identified in the search tree for (RMP −M), m threads are constructed

in the lazy constraint callback routine to solve (TRk), k = 1, . . . ,m, in parallel. Note that in the presence of a control

callback – such as the lazy constraint callback in (TR −A) - BDS – CPLEX applies a traditional branch-and-cut strategy by

switching off its dynamic search feature and operates in an opportunistic parallel search mode. Following the termination

of (TR −A) - BDS, we call the SiPS/SiPSi libraries (Tanaka and Fujikuma, 2012, Tanaka et al., 2009) to solve m single

machine problems for each job partition present in the final solution pool of CPLEX and obtain feasible solutions for

Rm-TWT and Rm-TWET. To promote the quality of the job partitions, the switch MIPEmphasis in (TR −A) - BDS is set to

4 in order to urge CPLEX “to apply considerable additional effort toward finding high quality feasible solutions that are

difficult to locate” (IBM ILOG CPLEX, 2011).

To justify the use of the proposed Benders-type approach to solve (TR −A), we benchmark it against (TR −A) - CPX,

where the monolithic formulation (TR −A) is solved directly by invoking CPLEX. In this case, we let CPLEX decide whether

to apply its dynamic search by running it with the default parameter settings, except that the opportunistic parallel search

mode is turned on for a head-to-head comparison with (TR −A) - BDS. The relative gap tolerance parameter EpGap of

CPLEX is set to 3% while solving (TR −A) by either (TR −A) - CPX or (TR −A) - BDS. We also solve (TI) via CPLEX

under the default parameter settings. The objective value of the root relaxation provides an alternate lower bound for the

original non-preemptive problems, and the best available objective value at termination provides us with a benchmark

for the non-preemptive solutions we construct for Rm-TWT and Rm-TWET.

All formulations are solved within the same working memory limit of 15 GB (WorkMem=15,000). However, the memory

footprint of (TR −A) - BDS does not exceed a few gigabytes even for the largest instances with 200 jobs and 5 machines.

The maximum number of threads that CPLEX is allowed to use – governed by the parameter Threads – is seven for all

methods. The time limit parameter TiLim takes on the values 1800, 1800 and 600 seconds for (TI), (TR −A) - CPX, and

(TR −A) - BDS, respectively.

The next two sections report the results obtained for Rm-TWT and Rm-TWET, respectively. We first present the

optimality gap results followed by the solution time statistics. For ease of perusal, all tables employ a color formatting

scheme so that the values of a performance indicator ranging from worse to better are indicated with varying shades of

a color, changing from light to dark.

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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5.1 Results for Rm-TWT Table 2 consists of 12 parts, one for each possible combination of n and m listed in the

first two columns. We report four types of percentage gaps in the table, labeled as “(TR −A) - BDS”, “LB Quality”,

“Feasible Sol’n”, and “(TI)” in Columns 4–15. For each of these performance indicators, detailed results for each possible

combination of TF and RDD values are included. The TF values appear in the third column, and the RDD values are

specified in the column headers. All gaps larger than 100% are set to 100%, and the gap of a feasible solution with a

positive objective function value with respect to a lower bound of zero is assumed to be 100%. Each value in the table

represents an average gap over five instances based on our data generation scheme discussed previously.

The optimality gaps depicted in Columns 4–6 are retrieved from CPLEX at the termination of (TR −A) - BDS. To

illustrate the coloring scheme noted before, observe that the numbers in these columns are colored with tints of blue

ranging from worst to best performance. These results indicate that (TR −A) - BDS is able to solve the preemptive

relaxation to the targeted precision of 3%. More specifically, (TR −A) - BDS terminates due to time limit of 600 seconds

for only 22 instances out of a total of 720. The corresponding number for (TR −A) - CPX is 47 with a time limit of 1800

seconds. The average (& median) gaps of (TR −A) - BDS and (TR −A) - CPX for those instances that could not be solved

within the specified time limits are 7.22% (& 4.05%) and 74.14% (& 100%), respectively. Therefore, we conclude that the

use of our Benders-type method for solving (TR −A) is well-justified.

The next three columns under “LB Quality” attest to the quality of the lower bound (LB) provided by (TR −A) - BDS

for the optimal objective value of Rm-TWT. For a given instance, the expression (“Best Integer”−“LB”)
(“Best Bound”) provides an upper

bound on the gap of LB, where “Best Integer” and “Best Bound” are the objective function values associated with

the best feasible solution retrieved from either (TR −A) - BDS or (TI) and the best lower bound provided by any one

of the methods (TR −A) - CPX, (TR −A) - BDS, or (TI), respectively. For any n, m combination, the average LB gap

summarized across all TF and RDD values does not exceed 8.15%, and the average LB gap across all instances is just

5.64%. In fact, only 8% of the instances (58 instances) have an LB gap larger than 10%.

The last six columns under “Feasible Sol’n” and “(TI)” present the average upper bounds on the optimality gaps

attained by the non-preemptive feasible solutions yielded by (TR −A) - BDS and (TI). To facilitate a head-to-head

comparison, the values in these six columns are colored together. For a given feasible solution, an upper bound on the

optimality gap is calculated as (“OFV”−“Best Bound”)
(“Best Bound”) , where “OFV” is the objective function value of the feasible solution. We

observe that the incumbent from (TI) is hardly competitive with the best feasible solution obtained from (TR −A) - BDS,

except for the 40-job instances. Moreover, even the LP relaxation of (TI) is not solved within half an hour for instances

with 100 or more jobs. The average (& median) optimality gaps over all instances solved are 3.55% (& 1.73%) and 30.28%

(& 10.20%) for (TR −A) - BDS and (TI), respectively. Perhaps more importantly, the proposed approach delivers a robust

performance and scales to very large instances. With the exception of a little over 4% of the instances (31 out of 720), the

optimality gap is always below 10%. The corresponding number for (TI) is 50% (181 out of 360).

The relatively higher gaps under “LB Quality” and “Feasible Sol’n” in Table 2 for TF= 0.4 stem from the small objective

function values associated with loose due dates. Even small errors result in large percentage gaps in this case. Note

that the objective function value of an instance with TF = 0.6, 0.8, and 1.0 is on average 7.5, 25.1, and 45.9 times larger,

respectively, compared to that of an instance with TF = 0.4. A second contributing factor here is the growing size of (TI)

with looser due dates. Frequently, even the LP relaxation is not solved within the allotted time for such instances, and

this results in smaller “Best Bound” values in general. In other words, the actual performance for TF = 0.4 is probably

better than what it appears to be.
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Table 2 Percentage gap results for Rm-TWT.

(TR −A) - BDS LB Quality Feasible Sol’n (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 1.3 1.6 0.5 3.0 7.5 13.2 1.6 4.5 6.3 0.9 6.1 24.5
0.6 2.0 2.2 2.2 2.8 3.5 6.4 1.0 1.8 2.2 1.1 1.6 2.4
0.8 2.5 2.6 2.4 2.8 3.6 3.7 0.8 0.6 0.6 0.0 0.0 0.1
1.0 2.4 2.1 2.2 2.3 2.4 2.3 0.5 0.5 0.8 0.0 0.0 0.0

60

2

0.4 2.2 1.8 1.6 3.5 5.3 9.5 0.9 2.0 5.0 42.6 54.7 86.1
0.6 2.4 2.4 2.6 3.3 4.4 5.7 0.9 1.3 1.7 25.6 18.3 28.9
0.8 2.7 1.7 2.5 3.1 2.7 4.4 1.2 0.6 1.2 4.5 2.7 11.4
1.0 2.2 2.8 2.8 1.9 2.2 2.5 0.6 1.2 1.0 0.0 0.2 0.0

3

0.4 2.4 2.1 1.4 5.0 9.3 42.9 1.9 3.6 36.8 61.8 53.5 92.5
0.6 2.7 2.7 2.8 3.8 5.0 8.7 1.5 1.7 3.0 10.3 24.8 28.7
0.8 2.8 2.8 2.6 3.1 4.3 4.8 1.4 0.9 0.9 1.5 2.6 0.1
1.0 2.6 2.5 2.5 2.2 2.6 3.2 0.8 0.6 0.8 0.0 0.0 0.9

80

2

0.4 2.0 2.2 2.0 3.0 5.0 11.6 1.1 2.0 6.8 100.0 96.1 100.0
0.6 2.2 1.4 2.6 2.9 2.8 4.2 1.0 1.1 0.9 51.8 81.4 45.2
0.8 2.9 2.3 2.7 3.3 3.0 4.3 1.5 0.7 1.1 14.2 9.5 12.6
1.0 2.2 2.4 2.3 1.6 2.7 2.7 1.1 0.4 0.6 2.6 6.1 5.8

4

0.4 2.7 2.6 1.2 6.8 10.4 38.0 3.7 5.0 36.6 89.9 100.0 100.0
0.6 2.7 2.5 3.8 4.2 5.5 10.1 1.6 2.1 4.2 27.6 48.5 73.8
0.8 2.8 2.4 2.9 3.6 4.3 5.9 1.1 0.7 1.0 17.1 8.2 11.2
1.0 2.5 2.8 2.8 2.2 3.1 3.7 0.7 1.1 0.7 0.0 2.0 2.4

90 3

0.4 2.2 2.2 0.9 3.8 7.3 26.9 1.6 3.5 21.2 100.0 100.0 100.0
0.6 2.6 2.8 2.9 3.3 4.3 6.3 1.2 1.4 2.1 53.6 56.5 73.6
0.8 2.6 2.5 2.6 3.3 3.8 4.5 1.1 0.9 1.2 14.8 12.0 32.8
1.0 2.6 2.4 2.4 2.1 3.0 3.2 1.2 0.8 1.0 2.3 9.1 31.2

100 5

0.4 2.7 2.7 2.8 7.3 13.7 20.0 6.2 13.3 20.0
0.6 2.7 2.8 5.9 4.2 5.7 12.8 2.9 4.6 9.3
0.8 2.6 2.8 3.1 3.7 4.9 6.5 2.3 3.5 4.9
1.0 2.5 2.5 2.8 2.8 3.3 4.3 1.4 1.9 2.7

120

3

0.4 2.5 1.9 1.1 3.7 6.5 42.5 2.3 5.8 42.5
0.6 2.2 2.6 2.4 2.9 4.2 5.6 1.6 2.9 4.6
0.8 2.6 2.9 2.7 3.0 4.0 4.5 1.5 2.3 2.8
1.0 2.8 2.3 2.6 3.0 2.7 3.3 1.1 1.3 1.4

4

0.4 2.2 2.9 10.8 4.1 9.1 20.0 3.0 7.9 20.0
0.6 2.7 2.6 3.1 3.6 4.4 7.4 2.4 2.8 5.9
0.8 2.5 2.5 2.9 3.2 4.1 5.0 1.9 2.6 3.2
1.0 2.7 2.7 2.7 3.0 3.2 3.7 1.4 1.6 2.3

150 5

0.4 2.5 2.9 0.0 5.2 10.0 0.0 4.0 9.0 0.0
0.6 2.7 2.7 3.8 3.7 4.6 8.8 2.1 3.3 6.6
0.8 2.6 2.7 2.9 3.3 4.3 5.5 1.8 2.8 4.1
1.0 1.3 2.5 2.4 1.6 3.1 3.5 0.8 1.7 2.3

160 4

0.4 2.8 2.8 0.0 4.5 9.2 0.0 3.1 7.9 0.0
0.6 2.7 2.9 2.9 3.3 4.2 6.4 1.6 2.7 4.8
0.8 2.6 2.2 2.6 3.1 3.3 4.3 1.6 2.2 2.8
1.0 2.0 2.0 2.6 2.2 2.4 3.3 0.9 1.1 1.8

200 5

0.4 2.5 3.4 0.0 4.5 12.3 0.0 3.3 10.8 0.0
0.6 2.5 2.8 3.9 3.2 4.5 7.9 1.7 2.7 5.4
0.8 2.6 2.7 2.7 3.1 3.9 4.6 1.9 2.2 3.0
1.0 2.4 2.0 2.3 2.7 2.4 3.1 2.5 1.8 2.1

The robustness of the quality of the feasible solutions obtained from our Benders-type approach is further illustrated in

Figures 1a–1d. The empirical distributions of the optimality gaps of the feasible solutions associated with (TR −A) - BDS

and (TI) are plotted with solid and dashed lines in these figures, respectively. The horizontal axes are in logarithmic
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(d) m = 5

Figure 1 The empirical distributions of the optimality gaps of the upper bounds by (TR −A) - BDS and (TI) for Rm-TWT.

scale to increase the readability of the graph. Note that the median percentage gap for each curve corresponds to the 50%

mark on the vertical axis, and the average gaps are explicitly indicated. The curves associated with (TR −A) - BDS are

clustered and rise steeply. That is, the quality of the partitions retrieved from (TR −A) - BDS is not particularly sensitive

to the increasing number of jobs n′ per machine. In contrast, it is evident that the gaps of the incumbents from (TI)

degrade quickly with growing values of n′. Half of the instances with m = 2 and n′ = 20 are solved to either optimality

or very close to it; however, the median gap becomes 25% as soon as n′ is set to 40 with the same number of machines.

This effect is persistent for m = 3 as well. The ratio of the median gap for n′ = 30 to that for n′ = 20 is 8.5. In contrast, for

any fixed m = 2, 3, 4, 5, the same ratio for any two values of n′ ∈ {20, 30, 40} is less than 2 for our algorithm.

Table 3 is similar to Table 2 in structure and format. The average time needed to solve the preemptive relaxation

(TR −A) to within 3% of optimality and the average number of job partitions identified in the search tree by (TR −A) -

CPX and (TR −A) - BDS are presented in Columns 4–9. The color formatting is applied to these two sets of columns

together to facilitate a direct comparison. The columns labeled as “# of Cuts” report the average number of Benders



Ş
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Table 3 Average solution times (in seconds) for Rm-TWT.

(TR −A) - CPX* (TR −A) - BDS* # of Cuts Feasible Sol’n Total (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 2.3 (2) 3.1 (3) 10.3 (4) 1.6 (9) 1.6 (8) 2.7 (9) 90 83 151 0.08 0.07 0.06 1.7 1.7 2.7 1801 1801 1801

0.6 4.1 (3) 3.5 (2) 3.7 (2) 1.6 (6) 2.4 (7) 3.1 (9) 71 140 156 0.08 0.08 0.10 1.7 2.5 3.2 1801 1801 1333

0.8 6.0 (3) 5.2 (3) 4.6 (2) 1.4 (6) 1.0 (5) 3.2 (9) 52 28 154 0.06 0.05 0.09 1.5 1.1 3.3 439 341 472

1.0 5.8 (2) 5.6 (2) 5.5 (3) 0.6 (3) 1.4 (6) 1.1 (5) 10 47 44 0.03 0.06 0.05 0.7 1.5 1.2 129 103 67

60

2

0.4 8.0 (3) 6.8 (3) 11.5 (3) 4.7 (10) 6.6 (11) 9.7 (11) 89 143 206 0.29 0.30 0.28 5.0 6.9 10.0 1802 1802 1802

0.6 14.8 (3) 11.5 (3) 11.3 (3) 4.7 (6) 6.9 (9) 17.6 (14) 68 108 331 0.29 0.41 0.50 5.0 7.3 18.1 1808 1802 1805

0.8 21.5 (3) 18.9 (2) 17.3 (3) 2.8 (5) 6.3 (7) 9.0 (7) 24 96 140 0.19 0.23 0.26 3.0 6.6 9.3 1802 1511 1582

1.0 24.1 (3) 24.6 (3) 23.6 (3) 1.7 (3) 1.6 (3) 1.7 (3) 10 9 10 0.11 0.09 0.11 1.8 1.6 1.8 1027 858 821

3

0.4 20.4 (2) 60.1 (4) 215.2 (5) 2.1 (8) 4.0 (13) 3.9 (14) 95 196 210 0.12 0.16 0.11 2.2 4.2 4.0 1802 1803 1804

0.6 32.3 (2) 29.9 (2) 36.0 (2) 1.1 (5) 2.2 (10) 12.5 (14) 31 70 582 0.09 0.17 0.21 1.2 2.4 12.7 1804 1803 1802

0.8 39.7 (1) 39.9 (1) 36.4 (2) 0.8 (4) 2.1 (8) 3.2 (8) 18 66 146 0.06 0.11 0.12 0.9 2.2 3.4 1744 1390 956

1.0 40.7 (1) 44.1 (1) 41.3 (1) 0.8 (4) 0.8 (3) 1.5 (6) 19 16 35 0.05 0.04 0.08 0.9 0.8 1.5 449 673 914

80

2

0.4 14.7 (2) 12.3 (3) 44.3 (4) 8.0 (7) 17.5 (15) 19.6 (13) 66 163 206 0.51 1.11 0.83 8.6 18.6 20.4 1807 1804 1804

0.6 32.7 (2) 26.7 (3) 30.0 (3) 9.6 (8) 21.1 (13) 35.5 (15) 68 186 316 1.03 1.49 1.66 10.7 22.6 37.2 1804 1804 1804

0.8 52.3 (3) 56.2 (3) 43.6 (2) 2.7 (3) 8.9 (6) 10.1 (7) 8 51 68 0.30 0.60 0.64 3.0 9.5 10.7 1804 1500 1804

1.0 68.8 (3) 62.9 (3) 58.8 (2) 2.6 (2) 6.4 (5) 7.0 (6) 8 37 36 0.23 0.42 0.57 2.8 6.9 7.6 1172 1809 1747

4

0.4 41.6 (2) 294.9 (7) 1716.1 (8) 4.8 (17) 6.6 (18) 11.1 (31) 231 278 310 0.29 0.14 0.16 5.1 6.7 11.3 1804 1805 1804

0.6 79.0 (2) 72.7 (2) 484.2 (5) 2.0 (8) 7.4 (15) 461.6 (22) 68 421 2149 0.17 0.31 0.40 2.2 7.7 462.0 1811 1807 1805

0.8 111.3 (1) 103.8 (1) 97.9 (2) 1.3 (5) 5.8 (13) 10.6 (13) 36 283 615 0.10 0.23 0.24 1.4 6.0 10.8 1809 1578 1817

1.0 118.2 (1) 112.4 (1) 120.8 (1) 1.0 (4) 1.1 (4) 1.7 (7) 22 30 39 0.06 0.07 0.12 1.0 1.2 1.8 1258 1575 1642

90 3

0.4 34.5 (1) 112.2 (3) 1030.3 (7) 5.4 (11) 11.1 (14) 27.5 (26) 95 220 264 0.46 0.54 0.57 5.9 11.6 28.1 1813 1805 1805

0.6 92.9 (1) 86.9 (1) 93.0 (2) 2.3 (5) 5.0 (8) 24.3 (14) 22 69 479 0.34 0.46 0.72 2.7 5.4 25.1 1805 1805 1805

0.8 121.8 (1) 121.3 (1) 116.8 (1) 2.0 (4) 2.8 (4) 4.6 (7) 17 26 47 0.24 0.22 0.38 2.3 3.0 5.0 1805 1805 1806

1.0 147.8 (1) 141.5 (1) 137.7 (1) 1.7 (3) 2.1 (4) 2.1 (4) 13 17 17 0.14 0.18 0.18 1.9 2.3 2.3 1504 1805 1807

100 5

0.4 104.2 (2) 1118.7 (6) 1800.4 (5) 6.4 (15) 13.0 (20) 125.0 (27) 324 429 313 0.31 0.15 0.20 6.7 13.2 125.2

0.6 149.5 (1) 167.7 (2) 883.4 (6) 4.4 (10) 15.3 (18) 600.6 (23) 220 718 2951 0.27 0.45 0.50 4.7 15.8 601.1

0.8 235.0 (2) 182.4 (1) 241.6 (1) 2.3 (7) 14.7 (21) 308.0 (17) 61 775 2736 0.18 0.46 0.40 2.4 15.1 308.4

1.0 253.5 (1) 233.2 (1) 234.9 (1) 1.7 (5) 1.8 (6) 2.7 (7) 44 42 75 0.11 0.12 0.16 1.8 1.9 2.8

*: Values in the parentheses denote the number of different job partitions present in the final solution pool. Continued on next page. . .
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Table 3 continued. . .

(TR −A) - CPX* (TR −A) - BDS* # of Cuts Feasible Sol’n Total (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

120

3

0.4 47.9 (1) 66.2 (1) 1366.7 (4) 7.1 (8) 19.8 (16) 108.6 (25) 42 196 461 0.92 1.48 1.00 8.0 21.3 109.6

0.6 205.0 (1) 171.8 (1) 162.3 (2) 4.0 (4) 8.0 (7) 49.0 (14) 19 41 493 0.80 1.22 1.87 4.8 9.2 50.8

0.8 262.4 (1) 254.4 (1) 220.8 (1) 3.9 (4) 4.7 (4) 8.2 (7) 16 20 40 0.52 0.59 0.89 4.4 5.3 9.1

1.0 337.9 (1) 344.4 (1) 302.9 (1) 3.4 (3) 3.9 (3) 5.7 (5) 13 14 23 0.38 0.49 0.68 3.8 4.4 6.3

4

0.4 96.4 (1) 516.2 (5) 1815.9 (4) 12.8 (15) 18.0 (16) 135.3 (31) 258 365 410 0.81 0.74 0.79 13.6 18.8 136.1

0.6 205.2 (1) 209.0 (2) 327.0 (3) 3.5 (7) 18.4 (15) 224.9 (21) 42 387 1634 0.53 1.13 1.45 4.1 19.6 226.4

0.8 315.6 (1) 314.7 (1) 286.6 (2) 3.4 (5) 5.6 (8) 16.1 (11) 34 62 265 0.41 0.53 0.75 3.9 6.1 16.8

1.0 346.2 (1) 325.7 (1) 291.4 (1) 2.1 (3) 2.6 (4) 2.7 (4) 19 25 30 0.17 0.24 0.25 2.3 2.8 3.0

150 5

0.4 216.0 (2) 1356.5 (6) 1526.8 (3) 19.3 (16) 34.8 (20) 17.8 (23) 410 539 327 1.09 0.74 0.56 20.4 35.6 18.3

0.6 379.5 (1) 378.6 (2) 804.2 (4) 5.2 (8) 38.6 (18) 415.3 (24) 58 757 2241 0.81 1.55 1.88 6.0 40.1 417.2

0.8 683.5 (1) 645.7 (1) 600.3 (2) 4.2 (5) 10.9 (10) 48.5 (15) 42 154 874 0.50 0.79 1.21 4.7 11.7 49.7

1.0 752.4 (1) 713.5 (1) 653.2 (1) 4.8 (6) 3.6 (5) 4.2 (6) 47 35 42 0.47 0.37 0.45 5.3 4.0 4.6

160 4

0.4 143.3 (1) 451.5 (3) 1361.4 (3) 9.0 (8) 40.2 (15) 28.9 (23) 70 426 255 1.08 1.81 1.11 10.1 42.0 30.0

0.6 429.0 (1) 302.3 (1) 704.3 (3) 6.2 (6) 10.7 (9) 175.5 (18) 30 66 1096 1.33 1.82 3.05 7.5 12.5 178.6

0.8 713.4 (1) 742.5 (1) 668.1 (1) 5.2 (4) 8.9 (7) 12.3 (8) 24 44 68 0.87 1.20 1.61 6.0 10.1 13.9

1.0 934.5 (1) 836.4 (1) 851.1 (1) 5.2 (4) 6.3 (5) 5.7 (4) 23 29 26 0.73 0.88 0.82 5.9 7.2 6.5

200 5

0.4 345.2 (2) 1476.3 (3) 792.7 (1) 23.9 (12) 324.1 (28) 35.1 (27) 246 1101 268 1.86 3.61 1.41 25.8 327.7 36.6

0.6 964.1 (1) 751.5 (1) 1326.9 (3) 10.7 (8) 32.6 (13) 509.7 (26) 61 304 2704 2.21 3.09 5.90 12.9 35.7 515.6

0.8 1720.3 (1) 1708.0 (1) 1439.7 (2) 6.7 (5) 29.0 (11) 35.6 (13) 29 233 262 1.16 2.41 2.81 7.9 31.4 38.4

1.0 1803.5 (0) 1771.3 (0) 1718.7 (1) 6.9 (4) 8.9 (5) 9.1 (5) 31 43 47 0.92 1.14 1.21 7.9 10.0 10.3

*: Values in the parentheses denote the number of different job partitions present in the final solution pool.
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cuts generated in the course of solving (TR −A) by (TR −A) - BDS. The next three columns, labeled as “Feasible Sol’n”,

provide the average total time elapsed in the SiPS/SiPSi solver to solve the single machine scheduling problems for all

job partitions available at the termination of (TR −A) - BDS. Note that the total number of the single machine scheduling

problems solved for an instance is obtained by multiplying the number of job partitions by m. The final six columns

under “Total” and “(TI)” denote the average total time required by the proposed Benders-type method until the best non-

preemptive solution is determined and by CPLEX to solve the time-indexed formulation (TI), respectively. For the latter,

we do not report any results for the instances with greater than 90 jobs because CPLEX cannot solve the LP relaxation

of (TI) or find any feasible solution within the time limit of 1,800 seconds in this case. Coupled with its previously

demonstrated ability to construct high-quality lower and upper bounds for the original problem, the outstanding total

solution time performance of our approach – as evident from the last six columns of Table 3 – makes it a viable alternative

for tackling very large instances of Rm-TWT successfully.

The solution time performance of (TR −A) - BDS is overwhelmingly superior to that of (TR −A) - CPX. Based on

the instances that are solved by both methods within the time limit, the ratio of the solution time of (TR −A) - CPX to

that of (TR −A) - BDS is 46.7 on average. Out of a total of 720 instances, only 35 of them take slightly more time to

solve for (TR −A) - BDS compared to (TR −A) - CPX. For both methods, instances with loose average due dates within

a relatively wide range are more problematic. However, tightening the due dates does also hurt the performance of

(TR −A) - CPX while it benefits that of (TR −A) - BDS. The empirical distributions of the solution times of (TR −A) -

BDS and (TR −A) - CPX are plotted with solid and dashed lines in Figure 2, respectively. Similar to those in Figure 1, the

horizontal axes are in logarithmic scale. The performance of (TR −A) - CPX is adversely affected by both an increasing

number of machines m and an increasing number of jobs per machine n′ in an instance. To make the former observation

concrete, note that the percentage of the instances with n′ = 20 solved to optimality by (TR −A) - CPX within 60 seconds

is 100%, 88.3%, 6.7%, and 0% for m = 2, 3, 4, 5, respectively. In comparison, (TR −A) - BDS obtains the optimal solution

for 100%, 98.9%, 93.3%, and 82.8% of the instances with m = 2, 3, 4, 5, respectively, in less than 60 seconds. Note that

these latter numbers are aggregated over n′, including larger instances with n′ = 30, 40 as well. Clearly, (TR −A) - BDS

displays a significantly more stable performance. Finally, we note that the solution times of (TR −A) - BDS are strongly

correlated with the number of Benders cuts generated, as expected. The median percentage of the active Benders cuts

for the final node problem in the search tree is 86.4% with a corresponding average of 81.3%.

The columns under “Feasible Sol’n” in Table 3 justify the use of an optimal algorithm to solve the single machine

problems for a given job partition. Even for the five machine and 200 job instances, it takes an average of 2.31 seconds

and no more than 6.96 seconds to solve all single machine problems to optimality by the SiPS/SiPSi solver for all job

partitions identified. This solver is extremely fast; the time expended for a 40-job single machine instance is about 30

milliseconds. We emphasize that the best solution of the preemptive relaxation does not necessarily produce the best

non-preemptive solution for the original problem. Therefore, the ability of locating many high-quality job partitions in

the search tree is a critical advantage of (TR −A) - BDS, which identifies on average 4.7 times more job partitions per

instance compared to (TR −A) - CPX. This characteristic may also prove useful in order to jump start a population based

heuristic following the completion of (TR −A) - BDS.

5.2 Results for Rm-TWET Table 4 is structured identically to Table 2 and depicts the percentage gap results for

Rm-TWET. Unsurprisingly, both solving the preemptive relaxation and obtaining high-quality non-preemptive solutions

pose a more difficult challenge for Rm-TWET than for Rm-TWT. In general, the gaps are larger and the solution times are

longer than those in the previous section. However, in the grand scheme of things – also factoring in the lack of scalable

alternate algorithms for this problem in the literature – we attain pretty promising results for Rm-TWET as well.

As before, the purpose of the figures presented under “(TR −A) - BDS” in Columns 4–6 is to argue the value of the our

approach for solving (TR −A). The number of instances not solved to within the targeted gap of 3% by (TR −A) - BDS

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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Figure 2 The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX for Rm-TWT.

within 600 seconds is 159 out of a total of 720. The corresponding number for (TR −A) - CPX is 252 with a time limit of

1800 seconds. Moreover, the median gap of 8.3% for those instances that could not be solved within the specified time

limit by (TR −A) - BDS stands in stark contrast to the corresponding gap of 100% for (TR −A) - CPX. The respective

average gaps are 12.6% and 80.2%. We reckon that (TR −A) - BDS tackles the preemptive relaxation (TR −A) of

Rm-TWET successfully.

(TR −A) - BDS yields very good lower bounds for Rm-TWET. The average lower bound gap in Columns 7–9 is no

more than 14.75% for all n, m combinations with an average of 9.02% across all instances. The gap is in excess of 15% for

only 13% of the instances (93 instances).

The results on the optimality gaps of the non-preemptive solutions included in the last six columns of Table 4 certify

(TR −A) - BDS as a viable and scalable algorithm for solving large instances of Rm-TWET. As is the case with Rm-TWT,

even the LP relaxation of (TI) is not solved within half an hour for instances with 100 or more jobs. Among the smaller

360 instances, (TI) beats (TR −A) - BDS in 125 cases with an average improvement of 0.84%. For the other 235 instances,
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(TR −A) - BDS outperforms (TI) by 40.17% on average. The optimality gap of the incumbent from (TI) is over 15% in

39% of these instances (142 instances) while (TR −A) - BDS does always keep the gap below the same threshold with the

exception of 5 instances. Even for the 360 larger instances with 100 or more jobs, the proposed Benders-type method finds

a feasible solution for the original problem with an optimality gap less than 15% in 86% of the cases (310 instances). The

behavior of (TR −A) - BDS with respect to the varying TF and RDD levels in Table 4 is consistent with our observations

for Table 2. The adverse effect of low TF and high RDD values on both the lower and upper bound quality persists with

the same underlying reasons explained in the previous section.

Table 4 Percentage gap results for Rm-TWET.

(TR −A) - BDS LB Quality Feasible Sol’n (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 2.7 2.9 4.4 4.7 6.9 15.1 0.8 0.9 3.2 0.1 0.1 0.5
0.6 2.6 2.8 2.9 4.7 7.4 10.3 0.8 2.0 0.7 0.1 1.1 0.0
0.8 2.0 2.3 2.8 3.1 4.6 5.7 1.0 0.8 0.6 0.0 0.0 0.0
1.0 1.9 1.4 1.5 2.2 2.2 2.7 0.3 0.2 0.2 0.0 0.0 0.0

60

2

0.4 2.1 3.0 5.4 3.8 6.6 13.7 0.7 1.1 2.7 4.5 3.0 15.7
0.6 2.2 2.7 3.0 3.9 6.8 10.0 0.7 1.7 2.6 11.4 17.9 19.0
0.8 1.8 1.8 2.6 2.9 3.8 5.7 0.4 0.6 0.8 7.5 8.3 17.9
1.0 1.6 0.6 1.7 1.8 1.1 2.8 0.2 0.1 0.3 0.8 1.0 4.0

3

0.4 2.6 3.0 10.1 5.3 8.1 17.4 1.5 1.3 2.3 2.0 1.5 0.6
0.6 2.9 2.9 6.0 5.0 7.9 17.9 1.4 2.3 5.3 4.8 3.5 16.3
0.8 2.0 2.6 2.9 3.4 5.7 7.0 0.9 0.8 1.1 0.4 4.5 3.1
1.0 2.4 2.4 2.6 2.4 2.7 4.3 0.7 0.7 0.8 0.3 0.0 0.3

80

2

0.4 2.1 2.8 6.6 3.5 5.6 13.3 0.9 1.1 2.6 5.5 14.5 53.2
0.6 2.0 2.7 3.1 3.1 5.4 7.9 0.5 1.5 1.7 16.9 16.4 32.7
0.8 1.9 1.7 2.6 2.6 3.1 5.0 0.4 0.5 1.0 33.1 17.3 25.0
1.0 1.9 1.0 1.0 2.0 1.5 1.9 0.3 0.2 0.3 1.8 8.5 11.9

4

0.4 2.9 5.9 31.2 5.8 12.1 50.7 2.8 4.9 20.6 81.3 100.0 100.0
0.6 2.7 3.6 20.3 6.4 9.7 35.6 2.8 4.6 11.5 71.4 72.6 79.5
0.8 2.4 2.8 3.0 4.2 6.2 8.2 1.1 1.9 1.5 35.4 81.5 49.5
1.0 2.8 2.1 2.7 3.1 3.1 4.6 1.0 0.9 1.4 23.9 44.3 82.4

90 3

0.4 2.7 3.7 15.2 4.6 8.3 27.3 1.9 3.3 8.6 50.2 92.6 84.0
0.6 2.1 2.8 6.6 4.0 6.8 15.7 1.2 3.0 5.3 69.7 83.8 97.1
0.8 2.8 2.7 2.6 3.9 5.0 5.9 0.8 1.6 1.9 33.9 52.2 74.1
1.0 2.7 2.4 2.2 2.7 3.4 3.4 1.0 0.9 1.0 23.4 49.5 86.9

100 5

0.4 3.1 9.6 34.6 6.1 16.9 57.9 4.2 10.5 30.9
0.6 2.9 6.5 22.2 6.1 14.1 41.5 4.5 10.0 22.9
0.8 2.6 3.0 6.2 4.7 6.5 12.0 3.4 5.1 7.4
1.0 2.5 1.9 2.8 3.0 3.1 5.1 1.4 2.1 3.5

120

3

0.4 2.4 3.0 11.5 3.8 6.6 20.9 2.5 5.0 12.0
0.6 1.9 2.9 5.0 3.2 6.5 12.8 2.0 4.9 9.2
0.8 2.7 2.2 2.8 3.6 4.1 5.5 1.5 2.9 3.9
1.0 2.7 2.4 2.2 2.9 3.0 3.2 1.3 2.0 1.8

4

0.4 2.9 4.3 24.4 5.1 8.6 41.4 3.8 5.9 22.6
0.6 2.6 3.5 12.2 4.6 8.6 24.8 4.3 6.5 15.6
0.8 2.4 2.8 3.2 3.8 5.4 7.4 3.8 4.8 6.3
1.0 2.7 2.5 2.3 3.2 3.4 3.9 3.0 3.4 3.6

150 5

0.4 2.9 8.3 30.4 4.9 14.8 66.9 4.9 14.8 66.0
0.6 2.9 4.8 17.3 5.2 10.8 36.0 5.2 10.8 36.0
0.8 2.4 2.9 3.8 4.0 5.7 8.3 4.0 5.7 8.3
1.0 2.5 1.9 2.1 3.0 2.8 3.6 3.0 2.8 3.6

Continued on next page. . .
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Table 4 continued. . .

(TR −A) - BDS LB Quality Feasible Sol’n (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

160 4

0.4 2.6 4.3 18.1 3.9 8.5 35.1 3.9 8.5 35.1
0.6 2.1 3.0 10.6 3.6 6.6 22.7 3.6 6.6 22.7
0.8 2.6 2.6 2.8 3.7 4.6 5.8 3.7 4.6 5.8
1.0 2.1 2.6 1.8 2.5 3.3 3.0 2.3 3.3 3.0

200 5

0.4 2.9 6.9 28.3 4.4 11.9 58.4 4.4 11.9 58.4
0.6 2.1 2.9 14.9 3.5 7.2 30.7 3.5 7.2 30.7
0.8 2.0 2.8 3.0 3.0 4.7 6.4 3.0 4.7 6.4
1.0 2.3 2.8 2.7 2.7 3.6 3.9 2.7 3.6 3.9
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(d) m = 5

Figure 3 The empirical distributions of the optimality gaps of the upper bounds by (TR −A) - BDS and (TI) for Rm-TWET.

Figure 3 is the counterpart of Figure 1, where the empirical distributions of the optimality gaps of the feasible solutions

associated with (TR −A) - BDS and (TI) are indicated with solid and dashed lines in these figures, respectively. As

previously, (TR −A) - BDS generally exhibits a robust behavior with respect to varying values of n′ for a fixed m. Clearly,
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the same cannot be claimed about (TI). The problem gets more challenging with an increasing number of machines, and

the percentage gaps associated with (TR −A) - BDS demonstrate a modest increase with increasing m. For instance, for

70% of the instances with 2, 3, 4, and 5 machines, the gaps are less than 2%, 5%, 7%, and 11%, respectively. In comparison,

the gaps of the incumbents retrieved from (TI) grow quickly with m.

The solution times are detailed in Table 5. (TI) chokes on instances with greater than 90 jobs, and the corresponding

cells are left blank as in Table 3. Moreover, the monolithic formulation of (TR −A) with 200 jobs and 5 machines grows

too large for CPLEX, and even the root relaxation is not solved within the allotted time. Therefore, no results are reported

for this instance size under “(TR −A) - CPX”.
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Figure 4 The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX for Rm-TWET.

The performance patterns observed for Rm-TWT pretty much carry over to Rm-TWET as well. The solution times of

(TR −A) - BDS are in general better than those of (TR −A) - CPX by a large margin. Based on the 399 instances that

are solved by both methods within their respective time limits, the ratio of the solution time of (TR −A) - CPX to that

of (TR −A) - BDS is 48.0 on average. Among these instances, only 52 of the relatively smaller instances with less than
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Table 5 Average solution times (in seconds) for Rm-TWET.

(TR −A) - CPX* (TR −A) - BDS* # of Cuts Feasible Sol’n Total (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 15.3 (4) 13.5 (4) 20.9 (6) 15.7 (14) 21.6 (14) 453.7 (18) 485 604 4474 0.8 0.7 1.0 16 22 455 1285 629 1049

0.6 15.7 (3) 12.1 (3) 13.6 (4) 14.0 (11) 20.7 (12) 48.0 (16) 278 478 1119 0.6 0.6 0.9 15 21 49 1290 1793 682

0.8 16.9 (3) 14.6 (3) 13.8 (3) 9.6 (11) 9.6 (7) 16.9 (14) 232 243 379 0.6 0.3 0.7 10 10 18 492 652 627

1.0 15.8 (3) 15.6 (3) 15.2 (3) 4.6 (7) 5.8 (9) 7.8 (10) 132 164 206 0.2 0.3 0.4 5 6 8 253 305 243

60

2

0.4 59.3 (3) 42.6 (3) 47.1 (5) 47.3 (13) 146.1 (23) 550.1 (20) 528 1580 4044 3.0 4.8 5.3 50 151 555 1607 1512 1806

0.6 62.2 (3) 47.8 (3) 44.6 (4) 41.4 (11) 51.8 (13) 249.3 (21) 312 396 2236 2.6 3.4 5.1 44 55 254 1816 1806 1805

0.8 64.7 (3) 56.3 (3) 52.9 (3) 24.5 (10) 35.2 (12) 71.8 (14) 203 302 627 2.0 2.4 2.8 26 38 75 1816 1755 1805

1.0 68.8 (3) 70.9 (3) 69.6 (3) 14.0 (5) 23.0 (10) 26.3 (9) 128 210 225 0.9 1.9 1.8 15 25 28 1371 963 1679

3

0.4 121.0 (3) 219.3 (4) 384.0 (6) 17.3 (14) 207.3 (17) 601.0 (19) 476 2876 5824 1.2 1.3 1.4 18 209 602 1706 1568 1380

0.6 198.9 (3) 182.9 (4) 381.7 (6) 6.2 (10) 19.8 (12) 541.2 (18) 136 615 4616 0.8 0.9 1.6 7 21 543 1627 1756 1807

0.8 256.3 (3) 215.8 (4) 210.8 (4) 2.9 (6) 8.9 (12) 17.8 (15) 48 271 579 0.5 0.8 1.1 3 10 19 1691 1787 1564

1.0 231.1 (3) 236.5 (3) 231.8 (3) 1.8 (5) 2.2 (6) 5.4 (11) 27 33 133 0.3 0.4 0.8 2 3 6 1259 960 1492

80

2

0.4 198.3 (3) 156.5 (3) 118.2 (4) 68.2 (13) 141.7 (18) 587.9 (22) 366 794 3188 8.0 12.5 14.7 76 154 603 1811 1813 1810

0.6 193.6 (3) 139.9 (3) 143.2 (4) 47.3 (12) 74.2 (19) 328.0 (26) 294 478 2044 7.2 13.0 18.5 55 87 347 1809 1822 1816

0.8 210.1 (3) 198.5 (3) 155.5 (3) 35.2 (10) 51.2 (12) 70.1 (13) 256 361 527 5.6 6.4 7.7 41 58 78 1808 1810 1809

1.0 227.2 (3) 224.3 (3) 203.6 (3) 18.9 (7) 33.5 (11) 39.3 (14) 138 252 283 4.2 7.8 8.2 23 41 47 1240 1809 1809

4

0.4 432.6 (4) 646.8 (4) 1708.2 (8) 47.9 (16) 596.0 (25) 609.4 (24) 1090 5056 5764 1.6 2.9 3.1 50 599 612 2617 3335 3825

0.6 603.8 (3) 611.1 (4) 1947.1 (9) 23.4 (17) 324.1 (23) 604.8 (23) 631 2968 6134 2.2 3.5 3.1 26 328 608 2689 3408 3677

0.8 627.5 (3) 525.9 (3) 644.0 (5) 16.8 (9) 30.7 (15) 426.4 (21) 118 915 3899 1.2 1.7 2.7 18 32 429 2441 2132 3061

1.0 772.6 (3) 685.2 (3) 680.3 (3) 10.0 (6) 7.7 (7) 17.8 (10) 36 65 110 0.7 0.8 1.4 11 9 19 3237 2625 3288

90 3

0.4 438.6 (3) 495.1 (4) 920.3 (7) 15.7 (9) 335.0 (21) 606.2 (20) 90 2507 4400 3.2 7.1 7.3 19 342 614 2410 3802 3120

0.6 720.8 (3) 594.9 (4) 757.0 (5) 13.4 (7) 120.4 (18) 605.1 (18) 48 1240 4777 2.8 6.3 6.5 16 127 612 2531 2045 3052

0.8 800.3 (3) 715.8 (3) 578.1 (3) 9.8 (7) 10.7 (8) 42.8 (13) 39 46 356 2.2 2.9 4.9 12 14 48 1944 2685 2643

1.0 739.3 (3) 691.0 (3) 669.2 (3) 8.1 (4) 9.8 (6) 10.7 (7) 20 30 41 1.7 1.9 2.4 10 12 13 1908 2444 2551

100 5

0.4 1555.3 (4) 1805.2 (4) 1849.1 (5) 394.2 (25) 610.8 (22) 606.0 (23) 3545 4827 5430 3.6 3.7 3.3 398 614 609

0.6 1498.4 (4) 1670.1 (6) 1804.3 (6) 99.5 (22) 600.6 (23) 600.5 (25) 1230 4890 5651 3.6 3.7 3.1 103 604 604

0.8 1363.5 (3) 1111.0 (4) 1399.2 (5) 8.4 (12) 109.1 (23) 489.9 (22) 277 2224 4521 1.3 2.5 2.6 10 112 493

1.0 1613.7 (3) 1480.1 (3) 1381.9 (3) 3.2 (8) 3.8 (9) 15.9 (14) 66 88 619 0.7 0.9 1.5 4 5 17

*: Values in the parentheses denote the number of different job partitions present in the final solution pool. Continued on next page. . .



Ş
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Table 5 continued. . .

(TR −A) - CPX* (TR −A) - BDS* # of Cuts Feasible Sol’n Total (TI)

n m TF | RDD 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

120

3

0.4 1331.1 (3) 1053.2 (4) 977.8 (4) 32.8 (11) 375.7 (19) 600.9 (21) 110 1926 3025 10.6 17.2 22.4 43 393 623

0.6 1448.0 (3) 1097.7 (3) 1037.1 (5) 14.6 (8) 135.7 (18) 600.5 (21) 44 869 3472 7.3 17.2 22.1 22 153 623

0.8 1678.9 (3) 1416.4 (3) 1103.3 (3) 8.6 (6) 12.7 (7) 54.5 (14) 28 45 406 4.3 6.0 11.1 13 19 66

1.0 1699.3 (3) 1726.3 (3) 1480.6 (3) 6.7 (4) 6.6 (4) 10.5 (6) 20 20 38 3.9 3.5 4.8 11 10 15

4

0.4 1710.3 (3) 1568.0 (3) 1818.8 (5) 64.3 (14) 600.5 (28) 601.3 (22) 659 4231 4167 5.7 12.1 9.9 70 613 611

0.6 1804.6 (2) 1690.9 (4) 1789.4 (5) 18.6 (10) 310.9 (21) 601.5 (21) 170 2736 4461 4.4 10.1 9.8 23 321 611

0.8 1812.0 (2) 1801.6 (3) 1692.1 (3) 8.7 (8) 56.3 (15) 244.2 (20) 58 770 2408 3.4 5.6 8.8 12 62 253

1.0 1812.1 (2) 1806.3 (2) 1802.9 (2) 4.6 (5) 6.6 (7) 9.5 (9) 32 51 74 1.9 2.4 3.6 6 9 13

150 5

0.4 1895.2 (1) 1865.2 (2) 2093.3 (2) 154.2 (25) 601.0 (28) 601.6 (25) 1518 4039 3710 11.9 16.1 15.5 166 617 617

0.6 1843.1 (2) 1985.6 (2) 1858.6 (2) 46.0 (14) 601.5 (24) 600.6 (24) 495 4237 4459 8.0 14.2 14.0 54 616 615

0.8 1858.3 (2) 1857.5 (2) 1849.6 (2) 13.1 (9) 82.8 (18) 507.1 (22) 105 1134 3994 4.7 8.8 11.8 18 92 519

1.0 1900.3 (2) 1822.4 (2) 1812.4 (2) 7.0 (6) 10.0 (7) 11.9 (9) 41 83 91 2.8 3.3 4.4 10 13 16

160 4

0.4 1879.5 (1) 1850.0 (1) 1819.4 (1) 78.2 (13) 488.8 (21) 601.0 (24) 429 2432 2889 14.8 24.4 32.8 93 513 634

0.6 1875.9 (1) 1836.1 (1) 1879.6 (1) 23.0 (9) 200.1 (19) 600.6 (27) 77 1314 3391 11.4 23.9 35.5 34 224 636

0.8 1906.9 (1) 1841.3 (1) 1843.0 (1) 15.1 (8) 40.6 (11) 137.6 (15) 58 247 1005 8.6 12.0 16.7 24 53 154

1.0 1885.6 (1) 1843.6 (1) 1835.8 (1) 10.4 (5) 10.7 (7) 17.9 (10) 34 39 70 6.6 7.9 11.2 17 19 29

200 5

0.4 126.9 (15) 601.2 (25) 601.3 (20) 568 2709 2609 20.8 37.8 33.8 148 639 635

0.6 28.1 (11) 325.3 (23) 601.3 (25) 102 2003 3227 16.9 35.8 42.0 45 361 643

0.8 21.6 (10) 80.7 (13) 377.5 (23) 89 567 2467 13.0 17.5 31.7 35 98 409

1.0 11.2 (6) 12.6 (5) 19.1 (8) 44 44 89 9.6 7.6 11.1 21 20 30

*: Values in the parentheses denote the number of different job partitions present in the final solution pool.



Şen, Bülbül: A Preemptive Relaxation for Unrelated Parallel Machines
Sabancı University, c©May 12, 2013 30

90 jobs and generally large RDD values take longer for (TR −A) - BDS. As in Table 3, low TF and high RDD values

result in tough instances to handle for (TR −A) - BDS while instances with tight due dates are solved extremely well.

The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX, plotted with solid and dashed

lines in Figure 4, respectively, reveal that the median solution times of (TR −A) - BDS are in the range from 11 to 125

seconds for all m, n′ combinations. (TR −A) - CPX features a much less robust behavior with a median solution time of 15

seconds for n′ = 20 and m = 2 that quickly increases to 220, 649, and 1589 seconds for n′ = 20 and m = 3, 4, 5, respectively.

Compared to those in Table 3, the computational effort expended is significantly more. To be specific, the median solution

times of (TR −A) - CPX for the Rm-TWET instances with 2, 3, 4, and 5 machines are 5, 7, 7, and 4 times of those for the

corresponding Rm-TWT instances, respectively. The respective ratios for (TR −A) - BDS are 11, 4, 6, and 8. The greater

planning horizons in the formulations are a primary factor here in addition to the inherent difficulty of Rm-TWET over

Rm-TWT. This difficulty is also reflected in the number of Benders cuts generated. (TR −A) - BDS needs to create 5.7

times more cuts for Rm-TWET compared to Rm-TWT, and the great majority of these cuts is not redundant. The median

percentage of the active Benders cuts for the final node problem in the search tree is 95.5% with a corresponding average

of 92.1%. Note that these numbers are higher than their counterparts for Rm-TWT.

The performance under “Feasible Sol’n” in Table 5 is more than satisfactory to solve the single machine problems for

a given job partition. The SiPS/SiPSi solver returns the optimal solution for a single machine TWET problem in about

27, 110, and 305 milliseconds for instances with n′ = 20, 30, 40, respectively. These numbers translate into 23 seconds

on average to solve all single machine problems to optimality for a five machine and 200 job instance with a maximum

of 56 seconds. While these figures are greater than their counterparts for Rm-TWT, they still make up for a small part

of the total solution time. The time spent for calculating the non-preemptive solutions accounts for only 12.5% of the

total solution time on average. Finally, we note that (TR −A) - BDS identifies on average 5.4 times more job partitions

per instance compared to (TR −A) - CPX, where the average number of partitions retrieved from the search tree of

(TR −A) - BDS is 14.4. As we discussed in the previous section, this is a critical advantage that improves the quality of

the best non-preemptive solution.

6. Conclusions and Future Research In this paper, we developed a new preemptive relaxation for unrelated parallel

machine scheduling problems with weighted tardiness and weighted earliness/tardiness objectives. The key property of

this relaxation is that it provides us with a tight lower bound and a set of high-quality job partitions that forms the basis

for the near-optimal non-preemptive solutions for the original problem. The relaxation itself is formulated as a difficult

mixed integer linear program, and a computationally effective Benders decomposition algorithm that can handle very

large instances of this formulation is a primary contribution of this paper. Our implementation employs state-of-the-

art computational features, such as the lazy constraint callback of IBM ILOG CPLEX (2011) and a parallelization of the

Benders subproblems via the Boost 1.51 library. Ultimately, we characterize our approach as a simple, non-parametric,

and easy to implement mathematical programming based heuristic with a further distinguishing property that it can

handle both a regular and a non-regular scheduling objective successfully with no additional customization. The results

for Rm-TWT are outstanding. While those for Rm-TWET are not on a par, we reckon that they are of high quality.

Initially, we also experimented with the identical parallel machine scheduling problems Pm//
∑

j π jT j and

Pm//
∑

j π jT j + ǫ jE j. However, the symmetry inherent in these problems results in many similar cuts and causes

(TR −A) - BDS to choke. One of the items in our future research agenda is exploring ways of enhancing our algorithm

to be able to handle the identical parallel machine environment.

A further goal is to embed (TR −A) - BDS into an optimal algorithm for Rm-TWT and Rm-TWET. Note that the

proposed preemptive relaxation can naturally handle branching decisions on the job to machine assignments.

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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