
Reconstructing Weighted Phylogenetic Trees

and Phylogenetic Networks Using Answer Set

Programming

by Duygu Çakmak

Submitted to the Graduate School of Sabanc� University

in partial ful�llment of the requirements for the degree of

Master of Science

Sabanci University

August, 2010

Reconstructing Weighted Phylogenetic Trees and Phylogenetic Networks

Using Answer Set Programming

Approved by:

Asst. Prof. Dr. Esra Erdem

(Dissertation Supervisor)

Assoc. Prof. Dr. Ugur Sezerman

Dr. Alfredo Gabaldon

Asst. Prof. Dr. Balkiz Ozturk

Assoc. Prof. Dr. Yücel Sayg�n

Date of Approval:

c© Duygu ÇAKMAK 2010

All Rights Reserved

Reconstructing Weighted Phylogenetic Trees and Phylogenetic

Networks Using Answer Set Programming

Duygu ÇAKMAK

CS, Master's Thesis, 2010

Thesis Supervisor: Esra Erdem

Abstract

Evolutionary relationships between species can be modeled as a tree

(called a phylogeny) whose nodes represent the species, internal vertices rep-

resent their ancestors and edges represent genetic relationships. If there are

borrowings between species, then a small number of edges that denote such

borrowings can be added to phylogenies turning them into (phylogenetic)

networks. However, there are too many such trees/networks for a given fam-

ily of species but no phylogenetic system to automatically analyze them. This

thesis ful�lls this need in phylogenetics, by introducing novel computational

methods and tools for computing weighted phylogenies/networks, using An-

swer Set Programming (ASP). The main idea is to de�ne a weight function

for phylogenies/networks that characterizes their plausibility, and to recon-

struct phylogenies/networks whose weights are over a given threshold using

ASP solvers.

We have studied computational problems related to reconstructing weighted

phylogenies/networks based on the compatibility criterion, analyzed their

computational complexity, and introduced two sorts of ASP-based meth-

ods (representation-based and search-based) for computing weighted phylo-

iii

genies/networks. Utilizing these methods, we have introduced a novel divide-

and-conquer algorithm for computing large weighted phylogenies, and imple-

mented a phylogenetic system (Phylo-ASP) based on it. We have also

implemented a phylogenetic system (PhyloNet-ASP) for reconstructing

weighted networks. We have shown the applicability and the e�ectiveness of

our methods by performing experiments on two real datasets: Indo European

languages, and Quercus species in Turkey. Moreover, we have extended our

methods to computing weighted solutions in ASP and modi�ed an ASP solver

accordingly, providing a useful tool (clasp-w) for various ASP applications.

iv

Çözüm Kümesi Programlama kullanarak A§�rl�kl� Filogenetik

A§açlar ve A§lar�n Ç�kar�m�

Duygu ÇAKMAK

CS, Master Tezi, 2010

Thesis Supervisor: Esra Erdem

Özet

Türlerin tarihsel evrim ili³kileri �logenetik a§aç olarak modellenebilir. Bu

a§ac�n yapraklar� türleri, aradaki dü§ümleri atalar� ve kenarlar� genetik il-

i³kileri temsil eder. Türler aras�nda ödünç alma oldu§u durumda, �logenetik

a§açlara bu tür ili³kileri gösteren az say�da kenar eklenerek, �logenetik a§lara

dönu³türülebilirler. Ancak verilen bir tür ailesi için oldukça fazla olas� a§aç

ve a§ olabilir ve bu a§açlar� otomatik olarak analiz edebilecek bir sistem

mevcut de§il. Bu tez, çözüm kümesi programlama (ASP) kullanarak a§�r-

l�kl� �lojeni ve �logenetik a§ hesaplamak amac�yla yeni hesaplama yöntem-

leri ve yaz�l�m sistemleri geli³tirerek �logenetik çal�³malar�ndaki bu ihtiyac�

kar³�lamaktad�r. A§�rl�kl� �lojeni hesaplamas�n�n arkas�ndaki genel �kir, bir

�lojeninin ve �logenetik a§in ne kadar makul oldu§unu gösteren bir a§�rl�k

fonksiyonu kullanarak belirli bir a§�rl�§�n üzerindeki �lojenileri ve �logenetik

a§lar�, ASP çözücülerini kullanarak hesaplamak.

Bu tez kapsam�nda, uyumluluk kriterine göre a§�rl�kl� �lojeni ve �lo-

genetik a§ ç�kar�m� ile ilgili hesaplama problemlerini inceledik, bu prob-

lemlerin hesaplama karma³�kl�§�n� analiz ettik. A§�rl�kl� �lojenileri ve �lo-

genetik a§lar� hesaplamak için iki tip (gösterime dayal� ve aramaya dayal�)

v

ASP'ye dayal� hesaplama yöntemi geli³tirdik. Bu yöntemlerden yararlanarak,

büyük veriler üzerinde �lojeni ç�kar�m� yapmak için böl-ve-yönet yöntemine

dayanan yeni bir algoritma geli³tirdik. Bu algoritmaya dayal� yaz�l�m sis-

temleri geli³tirdik: a§�rl�kli �lojeni ç�kar�m� ve analizi yapan Phylo-ASP,

ve a§�rl�kl� �logenetik a§ ç�kar�m� yapan PhyloNet-ASP. �ki gerçek veri

üzerinden (Hint Avrupa dilleri ve Türkiye'deki me³e a§açlar�) yapt�§�m�z

testler ile yöntemlerimizin ve yaz�l�m sistemlerimizin etkinli§ini gösterdik.

Bunlar�n yan�nda, yöntemlerimizi ASP'de a§�rl�kl� çözümler bulacak ³ekilde

genelle³tirdik ve bir ASP çözücüyü (clasp-w) bu yöntemlere uygun bir ³ek-

ilde de§i³tirerek birçok ASP uygulamas� için yararl� bir araç sa§lad�k.

vi

Acknowledgements

I wish to express my gratitude to,

• Esra Erdem, for her invaluable supervision, patience and understand-

ing,

• Thesis jury committee for their participation,

• Ozan Erdem, Halit Erdogan, SeymaMutlu, Firat Tahaoglu, Berk Taner,

Tansel Uras, and Can Yildizli for their help and friendship during my

masters,

• last, but not the least, to my family, for being there when I needed

them to be.

This thesis has been supported by TUBITAK Grant 107E229.

vii

Contents

1 Introduction 1

2 Answer Set Programming 6

2.1 ASP Programs under the Answer Set Semantics . . 6

2.2 Applications of ASP 10

2.3 Answer Set Solvers 11

2.3.1 clasp . 12

2.4 Computing Weighted Solutions 13

3 Reconstructing Weighted Phylogenetic Trees using

ASP 17

3.1 Preliminaries . 18

3.2 Weighted Phylogenies 20

3.3 Problem De�nitions 25

3.4 ASP Formulation 29

3.4.1 Phylogeny Reconstruction 32

3.4.2 Weight Functions 33

3.5 Computational Methods: Representation-Based vs.

Search-Based . 35

3.5.1 Representation-Based Method 36

viii

3.5.2 Search-Based Method 36

3.6 Phylo-ASP . 53

3.6.1 Phylo-Analyze-ASP 53

3.6.2 Phylo-Reconstruct-ASP 54

3.7 Experimental Results 66

3.7.1 Indo-European Languages 73

3.7.2 Quercus Species 76

4 Reconstructing Weighted Phylogenetic Networks

using ASP 91

4.1 Preliminaries . 91

4.1.1 Temporal Networks 91

4.1.2 k-Simple Contacts 92

4.1.3 Summaries of k-Simple Contacts 95

4.2 Weighted Networks 95

4.3 Problem De�nitions 96

4.4 ASP Formulation 100

4.4.1 Phylogenetic Network Reconstruction . . . 100

4.4.2 Weight Functions 101

4.5 Computational Methods for Reconstructing Phylo-

genetic Networks 102

ix

4.5.1 Representation-Based Method 102

4.5.2 Search-Based Method 103

4.6 PhyloNet-ASP 103

4.7 Experimental Results 104

5 Related Work 106

6 Conclusion 109

x

List of Figures

1 Compatible/Incompatible Character: The blue boxes

denote the labels of the character Hand, and the red

boxes denote the labeling of the character Father . 20

2 A phylogenetic tree with class labels 24

3 Case 1: The boxes next to the vertices denote their

labels. 45

4 Case 2: The boxes next to the vertices denote their

labels. 46

5 The divide-and-conquer technique used in PhyloReconstruct-

ASP . 56

6 A phylogeny . 57

7 The Overall System Architecture of PhyloReconstruct-

ASP . 60

8 A temporal phylogeny (a), and a perfect tempo-

ral network (b) with a lateral edge connecting B ↑

1750 with D ↑ 1750. 93

9 A perfect temporal network with k-simple contacts

with 2 lateral edges connecting D ↑ 1200 with C ↑

1200 and D ↑ 1750 with B ↑ 1750. 94

xi

List of Tables

1 Applications of ASP 11

2 Eight Indo-European language groups 75

3 Main phylogenies for all Indo-European language

groups . 77

4 Main phylogenies for all Indo-European language

groups . 78

5 Main phylogenies for all Indo-European language

groups . 79

6 Main phylogenies for all Indo-European language

groups . 80

7 Phylogenies for each group for Indo-European lan-

guages . 82

8 Complete Phylogenies for Indo-European languages.

All complete phylogenies in the table is formed by

combining a large phylogeny (The column "CP"

in this table indicates the index of that large phy-

logeny in Table 3) from Table 3 and the small phy-

logenies which are computed for that large phylogeny. 83

9 Quercus Species 84

xii

10 Main phylogenies for all Quercus groups - Part I . 85

11 Main phylogenies for all Quercus groups - Part II . 86

12 Phylogenies for each group for Quercus - Part I . . 87

13 Phylogenies for each group for Quercus - Part II . 88

14 Complete Phylogenies for genus Quercus - Part I.

All complete phylogenies in the table is formed by

combining a main phylogeny (The column "CP"

in this table indicates the index of that main phy-

logeny in Table 10 and Table 10) and the small

phylogenies which are computed for each subgroup. 89

15 Complete Phylogenies for genus Quercus - Part II.

All complete phylogenies in the table is formed by

combining a main phylogeny (The column "CP"

in this table indicates the index of that main phy-

logeny in Table 10 and Table 10) and the small

phylogenies which are computed for each subgroup. 90

xiii

1 Introduction

Phylogenetics is the study of evolutionary relations between species based on

their shared traits. These relations can be modeled as a tree (phylogeny).

A phylogeny (or a phylogenetic tree) is a tree whose leaves represents the

species, internal vertices represent their ancestors and edges in between rep-

resents the relationships between them. In some cases, phylogenies are not

fully adequate to describe the evolutionary relations between species because

they do not represent borrowing. We can represent these borrowings by

adding a small number of edges to a phylogenetic tree and in this way, we

obtain phylogenetic networks. There have been various studies on phyloge-

netics and phylogenetic networks (check [12] for a survey). There are also

some phylogenetic systems that can reconstruct phylogentic trees and phy-

logenetic networks such as PHYLIP1. However, there may be many many

possible phylogenies (resp. phylogenetic networks) for a given set of taxo-

nomic units, with the same number of incompatible characters. In such cases,

experts analyze the phylogenies (resp. phylogenetic networks) manually and

identify some more plausible than others. Instead of the identi�cation of

the phylogenies (resp. phylogenetic networks) manually, we have studied

�nding more desirable phylogenies (resp. phylogenetic networks) by de�ning

weight measures to re�ect their plausibility and computing weighted phy-

logenies (resp. phylogenetic networks). For instance, while reconstructing

phylogenies, if each phylogeny is assigned a weight that characterizes the ex-

pected groupings with respect to some archeological evidence, then �nding a

phylogeny of higher weight over some threshold might be more desirable To

1http://evolution.gs.washington.edu/phylip.html

1

reconstruct weighted phylogenies and weighted networks, we have extended

the results of [12] [35]. In [12], [35] and in this thesis, phylogeny reconstruc-

tion is studied with respect to the compatibility criterion [19]. According

to the compatibility criterion, the goal is to reconstruct a phylogeny with

the maximum number of �compatible� characters. Intuitively, a character is

compatible if it evolves without backmutation (i.e., it does not evolve from

one state to another and then back to the earlier state) or parallel evolution

(i.e., if no state appears independently in di�erent lines of descent). So this

approach is suitable for the datasets without backmutation. Therefore, it is

not suitable for genomic data.

We have used Answer Set Programming (ASP) to reconstruct weighted

phylogenies and weighted phylogenetic networks. ASP is a declarative pro-

gramming paradigm oriented towards di�cult search problems. It is origi-

nated from answer set semantics and based on computing models. The idea

behind answer set programming is to represent a computational problem in

terms of theories such that the models of these theories correspond to the

solutions of the problem. The models of these theories are called answer sets

of the problem. The answer sets of a problem can be computed using answer

set solvers, such as clasp2. Choosing ASP for phylogeny and phylogenetic

network reconstruction in this thesis has 2 main reasons: First, we need the

de�nition of reachability of a vertex from an other vertex, for example, to

ensure the connectedness of the vertices from the root in a tree. Also, in

phylogenetic networks, there may be loops in the graph (due to bidirectional

lateral edges); and we check the reachability of a vertex from another vertex

2http://www.cs.uni-potsdam.de/clasp/

2

for compatibility check. In ASP, we can de�ne reachability easily by making

use of recursive de�nitions.

The main contributions of this thesis can be summarized as follows:

• We have de�ned various optimization and decision problems for com-

puting weighted phylogenies and phylogenetic networks and analyzed

their computational complexity.

• We have introduced two sorts of computational methods to compute

weighted phylogenies and phylogenetic networks: the �rst class of meth-

ods suggests modifying the ASP representation of the problem to com-

pute weighted phylogenies using an existing ASP solver and the other

class suggests modifying the search algorithm of the answer set solver

to compute weighted phylogenies incrementally based on modifying the

search algorithm of an answer set solver clasp. In the representation-

based method, weight measure is de�ned in ASP. In the search-based

method, weight measure is de�ned externally in C++.

• Based on these methods, in order to compute weighted phylogenies

for large datasets e�ciently, we have introduced a novel divide-and-

conquer approach for computing weighted phylogenies by inferring its

smaller subtrees. This approach also makes use of domain-speci�c in-

formation provided by the experts.

• We have generalized the representation-based method and the search

based-method, to compute weighted solutions in ASP so that they can

be applicable to other domains.

3

• We have implemented the search-based method to compute weighted

solutions in ASP, by modifying the search algorithm of the answer set

solver clasp (and called it clasp-w).

• Based on the divide-and-conquer approach for computing weighted

phylogenies , we have implemented a fully automated system (called

Phylo-ASP) to reconstruct and analyze phylogenies, utilizing clasp-

w. We have also implemented a system called PhyloNet-ASP for

reconstructing weighted phylogenetic networks.

• We have shown the applicability of our methods by performing exper-

iments on two real datasets (Indo European languages and Quercus

species) using Phylo-ASP and PhyloNet-ASP.

• To apply our method to real datasets, we have de�ned new weight

measures for phylogenies and phylogenetic networks.

The signi�cance of our contributions both from the point of view of ASP

and from the point of view of phylogenetics can be summarized as follows:

• There is no phylogenetic system that can help experts to order phylo-

genies with respect to a weight measure that characterizes their plau-

sibility considering also some domain-speci�c information.

• There is no answer set solver that can compute weighted solutions

incrementally, where the weight function is de�ned externally in C++.

In the following, �rst we introduce ASP (Chapter 2) and then explain our

methods for computing weighted phylogenies and phylogenetic networks in

4

ASP (Chapter 3 and Chapter 4). Next, we discuss related work (Chapter 5)

and conclude with a discussion of future work (Chapter 6).

5

2 Answer Set Programming

Answer Set Programming(ASP) [59] [65] [56] is a declarative programming

paradigm oriented towards solving di�cult search problems [57]. It is origi-

nated from �answer set semantics� [46] and based on computing models. The

idea behind ASP is to represent a computational problem as an ASP program

whose models (�answer sets�) correspond to the solutions of the problem. The

answer sets for a program can be computed by ASP solvers such as clasp.

In the following, we introduce the syntax of ASP programs and de�ne

the concept of an answer set for an ASP program. Then we give a list of

some applications that use ASP. After that we describe the answer set solver

clasp and its algorithm to �nd answer sets. Finally we explain how to

modify clasp's algorithm to �nd �weighted answer sets�.

2.1 ASP Programs under the Answer Set Semantics

The syntax of ASP programs under the answer set semantics is de�ned as

follows.

We begin with a set of propositional symbols, called atoms. A literal is

an expression of the form A or ¬A, where A is an atom. A rule element is an

expression of the form L or not L, where L is a literal. A rule is an ordered

pair

Head← Body (2.1)

where Head is a �nite set of literals, and Body is a �nite set of rule

6

elements. If

Head = {L1, ..., Lk}

and

Body = {Lk+1, ..., Lm, not Lm+1, ..., not Ln}

(0 ≤ k ≤ m ≤ n) then we will write (2.1) as

L1; ...;Lk ← Lk+1, ..., Lm, not Lm+1, ..., not Ln. (2.2)

If the body is empty, we will sometimes drop←; a rule with the empty body

and one literal in the head is called a fact. If the head is empty, we will

sometimes denote it by ⊥; a rule with the empty head is called a constraint.

A program is a set of rules. A program is called nondisjunctive if, in every

rule, k ≤ 1. We denote the set of literals in the language of a program Π by

lit(Π).

We say that a consistent set X of literals is closed under Π if, for every

rule (2.2) in Π,

{L1, ..., Lk} ∩X 6= ∅ (2.3)

whenever

{Lk+1, ..., Lm} ⊆ X (2.4)

and

{Lm+1, ..., Ln} ∩X = ∅ (2.5)

This de�nition of closure corresponds to the de�nition of closure introduced

in [45], [46]. for programs without negation as failure.

7

Let Π be a program without negation as failure. Then we say that X is

an answer set for Π i� X is a minimal set closed under Π. For instance, the

answer sets for

p; q (2.6)

are {p} and {q}.

Now consider a program Π that may contain negation as failure. The

reduct of Π relative to a consistent set X of literals, as de�ned in [45], [46]

is obtained from Π.

• by deleting each rule (2.2) that does not satisfy (2.5) and

• by replacing each remaining rule (2.2) by

L1; ...;Lk ← Lk+1, ..., Lm. (2.7)

This program will be denoted by ΠX . For instance consider the program

p; q

¬r ← not p.
(2.8)

The reduct of this program relative to {p} is (2.6).

We say that X is an answer set for a program Π i� X is an answer set

for ΠX . Consider, for instance, program (2.8) and its reduct (2.6) relative to

{p}. Since {p} is an answer set for (2.6), this is an answer set for program

(2.8) as well. It is easy to check if {q,¬r} is an answer set for program (2.8)

too.

8

Answer set de�nition is extended to programs with �choice rules� in [66].

For example, a choice rule

{p, q} ← p. (2.9)

intuitively means that if p is included in the answer set then choose arbitrarily

which of the atoms p, q to include in the answer set.

In answer set programming, due to its nonmonotonicity, the set of logical

consequences does not necessarily shrink monotonically with increasing infor-

mation (due to the use of the negation-as-failure operator). As an example,

consider the programs

p← not q. (2.10)

p← not q.

q ← not p.
(2.11)

p← not q.

q ← not p.

r ← p.

r ← q.

(2.12)

Intuitively, (2.10) expresses that p is in the answer set in the absence of q.

The answer set for this program is {p} and the set of consequences is {p}. In

9

(2.11), we add one more rule to (2.10); the answer sets for this program are

{p} and {q} and the set of consequences is emptyset. In (2.12), we add two

more rules to (2.11).The answer sets of this program are {p, r} and {q, r}

and the set of consequences is {r}. Therefore, as we add new rules to the

previous programs to obtain new programs, the consequences do not increase

as we expect from a monotonic formalism.

2.2 Applications of ASP

There are various applications of ASP as shown in Table 1. Here are some

examples:

• Decision Support Systems: An ASP system has been developed to help

�ight controllers of space shuttle to solve some planning and diagnostic

tasks [67].

• Planning: Since ASP can be used to solve classical planning problems,

there are some systems, such as DLVK [31], implemented to solve plan-

ning problems in ASP. In addition, planning problems based on Hier-

archical Task Networks (HTN) are studied in ASP [25].

• Semantic Web: Semantic Web applications make use of ASP in order

to provide advanced reasoning services [18] [32] [79].

10

Table 1: Applications of ASP

Applications Applications
planning [24] [56] [77] theory update/revision [52]
preferences [72] [11] diagnosis [30] [4]
learning [70] description logics and

semantic web [18] [32] [79]
probabilistic reasoning [5] data integration and

question answering [1] [55]
multi-agent systems [77] [78] [82] common sense knowledge bases
circuit design wire routing [36] [26]
decision support systems [67] bounded model checking [48]
game theory [83] [84] logic puzzles [39]
phylogenetics [29] [14] [35] [33] systems biology [80]
combinatorial auctions [6] haplotype inference [34] [81]
systems biology [80] [41] [71] [40] automatic music composition [10] [9]
veri�cation of assisted living [61] [62]
cryptographic protocols [23]
context [28]

2.3 Answer Set Solvers

There are several ASP solvers which are used to compute the answer sets of

an ASP program, such as SMODELS3, CMODELS4, DLV5 and clasp6. Let

us describe clasp's algorithm to compute answer sets.

3http://www.tcs.hut.�/Software/smodels/
4http://userweb.cs.utexas.edu/users/tag/cmodels.html
5http://www.dbai.tuwien.ac.at/proj/dlv/
6http://www.cs.uni-potsdam.de/clasp/

11

2.3.1 clasp

clasp is a con�ict-driven answer set solver [44] [43]. It uses the concepts of

constraint processing and satis�ability checking [42]. clasp does a DPLL�

like [22] [60] branch and bound search to �nd an answer set to the given

problem: at each level, it does propagation followed by backtracking or se-

lection of new literals according to the current con�icts. The overall working

principle of clasp is shown in Algorithm 1. Three main steps are called

repeatedly in the algorithm until an answer set is computed: propagation,

resolve-conflict and select. In the propagation step, the literals

that are needed to be included in the answer sets (due to the current as-

signment and con�icts) are decided. The resolve-conflict step seeks to

resolve the con�icts encountered with the previous step. In the case of a

con�ict existence, clasp learns the con�ict and does backtracking to an ap-

propriate level. In the select step, a new literal (based on some heuristics)

is selected to continue search.

clasp's branch and bound search di�ers from DPLL in some aspects:

First of all, DPLL is for solving SAT problems. However, solutions to SAT

may not correspond to the answer sets of the problems [58]. For example,

consider the following answer set program {p ← q, q ← p} whose answer

set is ∅. This program can be translated into SAT as (¬q ∨ p) ∧ (¬p ∨ q)

whose models are {p}, {p, q}, ∅. On the other hand, clasp decomposes ASP

formulations into local inferences which are obtained by Clark completion of

a program [20] and then uses DPLL search over the local inferences.

12

Algorithm 1 clasp
Require: An ASP program Π
Ensure: An answer set A for Π
A← ∅ {current assignment of literals}
5← ∅ {set of con�icts}
while No Answer Set Found do

{propagate according to the current assignment and con�icts; update the current as-
signment}
propagation(Π, A,5)
if There is a con�ict in the current assignment then

resolve-conflict(Π, A,5) {learn and update the con�ict set and do backtrack-
ing}

else

if Current assignment does not yield an answer set then
select(Π, A,5) {select a literal to continue search}

else

return A
end if

end if

end while

2.4 Computing Weighted Solutions

In ASP, some problems may have many solutions. Moreover, the correspon-

dence between the answer sets and the solutions may not be one-to-one; there

may be many answer sets that denote the same solution. In such cases, one

way to compute more desirable solutions is to assign weights to solutions,

and then pick the distinct solutions whose weights are over a given thresh-

old. For example, in a planning problem, the weight of a plan can be de�ned

in terms of the costs of actions, and then the distinct plans whose weights are

less than a given value can be computed. In puzzle generation, the weight

of a puzzle instance can be de�ned by means of some di�culty measure, and

then di�cult puzzles whose weights are over a given value can be generated.

While computing such weighted solutions, there can be two types of meth-

ods: the representation-based methods and the search-based methods [14].

13

In the representation-based methods, ASP representation of the prob-

lem can be modi�ed to compute weighted solutions. In some cases, some

aggregates (e.g., sum,count) can be used to compute the weight of a solu-

tion [73, 38, 76]; while in some others, a weight formulation can be added

explicitly to the ASP representation.

In the search-based methods, instead of modifying the ASP representation

of the problem, the weight function can be de�ned externally and the search

algorithm of the answer set solver can be modi�ed to compute weighted

solutions as in [14].

We have modi�ed the search algorithm of the answer set solver clasp to

compute weighted solutions with the search-based method. We call the mod-

i�ed version clasp-w. The modi�ed algorithm can be seen in Algorithm 2.

The procedure WEIGHT-ANALYZE is the weight measure of a given prob-

lem and needs to be implemented according to that given problem.

The WEIGHT-ANALYZE function is called at each step of the search;

therefore, it should be capable of identifying the partial solution formed by

the currently selected literals, and measuring the weight of that partial so-

lution. Since a partial solution may extend to many complete solutions, the

WEIGHT-ANALYZE function computes instead an upper bound (resp. a

lower bound) for the weight of a solution that extends the current partial

solution. Computing an exact upper bound (resp. a lower bound) might

be hard and ine�cient; therefore, one may be interested in implementing a

heuristic function that computes an approximate upper bound (resp. lower

bound) for a solution. To guarantee to �nd a complete solution, the heuristic

function shall be admissible. In other words, the upper bound (resp. lower

14

bound) computed by the heuristic function shall be greater (resp. less) than

or equal to the exact upper bound (resp. lower bound). If this is not the

case, then we have a risk of missing a solution. Once we de�ne the WEIGHT-

ANALYZE function to estimate the weight of a solution, we check whether

the estimated weight is less (resp. greater) than the given weight threshold

w. If the upper bound (resp. the lower bound) computed by the heuristic

function is already less (resp. greater) than the given weight threshold w,

then there is no solution that can be characterized by the current assignment

of literals and that has a weight greater (smaller) than w. Therefore; we set

the current assignment of literals as con�ict in that case. After setting an as-

signment as con�ict, clasp-w learns that assignment and does backtracking

and never selects those assignment in the further stages of the search.

15

Algorithm 2 clasp-w
Require: An ASP program Π and a nonnegative integer w
Ensure: An answer set for Π, that describes an at least (resp. at most)
w-weighted solution
A← ∅ {current assignment of literals}
5← ∅ {set of con�icts}
while A does not represent an answer set do
{propagate according to the current assignment and con�icts;update the
current assignment}
nogood-propagation(Π, A,5)

{compute an upper (resp. lower) bound for the weight of a solution that
contains A}
weight ← weight-analyze(A)

{if the upper bound weight is less than the desired weight value w}
{then no need to continue search to �nd an at least w-weighted solution}
if There is a con�ict in unit-propagation OR weight < w then
resolve-conflict (Π, A,5) {learn and update the con�ict set and
do backtracking}

end if
if Current assignment does not yield an answer set then
select(Π, A,5) {select a literal to continue search}

else
return A

end if
end while
return false

16

3 Reconstructing Weighted Phylogenetic Trees using

ASP

Cladistics (or phylogenetic systematics) developed by Will Henning [49, 50,

51] is the study of evolutionary relations between species (or �taxonomic�

�unit�) based on their shared traits. These relations can be modeled as a

tree (phylogeny). A phylogeny (or a phylogenetic tree) is a tree whose leaves

represent the species; internal vertices their ancestors; and edges in between,

the relationships between them. There are two main approaches to cladis-

tics: Character-based and distance-based. Our approach is character-based

cladistics as in [12, 69].

In character-based cladistics, shared traits are �(qualitative) characters�.

A character is a trait in which taxonomic units can instantiate a variety

of ways. If a character is instantiated by a set of taxonomic units in the

same way, then these taxonomic units are assigned the same �state� of the

character.

There are two main criteria in character-based cladistics: Maximum par-

simony and maximum compatibility. In maximum parsimony [27], the aim is

to minimize character state changes along the edges. In maximum compat-

ibility [19], the aim is to maximize the number of �compatible� characters.

Intuitively, a character is compatible if it evolves without backmutation7 or

parallel evolution.8 We consider the latter criteria while reconstructing phy-

logenies.

7If a character evolves from one state to another and then back to the earlier state,
then backmutation occurs in the evolution of that character.

8 If a state appears independently in the di�erent lines of descent, then parallel evolution
occurs.

17

While reconstructing phylogenies, there may be many possible phyloge-

nies for a given set of taxonomic units, with the same number of incompatible

characters. In such cases, experts analyze the phylogenies manually and iden-

tify some more plausible than others. Instead of identifying the phylogenies

manually, we aim to �nd more plausible phylogenies automatically. In order

to do that, �rst we de�ne some weight measures for the phylogenies to re-

�ect their plausibility; then we introduce computational methods to compute

weighted phylogenies over a certain weight threshold.

3.1 Preliminaries

Before we describe the problems related to weighted phylogenetic tree recon-

struction, we need to introduce some de�nitions as in [12].

A directed graph (digraph) is an ordered pair 〈V, E〉, where V is a set

and E is a binary relation on V . In a digraph 〈V, E〉, the elements of V are

called vertices, and the elements of E are called the edges of the digraph.

The out-degree of a vertex v is the number of edges (v, u) (u ∈ V) and the

in-degree of v is the number if edges (u, v) (u ∈ V). A digraph 〈V ′, E ′〉 is a

subgraph of a digraph 〈V, E〉 if V ′ ⊂ V and E ′ ⊂ E.

In a digraph 〈V, E〉, a path from vertex u to a vertex u′ is a sequence

v0, v1, .., vk of vertices such that u = v0 and u′ = vk and (vi−1, vi) ∈ E for

1 ≤ i ≤ k. If there is a path from a vertex u to a vertex v, then we say that v

is reachable from u. If V ′ is a subset of V , a path from u to v whose vertices

belong to V ′ is a path from u to v in V ′. If there exist a path from u to v in

V ′, v is reachable from u in V ′.

A rooted tree is a digraph with a vertex of in-degree 0, called the root,

18

such that every vertex di�erent from the root has in-degree 1 and is reachable

from the root. In a rooted tree, a vertex of out-degree 0 is called a leaf.

A phylogenetic tree (or phylogeny) for a set of taxa is a �nite rooted

binary tree 〈V, E〉 along with two �nite sets I and S and a function f from

L x I to S, where L is the set of leaves of the tree. The set L represents the

given taxonomic units, whereas the set V describes their ancestral units and

the set E describes the genetic relationships between them. The elements of I

are usually positive integers (�indices�) that represent, intuitively, qualitative

characters, and elements of S are possible states of these characters. The

function f �labels� every leaf v by mapping every index i to the state f(v, i)

of the corresponding character in that taxonomic unit.

For a phylogeny (V,E, L, I, S, f), a state s ∈ S is essential with respect

to a character j ∈ I if there exist two di�erent leaves l1 and l2 in L such that

f(l1, j) = f(l2, j) = s. A character i ∈ I is informative if it has at least 2

essential states.

A character i ∈ I is compatible with a phylogeny (V,E, L, I, S, f) if there

exist a function g : V x i→ S such that

• For every leaf v of the phylogeny, g(v, i) = f(v, i)

• For every s ∈ S if the set

Vis = {x ∈ V : g(x, i) = s}

is nonempty, then the digraph 〈V, E〉 has a subgraph with the set Vis

of vertices that is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with

that phylogeny. For example in Figure 1, the character �Hand� is compatible

19

2

1

211 2 2

2

English German French Spanish ItalianCharacter
“Hand”

Character
“Father” 1 2 2 1 1

1 ? 2

1 ? 2

1

1 ? 2

1 ? 2

Figure 1: Compatible/Incompatible Character: The blue boxes denote the
labels of the character Hand, and the red boxes denote the labeling of the
character Father

with respect to the given phylogeny, since every unit with the same state

is connected to each other with a tree. On the other hand, the character

�Father� is incompatible, since there is no possible labeling of internal vertices

that connects all the units which have the same labels.

3.2 Weighted Phylogenies

In phylogeny reconstruction, there may be many possible phylogenies with

the same number of incompatible characters and some phylogenies may be

more desirable than the others, from the experts' point of view. In such cases,

one way to pick more desirable phylogenies without human intervention is to

20

assign weights to phylogenies, and then pick the distinct phylogenies whose

weights are over a given threshold.

Therefore, we have formulated several weight measures in order to com-

pute weighted phylogenies with di�erent data sets. There are two types of

weight measures: domain-independent and domain-dependent. Domain in-

dependent weight measures do not require domain-speci�c information about

the dataset, and therefore can be applied to any dataset. On the other hand,

domain-dependent weight measures require domain-speci�c information. For

example, experts usually provide information about how to group species. A

group of species is called as a subgroup from now on. Although not as well-

known as subgroup information, sometimes we may have further domain-

speci�c information as to how the subgroups can be classi�ed. A group of

subgroup is called as a class from now on.

Domain Independent Weight Functions

Weight Measure 1 (W1) We de�ne a weight measure in such a way

that while minimizing the number of incompatible characters, we try to max-

imize the total weight of these characters.

Consider a phylogeny P = (V,E, I, S, f). Let IC denote the characters

in I that are informative and compatible with this phylogeny. The weight of

a phylogeny P is the sum of the weights of all informative characters that

are compatible with the tree:

weight1(P) =
∑
i∈IC

w(i) (3.1)

21

The weight w(i) of a character i is a nonnegative integer given as domain

information.

Weight Measure 2 (W2) We de�ne a weight measure in such a way

that the phylogenies with the informative characters which have more essen-

tial states have more weight. The motivation behind this weight measure is

that the characters with many essential states give more information as to

how the species are related to each other.

Consider a phylogeny P = (V,E, I, S, f) with leaves L. Let IC denote

the characters in I that are informative and compatible with this phylogeny.

The weight of a phylogeny P is the sum of the weights of all informative

characters that are compatible with the tree:

weight2(P) =
∑
i∈IC

w(i) (3.2)

The weight w(i) of an informative character is de�ned as the number of leaves

that are mapped to an essential state for that character:

w(i) = |{l ∈ L : f(l, i) = s, i is informative, s is essential}| (3.3)

Domain Dependent Weight Functions

Weight Measure 3 (W3) Suppose that we are given some domain-

speci�c information as to how the taxonomic units are grouped as �sub-

groups� and �classes�. Then we de�ne a weight measure in such a way that

22

the leaves that belong to the same class are grouped as close to each other

as possible.

Consider a phylogeny P = (V,E, I, S, f) with leaves L. The weight of

phylogeny P is the sum of the weights of all vertices except its root r:

weight3(P) =
∑

v∈V/{r}

ϕ(v) (3.4)

The weight ϕ(v) of a vertex v is de�ned as follows:

1. We label the leaves with their class information.

2. We propagate the labels of the leaves up to the root and we label each

internal vertex with the labels of its children.

3. We assign a weight to each vertex by comparing its labels with those

of its sibling. To be able to compare the labeling of the vertices, we

de�ne the contribution ς(c, v) of a vertex v with respect to a label c

as follows. Let sibling(v) denote the sibling of the vertex v, and Let

label(v) denote the labels of the vertex v.

ς(c, v) =

0 if c 6∈ label(sibling(v)),

0 if |label(v)| = the total # of classes,

1

|label (v)|
otherwise

(3.5)

The weight ϕ(v) of a vertex v is then the minimum of the following two

values: the maximum value maxContr(v) of the contributions ς(c, v)

over its labels c, and the maximum value maxContr(sibling(v)) of the

23

C1 C1 C2 C3

C1
C2,C3

A B C D

Figure 2: A phylogenetic tree with class labels

contribution ς(c′, sibling(v)) over its sibling's labels c′. That is,

ϕ(v) = min(maxContr(v),maxContr(sibling(v))). (3.6)

Let us give a small example to show this process. Consider the phyloge-

netic tree in Figure 2. The leaves are labeled with respect to the following

class information: the leaves A and B are expected to be grouped in the same

class, so they are labeled by C1; there is no information as to how C and

D are expected to be grouped, so we label them by C2 and C3 respectively.

Then we propagate these labels to their ancestors. We compute the weights

of the vertices as follows: ϕ(A) = 1, ϕ(B) = 1, the other vertices have 0

weight. Then the weight of the phylogeny is 2.

Weight Measure 4 (W4) This weight measure is motivated by the

de�nition of compatibility. We de�ne it in such a way that, for each character,

the leaves with the same character states are grouped as close to each other

as possible.

Consider a phylogeny P = (V,E, I, S, f) with leaves L, and suppose that

24

the vertices of the phylogeny are labeled by a function g : V × I → S.

Let IC denote the characters in I that are informative and compatible with

this phylogeny. The weight of phylogeny P is the sum of the weights of all

informative characters that are compatible with the tree:

weight4(P) =
∑
i∈IC

w(i) (3.7)

The weight w(i) of a character i is de�ned as the number of leaves having a

sibling sibling(l) with the same character state:

w(i) = |{l : l ∈ L, f(l, i) = g(sibling(l), i)}|. (3.8)

Speci�c to the dataset, to get more plausible phylogenies, we can incor-

porate further domain-speci�c information. For instance, for Indo-European

languages, historical linguist Don Ringe indicates that groupings of some lan-

guages are least likely to occur. If the to-be-reconstructed phylogenies have

such odd groupings, we can reduce some amount from the total weight of the

phylogeny, provided that the weight of a phylogeny is not negative.

3.3 Problem De�nitions

We are interested in the following sorts of computational problems for com-

puting weighted phylogenetic trees:

Maximum Compatibility Problem (MCP) Given three sets L, I,

S and a function f , from LxI to S, �nding a phylogeny (V,E, L, I, S, f)

with the maximum number of compatible characters is called the Max-

25

imum Compatibility Problem (MCP).

n-Compatibility Problem (n-CP) Given three sets L, I, S and

a function f , and a non-negative integer n, decide the existence of a

phylogeny (V,E, L, I, S, f) with at most n incompatible characters.

A phylogeny (V,E, L, I, S, f) is perfect if all characters in I are compatible

with the phylogeny. Determining whether a phylogeny (V,E, L, I, S, f) is

perfect is called the Perfect Phylogeny Problem (PPP). PPP is NP-hard [8,

64].

Proposition 1. n-CP is NP-complete, if every character has binary states.

Proof. n-CP is in NP: By verifying whether a given phylogeny has at most

n incompatible characters in polynomial time, we will prove that n-CP is in

NP. Intuitively, we have to do |I| compatibility checks for each character.

For each compatibility check, consider the algorithm in Algorithm 3.

The complexity of FindLabeling is O(|V |2). The complexity of Check-

Connectedness is O(|V |). So, the complexity of the algorithm CharCom-

patibility is O(|V |2+|V |). Therefore, the overall algorithm has O(|I|(|V |2+

|V |)) ≈ O(|I||V |2) complexity.

n-CP is NP-hard: By reducing the CLIQUE problem9, which is NP-

complete [53], to the n-CP, we can prove that the latter is NP-hard as in

[85]. The main idea behind the reduction is that any pair of compatible

character collection in n-CP should correspond to a set of vertices in the

9A graph G = (V,E) and a positive integer J < |V | is given. The problem is determine
whether G contain a clique of at least size J , that is, a subset V ′ ⊂ V such that |V ′| > J
and every two vertices in V ′ are joined by an edge in E.

26

graph that forms a clique. We can reduce CLIQUE to n-CP in polynomial

time as follows:

The number of vertices in a CLIQUE problem corresponds to the number

of characters in n-CP. Three times the sum of the number of vertices in a

clique correspond to the number of leaves in n-CP. The cardinality of clique

is equal to n. We build a matrix X = [Xi,j], 1 ≤ i ≤ |I|, 1 ≤ j ≤ |L| such

that, X has a character column for each vertex in V , and three taxon-rows

for each unordered pair of vertices in V . For each edge (u, v) 6∈ E, we set the

row entries in column u for that edge to 011, and the row entries in column

v to 110. All other entries in X are 0.

Two characters, C1 and C2, are incompatible if and only if all of three

elements (1,0), (0,1), (1,1) are in {
⋃

1≤j≤|L|,lj∈L(f(lj, C1), f(lj, C2))}. In other

words, with respect to our reduced instance, the pair of characters that cor-

responds to vertices not joined by an edge in the graph are incompatible.

Since n-CP is both in NP and NP-hard, n-CP is NP-complete.

27

Let w be a weight function that maps every phylogeny to a nonnega-

tive integer. Then we de�ne the Maximum Weighted Compatibility Prob-

lem(MWCP) as follows:

Maximum Weighted Compatibility Problem(MWCP) Given

three sets L, I, S, a function f from L × I to S, a function weight,

�nd a phylogeny (V,E, L, I, S, f) with the maximum weight.

Note that MWCP generalizes MCP: For instance, if we take w(i) = 1 for

every i ∈ I, then the MWCP is a MCP.

MWCP can be converted into the following decision problems:

w-weighted compatibility problem(w-WCP)

Given three sets L, I, S, a function f from L × I to S, a function

weight, and a non-negative integer w, decide the existence of a phy-

logeny (V,E, L, I, S, f) whose weight is at least w.

Similarly, w-WCP generalizes kCP.

w-weighted n-compatibility problem(wn-WCP)

Given three sets L, I, S, a function f from L × I to S, a function

weight, and two non-negative integers n and w, decide the existence

of a phylogeny (V,E, L, I, S, f) with at most n incompatible characters

and whose weight is at least w.

Proposition 2. wn-WCP is NP complete.

Proof. n-CP is in NP: Membership follows from the fact that we can

not only guess a candidate tree (V,E), but also check in polynomial time

28

whether w(V,E, L, I, S, f) ≥ w and whether the phylogeny has at most c

incompatible characters (Theorem 17 in [64]).

n-CP is NP-hard: If we take weight(S) = 1 for every S, then wn-WCP

is a n-CP. Hence it is at least as hard as n-CP. We have shown previously

that n-CP is NP-complete. Therefore, wn-WCP is NP-hard.

Since wn-CP is both in NP and NP-hard, wn-CP is NP-complete.

Algorithm 3 CharCompatibility

INPUT: (V, E, L, I, S, f) , i ∈ I
OUTPUT: COMPATIBLE / INCOMPATIBLE.
if FindLabeling (i, V , E, L, S, f) == NO_LABELING then
return INCOMPATIBLE

else
〈g, count0, count1〉 := FindLabeling(i, V , E, L, S, f)
if CheckConnectedness(V, E, g, count0, count1, i) then
return COMPATIBLE

else
return INCOMPATIBLE

end if
end if

3.4 ASP Formulation

We describe the phylogeny reconstruction problem and weight measures in

ASP as follows.

29

Algorithm 4 FindLabeling

INPUT: i, V, E, L, S, f
OUTPUT: 〈g, count0, count1〉 or NO_LABELING
for all l ∈ L do
g(l) := f(l)

end for
while there is n ∈ V \ L such that g(n) is not de�ned do
// In the following, {n1, n2} denote the children of n and ns denotes the
sibling of n.
for all n ∈ V \ L such that g(n1), g(n2) and g(ns) are de�ned do
if CheckSiblings(g(n1), g(n2), g(ns), ns) == CONFLICT then
g(n) := g(ns)
IncrementCounts(count0, count1, g(n))

else if CheckSiblings(g(n1), g(n2), g(ns), ns) == NO_LABELING
then
return NO_LABELING

else
g(n) := CheckSiblings(g(n1), g(n2), g(ns), ns)
IncrementCounts(count0, count1, g(n))

end if
end for
for all n ∈ V \L such that g(n1), g(n2) are de�ned, g(ns) is not de�ned
do
if CheckSiblings(g(n1), g(n2), NOT_DEFINED, ns) 6= CON-
FLICT && CheckSiblings(g(n1), g(n2), NOT_DEFINED, ns) 6=
NO_LABELING then
g(n) := CheckSiblings(g(n1), g(n2), NOT_DEFINED, ns)
IncrementCounts(count0, count1, g(n))

else
return NO_LABELING

end if
end for

end while

30

Algorithm 5 CheckSiblings
INPUT: x1, x2, x3, ns

OUTPUT: x1 or CONFLICT or NO_LABELING
if x1 == x2 then
return x1

else if ns 6= NOT_DEFINED then
if g(ns) 6= CONFLICT then
return CONFLICT

else
return NO_LABELING

end if
else
return NO_LABELING

end if

Algorithm 6 IncrementCounts
INPUT: count0, count1, state
OUTPUT: count0, count1
if state == count1 then
count1++

else
count0++

end if

Algorithm 7 FindRoot
INPUT: V , E
OUTPUT: v ∈ V
return a node that has no incoming edge in E.

Algorithm 8 CountConnectedNodes

INPUT: V , E, rootNode, nodeCount
OUTPUT: nodeCount
for all children n of rootNode do
CountConnectedNodes(V , E, n, nodeCount + 1)

end for
return nodeCount

31

Algorithm 9 CheckConnectedness
INPUT: V , E, g, count0, count1, i
OUTPUT: CONNECTED / NOT_CONNECTED.
V0 := { v ∈ V | g(v) = 0}
E0 := {{x, y} ∈ E|x, y ∈ V0}
V1 := {v ∈ V | g(v) = 1}
E1 := {{x, y} ∈ E|x, y ∈ V1}
treeRoot := FindRoot(V , E)
root0 := FindRoot (V0, E0)
root1 := FindRoot (V1, E1)
nodeCount0 := CountConnectedNodes(V0, E0, root0, 1)
nodeCount1 := CountConnectedNodes(V1, E1, root1, 1)
if count0 == nodeCount0 && count1 == nodeCount1 then
return CONNECTED

else
return NOT_CONNECTED

end if

3.4.1 Phylogeny Reconstruction

ASP formulation of phylogeny reconstruction is done in two parts as in [12]:

In the �rst part, rooted binary trees whose leaves represent the given taxa

are generated and in the second part, the rooted binary trees with more than

n incompatible characters are eliminated.

In the �rst part, we make use of the reachability of a vertex from an-

other vertex to ensure the connectedness of the vertices from the root of the

phylogeny. That we can de�ne reachability easily by making use of recursive

de�nitions in ASP has played an important role in our choice (and [12]'s

choice) of ASP to represent phylogeny reconstruction.

32

3.4.2 Weight Functions

There are several weight functions we have formulated in ASP, which are

described in Subsection 3.2:

W1 We describe the weight of a phylogeny as an ASP program in two

parts. Suppose that the schematic variables PW, W denote phylogeny weights,

C denotes a character and CW denotes the user de�ned weight of an informative

character.

In the �rst part, we de�ne the weight of a phylogeny as the sum of the

weights of characters compatible with it:

weightOfThePhylogeny(PW) :- addWeightsOfCharacters(PW,C), maxCharacter(C).

addWeightsOfCharacters(PW,0) :- compatible(0), weightOfCharacter(0,PW).

addWeightsOfCharacters(0,0) :- not compatible(0).

addWeightsOfCharacters(PW+CW,C) :- compatible(C), informative_character(C),

weightOfCharacter(C,CW), addWeightsOfCharacters(PW,C-1).

addWeightsOfCharacters(PW,C) :- not compatible(C), addWeightsOfCharacters(PW,C-1).

addWeightsOfCharacters(PW,C) :- not informative_character(C),

addWeightsOfCharacters(PW,C-1).

In the second part, we describe the weight constraint to ensure that the weight

of the phylogeny is greater than or equal to w:

:- weightOfThePhylogeny(PW),PW<w.

33

W2 We describe the weight of a phylogeny as an ASP program in three parts.

Suppose that the schematic variable PW denotes the phylogeny weight, IC denotes

an informative character, CW denotes a character weight, and C denotes a character.

In the �rst part, we describe the weight CW of an informative character IC as

follows:

weightOfChar(IC,CW) :- CW{leaf(V):f(V,IC,S):essential_state(IC,S)}CW.

In the second part, we de�ne the sum of the weights of characters compatible

with the phylogeny:

totalWeightOfChars(PW) :- addCharWeights(PW,C), maxChar(C).

addCharWeights(PW,1) :- compatible(1), weightOfChar(1,PW).

addCharWeights(0,1) :- not compatible(1).

addCharWeights(PW+CW,C) :- compatible(C),

weightOfChar(C,CW), addCharWeights(PW,C-1).

addCharWeights(PW,C) :- not compatible(C), addCharWeights(PW,C-1).

In the third part, we describe the weight constraint to ensure that the weight

of the phylogeny is greater than or equal to w:

:- weightOfPhylogeny(W), W<w.

W4 We describe the weight of a phylogeny as an ASP program in three parts.

Suppose that the schematic variable PW denotes the phylogeny weight, CW denotes

a character weight, and C denotes a character.

In the �rst part, we describe a leaf L as valuedLeaf(L,C) with respect to an

informative character, if the sibling of L has the same character state with L, and we

de�ne the weight CW of an informative character with respect to valuedLeaf(L,C)

as follows:

34

weightOfCharacter(C,CW) :- addWeightsOfCharacters(CW,C,k).

addWeightsOfCharacters(1,C,0) :- valuedLeaf(0,C).

addWeightsOfCharacters(0,C,0) :- not valuedLeaf(0,C).

addWeightsOfCharacters(CW+1,C,L+1) :- valuedLeaf(L+1,C),

addWeightsOfCharacters(CW,C,L), leaf(L), L<k.

addWeightsOfCharacters(CW,C,L+1) :- not valuedLeaf(L+1,C),

addWeightsOfCharacters(CW,C,L), leaf(L), L<k.

valuedLeaf(L,C) :- sibling(L,Y), f(L,C,S), g(Y,C,S), vertex(Y), leaf(L),

ic(C), state(S), L!=Y.

In the second part, we de�ne the weight of the phylogeny as the sum of the

weights of informative characters compatible with it:

weightOfThePhylogeny(PW) :- totalWeightOfCharacters(PW,c).

totalWeightOfCharacters(CW,0) :- weightOfCharacter(0,CW).

totalWeightOfCharacters(CW+PW,C+1) :- totalWeightOfCharacters(PW,C),

weightOfCharacter(C+1,CW), ic(C+1).

totalWeightOfCharacters(PW,C+1) :- totalWeightOfCharacters(PW,C),

weightOfCharacter(C+1,CW), not ic(C+1).

3.5 Computational Methods: Representation-Based vs.

Search-Based

We have studied two di�erent methods for reconstructing weighted phylogenies:

Representation-based method and search-based method.

35

3.5.1 Representation-Based Method

In the representation-based method, we modify the representation of the problem

to compute weighted phylogenies. In order to do that, we formulate the phylogeny

reconstruction as an ASP program P as described in Subsection 3.4.1. Then we

formulate the weight function as an ASP programW as described in the Subsection

3.4.2. Finally, we compute weighted phylogenies by computing the solutions of the

ASP program P ∪W .

3.5.2 Search-Based Method

In the search-based method, in order to compute weighted phylogenies, instead

of modifying the representation of the problem, we implement the weight measure

externally as a C++ program and we modify the search algorithm of the answer set

solver clasp. The modi�ed version of clasp is called clasp-w(Subsection 2.4).

In order to compute phylogenies with the search-based method, we have de-

�ned a heuristic function to estimate an upper bound for each weight function in

Subsection 3.4.2:

Upper Bound for W1 Let A be a partially constructed phylogeny of P . Let

I be the set of characters for P . Let NIA be the set of uninformative characters

for A. Let NCA be the set of incompatible characters for A.

Then, we can de�ne the heuristic function with respect to A and a set I of

characters as follows:

UB1(A, I) =
∑
i∈I

w(i)−
∑

i∈NIA

w(i)−
∑

i∈NCA

w(i).

With this heuristic function (implemented as a C++ program) and the phylogeny

reconstruction program of [12], clasp-w can compute all correct solutions (i.e.,

36

phylogenies whose weight is at least w). In other words, this heuristic function

ensures that the following holds for every phylogeny P computed in the end:

w ≤ weight1(P) ≤ UB1(A, I).

This result follows from weight1(P) ≤ UB1(A, I) (admissibility), and w ≤ UB1(A, I)

i� w ≤ weight1(P) (correctness).

Proposition 3. UB1 is admissible.

Proof. Let A be a partially constructed phylogeny of P . Let I be the set of char-

acters for P . Let NIA be the set of uninformative characters for A. Let NCA

be the set of incompatible characters for A. Let NIP be the set of uninformative

characters for P . Let NCP be the set of incompatible characters for P . Let CP be

the set of compatible characters for P . Then we want to show that,

∑
i∈IC

w(i) ≤
∑
i∈I

w(i)−
∑

i∈NCA

w(i)−
∑

i∈NIA

w(i). (3.9)

Since by de�nition,
∑

i∈I w(i) =
∑

i∈NCP
w(i) +

∑
i∈CP

w(i) +
∑

i∈NIP
w(i), we

can rewrite 3.9 as:

∑
i∈IC

w(i) ≤
∑
i∈CP

w(i) +
∑

i∈NCP

w(i)−
∑

i∈NCA

w(i) +
∑

i∈NIP

w(i)−
∑

i∈NIA

w(i)

Since IC ⊆ CP , then
∑

i∈ICP
w(i) −

∑
i∈CP

w(i) ≥ 0. Since NCA ⊆ NCP ,

then
∑

i∈NCP
w(i) −

∑
i∈NCA

w(i) ≥ 0. Since NIA ⊆ NIP , then
∑

i∈NIP
w(i) −∑

i∈NIA
w(i) ≥ 0. Therefore, UB1(A, I) ≥ weight1(P).

37

Upper Bound for W2 Let A be a partially constructed phylogeny of P . Let

I be the set of characters for P . Let NIA be the set of uninformative characters

for A. Let NCA be the set of incompatible characters for A.

Then, we can de�ne the heuristic function with respect to A and a set I of

characters as follows:

UB2(A, I) =
∑
i∈I

w(i)−
∑

i∈NIA

w(i)−
∑

i∈NCA

w(i).

This result follows from weight2(P) ≤ UB2(A, I) (admissibility(Proposition 4)),

and w ≤ UB2(A, I) i� w ≤ weight2(P) (correctness).

Proposition 4. UB2 is admissible.

Proof. Let A be a partially constructed phylogeny of P . Let I be the set of char-

acters for P . Let NIA be the set of uninformative characters for A. Let NCA

be the set of incompatible characters for A. Let NIP be the set of uninformative

characters for P . Let NCP be the set of incompatible characters for P . Let CP be

the set of compatible characters for P . We want to show that

∑
i∈IC

w(i) ≤
∑
i∈I

w(i)−
∑

i∈NCA

w(i)−
∑

i∈NIA

w(i). (3.10)

Since by de�nition,
∑

i∈I w(i) =
∑

i∈NCP
w(i) +

∑
i∈CP

w(i) +
∑

i∈NIP
w(i), we

can rewrite 3.10 as:

∑
i∈IC

w(i) ≤
∑
i∈CP

w(i) +
∑

i∈NCP

w(i)−
∑

i∈NCA

w(i) +
∑

i∈NIP

w(i)−
∑

i∈NIA

w(i)

Since IC ⊆ CP , then
∑

i∈CP
w(i) −

∑
i∈ICP

w(i) ≥ 0. Since NCA ⊆ NCP ,

then
∑

i∈NCP
w(i) −

∑
i∈NCA

w(i) ≥ 0. Since NIA ⊆ NIP , then
∑

i∈NIP
w(i) −

38

∑
i∈NIA

w(i) ≥ 0. Therefore, UB2(A, I) ≥ weight2(P).

Upper Bound for W3 Let A be a partially constructed phylogeny of P . Let

sibling(v) denote the sibling v ∈ V and label(v) denote the label of v ∈ V . We

de�ne the heuristic function as follows with respect to the set of vertices V of P :

UBϕ(A, V) =
∑
v∈V

ϕ′(v) (3.11)

where ϕ′(v) is de�ned as follows:

ϕ′(v) =

1 if label(v) = ∅ or v 6∈ VP ,

1 if sibling(v) is not yet de�ned,

in A or label(sibling(v)) = ∅ ,

minC (v) otherwise

(3.12)

and minC (v) is de�ned as follows:

minC (v) = min(maxContr(v),maxContr(sibling(v))). (3.13)

This result follows from weight3(P) ≤ UBϕ(A, V) (admissibility), and w ≤

UBϕ(A, V) i� w ≤ weight3(P) (correctness).

Proposition 5. UBϕ is admissible.

To prove Proposition 5, we need the following lemmas, de�nitions and notation.

Let P be a phylogeny (V,E,L, I, S, f). We say that a phylogeny

X = (VX , EX , LX , IX , SX , fX) is contained in P (denoted X ⊆ P) if VX ⊆ V ,

EX ⊆ E, LX ⊆ L, IX ⊆ I, SX ⊆ S, f |LX
= fX .

39

Let X = (VX , EX , LX , IX , SX , fX) and Y = (VY , EY , LY , IY , SY , fY) be two

partial phylogenies contained in P . Let us denote by labelX(v) (resp. labelY (v))

for a vertex v ∈ V , the set of the labels of v in X (resp. Y). We say that X is

label-contained in Y (denoted X ⊆l Y) if

• X ⊆ Y ,

• for every v ∈ V , labelX(v) ⊆ labelY (v),

• |EP2 \ EP1 | ≤ 1.

In the following, for each function h de�ned over partial phylogenies above, let

us denote by hZ the function h de�ned for a partial phylogeny Z.

Then, for these lemmas, let P1 = (VP1 , EP1 , LP1 , IP1 , SP1 , fP1) and

P2 = (VP2 , EP2 , LP2 , IP2 , SP2 , fP2) be two partial phylogenies of P , where P1 ⊆l1 P2.

Lemma 1. For every vertex v ∈ V , if labelP1(v) = ∅ or v is not in VP1, then

ϕ′P1
(v) ≥ ϕ′P2

(v).

Proof. Take any v ∈ V . Assume that labelP1(v) = ∅ or v is not in VP1 . Under this

assumption, we want to show ϕ′P1
(v) ≥ ϕ′P2

(v) for v. Because of the assumption,

from the de�nition of ϕ′P1
, ϕ′P1

(v) = 1. Since 1 is the maximum value of ϕ′P1
and

ϕ′P2
, ϕ′P1

(v) ≥ ϕ′P2
(v).

Lemma 2. For every vertex v ∈ V , if siblingP1(v) 6∈ VP1 or labelP1(siblingP1(v)) =

∅, then ϕ′P1
(v) ≥ ϕ′P2

(v).

Proof. Take any v ∈ V . Assume that siblingP1(v) ∈ VP1 or labelP1(siblingP1(v)) =

∅. Under this assumption, we want to show ϕ′P1
(v) ≥ ϕ′P2

(v) for v. Because of the

assumption, from the de�nition of ϕ′P1
, ϕ′P1

(v) = 1. Since 1 is the maximum value

of ϕ′P1
and ϕ′P2

, ϕ′P1
(v) ≥ ϕ′P2

(v).

40

Lemma 3. For a partial phylogeny P1 of P and for every vertex v ∈ V , if the

following conditions hold:

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) = ∅,

then ϕ′P1
(v) = 0.

Proof. Take any v ∈ V . Assume that (i), (ii) and (iii) hold for v. Under these

assumptions, we want to show, ϕ′P1
(v) = 0. Due to (i) and (ii),

ϕ′P1
(v) = minCP1(v) = min(maxContrP1(v),maxContrP1(siblingP1(v))).

Due to (iii), since v and siblingP1(v) do not share a label in P1, ∀l ∈ labelP1(v),

ςP1(l, v) = 0 and ∀l ∈ labelP1(siblingP1(v)), ς(l, siblingP1(v)) = 0. That is

maxContrP1(v) = 0 and maxContrP1(siblingP1(v)) = 0. Therefore, ϕ′P1
(v) =

0.

Lemma 4. For every vertex v ∈ V , if the following conditions hold:

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP2(v) ∩ labelP2(siblingP2(v)) = ∅.

then ϕ′P1
(v) = ϕ′P2

(v).

Proof. Take any v ∈ V . Assume that (i), (ii), and (iii) hold for v. Under this

assumption, we want to show ϕ′P1
(v) ≥ ϕ′P2

(v) for v.

41

Since (i), (ii), (iii) and P1 ⊆l P2, then by Lemma 3, ϕ′P1
(v) = 0. Since (i), (ii),

(iii) and P1 ⊆l P2, then by Lemma 3, ϕ′P2
(v) = 0. Therefore, ϕ′P1

(v) = ϕ′P2
(v).

Lemma 5. For every vertex v ∈ V , if

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) 6= ∅.

ϕ′P1
(v) ≥ ϕ′P2

(v).

Proof. Take any v ∈ V . Assume that (i), (ii) and (iii) hold for v. Under this

assumption, we want to show ϕ′P1
(v) ≥ ϕ′P2

(v) for v.

Consider two cases:

Case 1: |labelP1(v)| = the total number of classes

� Due to (i) and (ii) and the propagation of labels described in the de�-

nition of label,

ϕ′P2
(v) = minCP2(v)

= min(maxContrP2(v),maxContrP2(siblingP2(v))).

Due to propagation of labels described in the de�nition of label, |labelP2(v)| =

the total number of classes and since |labelP2(v)| = the total number

of classes, due to the de�nition of ς, ϕ′P2
(v) = maxContrP2 = 0. Since

0 is the minimum value of ϕ′P1
and ϕ′P2

, ϕ′P1
(v) ≥ ϕ′P2

(v).

Case 2: |labelP1(v)| < the total number of classes

42

Due to (i) and (ii),

ϕ′P1
(v) = minCP1(v)

= min(maxContrP1(v),maxContrP1(siblingP1(v))).

= min(1
|labelP1

(v)| ,
1

|labelP1
(siblingP1

(v))|)

Due to (i) and (ii) and the propagation of labels described in the de�nition

of label,

ϕ′P2
(v) = minCP2(v)

= min(maxContrP2(v),maxContrP2(siblingP2(v))).

= min(1
|labelP2

(v)| ,
1

|labelP2
(siblingP2

(v))|)

Due to P1 ⊆l P2, since |labelP1(v)| ≤ |labelP2(v)| and |labelP1(siblingP1(v))| ≤

|labelP2(siblingP2(v))|, ϕ′P1
(v) ≥ ϕ′P2

(v).

Lemma 6. If the following conditions hold for every vertex v ∈ V :

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) = ∅,

(iv) labelP2(v) ∩ labelP2(siblingP2(v)) 6= ∅.

(v) EP2 = EP1

then there exists a label Z ∈ labelP2(siblingP2(v)) such that,

(a) Z ∈ (labelP2(v) ∩ labelP2(siblingP2(v)),

43

(b) Z 6∈ labelP1(v),

(c) Z ∈ labelP1(siblingP1(v)),

(d) for some leaf child vc of v, Z ∈ labelP2(vc).

Proof. Take any v ∈ V . Assume that (i), (ii), (iii),(iv) and (v) hold for v. Due

to (iv), (a) holds. Due to (iii) and P1 ⊆l P2, (b) holds. Due to P1 ⊆l P2, (c)

holds. Due to (iv) and propagation of labels described in the de�nition of label,

(d) holds.

Lemma 7. If the following conditions hold for every vertex v ∈ V :

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) = ∅,

(iv) labelP2(v) ∩ labelP2(siblingP2(v)) 6= ∅,

(v) EP2 6= EP1 .

then

(a) there exists an edge (v, vc) ∈ EP2 but not in EP1 and,

(b) there exists a label Z ∈ labelP2(siblingP2(v)) such that,

(b1) Z ∈ (labelP2(v) ∩ labelP2(siblingP2(v))

(b2) Z ∈ labelP1(siblingP1(v)),

(b3) Z 6∈ labelP1(v)

(b4) for some child vc of v, Z ∈ labelP2(vc).

44

v

siblingP1(v)

vc

Z

A

A

P1

v

Z

A, Z

P2

siblingP2(v)

siblingP1(vc) vc
A

siblingP1(vc)

Figure 3: Case 1: The boxes next to the vertices denote their labels.

Proof. Take any v ∈ V . Assume that (i), (ii), (iii),(iv) and (v) hold for v. Due

to (v), (a) holds. Due to (iv), (b1) holds. Due to P1 ⊆l P2, (b2) holds. Due to

P1 ⊆l P2, (iii) and (iv), (b3) holds. Due to (iv) and the propagation of labels

described in the de�nition of label, (b4) holds.

Lemma 8. If the following conditions hold for every vertex v ∈ V :

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) = ∅,

(iv) labelP2(v) ∩ labelP2(siblingP2(v)) 6= ∅.

then

45

v

siblingP1(v)
Z

A

A

P1

v

vc

A, Z

Z

P2

siblingP1(vc)

Z

ZA
siblingP1(v)siblingP1(vc)

Figure 4: Case 2: The boxes next to the vertices denote their labels.

(a) ϕ′P2
(v) ≥ ϕ′P1

(v),

(b) There exists a child vc of v, ϕ
′
P2

(vc) ≤ ϕ′P1
(vc),

(c) (ϕ′P1
(vc)− ϕ′P2

(vc))− (ϕ′P2
(v)− ϕ′P1

(v)) ≥ 0.

Proof. Take any v ∈ V . Assume that (i), (ii), (iii) and (iv) hold for v.

(a) ϕ′P2
(v) ≥ ϕ′P1

(v).

Due to Lemma 3, ϕ′P1
(v) = 0. Since 0 is the minimum value of ϕ′P1

and ϕ′P2
,

ϕ′P2
(v) ≥ ϕ′P1

(v).

(b) There exists a child vc of v, ϕ
′
P2

(vc) ≤ ϕ′P1
(vc).

Consider two cases:

Case 1: [EP2 = EP1] Due to Lemma 6, there exist a label Z 6∈ labelP1(v) and

Z ∈ labelP2(v) and there is a leaf-child vc of v such that Z ∈ label(vc)

46

due to propagation of labels described in the de�nition of label. Since

Z 6∈ labelP1(v), there is no child vd of v such that Z ∈ labelP1(vd);

therefore, Z 6∈ labelP1(vc). Since vc is a leaf, then labelP1(vc) = ∅.

Then by Lemma 1, ϕP1(vc) = 1. Since 1 is the maximum value of ϕP1

and ϕP2, ϕ
′
P2

(vc) ≤ ϕ′P1
(vc).

Case 2: [EP2 6= EP1] Due to Lemma 7, since edge (v, vc) 6∈ EP1 , vc 6∈ VP1 . Then

by Lemma 1, ϕP1(vc) = 1. Since 1 is the maximum value of ϕ′P1
and

ϕ′P2
, ϕ′P2

(vc) ≤ ϕ′P1
(vc).

(c) (ϕ′P1
(vc)− ϕ′P2

(vc))− (ϕ′P2
(v)− ϕ′P1

(v)) ≥ 0.

Consider two cases:

Case 1: [EP2 = EP1] Since (i), (ii) and (iii) hold, then by Lemma 3, ϕ′P1
(v) = 0.

Let us consider the case when ∀v ∈ V , (ϕ′P2
(v)− ϕ′P1

(v)) is maximum.

Since (i) and (ii) hold, then labelP2(v) 6= ∅, labelP2(siblingP2(v)) 6= ∅

and

ϕ′P2
(v) = minCP1(v)

= min(maxContrP1(v),maxContrP1(siblingP1(v))).

Since (i), (iii) and (iv) hold, we know that one of v or siblingP2(v) has

at least 2 labels in P2 and the other one has at least 1 label in P1.

(Note that Z ∈ labelP2(v) ∩ labelP2(siblingP2(v)).) Since by Lemma 6,

Z 6∈ labelP1(v), Z ∈ labelP2(vc), Z is also in labelP2(v); then we know

that v has at least 2 labels and siblingP2(v) has at least 1 label in P2.

Therefore,

ϕ′P2
(v) = min(1

|labelP2
(v)| ,

1
|labelP2

(siblingP2
(v))|)

= min(12 , 1) = 1
2 .

47

(Observe that if the number of labels of v or sibling(v) is greater than

2, ϕ′P2
(v) is smaller). Since the maximum value of ϕ′P2

is 1
2 and the

value of ϕ′P1
is 0, ϕ′P2

(v)− ϕ′P1
(v) ≤ 1

2 .

Let us consider the case when ϕ′P1
(vc) − ϕ′P2

(vc) is minimum. Since

Z ∈ labelP2(v), there should be a leaf l ∈ VP2 such that Z ∈ label(l).

Let vc = l. Since Z 6∈ labelP1(v), There is no child vd of v such that

Z ∈ labelP1(vd); therefore, Z 6∈ labelP1(vc). Since vc is a leaf, then

either vc 6∈ V or labelP1(vc) = ∅. Then by Lemma 1, ϕP1(vc) = 1.

Since Z 6∈ labelP1(v), and ∃C ∈ labelP1(v); C ∈ labelP1(sibling(vc))(

Because C should be propagated from its child sibling(vc) to v.). Since

Z 6= C, and the condition (iii), by Lemma 3, ϕP1(vc) = 0. Since the

value of ϕP1(vc) is 1 and the value of ϕP1(vc) is 0, ϕ
′
P1

(vc)−ϕ′P2
(vc) = 1.

Since ϕ′P2
(v) − ϕ′P1

(v) ≤ 1
2 and ϕ′P1

(vc) − ϕ′P2
(vc) = 1, (ϕ′P1

(vc) −

ϕ′P2
(vc))− (ϕ′P2

(v)− ϕ′P1
(v)) > 0.

Case 2: [EP2 6= EP1] Since (i), (ii) and (iii) hold, then by Lemma3, ϕ′P1
(v) = 0.

Let us consider the case when (ϕ′P2
(v)− ϕ′P1

(v)) is maximum. Due to

(i),(ii), and P1 ⊆l P2, labelP2(v) 6= ∅, labelP2(siblingP2(v)) 6= ∅ and

ϕ′P2
(v) = minCP1(v)

= min(maxContrP1(v),maxContrP1(siblingP1(v))).

Due to (i) and P1 ⊆l P2, v has at least one label A in P2. Due to

Lemma 7, v has another label Z in P2. Due to Lemma 7 and P1 ⊆l P2,

Z is also a label of siblingP2(v). We know that v has at least 2 labels

and siblingP2(v) has at least 1 label in P2. Therefore,

ϕ′P2
(v) = min(

1

|labelP2(v)|
,

1

|labelP2(siblingP2(v))|
) = min(

1

2
, 1) =

1

2
.

48

Since the maximum value of ϕ′P2
is 1

2 and the value of ϕ′P1
(v) is 0,

ϕ′P2
(v)− ϕ′P1

(v) ≤ 1
2 .

Let us now consider the case when ∀v ∈ V , ϕ′P1
(vc) − ϕ′P2

(vc) is min-

imum. Due to Lemma 7, since edge (v, vc) 6∈ EP1 , vc 6∈ VP1 . Then by

Lemma 1, ϕ′P1
(vc) = 1.

Due to (i), v has at least one label A in V1. Due to Lemma 7, there

exist a label Z in labelP2(v), that is not in labelP1(v); thus Z 6= A.

Due to Lemma 7, vc 6∈ VP1 . On the other hand, due to the de�nition

of label, there exist a child vs of v in P1, such that A ∈ labelP1(vs).

Since (v, vc) ∈ P2, vs is the sibling of vc in P2. So, siblingP1(vc) and

siblingP2(vc) has at least 1 label which is A. So far we know that

labelP2(vc) has at least one label Z, and labelP2(vc) has at least one label

A. The function ϕ′P2
gets the maximum value for vc for instance under

the following condition: labelP2(siblingP2(vc)) = {A} and labelP2(vc) =

{Z,A}. If vc and siblingP2(vc) have more than 2 labels, due to the

de�nition of ς, ϕ′P2
decreases. Then

ϕ′P2
(vc) = minCP2(v)

= min(maxContrP2(vc),maxContrP2(siblingP2(vc)))

= min(1
|labelP2

(vc)| ,
1

|labelP2
(siblingP2

(vc))|)

= min(12 , 1) = 1
2 .

Since the minimum value of ϕ′P1 is 1 and the maximum value of ϕ′P1

is 1
2 , ϕ

′
P1

(vc)− ϕ′P2
(vc) ≥ 1

2 .

Since ϕ′P2
(v)− ϕ′P1

(v) ≤ 1
2 and ϕP1(vc) is

1
2 , ϕ

′
P1

(vc)− ϕ′P2
(vc) ≥ 1

2 ,

49

(ϕ′P1
(vc)− ϕ′P2

(vc))− (ϕ′P2
(v)− ϕ′P1

(v)) ≥ 0.

Lemma 9. UBϕ(P2, V) ≤ UBϕ(P1, V).

Proof. Consider two cases:

• Case 1:(See Figure 3) Assume that one of the following holds:

(i) labelP1(v) = ∅,

(ii) labelP1(siblingP1(v)) = ∅,

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) 6= ∅,

(iv) labelP2(v) ∩ labelP2(siblingP2(v)) = ∅.

If (i), by Lemma 1, ϕ′P1
(v) ≥ ϕ′P2

(v). By de�nition of UB, UBϕ(P2, V) ≤

UBϕ(P1, V).

If (ii), by Lemma 2, ϕ′P1
(v) ≥ ϕ′P2

(v). By de�nition of UB, UBϕ(P2, V) ≤

UBϕ(P1, V).

If neither (i) nor (ii) holds, and (iii) holds, by Lemma 5, ϕ′P1
(v) ≥ ϕ′P2

(v).

By de�nition of UBϕ, UBϕ(P2, V) ≤ UBϕ(P1, V).

If neither (i) nor (ii) holds, and (iv) holds, by Lemma 4, ϕ′P1
(v) ≥ ϕ′P2

(v).

By de�nition of UBϕ, UBϕ(P2, V) ≤ UBϕ(P1, V).

• Case 2:(See Figure 4) Assume that all of the following hold:

(i) labelP1(v) 6= ∅,

(ii) labelP1(siblingP1(v)) 6= ∅,

50

(iii) labelP1(v) ∩ labelP1(siblingP1(v)) = ∅,

(iv) labelP2(v) ∩ labelP2(siblingP2(v)) 6= ∅.

In other words, although ϕ′P2
(v) ≥ ϕ′P1

(v) by Lemma 8(a), there is a child vc

of v such that ϕ′P2
(vc) ≤ ϕ′P1

(vc) by Lemma 8(b). Moreover, the di�erence

between (ϕ′P1
(vc)−ϕ′P2

(vc)) is greater than the di�erence between (ϕ′P2
(v)−

ϕ′P1
(v)) by Lemma 8(c). Therefore,

∑
v∈V ϕP2(v) ≤

∑
v∈V ϕP1(v); and

UBϕ(P2, V) ≤ UBϕ(P1, V).

Lemma 10. weight(P) = UBϕ(P, V).

Proof. Since P is a complete phylogeny, all of its vertices and labels of each vertex is

complete. Then, for every v ∈ V , by de�nition of ϕ′, ϕ′P (v) = minCP (v) = ϕP (v).

Therefore, by the de�nitions of weight and UBϕ, weight(P) = UBϕ(P, V).

Proof of Proposition 5. For any partial phylogeny P0 of P , there exists a sequence

P0, P1, ..., Pk = P of partial phylogenies such that P0 ⊆l1 P1 ⊆l1 ... ⊆l1 Pk = P .

Since for every i, Pi+1 ⊆l Pi, by Lemma 9, for all partial phylogenies Pi, where (0 ≤

i ≤ k), UBϕ(Pi, V) ≤ UBϕ(Pi+1, V). By Lemma 10, weight(Pk) = UBϕ(Pk, V).

Then UBϕ(P0, V) ≥ weight(P, V). Therefore, UBϕ is admissible.

Upper Bound for W4 Let A be the partially constructed phylogeny of P .

Let IC denote the set of compatible and informative characters for P , and IA

denote the set of informative and compatible characters for A. Let maxW denote

the maximum weight that a character can have (i.e. maxW = |{l : l ∈ L}|). Then,

we can de�ne the heuristic function with respect to A and a set I of characters as

51

follows:

UB4(A, I) =
∑
i∈IA

w(i) +
∑

i∈IC\IA

maxW (3.14)

With this heuristic function (implemented as a C++ program) and the phylogeny

reconstruction program of [12], clasp-w can compute all correct solutions (i.e.,

phylogenies whose weight is at least w). In other words, this heuristic function

ensures that the following holds for every phylogeny P computed in the end:

w ≤ weight4(P) ≤ UB4(A, I). (3.15)

This result follows from weight4(P) ≤ UB4(A, I) (admissibility), and w ≤ UBP (A, I)

i� w ≤ weight4(P) (correctness).

Proposition 6. UB4 is admissible.

We need the following lemma to prove Proposition 6.

Lemma 11. w(i) ≤ maxW for every i ∈ I.

Proof.

w(i) = |{l : l ∈ L, f(l, i) = g(sibling(l), i)}|.maxW = |{l : l ∈ L}|.

Therefore, w(i) < maxW for every i ∈ I.

Proof of Proposition 6. We want to show that, weight4(P) ≤ UB4(A, I).

weight4(P) =
∑
i∈IC

w(i) =
∑
i∈IA

w(i) +
∑

i∈IC\IA

w(i)

UB4(A, I) =
∑
i∈IA

w(i) +
∑

i∈IC\IA

maxW

52

Since by Lemma 3.5.2, w(i) ≤ maxW for every i,

∑
i∈IA

w(i) +
∑

i∈IC\IA

w(i) ≤
∑
i∈IA

w(i) +
∑

i∈IC\IA

maxW.

Therefore, weight4(P) ≤ UB4(A, I).

3.6 Phylo-ASP

Phylo-ASP is a tool for analyzing and reconstructing phylogenies with a character-

based approach based on the compatibility criterion. It is designed and imple-

mented to solve all the problems given in Subsection 3.3, using the methods de-

scribed in 3.5, with a divide-and-conquer approach. There is no such phyloge-

netic system which can help experts to order phylogenies with respect to a weight

measure that characterize their plausibiliy with respect to some domain-speci�c

information.

There are four modules in Phylo-ASP : Phylo-Analyze-ASP, Phylo-

Reconstruct-ASP, PhyloCompare-ASP and Phylo-ReconstructN-ASP.

PhyloCompare-ASP and Phylo-ReconstructN-ASP are studied in [15] and

[29]. The other two modules are introduced in this thesis.

3.6.1 Phylo-Analyze-ASP

Phylo-Analyze-ASP is for analyzing input (leaf-labeling function) and output

(phylogenies). It analyzes the leaf-labeling function and �nds uninformative and

non-unique characters. Additionally, it �nds the incompatible characters with a

given phylogeny. The input and the output of this module is as follows:

Input: Phylo-Analyze-ASP takes two kinds of input:

53

• Character states of taxonomic units for every character as a matrix

• A phylogenetic tree in Newick format (Optional)

Output: Phylo-Analyze-ASP outputs the uninformative and the non-unique

characters. If a phylogenetic tree in Newick format is given as an input, then the

program additionally outputs the incompatible characters for that tree.

3.6.2 Phylo-Reconstruct-ASP

Phylo-Reconstruct-ASP is for reconstructing (weighted) phylogenies for a

given input. It can solve di�erent decision and optimization problems, which are

stated in Subsection 3.3.

Moreover, it can process domain speci�c information such as how to group

taxonomic units, or sibling information and considers this information while re-

constructing phylogenies. In addition, if domain speci�c information about how

to group taxonomic units exists, then Phylo-Reconstruct-ASP reconstructs

phylogenies with a divide-and-conquer approach. This approach is very important,

because computing a phylogeny with a large number of taxanomic units and char-

acters is very time consuming and yet sometimes it is not possible to reconstruct

phylogenies for large datasets with existing methods.

In the divide-and-conquer approach, the phylogeny reconstruction problem is

divided into smaller phylogeny reconstruction problems. For example, consider

a set of species, with a large number of characters (Figure 5a). Experts usually

provide domain-speci�c information about how to group these species based on

biological or morphological data (Figure 5b). With this grouping information, �rst

we build a phylogeny for all groups (Figure 5c). Then with the labels of the groups

extracted from this phylogeny, we build phylogenies for each group (Figure 5d).

54

Finally, we combine the main phylogeny for all groups and a phylogeny for each

group, and obtain a complete phylogeny (Figure 5e).

Note that, another alternative to divide-and-conquer approach is to reconstruct

phylogenies for each group �rst, and then with the labeling information of the

roots of these phylogenies, to reconstruct a main phylogeny. However, with this

alternative, since labeling of the groups are picked before the computation of a

main phylogeny, the main phylogeny may not be optimal (i.e., the main phylogeny

may have a minimum number of incompatible characters with a di�erent possible

labeling). For example, consider the phylogeny in Figure 6 and suppose that the

species A and B are grouped together, and C, D, and E are grouped together. With

this approach, a phylogeny for the species A and B, and a phylogeny for the species

C, D, and E are computed in the �rst step. The root of the former can be labeled

with 0 or 1 with the same priority with respect to the compatibility criterion, so that

one of them will be picked and propagated to the mail phylogeny, as the labeling

of the group. If it is labeled with 0, then this character will be incompatible in the

main phylogeny. Therefore, the minimum number of incompatible characters for

the complete phylogeny will be 1, even though it is possible to label the internal

vertices in a way to make it 0.

The input and the output of this module is as follows:

Input: Phylo-Reconstruct-ASP takes six kinds of input:

• Character states of taxonomic units for every character

• Strict grouping information, which speci�es how to group species exactly

(Optional)

• Preferred grouping information, which speci�es how to group species prefer-

ably (Optional)

55

a) given species b) given species with respect to their grouping
information

c) a main phylogeny built for all groups d) a main phylogeny built for all groups and
phylogenies built for each group.

e) complete phylogeny built for all species

Figure 5: The divide-and-conquer technique used in PhyloReconstruct-
ASP

56

A B C D E

01 1 1 1

1

1 ? 0

1

Figure 6: A phylogeny

• Weight measures (Optional)

• A nonnegative integer n, which is the maximum number of incompatible

characters that a phylogeny can have (Optional)

• A nonnegative integer w, which is the minimum weight that a phylogeny can

have (Optional)

Output: Phylo-Reconstruct-ASP outputs the computed phylogenetic

trees in Newick format as well as the uninformative, non-unique and incompat-

ible characters with the tree.

The input, other than character states, are optional. Depending on the given

input, Phylo-Reconstruct-ASP can solve di�erent kinds of problems:

• If n is given as an input, Phylo-Reconstruct-ASP solves n-CP prob-

lem: It reconstructs all (or a desired number of) phylogenies with at most n

incompatible characters with respect to the character states.

57

• If w is given as an input, Phylo-Reconstruct-ASP solves k-WCP prob-

lem: It reconstructs all (or a desired number of) phylogenies with at least w

weight with respect to the character states and the desired weight measure.

• If both n and w are given as an input, Phylo-Reconstruct-ASP solves

wn-WCP problem: It reconstructs all (or a desired number of) phylogenies

with at most n incompatible characters and at least w weight with respect

to the character states and the desired weight measure.

• If both n and w are not given as an input, Phylo-Reconstruct-ASP

solves either MCP or MWCP, depending on the existence of the weight mea-

sure as input.

Overall Structure: The overall structure of Phylo-ASP can be seen in Fig-

ure 7:

1 Extra Preprocessing: In this step, the aim is to reduce the dataset by

�nding some incompatible characters before the phylogeny reconstruction.

2 Preprocessing: In this step, the aim is again to reduce the dataset by

�nding uninformative and nonunique characters before the phylogeny recon-

struction.

3 Reconstruction: In this step,

3.1 Phylo-Reconstruct-ASP �rst computes phylogenetic trees for all

groups with respect to given grouping information.

3.2 Then the labels of the groups are extracted from these phylogenies

(constructed in Step 3.1).

3.3 After that, with the labels of the groups extracted, Phylo-Reconstruct-

ASP computes phylogenetic trees for each group.

58

4 Combination: In this step, Phylo-Reconstruct-ASP combines the

phylogenies computed in Step 3.1 with the phylogenies computed in Step

3.3, outputs the combined phylogenies.

Extra Preprocessing: In order to reduce the dataset, we identify the char-

acters that are incompatible for any possible phylogeny for that dataset. We have

two di�erent methods to identify such characters:

E1 We �nd some incompatible characters by enumerating all phylogenies for

each group. We say that a character is incompatible for any phylogeny, if

it is incompatible for all phylogenies computed for a group. Such characters

are guaranteed to be incompatible in any phylogeny (Proposition 7).

E2 We �nd some incompatible characters for a phylogeny (V,E,L, I, S, f) by

analyzing the input matrix. For each set G of taxonomic units of P , we de�ne

SGi = {s ∈ S|s ∈ f(v, i), v ∈ G}. Then a character i ∈ I is incompatible if

the following holds:

For a set G of taxonomic units and a set G′ of taxonomic units,

i) |SGi ∩ SG′i| ≥ 2.

ii) For at least two states s, s′ ∈ SGi ∩ SG′i :

∗ ∃ v ∈ G s.t. s ∈ f(v, i) and 6 ∃t 6= s s.t. t ∈ f(v, i)

∗ ∃ v ∈ G′ s.t. s ∈ f(v, i) and 6 ∃t 6= s s.t. t ∈ f(v, i)

∗ ∃ v ∈ G s.t. s′ ∈ f(v, i) and 6 ∃t 6= s′ s.t. t ∈ f(v, i)

∗ ∃ v ∈ G′ s.t. s′ ∈ f(v, i) and 6 ∃t 6= s′ s.t. t ∈ f(v, i)

Note that, when f is a function, any character satisfying (i) is guaranteed to be

incompatible for any phylogeny (Proposition 3.6.2). When f is a relation, any

59

Weight
Measure 1

Weight
Measure 2

Character
States

Phylogeny for
all groups

Final
Phylogeny

Group Info Class Info

Combine
phylogenies

 Phylogeny for
Group 1

... Phylogeny for
Group m

Identify the characters
incompatible

with every phylogeny

Identify the
essential states for

all groups

 Identify the essential
character states
for each group

Reconstruct a max-
weighted phylogeny

for each group

Reconstruct a max-
weighted phylogeny

for all groups

EXTRA
PREPROCESSING

PREPROCESSING

RECONSTRUCTION

COMBINATION

Figure 7: The Overall System Architecture of PhyloReconstruct-ASP

60

character satisfying (i) and (ii) is guaranteed to be incompatible for any phylogeny.

(Proposition 3.6.2)

Proposition 7. Let G ⊆ L be a set of taxonomic units. Let P be a phylogeny

(V,E,L, I, S, f), that contains a phylogeny for G. Let i be a character in I. If i is

incompatible with respect to every possible phylogeny for G, then i is incompatible

with respect to P .

Proof. LetG ⊆ L be a set of taxonomic units. Let P be a phylogeny (V,E, L, I, S, f),

that contains a phylogeny PG for G. Let i be a character in I.

Take any i ∈ I. Assume that i is incompatible with respect to every possible

phylogeny for G. We want to show i is incompatible with respect to P .

Since i is incompatible with a phylogeny for G, then there exists no function

gG : G× i→ S that satis�es the following conditions:

[G1] for every leaf v ∈ G, g(v, i) = f(v, i)

[G2] for every s ∈ S, if the set V G
is = {x ∈ G : gp(x, i) = s} is non empty,

then the digraph 〈G,E〉 has a subgraph with the set V G
is of vertices that is

a rooted tree.

Suppose i is compatible with P .Since i is compatible with P , there exists a

function gP : V × i→ S that satis�es the following conditions:

[P1] for every leaf v ∈ V , g(v, i) = f(v, i)

[P2] for every s ∈ S, if the set V P
is = {x ∈ V : gP (x, i) = s} is non empty,

then the digraph 〈V,E〉 has a subgraph with the set V P
is of vertices that is a

rooted tree.

From the de�nition of gP above, we can extract a function gG : G× i→ S such

that the following holds:

61

• Since PG ⊆ P , then gG(G, i) = f(v, i) = gP (v, i). Therefore, gG satis�es

[G1].

• If the set V G
is = {x ∈ G : gp(x, i) = s} is non empty, then V P

is is non empty.

Then there exists a subgraph of P , with the set V P
is of vertices, that is a

rooted tree. Since V G
is ⊆ V P

is , then PG also has such a tree. Therefore, gG

satis�es [G2].

Since gG satis�es [G1] and [G2], i is compatible with G. This contradicts with

i is compatible with a phylogeny for P .

Proposition 8. Let G ∈ L and G′ ∈ L be a set of taxonomic units. Let P be a

phylogeny (V,E, L, I, S, f) that contains a phylogeny for G and a phylogeny for G′.

Let i be a character in I and let f be a function V × I → S. For G and G′, if

|SGi ∩ SG′i| ≥ 2, then a character i ∈ I is incompatible.

Proof. Let G ∈ V and G′ ∈ V be a set of taxonomic units. Let P be a phylogeny

(V,E,L, I, S, f) that contains a phylogeny PG for G and a phylogeny P ′G for G′.

Let i be a character in I and let f be a function V × I →.

For any character i ∈ I, assume |SGi ∩ SG′i| ≥ 2. We want to show that i is

incompatible for P .

Take any i in I. Due to |SGi ∩ SG′i| ≥ 2, there should be at least 2 di�erent

states s, t such that, s, t ∈ SGi and s, t ∈ SG′i. Note that since fPG
is de�ned from

VPG
× IPG

to SPG
, if there exists two di�erent states in SGi then there should be at

least 2 di�erent leaves, l1G, l2G ∈ G. Similarly, since fP ′
G
is de�ned from VP ′

G
× IP ′

G

to SP ′
G
, if there exists two di�erent states in SG′i then there should be at least 2

di�erent leaves, l1G′ , l2G′ ∈ G. Suppose that for character i, the leaves l1G ∈ G and

l1G′ ∈ G′ are labeled with s and l2G ∈ G and l2G′ ∈ G′ are labeled with t in P .

Due to the de�nition of compatibility, if i is compatible, then

62

(a) for the state s, there is a subgraph SGs of P , with the set Vis = {v ∈ V :

g(v, i) = s} of vertices that is a rooted tree.

(b) for the state t, there is a subgraph SGt of P , with the set Vit = {v ∈ V :

g(v, i) = t} of vertices that is a rooted tree.

Note that, if i is compatible, then

• due to (a), the root rG of the phylogeny for G and the root r′G of the phy-

logeny for G′ should be in SGs, in order to connect l1G and l1G′ .

• due to (b), the root rG of the phylogeny for G and the root r′G of the phy-

logeny for G′ should be in SGt, in order to connect l2G and l2G′ .

Since all the vertices in SGs should be labeled with s, and all the vertices in

SGt should be labeled with t and since s 6= t, [a] and [b] can not hold. Therefore,

i is incompatible.

Proposition 9. Let G ∈ V and G′ ∈ V be a set of taxonomic units. Let P be a

phylogeny (V,E, L, I, S, f) that contains a phylogeny for G and a phylogeny for G′.

Let i be a character in I and let f be a relation V × I → S. Then a character i ∈ I

is incompatible if the following holds:

For G and G′,

i) |SGi ∩ SG′i| ≥ 2.

ii) For at least two states s, s′ ∈ SGi ∩ SG′i :

� ∃ v ∈ G s.t. s ∈ f(v, i) and 6 ∃t 6= s s.t. t ∈ f(v, i)

� ∃ v ∈ G′ s.t. s ∈ f(v, i) and 6 ∃t 6= s s.t. t ∈ f(v, i)

� ∃ v ∈ G s.t. s′ ∈ f(v, i) and 6 ∃t 6= s′ s.t. t ∈ f(v, i)

63

� ∃ v ∈ G′ s.t. s′ ∈ f(v, i) and 6 ∃t 6= s′ s.t. t ∈ f(v, i)

Proof. Let G ∈ P and G′ ∈ P be a set of taxonomic units. Let P be a phylogeny

(V,E,L, I, S, f) that contains a phylogeny for G and a phylogeny for G′. Let i be

a character in I and let f be a relation V × I → S.

For any character i ∈ I, assume (i) and (ii). We want to show that i is

incompatible for P .

Due to condition (ii), for the character i to be incompatible, for at least two

states s and t, there should exist two vertices in G, such that one of vertices should

map only to one state s, and the other vertex should map only to another state,

t. Similarly, there should exist two vertices in G′, such that one of them should

map only to one state s, and the other one should map only to another state, t.

Then, the proof of this claim is very similar to Proposition 3.6.2: Take any i in I.

Due to |SGi ∩ SG′i| ≥ 2, there should be at least 2 di�erent states s, t such that,

s, t ∈ SGi and s, t ∈ SG′i. Note that since fPG
is de�ned from VPG

× IPG
to SPG

,

if there exists two di�erent states in SGi then there should be at least 2 di�erent

leaves, l1G, l2G ∈ G. Similarly, since fP ′
G
is de�ned from VP ′

G
× IP ′

G
to SP ′

G
, if there

exists two di�erent states in SG′i then there should be at least 2 di�erent leaves,

l1G′ , l2G′ ∈ G. Suppose that for character i, the leaves l1G ∈ G and l1G′ ∈ G′ are

labeled with s and l2G ∈ G and l2G′ ∈ G′ are labeled with t in P . Due to the

de�nition of compatibility, if i is compatible, then

(a) for the state s, there is a subgraph SGs of P , with the set Vis = {v ∈ V :

g(v, i) = s} of vertices that is a rooted tree.

(b) for the state t, there is a subgraph SGt of P , with the set Vit = {v ∈ V :

g(v, i) = t} of vertices that is a rooted tree.

Note that, if i is compatible, then

64

• due to (a), the root rG of the phylogeny for G and the root r′G of the phy-

logeny for G′ should be in SGs, in order to connect l1G and l1G′ .

• due to (b), the root rG of the phylogeny for G and the root r′G of the phy-

logeny for G′ should be in SGt, in order to connect l2G and l2G′ .

Since all the vertices in SGs should be labeled with s, and all the vertices in

SGt should be labeled with t and since s 6= t, [a] and [b] can not hold. Therefore,

i is incompatible.

Preprocessing: In order to reduce the dataset, we identify characters that

are uninformative and nonunique for any possible phylogeny for that dataset as in

[12].

Phylogeny Reconstruction: In phylogeny reconstruction, Phylo-Reconstruct-

ASP �rst computes main phylogenetic trees for all groups with respect to given

grouping information (Algorithm 11):

• First, we minimize the number n of incompatible characters.

• Then, we maximize the weight w of the phylogeny with respect to n.

• Then we compute all phylogenies with n and w values.

Then the labels of the groups are extracted from these phylogenies and with the la-

bels of the groups extracted, Phylo-Reconstruct-ASP computes phylogenetic

trees for each group:

• First, we minimize the number ng of incompatible characters.

• Then, we maximize the weight wg of the phylogeny with respect to ng.

• Then we compute all phylogenies with ng and wg values.

65

If the input is a a leaf-labeling relation rather than a leaf-labeling function, Phylo-

Reconstruct-ASP �rst minimizes the number of essential states, in order to

reduce the number of incompatible characters of the complete phylogeny and re-

construct phylogenies as explained before, with the minimum number of essential

states.

3.7 Experimental Results

We have applied our methods and tested our system with two di�erent datasets:

Indo-European languages and Quercus species. For both datasets, in addition to

solving an optimization problem to �nd phylogenies with the minimum number of

incompatible characters and maximum weight, we are interested in solving a deci-

sion problem to �nd phylogenies with a small number of incompatible characters

and a large weight.

We are interested in decision problems because some computed phylogenies can

be identi�ed as plausible by the experts even though they do not have minimum

number of incompatible characters or maximum weight. For example, in [12], for

Indo-European languages, some phylogenies computed with 17 or 18 incompatible

characters are identi�ed as plausible, even though the minimum number of incom-

patible characters for the dataset is 16. In addition, in [14], the phylogenies with

the weights over 45 are identi�ed as plausible, even though the maximum weight

of the computed phylogenies is 65.

Based on this motivation, we can decide for the thresholds as follows: �rst we

compute a phylogeny with the minimum number of compatible characters (since

our approach to phylogenetics is based on the compatibility criterion) by increasing

the number of incompatible characters one by one starting from 0 until a phylogeny

is computed.

66

Algorithm 10 ReconstructMaxWeightedPhylogenies

Require: a leaf-labeling function f : L × I → S or a leaf-labeling rela-
tion f : L× I × S, Grouping information GroupInfo, a weight measure
WeightMeasure that maps a phylogeny to a number.

Ensure: A set PM of main phylogenies, a set PC of complete phylogenies,
a set PG of phylogenies for each group, the minimum number nM (resp.
nC)of incompatible characters of the phylogenies in PM (resp. PC), the
maximum weight wM (resp. wC) of the phylogenies in PM (resp. PC).
{�nd the set IM of characters which are incompatible with every main
phylogeny.}
IM ← ExtraPreprocess(f ,GroupInfo);
{�nd the set IM of informative characters and the list SM of (informative
character-essential state) pairs for all groups; the set IG of informative
characters and the list SG of (informative character-essential state) pairs
for each group}
L, IM , SM , IG, SG ← Preprocess(f , GroupInfo);
{reconstruct the set PM of max-weighted main phylogenies, �nd the min-
imum number nM of incompatible characters, the maximum weight wM

for the main phylogenies, the labeling gM of vertices and the list INM of
incompatible characters of the phylogenies in PM}
nM , wM , PM , gM , INM ← ReconstructMainPhylogenies(L, IM ,
SM , WeightMeasure);
{propagate the labels of the leaves of the main phylogeny to the to-be-
reconstructed phylogenies for each group}
SG ← ExtractGroupLabels(L, PM , gM , SG)
{reconstruct all max-weighted phylogenies for each group}
PG ← ReconstructPhylogeniesForEachGroup(L, SG, IG,
GroupInfo, WeightMeasure);
{combine the main phylogenies with the phylogenies for each group}
PC , nC , wC ← CombinePhylogenies(L, PM , PG, GroupInfo, I, S)
return PM , PG, PC , nM , wM , nC , wC

67

Algorithm 11 ReconstructMainPhylogenies
Require: A set L of leaves, a set IM of characters, a list SM of character-
state pairs, a weight measure WeightMeasure that maps a phylogeny
to a number.

Ensure: A list PM of main phylogenies, a set IIN of incompatible characters.
min_n ← FindMinimumNumberOfInCompatibleCharacters(L,
IM , SM);
max_w ← FindMaximumWeight(L, IM , SM , WeightMeasure,
min_n);
j := 0; {computed phylogeny count }
previousPhylogenies := ∅; {current reconstructed phylogenies which are
given as constraints for the next computation }
repeat
PM [j], gM [j], IIN [j] ← ReconstructPhylogeny(L, IM , SM ,
WeightMeasure, min_n, max_w, previousPhylogenies);
previousPhylogenies := previousPhylogenies ∪ {PM [j]};
j + +;

until PM [j] = ∅;
return min_n, max_w, PM , gM , IIN

68

Algorithm 12 ReconstructPhylogeniesForEachGroup

Require: A set L of leaves, a list SG where SG[j] is a set of character-state
pairs for each group, a set IG where IG[i] is a set of informative characters
for each group, GroupInfo, WeightMeasure.

Ensure: A list PG of phylogenies where PG[j] is a set of phylogenies for each
group.
for each group j in GroupInfo do
min_n← FindMinimumNumberOfInCompatibleCharacters(L,
IG, SG[j]);
max_w ← FindMaximumWeight(L, IG, SG[j], WeightMeasure,
min_n);
previousPhylogenies := ∅ ; {current reconstructed phylogenies which
are given as constraints for the next computation }
repeat
PG[j] ← ReconstructPhylogeny(L, IG, SG[j], WeightMea-
sure, min_n, max_w, previousPhylogenies);
previousPhylogenies := previousPhylogenies ∪ {PG[j]};
j + +;

until PG[j] = ∅
end for
return PG

69

Algorithm 13 CombinePhylogenies: Combine one phylogeny for
each main phylogeny
Require: The set L of leaves, the set PM of main phylogenies, the list PG of
phylogenies where PG[j] is a set of phylogenies for each group,GroupInfo,
a set I of characters, a list S of (informative character-essential state)
pairs, a weight measure WeightMeasure that maps every phylogeny to
a number.

Ensure: The set of combined phylogenies PC , the minimum number min_n
of incompatible characters of PC and the maximum weight max_w of PC .
PC := ∅;
k := 0; { Main phylogeny counter}
for each phylogeny p in PM do
PC [k] := PC [k] ∪ {p};
for each group j in GroupInfo do
PC := PC ∪ {PG[j][0]};

end for
k + +;
min_n← FindMinimumNumberOfInCompatibleCharacters(L,
PC, I, S);
max_w ← FindMaximumWeight(L, PC , I, S, WeightMeasure,
min_n);
PC := ∅;

end for
return PC , max_w, min_n

Algorithm 14 FindMinimumNumberOfIncompatibleCharacters

Require: The set L of leaves, the set I of characters, a list S of (informative
character-essential state) pairs.

Ensure: The minimum number of incompatible characters min_n.
min_n := 0;
p := ∅;
while p is empty do
p = ReconstructPhylogeny(L, I, S, min_n);
min_n + +;

end while
return min_n− 1

70

Algorithm 15 FindMaximumWeight

Require: The set L of leaves, the set I of characters,the list S of (infor-
mative character-essential state) pairs, WeightMeasure, the number of
incompatible characters n.

Ensure: The maximum weight max_w.
max_w := 0;
p := ∅;
repeat
p ← ReconstructPhylogeny(L, I, S, WeightMeasure, n,
max_w);
max_w + +;

until p is empty
return max_w − 1

Algorithm 16 Preprocess

Require: a leaf-labeling function f : L × I → S or a leaf-labeling relation
f : L× I × S, GroupInfo.

Ensure: The set of leaves L, the set IM of informative characters for the
main phylogeny, the list SM of (informative character-essential state) pairs
for the main phylogeny, the list IG of informative characters where IG[i] is
the set of informative characters for each group, the list SG where SG[i] is
the (informative character-essential state) pairs for each group.
L, I, S ←ExtractInformation(f);
IM , SM ← FindInformativeCharactersAndEssentialStates(L, I,
S);
for each group i in GroupInfo do
IG[i], SG[i]← FindInformativeCharactersAndEssentialStates(Li,
I, Si);

end for
return L, IM , SM , IG, SG

71

Algorithm 17 FindInformativeCharactersAndEssentialStates

Require: The set L of leaves, the set I of characters, the list S of (informa-
tive character-essential state) pairs.

Ensure: The set II of informative characters, the list SE of (informative
character-essential state) pairs.
II := ∅;
SE := ∅;
for each character i in I do
intersectionOfStates := ∅;
for each leaf l in L do
for each leaf u in L s.t. u 6= l do
if g(l, i) = g(u, i) = s ∈ S then
intersectionOfStates := intersectionOfStates ∪ {s};

end if
end for

end for
if |intersectionOfStates| ≥ 2 then
II := II ∪ {i};
SE := SE ∪ intersectionOfStates;

end if
end for
return II , SE

Algorithm 18 ExtraPreprocess

Require: a leaf-labeling function f : L × I → S or a leaf-labeling relation
f : L× I × S, GroupInfo.

Ensure: The set IC of characters which can not be identi�ed as incompati-
ble.
II1← FindIncompatibleCharactersByCheckingCommonCharacters(f ,
GroupInfo);
II2 ← FindIncompatibleCharactersByAnalyzingStates(f ,
GroupInfo);
IC := I \ (II1 ∪ II2);
return IC

72

Algorithm 19 FindIncompatibleCharactersByCheckingCommon-
Characters
Require: a leaf-labeling function f : L × I → S or a leaf-labeling relation
f : L× I × S, GroupInfo.

Ensure: The set II of characters which are incompatible for every possible
phylogeny.
IntersectionOfCharacters := I;
for each group g in GroupInfo do
IIG ← ReconstructPhylogeny(L, I, S);
IntersectionOfCharacters := IntersectionOfCharacters ∩ IIG;

end for
return IntersectionOfCharacters

Since there may be plausible phylogenies �close� to the optimal one in terms

of the number of incompatible characters, we also compute phylogenies with a

�small� number of incompatible characters by further increasing the value of c by

some units depending on the number of phylogenies computed so far. Similarly,

we can decide for the value of the threshold for weight.

All experiments are done on a workstation with two 1.60 GHz Intel Xeon E5310

Quad-Core Processor,and 16 GB RAM, running Centos 64bit(Version 5.3); in these

experiments LPARSE v.1.1.2 and GRINGO v.2.0.3 is used as grounders and clasp

v.1.3.1 is used as the answer set solver.

3.7.1 Indo-European Languages

The �rst data set we have used in our experiments is the Indo-European languages,

prepared by Don Ringe and Ann Taylor [69]. The dataset consists of 282 characters

and each character is mapped to 1 to 24 states. We also have some domain-

speci�c information on the simple groupings of these languages; the languages can

be grouped into 8 groups which are presented in Table 2.

We have constructed weighted phylogenies with Phylo-ASP with a divide-

73

Algorithm 20 FindIncompatibleCharactersByAnalyzingStates

Require: a leaf-labeling function f : L × I → S or a leaf-labeling relation
f : L× I × S, a vertex-labeling function g : V × I → SGroupInfo.

Ensure: The set II of characters which are incompatible for every possible
phylogeny.
II := ∅;
for each character i in I do
for each group r in GroupInfo do
for each group h in GroupInfo s.t. r 6= h do
statesOfFirstGroup := ∅;
statesOfSecondGroup := ∅;
for each element t of group r in GroupInfo do
for each element u of group h in GroupInfo do
statesOfFirstGroup := statesOfFirstGroup ∪ g(t, i);
statesOfSecondGroup := statesOfSecondGroup ∪ g(u, i);

end for
end for
intersectionSet := statesOfFirstGroup∩ statesOfSecondGroup;
uniqueIntersection := ∅;
for each state s in intersectionSet do
for each element t of group r in GroupInfo do
for each element u of group h in GroupInfo do
if s ∈ g(t, i) AND s ∈ g(u, i) then
for all states t in intersectionSet s.t. t 6= s do
if t 6∈ g(t, i) AND t 6∈ g(u, i) then
uniqueIntersection := uniqueIntersection ∪ {s};

end if
end for

end if
end for

end for
if |uniqueIntersection| ≥ 2 then
II := II ∪ {i};

end if
end for

end for
end for

end for
return II

74

Table 2: Eight Indo-European language groups

Abbreviation Language groups Languages
AN proto-Anatolian Hittite, Luvian, Lycian
TO proto-Tocharian Tocharian A, Tocharian B
IC proto-Italo-Celtic Oscan, Umbrian, Latin,

Old Irish, Welsh
GE proto-Germanic Old English, Old High German,

Old Norse, Gothic
GA proto-Greco-Armenian Ancient Greek, Classical Armenian
BS proto-Balto-Slavic Lithuanian, Latvian,

Old Prussian, Old Church Slavonic
IIR proto-Indo-Iranian Old Persian, Avestan, Vedic
AL Albanian Albanian

and-conquer approach. The result of our experiments can be summarized as follows:

• We have reconstructed main phylogenies for all groups using the weight mea-

sure W4 and found max-weighted phylogenies with 0 incompatible characters

and a maximum weight of 42. We have also computed w-weighted phyloge-

nies whose weight is at least 32. All main phylogenies found for all groups

are identi�ed as plausible by experts. Results are presented in Table 3.

• We have reconstructed phylogenies for each group using the weight measure

W4 and with respect to a main phylogeny. For example, in Table 7, the

phylogenies are computed with respect to the Phylogeny 7 in Table 3: we

consider the labels of roots of these phylogenies as same as the labels of these

vertices in Phylogeny 7. The maximum weights and the minimum number

of incompatible characters of each phylogeny is given in Table 7.

• We have computed complete phylogenies by combining the main phylogenies

for all groups and the phylogeny for each group. Results are presented in

75

Table 8.

The results have ful�lled our expectations: The phylogeny with the minimum

number of incompatible characters and the maximum weight is the most plausible

one from the point of view of Don Ringe.

Computing phylogenies for all groups is essential, since experts are usually in-

terested in deep evolution of languages: They have more information on the �newer�

languages compared to the �older"" languages. In that sense, the phylogenies in

Table 3 are important for historical linguists.

As a result of the interaction between �newer� languages, there may be sev-

eral possible phylogenies for each group as in seen in Table 7. These results are

acceptable. However, one can �nd more accurate solutions for the groups of Indo-

European languages than the solutions represented in Table 7, by taking into ac-

count the domain-speci�c information on groupings of languages in these groups.

3.7.2 Quercus Species

The second dataset we have experimented with is for the genus Quercus (oak trees)

prepared by Yasin Bak�³ [3]. The dataset consists of 47 Quercus populations in dif-

ferent parts of Turkey. There are 37 characters for these populations; each character

is mapped to 1 to 8 states. In addition, we have some domain-speci�c information

about the expected groupings of the species and subgroupings: the populations can

be grouped into 14 subgroups, and these subgroups can be grouped into 3 classes.

According to this information, a phylogeny is preferable if these species are closer

to each other with respect to this hierarchical grouping information.

We have constructed weighted phylogenies with Phylo-ASP with a divide-

and-conquer approach for Quercus:

• We have reconstructed main phylogenies for all groups using the weight mea-

76

Table 3: Main phylogenies for all Indo-European language groups

Phylogeny n w
1 (AN,((((GA,((IIR,BS),GE)),AL),IC),TO))
2 (AN,(((GA,(AL,((IIR,BS),GE))),IC),TO)) 0 43
3 (AN,(((((GA,(IIR,BS)),GE),IC),AL),TO)) 0 43
4 (AN,(((((GA,(IIR,BS)),GE),AL),IC),TO)) 0 43
5 (AN,((((GA,((IIR,BS),GE)),IC),AL),TO)) 0 43
6 (AN,(((GA,((AL,(IIR,BS)),GE)),IC),TO)) 0 43
7 (AN,((((GA,(AL,(IIR,BS))),GE),IC),TO)) 0 43
8 (AN,(((((GA,(IIR,BS)),AL),GE),IC),TO)) 0 43
9 (AN,((((GA,(IIR,(BS,GE))),IC),AL),TO)) 0 43
10 (AN,((((GA,(IIR,(BS,GE))),AL),IC),TO)) 0 42
11 (AN,(((GA,(AL,(IIR,(BS,GE)))),IC),TO)) 0 42
12 (AN,(((((GA,(BS,GE)),IIR),IC),AL),TO)) 0 42
13 (AN,(((((GA,(BS,GE)),IIR),AL),IC),TO)) 0 42
14 (AN,(((GA,((AL,(BS,GE)),IIR)),IC),TO)) 0 42
15 (AN,((((GA,(AL,(BS,GE))),IIR),IC),TO)) 0 42
16 (AN,(((((GA,(BS,GE)),AL),IIR),IC),TO)) 0 42
17 (AN,((((GA,(IIR,BS)),(AL,GE)),IC),TO)) 0 42
18 (AN,(((GA,((AL,GE),(IIR,BS))),IC),TO)) 0 41
19 (AN,((((GA,IIR),(AL,(BS,GE))),IC),TO)) 0 41
21 (AN,((((GA,AL),((IIR,BS),GE)),IC),TO)) 0 39
22 (AN,(((((GA,AL),GE),(IIR,BS)),IC),TO)) 0 39
23 (AN,(((((GA,AL),(IIR,BS)),GE),IC),TO)) 0 39
24 (AN,(((((GA,IIR),AL),(BS,GE)),IC),TO)) 0 39
25 (AN,(((((GA,IIR),(BS,GE)),IC),AL),TO)) 0 39
26 (AN,(((((GA,IIR),(BS,GE)),AL),IC),TO)) 0 39
27 (AN,((((GA,AL),(IIR,(BS,GE))),IC),TO)) 0 39
28 (AN,(((((GA,AL),(BS,GE)),IIR),IC),TO)) 0 38
29 (AN,(((((GA,AL),IIR),(BS,GE)),IC),TO)) 0 38
30 (AN,((((GA,(IIR,BS)),GE),(AL,IC)),TO)) 0 38

77

Table 4: Main phylogenies for all Indo-European language groups

Phylogeny n w
31 (AN,(((GA,((IIR,BS),GE)),(AL,IC)),TO)) 0 36
32 (AN,(((GA,(IIR,(BS,GE))),(AL,IC)),TO)) 0 36
33 (AN,((((GA,(BS,GE)),IIR),(AL,IC)),TO)) 0 35
34 (AN,(((GA,(((AL,GE),BS),IIR)),IC),TO)) 0 35
35 (AN,((((GA,((AL,GE),IIR)),BS),IC),TO)) 0 34
36 (AN,(((GA,(((AL,GE),IIR),BS)),IC),TO)) 0 34
37 (AN,((((((GA,IIR),BS),GE),IC),AL),TO)) 0 34
38 (AN,((((GA,((IIR,GE),BS)),IC),AL),TO)) 0 33
39 (AN,((((((GA,IIR),GE),AL),BS),IC),TO)) 0 33
40 (AN,((((((GA,IIR),AL),GE),BS),IC),TO)) 0 33
41 (AN,((((((GA,IIR),BS),AL),GE),IC),TO)) 0 33
42 (AN,((((GA,((IIR,GE),BS)),AL),IC),TO)) 0 33
43 (AN,((((((GA,IIR),GE),BS),AL),IC),TO)) 0 33
44 (AN,((((((GA,IIR),AL),BS),GE),IC),TO)) 0 33
45 (AN,((((((GA,IIR),GE),BS),IC),AL),TO)) 0 33
46 (AN,((((((GA,IIR),BS),GE),AL),IC),TO)) 0 33
47 (AN,(((GA,(AL,((IIR,GE),BS))),IC),TO)) 0 33
48 (AN,(((((GA,(IIR,GE)),BS),IC),AL),TO)) 0 33
49 (AN,(((GA,((AL,(IIR,GE)),BS)),IC),TO)) 0 33
50 (AN,(((((GA,(IIR,GE)),BS),AL),IC),TO)) 0 33
51 (AN,((((GA,(AL,(IIR,GE))),BS),IC),TO)) 0 33
52 (AN,(((((GA,(IIR,GE)),AL),BS),IC),TO)) 0 33
53 (AN,((((GA,IIR),(BS,GE)),(AL,IC)),TO)) 0 33
54 (AN,((((((GA,AL),BS),GE),IIR),IC),TO)) 0 32
55 (AN,((((((GA,AL),BS),IIR),GE),IC),TO)) 0 32
56 (AN,((((((GA,AL),GE),IIR),BS),IC),TO)) 0 32
57 (AN,((((((GA,AL),IIR),GE),BS),IC),TO)) 0 32
58 (AN,((((((GA,AL),IIR),BS),GE),IC),TO)) 0 32
59 (AN,((((((GA,AL),GE),BS),IIR),IC),TO)) 0 32
60 (AN,(((((GA,IIR),BS),(AL,GE)),IC),TO)) 0 32

78

Table 5: Main phylogenies for all Indo-European language groups

Phylogeny n w
61 (AN,((((GA,IIR),((AL,GE),BS)),IC),TO)) 0 31
62 (AN,(((((GA,IIR),(AL,GE)),BS),IC),TO)) 0 31
63 (AN,((((GA,AL),((IIR,GE),BS)),IC),TO)) 0 31
64 (AN,(((((GA,AL),BS),(IIR,GE)),IC),TO)) 0 29
65 (AN,(((((GA,AL),(IIR,GE)),BS),IC),TO)) 0 29
66 (AN,(((((GA,IIR),GE),BS),(AL,IC)),TO)) 0 29
67 (AN,(((((GA,IIR),BS),GE),(AL,IC)),TO)) 0 26
68 (AN,(((GA,((IIR,GE),BS)),(AL,IC)),TO)) 0 26
69 (AN,((((GA,(IIR,GE)),BS),(AL,IC)),TO)) 0 26
70 (AN,((((GA,(AL,GE)),(IIR,BS)),IC),TO)) 0 26
71 (AN,((((GA,GE),(AL,(IIR,BS))),IC),TO)) 0 21
72 (AN,(((((GA,GE),(IIR,BS)),IC),AL),TO)) 0 19
73 (AN,(((((GA,GE),(IIR,BS)),AL),IC),TO)) 0 19
74 (AN,(((((GA,GE),AL),(IIR,BS)),IC),TO)) 0 19
75 (AN,((((GA,((AL,GE),BS)),IIR),IC),TO)) 0 16
76 (AN,(((((GA,(AL,GE)),IIR),BS),IC),TO)) 0 14
77 (AN,(((((GA,(AL,GE)),BS),IIR),IC),TO)) 0 14
78 (AN,((((GA,GE),(IIR,BS)),(AL,IC)),TO)) 0 14
79 (AN,((((((GA,GE),BS),IIR),IC),AL),TO)) 0 12
80 (AN,((((((GA,GE),BS),IIR),AL),IC),TO)) 0 12
81 (AN,((((((GA,GE),BS),AL),IIR),IC),TO)) 0 12
82 (AN,((((((GA,GE),IIR),AL),BS),IC),TO)) 0 12
83 (AN,((((((GA,GE),IIR),BS),IC),AL),TO)) 0 12
84 (AN,((((((GA,GE),IIR),BS),AL),IC),TO)) 0 12
85 (AN,((((((GA,GE),AL),IIR),BS),IC),TO)) 0 12
86 (AN,((((((GA,GE),AL),BS),IIR),IC),TO)) 0 12
87 (AN,(((((GA,GE),IIR),BS),(AL,IC)),TO)) 0 12
88 (AN,(((((GA,GE),BS),IIR),(AL,IC)),TO)) 0 5
89 (AN,((((((GA,BS),AL),GE),IIR),IC),TO)) 0 5
90 (AN,((((((GA,BS),GE),IIR),AL),IC),TO)) 0 2

79

Table 6: Main phylogenies for all Indo-European language groups

Phylogeny n w
91 (AN,((((((GA,BS),GE),AL),IIR),IC),TO)) 0 2
92 (AN,((((((GA,BS),IIR),GE),IC),AL),TO)) 0 2
93 (AN,((((((GA,BS),AL),IIR),GE),IC),TO)) 0 2
94 (AN,((((((GA,BS),IIR),GE),AL),IC),TO)) 0 2
95 (AN,((((((GA,BS),IIR),AL),GE),IC),TO)) 0 2
96 (AN,((((((GA,BS),GE),IIR),IC),AL),TO)) 0 2
97 (AN,((((GA,BS),(IIR,GE)),(AL,IC)),TO)) 0 2
98 (AN,((((GA,BS),(AL,(IIR,GE))),IC),TO)) 0 0
99 (AN,(((((GA,BS),IIR),(AL,GE)),IC),TO)) 0 0
100 (AN,(((((GA,BS),IIR),GE),(AL,IC)),TO)) 0 0
101 (AN,(((((GA,BS),GE),IIR),(AL,IC)),TO)) 0 0
102 (AN,((((GA,BS),((AL,GE),IIR)),IC),TO)) 0 0
103 (AN,(((((GA,BS),(AL,GE)),IIR),IC),TO)) 0 0
104 (AN,(((((GA,BS),(IIR,GE)),IC),AL),TO)) 0 0
105 (AN,(((((GA,BS),(IIR,GE)),AL),IC),TO)) 0 0
106 (AN,(((((GA,BS),AL),(IIR,GE)),IC),TO)) 0 0

80

sure W3 and found max-weighted phylogenies with 9 incompatible characters

and a weight of 18. The reason behind using W3 is to re�ect the hierarchical

grouping information, to compute more preferable phylogenies. We have also

computed w-weighted phylogenies whose minimum number of incompatible

characters is 14 and whose weight is at least 11. All phylogenies found for

all groups are identi�ed as plausible by Yasin Bak�³. Results are presented

in Table 10 and Table 11.

• Then we have reconstructed phylogenies for each group for each phylogeny

for all groups, by using the weight measure W4. For example, in Table 12 and

Table 13, the phylogenies are computed based on the main phylogeny 2 in

Table 10. The maximum weights and the minimum number of incompatible

characters of phylogenies are given in Tables 10 and 11.

• We have computed complete phylogenies by combining the main phylogenies

for all groups and the phylogenies for each group. Results are presented in

Table 14 and Table 15.

The results are ful�lled our expectations: The �rst two phylogenies with the

minimum number of incompatible characters and the maximum weight is the most

plausible ones from the point of view of Yasin Bak�³. Also the eighth phylogeny in

Table 10 is among the one of the three most plausible phylogenies.

81

Table 7: Phylogenies for each group for Indo-European languages

GroupName Phylogeny n w
((HI,LY),LU)

AN ((HI,LU),LY) 0 0
(HI,(LU,LY))
((OC,(LI,LT)),PR)
(OC,((LI,LT),PR))

BS ((OC,PR),(LI,LT)) 0 36
(((OC,PR),LT),LI)
(((OC,PR),LI),LT)
(((OI,WE),LA),(OS,UM))
(((OI,WE),(OS,UM)),LA)
((((OI,WE),LA),UM),OS)

IC ((OI,WE),(LA,(OS,UM))) 0 73
((((OI,WE),LA),OS),UM)
(OI,((LA,(OS,UM)),WE))
((OI,(LA,(OS,UM))),WE)
(((OE,OG),GO),ON)
(((OE,OG),ON),GO)

GE ((OE,OG),(GO,ON)) 0 18
(OE,((GO,ON),OG))
((OE,(GO,ON)),OG)
((VE,PE),AV)

IIR ((VE,AV),PE) 0 0
(VE,(AV,PE))

GA (AR,GK) 0 0
TO (TB,TA) 0 0

82

Table 8: Complete Phylogenies for Indo-European languages. All complete
phylogenies in the table is formed by combining a large phylogeny (The
column "CP" in this table indicates the index of that large phylogeny in
Table 3) from Table 3 and the small phylogenies which are computed for
that large phylogeny.

Phylogeny n w CP
1 (((HI,LY),LU),(((((((OC,(LI,LT)),PR),((VE,PE),AV)),(AR,GK)), 30 2813 1

((((OE,OG),GO),ON),AL)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
2 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(AR,GK)), 31 2827 2

(((OE,OG),GO),ON)),(((OI,WE),LA),(OS,UM))),AL),(TB,TA)))
3 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(AR,GK)), 31 2827 3

(((OE,OG),GO),ON)),AL),(((OI,WE),LA),(OS,UM))),(TB,TA)))
4 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(AR,GK)), 31 2827 5

AL),(((OE,OG),GO),ON)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
5 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),AL),(AR,GK)), 31 2824 4

(((OE,OG),GO),ON)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
6 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(((OE,OG),GO) 34 2807 6

,ON)),(AR,GK)),AL),(((OI,WE),LA),(OS,UM))),(TB,TA)))
7 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(((OE, 34 2807 8

OG),GO),ON)),(AR,GK)),(((OI,WE),LA),(OS,UM))),AL),(TB,TA)))
8 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),(((OE, 34 2806 7

OG),GO),ON)),AL),(AR,GK)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
9 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),((VE,PE),AV)),AL), 34 2804 9

(((OE,OG),GO),ON)),(AR,GK)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
10 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)), 34 2780 10

((VE,PE),AV)),(AR,GK)),(((OI,WE),LA),(OS,UM))),AL),(TB,TA)))
11 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)), 34 2780 11

((VE,PE),AV)),(AR,GK)),AL),(((OI,WE),LA),(OS,UM))),(TB,TA)))
12 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),(AR,GK)), 34 2780 13

((VE,PE),AV)),(((OI,WE),LA),(OS,UM))),AL),(TB,TA)))
13 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),(AR,GK)), 34 2780 14

((VE,PE),AV)),AL),(((OI,WE),LA),(OS,UM))),(TB,TA)))
14 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),(AR,GK)), 34 2780 15

((VE,PE),AV)),AL),(((OI,WE),LA),(OS,UM))),(TB,TA)))
15 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),(AR,GK)), 34 2780 17

AL),((VE,PE),AV)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
16 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),((VE, 34 2779 12

PE),AV)),AL),(AR,GK)),(((OI,WE),LA),(OS,UM))),(TB,TA)))
17 (((HI,LY),LU),((((((((OC,(LI,LT)),PR),(((OE,OG),GO),ON)),AL), 34 2778 16

(AR,GK)),((VE,PE),AV)),(((OI,WE),LA),(OS,UM))),(TB,TA)))

83

Table 9: Quercus Species

Abbreviation Species Populations
AUC Q. aucheri AUC114, AUC117, AUC118
ILX Q. ilex ILX113, ILX206
COC Q. coccifera COC128, COC166, COC176, COC209
TRO Q. trojana TRO163, TRO185, TRO193, TRO220
CER Q. cerris BRA 156, BRA158, BRA081, BRA172
LIB Q. libani LIB151, LIB159
BRA Q. brantii CER137, CER181, CER210, CER200
ITH Q. ithaburensis ITH216, ITH186, ITH169, ITH124
PET Q. petraea PET115, PET087, PET204
INF Q. infectoria INF145, INF163, INF199, INF183
ROB Q. robur] ROB084, ROB208, ROB189, ROB140
MAC Q. macranthera MAC150, MAC140
FRA Q. frainetto FRA191, FRA208, FRA187
PUB Q. pubescens PUB133, PUB102, PUB182

84

Table 10: Main phylogenies for all Quercus groups - Part I

Phylogeny n w
1 (((((AUC,(ILX,(FRA,PUB))),COC),PET), 9 18

(INF,(ROB,MAC))),(((TRO,(BRA,ITH)),LIB),CER))
2 (((((AUC,(ILX,(FRA,PUB))),COC),PET), 9 18

(INF,(ROB,MAC))),(((TRO,(LIB,ITH)),BRA),CER))
3 ((((((AUC,ILX),COC),(ROB,MAC)),PET), 9 18

(((TRO,((LIB,ITH),CER)),BRA),FRA)),(INF,PUB))
4 ((((((AUC,ILX),MAC),PET),COC),(INF,ROB)), 9 18

((((TRO,LIB),(CER,ITH)),BRA),(FRA,PUB)))
5 ((((((AUC,COC),MAC),PET),ILX),(INF,ROB)), 9 18

((((TRO,LIB),(CER,ITH)),BRA),(FRA,PUB)))
6 ((((AUC,ILX),(COC,(FRA,PUB))),(((TRO,(BRA,LIB)),CER),ITH)), 9 18

(((INF,PET),ROB),MAC))
7 (((((AUC,ILX),COC),(FRA,PUB)),(((TRO,CER),(BRA,(LIB,ITH))), 9 18

(INF,PET))),(ROB,MAC))
8 ((AUC,PUB),((((ILX,COC),(INF,FRA)),((ROB,PET),MAC)), 9 17

(TRO,((BRA,LIB),(CER,ITH)))))
9 ((((((AUC,ROB),(INF,PET)),(ILX,MAC)),(COC,PUB)), 10 13

(((TRO,BRA),(LIB,CER)),ITH)),FRA)
10 ((((AUC,ROB),INF),((COC,PUB),(MAC,FRA))),((ILX,PET), 12 13

((TRO,LIB),((BRA,ITH),CER))))
11 ((((((AUC,ROB),FRA),COC),(TRO,((BRA,LIB),CER))), 13 13

((ILX,((INF,PUB),PET)),MAC)),ITH)
12 ((((((AUC,ROB),FRA),COC),(TRO,((BRA,LIB),CER))), 13 13

((ILX,((INF,PET),PUB)),MAC)),ITH)
13 ((((((AUC,INF),(ROB,FRA)),(MAC,PUB)),(COC,PET)), 14 13

((ILX,CER),BRA)),((TRO,ITH),LIB))
14 ((((AUC,((BRA,CER),ROB)),(INF,(MAC,FRA))), 14 11

(TRO,(LIB,ITH))),((ILX,PUB),(COC,PET)))
15 (((((((AUC,ROB),FRA),COC),(TRO,((BRA,LIB),CER))),MAC), 14 12

(ILX,((INF,PUB),PET))),ITH)
16 ((((AUC,((BRA,CER),ROB)),((ILX,PUB),(COC,PET))), 14 11

(TRO,(LIB,ITH))),(INF,(MAC,FRA)))

85

Table 11: Main phylogenies for all Quercus groups - Part II

Phylogeny n w
17 ((((AUC,ILX),(LIB,CER)),((((COC,FRA),(ROB,PET)),PUB), 15 16

(INF,MAC))),(TRO,(BRA,ITH)))
18 (AUC,((((((ILX,ITH),(BRA,CER)),(TRO,LIB)), 15 14

((ROB,PET),PUB)),(INF,(MAC,FRA))),COC))
19 (AUC,(((((((ILX,(CER,ITH)),LIB),TRO), 15 12

(INF,(ROB,(PET,(MAC,PUB))))),FRA),BRA),COC))
20 ((AUC,(ROB,FRA)),((((ILX,MAC),PUB), 16 11

((((TRO,ITH),(LIB,CER)),INF),BRA)),(COC,PET)))
21 ((((((AUC,LIB),CER),TRO),BRA), 16 9

((((((ILX,INF),FRA),ROB),MAC),PUB),PET)),(COC,ITH))
22 ((((((((((AUC,TRO),(ILX,ITH)),COC),LIB),CER),BRA), 17 15

((ROB,PET),FRA)),PUB),MAC),INF)
23 (((((AUC,CER),(TRO,LIB)),(((ILX,((COC,INF), 17 10

FRA)),ROB),PUB)),BRA),(ITH,(PET,MAC)))
24 ((((((((((AUC,TRO),(ILX,ITH)),COC),LIB),CER),BRA), 17 9

((ROB,PET),FRA)),PUB),MAC),INF)

86

Table 12: Phylogenies for each group for Quercus - Part I

GroupName Phylogeny n w
((AUC114,AUC118),AUC117)

AUC ((AUC114,AUC117),AUC118) 0 0
(AUC114,(AUC117,AUC118))

ILX (ILX113,ILX206) 0 0
(((COC128,COC209),COC166),COC176)
((COC128,COC209),(COC166,COC176))

COC ((COC128,(COC166,COC176)),COC209) 2 5
(COC128,((COC166,COC176),COC209))
(((COC128,COC209),COC176),COC166)
((TRO163,(TRO193,TRO220)),TRO185)
(TRO163,(TRO185,(TRO193,TRO220)))

TRO (((TRO163,TRO185),TRO193),TRO220) 1 6
(((TRO163,TRO185),TRO220),TRO193)
((TRO163,TRO185),(TRO193,TRO220))
(BRA156,(BRA158,(BRA081,BRA172)))

BRA ((BRA156,(BRA158,BRA172)),BRA081) 1 3
((BRA156,(BRA081,BRA172)),BRA158)
((LIB151,LIB087),LIB159)

LIB ((LIB151,LIB159),LIB087) 0 0
(LIB151,(LIB159,LIB087))

87

Table 13: Phylogenies for each group for Quercus - Part II

GroupName Phylogeny n w
CER ((CER137,CER181),(CER210,CER200)) 0 4

((ITH216,ITH169),(ITH186,ITH124))
ITH ((ITH216,ITH124),(ITH186,ITH169)) 2 4

((ITH216,ITH186),(ITH169,ITH124))
(INF145,(INF163,(INF199,INF183)))

INF ((INF145,(INF199,INF183)),INF163) 1 0
(((INF145,INF163),INF199),INF183)
((ROB084,(ROB208,ROB140)),ROB189)

ROB ((ROB084,ROB189),(ROB208,ROB140)) 0 2
(ROB084,((ROB208,ROB140),ROB189))
(((ROB084,ROB189),ROB208),ROB140)

PET ((PET115,PET204),PET087) 0 0
((PET115,PET087),PET204)

MAC (MAC150,MAC140) 0 0
((FRA208,FRA187),FRA191)

FRA ((FRA208,FRA191),FRA187) 0 0
(FRA208,(FRA191,FRA187))
((PUB133,PUB182),PUB102)

PUB ((PUB133,PUB102),PUB182) 0 0
(PUB133,(PUB102,PUB182))

88

Table 14: Complete Phylogenies for genus Quercus - Part I. All complete
phylogenies in the table is formed by combining a main phylogeny (The
column "CP" in this table indicates the index of that main phylogeny in
Table 10 and Table 10) and the small phylogenies which are computed for
each subgroup.

Phylogeny n w CP
(((((((AUC114,AUC118),AUC117),((ILX113,ILX206),
(((FRA208,FRA187),FRA191),((PUB133,PUB182),PUB102)))),
(((COC128,COC209),COC166),COC176)),((PET115,PET204),

1 PET087)),(((INF145,INF163),(INF199,INF183)), 31 282 2
(((ROB084,ROB189),(ROB208,ROB140)),(MAC150,MAC140)))),
(((((TRO163,TRO185),(TRO193,TRO220)),(((LIB151,LIB087),
LIB159),((ITH216,ITH169),(ITH186,ITH124)))),((BRA156,BRA081),
(BRA158,BRA172))),((CER137,CER181),(CER210,CER200))))
((((((((AUC114,AUC118),AUC117),(ILX113,ILX206)),(MAC150,MAC140)),
((PET115,PET204),PET087)),(((COC128,COC209),COC166),COC176)),

2 (((INF145,INF163),(INF199,INF183)),((ROB084,ROB189),(ROB208, 31 282 4
ROB140)))),((((((TRO163,TRO185),(TRO193,TRO220)),((LIB151,
LIB087),LIB159)),(((CER137,CER181),(CER210,CER200)),((ITH216
,ITH169),(ITH186,ITH124)))),((BRA156,BRA081),(BRA158,BRA172))),
(((FRA208,FRA187),FRA191),((PUB133,PUB182),PUB102))))
(((((((AUC114,AUC118),AUC117),(ILX113,ILX206)),(((COC128,COC209),
COC166),COC176)),(((FRA208,FRA187),FRA191),((PUB133,PUB182),

3 PUB102))),(((((TRO163,TRO185),(TRO193,TRO220)),((CER137,CER181), 31 282 7
(CER210,CER200))),(((BRA156,BRA081),(BRA158,BRA172)),(((LIB151,
LIB087),LIB159),((ITH216,ITH169),(ITH186,ITH124))))),(((INF145,INF163),
(INF199,INF183)),((PET115,PET204),PET087)))),(((ROB084,ROB189),
(ROB208,ROB140)),(MAC150,MAC140)))

89

Table 15: Complete Phylogenies for genus Quercus - Part II. All complete
phylogenies in the table is formed by combining a main phylogeny (The
column "CP" in this table indicates the index of that main phylogeny in
Table 10 and Table 10) and the small phylogenies which are computed for
each subgroup.

Phylogeny n w CP
(((((((AUC114,AUC118),AUC117),((ILX113,ILX206),(((FRA208,
FRA187),FRA191),((PUB133,PUB182),PUB102)))),(((COC128,COC209),

4 COC166),COC176)),((PET115,PET204),PET087)),(((INF145,INF163), 31 282 1
(INF199,INF183)),(((ROB084,ROB189),(ROB208,ROB140)),(MAC150,
MAC140)))),(((((TRO163,TRO185),(TRO193,TRO220)),(((BRA156,
BRA081),(BRA158,BRA172)),((ITH216,ITH169),(ITH186,ITH124)))),
((LIB151,LIB087),LIB159)),((CER137,CER181),(CER210,CER200))))
((((((((AUC114,AUC118),AUC117),(((COC128,COC209),COC166),COC176)),
(MAC150,MAC140)),((PET115,PET204),PET087)),(ILX113,ILX206)),

5 (((INF145,INF163),(INF199,INF183)),((ROB084,ROB189),(ROB208, 31 282 5
ROB140)))),((((((TRO163,TRO185),(TRO193,TRO220)),((LIB151,LIB087),
LIB159)),(((CER137,CER181),(CER210,CER200)),((ITH216,ITH169),
(ITH186,ITH124)))),((BRA156,BRA081),(BRA158,BRA172))),(((FRA208,
FRA187),FRA191),((PUB133,PUB182),PUB102))))
((((((AUC114,AUC118),AUC117),(ILX113,ILX206)),((((COC128,COC209),
COC166),COC176),(((FRA208,FRA187),FRA191),((PUB133,PUB182),

6 PUB102)))),(((((TRO163,TRO185),(TRO193,TRO220)),(((BRA156, 31 282 6
BRA081),(BRA158,BRA172)),((LIB151,LIB087),LIB159))),((CER137,
CER181),(CER210,CER200))),((ITH216,ITH169),(ITH186,ITH124)))),
(((((INF145,INF163),(INF199,INF183)),((PET115,PET204),PET087)),
((ROB084,ROB189),(ROB208,ROB140))),(MAC150,MAC140)))
((((((((AUC114,AUC118),AUC117),(ILX113,ILX206)),(((COC128
,COC209),COC166),COC176)),(((ROB084,ROB189),(ROB208,ROB140)),

7 (MAC150,MAC140))),((PET115,PET204),PET087)),(((((TRO163,TRO185), 32 235 3
(TRO193,TRO220)),((((LIB151,LIB087),LIB159),((ITH216,ITH169),
(ITH186,ITH124))),((CER137,CER181),(CER210,CER200)))),((BRA156,
BRA081),(BRA158,BRA172))),((FRA208,FRA187),FRA191))),
(((INF145,INF163),(INF199,INF183)),((PUB133,PUB182),PUB102)))
((((AUC114,AUC118),AUC117),((PUB133,PUB182),PUB102)),
(((((ILX113,ILX206),(((COC128,COC209),COC166),COC176)),

8 (((INF145,INF163),(INF199,INF183)),((FRA208,FRA187),FRA191))), 32 235 8
((((ROB084,ROB189),(ROB208,ROB140)),((PET115,PET204),PET087)),
(MAC150,MAC140))),(((TRO163,TRO185),(TRO193,TRO220)),((((BRA156,
BRA081),(BRA158,BRA172)),((LIB151,LIB087),LIB159)),(((CER137,CER181),
(CER210,CER200)),((ITH216,ITH169),(ITH186,ITH124)))))))

90

4 Reconstructing Weighted Phylogenetic Networks us-

ing ASP

In the previous chapter, we studied phylogenetic trees. However, phylogenetic trees

are not fully adequate in the study of evolutionary relations between taxonomic

units because they do not represent borrowings. For example, consider languages

as taxonomic units. They do not only inherit characteristics from their ancestors

(such relations can be represented by phylogenetic trees), but also they may borrow

characteristics from other languages. We can represent these borrowings by adding

a small number of edges to a phylogenetic tree. Hence, we can construct a phyloge-

netic network in 2 steps: (1) Build a phylogenetic tree. (2) Obtain a phylogenetic

network from the phylogenetic tree by adding a small number of edges.

Similar to phylogenetic trees, some phylogenetic networks can also be more

plausible than the others from the point of view of experts. In order to automat-

ically pick more plausible phylogenetic networks, we de�ne some weight functions

to re�ect the plausibility of networks and introduce methods to compute weighted

phylogenetic networks whose weight is among a given threshold.

4.1 Preliminaries

Before describing the computational problems related to weighted phylogenetic

network reconstruction, we need to introduce some de�nitions as in [12].

4.1.1 Temporal Networks

A temporal phylogeny is a phylogeny along with a function τ from vertices of

the phylogeny to real numbers such that for every edge 〈u, v〉 of the phylogeny

τ(u) < τ(v) (See Figure 8). Intuitively, τ(v) is the time when language v was

91

spoken. We will graphically represent the values of τ by placing a vertical time

line to the right of the tree.

A contact between two linguistic communities can be represented by a hori-

zontal edge added to a pictorial representation of a temporal phylogeny. The two

endpoints of the edge are a simultaneous �event� in the histories of these commu-

nities. An event can be represented by a pair v ↑ t, where v is a vertex of the

phylogeny and t is a real number.

Consider a temporal phylogeny T ; let V be the set of its vertices, R its root,

and τ its time function. For every v ∈ V \{R}, let par(v) be the parent of v. An

event is any pair v ↑ t such that v ∈ V \{R} and t is a real number satisfying the

inequalities

τ(par(v)) ≤ t ≤ τ(v). (4.1)

Events v ↑ t and v′ ↑ t′ are concurrent if t = t′. A contact is a set consisting of

two di�erent concurrent events, denoted by {B ↑ t1, D ↑ t1}.

Any �nite set C of contacts de�nes a temporal (phylogenetic) network (see

Figure 1) - a digraph obtained from T by inserting the elements v ↑ t of the

contacts from C as intermediate vertices and then adding every contact in C as a

bidirectional edge.

4.1.2 k-Simple Contacts

A set C of contacts is k-simple if

• for every event v ↑ t that belongs to a contact from C, t < τ(v) and

• for every vertex v of T there exist at most k distinct number t1, .., tk such

that ti belongs to some contact from C.

92

Figure 8: A temporal phylogeny (a), and a perfect temporal network (b)
with a lateral edge connecting B ↑ 1750 with D ↑ 1750.

For a vertex v ∈ V, let us denote by Vc(v) of events v ↑ t in VC .

If C is k-simple, then the corresponding network (see Figure 9) can be described

as follows. The set of its vertices is the union of the set V of vertices of T with the

union VC of the contacts from C. Its set EC of edges is obtained from the set E of

edges of T in two steps. First, for every edge 〈par(v), v〉 in E, if Vc(v) 6= ∅, then

we replace the edge 〈par(v), v〉 by |Vc(v)|+1 edges.

〈par(v), v ↑ t1〉, 〈v ↑ t1, v ↑ t2〉, ..., 〈v ↑ t|Vc(v)|, v〉

such that v ↑ ti ∈ VC(v) and for all i, j (i < j) i� (ti < tj).

Second, for every contact 〈u ↑ ti, v ↑ ti〉 in C we add a �bidirectional lateral

edge� � the pair of edges

〈u ↑ ti, v ↑ ti〉 and 〈v ↑ ti, u ↑ ti〉.

93

Figure 9: A perfect temporal network with k-simple contacts with 2 lateral
edges connecting D ↑ 1200 with C ↑ 1200 and D ↑ 1750 with B ↑ 1750.

A k-simple set C of contacts (and the corresponding network 〈V ∪ VC , EC〉) is

perfect if there exists a function g : (V ∪ VC)× I → S such that

(i) for every leaf v of T and every i ∈ I, g(v, i) = f(v, i);

(ii) for every i ∈ I and every s ∈ S, if the set

Vis = {x ∈ V ∪ VC : g(x, i) = s}

is nonempty then the digraph 〈V ∪ VC , EC) has a subgraph with the set Vis of

vertices that is a rooted tree.

Note that if k = 1, then a k-simple set of contacts is also a simple set of contacts

as described in [35], since in the simple set of contacts, there is at most one t such

that v ↑ t belongs to some contact from C. Therefore, our de�nition generalizes

simple set of contacts.

94

4.1.3 Summaries of k-Simple Contacts

The information included in a temporal phylogeny is insu�cient for determining

the exact dates of the contacts that turn it into a perfect network. To make this

idea precise, let us �rst select for each v ∈ V \ {R}, |VC(v)| symbols v ↑z where

(1 ≤ z ≤ |VC(v)|), and let us denote the set of new symbols by VS(v). For each

vertex v ∈ V \{R} we de�ne a function s that maps each element v ↑ t in VC(v) to

an element of VS(v) satisfying the following condition:

• For every v ↑ t and v ↑ t′ in VC(v), let v ↑z= s(v ↑ t) and v ↑z′= s(v ↑ t′).

Then t < t′ i� z < z′.

Then we de�ne the �summary� of a k-simple set C of contacts to be the result

of replacing each element v ↑ t of every contact in C with v ↑z with respect to the

function s. Thus summaries consist of 2-element subset of the set

V ↑k= {v ↑z: v ∈ V \{R}, 1 ≤ z ≤ k}.

Intuitively, v ↑z is a language intermediate between v ↑z−1 (v ↑z−1= par(v) if

z = 1) and v ↑z+1 (v ↑z+1= v if z = |Vs(v)|) that was spoken at some unspeci�ed

time between τ(v ↑z−1) and τ(v ↑z+1).

4.2 Weighted Networks

The motivation behind computing weighted networks is similar to computing weighted

phylgenetic trees: There may be many possible phylogenetic networks as solutions

for a problem and some solutions may be more desirable from the experts' point

of view. Therefore, we formulate weight measures to re�ect the plausibility of the

networks, and we pick distinct solutions over a weight threshold.

95

The weight function we have formulated for phylogenetic networks is as follows:

We de�ne the weight measure of a phylogenetic network in such a way that the

bilateral edges are added as close to the root as possible.

Consider a phylogenetic network N with the set VS of summaries and with the

set L of leaves. The weight of the network N is de�ned as the sum of the weights

of all summaries:

∑
s∈VS

w(s) (4.2)

The weight w(s) of a summary s = 〈u ↑z, v ↑z〉 is de�ned as the minimum of two

values : the number of vertices in the shortest path of the paths from u to a leaf

l ∈ L (including u and l) and the number of vertices in the shortest path of the

paths from v to a leaf l ∈ L(including v and l):

w(s) = min(height(u ↑z), height(v ↑z)) (4.3)

where height(v ↑z) is the number of vertices in the shortest path of the paths

from v to any leaf l ∈ L (including v and l).

4.3 Problem De�nitions

We study the following computational problems related to reconstruction of net-

works:

Increment to Perfect k-Simple Temporal Network Problem (k-

IPSTN)

k-IPSTN is de�ned by a phylogeny 〈V,E, L, I, S, f〉, a function

v 7→ (τmin(v), τmax(v))

96

from the vertices of the phylogeny to open intervals (in other words, for every

v ∈ V , τmin(v) is a real number or −∞, and τmax(v) is a real number or +∞,

such that τmin(v) < τmax(v)) and an integer k. A solution to the problem is

a set of 2-element subsets of V ↑k that is the summary of a perfect k-simple

set of contacts for a temporal phylogeny 〈V,E, L, I, S, f, τ〉 such that, for all

v ∈ V ,

τmin(v) < τ(v) < τmax(v). (4.4)

n-Weighted Increment to Perfect k-Simple Temporal Network

Problem (nk-IPSTN)

Given a k-IPSTN problem Q with a phylogeny 〈V,E,L, I, S, f〉, two nonneg-

ative integers l and n and a weight function w : V ↑k→ N; we want to �nd

solutions X to Q such that the cardinality of X is at most l and the weight

of the corresponding phylogenetic network (i.e.
∑

x∈X w(x)) is at least n.

Note that nk-IPSTN generalizes IPSTN: Consider a weight function that maps

every summary to 1, and take k=1.

nk-IPSTN problem can be expressed as a decision problem as follows: Given a

k-IPSTN problem Q with a phylogeny 〈V,E,L, I, S, f〉, two nonnegative integers l

and n and a weight function w : V ↑k→ N; decide the existence of a solution X to

Q such that the cardinality of X is at most l and the weight of the corresponding

phylogenetic network (i.e.
∑

x∈X w(x)) is at least n.

Proposition 10. nk-IPSTN problem is NP-hard.

Proof. Perfect Phylogeny Problem10 is a special kind of nk-IPSTN problem, if we

10Perfect Phylogeny Problem (PP) is NP-complete as proved in [8]: PP is polynomially
equivalent with Triangulating Colored Graph problem and Triangulating Colored Graph
Problem is NP-complete.

97

take the weight function as a function that maps every summary to 1, k = 0 and

l = 0. Therefore, nk-IPSTN problem is NP-hard.

Solutions as admissible sets Consider a phylogeny 〈V,E,L, I, S, f〉 with a

root R and a set X of 2-element subsets of V ↑k. By VX we denote the union

of all elements of X. By EX we denote the set obtained from E by replacing, if

VS(v) 6= 0, the edge 〈par(v), v〉 with |VS(v)|+1 edges:

〈par(v), v ↑z1〉, 〈v ↑z1 , v ↑z2〉, ..., 〈v ↑z|Vs(v)| , v〉

such that v ↑zi and for all i, j (i < j) i� (zi < zj) and adding, for every element

{u ↑j , v ↑z j} of X, the edges

〈u ↑j , v ↑j〉 and 〈v ↑j , u ↑j〉.

We say that X is admissible if there exists a function g : (V ∪ VX) × I → S

such that

(i) for every leaf v of the phylogeny and every i ∈ I, g(v, i) = f(v, i);

(ii) for every i ∈ I and every s ∈ S, if the set

Vis = {x ∈ V ∪ VX : g(x, i) = s}

is non empty, then the digraph 〈V ∪ VX , EX〉 has a subgraph with the set

Vis of vertices that is a rooted tree.

In the following proposition, Q is an nk-IPSTN problem de�ned by a phylogeny

〈V,E,L, I, S, f〉 with a root R, a function v 7→ (τmin(v), τmax(v)), an integer k and

a weight function w : V ↑k→ N.

98

Proposition 11. A set X of 2-element subsets of V ↑k is a solution to Q i�

(i) X is admissible, and

(ii) there exists a real valued function τ on V ∪ VX such that

(a) for every v ∈ V ,

τmin(v) < τ(v) < τmax(v),

(b) for every v ∈ V \{R},

τ(par(v)) < τ(v),

(c) for every element v ↑j of VX ,

τ(par(v)) < τ(v ↑j) < τ(v),

(d) for every element v ↑j of VX ,

τ(v ↑j) < τ(v ↑j+1),

(e) for every element {u ↑j , v ↑j} of X,

τ(u ↑j) = τ(v ↑j).

Proof. Left-to-right. Assume that X is a solution to Q, so that there exist a real-

valued function τ on V satisfying (2) and a perfect k-simple set C of contacts for

the temporal phylogeny 〈V,E, I, S, f, τ〉 such that X is the summary of C. The

function from VC to VX that maps every event v ↑ t to v ↑z is a 1-1 correspondence

between two sets. If we agree to identify every event v ↑ t with its image v ↑z

under this correspondence then EC becomes identical to EX , and the conditions

99

on g in the de�nition of a perfect set of k-simple contacts turn into the conditions

on g in the de�nition of an admissible set. Consequently, (i) follows from the fact

that C is perfect. To prove (ii), extend τ from V to V ∪ VX :

τ(v ↑z) = t if v ↑ t ∈ VC .

Part (a) follows from (2); part (b) follows from the de�nition of a temporal phy-

logeny: part (c) follows from (1); part (d) follows from the de�nition of summaries

of k-simple contacts; part (e) follows from the de�nition of a contact.

right-to-left. Assume that X satis�es conditions (i) and (ii). Consider the

temporal phylogeny T that consists of the phylogeny 〈V,E, I, S, f〉 and the function

τ restricted to V . By (a), T satis�es (2). Let C be the set obtained from X by

replacing the symbols v ↑k in every element of X with the event v ↑ t where

t = τ(v ↑k). From (e), we conclude that the elements of C are contacts; by (c) and

(d), C is k-simple. It is clear that X is the summary of C. The same reasoning as

in the �rst half of the proof shows that, in view of (i), C is perfect.

4.4 ASP Formulation

4.4.1 Phylogenetic Network Reconstruction

ASP formulation of phylogenetic network reconstruction is done in two parts as

in [35]: In the �rst part, admissible sets are computed; and in the second part, for

each of these admissible sets, whether the equations or inequalities from part (ii)

of the statement Proposition 11 have a solution in real numbers τ(v), v ∈ V ∪ VX .

In phylogenetic networks, due to lateral edges, there may be loops in the graph;

that we need to check reachability in such a graph prevents us to use SAT solver

or a Constraint Programming system because of the necessity of enumerating all

100

variables.

4.4.2 Weight Functions

The weight measure we have formulated in ASP which is described in Subsection

4.2 is as follows:

We describe the weight of a phylogenetic network as an ASP program in four

parts. Suppose that the schematic variable W denotes the weight of a bilateral edge,

NW denotes the network weight and C1, C2, C, CC denote the contacts.

First, we give an order to each bilateral edge and we make sure that two di�erent

bilateral edges can not have the same order:

1{order(U,C1,V,C2,O2):orderrange(O2)}1 :- new(U,C1,V,C2).

:- order(U,C1,V,C2,O), order(U1,CC,V1,C,O), new(U,C1,V,C2),

new(U1,CC,V1,C), U!=U1.

:- order(U,C1,V,C2,O), order(U1,CC,V1,C,O), new(U,C1,V,C2),

new(U1,CC,V1,C), C1!=CC.

:- order(U,C1,V,C2,O), order(U1,CC,V1,C,O), new(U,C1,V,C2),

new(U1,CC,V1,C), V!=V1.

:- order(U,C1,V,C2,O), order(U1,CC,V1,C,O), new(U,C1,V,C2),

new(U1,CC,V1,C), C!=C2.

Second, we �nd the weight of an edge:

weightsOfEdges(O,W) :- order(U,C1,V,C2,O), w(U,C1,V,C2,W).

weightsOfEdges(O,0) :- not weightedEdges(O).

w(U,C1,V,C2,D) :- order(U,C1,V,C2,O),height(O,D).

weightedEdges(O) :- new(U,C1,V,C2), order(U,C1,V,C2,O), w(U,C1,V,C2,W).

101

Third, we �nd the weight of the network by adding up the weights of edges:

weightOfTheNetwork(NW) :- totalWeightOfEdges(NW,k).

totalWeightOfEdges(NW,1) :- weightsOfEdges(1,NW).

totalWeightOfEdges(NW+W,O) :- weightsOfEdges(O,W),

totalWeightOfEdges(NW,O-1).

Finally, we describe the weight constraint, to ensure that the weight of the

phylogenetic network is larger than maxW , as follows:

:- weightOfTheNetwork(NW), NW<maxW.

4.5 Computational Methods for Reconstructing Phylo-

genetic Networks

We have studied two methods for reconstructing weighted phylogenetic networks:

the representation-based method and search-based method.

4.5.1 Representation-Based Method

In the representation-based method, we modify the representation of the problem,

to compute weighted phylogenetic networks. In order to do that, we formulate

the phylogenetic network reconstruction as an ASP program P as described in

Subsection 4.4.1 . Then we formulate the weight function as an ASP program W

as described in the Subsection 4.4.2. Finally, we compute weighted phylogenetic

networks by computing the answer sets for the the ASP program P ∪W .

102

4.5.2 Search-Based Method

Computing weighted phylogenetic networks with the search-based method is very

similar to computing weighted phylogenetic trees with the search-based method:

In order to compute weighted phylogenetic networks, we de�ne a heuristic function

to estimate an upper bound for the weight of a network as we have proposed in

Subsection 4.2, and we use the answer set solver clasp-w to compute weighted

phylogenies.

We de�ne the heuristic function to estimate an upper bound of the weight of a

network is as follows.

Let A be a partially constructed phylogenetic network of a subset of a complete

phylogenetic network N built over a phylogeny P . Let S be the set of summaries

of N , SA be the set of summaries of A, and maxW be the maximum weight that

a summary can have. We de�ne the heuristic function with respect to A and SA:

UB(A,SA) =
∑

s∈SA, and height of
an event of s is de�ned

w(c) +
∑

s 6∈SA, or height of the events
of s is not de�ned

maxW (4.5)

4.6 PhyloNet-ASP

PhyloNet-ASP is a tool for reconstructing phylogenetic networks. It is designed

and implemented to solve the problems given in Subsection 4.2.

Input: PhyloNet-ASP takes three kinds of input:

• Character states of taxonomic units for every character

• A phylogenetic tree in Newick format

103

• A nonnegative integer n, which is the maximum number of bilateral edges

that a network can have (Optional)

• A nonnegative integer w, which is the is the minimum weight that a phylo-

genetic network can have (Optional)

Output: PhyloNet-ASP outputs the computed phylogenetic network in ex-

tended newick format as well as the uninformative, non-unique and incompatible

characters.

The input, other than character states, are optional. Depending on the given

input, PhyloNet-ASP can solve di�erent kinds of problems:

• If n is given as an input, PhyloNet-ASP solves k-IPSTN problem: It

reconstructs all (or a desired number of) phylogenetic networks with at most

k bilateral edges with respect to the character states.

• If w is given as an input, PhyloNet-ASP solves nk-IPSTN problem: It

reconstructs all (or a desired number of) phylogenetic networks with at least

n weight with respect to the character states and the weight measure.

4.7 Experimental Results

We have reconstructed weighted phylogenetic trees for Indo-European languages

and Quercus species with our system.

For Indo-European languages, we have picked the phylogeny with the minimum

number of incompatible characters and maximum weight from Table 8 and we have

constructed a weighted phylogenetic network by adding a contact between Balto-

Slavic and Germanic, and a contact between Germanic and Italo-Celtic. The weight

of this network is 9.

104

For Quercus species, we have picked the phylogeny with the minimum num-

ber of incompatible characters and maximum weight from Table 10 and we have

constructed a weighted phylogenetic network.

105

5 Related Work

The published literature on phylogeny reconstruction can be classi�ed into two

categories: phenetic methods based on distances and cladistics methods based on

characters.

The most popular phenetic methods are Unweighted Pair Group Method Using

Arithmetic Averages (UPGMA) [75] and Neighbour Joining (NJ) [63]. In UPGMA,

each species is considered as clusters and the closest two clusters with respect

to their distance are joined together and the distance of the joint pair is then

recalculated by taking their average. In [2], [21]and [54], phylogenetic trees are

computed using this method and its modi�ed versions. In NJ, each pair is checked

for being joined and the sum of all branches length is calculated of the resulting

tree. The pair with the smallest sum is taken as the closest neighbors and joined

together. Then the branch length is recalculated. In [63, 37, 74], this method is

used to compute phylogenetic trees.

The most popular cladistics methods are Maximum Parsimony (MP)[27], Max-

imum Likelihood(ML) and Maximum Compatibility (MC)[19], In MP, all possible

trees are evaluated and are assigned a score according to the number of evolution-

ary changes in the tree. The best tree is then the one that minimized the overall

number of mutations. Phylogeny reconstruction with MP is studied in [68]. In

Maximum Likelihood, all possible trees are evaluated as in MP, and then the one

with the maximum likelihood is picked as the best tree. For a given tree, the

likelihood is determined by the probability that a certain evolutionary model has

generated the observed data. Phylogeny reconstruction with ML is studied in [47],

[87]and [86].

We reconstruct phylogenies with maximum compatibility method. In [7], au-

thors compare two methods: weighted maximum parsimony and weighted maxi-

106

mum compatibility. Weighted maximum parsimony is an extension of parsimony,

where the characters are assigned to some weight. The aim of this method is to �nd

a tree in which the total weighted number of character state changes is minimized.

Similarly, weighted maximum compatibility is derived from maximum compati-

bility, whose aim is to �nd the tree with the maximum weighted compatibility

score, which is computed by adding up all the weights of each character which is

compatible with the tree. Their experimental results indicate that phylogenies re-

constructed with character-based methods are more accurate than the phylogenies

reconstructed with distance-based methods for languages.

There exist several phylogeny reconstruction tools which uses these methods.

One of the most most widely-distributed phylogeny package is PHYLIP11 (PHY-

Logeny Inference Package) which consists of 35 programs for inferring and compar-

ing phylogenies with di�erent methods. Implemented methods for reconstructing

phylogenies includes maximum parsimony, maximum compatibility, distance ma-

trix and maximum likelihood methods. The tool (CLIQUE) that implements the

maximum compatibility problem considers datasets with binary states only. There-

fore, it can not be used for Indo-European languages.

PAUP*12(Phylogenetic Analysis Using Parsimony) is an another tool which

includes phylogeny reconstruction with parsimony, distance matrix, invariants, and

maximum likelihood methods.

Apart from reconstructing the phylogenies, there exist some tools to analyze

phylogenetic data. These systems can analyze the phylogenies and character evo-

lution. For example, MacClade13 analyzes the evolution of a variety of character

types. Random Cladistics14 is also an analyzing tool, which uses bootstrapping,

11http://evolution.gs.washington.edu/phylip.html
12http://paup.csit.fsu.edu/software
13http://macclade.org/macclade.html
14http://research.amnh.org/ siddall/rc.html

107

jackkni�ng, and several kinds of permutation tests.

Our systems Phylo-ASP and PhyloNet-ASP are di�erent from the existing

reconstruction systems:

• They are based on the compatibility criterion.

• They can compute weighted phylogenetic trees and weighted phylogenetic

networks.

• They can integrate domain-speci�c information in the process of reconstruct-

ing weighted phylogenies and weighted phylogenetic networks.

• They can generate more than one weighted phylogenetic tree/network.

• They can be used to analyze the given data (e.g., identify its informative

parts) and/or the given phylogenies (e.g., to check the incompatibility of the

evolution of a trait with respect to a phylogeny).

On the other hand, since our systems are based on the compatibility criterion,

they can not be used with genomic data due to possible occurrences of backmuta-

tions.

108

6 Conclusion

In this thesis, we have studied constructing weighted phylogenies and networks by

using answer set programming and generalized these results to weighted solutions

in ASP. Our contributions are as follows :

• We have de�ned various optimization and decision problems for computing

weighted phylogenies and phylogenetic networks and analyzed their compu-

tational complexity : MaximumWeighted Compatibility Problem(MWCP),w-

weighted compatibility problem(w-WCP) and w-weighted n-compatibility

problem(wn-WCP). We have proved that w-WCP and wn-WCP are NP-

complete (Proposition 2).

• We have introduced two sorts of computational methods to compute weighted

phylogenies and phylogenetic networks: the �rst class of methods suggests

modifying the ASP representation of the problem to compute weighted phy-

logenies using an existing ASP solver and the other class suggests modifying

the search algorithm of the answer set solver to compute weighted phyloge-

nies incrementally based on branch-and-bound. In the representation-based

method, weight measure is de�ned in ASP. In the search-based method,

weight measure is de�ned externally in C++.

• Based on these methods, in order to compute weighted phylogenies for large

datasets e�ciently, we have introduced a novel divide-and-conquer approach

for computing weighted phylogenies by inferring its smaller subtrees. This

approach also makes use of domain-speci�c information provided by the ex-

perts. Considering that for instance the earlier ASP-based phylogenetics

systems [12],[35] could not compute the whole phylogeny for Indo-European

languages automatically (since the dataset is too large), our divide-and-

109

conquer method is useful and e�ective in reconstructing large phylogenies

as also veri�ed by experiments.

• We have generalized the representation-based method and the search-based

method to compute weighted solutions in ASP so that other domains can

bene�t from these mthods as well. For example, in a planning problem, we

can de�ne the weight of a plan in terms of the costs of actions, and then

compute the distinct plans whose weights are less than a given value.

• We have implemented the search-based method for computing weighted so-

lutions in ASP, by modifying the search algorithm of the answer set solver

clasp (and called it clasp-w) in the spirit of branch-and-bound. Since the

heuristic functions to estimate the weight of a solution are de�ned externally

in C++, we do not need to modify clasp-w to compute weighted solutions

in other domains like planning; we just need to implement the heuristic func-

tion in a separate �le.

• Based on the divide-and-conquer approach based on computing weighted

phylogenies, we have implemented a fully automated system (called Phylo-

ASP) to reconstruct and analyze phylogenies, utilizing clasp-w. We have

also implemented a system called PhyloNet-ASP for reconstructing weighted

phylogenetic networks. There is no such phylogenetic system which can help

experts to order phylogenies with respect to a plausibility measure that in-

cludes also some domain-speci�c information.

• We have shown the applicability of our methods on two di�erent real datasets:

The �rst one is Indo-European languages, and the second one is the genus

Quercus (oak trees). In our experiments, we have computed weighted phylo-

genies with PhyloASP and weighted phylogenetic networks with PhyloNet-

110

ASP for these datasets. For Indo-European languages dataset, we have com-

puted 18 phylogenies, all of which are plausible from Don Ringe's point of

view. In addition, the phylogeny with the minimum number of incompatible

characters and maximum weight is found to be the most plausible phylogeny.

For Quercus species, we have computed 30 phylogenies which are identi�ed

as plausible by Yasin Bak�³. In this dataset, multiple phylogenies are identi-

�ed as the most plausible ones. These most plausible phylogenies also have

the minimum number of incompatible characters and maximum weight. All

the computed phylogenies being identi�ed as plausible indicates the e�ec-

tiveness and correctness of our system and our methods. In addition, these

test results showed the e�ciency and accuracy of the weight measures we

have formulated since the maximum weighted trees are the most plausible

ones among the others.

• To apply our method to real datasets, we have de�ned new weight mea-

sures for phylogenies and phylogenetic networks. We have de�ned 2 domain-

dependent and 2 domain-independent new weight measures for phylogenetic

trees and one new domain-independent weight measure for phylogenetic net-

works. In order to use them with our second method above, we have de�ned

an admissible heuristic function for each of them, and we have proved their

admissibility (Propositions 3, 4, 5 and 6).

Some of our contributions are summarized in the following papers. [14], [15]

and [16] introduce the representation-based methods and search-based methods

for computing weighted solutions in ASP and shows their applicability and e�ec-

tiveness on the weighted reconstruction problem for Indo European languages. [17]

presents Phylo-ASP system and [13] presents its underlying divide-and-conquer

mechanism.

111

Future Work Recall that our methods for reconstructing phylogenies in this

thesis are based on the compatibility criterion. It may be interesting to extend our

methods by considering di�erent criteria such as maximum parsimony. Computing

phylogenies with ASP using maximum parsimony criteria is reasonable, since the

problem still remains not tractable. This extension can be achieved by introducing

new ASP formulations and new weight measures, and by modifying the prepro-

cessing algorithms. This extension can be useful for comparing di�erent criterion

and comparing the representation-based method with the search-based method.

Our experiments can be extended to di�erent domains, such as Turkic lan-

guages. Moreover, such an extension may improve our weight functions. On the

other hand, these experiments can bene�t the studies on Turkic languages.

Our search-based method for computing weighted solutions in ASP is based on

branch and bound. It may be useful to propagate some literals as the search is

�bounded�. Such a modi�cation may lead to a more e�cient solver for computing

weighted solutions in ASP.

112

References

[1] Mario Alviano, Wolfgang Faber, and Nicola Leone. Disjunctive asp with func-

tions: Decidable queries and e�ective computation. TPLP, 10(4-6):497�512,

2010.

[2] Abdullah N. Arslan and Peyman Bizargity. Phylogeny by top down clustering

using a given multiple alignment. In BIBE, pages 809�814, 2007.

[3] Yasin Baki³. Morphometric Analysis of Oak (Quercus L.) Acorns in Turkey.

PhD thesis, Abant Izzet Baysal University, 2005.

[4] Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with a-prolog.

CoRR, cs.AI/0312040, 2003.

[5] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning

with answer sets. TPLP, 9(1):57�144, 2009.

[6] Chitta Baral and Cenk Uyan. Declarative speci�cation and solution of combi-

natorial auctions using logic programming. In LPNMR, pages 186�199, 2001.

[7] F. Barbancon, T. Warnow, D. Ringe, S. Evans, , and L. Nakhleh. An exper-

imental study comparing linguistic phylogenetic reconstruction methods. In

Proceedings of the conference Languages and Genes, To appear,2009.

[8] Hans L. Bodlaender, Mike R. Fellows, and Tandy J. Warnow. Two strikes

against perfect phylogeny. In Proc. of 19th International Colloquidum on

Automata Languages and Programming, pages 273�283. Springer-Verlag, 1992.

[9] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Anton: Com-

posing logic and logic composing. In LPNMR, pages 542�547, 2009.

113

[10] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Automatic music

composition using answer set programming. CoRR, abs/1006.4948, 2010.

[11] Gerhard Brewka. Preferences, contexts and answer sets. In ICLP, page 22,

2007.

[12] Daniel R. Brooks, Esra Erdem, Selim T. Erdo§an, James W. Minett, and Don

Ringe. Inferring phylogenetic trees using answer set programming. J. Autom.

Reason., 39(4):471�511, 2007.

[13] Duygu Cakmak and Esra Erdem. Reconstructing large phylogenies using an-

swer set programming. 2010. in progress.

[14] Duygu Cakmak, Esra Erdem, and Halit Erdogan. Computing weighted solu-

tions in answer set programming. In LPNMR, pages 416�422, 2009.

[15] Duygu Cakmak, Esra Erdem, and Halit Erdogan. Computing weighted solu-

tions in asp: Representation-based method vs. search-based method. In Proc.

of the 17th International Workshop on Experimental Evaluation of Algorithms

for Solving Problems with Combinatorial Explosion (RCRA'10), 2010.

[16] Duygu Cakmak, Esra Erdem, and Halit Erdogan. Computing weighted so-

lutions in asp: Representation-based method vs. search-based method. 2010.

Submitted to Annals of Mathematics and Arti�cial Intelligence (AMAI) Jour-

nal.

[17] Duygu Cakmak, Esra Erdem, and Halit Erdogan. Phylo-asp: Phylogenetic

systematics with answer set programming. 2010. in progress.

[18] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries

in expressive description logics with nominals. In IJCAI, pages 714�720, 2009.

114

[19] Joseph H. Camin and Robert R. Sokal. A method for deducing branching

sequences in phylogeny. Evolution, 19:311�326, 1965.

[20] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293�322,

1977.

[21] J. P. Davis, S. Akella, and P. H. Waddell. Accelerating phylogenetics comput-

ing on the desktop: experiments with executing upgma in programmable logic.

In In Engineering in Medicine and Biology Society (IEMBS, pages 2864�2868,

2004.

[22] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Commun. ACM, 5(7):394�397, 1962.

[23] James P. Delgrande, Torsten Grote, and Aaron Hunter. A general approach

to the veri�cation of cryptographic protocols using answer set programming.

In LPNMR, pages 355�367, 2009.

[24] Jürgen Dix, Thomas Eiter, Michael Fink, Axel Polleres, and Yingqian Zhang.

Monitoring agents using declarative planning, 2003.

[25] Jürgen Dix, Ugur Kuter, and Dana Nau. Planning in answer set programming

using ordered task decomposition. In KI 2003 (German National Conference

on Arti�cial Intelligence, pages 490�504. Springer, 2003.

[26] Deborah East and Miroslaw Truszczynski. More on wire routing with asp. In

Answer Set Programming, 2001.

[27] A. W. F. Edwards and L. L. Cavalli-Sforza. Reconstruction of evolutionary

trees. Phenetic and Phylogenetic Classi�cation, 1964.

115

[28] Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambat-

tista Ianni, and Thomas Krennwallner. Combining nonmonotonic knowledge

bases with external sources. In FroCos, pages 18�42, 2009.

[29] Thomas Eiter, Esra Erdem, Halit Erdogan, and Michael Fink. Finding similar

or diverse solutions in answer set programming. In ICLP, pages 342�356, 2009.

[30] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diag-

nosis frontend of the dlv system. AI Communications, 12(1-2):99�111, 1999.

[31] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel

Polleres. The dlvk planning system: Progress report. In JELIA '02: Pro-

ceedings of the European Conference on Logics in Arti�cial Intelligence, pages

541�544, London, UK, 2002. Springer-Verlag.

[32] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.

Well-founded semantics for description logic programs in the semantic web.

In RuleML, pages 81�97, 2004.

[33] Esra Erdem. Phylo-asp: Phylogenetic systematics with answer set program-

ming. In LPNMR, pages 567�572, 2009.

[34] Esra Erdem, Ozan Erdem, and Ferhan Türe. Haplo-asp: Haplotype inference

using answer set programming. In LPNMR, pages 573�578, 2009.

[35] Esra Erdem, Vladimir Lifschitz, and Don Ringe. Temporal phylogenetic net-

works and logic programming. TPLP, 6:539�558, 2006.

[36] Esra Erdem, Vladimir Lifschitz, and Martin F. Wong. Wire routing and

satis�ability planning. In In Proceedings CL-2000, pages 822�836. Springer-

Verlag. LNCS, 2000.

116

[37] Jason Evans, Luke Sheneman, and James Foster. Relaxed neighbor joining: a

fast distance-based phylogenetic tree construction method. 62, 2006.

[38] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell'Armi, and Giuseppe

Ielpa. Design and implementation of aggregate functions in the dlv system.

TPLP, 8(5-6):545�580, 2008.

[39] Raphael Finkel, Victor W. Marek, and Miroslaw Truszczynski. Constraint

lingo: A program for solving logic puzzles and other tabular constraint prob-

lems, 2002.

[40] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting inconsistencies in

large biological networks with answer set programming. Theory and Practice

of Logic Programming.

[41] Martin Gebser, Carito Guziolowski, Mihail Ivanchev, Torsten Schaub, Anne

Siegel, Sven Thiele, and Philippe Veber. Repair and prediction (under incon-

sistency) in large biological networks with answer set programming. In KR,

2010.

[42] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.

clasp: A con�ict-driven answer set solver. In Proc. of LPNMR, pages 260�265.

Springer, 2007.

[43] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.

Con�ict-driven answer set enumeration. In Chitta Baral, Gerhard Brewka, and

John S. Schlipf, editors, LPNMR, volume 4483 of Lecture Notes in Computer

Science, pages 136�148. Springer, 2007.

117

[44] Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub.

Con�ict-driven answer set solving. In Proc. of IJCAI, pages 386�392. AAAI

Press/MIT Press, 2007.

[45] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-

ming. In Proceeding of the Fifth Logic Programming Symposium, pages 1070�

1080, 1988.

[46] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs

and disjunctive databases. New Generation Comput., 9(3/4):365�386, 1991.

[47] Stéphane Guindon and Olivier Gascuel. A simple, fast, and accurate algorithm

to estimate large phylogenies by maximum likelihood. Systematic biology,

52(5):696�704, October 2003.

[48] Keijo Heljanko and Ilkka Niemelä. Bounded ltl model checking with stable

models. In Proceedings of the 6th International Conference on Logic Program-

ming and Nonmonotonic Reasoning, pages 200�212. Springer-Verlag, 2003.

[49] Willi Hennig. Grundzüge einer theorie der phylogenetischen systematik.

Deutscher Zentralverlag, 1950.

[50] Willi Hennig. Phylogenetic systematics. Annu. Rev. Entomol., 10:97�116,

1965.

[51] Willi Hennig. Phylogenetic systematics. University of Illinois Press, 1966.

[52] Katsumi Inoue and Chiaki Sakama. Abductive framework for nonmonotonic

theory change. In IJCAI, pages 204�210, 1995.

[53] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller

and J. W. Thatcher, editors, Complexity of Computer Computations, pages

85�103. Plenum Press, 1972.

118

[54] H. A. Khan, I. A. Arif, A. H. Bahkali, A. H. Al Farhan, and A. A.

Al Homaidan. Bayesian, maximum parsimony and upgma models for infer-

ring the phylogenies of antelopes using mitochondrial markers. Evolutionary

bioinformatics online, 4:263�270, 2008.

[55] Nicola Leone, Gianluigi Greco, Giovambattista Ianni, Vincenzino Lio, Gior-

gio Terracina, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob,

Riccardo Rosati, Domenico Lembo, Maurizio Lenzerini, Marco Ruzzi, Edyta

Kalka, Bartosz Nowicki, and Witold Staniszkis. The infomix system for ad-

vanced integration of incomplete and inconsistent data. In SIGMOD Confer-

ence, pages 915�917, 2005.

[56] Vladimir Lifschitz. Answer set programming and plan generation. Arti�cial

Intelligence, 138(1-2):39�54, 2002.

[57] Vladimir Lifschitz. What is answer set programming?. In Dieter Fox and

Carla P. Gomes, editors, AAAI, pages 1594�1597. AAAI Press, 2008.

[58] Fangzhen Lin and Yuting Zhao. Assat: computing answer sets of a logic

program by sat solvers. Artif. Intell., 157(1-2):115�137, 2004.

[59] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alternative

logic programming paradigm. In In The Logic Programming Paradigm: a 25-

Year Perspective, pages 375�398. Springer-Verlag, 1999.

[60] Joaäo P. Marques-silva and Karem A. Sakallah. Grasp: A search algorithm

for propositional satis�ability. IEEE Transactions on Computers, 48:506�521,

1999.

[61] Alessandra Mileo, Davide Merico, and Roberto Bisiani. Wireless sensor net-

works supporting context-aware reasoning in assisted living. In PETRA '08:

119

Proceedings of the 1st international conference on PErvasive Technologies Re-

lated to Assistive Environments, pages 1�2, New York, NY, USA, 2008. ACM.

[62] Alessandra Mileo, Davide Merico, and Roberto Bisiani. Non-monotonic rea-

soning supporting wireless sensor networks for intelligent monitoring: The

sindi system. In LPNMR, pages 585�590, 2009.

[63] Saitou N. and M.Nei. The neighbor-joining method: A new method for re-

constructing phylogenetic trees. 4:406�425, 1987.

[64] Luay Nakhleh. Phylogenetic Networks. PhD thesis, The university of Texas

at Austin, 2004.

[65] Ilkka Niemelä. Logic programs with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Arti�cial Intelligence,

25(3-4):241�273, 1999.

[66] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model semantics of

weight constraint rules. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer,

editors, Proceedings of the 5th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR'99), volume 1730 of Lecture Notes in

Computer Science, pages 317�331. Springer, 1999.

[67] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and

Matthew Barry. An a-prolog decision support system for the space shuttle. In

In PADL 2001, pages 169�183. Springer, 2001.

[68] Jean-Michel Richer, Adrien Goë�on, and Jin-Kao Hao. A memetic algorithm

for phylogenetic reconstruction with maximum parsimony. In EvoBIO '09:

Proceedings of the 7th European Conference on Evolutionary Computation,

120

Machine Learning and Data Mining in Bioinformatics, pages 164�175, Berlin,

Heidelberg, 2009. Springer-Verlag.

[69] D. Ringe, Tandy Warnow, and A. Taylor. Indo-european and computational

cladistics. Transactions of the Philological Society, 100(1):59�129, 2002.

[70] Chiaki Sakama. Learning by answer sets. In Alessandro Provetti and Tran Cao

Son, editors, In AAAI Spring Symposium:Answer Set Programming, 2001.

[71] Torsten Schaub and Sven Thiele. Metabolic network expansion with answer

set programming. In ICLP, pages 312�326, 2009.

[72] Torsten Schaub and Kewen Wang. A comparative study of logic programs

with preference. In Bernhard Nebel, editor, IJCAI, pages 597�602. Morgan

Kaufmann, 2001.

[73] Patrik Simons and Timo Soininen. Stable model semantics of weight constraint

rules. In Proc. of LPNMR, pages 317�331. Springer-Verlag, 1999.

[74] Martin Simonsen, Thomas Mailund, and Christian N. Pedersen. Rapid

neighbour-joining. InWABI '08: Proceedings of the 8th international workshop

on Algorithms in Bioinformatics, pages 113�122, Berlin, Heidelberg, 2008.

Springer-Verlag.

[75] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic

relationships. University of Kansas Scienti�c Bulletin, 28:1409�1438, 1958.

[76] Tran Cao Son and Enrico Pontelli. A constructive semantic characterization

of aggregates in answer set programming. TPLP, 7(3):355�375, 2007.

[77] Tran Cao Son, Enrico Pontelli, and Chiaki Sakama. Logic programming for

multiagent planning with negotiation. In ICLP, pages 99�114, 2009.

121

[78] Tran Cao Son and Chiaki Sakama. Reasoning and planning with cooperative

actions for multiagents using answer set programming. In DALT, pages 208�

227, 2009.

[79] Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried

Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, editors. Rea-

soning Web. Semantic Technologies for Information Systems, 5th Interna-

tional Summer School 2009, Brixen-Bressanone, Italy, August 30 - September

4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in Computer Science.

Springer, 2009.

[80] Nam Tran and Chitta Baral. Reasoning about triggered actions in ansprolog

and its application to molecular interactions in cells. In KR, pages 554�564,

2004.

[81] Ferhan Türe and Esra Erdem. E�cient haplotype inference with answer set

programming. In AAAI, pages 1834�1835, 2008.

[82] Marina De Vos, Tom Crick, Julian Padget, Martin Brain, Owen Cli�e, and

Jonathan Needham. A multi-agent platform using ordered choice logic pro-

gramming. In In Declarative Agent Languages and Technologies (DALT'05),

pages 72�88, 2005.

[83] Marina De Vos and Dirk Vermeir. Logic programming agents and game theory,

2001.

[84] Marina De Vos and Dirk Vermeir. Extending answer sets for logic program-

ming agents. Ann. Math. Artif. Intell., 42(1-3):103�139, 2004.

122

[85] Harold Todd Wareham. On the computational complexity of inferring phylo-

genetic trees. Technical report, Department of Computer Science, Memorial

University of Newfoundland, 1993�2002.

[86] Ti�ani L. Williams and Bernard M. E. Moret. An investigation of phylogenetic

likelihood methods. pages 79�86, 2003.

[87] Ziheng Yang. Maximum likelihood phylogenetic estimation from dna se-

quences with variable rates over sites: Approximate methods. J. Mol. Evol,

39:39�306, 1994.

123

	Introduction
	Answer Set Programming
	ASP Programs under the Answer Set Semantics
	Applications of ASP
	Answer Set Solvers
	clasp

	Computing Weighted Solutions

	Reconstructing Weighted Phylogenetic Trees using ASP
	Preliminaries
	Weighted Phylogenies
	Problem Definitions
	ASP Formulation
	Phylogeny Reconstruction
	Weight Functions

	Computational Methods: Representation-Based vs. Search-Based
	Representation-Based Method
	Search-Based Method

	Phylo-ASP
	Phylo-Analyze-ASP
	Phylo-Reconstruct-ASP

	Experimental Results
	Indo-European Languages
	Quercus Species

	Reconstructing Weighted Phylogenetic Networks using ASP
	Preliminaries
	 Temporal Networks
	 k-Simple Contacts
	 Summaries of k-Simple Contacts

	Weighted Networks
	Problem Definitions
	ASP Formulation
	Phylogenetic Network Reconstruction
	Weight Functions

	Computational Methods for Reconstructing Phylogenetic Networks
	Representation-Based Method
	Search-Based Method

	PhyloNet-ASP
	Experimental Results

	Related Work
	Conclusion

