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Abstract

Kojima and Ünver (2011) are the first to characterize the class of mechanisms coinciding

with the Boston mechanism for some priority order. By mildly strengthening their central

axiom, we are able to pin down the Boston mechanism outcome for every priority order.

Our main result shows that a mechanism is outcome equivalent to the Boston mechanism at

every priority if and only if it respects both preference rankings and priorities and satisfies

individual rationality for schools. In environments where each student is acceptable to ev-

ery school, respecting both preference rankings and priorities is enough to characterize the

Boston mechanism.
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1 Introduction

A recent paper by Kojima and Ünver (2011), hereafter K&Ü, offers two characterizations

of the class of mechanisms each member of which coincides with the Boston mechanism

(hereafter BM ) for some priority order. In this paper, we axiomatize BM outcome at every

priority order in the school choice environment.

K&Ü’s results are remarkable in that their setting and axioms are priority-free, yet, they

are able to characterize the class of mechanisms coinciding with BM for some priority order.

The main axiom in K&Ü is “respecting preference rankings”. A mechanism respects prefer-

ence rankings if whenever a student i is assigned to one of his dispreferred schools to school

c, then all the seats of latter are assigned to the students who rank school c at least as high

as student i. A mechanism is consistent if a student is removed along with his assignment,

then the assignments of all other remaining students obtained by applying the mechanism to

the smaller problem are the same as those at the original problem. A mechanism is resource

monotonic if each student’s welfare is affected in the same way whenever the set of schools

shrinks or expands. K&Ü characterize the class of mechanisms coinciding with BM for some

priority order by respecting preference rankings, consistency, resource monotonicity, and an

auxiliary invariance property. In the restricted domain where every school has only one

seat, the characterization is given by respecting preference rankings, individual rationality,

population monotonicity1, and the invariance axiom.

In contrast to K&Ü, in this study, the priority order profile of schools is a primitive of

the model, and we pin down BM outcome for every priority order. We say that a mechanism

respects both preference rankings and priorities if whenever a student prefers a school to his

assignment, then either the school finds him unacceptable (i.e., it prefers keeping seat vacant

to being matched with him) or the school has no excess capacity and each assigned student to

the school ranks it at least as high as him, and in the case of equal ranking, each of them has

higher priority than him. A mechanism is individually rational for schools if no seat of any

school is assigned to an unacceptable student of it. Our main result shows that a mechanism

coincides with BM at every problem (i.e., at every preference and priority order profiles)

if and only if it respects both preference rankings and priorities and satisfies individual

rationality for schools. Therefore, while respecting both preference rankings and priorities is

a natural extension of respecting preference rankings to the priority-based setting, it along

with individual rationality for schools is able to strengthen the characterization result of

K&Ü. In many school choice problems, on the other hand, each student is acceptable to

1A mechanism is population monotonic if students are affected in the same direction after some students
leave without their assignments.
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every school. In such setting, the characterization is given by respecting both preference

rankings and priorities.

In order to emphasize the difference between the current paper and K&Ü, we can consider

the two-agent serial dictatorship. In this well-known mechanism, agents choose their favorite

object one at a time following the exogenously given ordering. It is easy to see that two-

agent serial dictatorship is equivalent to BM for some priority order, yet, it is not outcome

equivalent to BM at every priority order. Namely, they coincide with each other at the

priority order under which the first agent in the ordering has the highest priority at every

object. However, except for this particular priority order profile, equivalence no longer holds.

This paper is broadly related to the axiomatic characterization line of research. Kojima

and Manea (2010) characterize the class of mechanisms coinciding with the deferred accep-

tance algorithm for some priority order. Then, similar to the current paper, Morrill (2011a)

strengthens their characterization result through axiomatizing the deferred acceptance out-

come at every priority order. Papai (2000) characterizes the class of hierarchical exchange

rules, which includes the Top Trading Cycles mechanism. Recently, Morrill (2011b) and

Abdulkadiroglu and Che (2010) provide alternative axiomatizations of the Top Trading Cy-

cles mechanism in the one-to-one matching environment. Then, it is characterized in the

more general many-to-one setting by Dur (2012). In the setting of house allocation with

existing tenants, Sönmez and Ünver (2010) axiomatize the you request my house-I get your

turn (YRMH-IGYT) mechanism. The axiomatization of the Probabilistic Serial mechanism

of Bogomolnaia and Moulin (2001) has received much attention recently. Hashimoto et al.

(2012) and Bogomolnaia and Heo (2012) independently offer characterizations of the Proba-

bilistic Serial mechanism. Another well-known mechanism serial dictatorship is axiomatized

by Svensson (1999).

The current work characterizes an important school choice mechanism on the full priority

domain. While the existing literature provides axiomatizations of school choice mechanisms,

almost all of the existing papers assume acceptant priority structure under which every

student is acceptable to every school (e.g., Kojima and Manea (2010), Morrill (2011b),

Papai (2000), Abdulkadiroglu and Che (2010), and Dur (2012). One exception is Morrill

(2011a) characterizing the deferred acceptance mechanism for general substitutable priority

structures).2 Therefore, having our characterization result on the full priority domain is

important. The individual rationality for schools axiom plays a critical role in obtaining

the result. As other well-known school choice mechanisms (The deferred acceptance and

2Apart from the theoretical restriction of acceptant priorities, it is also a restrictive assumption for
practical purposes as not every student is acceptable to every school in real-life. One such student placement
program example is Massachusetts school district in U.S.
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top trading cycles mechanisms) also satisfy that property, it has general implications for not

only BM but also other well-known school choice mechanisms on the full priority domain.

2 Model & Results

A school choice problem consists of a tuple (S,C, P,�, q). The first two components

are finite and disjoint sets of students and schools, respectively. Each student i ∈ S has a

preference relation Pi, which is a complete, strict, and transitive binary relation over the set

of schools C and being unassigned (denoted by ∅). Let P be the set of all such preference

relations, and the list P = (Pi)i∈S is the preference profile of students. We write cRic
′

whenever cPic
′ or c = c′. Let Pi(c) be the ranking of school c at Pi, that is, if school c is

the kth choice of student i with respect to Pi, then Pi(c) = k. Each school c ∈ C has a

priority order �c, which is a complete, strict, and transitive binary relation over the set of

students S and keeping a seat vacant (denoted by ∅). Let �= (�c)c∈C be the priority order

profile of schools. As well as the priority orders, q = (qc)c∈C is the quota profile of schools

where qc is of school c. The “null school” which denotes being unassigned is not scarce, i.e.,

|q∅| = |S|. We say that student i (school c) is acceptable to school c (student i) if i �c ∅ (

cPi∅ ). The priority order profile � is acceptant if i �c ∅ for any school c ∈ C and student

i ∈ S. Throughout the paper, we fix S, C and write (P,�, q) to denote a problem.

A matching µ is an assignment of students to schools such that no student is assigned

more than one school, and no school is assigned to more students than its quota. We write

µk for the assignment of student (school) k ∈ S ∪ C under µ. A mechanism is a systematic

way that assigns a matching for every problem (P,�, q).

3 The Boston Mechanism

Below, we outline BM.

Step 1. Only the top choices of students are considered. Each school c admits the

students who are acceptable and rank it first one at a time following priority order �c until

either there are no seats left or there is no such student left. All admitted students are

removed.

In general:

Step k. Only the kth choices of the remaining students are considered. Each school c

with still positive seats left admits the students who are acceptable and rank school c as

their kth choice one at a time following priority order �c until either there are no seats left

or there is no such student left. All admitted students are removed.
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We write BM(P,�, q) for the Boston mechanism outcome at problem (P,�, q).
Below we introduce the cental axiom in the paper, which incorporates the priorities into

the main axiom of K&Ü (respecting preference rankings) in a natural way.

Definition 1. Matching µ respects both preference rankings and priorities at a given problem

(P,�, q), if there exists a student-school pair (i, c) such that cPiµi and i �c ∅, then |{j ∈
µc : Pj(c) < Pi(c)} ∪ {j ∈ µc : Pj(c) = Pi(c) & j �c i}| = qc.

We say that a mechanism ψ respects both preference rankings and priorities if ψ(P,�, q)
respects both preference rankings and priorities at every problem (P,�, q). This axiom

advocates giving school seats to the ones putting them in preference rankings as high as

possible, and when more students than the number of (remaining) seats apply for a school,

the school wants to admit students with higher priorities. It is desirable especially in welfare

terms as we will explain in detail later.

K&Ü introduce the respecting preference rankings property, which turns out to be the

central axiom in their priority-free setting. They call student i qualified at school c under

mechanism ψ if ψi(P, q) = c for some problem (P, q). Then, they say that a matching induced

by mechanism ψ respects preference rankings for ψ at problem (P, q) if student i is qualified

at school c under ψ and cPiµi, then |{j ∈ µc : Pj(c) ≤ Pi(c)}| = qc.

In order to understand the logical relation between our and K&Ü’s axioms, first, we

should observe that, in our setting, any student is qualified at every school under any mech-

anism that respects both preference rankings and priorities. This is due to the fact that our

domain includes priorities as a primitive. That is, we can easily construct problem instances

where any student is matched with any school under any mechanism satisfying our axiom.3

Given that, we can easily observe that our axiom implies respecting preference rankings,

however, the converse is not true. To see this, consider a variant of Boston mechanism under

which, at some step, schools accept lower priority students among the ones applying to them

in that step. This defines a mechanism different from BM respecting preference rankings,

nevertheless, it violates respecting both preference rankings and priorities.

Another interesting implication of the above axioms is related to a certain welfare max-

imization problem. K&Ü demonstrate that, for a given priority profile, the outcome of a

Boston mechanism is equivalent to the solution of a particular welfare maximization problem.

Proposition 1 (K&Ü). For a given problem (P,�, q), the solution of the following linear

program is equal to the outcome of the Boston mechanism:

3For instance, if we want a matching where each student i is matched with school ci (schools might be
the same across all students), then we can think of the problem: Pi : ci, ∅; and qci = |N | for every ci ∈ C,
and � is such that every student is acceptable to every school. Then, any mechanism satisfying our axiom
assigns the desired matching.
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max
[zi,c]

∑
i∈I,c∈C∪{∅}

zi,cui(c).

subject to

∅ �c i ⇒ zi,c = 0 ∀i ∈ I, c ∈ C
0 ≤ zi,c ∀i ∈ I, c ∈ C ∪ {∅}∑

c∈C∪∅

zi,c = 1 ∀i ∈ I∑
i∈I

zi,c ≤ qc ∀c ∈ C ∪ {∅}.

where q∅ = |I|, and (ui)i∈I ⊆ ((R
|C|∪{∅}
+ ))|I| are utility functions consistent with the

preference profile P 4 satisfying

(i) 2ui(d) < uj(c) ∀i, j ∈ I and c, d ∈ C ∪ {∅} with Pj(c) < Pi(d)

(ii) 2ui(c) < uj(c) ∀i, j ∈ I and c ∈ C ∪ {∅} with Pi(c) = Pj(c) and j �c i.

By slightly modifying the proof of above proposition (hence, omitted), we can easily show

that the solution(s) of the same maximization problem but with the following condition (ii′)

instead of condition (ii) above gives the set of all matchings respecting preference rankings.5

(ii′) 2ui(c) < uj(c) or 2uj(c) < ui(c) ∀i, j ∈ I and c ∈ C ∪ {∅} with Pi(c) = Pj(c).

Hence, Conditions (ii) and (ii′) show that respecting both preference rankings and pri-

orities selects the allocation among the solutions of the problem with condition (ii′) which is

obtained through breaking the ties by favoring higher priority students. This way of selection

can easily be argued to be fair, which also justifies our main axiom on the fairness ground.

K&Ü show that a mechanism is BM for some priority order if it is consistent, resource

monotonic, r.r invariant, and respects preference rankings. While consistency and resource

monotonicity are standard axioms in the characterization literature, the invariance property

is a weaker version of Maskin monotonicity. In the rest of the paper, we will demonstrate

that our natural extension of respecting preference rankings to the priority based setting

along with a weaker version of the standard individual rationality enables us to pin down

BM outcome at every priority rather than for some priority.

A mechanism ψ is individually rational for schools if, at every problem (P,�, q) and for

any school c ∈ C, there is no student i ∈ ψc(P,�, q) such that ∅ �c i.

Theorem 1. A mechanism ψ respects both preference rankings and priorities and satisfies

individual rationality for schools if and only if ψ(P,�, q) = BM(P,�, q) for every problem

(P,�, q).

4That is, for any i ∈ I and c, d ∈ C ∪ {∅}, ui(c) > ui(d) ⇔ cPid.
5I am grateful to the anonymous referee for suggesting me to look at the welfare maximization problem.
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Proof. See Appendix.

Remark 1. In this remark, we show that our axioms are independent. The “null”

mechanism which leaves each student unassigned satisfies individual rationality for schools,

yet, it does not respect both preference rankings and priorities. Let us consider a mechanism

which works as the same as BM except it treats every student as acceptable at every school

regardless of the actual priority orders. It respects both preference rankings and priorities,

yet, it is not individually rational for schools.

Remark 2. After I wrote this paper, I figured out that Chen (2011) independently

characterizes BM in the same setting as the current paper. Yet, our work is a clear improve-

ment over Chen (2011) for two important reasons. First, the combination of the axioms in

the main theorem (Theorem 1) of Chen (2011) is equivalent to respecting both preference

rankings and priorities. While she claims that those axioms characterize BM in Theorem

1, it is not true as respecting both preference rankings and priorities is not enough as we

explained above. Yet, as her characterizations are valid in the restricted acceptant priorities

domain in which any student is acceptable to every school, Chen (2011) can be assumed in

that restricted domain, while, the current paper provides characterization in the full strict

priority domain. Another advantage of the current paper is that the proofs are much simpler

and shorter than those in Chen (2011).

In some school districts, students might not be acceptable due to the living outside of

the districts or discipline problems.6 Yet, students are often acceptable to schools in school-

choice problems. In the acceptant priorities domain, we do not need individual rationality

for schools.

Proposition 2. In the acceptant priorities domain, a mechanism ψ respects both preference

rankings and priorities if and only if ψ(P,�, q) = BM(P,�, q) at every problem (P,�, q).

The proof of the above result is a straightforward modification of the proof of Theorem

1, hence, it is omitted.
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6For instance, not all school districts in Massachusetts accept students from outside of their districts.
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Appendix

The proof of Theorem 1. “If” part: It is straightforward to verify that BM respects both

preference rankings and priorities and satisfies individual rationality for schools.

“Only If” part:7 Let ψ be mechanism which is individually rational for schools and

respecting preference rankings and priorities. Assume for a contradiction that, for some

problem (P, q,�), ψ(P, q,�) 6= BM(P, q,�). Hereafter, for ease of notation, we write µ and

π for the outcomes, respectively. Let k̃ be the earliest step of Boston algorithm in which

student s is assigned and µs 6= πs. If we write T (k) for the assigned students at step k in

the course of Boston algorithm, then, our above construction implies that µs = πs for all

s ∈
⋃
k<k̃ T (k) (if k̃ = 1, then

⋃
k<k̃ T (k) = ∅).

Now, we have s ∈ T (k̃) and µs 6= πs. We first claim that πsPsµs. By the definition of

Boston algorithm, at step k̃, student s applies to his favorite school among the ones having left

seat. This fact and µs = πs for all s ∈
⋃
k<k̃ T (k) imply that all schools student s preferring

to school πs are filled up by other students at matching µ, thereby, πsRsµs. This along with

µs 6= πs implies that πsPsµs. On the other hand, as µ respects both preference rankings and

priorities, we have |µπs| = qπs (note that student s is acceptable to both schools πs and µs

as he is matched with those schools under mechanisms BM and ψ which are individually

rational for schools). This implies that there exists a student s′ such that µs′ = πs 6= πs′ .

As µ respects both preference rankings and priorities, we have either Pπs(s
′) < Pπs(s) or

Pπs(s
′) = Pπs(s) and s′ �πs s. This along with πs being the k̃th choice of student s shows

that student s′ matches with πs′ in the course of Boston algorithm in a step earlier than k̃.

That is, s′ ∈
⋃
k<k̃ T (k). On the other hand, by our construction, we have µs = πs for all

s ∈
⋃
k<k̃ T (k). This, yet, contradicts µs′ 6= πs′ .
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Axiomatic Approaches to the Probabilistic Serial Mechanism,” forthcoming, Theoretical

Economics.

Kojima, F. and M. Manea (2010): “Axioms for Deferred Acceptance,” Econometrica,

78(2), 9–15.
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