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ABSTRACT 
 
 

Cellulases are a group of enzymes that can synergistically catalyze hydrolysis of 

cellulose into glucose, which is an essential process for conversion of huge amounts of 

dormant cellulosic biomass into fermentable sugar, one of the most potent alternative 

energy sources of the new world. Since purification is difficult and time-consuming, 

production of cellulases individually is more favorable for these applications that may 

require specific combination of different enzyme components. 

In order to evaluate the filamentous fungus Trichoderma reesei as an expression 

system for production of individual cellulases, Endoglucanase I (EG1/Cel7B), 

Endoglucanase III (EG3/Cel12A) and Cellobiohydrolase I (CBH1/Cel7A) were 
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homologously expressed in the cellulase-negative mutant strain delta-xyr1 using two 

alternative promoters (tef1 and cdna1) on glucose medium. In this thesis we show that 

individual cellulase components (EG1, EG3 and CBH1) could be successfully 

overexpressed in active form in a cellulase negative T.reesei background under non-

inducing conditions for the first time in the literature. We also show that cdna1 

promoter resulted in higher expression levels of EG1 and EG3. Additionally, T.reesei 

was established and partially optimized as an expression system which can be employed 

for future applications. 
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ÖZET 
 
 

Selülazlar atıl durumdaki çok büyük miktarlardaki biyokütlenin geleceğin en 

etkili alternatif enerji kaynağı adayı olan mayalanabilir şekere dönüştürülmesi için 

elzem bir işlem olan selülozun glukoza hidrolize edilmesini sinerjik olarak katalize 

edebilen bir grup enzimdir. Enzimlerin saflaştırılması zor ve zaman isteyen bir işlem 

olduğu için, farklı bileşenlerin belirli oranlarda karışımını gerektirebilecek bu 

uygulamalar için enzimlerin tek tek üretilmesi daha tercih edilirdir. 

Bir ipliksi mantar türü olan Trichoderma reesei’nin selülazların tek tek üretimi 

için bir ekspresyon sistemi olarak değerlendirilmesi amacıyla Endoglukanaz I 

(EG1/Cel7B), Endoglukanaz III (EG3/Cel7A) ve Sellobiyohidrolaz I (CBH1/Cel7A) 

enzimleri selülaz-negatif bir mutant olan delta-xyr1 soyunda, glukozlu ortamda yüksek 
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aktivite gösteren iki farklı promotor (tef1 ve cdna1) kullanılarak homolog olarak 

üretildi. Literatürde ilk defa bu tezde münferit selülaz bileşenleri (EG1, EG3 ve CBH1) 

selülaz-negatif bir T.reesei soyunda, indükleyici olmayan koşullarda, aktif halde yüksek 

miktarda başarılı bir şekilde üretildi. cbh1 promotoruyla EG1 ve EG3 enzimlerinin daha 

yüksek miktarda üretilebildiği gözlendi. Yanı sıra, T.reesei bir ekspresyon sistemi 

olarak tesis edildi ve ilerideki uygulamalar için kullanılabilecek şekilde kısmi olarak 

optimize edildi. 

  



viii 

 

 

 

 

To my family with all my heart... 

 

 

  



ix 

ACK�OWLEDGEME�TS 

 

I would like to thank to my supervisor Assoc. Prof. Dr. Uğur Sezerman for his 

invaluable guidance, motivation, support and patience throughout this study and for 

being considerate all the time. Without his support, I would not be able to finish this 

thesis. 

I also want to express my gratitude to Prof. Dr. Christian Kubicek and Assoc. 

Prof. Dr. Bernhard Seiboth for their supervision and support during and after my 

internship in Vienna University of Technology, where I felt like a real member of their 

group. I want to thank to Eda Akel for her guidance throughout my internship. 

I would like to express my thanks to my thesis committee:  Prof. Dr. Selim 

Çetiner, Assoc. Prof. Dr. Batu Erman, Assoc. Prof. Dr. Levent Öztürk and Asst. Prof. 

Dr. Alpay Taralp for their invaluable review and advices. 

I would like to acknowledge Scientific and Technological Research Council of 

Turkey (TÜBĐTAK) for supporting this thesis. 

 

I would like to express special thanks to Sezerman lab members Sedef Dinçer, 

Aslı Çalık, Özgür Gül, Emel Durmaz and Günseli Bayram for their technical and moral 

support. I will miss our tea-talks by the window with Sedef a lot. 

 

I want to thank to my office neighbors Nazlı Keskin, Elif Levent and Kaan 

Yılancıoğlu; and all other 2100C residents. 

 

I would like to express my special thanks to my comrades Sebla Elif Yıldızhan, 

Sibel Şahin, Tuğba Mehmetoğlu and Zeynep Altıntaş for being there all the time 

whenever I need their support and for their precious fellowship. 

 

Finally, I would like to present my gratitude to my parents, Şerife and Mustafa 

Uzbaş, my brother Mehmet and my sister Ayşegül for their unconditional love and 

precious support throughout my life. 

 



x 

 
 

 
 

 
 

TABLE OF CO�TE�TS 
 
 
 
 

1. INTRODUCTION ....................................................................................................... 1 

2. OVERVIEW ................................................................................................................ 3 

  2.1.   Cellulose ......................................................................................................... 3 

  2.2.   Cellulases ........................................................................................................ 4 

    2.2.1.   Mode of Action of Cellulases ................................................................. 5 

    2.2.2.   Limitations and Solutions for Hydrolysis of Cellulose ........................... 6 

      2.2.2.1.   Physical and Chemical Strategies ..................................................... 6 

      2.2.2.2.   Molecular Strategies .......................................................................... 7 

    2.2.3.   Use of Cellulases ..................................................................................... 8 

    2.2.4.   Structural Features of Cellulases ............................................................ 9 

 2.3.   Trichoderma reesei ....................................................................................... 10 

    2.3.1.   T.reesei Cellulases ................................................................................ 11 

      2.3.1.1.   Cellobiohydrolases .......................................................................... 11 

      2.3.1.2.   Endoglucanases ............................................................................... 12 

     2.3.1.2.1.   Endoglucanase I (Cel7B) ....................................................... 12 

     2.3.1.2.2.   Endoglucanase III (Cel12A) .................................................. 13 

      2.3.1.3.   β-glucosidase ................................................................................... 14 

    2.3.2.   Regulation of T.reesei Cellulases Expression ....................................... 15 

    2.3.3.   Expression of T.reesei Cellulases in Other Systems ............................. 16 

    2.3.4.   Trichoderma reesei as an Expression System ...................................... 17 

 2.4.   Methodological Background ........................................................................ 18 

   2.4.1.   Methods to Measure Cellulase Activities in vitro ................................. 18 

     2.4.1.1.   4-Methlumbelliferone Substrates .................................................... 18 

     2.4.1.2.   CMCase Assay ................................................................................ 19 

   2.4.2.   T.reesei Strains and Phenotypes ........................................................... 19 

   2.4.3.   Expression Vectors and Promoters ....................................................... 20 



xi 

3. PURPOSE OF THE STUDY .................................................................................... 21 

4. MATERIALS AND METHODS .............................................................................. 22 

 4.1.   Materials ....................................................................................................... 22 

    4.1.1.   Chemicals .............................................................................................. 22 

     4.1.1.1.   General Chemicals .......................................................................... 22 

     4.1.1.2.   Enzymes .......................................................................................... 22 

     4.1.1.3.   Buffers and Solutions ...................................................................... 22 

    4.1.2.   Molecular Biology Kits ......................................................................... 24 

    4.1.3.   Growth Media ....................................................................................... 24 

    4.1.4.   Strains ................................................................................................... 25 

    4.1.5.   Vectors and Genomic DNA .................................................................. 25 

    4.1.6.   Primers .................................................................................................. 25 

    4.1.7.   Equipment ............................................................................................. 25 

    4.1.8.   Software ................................................................................................ 25 

    4.1.9.   Unlisted Materials ................................................................................. 26 

 4.2. Methods .......................................................................................................... 27 

    4.2.1.   General Methods ................................................................................... 27 

    4.2.2.   Transformation of Trichoderma reesei ................................................. 30 

     4.2.2.1.   Construction of Transformation Vectors ........................................ 30 

     4.2.2.1.1.   Amplification of Cellulase Genes and cdna1 Promoter ........ 30 

     4.2.2.1.2.   Construction of pPtef1- Vectors ............................................ 31 

     4.2.2.1.3.   Construction of pPcdna1- Vectors ......................................... 34 

     4.2.2.2.   Transformation of T.reesei .............................................................. 35 

     4.2.2.2.1.   Protoplasting .......................................................................... 35 

     4.2.2.2.2.   Transformation Procedure ..................................................... 36 

     4.2.2.2.3.   Selection and Purification of Positive Transformants ........... 36 

   4.2.3.   Expression of Cellulases ....................................................................... 37 

     4.2.3.1.   Protein Expression in T.reesei ......................................................... 37 

     4.2.3.2.   Coffee Filters as Shake Flask Closures ........................................... 37 

     4.2.3.3.   Comparison of Smooth and Baffled Flasks .................................... 38 

     4.2.3.4.   Extra Sugar Addition ....................................................................... 38 

   4.2.4.   Analysis of Expression ......................................................................... 38 

     4.2.4.1.   Growth Rates ................................................................................... 38 

     4.2.4.2.   SDS Gel Analysis ............................................................................ 39 



xii 

     4.2.4.3.   Activity Assays ............................................................................... 39 

     4.2.4.3.1.   Fluorogenic Substrates .......................................................... 39 

       4.2.4.3.1.1.   4-Methylumbelliferyl-β-D-Cellobioside .......................... 39 

       4.2.4.3.1.2.    4-Methylumbelliferly-β-D-Lactoside ............................. 39 

     4.2.4.3.2.    Carboxymethyl Cellulose Assay .......................................... 40 

     4.2.4.4.   Determination of Total Protein Concentrations .............................. 40 

    4.2.5.   BLAST Analysis of cdna1 gene ........................................................... 41 

5. RESULTS .................................................................................................................. 42 

 5.1. Construction of Transformation Vectors ....................................................... 42 

    5.1.1.   Amplification of Cellulase Genes and cdna1 Promoter ....................... 42 

    5.1.2.   Three Cellulase Genes and Pcdna1 in pGEM-T Vector ....................... 43 

    5.1.3.   pPtef1- Vectors ..................................................................................... 43 

    5.1.4.   Restriction Analyses of pPtef1- Vectors ............................................... 44 

    5.1.5.   Restriction Analyses of pPcdna1- vectors ............................................ 45 

 5.2. Transformation of T.reesei and Purification of Strains .................................. 46 

 5.3. Expression of Cellulases ................................................................................ 48 

    5.3.1.   Coffee Filters as Shake Flask Closures ................................................. 48 

    5.3.2.   Comparison of Smooth and Baffled Flasks .......................................... 49 

    5.3.3.   Growth Rates ........................................................................................ 50 

    5.3.4.   SDS Gel Analysis ................................................................................. 51 

    5.3.5.   Activity Assays ..................................................................................... 55 

     5.3.5.1.   Activity of Endoglucanase I towards MUC .................................... 55 

     5.3.5.2.   Activity of Cellobiohydrolase I towards MULAC .......................... 55 

     5.3.5.3.   Activity of Endoglucanase III towards CMC .................................. 55 

    5.3.6.   Analyses of Protein Concentrations and Activities .............................. 57 

    5.3.7.   BLAST Analysis of cdna1 gene ........................................................... 59 

6. DISCUSSION ............................................................................................................ 60 

  6.1.   Construction of Transformation Vectors ...................................................... 60 

  6.2.   Transformation of T.reesei and Purification of Strains ................................ 61 

  6.3.   Expression of Cellulases ............................................................................... 62 

    6.3.1.   Optimization of Culture Conditions ...................................................... 62 

    6.3.2.   Growth Rates ........................................................................................ 64 

    6.3.3.   SDS Gel Analysis ................................................................................. 65 

 6.4. Activity Assays .............................................................................................. 66 



xiii 

 6.5. Analyses of Protein Concentrations and Activities ........................................ 67 

 6.6. BLAST Analysis of cdna1 gene .................................................................... 69 

7. CONCLUSION ......................................................................................................... 71 

8. FUTURE PROJECTIONS ........................................................................................ 72 

9. REFERENCES .......................................................................................................... 73 

10. APPENDICES ........................................................................................................... 84 

 

 

 

 

 

 

 

  



xiv 

 
 
 
 

 
 

LIST OF FIGURES 
 
 
 
 

Figure 1: Cellulase activity on cellulose fibers ................................................................. 4 

Figure 2: Hydrolysis of a cellulose fiber by cellulases ..................................................... 6 

Figure 3: Conidia and phialides of T.reesei. ................................................................... 10 

Figure 4: General structures of endoglucanases and exoglucanases  .............................. 13 

Figure 5: Active site and some important residues of T.reesei Cel12A. ......................... 14 

Figure 6: 4-Methlumbelliferly-β-D –cellobioside and -lactopyranoside ........................ 18 

Figure 7: Purification of Hygromycin B resistant transformants .................................... 36 

Figure 8: Agarose gel electrophoresis of fragments obtained by PCR. .......................... 42 

Figure 9: Control digestion of pGEM-T clones .............................................................. 43 

Figure 10: Control digestion of pPtef1-egl1 and pPtef1-egl3 MiniPrep DNAs .............. 44 

Figure 11: Control digestion of pPtef1-cbh1 MiniPrep DNAs ....................................... 44 

Figure 12: Restriction analyses of pPtef1- MIDI-Prep DNAs ........................................ 45 

Figure 13: Restriction analyses of pPcdna1-egl1 and pPcdna1-egl3 vectors. ................ 46 

Figure 14: Sample plates for transformation ................................................................... 47 

Figure 15: Growth of T.reesei on PDA and T.reesei spores ........................................... 47 

Figure 16: Mycelia in expression culture ........................................................................ 48 

Figure 17: Effect of using coffee filter or cotton as shake-flask closure to culture growth . 49 

Figure 18: Growth of T.reesei in baffled and smooth flasks ........................................... 49 

Figure 19: Comparison of protein expression in smooth and baffled flasks ................... 50 

Figure 20: Growth rates of transformants, and ∆xyr, QM9414 and RutC-30 ................. 51 

Figure 21: Endoglucanase I was expressed under both promoters ................................. 52 

Figure 22: Endoglucanase I expression by c-egl1-6 strain has increased upon addition of 

extra glucose (c-egl1-6+) ................................................................................................ 53 

Figure 23: Endoglucanase III was expressed under both promoters ............................... 53 

Figure 24: Cellobiohydrolase I was produced under tef1 promoter ................................ 54 

Figure 25: CBH1 produced by QM9414 at 36th hour when grown on glucose .............. 54 



xv 

Figure 26: MUC activity of EG1 producers, MULAC activity of CBH1 producers and 

CMC Activity of EG3 producers .................................................................................... 56 

Figure 27: Volumetric and Specific MUC, MULAC and CMC Activities of 

transformants ................................................................................................................... 58 

Figure 28:   SM0311 GeneRuler 1kb DNA Ladder ........................................................ 92  

Figure 29:   SM0331 GeneRuler DNA Ladder Mix ....................................................... 92 

Figure 30: SM0661 PageRuler Unstained Protein Ladder .......................................... 92 

 

 

 

  



xvi 

 
 

 
 

 
 

LIST OF TABLES 
 
 
 
 

Table 1: T.reesei cellulases expressed in this study  ....................................................... 11 

Table 2: 8 Primers designed for amplification of cellulase genes and cdna1 promoter . 30 

Table 3: PCR cycles used for amplification of genes and Pcdna1 .................................. 31 

Table 4: Total protein concentrations (mg/L) of culture supernatants ............................ 57 

Table 5: Maximum volumetric activity observed for each enzyme ................................ 59 

Table 6: Maximum specific activity observed for each enzyme ..................................... 59 

 

  



xvii 

 
 

 
 
 

 
ABBREVIATIO�S 

 
 
 
 

AmpR Ampicillin Resistance Gene 

bps base pairs 

ddH2O Double-distilled water or double deionized water 

dNTP Deoxynucleoside triphosphate 

EtOH Ethanol  

g / µg gram, microgram 

h hour / hours 

hph Hygromycin Phosphotransferase 

IU International Unit 

kb kilobases 

LB / LB-Amp Lysogeny Broth / Lysogeny Broth with Ampicillin 

mL / µL Milliliter / Microliter 

mM / nM Millimolar / Nanomolar 

MetOH Methanol 

min minute / minutes 

MUC 4-Methylumbelliferyl-β-D-Cellobioside 

MULAC 4-Methylumbelliferyl-β-D-Lactopyranoside 

NaOAc Sodium Acetate 

NaOH Sodium Hydroxide 

Pcdna1 Promoter of cdna1 gene in T.reesei 

PCR Polymerase Chain Reaction 

PDA Potato Dextrose Agar 

Ptef1 Promoter of Translation Elongation Factor 1 alpha 

rpm Revolutions per minute 

RT room temperature 



xviii 

SDS Gel Sodium Dodecyl Sulfate Polyacrylamide Gel 

sec second 

spp species (species pluralis) 

T.reesei Trichoderma reesei 

TAE Tris-Acetate-EDTA 

TUWien Vienna University of Technology, Austria 

U Unit 

V Volt 

v/v Volume / Volume ratio 

w/v Weight / Volume ratio 

w/o without 

 

 

 

 



1 

 
 
 
 
 
 

1. I�TRODUCTIO� 
 
 
 
 
 

Cellulose is a highly crystalline and unbranched polymer which is the most 

abundant biomass component on earth produced continuously by plants and trees 

(Kumar, 2008). In addition to these natural sources, people are involved in management 

of cellulosic biomass to a considerable extent by means such as agriculture and forestry 

(Demain, 2005). After harvesting and processing of crops, most of these cellulosic 

remnants are decomposed by microorganisms (Fang, 2010) which can produce 

cellulases that catalyze the hydrolysis of cellulosic material into their monomers 

(Sandgren, 2005). Some species, especially bacteria and fungi can secrete partial or 

complete set of cellulases and utilize lignocelluloses by degrading them into soluble 

sugar (Bisaria, 1981). 

Increasing environmental concerns and exhausting non-renewable energy sources 

prompts people to search for alternative cheaper and environment friendly energy 

reservoirs, such as sugar. Feedstock of biofuels are naturally produced in extreme 

amounts yearly, only strategies are required to be able to utilize it. All of the cellulase 

components should be produced inexpensively in large amounts for conversion of 

cellulose to fermentable sugar and then to bioethanol, the energy supply of the future. 

Complete hydrolysis of cellulosic material into glucose units requires synergistic 

action of three types of cellulases endo/exo-glucanases and β-glucosidases. These 

enzymes have different catalytic domains specialized for different regions of cellulose; 

endoglucanases can cut the cellulose fiber randomly while exoglucanases cut chain 

ends. β-glucosidases convert shorter cellooligosaccharides into glucose monomers 

(Kumar, 2008). Cellulases are already used in several industrial fields such as detergent, 

textile, pulp and paper industries for de-inking and refining (Kirk, 2002). The enzymes 

are used either as a mixture or individually depending on the aim (Becker, 2001). 

Biomass is utilized for production of bioethanol, sugars and other value added products 
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with established protocols employing cellulases (Fang, 2010) but the process is still 

expensive due to high prices of enzymes and lack of optimized bioreactors. 

Hydrolysis rate of cellulose can be affected by internal properties of cellulases, 

such as adsorption capacity, as well as external factors such as cellulose crystallinity 

(Arantes, 2010). Rate of bioconversion of cellulose can be altered by pretreatments 

which usually are applied to increase accessible substrate area, physically or chemically 

(Cohen, 2005). Molecular biological techniques are employed to increase stability and 

activity of enzymes by random or site directed mutagenesis (Hong, 2007). Intervention 

with the secretory machinery of cellulolytic organisms can contribute to the yield as 

well (Archer & Pebedry, 1997). 

Trichoderma reesei is a saprophytic filamentous fungus that can naturally produce 

a complete set of cellulases; endoglucanases, exoglucanases and β-glucosidase. It lives 

in several types of soils, utilizing plant and wood residues (Kubicek, 2003). There had 

been attempts to produce T.reesei proteins in other organisms and to produce 

heterologous proteins in T.reesei, since the presence of a strong secretory machinery 

makes it an attractive organism for overexpression of homologous or heterologous 

proteins. 
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2. OVERVIEW 
 
 
 
 

2.1. Cellulose 
 
 
 
Increasing demands for more energy and environmental awareness in the 

contemporary world have been prompting people to search for sustainable alternatives 

to non-renewable energy sources such as fossil fuels that will be exhausted soon. 

Cellulose is one of the most prominent candidates for alternative energy reservoirs of 

the future, being the major component of total biomass on earth (Kirk, 2002). 1.3x1010 

tons (dry weight) of wood is produced by plants annually, corresponding to two-thirds 

of the energy need of the world, 1.8x108 of which is available through agriculture and 

other sources (Demain, 2005). Availability of dormant lignocellulosic biomass 

produced in huge amounts by agriculture and forestry; and as a part of municipal solid 

waste makes it an attractive renewable target for production of bioethanol, sugars and 

other value-added substances such as organic chemicals, vanillin (Walton, 2003), xylitol 

(Rahman, 2007), furfural (Montane, 2002) and so on (Fang, 2010). Even though the 

production of bioethanol from sugar or starch is still much easier and cheaper than that 

of biomass, the process is still costly that biofuel becomes more expensive than fossil 

fuels. Hence, it is essential to bring forth the technology to convert cellulosic biomass 

into fermentable sugar efficiently and inexpensively for effective utilization (Kumar, 

2008) 

Cellulose, hemicelluloses and lignin are the components of wood and other 

celluloses (Kumar, 2008). Cellulose is a highly crystalline and unbranched 

polysaccharide consisting of β-(1-4)-linked glucose units with a length of several 

hundred to ten thousands (Mélanie, 2010). Even water cannot diffuse into the ordered 

regions of cellulose sometimes, because of the compact packing of fibers (Arantes, 

2010). Crystal structure is formed by joint effects of hydrogen bonds, hydrophobic 

interactions and van der Waals forces keeping the fibers together (Sandgren, 2005). 
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Cellulases are the enzymes that catalyze the hydrolysis of plant biomass together 

with hemicellulases (xylanases, mannoses, pectinases i.e.) into smaller pieces which are 

subsequently degraded by α/β-glucosidases into their monomers (Sandgren, 2005). 

 
 
 

2.2. Cellulases 
 
 
 
Cellulases are hydrolytic enzymes that can cut β-1,4-glycosidic bonds of cellulose 

(Sandgren, 2005). Endoglucanase cuts the cellulose fibers randomly, mostly in the 

amorphous and disordered regions creating reducing or non-reducing flanking ends. 

Cellobiohydrolases (exoglucanases) cuts the cellulose fibers in these ends progressively 

producing cellobiose or short cellooligosaccharides. β-glucosidase finally converts these 

to individual glucose units (Figure 1) (Kumar, 2008). 

 

 

 

Figure 1: Cellulase activity on cellulose fibers. Endoglucanase hydrolyses amorphous 
regions, creating reducing and non-reducing ends which are targets of 
cellobiohydrolases that cut the chain ends producing cellobiose. C: crystalline region, R: 
reducing end, NR: non-reducing end, EG: endoglucanase, CBH: cellobiohydrolase. 

 

Bacterial cellulosomes are multi-enzyme complexes with many (mostly different 

types of) subunits with diverse specificities, attached to a scaffold. They can contain 

about 50 proteins and have a weight of 2-6 Megadaltons (Sandgren, 2005). 

Cellulosomes are usually located close to bacteria in order to facilitate uptake of the 
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degradation products (Schwarz, 2001). Another system is secretion of individual 

cellulase components to the extracellular medium (Sandgren, 2005) as filamentous 

fungi. Filamentous fungi have a cellulolytic system consisting of endoglucanases, 

exoglucanases and β-glucosidases (Kumar, 2008). 

Cellulose production ability of only a small percentage of organisms have been 

analyzed, some of which can produce only one or two types of cellulases, while the 

whole set secreted in adequate amounts is necessary for complete hydrolysis into 

glucose (Kumar, 2008). Relatively low quantity or lack of β-glucosidase in the enzyme 

complexes produced by Trichoderma spp. is a rate limiting step due to accumulation of 

cellobiose which in turn causes feedback inhibition of endo- and exo- glucanases 

(Bisaria, 1981). Some organisms such as Pichia stipitis, can produce Ethanol from 

lignocellulose (Jeffries, 2007). 

Microorganisms require their optimum physical conditions such as pH and 

temperature, as well as chemical factors such as carbon, nitrogen, phosphorus sources in 

favorable amounts for maximum production of cellulases.  There are also thermophilic 

fungi and anaerobic bacteria species that are capable of cellulase production, such as 

Sporotrichum thermophile and Saccharophagus degradans (Kaur, 2004; Taylor, 2006). 

 
 
 

2.2.1. Mode of Action of Cellulases 
 
 

Hydrolysis of cellulose into glucose monomers requires the synergistic action of 

three types of cellulases; endoglucanase creates flanking ends that are the substrates of 

cellobiohydrolase; and these two enzymes together produce cellobiose or 

cellooligosaccharides which are hydrolyzed by β-glucosidase (Kumar, 2008). 

Several physical and chemical factors may affect the hydrolysis rate of 

lignocellulose by cellulases, such as pH, temperature, nitrogen, phenolic compounds 

(Kumar, 2008). Moreover, degree of crystallinity and accessibility of the cellulose 

fibers are significant parameters (Arantes, 2010). 

Cellulases can be classified according to their catalytic mechanisms; that is, if 

configuration of anomeric carbon is retained after cleavage of the substrate, the 

mechanism is called retaining; while, invertion of configuration from α to β or vice 

versa will cause designation of the mechanism as inverting (Davies, 1995).  
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Figure 2: Hydrolysis of a cellulose fiber by cellulases. Endoglucanase randomly 
hydrolyzes amorphous regions. Cellobiohydrolase cuts chain ends producing 
cellobioses that is then digested to glucose monomers by β-glucosidase (Kumar, 2008) 

 
 
 

2.2.2. Limitations and Solutions for Hydrolysis of Cellulose 
 
 

2.2.2.1. Physical and Chemical Strategies 
 
 
Structure of cellulose and applied pre-treatments can affect hydrolysis degree and 

rate of bioconversion of cellulose (Kumar, 2008). Crystallinity an important parameter 

of cellulose hydrolysis due to the fact that while amorphous regions of cellulose is 

accessible by hydrolytic enzymes and prone to degradation, crystalline parts could not 

be accessed easily, thus remain non-hydrolyzed (Cohen, 2005). Pretreatments with 

chemicals, such as sodium hydroxide, various acids and organic solvents, might be 

utilized to alleviate the inaccessibility of crystalline cellulose; yet, these procedures add 

to the cost of production (Martinez, 2005). Smaller particle sizes and larger accessible 

area can be derived by physical methods to overcome crystallinity such as milling and 

steam treatment (Smith, 1991; Weil, 1994). Steam explosion is a preferred method since 

it is 70% cheaper than other mechanical methods (Fang, 2010). 

Adsorption capacity of enzymes to cellulose is yet another factor affecting 

hydrolysis rate of polymers; surface area and concentration of cellulose as well as pH 
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and temperature affect adsorption, thus bioconversion rate (Juhasz, 2004; Lambert, 

2003). Optimum values for adsorption can be investigated for specific applications. 

Systems can be designed that will recover the used enzymes from the 

environment/reactor (Bansal, 2009). Overall, three steps are essential for inexpensive 

and efficient conversion of biomass into fermentable sugar; size reduction, pre-

treatment and hydrolysis (Zhang, 2006). 

 
 
 

2.2.2.2. Molecular Strategies 
 
 

Since cellulase production is regulated by several genetic and chemical factors, 

such as end product inhibition and induction; various strategies including strain 

improvement by mutagenesis or physical and chemical techniques are employed to 

improve the enzyme yield (Kumar, 2008). 

Co-cultivation of microorganisms complementing each other’s cellulase 

expression profiles has proven to be effective with some strains on various cellulosic 

substrates because each strain is having a rate limiting component when cultured alone 

(Kumar, 2008; Klyosov, 1986). When T.reesei and A.niger was cultivated together 

(after adjusting their delay time and ratios), cellulase production was improved (Fang, 

2010) probably due to the complementary cellulolytic systems of two strains. That is, 

T.reesei is a good producer of endo- and exo- glucanases but poor in β-glucosidase 

production while A.niger is just the opposite, which allowed optimum utilization of the 

carbon source by compensating each other’s deficiency. Bioreactors may be built that 

are optimized for one or a few organisms (Kumar, 2008). Finding different cellulases 

from new organisms by cloning and sequencing (Kumar, 2008) may facilitate finding 

new enzymes that are suitable for a particular demand. 

Metabolic engineering strategies and mutagenesis techniques to produce strains 

which are unresponsive to end-product inhibition have been evaluated (Kumar, 2008). 

Alternative to traditional random mutagenesis and selection techniques, taking control 

over the cellulase inducing or repressing pathways would be more efficient (Kubicek, 

2009). One another strategy is to increase gene dosage for enhanced gene expression 

which was proven to be effective in A.niger, yet, up to 20 copies (Archer, 1997). 

Expressing the gene at an active locus in the genome can also increase the yield. 
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Increased activity and stability in addition to efficient production of enzymes are 

the main goals to decrease the cost of production of enzymes (Kirk, 2002). Genetic 

manipulation of enzymes to change their pH-temperature optimum, stability, activity 

and substrate specificity is being implemented to design enzymes for targeted 

applications (Katahira, 2006; Hong, 2007). Fusion of target protein to 3’ end of a 

homologous protein or a part of it might be effective for some heterologous expressions 

(Archer & Peberdy, 1997); the signal sequence can be cleaved by proteases later 

depending on the application. 

Fungal proteins that are translated directly into the endoplasmic reticulum (ER) 

lumen are then translocated with vesicles either to other intracellular targets or to the 

cell membrane for secretion. Protein modifications such as cleavage of signal sequence, 

folding, disulfide bond formation and glycosylation take place during this process. 

Glycosylation of proteins are thought to contribute to thermal stability and thought to 

have a role in proper folding of proteins (Archer & Pebedry, 1997). Intervention with 

one or more of these steps can contribute to enzyme investigation further. 

 
 
 

2.2.3. Use of Cellulases 
 
 

Utilization of enzymes for production of foods such as cheese, wine, vinegar; and 

goods such as linen and leather has an ancient history. Although it was difficult to 

recover pure enzymes from the mixtures secreted by microorganisms or extracted from 

fruits and animal secretions in old times, strain improvement and large-scale 

fermentations facilitated obtaining purer and well-defined enzyme preparations 

nowadays, especially introduction of recombinant gene technology and protein 

engineering strategies allowed production of targeted enzymes (Kirk, 2002). 

Cellulases and amylases constitute the second widespread group of enzymes used 

for industrial applications such as detergent, textile, pulp and paper industries for de-

inking and refining (Kirk, 2002). The enzymes are used either as a mixture or 

individually depending on the aim (Becker, 2001). Pectinases and cellulases are used 

for softening and clarification of drinks. During animal feed production, cellulases 

together with other glycoside hydrolases are used to improve digestibility. In textile and 

detergent industries, cellulases are used for different applications such as creating 

stonewashed effect on jeans or depilling of textile surfaces (Sandgren, 2005). 
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2.2.4. Structural Features of Cellulases 
 
 

Like most of the carbohydrate degrading enzymes, cellulases usually possess 

separately folded carbohydrate-binding modules (CBM) and catalytic domains (CD) 

(Arantes, 2010). CBMs have several functions that include increasing enzyme 

concentration on the surface, contributing to specificity and interruption of crystalline 

structure of fibers (Arantes, 2010). CBMs usually facilitate binding of enzymes to 

surface of crystalline cellulose, yet they do not have much effect on soluble substrates 

(Sandgren, 2005). 

Although different cellulases might consist of completely diverse folds, they have 

common properties such as a substrate binding groove that can bind the sugar chain 

minimum 2 glucose units before and after the catalytic site (Sandgren, 2005). Binding 

clefts of endoglucanases usually are open, while cellobiohydrolases have tunnel-like 

clefts formed by loops that individual cellulose fibers can pass through (Figure 4) 

(Sandgren, 2005). 

Inverting cellulases have two carboxylates acting as acid and base; while retaining 

enzymes again have two carboxylates acting as nucleophile and acid/base at their 

catalytic sites (Okada, 2000). 
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upon its natural habitat comprising cellulose and hemicellulose. Interestingly, T.reesei 

genome has relatively low number of cellulose genes compared to close species, yet 

these genes are sometimes located close to the second metabolite managing genes, 

giving it an advantage to regulate expression effectively (Schmoll, 2008). 

T.reesei have been used in several industrial fields mentioned before for a long 

time owing to its ability  to secrete enzymes in large amounts that can hydrolyze plant 

polymers; which is why this species is called as “industrial workhorse” (Kubicek, 

2009). Some industrial strains of T.reesei (CL847 i.e.) can secrete up to 40 g/L total 

protein (Verbeke, 2009). 

 
 
 

2.3.1. T.reesei Cellulases 
 

 

T.reesei can secrete a complete set of cellulases. Three enzymes used in this 

study are given in Table 1. 

 
 

Table 1 
T.reesei cellulases expressed in this study 

 Enzyme Gene Protein EC �umber UniProt ID 

Endoglucanase I egl1 / cel7b EG1 / Cel7B EC 3.2.1.4 P07981 

Endoglucanase III egl3 / cel12a EG3 / Cel12A EC 3.2.1.4 O00095 

Cellobiohydrolase I cbh1 / cel7a CBH1 / Cel7A EC 3.2.1.91 P62694 

 

 
 
 

2.3.1.1. Cellobiohydrolases 
 

 

T.reesei has two Cellobiohydrolase genes (cel7a and cel6a) encoding CBH1 and 

CBH2, belonging to glycoside hydrolase (GH) families 7 and 6 respectively (Kubicek, 

2009). CBH1 constitutes 40-50 percent of total secreted protein by T.reesei (Sandgren, 

2005). Both proteins have a carbohydrate-binding module (CBM) (CBH1, at carboxy-

terminus; CBH2 at amino-terminus (Sandgren, 2005)), a catalytic domain (CD) and a 

heavily O-glycosylated linker peptide connecting these two domains. Cellulose chain is 



12 

hydrolyzed in its reducing end by CBH1 and in non-reducing end by CBH2 (Yui, 

2010). 

The procedure is as follows; adsorption of the enzyme to the substrate surface is 

followed by separation of a single cellulose chain end from the crystal structure and 

threading into the catalytic domain; after hydrolysis by catalytic residues cellobiose is 

extruded and the enzyme continues to move throughout the chain (Gregg, 2010; 

Mélanie, 2010). Crystal structure of Cel7A shows presence of minimum seven 

substrate-binding and two product-binding sites (Gruno, 2003). Deletion of CBM 

experiments revealed that it is needed for binding to and effective hydrolysis of 

crystalline cellulose (Gregg, 2010). Tunnel-like shape of active site is probably 

responsible for the higher stability and progressive movement of CBH1 on celloluse 

when compared to its homologue EG1 (Figure 4). 

Calculated mass of CBH1 is 54,073 kDa (UniProt, 2010); yet, when glycosylated 

it is above 70 kDa. CBH1 has 4 potential glycosylation sites and 12 disulfide bonds; and 

is fully glycosylated in minimal media with low pH. Deglycosylation is observed in 

other conditions due to the presence of mannosidases and glucosidases. The linker 

peptide is O-glycosylated while N-glycosylation is seen in the core domain (Stals, 

2004). 

 
 
 
2.3.1.2. Endoglucanases 
 
 
Eight endo-β-1,4-glucanases (EG) of T.reesei are identified up to now; Cel5A, 

Cel5B, Cel7B, Cel12A, Cel45A, Cel61A and Cel61B, Cel74A. 

 
 
2.3.1.2.1. Endoglucanase I (Cel7B) 

 
 
EG1, which belongs to family 7 glycoside hydrolases, is encoded by the gene 

cel7b (Kubicek, 2009) and is the major endoglucanase of T.reesei making up 5-10 

percent of total secreted proteins (Sandgren, 2005). Calculated mass of EG1 is 48,208 

kDa; it has 5 potential glycosylation sites and 8 disulfide bonds (Uniprot, 2010; 

PDBSum, 2009). EG1 has a CBM at the carboxy-terminus and has four sugar binding 

sites in the catalytic region.  It has maximum activity at 50 °C (Becker, 2001) at pH 4-5; 
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and has a pI of 4.5. Glu197 is the nucleophile responsible for its catalytic activity and 

Glu202 is the acidic/basic residue (Kleywegt, 1997). 

EG1 has an open active site in contrary to the tunnel-like shape of the 

homologous exoglucanase CBH1 (Figure 4); which makes it an endoglucanase that is 

able to cut mid-chains. The two proteins have a high sequence identity (45%) and they 

belong to the same family (Penttilä, 1986). EG1 is very active on soluble celluloses yet, 

it is slow on crystalline substrates (Henrissat & Bairoch, 1993). 

 
 

 

Figure 4: General structures of endoglucanases (A) and exoglucanases (B) (Bayer, 
2010). Note the open active site of endoglucanase and tunnel-like active site of 
exoglucanase. 
 
 
 
 
2.3.1.2.2. Endoglucanase III (Cel12A) 

 

 

T.reesei EG3 (Cel12A) is the first identified member of family 12 glycoside 

hydrolases (Kubicek, 2009). It is usually not glycosylated and accounts for less than 1 

percent of the total proteins secreted from T.reesei (Sandgren, 2005). EG3 protein has a 

weight of 25 kDa, pI of 7.5 and maximum activity at pH 5 at 50 °C (Karlsson, 2002). 

EG3 has lower affinity to cellulose substrates than other cellulases probably due to lack 

of a CBM (like Cel5B and Cel61B).  
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Figure 5: Active site and some important residues of T.reesei Cel12A. Catalytic 
residues E116 and E200 can be seen (Sandgren, 2005). 

 
 
 
Cel12A is composed of 15 β-strands which fold into two anti-parallel β-sheets, 

twisting on top of each other. A single helix is present in the enzyme and only one 

disulfide bond is formed; between Cys 4 and Cys 32. N-terminus of the enzyme is 

cyclized to increase its resistance to proteolytic degradation and Asparagine 164 residue 

is glycosylated (Bower, 1998). As a retaining enzyme, two glutamic acid residues are 

necessary for its catalytic action; E116 as nucleophile and E200 as acid/base (See 

Figure 5) (Okada, 2000). 

 
 
 

2.3.1.3. ββββ-glucosidase 
 
 
It is found out that T.reesei expresses intracellular (Saloheimo, 2002), 

extracellular (Fowler, 1992), membrane-bound (Umile, 1986) and cell wall-bound 

(Messner, 1990) β-glucosidases (Kubicek, 2009). As mentioned before, they catalyze 

the hydrolysis of cellobiose or cellooligosaccharides to glucose. 

β-glucosidase usually acts as a rate limiter of cellulose hydrolysis due to lower 

production amount compared to other cellulases, although seven β-glucosidases are 

present in T.reesei genome (Kubicek, 2009). This causes accumulation of cellobiose 
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which in turn inhibits expression of enzymes (endo- and exo-glucanases) that produce 

cellobiose (end product inhibition). 

 
 

2.3.2. Regulation of T.reesei Cellulases Expression 
 

Cellulases are not expressed constitutively but their expression is regulated 

exquisitely, only some carbon sources, such as cellulose, sophorose and lactose can 

induce expression of cellulases; and monosaccharides inhibit cellulase expression, like 

glucose (Sandgren, 2005). 

How cellulose can induce expression is an important point of interest since 

cellulose is an insoluble molecule and cannot diffuse into cells. There are a few theories 

on this, one of which is secretion of minute amount of enzymes, such as Cel5B, 

constitutively and upon encountering a substrate, release of oligosaccharides induce 

further expression (Kubicek, 2009) Basal expression of EG1 and CBH1 in uninduced 

cells was also shown (Carlos, 1997). Another suggestion and experimental fact is 

presence of anchored enzymes on conidial surface, such as Cel6A; since growth of 

conidia are halted after removal of enzyme activity on the surface by non-ionic 

detergents, yet growth was not affected negatively when respective deletion strains were 

grown on lactose. In both theories, basal cellulase activity produces small molecules 

that in turn induce expression of more enzymes (Kubicek, 2009). 

It is also noteworthy that expression of most of the cellulases is proportional to 

each other (Ilman, 1997) except some hypercellulolytic mutants (Foreman, 2003), 

which supports co-regulation of them (Sandgren, 2005). 

Cellulase expression in T.reesei is regulated at the transcriptional level. 

Depending on the carbon source that the fungi grow on, different inducers such as 

XYR1 and ACE2 that can bind to the same motif, and HAP2/3/5 complex that binds to 

CCAAT motif in the cellulase promoters affect cellulase expression positively. On the 

other hand, ACE1 and CRE1 are cellulase repressors. Carbon catabolite repression by 

glucose is known to depend on the Cys2His2 transcription factor CRE1 (Kubicek, 

2009). 

Light is another factor that regulates expression of some cellulases. For instance, 

cel7a gene has a higher transcription rate under constant light when compared to 

constant darkness. ENVOY and GNA1/3 proteins are thought to be involved in light 

perception (Kubicek, 2009).  
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2.3.3. Expression of T.reesei Cellulases in Other Systems 
 
 
For the last 20 years T.reesei cellulases have been expressed in different species 

some of which are not naturally cellulase producers, such as E.coli, S.cerevisiae, 

S.pombe, Aspergillus spp. (Nakazawa, 2008). In several cases, yields were low due to 

inclusion body formation, proteolytic degradation and hyperglycosylation. Expression 

in Aspergilli was relatively advantageous since their transcriptional and translational 

mechanisms are comparable to T.reesei (Rose, 2002; Takashima, 1998). 

Although CBH1 was detected by western blotting when expressed in Ashbya 

gossypii under S.cerevisiae PGK1 promoter, it had no activity towards MULAC. EG1 

production with the same promoter resulted in higher amount of enzyme and specific 

activity. Maximum MULAC activity of EG1 was 400 µmol/min/L (1.3 nmol/min/µg 

secreted protein) and specific activity was 200-400 µmol/min/g dry weight, while cells 

were growing exponentially. 1000 µmol/min/L (2.2 nmol/min/µg secreted protein) was 

detected with S.cerevisiae.  Overglycosylation compared to native T.reesei expression 

was observed when EG1 and CBH1 are expressed in Ashbya gossypii (Ribeiro, 2010). 

Expression of EG1 in Aspergillus oryzae resulted in 59.8 U/mg and EG3 in 30.7 

U/mg CMC activity. CBH1 activity was not detected (Takashima, 1998). 

CBH1 was expressed in Pichia pastoris, with similar km and kcat values to native 

CBH1, but with decreased hydrolysis rate of crystalline cellulose (70-80% of native). 

Produced enzyme had native-like thermostability and pH optimum. Hyperglycosylation 

of potential N-glycosylation sites were observed in P.pastoris expression, but lower 

than that of S.cerevisiae (Boer, 2000). 

Full-length CBH1 could not be expressed in E.coli but only catalytic core domain 

expression could give a minute activity. Specific activities of EG1 core domain and 

EGIII towards CMC are stated to be estimated as 65 and 15 U/mL respectively for the 

E.coli expression (Nakazawa, 2008). 

EG3 is expressed in E.coli using pAG9-3 vector. Although the proteins were 

aggregated as inclusion bodies in the cytoplasm they are later solubilized with urea and 

purified by chromatography. Maximum CMCase activity was measured as 58 mU/mL, 

at pH 5.5 with E.coli JM109 cells (Okada, 2000). EG3 is expressed by Aspergillus niger 

in hyperglycosylated form (Berka & Barnett, 1989). 

Many other bacterial and fungal cellulases have been cloned to E.coli recently, in 

addition to successful expression of a number of cellulases in different bacteria and 

fungi such as P.fluorescens, P.crysogenum and yeast (Hong, 2007; Hou, 2007; Li, 

2006). 
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2.3.4. Trichoderma reesei as an Expression System 

 

Heterologous proteins were expressed in T.reesei previously; a few samples are 

given below: 

• Bovine chymosin cDNA was expressed in T.reesei, between cbh1 promoter and 

terminator, up to 40 mg/L. Chymosin was active and had same size with the native 

enzyme (Harkki, 1989). 

• cDNA of Glucoseamylase P enzyme from Hormoconis resinae (fungus) was 

expressed in T.reesei under cbh1 promoter. Although different sizes of enzyme were 

observed due to glycosylation, up to 700 mg/L active enzyme could be produced; 

that is 20 times higher than the H.resinae (Joutsjoki, 1993). 

• When chromosomal gene and cDNA of Ligninolytic laccase enzyme of Phlebia 

radiate (fungus) was expressed under cbh1 promoter, 20 mg/L active enzyme was 

obtained with similar weight (Saloheimo, 1991). 

 

In addition to successful expression of several heterologous proteins in T.reesei, 

there are other advantages as well making this fungus an attractive host: 

• It can be cultured in fermenters of sizes up to 230 m3 using cheap carbon sources 

such as plant waste (Penttilä, 1998); that is an indication of its compatibility with 

fermentation conditions and resistance to contamination. 

• Secretory machinery of T.reesei is very close to typical eukaryotic ones 

(Kruszewska, 1998), which brings it to a superior position than some other 

microorganisms like bacteria. 

• It is non-pathogenic to healthy people under enzyme production conditions and does 

not produce antibiotics or toxins (Nevalainen, 1994). 

• Trichoderma reesei is a natural hyperproducer strain (can secrete up to 40 g/L 

protein). 

• Some industrial strains were already developed for improved production and lower 

protease activity (Mäntylä, 1998). 
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2.4. Methodological Background 
 
 
 

2.4.1.  Methods to Measure Cellulase Activities in vitro 
 
 

There are several techniques to measure cellulase activities in vitro; total cellulase 

assays such as Filter Paper Activity (FPA) assay; as well as assays for individual 

cellulases are present, such as Cellobiose Assay (β-glucosidase), Carboxymethyl 

cellulose Assay (endoglucanase) and Avicel Assay (cellobiohydrolase). FPA Assay 

measures release of a certain amount of glucose from a certain amount of filter paper 

strip in defined conditions; while availability and susceptibility of substrate to 

hydrolysis makes this assay attractive, its non-linearity and susceptibility to operator 

errors are disadvantages (Zhang, 2009). Fluorescent substrates are also used that are 

more sensitive to cellulase activities, such as 4-methylumbelliferones. 

 
 

2.4.1.1. 4-Methlumbelliferone Substrates 
 
 
Among different activity assays, 4-Methylumbelliferyl-β-D glycosides offer a 

sensitive means to determine cellulase activities linearly. 4-Methlumbelliferly-β-D-

cellobioside/-lactoside (abbreviated later as MUC and MULAC, respectively) release 

the fluorescent component methylumbelliferone when hydrolysed (Bailey & Tähtiharju, 

2003). Their formula is C22H28O13 with a molecular weight of 500.45 (Sigma-Aldrich). 

CBH1 shows activity on MULAC, yielding only lactose and phenol as products 

(Tilbeurgh, 1982). EG1 can as well liberate phenol from MUC (Claeyssens, 1992). 

Molecular structures of MUC and MULAC can be seen in Figure 6. 

      

Figure 6: 4-Methlumbelliferly-ββββ-D -cellobioside (A) and -lactopyranoside (B) 
(Sigma-Aldrich) 

   A                                                  B 



19 

2.4.1.2. CMCase Assay 
 
 

Carboxymethyl cellulose is a water-soluble viscous cellulose derivative. As an 

anionic substance, properties of CMC can change depending on the pH (Zhang, 2009). 

Since endoglucanases show higher activity towards water-soluble CMC, it is used to 

assay their activities; however, CMCase activity is non-linear. Since activity towards 

neither MUC nor MULAC was detectable with the conditions used for EG1 and CBH1, 

CMC assay was preferred for EG3 (Ghose, 1987). 

CMCase activity is calculated by determining the enzyme amount needed to 

release a constant amount of glucose. 1 IU CMC is defined as 1 µmol min-1 reducing 

sugar liberation (Ghose, 1987). Three different dilutions of the enzyme is done to be 

able to determine the enzyme amount necessary  to release 0.5 mg glucose in the 

reaction conditions (detailed description is present in methods). EDR is the dilution rate 

of the enzyme releasing 0.5 mg glucose. 0.185/EDR value gives the CMCase activity in 

IU/mL units. 

 
 
 

2.4.2.  T.reesei Strains and Phenotypes 
 
 

QM9414: This strain is obtained by a two-step mutational procedure from 

QM6a (first isolated T.reesei strain) and can produce up to 4 times more cellulase than 

QM6a (Montenecourt, 1977). It is often called as wild-type strain.  

∆∆∆∆xyr1: XYR1 (xylanase regulator 1) is a transcriptional regulator of xyn1, xyn2 

(xylanases), cbh1, cbh2 and egl1 genes regardless of inducer molecules. XYR1 is a zinc 

binuclear cluster protein that binds to GGCTAA motif in the xyn1 promoter (Stricker, 

2006). All inducible T.reesei cellulase promoters were found to contain consensus 

sequences for XYR1 binding. The deletion strain ∆xyr1 is unable to induce cellulase 

production and grow on cellulose or sophorose (Kubicek, 2009). ∆xyr1 strain grows and 

sporulates same as its parental strain QM9414 on low molecular weight carbon sources 

except D-xylose (Stricker, 2006). 

Rut-C30: This hypercelluloytic strain can escape from carbon catabolite 

repression caused by glucose. It is a mutant of QM6a and has a truncated cre1 gene 
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(Ilmén, 1996). However, the strain needs an inducer for overproduction of cellulases 

(Kubicek, 2009).  

 
 
 

2.4.3.  Expression Vectors and Promoters 
 
 

pPtef1: This plasmid is modified from pUC19; it has a Hygromycin B 

Phosphotransferase gene (hph) and promoter of Translation Elongation Factor 1-α 

inserted in between XhoI and ClaI sites that is followed by a multiple cloning site 

(APPENDIX E). After transformation, the vector can integrate into several locations of 

the the genome as multiple copies (Joutzjoki, 1993). Hygromycin B is an antibiotic that 

kills bacteria, fungi and eukaryotic cells by inhibiting protein synthesis (Pittenger, 

1953). The cells that possess hph enzyme (also called as Hygromycin B kinase) are 

resistant to Hygromycin B since they can convert it to 7"-O-phosphohygromycin 

(Zalacain, 1987). tef1 Promoter: Translation Elongation Factor 1-α helps entry of the 

aminoacyl tRNA into a free site of the ribosome during translation and  its promoter 

(called Ptef1 throughout this thesis) is known to be derepressed on glucose medium 

(Nakari, 1993) 

pPcdna1: This plasmid was obtained by replacing the tef1 promoter in pPtef1 

with cDNA1 promoter via the XhoI-ClaI sites. cdna1 promoter: cdna1 is an unknown 

gene but cdna1 promoter was previously found to be highly active on glucose-

containing media (Nakari, 1993; Nakari-Setälä, 1995) (up to 50-fold of Ptef1). cdna1 

promoter is found in scaffold 23:43726-44652 of T.reesei genome (Dubchak, 2006) 

preceding a high number of Expressed Sequence Tags. 
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3. PURPOSE OF THE STUDY 
 
 
 
 

Cellulases have been of important industrial importance due to their ability to 

catalyze hydrolysis of lignocellulosic materials into their monomers. Trichoderma 

reesei is considered as the workhorse of such applications owing to its ability to secrete 

a complete set of cellulases in large quantities naturally on a variety of lignocellulosic 

substrates, which is advantageous for large scale production facilities. Although various 

physical, chemical and molecular techniques have been applied to increase cellulase 

production of T.reesei further; inexpensive hyperproduction of proteins might not be 

sufficient since diverse applications may require single or specific combinations of 

enzymes rather than a complete set; which necessitates purification of them -a costly 

process-. Combination of enzymes after separate production is much economical than 

purification from a mixture, especially for large scale utilization. 

In this study, we evaluate the potential of Trichoderma reesei as an expression 

system for production of individual cellulases. Homologous expression of the enzymes 

EG1, EG3 and CBH1 under two different strong promoters in glucose, Ptef1 and 

Pcdna1, in cellulase-deficient T.reesei strain ∆xyr1 was studied. For this purpose, 

transformation vectors were constructed with either promoter followed by a cellulase 

gene that was amplified from genomic DNA of wild type strain QM9414. After 

transformation and selection of antibiotic-resistant strains, protein expression is done in 

minimal medium using glucose as the carbon source, to confirm production of 

cellulases. Supernatants from expression cultures were analyzed with SDS-PAGE for 

enzyme presence. Activities of supernatants towards fluorogenic substrates or 

carboxymethyl cellulose were assayed, and strains were compared according to their 

expression efficiencies. 
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4. MATERIALS A�D METHODS 
 
 
 
 

4.1. Materials 
 
 
 

4.1.1. Chemicals 
 
 
 

4.1.1.1. General Chemicals 
 
All the chemicals used are listed in Appedix K. 

 
 
 

4.1.1.2. Enzymes 
 
All the enzymes used are listed in Appedix J. 

 
 
 

4.1.1.3. Buffers and Solutions 
 
 
2% CMC in 50 mM �aOAc Buffer: 2% CMC (w/v) in 50 mM NaOAc Buffer; 

dissolved by stirring and heating to 50-60 °C. 

 

3M �aOAc Buffer (pH 5.2): 24.6 g NaOAc is dissolved in 50 mL PCR water, pH is 

adjusted to 5.2 with Acetic Acid and the volume is completed to 100 mL. 

 

6X Laemmli Buffer: 6X Laemmli Buffer was prepared according to the protocol 

described in Molecular Cloning: A Laboratory Manual, Sambrook et.al, 2001. 
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50 mM �aOAc Buffer (pH 4.8): 50 mM NaOAc in ddH2O; pH is adjusted to 4.8 with 

Acetic Acid. 

 

Coomassie Staining Solution: 8 g Ammonium Sulfate is dissolved in 80 mL 2% 

Phosphoric Acid Solution, stirring. 1.6 mL 5% Coomassie G-250 Solution (w/v, in 

ddH2O) is added and mixed well. This solution can be kept at RT. 20 mL MetOH is 

added just before use, and the solution is then kept at +4 °C. Final concentrations: 

0.08% Coomassie G-250, 1.6% Phosphoric Acid, 8% Ammonium Sulfate, 20% 

MetOH. 

 

D�S Reagent: 0.53 g 3,5-Dinitrosalicylic acid and 0.99 g NaOH are dissolved in 

ddH2O. 18 g Rochelle Salts, 0.38 mL Phenol, 0.415 g Sodium metabisulfite are added 

and dissolved stirring. The reagent is kept at +4 °C.  

 

MiniPrep Buffers 

Buffer 1: 50mM Tris (pH 8.0), 10 mM EDTA, 100 µg/mL RNase A; stored at 2-8 °C 

after RNase addition. Buffer 2: 200 mM NaOH, 1% SDS; stored at RT. Buffer 3: 3 M 

Potassium Acetate (pH 5.5); stored at 2-8 °C or RT. 

 

Physiological Salt Solution: 0.8 % (w/v) Sodium Chloride and 0.05 % (w/v) Tween 80 

in ddH2O; autoclaved before using. 

 

Solutions for T.reesei transformation 

• Tris-HCl (1M, pH 7.5): 1M Tris base in ddH2O; pH is adjusted to 7.5 with 

Hydrochloric acid. 

• Solution A: 1.2 M Sorbitol and 0.1 M Potassium dihydrogen Phosphate in ddH2O; 

pH is adjusted to 5.6 with Potassium Hydroxide; autoclaved. 

• Solution B: 1 M Sorbitol, 50 mM Calcium Chloride dihydrate and 10 mM Tris-HCl 

(1M, pH 7.5) in ddH2O; pH is adjusted to 7.5 with Hydrochloric acid; autoclaved. 

• PEG Solution: 25% PEG 6000 (w/v), 50 mM Calcium Chloride dehydrate, 10 mM 

Tris-HCl (from 1M Tris, pH 7.5 solution); pH is adjusted to 7.5 with Hydrochloric 

acid; autoclaved. 
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4.1.2. Molecular Biology Kits 
 
 
Molecular biology kits are listed in Appendix M. 

 
 
 

4.1.3. Growth Media 
 
 
Bottom Medium: 30 g/L Malt Extract, 15 g/L Agar Agar, 182.17 g/L (1M) Sorbitol in 

ddH2O. After autoclaving and cooling down to 50 °C, Hygromycin B is added to final 

concentration of 50 µg/mL and poured into plates, slightly thinner than usual agar 

plates. 

 

Lysogeny Broth (LB) Medium / LB Agar Medium: LB Medium: 10 g/L Pepton, 5 

g/L Yeast Extract, 10 g/L NaCl in ddH2O. 15 g/L Agar Agar is included to obtain LB 

Agar medium. Ampicillin in 50% EtOH is added to autoclaved media after cooling 

down to 50-60 °C to a final concentration of 100 µg/mL to obtain LB-Amp medium and 

LB-Amp agar plates. 

 

MEX medium: MEX medium: 30g/L Malt Extract in ddH2O. MEX Plates: 30g/L Malt 

Extract and 20 g/L Agar Agar in ddH2O. 

 

MEX-Cellophane Plates: 8-10 cellophane discs with size of petri dishes are cut and 

placed on MEX plates using two sterile forceps. With the help of a Drigalski spatula, 

cellophanes are smoothened preventing air bubbles. 

 

Overlay Medium: Same as bottom medium, except Agar Agar is replaced by 15 g/L 

Agar Noble. After addition of Hygromycin B, 4-5 mL aliquots in culture tubes are kept 

in 48-50 °C water bath. 

PDA Plates: 39 g/L PDA in ddH2O. PDA-TritonX plates: After autoclaving PDA 

medium, Hygromycin B and TritonX-100 are added to final concentrations of 50 µg/mL 

and 0.1% (v/v) respectively. 
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4.1.4. Strains 
 
 
JM109 competent bacteria and T.reesei strains QM9414, ∆xyr1 and Rut-C30 were 

kindly provided by Molecular Biotechnology Group, Technical University of Wien, 

Austria. 

Transformants obtained were named as “Promoter – Gene Name – Strain 

Number” and promoter name is also abbreviated occasionally. Hence, strain names such 

as Ptef1-egl1-1, tef1-egl1-1, t-egl1-1 specify the same transformant. ∆xyr1 strain is 

sometimes written as ∆xyr. 

 
 
 

4.1.5. Vectors and Genomic D�A 
 
 
pPtef1 vector and QM9414 genomic DNA were kindly provided by Molecular 

Biotechnology Group, Technical University of Wien, Austria. (See Appendices E and G 

for sequence and map of the vector). 

 
 
 

4.1.6. Primers 
 
 
Primers were purchased from Sigma-Aldrich and described in 4.2.2.1.1 in detail. 

 
 
 

4.1.7. Equipment 
 
 
Laboratory equipments used are listed in Appendix N. 

 
 
 

4.1.8. Software 
 
 
Quantity One Basic (v 4.6.9) is used to take gel photos and calculate DNA 

concentrations. 

GeneRunner (v 3.05) is used to design and analyze primers and vectors. 
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BVTech Plasmid (v 4.1) is used to draw vectors. 

SoftMax Pro 4.3 is used to run and analyze the fluorogenic assays. 

 
 
 

4.1.9. Unlisted Materials 
 
 
Glass Wool Eppendorfs and Glass Wool Funnels 

 

Eppendorfs: Bottoms of the eppendorf is pierced and a piece of rolled up glass 

wool is inserted inside. Eppendorfs are sterilized by autoclaving. 

Funnels: Larger amount of glass wool is rolled up and placed inside the 

glass/plastic funnel close to the stem. Funnel is covered completely with aluminum foil 

and autoclaved.  
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4.2. Methods 
 
 
 

4.2.1. General Methods 
 
 
Agarose Gel 
 

Agarose Gels were prepared with a w/v ratio of 8%, unless stated otherwise; using 

1X TAE as the solvent; and contains Ethidium Bromide for visualization. TAE was 

prepared according to the protocol described in Molecular Cloning: A Laboratory 

Manual, Sambrook et.al, 2001. 

 
 
EtOH Precipitation of D�A 
 

1 volume of DNA was mixed with 2.5 volumes of 96% EtOH and 0.1 volume of 

3M NaOAc (pH5.2), and incubated at -20 °C for at least 1 hour or at -80 for 30 min. 

The mixture was then centrifuged at 13200 rpm for 20 min at +4 °C. Supernatant was 

poured off, 800 µL 70% EtOH was added and tube was centrifuged for at least 2 

minutes. After pouring off the supernatant and evaporating remaining EtOH, pellet was 

resuspended with PCR water. 

 
 
EtOH Precipitation of Proteins 
 

500 µL culture supernatant (w/o cells) and 1 mL 96% EtOH were mixed in a 1.5 

mL eppendorf, and kept at -20 °C at least one day. Samples were pelleted at 13200 rpm, 

for 20 min, at 4-10 °C. Supernatant was poured off and remaining EtOH was removed 

with pipette. Proteins were resuspended with ddH2O.  

 
 
Ligation 
 

Vectors and inserts were digested and purified with QIAQuick Gel Extraction Kit. 

Fragments were run on Agarose gel and concentrations were determined with Quantity 

One. Unless stated otherwise, Vector 1:3 Insert molar ratio was used for ligation with an 

equal volume of TaKaRa Ligation Solution I. The reaction was incubated at 16 °C for at 

least 1 hour or overnight. 
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MiniPrep 
 

Approximately 2 mL LB-Amp was added to sterile glass/plastic culture tubes and 

bacterial colony picked from the plate with sterile toothpick/plastic micropipette tip was 

dropped into the medium. Tubes were incubated at 37 °C, shaking at 250 rpm, 

overnight. Next day, 1.5 mL culture was transferred into 1.5 mL eppendorfs and 

centrifuged at 12000 rpm for 1 min. After pouring off the supernatant, 100 µL Buffer 1 

was added and tube was vortexed. 200 µL Buffer 2 was added, tube was inverted 4-6 

times to mix and transferred on ice. 150 µL Buffer 3 was added, tube was inverted 4-6 

times to mix and incubated on ice for 5-10 min. Tubes were centrifuged at 13000-15000 

rpm, at +4 °C, 10 min. Supernatant was transferred to 1.5 mL eppendorfs containing 

900 µL 96% EtOH, and inverted 2-3 times. Tubes were centrifuged at 13000-15000 

rpm, at +4 °C, 10 min. After pouring off the supernatant, 800 µL 70% EtOH was added 

on pellet, centrifuged a few minutes at RT. After supernatant was poured off and 

remaining EtOH was taken out with pipette or evaporated; pellet was resuspended with 

50 µL PCR water. 

 
 
Restriction Enzyme Digestion 
 

Reaction mixtures were prepared in 1.5 mL tubes with following final 

concentrations unless stated otherwise; 1X Restriction Buffer, 0.25 U/µL of each 

enzyme, DNA; and PCR water up to final volume. Fast enzymes of Fermentas were 

preferred for cloning purposes whereas conventional enzymes were used for restriction 

analyses. All the reactions were incubated at 37 °C. 

 
 
SDS-PAGE 
 

Gels and samples were prepared and run according to the protocol described in 

Molecular Cloning: A Laboratory Manual, Sambrook et.al, 2001. 12% resolving gel 

and 5% stacking gel was used for all SDS-PAGEs. Gels were run with constant current 

(Gel number x 15mA) using Mini-PROTEAN® Tetra Cell. Gels were stained with 

Coomassie Staining Solution overnight and destained with ddH2O. 
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Spore Collection  
 

PDA plate was inoculated with relevant strain placing either a few microliters of 

spore solution or 0.5cm x 0.5 cm agar piece cut from the stock plate containing spores 

to the middle of the plate. Plates were incubated at 28 °C up to two weeks for 

production of sufficient number of spores. Depending on spore concentration, 5-15 mL 

of Physiological Salt Solution was poured on the plate and spores were dislocated with 

a Drigalski spatula. The solution was then passed through a glass wool eppendorfs to a 

sterile falcon and kept at +4 °C. Spore solution can be used for transformation 

maximum 2 weeks and for culture inoculation up to 4-5 months after collection. 

 
 

Sterilization 
 

All liquid and agar containing media were autoclaved at 121 °C for 15 minutes 

after preparation, unless stated otherwise. Solid materials were either autoclaved at 121 

°C for 20 minutes or sterilized in 121 °C oven for at least one day. 

In all experiments including bacteria and fungi either on the bench or in the 

laminar flow, work was done near flame to maintain sterility. 

 
 
Transformation of Competent Bacteria 
 

50 µL or 100 µL competent bacteria were mixed with intact plasmid or ligation 

product. The mixture was incubated on ice for 30 min. Heat-shock was applied at 42 °C 

for 2 minutes and cells were incubated on ice for 2 min. Adding 400 µL LB, cells were 

recovered at 37 °C for 30 min. The mixture was either spread to LB-Amp-Agar Plates 

and incubated in 37 °C incubator overnight, or used to inoculate 50 mL LB-Amp liquid 

culture and incubated shaking at 250 rpm at 37 °C. 
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4.2.2. Transformation of Trichoderma reesei 
 
 
 

4.2.2.1. Construction of Transformation Vectors 
 

 
4.2.2.1.1. Amplification of Cellulase Genes and cdna1 Promoter 

 
 

Primers 
 
Primers were designed to start approximately 10-20 bases before start codon and 

extend 400-600 bases after the start codon to include each gene’s own terminator. 

Restriction sites indicated in Table 2 were added with each primer to the beginning and 

end of PCR products in order to be able to insert them into expression vectors. Egl3 

reverse primer already had an internal HindIII site. cel7b (egl1) was amplified between 

25th base before start codon and 560th base after stop codon; cel12A (egl3) was 

amplified between 10th base before start codon and 293rd base after stop codon; cel7a 

(cbh1) was amplified between 13th base before start codon and 474th base after stop 

codon. 

 

 

Table 2 
8 Primers designed for amplification of cellulase genes and cdna1 promoter 

Target 
Target 
Length 

(bps) 
Direction 

Restriction 
site added 

Primer 

egl1 2110 
Forward ClaI 5’ - GTTATCGATTCTTAGTCCTTCTTGTTGTCCC - 3’ 

Reverse HindIII 5’ - GATAAGCTTGGTGGGAGAAGACTTTGGAC - 3’ 

egl3 1138 
Forward ClaI 5’ - GTTATCGATTAGCGTCGCAATGAAGTTCC - 3’ 

Reverse (HindIII) 5’ - GGAAAGCTTGCCGTGAGAATTGTAC - 3’ 

cbh1 2183 
Forward ClaI 5’ - GTTATCGATTCCGGACTGCGCATCATGTATC - 3’ 

Reverse SalI 5’ - CATGTCGACTTGTCTCCCTATGGGTCATTAC - 3’ 

Pcdna1 943 
Forward XhoI 5’ - TGACTCGAGCAGACAATGATGGTAGCAGC - 3’ 

Reverse ClaI 5’ - AGTATCGATGAGAGAAGTTGTTGGATTGATC - 3’ 

 * Highlighted regions show extra bases added and underlined bases are restriction sites * 
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Polymerase Chain Reaction 
 
 
PCR was performed using genomic DNA of T.reesei strain QM9414 as the 

template. Polymerase Chain Reactions were prepared with the following ingredients and 

final concentrations; 1X Green GoTaq Flexi Buffer, 2.5 mM MgCl2, 0.4 mM dNTPs, 

400 nM forward primer, 400 nM reverse primer, DNA, 0.025U/µL GoTaq DNA 

Polymerase in a total volume of 50 µL. Reactions are performed in duplicates. PCR 

cycles are described in Table 3. 3 µL of each PCR product was run on 8% Agarose gel 

(Figure 8). 

 

 

Table 3 

PCR cycles used for amplification of genes and Pcdna1 

 egl1 / cbh1 egl3 Pcdna1  

 Temp. Time Temp. Time Temp. Time 
Repeat 
number 

Initialization 95 °C 90 sec 95 °C 90 sec 95 °C 90 sec 1 

Denaturation 95 °C 60 sec 95 °C 60 sec 95 °C 60 sec 

30 Annealing 56.5 °C 60 sec 58.5 °C 60 sec 54.5 °C 60 sec 

Elongation 72 °C 180 sec 72 °C 120 sec 72 °C 120 sec 

Final Extension 72 °C 600 sec 72 °C 600 sec 72 °C 600 sec 1 

 

 
 
4.2.2.1.2. Construction of pPtef1- Vectors 

 
 

4.2.2.1.2.1. Preparation of pPtef1 Vector 
 
 
Restriction sites that are not present inside the genes were selected for insertion 

into the pPtef1 vector; ClaI-HindIII pair was used for egl1 and egl3, ClaI-SalI pair was 

used for cbh1. XhoI-ClaI pair was used for replacement of tef1 promoter in the gene 

inserted vectors with cdna1 promoter (See Appendix G for vector maps). 
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Transformation of JM109 Cells with pPtef1 
 

Transformation was done as described in 4.2.1.   

 
 
MIDI-Prep of pPtef1 
 

MIDI-Prep DNAs were obtained with PureYield Plasmid Midiprep System 

protocol. EtOH precipitation of DNAs was done after the procedure. 

 
 
Digestion of pPtef1 with restriction enzymes and Purification 
 

Two separate digestions of pPtef1 were done overnight; HindIII-ClaI digestion 

using Buffer Tango and ClaI-SalI digestion using Buffer Fast. Digested vectors were 

run on Agarose gel and purified using QIAQuick Gel Extraction Kit. 

 
 
 
4.2.2.1.2.2.   Preparation of Genes and cdna1 Promoter 

 
 
Purification of PCR Products 
 

PCR products were cleaned-up using QIAquick PCR Purification Kit. 

 
 
Amplification of PCR Products with pGEMT-Easy Vector 
 

In order to amplify the genes and to be able to digest them properly, genes were 

cloned into pGEMT-Easy Vector and amplified. Digestion of MiniPrep DNAs was done 

to confirm the presence of insert. 

Ligation: 6 µL purified PCR product and 1 µL pGEM-T Easy Vector were ligated 

as described before. 

Transformation: JM109 cells were transformed with ligation mixture which then 

were spread to (IPTG and X-Gal containing) LB-Amp plates for blue-white screening. 

MiniPrep: Overnight grown bacteria were held at +4 °C for 1 hour in case some 

colonies would turn to blue; then, 5 white colonies for each transformation (egl1, egl3, 

cbh1, cdna1) were selected and MiniPrep protocol was applied. 

Control digestion: HindIII-ClaI digestion of pGEMT-egl1/egl3 vectors were done 

with Buffer Tango; SalI-ClaI digestion of pGEMT-cbh1 and XhoI-ClaI digestion of 
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pGEMT-cdna1 were done with Buffer Fast as described in 4.2.1, with 2 µL MiniPrep 

DNA in a final volume of 20 µL for 2.5 hours. All of the digestion products were run on 

Agarose gel (Figure 9). Two positive colonies of each vector were chosen for the next 

step. 

 
 
Digestion of PCR products and Purification 
 

In order to obtain sticky-ended fragments, 5 µL of each of the pGEM-T Easy 

vectors containing PCR fragment was digested as described in 4.2.1, in a final volume 

of 40 µL, overnight. All of the digestion products were run on Agarose gel which were 

then cut out and purified using QIAQuick Gel Extraction Kit. 

 
 
 
4.2.2.1.2.3. Cloning of genes into pPtef1 Vector 

 
 
ClaI-HindIII digested egl1/egl3 genes are ligated to pPtef1 vector having same 

sticky ends. ClaI-SalI pair is used instead for cbh1. Vector-gene ligation products are 

used for transformation of JM109 cells and 10 colonies were selected randomly for 

MiniPrep. Presence of the genes in MiniPrep DNAs was checked with relevant enzyme 

pair (Figure 10, Figure 11). Among the positive ones, colonies 6 and 10 for egl1, 7 and 

10 for egl3, 6 and 7 for cbh1 are selected for transformation of T.reesei. 

MIDI-Prep of these 6 vectors was done which were then used for transformation 

of T.reesei. 
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Restriction Analyses of Ptef1- Vectors 
 
After selection of vectors and obtaining their MIDI-Prep DNAs, restriction analyses of 

pPtef1- vectors were done before transformation to make sure that correct genes are in 

correct orientation (Figure 12). Total length of each vector is written in parentheses 

(bps), enzymes used for analyses and expected fragment lengths (bps) are shown after 

enzyme names below:  

 

pPtef1-egl1 (7849) XhoI:  6402, 1447  XhoI-HindIII:  5009, 1447, 1393  

pPtef1-egl3 (6877) BamHI:  3995, 2882  XhoI-HindIII:  5009, 1868 

pPtef1-cbh1 (7940) HindIII: 6667, 1269  XhoI-SalI:  5027, 2913 

 

4.2.2.1.3. Construction of pPcdna1- Vectors 
 

 
 
4.2.2.1.3.1. Construction of pPcdna1-egl3 and pPcdna1-cbh1 

 

 

tef1 promoter of previously constructed pPtef1-egl3/cbh1 vectors were replaced 

with cdna1 promoter to construct pPcdna1-egl3/cbh1 vectors. Initially, Ptef1 was 

extracted from vectors via XhoI-ClaI sites; remanining vector was purified by gel 

extraction and ligated with purified Pcdna1 prepared in 4.2.2.1.2.2. Three positive 

colonies of pPcdna1-egl3 were obtained; yet, pPcdna1-cbh1 vector could not be 

constructed due to the problems with ligation. 

 
 
 
4.2.2.1.3.2. Construction of pPcdna1-egl1 

 
 
Since egl1 gene contains an XhoI site, pPcdna1-egl1 vector could not be 

constructed by replacing Ptef1 with Pcdna1 in pPtef1-egl1 vector. Instead, pPtef1 was 

digested with XhoI-HindIII to extract Ptef1, remaining linear vector was ligated with 

Pcdna1 and egl1 simultaneously. Out of ten colonies obtained after a few trials, four 

were chosen and tested for accuracy of ligation. 
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Restriction Analyses of Pcdna1- Vectors 

 
Following the construction of pPcdna1-egl1/egl3 vectors, XhoI-HindIII digestion of 

egl3 vectors; and HindIII and XhoI-HindIII digestion of egl1 vectors were done to 

check their accuracy (Figure 13). cdna1 promoter has an internal HindIII restriction site 

and egl1 has an XhoI (See Appendix G for plasmid maps). Total length of each vector is 

written in parentheses (bps), enzymes used for analyses and expected fragment lengths 

(bps) are shown after enzyme names below: 

pPcdna1-egl1 (8038)         HindIII: 5622, 2416      XhoI-HindIII: 5009, 1393, 1023, 613 

pPcdna1-egl3 (7066)         XhoI-HindIII: 5008, 1445, 613 

 
 
 

4.2.2.2. Transformation of T.reesei 
 
 
∆xyr1 was used as parental strain for all transformations. Vectors used for 

transformation were; pPtef-egl1, pPtef-egl3, pPtef-cbh1, pPcdna1-egl1 and pPcdna1-

egl3. 

Transformation has two main steps; protoplasting, which is degradation of cell 

walls and obtaining competent cells (protoplasts), and transformation, in which several 

incubations of protoplasts mixed with DNA are done. 

 
 
 

4.2.2.2.1. Protoplasting 
 
 
10-100 µL spores, depending on spore concentration, were spread to each of 8-

10 MEX-cellophane plates with Drigalski spatula. Next day, after mycelia have reached 

to adequate density, cellophane layers were collected with forceps to an empty petri 

dish, adding 1.5-2 mL Protoplasting Solution between layers. Discs were incubated at 

28 °C for 90 minutes. Mycelia were collected into the petri plate by removing 

cellophane discs one by one. Mycelia were filtered through glass wool funnel into the 

Corex tube or 50 mL falcon using cut tips. Cells were centrifuged in swing-out rotor at 

2000 rpm, for 10 min, at +4 °C. Supernatant was poured off; cells were resuspended 

gently with 4 mL Solution B (+4 °C) and centrifuged at 2000 rpm, for 10 min, at +4 °C. 

After supernatant was poured off, cells were resuspended with 0.5-2 mL Sulution B (+4 
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4.2.3. Expression of Cellulases 
 
 
After stabilization of Hygromycin-resistant transformants, they were expressed in 

MA Medium (See Appendix H). All the expression cultures are started with 2 x 106 

spores/mL and glucose is used as the sugar source. 

 

QM9414 expression on cellulose: QM9414 (2 x 106 spores/mL) was pregrown 

on MA Medium with Glycerol as the sugar source for 18 hours. Mycelia were pelleted 

at 2000 g, at +4 °C, 10 min and washed once with ddH2O. MA Medium with cellulose 

as the carbon source was inoculated with these mycelia. 

  
 
 

4.2.3.1. Protein Expression in T.reesei 
 
 
Strains were grown on PDA plates and spores were collected after 10-14 days. 

Spore count was determined either with Turbidity Meter or Hemocytometer. All 

cultures were started with a total medium volume of 250 mL and with a concentration 

of 2 x 106 spores/mL. Glucose and spores were added to the medium simultaneously 

just before starting cultures. Flasks were incubated shaking with 250 rpm, at 28 °C. 

Samples were taken at 0th, 20th, 28th, 36th, 44th, 52nd and 72nd hours after inoculation and 

placed on ice immediately to prevent proteolytic degradation. 

Exactly 20 mL sample was taken for each strain at the specified time-point, in 

order to be able to determine dry weight accurately. Samples were centrifuged at 5000 g 

for 10-20 min, at +4 °C. Supernatants were aliquoted to 2 mL eppendorfs and kept at -

20 °C. Pellet was washed to get rid of salts by resuspending with 40 mL ddH2O and 

centrifuged at 5000 g for 10-20 min, at +4 °C. Pellet was dried in 70 °C oven for 1 week 

or more -until complete evaporation of water- and weighed with precision balance. 

 
 
 

4.2.3.2. Coffee Filters as Shake Flask Closures 
 
 
Coffee filters were assessed in terms of oxygen permeability and sterility. Shake-

flask cultures were done with stitched cotton pad-type closures, coffee filters and 

coffee-filter closed empty medium (not inoculated with spores) for 52 hours. Dry 
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weights of cultured strains were determined (Figure 17). Sterility of empty medium was 

checked with 8-hour intervals under microscope. 

 
 
 
4.2.3.3. Comparison of Smooth and Baffled Flasks 
 
 
Since baffled flask is known to provide more oxygen to the culture, smooth and 

baffled flasks were compared for T.reesei shake-flask cultures by growing same strain 

in both types of flasks simultaneously (Figure 18). 

 
 
 
4.2.3.4. Extra Sugar Addition 
 
 
Based on the fact that glucose is used as both sugar source and expression 

inducer; in order to see whether exhaustion of sugar is a limiting factor for growth rate 

and protein expression, extra 10 g/L glucose is added to the expression medium of the 

best producer strain, c-egl1-6, at 20th hour. Smooth and baffled flask comparison 

together with sugar addition was done (Figure 22, Figure 26). 

 
 
 

4.2.4. Analysis of Expression 
 
 
Almost all of the expressions were done in duplicates at different times, but only 

single copies of data is shown in this thesis as a representative of other data, which was 

pretty similar. 

 
 
 
4.2.4.1.  Growth Rates 
 
 
Growth rates were calculated and compared by measuring dry weights as 

described in (Figure 20). 
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4.2.4.2. SDS Gel Analysis 
 
 
Initially, supernatants were precipitated with EtOH and concentrated 10-fold to 

check the presence of cellulases on the gel (data not shown). After detection of 

producing strains, supernatants of these were run with respect to time to see the course 

of protein expression and to compare strains (Figure 21, Figure 23, Figure 24). Different 

amount of supernatants were used for each strain to prevent over/under-loading of wells 

depending on the protein amount. 

 
 
 

4.2.4.3. Activity Assays 
 
 
 

4.2.4.3.1. Fluorogenic Substrates 
 
 
4-Methylumbelliferyl-β-D-Cellobioside/Lactoside were dissolved in DMSO. 

Activity assays were done with 250 µM MUC/MULAC (50 nmol/well), 50 mM NaOAc 

buffer (pH 5.0) and 50 µL supernatant in a reaction volume of 200 µL/well. Results 

were measured with Gemini XS Spectrofluorometer with 1 minute intervals for 1 hour 

at 40 °C, with the following  parameters; excitation: 330 nm, emission: 456 nm, cutoff: 

455 nm. ddH2O was used as blank and RFU/min values were calculated from the initial 

linear release rate of fluorescence. 

 
 
 

4.2.4.3.1.1. 4-Methylumbelliferyl-ββββ-D-Cellobioside 
 
 
4-Methylumbelliferyl-β-D-Cellobioside (MUC) was used to determine the 

activity of EG1 producing strains (Figure 26) 

 
 

4.2.4.3.1.2. 4-Methylumbelliferly-ββββ-D-Lactoside 
 

4-Methylumbelliferyl-β-D-Lactoside (MUC) was used to determine the activity of 

cbh1 producing strains (Figure 26).  
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4.2.4.3.2.  Carboxymethyl Cellulose Assay 
 
 
Since no degradation of fluorogenic substrates (MUC/MULAC) were detected 

with egl3 culture supernatants, Carboxymethyl Cellulose (CMC) Assay was done to 

compare activities of EG3 producers. Supernatants were precipitated with EtOH and 

resuspended with ddH2O prior to assay in order to prevent signals coming from glucose 

in the culture supernatant. All experiments were done in quadruplets, reagents were pre 

heated to 50 °C and 96-well plate was covered with plastic mat during incubations to 

prevent evaporation. 

30 µL supernatants were added to 96-well PCR plates and heated to 50 °C. 30 µL 

2% CMC in NaOAc Buffer (pH 4.8) was added to wells simultaneously, mixed quickly 

and incubated for 30 min at 50 °C. 60 µL DNS reagent was added to wells, mixed 

shortly and incubated at 95 °C for 5 min for color development. PCR plate was then 

placed on ice and absorbances of 100 µL of mixtures were read at 550 nm after 

transferring them to flat bottomed 96-well microplate. 

CMCase activity: CMCase activity was calculated as described previously 

(Ghose, 1987). Activities were calculated assuming a linear relationship between 

enzyme concentration and final glucose concentration, since excess amount of cellulose 

was used in the assay. 1 IU/mL CMCase Activity corresponds to 1 µmol/min of 

liberated glucose (Hata! Başvuru kaynağı bulunamadı.). 

  

CMCase Activity (IU/mL) = 0.185 / EDR 

Enzyme Dilution Rate (EDR) = 0.5 / (mg/mL glucose liberated) 

 
 
 

4.2.4.4. Determination of Total Protein Concentrations 
 
 
Total protein concentrations in the culture supernatants were measured by 

Bradford Assay as described by Bradford (1976) (Table 4). 
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4.2.5. BLAST Analysis of cdna1 gene 
 
 
BLAST search for nucleotide sequences of cdna1 promoter and gene were done in 

nucleotide collection (nr/nt) with megablast or discontiguous megablast. Nucleotide 

seauence of the predicted gene was translated into protein sequence using GeneRunner 

and BLAST search for protein was done among non-redundant protein sequences with 

blastp algorithm. 
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5. RESULTS 
 
 
 
 

5.1. Construction of Transformation Vectors 
 
 
 

5.1.1. Amplification of Cellulase Genes and cdna1 Promoter 
 
 
3 µL of each PCR product is seen in Figure 8. The genes were found to be in 

expected sizes (egl1: 2110, egl3: 1138, cbh1: 2183, Pcdna1: 943) and no extra bands 

were present in the gel. 

 
 

 

Figure 8: Agarose gel electrophoresis of fragments obtained by PCR. 3 µL 
fragment/well and 5 µL Ladder are run on 8% Agarose gel. Right: SM0311. 
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5.1.2. Three Cellulase Genes and Pcdna1 in pGEM-T Vector 
 

 

In order to check the presence of cloned fragments in pGEMT vectors 

constructed, they were digested; HindIII-ClaI digestion of pGEMT-egl1/egl3; SalI-ClaI 

digestion of pGEMT-cbh1 and XhoI-ClaI digestion of pGEMT-cdna1. All of the clones 

seem to have correct fragment (Figure 9). 

 

 

 

Figure 9: Control digestion of pGEM-T clones. egl1/egl3: ClaI-HindIII, cbh1: ClaI-
SalI, Pcdna1: XhoI-ClaI. 2 µL DNA/well and 5 µL Ladder were run on 8% Agarose gel. 
  
 

 

 

5.1.3. pPtef1- Vectors 
 
 
After MiniPrep DNAs of selected pPtef1- colonies were obtained, control 

digestion was done to check the presence of inserts. When pPtef1-egl1/egl3 DNAs were 

digested with ClaI-HindIII and pPtef1-cbh1 with ClaI-SalI, the results in Figure 10 and 

Figure 11 were seen, respectively. All of the egl1vectors, eight egl3 vectors and seven 

cbh1 vectors seem to be positive. Colonies 6 and 10 of egl1, colonies 7 and 10 of egl3, 

colonies 6 and 7 of cbh1 were selected to obtain MIDI-Prep DNA for T.reesei 

transformation. 
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Figure 10: Control digestion of pPtef1-egl1 and pPtef1-egl3 MiniPrep D�As. 2 µL 
DNA/well and 5 µL Ladder were run on 8% Agarose gel. 

 
 
 

 

Figure 11: Control digestion of pPtef1-cbh1 MiniPrep D�As. 2 µL DNA/well and 5 
µL Ladder were run on 8% Agarose gel. 
 
 
 
 

5.1.4. Restriction Analyses of pPtef1- Vectors 
 
 
In Figure 12, Agarose gel electrophoresis of digested pPtef1- vectors is seen. 

Expected fragment sizes were as follows; pPtef1-egl1/XhoI: 6402, 1447; /XhoI-HindIII: 

5009, 1447, 1393; pPtef1-egl3/BamHI: 3995, 2882; /XhoI-HindIII: 5009, 1868; pPtef1-

cbh1/HindIII: 6667, 1269; /XhoI-SalI: 5027, 2913. All of the fragments seem to be in 

correct sizes, except, cbh1 vector has an extra band approximately 8 kb which might be 
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incompletely digested linear vector, therefore these vectors will be used for 

transformation of T.reesei. 

 

 

 

Figure 12: Restriction analyses of pPtef1- MIDI-Prep D�As. 0.5 µL DNA/well and 
5 µL Ladder were run on 8% Agarose gel. 

   

 

5.1.5. Restriction Analyses of pPcdna1- vectors 

 

Two fragments with lengths of approximately 2416 and 5622 bps; and four 

fragments with sizes of 613, 1023, 1393 and 5009 were expected from HindIII and 

XhoI-HindIII digestion of pPcdna1-egl1 respectively. These fragments were obtained 

when four vectors are digested with mentioned enzymes (Figure 13-A). 

Three fragments with lengths of 613, 1445 and 5008 bps were expected from 

digestion of pPcdna1-egl3 vectors with XhoI-HindIII, since Pcdna1 has an internal 

HindIII site (see Appendix G for plasmid maps), which were detected in Figure 13-B. 
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   A             B 

   

Figure 13: Restriction analyses of pPcdna1-egl1 (A) and pPcdna1-egl3 (B) vectors. 
 
 
 
 
 

5.2. Transformation of T.reesei and Purification of Strains 
 
 
 
Total 23 transformants were found to be stable and Hygromycin-B resistant after 

selection and purification steps following transformation of T.reesei. Initially, colonies 

on transformation plates were selected semi-randomly; positive clones were growing 

quite fast and became whitish (Figure 14). When they were transferred to PDA-

Hygromycin plates, some of them were still resistant (Figure 14-B). Since TritonX 

restricts colony growth, it helped selection of colonies coming from a single spore. 

Since not all of the Hygromycin-resistant transformants were producers, expression on 

MA Medium was done to see their expression profiles. 

Growth of all strains and transformants (except Rut-C30) on PDA plate were the 

same; in Figure 15-(A-C) an example is seen showing growth of QM9414 strain from 

1st day until sporulation. 

Spore plates and spores are exemplified in Figure 15-(D-F); a fully sporulated 

plate (A) and its detail (B). After collection, spores on hemocytometer can be seen in 

(C); note the oval-like shapes and greenish colors of spores. 
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Figure 14: Sample plates for transformation. (A) A transformation plate 5 days after 
transformation; a probably positive colony is encircled, (B) small plates for PDA-
Hygromycin B selection 1 day after selected colonies transferred; upper left two and 
lower rightmost colonies seems to be resistant. 

 
 
 
 
 

       

        

Figure 15: Growth of T.reesei on PDA (A, B, C, D) and T.reesei spores (D, E, F). 
(A) 1 day, (B) 2 days, (C) 3 days after transfer to plate; (D) fully sporulated plate after 
10 days, (E) a closer look to the sporulated plate, (F) spores on hemocytometer, one side 
of square in F is 50 µm.  

  D                         E                         F 
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Figure 17: Effect of using coffee filter or cotton as shake-flask closure to culture 
growth. Strains are grown on MA Medium with glucose. 
 
 
 
 

5.3.2. Comparison of Smooth and Baffled Flasks 
 
 
Ptef1-cbh1-1 strain was grown in both smooth and baffled flasks. In Figure 18 

the strain seems to outgrow other strains (about 1.5-fold) at 28th hour, but then it 

decreases to the same level with others probably due to exhaustion of sugar. In Figure 

19, when protein expression profiles in smooth and baffled flasks are compared, they 

show similar patterns to strain growth; such that, in baffled flask protein amount 

reached maximum at 28th hour and then decreased. In addition, expression of other 

proteins seems to have increased as well. 

 

Figure 18: Growth of T.reesei in baffled and smooth flasks. Ptef1-cbh1-1(b): baffled, 
other strains: smooth flask. Strains are grown on MA Medium with glucose. 
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Figure 19: Comparison of protein expression in smooth (A) and baffled (B) flasks. 
Wells contain EtOH-precipitated supernatant corresponding to 250 µL. SM: 5µL 
SM0661 

 
 
 
 

5.3.3. Growth Rates 
 
 
Cell dry weights of cultures were calculated in order to be able to correlate protein 

expression to growth of strains. All of the strains but QM9414 (cel) were grown on MA 

Medium with glucose as carbon source (see 0). Groups that were cultured 

simultaneously are written in the same parentheses: (t-egl1-1, c-egl1-2, c-egl1-6, ∆xyr, 

t-egl3-1, c-egl3-5) - (c-egl1-6+b, RutC-30, QM9414 (cel), t-cbh1-1, t-cbh1-4) - 

(QM9414 (glu)) - (c-egl1-6+) - (c-egl3-2). 

In Figure 20-A, growth rates of egl1 producers, parental strain ∆xyr and 

hypercellulolytic mutant RutC-30 are seen. Growth patterns of simultaneously grown 

strains are exactly the same, which are also same with parental strain and QM9414 (glu) 

(B). When c-egl1-6 strain in baffled flask was supplemented with additional sugar (c-

egl1-6+b), its growth increased almost 2-fold; yet, this is not the case with smooth flask 

(c-egl1-6+). RutC-30 grows better than other strains, except sugar-added ones. 

In Figure 20-B, growth rates of EG1 and CBH1 producers, ∆xyr and wild-type 

QM9414 (grown on glucose or cellulose) strains are seen. Dry weights of 

simultaneously grown strains are close again, together with the parental strain and 

QM9414. Since c-egl3-2 was cultured another time, its growth curve is different (other 

strains of that expression had exactly the same growth curves, data not shown). 
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Although QM9414 is similar to transformants when glucose is the carbon source, 

growth on cellulose is quite unusual that it seems to decrease.  

 
 

 
 

 

Figure 20: Growth rates of transformants, and ∆∆∆∆xyr, QM9414 and RutC-30. c-
egl1-6+:  glucose was added at 20th hour, c-egl1-6+b: glucose is added at 20th hour and 
grown in baffled flask, QM9414 (glu): grown on glucose, QM9414 (cel): grown on 
cellulose. 
 
 
 
 

5.3.4. SDS Gel Analysis 
 
 
In Figure 21, SDS-PAGE results of three transformants t-egl1-1 (A), c-egl1-2 (B), 

c-egl1-6 (C), which were found out to be EG1 producers, and ∆xyr strain (D) as a 

negative control are shown. Total protein concentrations of the supernatants can be 
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checked from Table R-1-A. EG1 is detected in the middle of 60 and 70 kDa (about 65 

kDa). 

A neat gel image of the samples taken from QM9414 when grown on cellulose 

could not be obtained since residual cellulose disrupted running of the gel causing 

distortion of bands; even if supernatants were EtOH precipitated, cellulose precipitated, 

too. RutC-30 was concentrated as well, yet no considerable bands were present, 

therefore its SDS gel is not included. 

 
 

 

Figure 21: Endoglucanase I was expressed under both promoters. (A) Ptef1-egl1-1 
(100 µL), (B) Pcdna1-egl1-2 (125 µL), (C) Pcdna1-egl1-6 (125 µL), (D) ∆∆∆∆xyr1 (125 
µL). Inside the parentheses amounts of supernatants loaded to the gel are indicated. 
Time: hours after culture inoculation. SM: SM0661 (5 µL) 

 

In order to see whether exhaustion of sugar is a limiting component for protein 

expression, extra 10 g/L glucose was added to c-egl1-6 strain (c-egl1-6+) at 20th hour. 

In Figure 22, supernatants corresponding to 250 µL are run on SDS gel with maximum 

amount at 36th hour. 
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Figure 22: Endoglucanase I expression by c-egl1-6 strain has increased upon 
addition of extra glucose (c-egl1-6+). 250 µL supernatant/well. SM: SM0661 (5 µL) 
 

 

 

Figure 23: Endoglucanase III was expressed under both promoters. (A) Pcdna1-
egl3-5 (15 µL), (B) Ptef1-egl3-1 (75 µL), (C) Pcdna1-egl3-2 (25 µL). Inside the 
parentheses amounts of supernatants loaded to the gel are indicated. Time: hours passed 
after culture inoculation. SM: SM0661 (5 µL) 
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5.3.5. Activity Assays 
 
 
 

5.3.5.1.  Activity of Endoglucanase I towards MUC 
 

Activities of EG1 producing strains, ∆xyr, QM9414 and RutC-30 towards 

fluorogenic substrate 4-Methylumbelliferyl-β-D-Cellobioside (MUC) were measured 

and compared. 

 In Figure 26-A, activities are drawn with respect to sampling time. ∆xyr, 

QM9414 and RutC-30 strains have activities close to zero. t-egl1-1 and c-egl1-2 have 

very similar activities, while latter  is slightly higher. c-egl1-6 supernatant shows 

increasing activity till 36th hour and when extra glucose was added 20th hour (c-egl1-

6+), activity has increased more than 2-fold. 

Addition of glucose did not have a striking effect on expression in baffled flask 

(c-egl1-6+b), in fact it decreased the activity compared to smooth flask. 

 
 

5.3.5.2.  Activity of Cellobiohydrolase I towards MULAC 
 
Activities of cbh1 producing strains, ∆xyr, QM9414 and RutC-30 towards 

fluorogenic substrate 4-Methylumbelliferyl-β-D-Lactoside (MULAC) were measured 

and compared. 

In Hata! Başvuru kaynağı bulunamadı.-B, activities are drawn with respect to 

sampling time. Again ∆xyr has shown no activity; and neither QM9414 nor RutC-30. In 

fact their activities are not absolute zero, but they are negligible when compared to 

cbh1s’. t-cbh1-1 and t-cbh1-4 has very similar activities. 

  

 

5.3.5.3.  Activity of Endoglucanase III towards CMC 
 
Activities of egl3 producing strains towards CMC were measured and compared 

after EtOH precipitation. Protein concentrations before and after EtOH precipitation is 

shown in Table 4. CMCase activities with respect to sampling times are drawn in Hata! 

Başvuru kaynağı bulunamadı.-C. Supernatants of all of the strains have CMCase 

activity with varying degrees. Maximum activity is displayed by c-egl3-5 at 36th hour, 

0.55 IU/mL 

. 
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Figure 26: MUC activity of EG1 producers (A), MULAC activity of CBH1 
producers (B) and CMC Activity of EG3 producers. RFU/min values for MUC and 
MULAC; IU/mL values for CMCase activities were shown. 
 

A 

B 

C 
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5.3.6. Analyses of Protein Concentrations and Activities 
 
 
Total protein concentrations in the culture supernatants were measured for each 

strain and sampling time, shown in Table 4. Specific Activity (Activity/Total Protein) is 

determined for each assay to gain insight in purity of the enzymes in the culture 

supernatants (Figure 27); for this, activities were assumed to directly correlate with 

enzyme amount. Highest activity time of each strain is indicated by dark background 

and highest specific activity values are written in bold. 

In Figure 27-A, specific activities of EG1 producers towards MUC, in Figure 27-

B specific activities of CBH1 producers towards MULAC and in Figure 27-C specific 

activities of EG3 producers towards CMC (right part) are compared to each other. 

 

Table 4: Total protein concentrations (mg/L) of culture supernatants. E: EtOH 
precipitated samples. 

 Total Protein Concentration (mg/L) 

time (h) 20 28 36 44 52 72 

t-egl1-1 5,1 13,0 22,4 15,4 9,8 4,8 

c-egl1-2 4,5 23,4 25,3 21,7 13,9 7,1 

c-egl1-6 6,3 31,5 45,9 41,7 36,5 30,9 

c-egl1-6+ 7,4 22,2 49,3 56,3 44,5 35,8 

c-egl1-6+b 2,1 45,9 23,1 16,8 13,6 9,9 

t-egl3-1 4,8 17,3 20,5 16,1 10,5 8,3 

t-egl3-1 E 2,6 11,8 15,8 11,5 10,4 7,8 

c-egl3-2 13,3 32,1 43,7 27,9 17,2 - 

c-egl3-2 E 2,5 11,7 20,7 10,3 4,9 - 

c-egl3-5 4,2 9,7 21,8 19,5 15,0 9,3 

c-egl3-5 E 1,4 3,9 14,2 12,4 9,9 6,8 

∆∆∆∆xyr1 3,4 13,2 18,2 10,2 8,6 4,4 

QM9414 (cel) 10,8 26,5 38,2 45,6 22,8 22,1 

RutC-30 3,9 77,9 64,7 42,4 25,3 12,9 
 

Specific activities were calculated as follows: Each well of microplate contained 

50 nmol MUC and upon complete hydrolysis, 93000 RFU is reached; meaning that 1 

RFU = 5.376 x 10-13 mol hydrolyzed MUC. Therefore, 

a   RFU min-1 µg-1    =    a x [5.376 x 10-4] µmol min-1 mg-1 (MUC) 

can be used for specific activity conversion into IU units. 



58 

 
 

 
 

 

Figure 27: Volumetric and Specific MUC (A), MULAC (B) and CMC (C) 
Activities of transformants. Volumetric activities (VA) are µmol/min/mL for 
fluorogenic substrates and IU/mL for CMC. Specific activities (SA) are µmol/min/mg 
for fluorogenic substrates and IU/mg for CMC.  

 

A 

 

 

 

 

 

B 

 

 

 

 

 

C 
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As a summary, maximum activities and specificities observed for each enzyme 

among all transformants were given in Table 5 and Table 6. 

 

Table 5 
Maximum volumetric activity observed for each enzyme 

Enzyme timepoint Maximum Activity 

c-egl1-6+ 36 0.116  µmol min-1 mL-1  

c-egl3-5 (E) 36 0.554  IU/mL  

t-cbh1-4  28 0.00254  µmol min-1 mL-1  

 

Table 6 
Maximum specific activity observed for each enzyme 

Enzyme timepoint Maximum Specificity 

c-egl1-6 20 4.25  µmol min-1 mg-1  

c-egl3-5 (E) 20 220  IU/mg  

t-cbh1-4  20 0.707  µmol min-1 mg-1  

 
 
 
 
 

5.3.7. BLAST Analysis of cdna1 gene 
 
 
BLAST search of nucleotide sequences of cdna1 promoter and gene did not give 

any results, even if they were trimmed and search was re-done. In the jgi-T.reesei 

website, there are two hypothetical proteins in this region with IDs 110879 and 123515. 

We have translated the nucleotide sequence of the gene (scaffold 23:44654-44994) into 

protein sequence in silico resulting in a 80 amino acid sequence given in Appendix F. 

BLAST search of this polypeptide sequence among non-redundant protein sequences 

with blastp algorithm gave several results, five of which with highest E-values had 39-

46% identities and 53-63% positives. All of these five results were hypothetical proteins 

from species; Haematonectria haematococca, Gibberella zeae, Sclerotinia 

sclerotiorum, Botryotinia fuckeliana and Verticillium alboatrum which are all plant 

pathogenic fungi (Kirk, 2001).  
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6. DISCUSSIO� 
 
 
 
 

6.1. Construction of Transformation Vectors 
 

 
 
Three cellulase genes encoding Endoglucanase I (egl1), Endoglucanase III (egl3) 

and Cellobiohydrolase I (cbh1) were amplified from genomic DNA of wild type strain 

QM9414 with PCR reaction which was successful in the first trial with correct sizes of 

fragments and no unspecific bands or smear in the agarose gel. Since restriction of PCR 

products would result in the fragments of almost same sizes with unrestricted ones, it 

was not a good idea to cut PCR products directly. They were cloned into the pGEM-T 

vector instead, in order to be able to keep them for a long time and to make sure that 

when we cut the fragments from pGEM-T vector, all would have sticky ends. pPtef1 

vector was prepared by restriction digestion with the enzymes that flanked each gene’s 

PCR product. Digested PCR products and pPtef1 vector were purified by gel extraction 

in order to get rid of unwanted materials that would interfere with ligation procedure 

and to have more concentrated DNA. Ligation of fragments to pPtef1 vector was 

straightforward and at least 7 positive colonies for each plasmid (pPtef1-egl1, pPtef1-

egl3 and pPtef1-cbh1) were obtained, two of which were selected for MIDI-Prep 

amplification in order to have higher concentration and purity for T.reesei 

transformation. 

Construction of pPcdna1- plasmids were planned to be done by extracting tef1 

promoter from pPtef1- vectors and ligating cdna1 promoter instead, via Xho-ClaI sites 

(Appendix G). This was achieved for pPtef1-egl3 to pPcdna1-egl3 conversion. 

However, presence of XhoI site inside egl1 gene eliminated this replacement possibility 

for the pPtef1-egl1 vector. When presence of a HindIII site in the cdna1 promoter was 

considered, initial replacement of Ptef1 in pPtef1 with Pcdna1 was not a reasonable 

choice either (see Appendix G). In order to construct pPcdna1-egl1 vector; triple 

ligation of Ptef1 extracted pPtef1, egl1 gene and Pcdna1 was done. 10 positive colonies 
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were obtained at 4th trial. Although the replacement strategy was expected to work with 

pPtef1-cbh1 – pPcdna1-cbh1 conversion, no colonies were obtained after several trials; 

which might be due to loss of activity of the ligation solution used for cloning. 

After obtaining MIDI-Prep DNAs of these vectors, restriction analyses of 

constructed vectors were done using either internal or flanking restriction sites, all of 

which gave positive results (Figure 12 and Figure 13) showing that the promoters and 

the genes were there with correct orientations. These vectors were used then for 

transformation of T.reesei. 

 
 
 

6.2. Transformation of T.reesei and Purification of Strains 
 
 
 
Protoplasting is the process of degrading cell walls of mycelia, which is a required 

step prior to transformation of T.reesei since cell walls block DNA entry (Ping, 2005). 

Degradation was done by using Lysing Enzymes from Trichoderma harzianum that 

hydrolyzes poly(1-3)-glucose in the cell wall glucan (Sigma-Aldrich). DNA is then 

introduced to the cells in the presence of Polyethylene Glycol (Mach, 1998). PEG is 

necessary for anchoring of vector DNA to cell membranes of protoplasts and it is also 

thought to assist intake of DNA by the cells (Ping, 2005). Sorbitol is included in bottom 

medium that the protoplasts are spread on and overlay medium that covers on top of 

them after transformation to provide osmotic support since the protoplasts are very 

fragile not possessing a cell wall. Hygromycin B was used in transformation and 

purification plates for selection of positive transformants since it can kill eukaryotic 

cells, so that untransformed cells were eliminated. After complete purification and 

glycerol stock preparation, strains were maintained on media without any antibiotics in 

order to allow their growth and sporulation. All the transformants were observed to 

grow with almost the same rates and patterns on agar media, together with the parental 

strain ∆xyr1 and QM9414 (Figure 15-ABC); yet Rut-C30 has a lower growth rate and 

limited sporulation. This might be due to maintenance of the stock agar pieces at +4 °C 

for a long time before re-culturing them. 

Approximately 2-3 days after transformation, although tiny, mycelia started to be 

seen on plates and it took about 1 week for growth of colonies. Positive transformants 

usually could be identified on transformation plates, they grew very fast, acquired a 



62 

whitish color and started to produce white spores (Figure 14-A). Some other colonies 

grew fast but had a patchy appearance, and were usually proven to be negative later. 

Nevertheless, very small pieces of several colonies were passed to individual small 

PDA-Hygromycin B plates to confirm their resistance; yet, not all of them were 

resistant usually (Figure 14-B). Colonies on these small plates were allowed to grow 

until sporulation and a few spores were collected with a few drops of Physiological Salt 

Solution which then are spread to PDA-TritonX-Hygromycin B plates for single spore 

selection. Since Triton X is a surfactant, it restricted colony growth so that single 

colonies could be isolated. 

 
 
 

6.3. Expression of Cellulases 
 
 
 
Expression cultures were started with equal number of spores (2 x 106 spores/mL) 

in order to be able to standardize cell numbers and total dry weights to some extent. 

Spores were counted in at least four big squares on each side of hemocytometer, usually 

after 20-fold dilution, to obtain a statistically correct value. 

Minimal medium described by Mandels & Andreotti (1978) with glucose as the 

carbon source was used in all standard expressions, except one expression of QM9414 

with cellulose as carbon source. Using glucose as the carbon source had two 

advantages, first of which is due to choice of promoters that are highly active on 

glucose medium. Secondly, even if residual expression of cellulases in ∆xyr1 

background somehow arises, glucose will act as the warrantor of cellulase-negative 

background. 

 
 
 

6.3.1. Optimization of Culture Conditions 
 
 
Coffee filters are evaluated as flask closures; as they are disposable, sterility is 

maintained better than washed and re-used cotton closures in addition to being more 

available and cheaper. Since it was previously tried and has proven to be successful for 

cultivation of bacteria (Hartman, 1987), we tested them for growth of fungi. In Figure 

17, when growth rate of ∆xyr1 strain in flasks either closed with stitched cotton and 2-
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fold coffee filter are compared, no difference in maximum dry weight and trends was 

visible, except a shift of maximum from 28th hour to 36th hour. Other strains in the 

figure were grown with coffee filters, too. Eventually, coffee filters were used as flask 

closures in all of the subsequent expressions. 

Baffled flasks were compared with smooth flasks for growing E.coli and found to 

be effective in oxygen absorption rates (McDaniel, 1965). Thus, we compared baffled 

and smooth flasks for growth of T.reesei strains. Effect of growing Ptef1-cbh1-1 strain 

in baffled or smooth flasks is seen in Figure 18; maximum dry weight was attained at 

28th hour which is about 40 % higher relative to maxima of strains growing in smooth 

flasks. Protein expression profiles of these two cultures were also examined on SDS gel 

(Figure 19). Although maximum CBH1 amount seems to be obtained at 36th hour in 

baffled flask, other proteins and more smear are present in the lane, which will decrease 

purity of the enzyme in the supernatant. It seems that cells grow faster in baffled flask, 

protein is expressed shortly and glucose is exhausted soon, which stops growth and 

protein expression. Glucose addition to baffled flasks at 20th hour is tested later to 

confirm this. Baffled flasks can be used for other applications where enzyme amount is 

more important than its purity. We decided to do subsequent expressions in smooth 

flasks for the sake of long-term purer expression. 

In order to check whether sugar exhaustion is a limiting factor for growth and 

protein expression; extra glucose was added to c-egl1-6 cultures in smooth or baffled 

flasks; since it is already a hyper-producer, we wondered if this can increase expression 

further (Figure 20-A). As estimated, sugar addition increases growth further in both 

types of flasks. Their growth continued till 52nd hour and in baffled flask dry weight has 

doubled others, probably owing to presence of enough oxygen supported by additional 

glucose, which was not the case with baffled flasks without extra glucose (Figure 18). 

Although expression in smooth flask has increased until 36th hour (Figure 22), to our 

surprise, no protein production in baffled flask was observed upon addition of glucose, 

even though the expression was repeated (data not shown). We claim that this is due to 

excessive growth of strains since the translation machinery was occupied by expression 

of proteins necessary for cell growth and division; or cdna1 promoter might not be 

functional in very high growth rates. Additionally, if SDS gels are compared (Figure 21-

C and Figure 22) more that 2-fold change can be deduced for c-egl1-6+ relative to c-

egl1-6 although supernatant amount was two-fold, indicative of expression increase 

upon glucose addition. 
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6.3.2. Growth Rates 
 
 
Strains growing simultaneously usually had the same growth pattern, but this 

usually changes from expression to expression due to limited control of ambient 

temperature. As can be followed from dry weight – time graphs, strains that were 

cultured simultaneously show almost same pattern (Figure 17, Figure 18, Figure 20) 

except a few outliers; which was not the case when different sets of cultures were 

compared. This is probably because of our limited control over ambient conditions; 

internal temperature of the shaker had been shifted 2-3 °C above or below 28 °C 

occasionally for instance. Since light has an impact on growth and cellulase expression 

of T.reesei (Schmoll, 2009) inability to keep the cultures under same level of light 

might have contributed to set to set variations. As the shaker used for expression was 

not optimized for T.reesei, oxygen circulation could be variable and oxygen access of 

each culture might have been inconsistent. 

Similar growth patterns were observed for all strains in general; maximum dry 

weight is gained between 28th and 36th hours, which is approximately 4 g/L and then it 

decreases. Maximum values differed probably due to the reasons mentioned above. 

There were four exceptions to this trend and one of them was when QM9414 grown on 

cellulose (Figure 20-B) dry weight seems to have decreased as time passed. The data 

can be biased due to precipitation of cellulose in the medium together with the cells, 

reflecting incorrect initial weights. Alternatively and more probably; taken into account 

that the MA-glucose pregrown mycelia were transferred to MA-cellulose medium at 

20th hour, cells might not have adapted easily to the new environment to induce 

cellulases and utilize the cellulose in the medium, because at 20th hour it has same dry 

weight with MA-glucose grown strains. Second exception was Rut-C30 that its dry 

weight continues to increase until 44th hour, probably since it is a mutant obtained for 

the sake of hypersecretion, thus it grows better as well. Other two exceptions were seen 

when extra glucose was added to expression culture of c-egl1-6 strains (either in smooth 

or baffled flasks: c-egl1-6+ and c-egl1-6+b) at 20th hour (Figure 20-A). 
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6.3.3. SDS Gel Analysis 
 
 

 
For initial screening of the supernatants with SDS-PAGE, they were concentrated 

10 times in order to magnify the band intensity and see even minute amounts of 

expressed proteins, if present. After detecting the enzymes, original supernatants were 

concentrated this time according to the protein amount they contain in order to prevent 

over/under-loading of the wells. Presence of too much protein interfered with 

electrophoresis by changing local current and causing smile effect, or some of the 

proteins were unable to enter the gel; and presence of less concentrated proteins were 

undetectable. 

EG1 was produced by three strains; approximately 65 kDa for all strains (Figure 

21, arrowheads) rather than being close to 61 kDa stated previously (Collen, 2001). This 

might be due to full/hyper-glycosylation of the enzyme which has 5 glycosylation sites; 

it is noteworthy that proteins are at the same level for all three strains. While EG1 

production makes a peak at 28th hour in t-egl1-1 (Figure 21, A) and c-egl1-2 (B), it 

increases and persists till the end of culture for the c-egl1-6 (C) which is a superior 

producer. ∆xyr strain is included as a negative control (D), in which no band is 

perceptible at the same level. 

EG3 was expressed by three strains (Figure 23) with an approximate size of 25 

kDa in accordance with previous findings (Karlsson, 2002) which is probably due to 

presence of only one glycosylation site that does not affect the molecular weight much. 

All of the strains show increasing amount of enzymes until 36th hour which then are 

stable until 72nd hour. Note that although 15 µL supernatant is loaded, c-egl3-5 has very 

dense bands. Although c-egl3-2 was also a strong producer, due to mixing up of strains, 

supernatants from previous expression were used that is probably why its bands are so 

faint. 

CBH1 was expressed under tef1 promoter by two strains. Since pPcdna1-cbh1 

vector could not be constructed due to the problems mentioned before, CBH1 was not 

expressed under cdna1 promoter. Although CBH1 was reported to be around 67 kDa 

(Hall, 2010), proteins were detected slightly above 70 kDa in Figure 24, probably again 

due to the difference in glycosylation degree of protein. Both strains show stable CBH1 

expression until 72nd hour and their expression profiles are very similar. QM9414, when 

grown on MA-glucose, had residual CBH1 expression (Figure 25) which is detected at 
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the level corresponding to same level with Ptef1-cbh1 strains; showing that our proteins 

are processed native-like. In addition, Rut-C30 had a band at the same level mentioned 

before, although due to smearing of the wells it was not so clear (data not shown). 

Rut-C30 was known as a hypercellulolytic strain but no remarkable expression 

was observed in our experiments; probably since glucose is not an inducer and RutC-30 

needs inducing conditions for hyperproduction (Kubicek, 2009). Additionally, 

decreasing enzyme amounts in SDS gels in general might be due to precipitation of 

enzymes together with mycelia during sampling. 

 
 
 

6.4. Activity Assays 
 
 
 
Activity assays were done using MUC and MULAC for EG1 and CBH1 

supernatants, respectively. CMCase Assay was preferred for EG3 since it showed no 

activity towards aforementioned fluorogenic substrates. Activities of protein 

concentrations were considered proportional to amount of enzyme in the supernatant, 

assuming they are completely active. 

While temperature optima of EG1 and CBH1 are around 50 °C, fluorogenic 

assays were performed at 40 °C due to the capacity of spectrofluorometer; therefore, 

measured RFU/min values might not be indicative of precise activities. 

MUC activities of strains were measured (Figure 26-A) and they were consistent 

with the protein amounts detected on SDS gels. t-egl1-1 and c-egl1-2 have very similar 

activities; c-egl1-2 was slightly higher in concordance with its SDS gel data (Figure 21). 

c-egl1-6 strain was already a good producer and this was reflected in the activity curve. 

Remarkably, when extra glucose was added to the culture at 20th hour (c-egl1-6+), 

activity has increased more than 2-fold, which is an indication of an increase in egl1-6 

expression; which was previously observed in the SDS gels (Figure 21-C and Figure 

22). As discussed above, this was not the case with glucose addition to baffled flask (c-

egl1-6+b); which was also supported with activity data here. Since glucose is not an 

inducer, Rut-C30 supernatant showed very low activity as expected. Interestingly, 

QM9414 had, too, very low activity although it was grown on cellulose - inducer of 

cellulases- maybe because it takes a long time to induce cellulases, which is supported 

by the growth data that cell dry weight has decreased till 72nd hour. 
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MULAC is used to compare activities of CBH1 producing cells (Figure 26-B); 

both of which were quite similar, consistent with their SDS gel data (Figure 24). 

QM9414 had negligible activities compared to CBH1s; possibly due to same reasons 

stated for MUC. It is also notable that MULAC activities are quite lower than MUC 

activities, which can be explained with lower activities of CBH1 enzymes; because in 

the raw data, fluorescent emittance was linear throughout the assay with a constant 

slope. One contributor of this can as well be the use of 455 nm as emittance value, while 

445 nm was the true parameter for MULAC. Since the aim is comparison of strains with 

each other, this did not pose a problem. 

CMCase activities of EG3 supernatants (Figure 26-C) were, although variable, 

comparable and consistent with the SDS gel data (Figure 23). EtOH precipitation of 

samples was done in order to get rid of background signal coming from glucose in the 

expression medium since glucose liberation is measured with CMCase Assay. It seems 

that protein concentration decreases with EtOH precipitation up to 5-fold (Table 4). 

CMCase activity of EG3 in E.coli expressions were reported as 0.058 IU/mL 

(Okada, 2000) and 15 IU/mL (Nakazawa, 2008) while our maximum in T.reesei is 0.55 

IU/mL. Aspergillus oryzae could express 30.7 IU/mg T.reesei EG3 (Takashima, 1998) 

and we could express 220 IU/mg by c-egl3-5. It should be noted that our values are of 

culture supernatants, not that of concentrated or purified proteins and much higher than 

A.oryzae expression. 

 
 
 

6.5. Analyses of Protein Concentrations and Activities 
 
 
 
Specific activity is an indication of enzyme purity in the solution; however, as 

division cancels out total protein amount and activity; specific and volumetric activities 

were drawn together and concentrations were also shown in Table 4. Total protein 

concentrations paralleled the cellulase expression in transformants and they made a 

peak at 36th hour. 

Specific activities were defined as µmol min-1 mg-1; since MULAC had never 

reached to complete hydrolysis of product, its maximum was approximated by that of 

MUC. 



68 

Cellulase amount in the supernatant could have been deduced by subtracting 

concentrations of ∆xyr1 from that of transformants; however, since the values are not 

standardized and might change from expression to expression, specific activities were 

preferred. This is confirmed when concentration values of ∆xyr1 are subtracted from 

transformants; activity and net protein concentration was not directly correlated (data 

not shown), supporting our claim. 

Protein concentrations and specific activities of EG1 producers towards MUC are 

compared to each other to identify the best conditions (strain, timepoint) and to obtain 

general information about activity trends. Although RutC-30 and QM9414 had quite 

high concentration of total proteins, they showed almost no specific activity towards 

MUC and MULAC. SDS gel photo of Rut-C30 was not included due to smearing and 

unclear bands; however, its total protein concentration seems to be quite high (Table 4). 

c-egl1-6 is better than t-egl1-1 and c-egl1-2 in terms of total protein concentration and 

specific activity, consistent with previous data. It is remarkable that c-egl1-6+ has 

almost reached the same protein levels of Rut-C30 and exceeded QM9414. The instant 

peak of c-egl1-6+b at 28th hour and dry weight data are quite meaningful when 

combined; as the strain grows faster, protein secretion decreases, probably due to 

occupation of translation machinery with transcription/translation of cell cycle related 

proteins. Increasing activity~decreasing purity problem is overcame to some extent by 

addition of glucose at 20th hour (c-egl1-6+) that the enzyme is still purer and has 

relatively high activity at 28th hour. 

Protein concentrations and purities of CBH1 producers towards MULAC are 

compared (Table 4, B). ∆xyr1, QM9414 and RutC-30 strains have no activity, once 

more. Although protein amounts of CBH1 producers were quite similar on SDS gel 

(Figure 24) t-cbh1-4 seems to produce purer enzyme at the beginning but then they are 

equalized.  

CMCase activities and enzyme purities of EG3 producers are compared. Once 

again, purity is higher at early hours (20th for all), although the enzyme amounts 

increase later. It should be noted that EtOH precipitation caused lose of a significant 

percentage of proteins. c-egl3-5 produces purer enzyme in higher amounts. 

In general, it can be concluded that the supernatants of strains tend to contain 

purer enzymes at the beginning of cultures but as more proteins are secreted as time 

passes, purity of the enzyme in the supernatant decreases even if secreted enzyme 
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amount increases as well. One can take advantage of this observation depending on the 

ultimate aim; “pure” enzyme or “less pure but more” enzyme. Additionally, as proven 

with c-egl1-6+ trial, changing some factors might help superposing maximum purity 

and maximum activity in some timepoint. 

 
 
 

6.6. BLAST Analysis of cdna1 gene 
 

 

 

cdna1 promoter precedes a high number of Expressed Sequence Tags in the 

T.reesei genome. Calculated protein was found to be contained in these ESTs, with 

same size as the predicted protein by the jgi website. Hypothetically translated protein 

of cdna1 is 80 aa long. Top scoring BLAST results are from five different fungi species, 

three of which belong to the same family with T.reesei (Hypocreaceae) and other two 

belong to Sclerotiniaceae family that converges with T.reesei in the phylum 

Ascomycota (Dubchak, 2006). It is noteworthy that all of these species are plant 

pathogenic fungi; which might be an indication of importance of cdna1 protein in 

growth, which is also supported by expression of proteins in the growing phase in 

general; however, it should be further investigated why cdna1 is expressed highly in 

glucose medium. 

 
 
 

6.7. General Comments 
 
 
 
Compared to other pre-established expression systems, like bacteria or yeast, 

T.reesei is a complex organism that can be affected by environmental factors, oxygen 

supply even light. Therefore, a highly optimized system should be available to work 

with T.reesei. This is further supported by experiments done in this thesis; different set 

of expression cultures can show dissimilar growth patterns and expression profiles. 

Some additional work should be done for complete optimization of the expression 

system. 

Initially it might seem paradoxical that we are using glucose as the inducer and 

sugar source of fungi to produce enzymes in order to convert cellulosic material into 
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glucose; however thermostability and long-life of enzymes allows us to use them 

several times, thus it is quite advantageous to invest some glucose to gain much more of 

it later. Nevertheless, expression of these three homologous cellulases opened a window 

for utilization of T.reesei as an expression system for production of other proteins as 

well. 
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7. CO�CLUSIO� 
 
 
 
 
Our aim was to overexpress individual cellulases homologously in a cellulase-

negative background under highly active promoters. We have obtained eight producer 

strains that express the desired enzymes with different amounts and purities. The 

enzymes have proven to be active towards either fluorogenic substrates or 

carboxymethyl cellulose. 

Due to the difficult nature of chemical strategy, high throughput transformation 

could not be achieved; yet, hyperproducer strains could be obtained among such a small 

number of transformants.  

To our knowledge, this is the first time that active individual cellulases in a 

cellulose negative background under non-inducing conditions could be overexpressed. 

Finally, Trichoderma reesei was established as an expression system in our 

laboratory. Most of the basic protocols are optimized (transformation, expression etc.) 

to fit the laboratory facilities here and they are sometimes modified and standardized to 

some extent. 
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8. FUTURE PROJECTIO�S 
 
 
 
 
Although T.reesei could successfully be transformed and expressed individual 

cellulases, alternative high throughput transformation strategies can be employed (such 

as electroporation) to have higher number of transformants that will possibly contain 

much stronger producers. 

Addition of sugar source and use of baffled flask experiments indicates that fine-

tuning of conditions can allow present or future strains to produce higher amount of 

enzymes. For instance fed-batch strategy can increase production by elongating growth 

phase and increasing maximum growth amount since the enzymes produced in general 

during the growth phase. In addition to sugar, other limiting factors of growth could be 

investigated. 

cdna1 gene is still uncharacterized, although its promoter was shown to be quite 

active on glucose compared to tef1 promoter. The hypothetical protein can be expressed 

and characterized. Homology modeling of the protein is another strategy to find 

structural similarity to any other proteins and deduce its function in fungi. 

Other promoter-mutant-carbon source combinations can be tried to obtain new 

expression systems. Another strong promoter that is active on an abundant carbon 

source could be tried. After optimization of this system, overexpression and purification 

of these enzymes will lead to the determination of best combinations necessary for 

specific applications. In addition, this strategy can be used to study effect of 

modifications or mutations in cellulase structure and function, since expression in large 

amounts is achieved. This strategy can be adapted to express heterologous enzymes or 

to overexpress and characterize mutant T.reesei cellulases, which is much more 

advantageous over using a heterologous system. 
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10. APPE�DICES 

 

APPE�DIX A 

D�A sequence of Cel7b (Endoglucanase I) 

 

>egl1_scaffold_10|665650|667800 (2151 bp) 

TCTTAGTCCTTCTTGTTGTCCCAAAATGGCGCCCTCAGTTACACTGCCGTTGACCACGGCCATCCTGGC

CATTGCCCGGCTCGTCGCCGCCCAGCAACCGGGTACCAGCACCCCCGAGGTCCATCCCAAGTTGACAAC

CTACAAGTGTACAAAGTCCGGGGGGTGCGTGGCCCAGGACACCTCGGTGGTCCTTGACTGGAACTACCG

CTGGATGCACGACGCAAACTACAACTCGTGCACCGTCAACGGCGGCGTCAACACCACGCTCTGCCCTGA

CGAGGCGACCTGTGGCAAGAACTGCTTCATCGAGGGCGTCGACTACGCCGCCTCGGGCGTCACGACCTC

GGGCAGCAGCCTCACCATGAACCAGTACATGCCCAGCAGCTCTGGCGGCTACAGCAGCGTCTCTCCTCG

GCTGTATCTCCTGGACTCTGACGGTGAGTACGTGATGCTGAAGCTCAACGGCCAGGAGCTGAGCTTCGA

CGTCGACCTCTCTGCTCTGCCGTGTGGAGAGAACGGCTCGCTCTACCTGTCTCAGATGGACGAGAACGG

GGGCGCCAACCAGTATAACACGGCCGGTGCCAACTACGGGAGCGGCTACTGCGATGCTCAGTGCCCCGT

CCAGACATGGAGGAACGGCACCCTCAACACTAGCCACCAGGGCTTCTGCTGCAACGAGATGGATATCCT

GGAGGGCAACTCGAGGGCGAATGCCTTGACCCCTCACTCTTGCACGGCCACGGCCTGCGACTCTGCCGG

TTGCGGCTTCAACCCCTATGGCAGCGGCTACAAAAGGTGAGCCTGATGCCACTACTACCCCTTTCCTGG

CGCTCTCGCGGTTTTCCATGCTGACATGGTTTTCCAGCTACTACGGCCCCGGAGATACCGTTGACACCT

CCAAGACCTTCACCATCATCACCCAGTTCAACACGGACAACGGCTCGCCCTCGGGCAACCTTGTGAGCA

TCACCCGCAAGTACCAGCAAAACGGCGTCGACATCCCCAGCGCCCAGCCCGGCGGCGACACCATCTCGT

CCTGCCCGTCCGCCTCAGCCTACGGCGGCCTCGCCACCATGGGCAAGGCCCTGAGCAGCGGCATGGTGC

TCGTGTTCAGCATTTGGAACGACAACAGCCAGTACATGAACTGGCTCGACAGCGGCAACGCCGGCCCCT

GCAGCAGCACCGAGGGCAACCCATCCAACATCCTGGCCAACAACCCCAACACGCACGTCGTCTTCTCCA

ACATCCGCTGGGGAGACATTGGGTCTACTACGAACTCGACTGCGCCCCCGCCCCCGCCTGCGTCCAGCA

CGACGTTTTCGACTACACGGAGGAGCTCGACGACTTCGAGCAGCCCGAGCTGCACGCAGACTCACTGGG

GGCAGTGCGGTGGCATTGGGTACAGCGGGTGCAAGACGTGCACGTCGGGCACTACGTGCCAGTATAGCA

ACGACTGTTCGTATCCCCATGCCTGACGGGAGTGATTTTGAGATGCTAACCGCTAAAATACAGACTACT
CGCAATGCCTTTAGAGCGTTGACTTGCCTCTGGTCTGTCCAGACGGGGGCACGATAGAATGCGGGCACG

CAGGGAGCTCGTAGACATTGGGCTTAATATATAAGACATGCTATGTTGTATCTACATTAGCAAATGACA

AACAAATGAAAAAGAACTTATCAAGCACTGTACCAAGGAAGCTCATTATGCGTCTGGCGGGTTCAAATG

ATCCGTGATAGGTTATGCCAGCTGATTGTTTGCCCGCAGGGTTGACACCACCAGGGGATAATGGCCACT

TTCATCTGAATCAAGGACAGGAGCCGTTGATGATTTCCAGATATCCTATCTTCATCGCTAGTACTAATA

ACAAGTAAGCAAACAGCCAGCTACACTCGTACACACCGCTCATGAAAACATAAGACAAAGCTCAAGCCA

TGTCAAGCACCACCCCATCGTACACGTACATCTTCTACCAATCTGTCCAGATGCCGGCTACGTCAGCCT

CCAACCCATTGCGATACAATGACGGATGTCGTATAGACCATGGCAACGGCTCCCACCACCATTGTCACT

GCGTCCAAAGTCTTCTCCCACCTGCTCTCAGCAACGCCCTTGAAATGCAGGAATGCCGGATACATGTAG

ACCAATGGAATG 

Underlined regions: primer binding sites 

Dark background: START and STOP codons 

 

Retrieved from: http://genome.jgi-psf.org/cgi-
bin/getScaffold?db=Trire2&scaffold=scaffold_10&start=665650&end=667800 
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APPE�DIX B 

D�A sequence of Cel12a (Endoglucanase III) 

 

>egl3_scaffold_19|258400|260012 (1613 bp) – reverse complement 

TGGCCAAATCGTGATCGATTGATACTCGCATCTATAAGATGGCACAGATCGACTCTTGATTCAC

AGACATCCGTCAGCCCTCAAGCCGTTTGCAAGTCCACAAACACAAGCACAAGCATAGCGTCGCA
ATGAAGTTCCTTCAAGTCCTCCCTGCCCTCATACCGGCCGCCCTGGCCCAAACCAGCTGTGACC

AGTGGGCAACCTTCACTGGCAACGGCTACACAGTCAGCAACAACCTTTGGGGAGCATCAGCCGG

CTCTGGATTTGGCTGCGTGACGGCGGTATCGCTCAGCGGCGGGGCCTCCTGGCACGCAGACTGG

CAGTGGTCCGGCGGCCAGAACAACGTCAAGTCGTACCAGAACTCTCAGATTGCCATTCCCCAGA

AGAGGACCGTCAACAGCATCAGCAGCATGCCCACCACTGCCAGCTGGAGCTACAGCGGGAGCAA

CATCCGCGCTAATGTTGCGTATGACTTGTTCACCGCAGCCAACCCGAATCATGTCACGTACTCG

GGAGACTACGAACTCATGATCTGGTAAGCCATAAGAAGTGACCCTCCTTGATAGTTTCGACTAA

CAACATGTCTTGAGGCTTGGCAAATACGGCGATATTGGGCCGATTGGGTCCTCACAGGGAACAG

TCAACGTCGGTGGCCAGAGCTGGACGCTCTACTATGGCTACAACGGAGCCATGCAAGTCTATTC

CTTTGTGGCCCAGACCAACACTACCAACTACAGCGGAGATGTCAAGAACTTCTTCAATTATCTC

CGAGACAATAAAGGATACAACGCTGCAGGCCAATATGTTCTTAGTAAGTCACCCTCACTGTGAC

TGGGCTGAGTTTGTTGCAACGTTTGCTAACAAAACCTTCGTATAGGCTACCAATTTGGTACCGA
GCCCTTCACGGGCAGTGGAACTCTGAACGTCGCATCCTGGACCGCATCTATCAACTAAAACCTG

GAAACGTGAGATGTGGTGGGCATACGTTATTGAGCGAGGGAAAAAAAGCATTGGATCCATTGAA

GATGTTAGTCATATACAGACTTAGAAGATTTACATGAATGTCAAACGATGAGCGACTGTGGAAC

GTTATGAATAATAGACTGGAACCGGGCCCTTTGATTGACGACTCCATATTTTGTAGATGTAGCA

ACTCGGCAAGAGCATTATGTGCAATACATTTGTTACCATACAAAGGCAGCTGCCAGACGACTTG

TATTGCGTACAATTCTCACGGCAAGCTTTCCAGGTGTTATGCATTATGCGCAAATGCTTGATGC

TTACCGCAGGATTAATCTCGGAAGAAGCGCTGCAAGCTATATGGGTGTAGTAGATATGTAGATG

TACCAACCAATGAAGAACATTTATGGTCTAGAACGTAGTGATGAAGGTTTTGAGTAATTTGTAT

CAAGTAAGACGATATTATTGATATAATACCAAGCATATATTCATGATAAATTACTTGGAACCAC

CCTTGCGTCCGGCCTCACGAGCCTTCTCACTGCCGGGCTCGAAGGAGCCACTGGAGGCCTGTCC

ACCCTTGGATGCGATTTCCTGCACCTTTTCCTTGGGCCTGCACGTCGATTAGACATGATTCAAA

TCGAGATCTTGGA 

 

Retrieved from: http://genome.jgi-psf.org/cgi-
bin/getScaffold?db=Trire2&scaffold=scaffold_19&start=258400&end=260012 
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APPE�DIX C 

D�A sequence of Cel7a (Cellobiohydrolase I) 

 

>scaffold_29|332250|334750 (2501 bp)  

TTAGCCAAGAACAATAGCCGATAAAGATAGCCTCATTAAACGGAATGAGCTAGTAGGCAAAGTC

AGCGAATGTGTATATATAAAGGTTCGAGGTCCGTGCCTCCCTCATGCTCTCCCCATCTACTCAT

CAACTCAGATCCTCCAGGAGACTTGTACACCATCTTTTGAGGCACAGAAACCCAATAGTCAACC
GCGGACTGCGCATCATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCCACAGCTCGTGC

TCAGTCGGCCTGCACTCTCCAATCGGAGACTCACCCGCCTCTGACATGGCAGAAATGCTCGTCT

GGTGGCACGTGCACTCAACAGACAGGCTCCGTGGTCATCGACGCCAACTGGCGCTGGACTCACG

CTACGAACAGCAGCACGAACTGCTACGATGGCAACACTTGGAGCTCGACCCTATGTCCTGACAA

CGAGACCTGCGCGAAGAACTGCTGTCTGGACGGTGCCGCCTACGCGTCCACGTACGGAGTTACC

ACGAGCGGTAACAGCCTCTCCATTGGCTTTGTCACCCAGTCTGCGCAGAAGAACGTTGGCGCTC

GCCTTTACCTTATGGCGAGCGACACGACCTACCAGGAATTCACCCTGCTTGGCAACGAGTTCTC

TTTCGATGTTGATGTTTCGCAGCTGCCGTAAGTGACTTACCATGAACCCCTGACGCTATCTTCT

TGTTGGCTCCCAGCTGACTGGCCAATTCAAGGTGCGGCTTGAACGGAGCTCTCTACTTCGTGTC

CATGGACGCGGATGGTGGCGTGAGCAAGTATCCCACCAACACCGCTGGCGCCAAGTACGGCACG

GGGTACTGTGACAGCCAGTGTCCCCGCGATCTGAAGTTCATCAATGGCCAGGCCAACGTTGAGG

GCTGGGAGCCGTCATCCAACAACGCGAACACGGGCATTGGAGGACACGGAAGCTGCTGCTCTGA

GATGGATATCTGGGAGGCCAACTCCATCTCCGAGGCTCTTACCCCCCACCCTTGCACGACTGTC

GGCCAGGAGATCTGCGAGGGTGATGGGTGCGGCGGAACTTACTCCGATAACAGATATGGCGGCA

CTTGCGATCCCGATGGCTGCGACTGGAACCCATACCGCCTGGGCAACACCAGCTTCTACGGCCC

TGGCTCAAGCTTTACCCTCGATACCACCAAGAAATTGACCGTTGTCACCCAGTTCGAGACGTCG

GGTGCCATCAACCGATACTATGTCCAGAATGGCGTCACTTTCCAGCAGCCCAACGCCGAGCTTG

GTAGTTACTCTGGCAACGAGCTCAACGATGATTACTGCACAGCTGAGGAGGCAGAATTCGGCGG

ATCCTCTTTCTCAGACAAGGGCGGCCTGACTCAGTTCAAGAAGGCTACCTCTGGCGGCATGGTT

CTGGTCATGAGTCTGTGGGATGATGTGAGTTTGATGGACAAACATGCGCGTTGACAAAGAGTCA

AGCAGCTGACTGAGATGTTACAGTACTACGCCAACATGCTGTGGCTGGACTCCACCTACCCGAC

AAACGAGACCTCCTCCACACCCGGTGCCGTGCGCGGAAGCTGCTCCACCAGCTCCGGTGTCCCT

GCTCAGGTCGAATCTCAGTCTCCCAACGCCAAGGTCACCTTCTCCAACATCAAGTTCGGACCCA

TTGGCAGCACCGGCAACCCTAGCGGCGGCAACCCTCCCGGCGGAAACCCGCCTGGCACCACCAC

CACCCGCCGCCCAGCCACTACCACTGGAAGCTCTCCCGGACCTACCCAGTCTCACTACGGCCAG

TGCGGCGGTATTGGCTACAGCGGCCCCACGGTCTGCGCCAGCGGCACAACTTGCCAGGTCCTGA
ACCCTTACTACTCTCAGTGCCTGTAAAGCTCCGTGGCGAAAGCCTGACGCACCGGTAGATTCTT

GGTGAGCCCGTATCATGACGGCGGCGGGAGCTACATGGCCCCGGGTGATTTATTTTTTTTGTAT

CTACTTCTGACCCTTTTCAAATATACGGTCAACTCATCTTTCACTGGAGATGCGGCCTGCTTGG

TATTGCGATGTTGTCAGCTTGGCAAATTGTGGCTTTCGAAAACACAAAACGATTCCTTAGTAGC

CATGCATTTTAAGATAACGGAATAGAAGAAAGAGGAAATTAAAAAAAAAAAAAAAACAAACATC

CCGTTCATAACCCGTAGAATCGCCGCTCTTCGTGTATCCCAGTACCACGGCAAAGGTATTTCAT

GATCGTTCAATGTTGATATTGTTCCCGCCAGTATGGCTCCACCCCCATCTCCGCGAATCTCCTC

TTCTCGAACGCGGTAGTGGCGCGCCAATTGGTAATGACCCATAGGGAGACAAACAGCATAATAG

CAACAGTGGAAATTAGTGGCGCAATAATTGAGAACACAGTGAGACCATAGCTGGCGGCCTGGAA

AGCACTGTTGGAGACCAACTTGTCCGTTGCGAGGCCAACTTGCATTGCTGTCAAGACGATGACA

ACGTA 

Retrieved from: http://genome.jgi-psf.org/cgi-
bin/getScaffold?db=Trire2&scaffold=scaffold_29&start=332250&end=334750 
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APPE�DIX D 

D�A Sequences of Promoters: tef1 and cdna1 

tef1 Promoter 

>scaffold_6|766900|767850 (951 bp) - reverse complement 

GATATGACGGCCACCAATCGGAAGGGTGTCGTATCTCACATCACCAGCGTCAGGACACGCTTCACAAAATTCCC

ACAAGTTCCAGTTGAAATGACCCGTAGGAGAGCGCCTCGAGGGACAGAATGTACAGTACTATACTACCTACCTT

AGATGCCATCACCCCTTCGCAGGCCATGGAATTTCTGGCAAGTCGCACCCTTCAGCCATGCCTGTCCGCCATCA

TCATACCAGATCGTGTCGTGGCGGGCACTTGGGAAGGACGAGCTCCAACCGCCGCCGCTGATTGGCCTGATCCG

CCACAGCCACTGGCGCTCGCGGCGAGGAAAAAAAAAAATCTTGCGGGTGTGCAGCAGCATTGAGTGGAAAGCGG

GAGCCGCTGCACGACGCTGATTCGTCCGGGCTGCCTCGTTAGGGCTAGACCAGCAGGCGGGCGCCGCTTATTTT

GCCCCTCCTCAGGCTTTTTTTCACAAGCCCCGTTTTGCTGCCCCGCGCGTGGCAGAAAAAAAAAATACAGCACG

AGCCACTGGCACTTGCACCCCTCCACCCCTCCGCCGACCACCTTTTAAATCTCCTCCTCCCACCATCTGCTTTC

GAAATTTTCTCTCTTCTGCTCTTCGTCTCGCATACCCGGTTCAAGCATCCGATCTGCGAATTTGTATGTGCTGC

CTCTCCCTCTGACCTTCTGGTCTGGTGATACCATCCTCCCTCAGTTTGGATCATCGCCTTATTCTTCTTCCCTC

TTCTGCATCTGCTTCCTGCTCGTTTGAGGAACATCGCCAGCTGACTCTGCTTGCCTCGCAGCGATCTAGTCAAG
AACAACACAGCTCTCACGCTACATCACACAAACCGTCAAAATGGGTAAGGAGGACAAGACTCACATCAACGTGG

TCGTCATCGTACGTATTTTCCGATCCCTCATCGGCGTCATCTGCCAGTCTGATTCCAAGAATC 

Retrieved from: http://genome.jgi-psf.org/cgi-
bin/getScaffold?db=Trire2&scaffold=scaffold_6&start=766900&end=767850 

 

cdna1 Promoter 

>scaffold_23|43454|44994 (1541 bp) 

TGATATGACTTGATATGGCCTGATGGTCAACAGAGATGAATTCGGTCTGAAGGACGTGGAATGATGGACTTAAT

GACAAGAGTTGCCTGGCTATTGAGCTCTGGTACATGGATCTCGAACTGAGAGCGTACAAGTTACATGTAGTAAA

TCTAGTAGATCTCGCTGAAAGCCCTCTTTCCCGGTAGAAACACCACCAGCGTCCCGTAGGACAAGATCCTGTCG

ATCTGAGCACATGAATTGCTTCCCTGGATCTGGCGCTGCATCTGTTTCCCCAGACAATGATGGTAGCAGCGCAT

GGAAGAACCCGGTTGTTCGGAATGTCCTTGTGCTAACAGTGGCATGATTTTACGTTGCGGCTCATCTCGCCTTG

GCACCGGACCTCAGCAAATCTTGTCACAACAGCAATCTCAAACAGCCTCATGGTTCCCAGATTCCCTGATTCAG

AACTCTAGAGCGGCAGATGTCAAACGATTCTGACCTAGTACCTTGAGCATCCCTTTCGGATCCGGCCCATGTTC

TGCCTGCCCTTCTGAGCACAGCAAACAGCCCAAAAGGCGCCGGCCGATTCCTTTCCCGGGATGCTCCGGAGTGG

CACCACCTCCCAAAACAAGCAACCTTGAACCCCCCCCCCAAATCAACTGAAGCGCTCTTCGCCTAACCAGCATA

AGCCCCCCCCAGGATCGTTAGGCCAAGTGGTAGGGCCAGCCAATTAGCGAGCGGCCATTTGGAGGTCATGGGCG

CAGAATGTCCTGACAGTGGTATGATATTGACTGCCCGGTGTGTGTGGCATCTGGCCATAATCGCAGGCTGAGGC

GAGGAAGTCTCGTGAGGATGTCCCGACTTTGACATCATGAGGGAGTGAGAAACTGAAGAGAAGGAAAGCTTCGA

AGGTTCGATAAGGGATGATTTGCATGGCGGGCGACAGGATGCGATGGCTCGTTGGGATACATAATGCTTGGGTT

GGAAGCGATTCCAGGTCGTCTTTTTTTGGTTCATCATCACAGCATCAACAAGCAACGATACAAGCAATCCACTG

AGGATTACCTCTCAACTCAACCACTTTCCAAACCATCTCAACTCCCTAAGATTCTTTCAGTGTATTATCACTAG

GATTTTTCCCAAGCCGGCTTCAAAACACACAGATAAACCACCAACTCTACAACCAAAGACTTTTTGATCAATCC

AACAACTTCTCTCAACATGTCTGCTGCAACCGTCACCCGCACTGCAACCGCCGCTGTTCGCAGACCCGGCTTCT

TCATGCAAGTCCGACGGATGGGACGCTCATTCGAGCACCAGCCCTTTGAGCGACTCTCCGCCACCATGAAGCCT

GCACGACCCGACTATGCTAAGCAAGTCGTCTGGACGGCTGGCAAGTTTGTCACGTACGTACAACCACAGGACTT

GATGCATCCATATATACAATATGATCTAGTTGACTAACACGGGCTCTTGATAGTTATGTTCCTCTTTTCGGCGC

CATGCTTACCTGGCCTGCGCTCGCCAAGTGGGCTCTGGACGGACACATCGGACGGTGGTAA 

Retrieved from: http://genome.jgi-psf.org/cgi-
bin/getScaffold?db=Trire2&scaffold=scaffold_23&start=43454&end=44994 
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APPE�DIX E 

Partial D�A Sequence of pPtef1 Vector 

 

>Ptef1 (5775 bp) 

1200- TCTCGTTTCTTCCTAACAAACAACCACCACCAAAATCTCTTTGGAAGCTCACGACTCACGCAAG 

CTCAATTCGCAGATACAAATCTAGAATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCG

AAAAGTTCGACAGCGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTA

GGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCA

CTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGCGAGAGCCTGACCTATTGCA

TCTCCCGCCGTGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTC

GCGGAGGCCATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGG

AATCGGTCAATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTG

TGATGGACGACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGGCCGAGGACTGCCCC

GAAGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGT

CATTGACTGGAGCGAGGCGATGTTCGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGT

TGGCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGGAGGCATCCGGAGCTTGCAGGATCGCCGCGGCTCCGG

GCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTTGACGGCAATTTCGATGATGCAGCTTG

GGCGCAGGGTCGATGCGACGCAATCGTCCGATCCGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAA

GCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGTACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCG

AGGGCAAAGGAATAATGCATGTGCTGTGTTCCTCAGAATGGGCCCCAGAAGGGCGTCGAGCATTGTCTATGAAT

GCAAACAAAAATAGTAAATAAATAGTAATTCTGGCCATGACGAATAGAGCCAATCTGCTCCACTTGACTATCCT

TGTGACTGTATCGTATGTCGAACCCTTGACTGCCCATTCAAACAATTGTAAAGGAATATGAGCTACAAGTTATG

TCTCACGTTTGCGTGCGAGCCCGTTTGTACGTTATTTTGAGAAAGCGTTGCCATCACATGCTCACAGTCACTTG

GCTTACGATCATGTTTGCGATCTTTCGGTAAGAATACACAGAGTAACGATTATACATCCATCGCTTTCTATGAT

TAGGTACTCAGACAACACATGGGAAACAAGATAACCATCGCATGCAAGGTCGATTCCAATCATGATCTGGACTG

GGGTATTCCATCTAAGCCATAGTACCCTCGAGGGACAGAATGTACAGTACTATACTACCTACCTTAGATGCCAT

CACCCCTTCGCAGGCCATGGAATTTCTGGCAAGTCGCACCCTTCAGCCATGCCTGTCCGCCATCATCATACCAG

ATCGTGTCGTGGCGGGCACTTGGGAAGGACGAGCTCCAACCGCCGCCGCTGATTGGCCTGATCCGCCACAGCCA

CTGGCGCTCGCGGCGAGGAAAAAAAAAAATCTTGCGGGTGTGCAGCAGCATTGAGTGGAAAGCGGGAGCCGCTG

CACGACGCTGATTCGTCCGGGCTGCCTCGTTAGGGCTAGACCAGCAGGCGGGCGCCGCTTATTTTGCCCCTCCT

CAGGCTTTTTTTCACAAGCCCCGTTTTGCTGCCCCGCGCGTGGCAGAAAAAAAAAATACAGCACGAGCCACTGG

CACTTGCACCCCTCCACCCCTCCGCCGACCACCTTTTAAATCTCCTCCTCCCACCATCTGCTTTCGAAATTTTC

TCTCTTCTGCTCTTCGTCTCGCATACCCGGTTCAAGCATCCGATCTGCGAATTTGTATGTGCTGCCTCTCCCTC

TGACCTTCTGGTCTGGTGATACCATCCTCCCTCAGTTTGGATCATCGCCTTATTCTTCTTCCCTCTTCTGCATC

TGCTTCCTGCTCGTTTGAGGAACATCGCCAGCTGACTCTGCTTGCCTCGCAGCGATCTAGTCAAGAACAACACA

GCTCTCACGCTACATCACACAAACCGTCATCGATGTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATGGTCA

TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAA

AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAA

ACCTGTCG ... AmpR ... 

 

�ame Sequence Location Description 
hph  1289-2313 Hygromycin Phosphotransferase Gene 
XhoI CTCGAG 2772 Restriction Site 
pTef1  2769-3512 Translation Elongation Factor 1 alpha Promoter 
ClaI (Bsu15I) ATCGAT 3514 Restriction Site 
SalI GTCGAC 3520 Restriction Site 
HindIII AAGCTT 3538 Restriction Site 
AmpR  4715-5575 Ampicillin Resistance Gene 

 



 

> Cdna1 protein (translated)

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

FVTYVQPQDLMHPYIQYDLVD

 

BLAST Results of cdna1 Protein

> Cdna1 protein (translated)

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

FVTYVQPQDLMHPYIQYDLVD

BLAST Results of cdna1 Protein

Hypothetical cdna1 protein and BLAST Results

> Cdna1 protein (translated)

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

FVTYVQPQDLMHPYIQYDLVD

BLAST Results of cdna1 Protein

Hypothetical cdna1 protein and BLAST Results

> Cdna1 protein (translated)

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

FVTYVQPQDLMHPYIQYDLVD 

BLAST Results of cdna1 Protein 
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APPE�DIX F

Hypothetical cdna1 protein and BLAST Results

> Cdna1 protein (translated) 

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

 

APPE�DIX F 

Hypothetical cdna1 protein and BLAST Results

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

Hypothetical cdna1 protein and BLAST Results

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

Hypothetical cdna1 protein and BLAST Results 

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK

 

MSAATVTRTATAAVRRPGFFMQVRRMGRSFEHQPFERLSATMKPARPDYAKQVVWTAGK
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APPE�DIX G 

Vector Maps 
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APPE�DIX H 

Mandels-Andreotti (MA) Medium 

  

 1 L  250 mL FI�AL 
(NH4)2.SO4 1,4 g/L 0,35   g  
KH2PO4 2,0 g/L 0,50   g  
MgSO4.7H2O 0,3 g/L 0,075 g  
CaCl2.2H2O 0,4 g/L 0,10   g  
Trace elements (50X) 20  mL 5     mL 1X 
Pepton1   1  g/L 0,25   g 0.1% (w/v) 
Urea (5 mM) 0,3 g/L 0,075 g 5   mM 
10% Tween 80   2  mL 0,5 mL 0,2 g/L 
Sub-TOTAL 900 mL 225 mL  
After preparing this mixture, pH is adjusted to 5.0 with citric acid. 225 mL medium is added 
to each 1L flask.  

Flasks are closed with cotton cloth or coffee filters and bound with rubber rings. 

Top of flasks are covered with aluminum foil and flasks are autoclaved. If necessary, they 
can be kept at +4°C until use.  
Sugar 10 g/L 2,6   g 1 % (w/v) 
Sub-TOTAL 100 mL 26 mL  
Sugar solutions are prepared separately in 1/10 volume of final mixture (+1 mL is done 
usually to compensate the solution adhering the walls) in 100 mL flasks. 

Autoclaved and can be kept at +4°C. 

Sugar solution is added to the medium just before starting the expression together with 
spores. 
TOTAL 1000 mL 250 mL  

For the buffered solutions; Na2HPO4.2H2O (50mM final) is used (adjust pH with citric 
acid) 

 

TRACE ELEME�TS (50X) 
 1 L 500 mL 100 mL 
FeSO4.7H2O 250 mg 125 mg 25 mg 
MnSO4.H2O   80 mg 40   mg 8   mg 
ZnSO4.7H2O   70 mg 35   mg 7   mg 
CoCl2.2H2O 100 mg 50   mg 10 mg 

 

                                                            

1 Pepton from casein pancreatically digested (Merck – 1.02239.0500) 



       

Figure 
                  

 

       0.5 µg/lane

Figure 28:   SM0311 GeneRuler
                  1kb D�A Ladder 

Figure 

 

g/lane  

:   SM0311 GeneRuler
1kb D�A Ladder 

Figure 30: SM0661 PageRuler

  
  

:   SM0311 GeneRuler 
1kb D�A Ladder  

: SM0661 PageRuler
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APPE�DIX I

Size Markers

  
  

  Figure 
  

: SM0661 PageRuler

APPE�DIX I 

Size Markers 

 
    

Figure 29:   SM0331 
        Ladder Mix

 

 Unstained Protein Ladder

       0.5 µg/lane

:   SM0331 GeneRuler D�A 
Ladder Mix 

Unstained Protein Ladder

g/lane 

GeneRuler D�A 
 

Unstained Protein Ladder 

 

GeneRuler D�A  
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APPE�DIX J 

Buffers, Loading Dyes, Size Markers, Antibiotics, Enzymes 

 

GoTaq DNA Polymerase Promega M830A (M3171) 

5X Green GoTaq Flexi Buffer Promega M891A (M8291) 

RNase A QIAGen 19101 

HindIII 

ClaI (Bsu15I) 

SalI 

XhoI 

Fermentas 

Fermentas 

Fermentas 

Fermentas 

 

Lysing Enzymes from Trichoderma Harzianum Sigma L1412-5G 

10X Buffer Tango Fermentas BY5 

10X Fast Digest Buffer Fermentas  

 

 

Unstained Protein Ladder Fermentas SM0661 

GeneRuler 1kb DNA Ladder Fermentas SM0311 

6X DNA Loading Dye Fermentas R0611 

GeneRuler DNA Ladder Mix Fermentas SM0331 

 

 

Ampicillin Roth K029.2 

Hygromycin B Calbiochem 400051 

Hygromycin B Roth CP13.3 
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APPE�DIX K 

General Chemicals 

 

3,5-Dinitrosalicylic acid Fluka 42260 

4-Methylumbelliferyl-β-D-Cellobioside Sigma M6018 

4-Methylumbelliferyl-β-D-Lactoside Sigma M2405 

Acetic Acid, Glacial Roth 3738-1 

Acrylamide-Bisacrylamide RPI A11410-500.0 

Agar Agar Merck 1.01614.1000 

Agar Noble Difco 214230 

Agarose Low EEO Standard Star Lab N3101-0500 

Agarose Low EEO Standard Applichem A2114,0500 

Ammonium Persulfate Sigma A-6761 

Ammonium Sulphate ( (NH4)2SO4 ) Roth 3746.1 

Ammonium Sulphate ( (NH4)2SO4 ) Merck 1.01217.1000 

Calcium Chloride dihydrate (CaCl2.2H2O) Sigma C-2536 

Cellulose Acıselsan SY-1000 

Coomassie Brilliant Blue G-250 Merck 1.15444.0025 

EDTA Sigma E5134-500G 

Ethanol (96%) Merck 1.00971.2500 

Ethidium Bromide Merck OCO28942 

Glucose Sigma G-7021 

Glycerol Roth 3783.1 

Glycerol Riedel-de-Haen 15523 

Isopropanol Applichem A3928 

Magnesium Chloride Solution (25 mM) Promega A351B (M8291) 

Magnesium Sulphate Heptahydrate 

(MgSO4.7H2O) 

Roth T888.2 

Magnesium Sulphate Heptahydrate Fluka 63142 

Malt Extract Merck 1.05391.0500 
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Methanol (for analysis) Merck 1.06009.2500 

Rochelle Salts (Potassium sodium tartrate) Fluka 60412 

Phenol Applichem A0889 

Sodium Chloride (NaCl) Roth 3957-2 

Sodium Chloride (NaCl) Merck 1.06400.5000 

Sodium Hydroxide Merck 1.06462.1000 

Sodium Dodecyl Sulphate Sigma L-4390 

D-Sorbitol (97%) Acros 132730025 

D-Sorbitol (97%) Sigma A2222,5000 

PEG 6000 Merck 8.07491.1000 

Pepton from Casein Pancreatically Digested Merck 1.02239.0500 

Phosphoric Acid 85% Merck 1.00563.1000 

Potassium dihydrogen Phosphate (KH2PO4) Merck 1.04873.1000 

Potassium dihydrogen Phosphate (KH2PO4) Riedel-de-Haen 4243 

Potassium Hydroxide (KOH) Riedel-de Haen 06009 

Potato Dextrose Agar Difco 213400 

Potato Dextrose Agar Merck 1.10130.0500 

Sodium Acetate Merck 1.06264.0500  

TEMED Roth 2367.1 

Tris Fluka 93349 

Tris Amresco 0826 

TritonX-100 JTBaker 2840 

TritonX-100 Applichem A1388 

Tween80 for synthesis Merck 8.22187.1000 

Tween80 for synthesis RPI P20390-0.5 

Water GR for Analysis (PCR Water) Merck 1167545000 

Yeast Extract Roth 2363-2 

Yeast Extract RPI Y20025-1000.0 
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APPE�DIX L 

Instruments and Consumables 
 
 

1.5 mL PP Micro tubes Sarstedt 72.690.001 

0,2 mL PCR Tubes Star Lab B1402-5500 

5mL (Makro) tips Roth  

Aluminum Foil Burpak  

Filter Sartorius  

Cellophane   

Chromatography Paper 3MM Chr 100 sheets Whatman 3030917 

Chromatography Paper 3MM Chr 100 sheets Schleicher-Schuell  

Corex tube (50 mL) Corex  

Eppendorfs TreffLab  

Falcon TPP  

Filter: Asahi Techno Glass CO, 25mm 0.45 
micron 

Asahi Techno 2053-0.25 

Flat-bottomed 96-well microplate Globe Scientific LP120038 

Flat-bottomed 96-well microplate Costar 3915 

Glass Funnel Schott-Mainz  

Glass Wool   

Glass Microfibre Filters, GF/C 47mmØ Circles Whatman 1822047 

Hemocytometer Thoma HB6 

Micropipette tips Axygen  

Needles (100 (0,90x40mm)) Sterican  

Needles (100 (0,55x25mm)) Sterican  

Petri Dishes (100mm) Grenier Bio-one  

Petri Dishes (35 mm)) Grenier Bio-one 627160 

Syringe (10ml - 12mL) Norm-Ject 4100.000V0 

Syringe SetMedikal  
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APPE�DIX M 

Molecular Biology Kits 

 

BioRad SDS Kit BioRad  

QIAQuick PCR Purification Kit (250) QIAGen 28106 

QIAQuick Gel Extraction Kit QIAGen 28706 

pGEM®-T Easy Vector System Promega A1360 

PureYield Plasmid Midiprep System Promega A2492 

TaKaRa Ligation Kit, Version 2.1 TaKaRa 6022 
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APPE�DIX � 

Equipment 

 

70 °C incubator Memmert Model: 600 D06062 

37 °C incubator Memmert Model: 300 D06059 

28 °C incubator Nüve EN120 

120 °C incubator Binder  

80 °C incubator Binder  

37 °C incubator Heraeus  

28 °C incubator Heraeus  

50  °C water bath Fischer Scientific Isotemp 

37 °C water bath GFL 1083 

37 °C water bath Memmert  

Autoclave Priorclave  

Autoclave: Hiclave  Hirayama HV110 

Autoclave Nüve OT032 

Balance Denver Instrument TP303 

Balance Sartorius BP211D 

Balance Sartorius BP221S 

Balance Kern EMB  

Calibrated Densitometer (Scanner) BioRad GS800 

Cooling Centrifuge Eppendorf 5415 R 

Centrifuge: Multifuge Heraeus 3L 

Refrigerated Microfuge Sigma 1-15K 

Cooling Centrifuge: Allegra Beckman Coulter X-15R 

TableTop Centrifuge Fischer Scientific 3722L 

TableTop Centrifuge: Minispin Plus Eppendorf  
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Centrifuge: Bench Top Sigma 3K-30 

Centrifuge Rotor: 19776 Sigma  

Fume Hood Trox Technik  

Micropipette (1000 µL, 200 µL, 20 µL) VWR  

Micropipette (1000 µL, 200 µL, 20 µL) Eppendorf  

Microwave Samsung M1712N 

Microwave Bosch  

Spectrometer Schimadzu UV-1208 

Laminar Flow: Thermo Scientific KS9 
1/PE AC 

Thermo Fisher  

Laminar Flow: HeraSafe Heraeus HS12 

Laminar Flow Nüve MN120 

Mini-PROTEAN® Tetra Cell BioRad 165-8001 

Millipore MilliQ QGARD00R1 

Shaker: Unitron A6 Infors Unitron 108527 

Ice machine Scotsman AF20 

Magnetic Stirrer Velp Scientifica  

Orbital Shaker Forma Scientific 4520 

Precise Balance Acculab  

Power Supply: PowerPac Basic BioRad 164-5050 

Power Supply Wealtech Elite 300 

Power Supply Pharmacia Biotech EPS300 

Refrigerator (-80 °C) Thermo-Forma  

Refrigerator (-20 °C) Bosch  

Spectrofluorometer SpectraMax GeminiXS 

Speed Vacuum Savant Sc100A 

Swingout Rotor: 11390/13150 Sigma 3K30 

Thermocycler Biometra T3000 
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Thermocycler Biometra T3 

Thermocycler MD Research PTC-100 

Thermocycler PE Applied 
Biosystems 

9700 

Thermomixer Compact Eppendorf T1442 

Turbidity Meter  BioLog ID: 200-7849 
Model: 21907 

UV-Transilluminator BioRad GelDoc 2000 

Vacuum Pump Imvac  

Vortex Velp Scientifica  
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