title   
  

A bound on the minimum distance of quasi-cyclic codes

Güneri, Cem and Özbudak, Ferruh (2012) A bound on the minimum distance of quasi-cyclic codes. SIAM Journal on Discrete Mathematics, 26 (4). pp. 1781-1796. ISSN 0895-4801 (Print) 1095-7146 (Online)

This is the latest version of this item.

[img]PDF (This is a RoMEO green journal -- author can archive publisher's version/PDF) - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
230Kb
[img]PDF (This is a RoMEO green journal -- author can archive pre-print (ie pre-refereeing)) - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
322Kb

Official URL: http://dx.doi.org/10.1137/120865823

Abstract

We give a general lower bound for the minimum distance of $q$-ary quasi-cyclic codes of length $m\ell$ and index $\ell$, where $m$ is relatively prime to $q$. The bound involves the minimum distances of constituent codes of length $\ell$ as well as the minimum distances of certain cyclic codes of length $m$ which are related to the fields over which the constituents are defined. We present examples which show that the bound is sharp in many instances. We also compare the performance of our bound against the bounds of Lally and Esmaeili-Yari.

Item Type:Article
Uncontrolled Keywords:Quasi-cyclic code, constituent code, trace representation
Subjects:Q Science > QA Mathematics > QA150-272.5 Algebra
ID Code:21335
Deposited By:Cem Güneri
Deposited On:17 Dec 2012 11:07
Last Modified:03 Jul 2013 15:04

Available Versions of this Item

Repository Staff Only: item control page