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ABSTRACT 
 

With the appropriate surface treatments, graphene sheets can be separated from graphite 

material and the layer-to-layer distance can be extended. In the present work, graphene 

nanosheets (GNS) were separated from graphite by an improved, safer and mild method 

including the steps of oxidation, thermal expansion, ultrasonic treatment and chemical reduction. 

For the production of advanced polymer nanocomposites, the distinguished properties of GNS 

were combined with the structural properties of conducting polypyrrole by the proposed simple 

and low-cost fabrication technique. The changes in surface morphologies and surface functional 

groups were estimated by controlling the polymer coating on graphite oxide (GO) sheets, 

expanded GO and GNS.   

 

INTRODUCTION 

 

Graphene, the world’s thinnest sheet – only a single atom thick – has a great potential to 

provide a new way in energy, computing and medical research [1]. The first graphene sheets 

were obtained by extracting monolayer sheets from the three-dimensional graphite using a 

technique called micromechanical cleavage in 2004 [2]. One of the applicable methods is the 

graphite oxidation in order to reduce the strong bonding between sheets in graphite and to 

receive monolayer graphene sheet. Potassium chlorate, potassium permanganate, nitric acid, and 

sulfuric acid are mostly used as oxidizing agents in order to destruct the graphite structure in 

exfoliation process [3-5]. There have been numerous attempts in the literature to produce 

graphene sheets by exfoliation or expansion of graphite starting with GO or graphite 

intercalation compounds. Single graphene sheets are exfoliated from graphite with the thermal 

expansion and chemical reduction processes [6]. After heat treatment of GO sheets, the crystal 

lattice planes of graphite flakes are extended and this leads to the formation of expanded graphite 

called “worm-like” or accordion structure [7].  

Graphene sheets have been used as fillers in polymer matrix to improve the characteristic 

properties of nanocomposites. Researchers have found new methods to enhance the dispersion of 

graphite nanosheets in a polymer matrix. Chen et. al. demonstrated that sonication process is 

more applicable to disperse graphite sheets in polymer matrix [8]. This method provides much 

higher conductive composites than the other composites obtained by conventional methods.   

In this work, graphene sheets were separated from graphite flakes with an improved, 

safer and mild exfoliation technique. GO sheets, expanded GO and GNS, the products obtained 

after each step in the exfoliation process, were used as filler in conducting polypyrrole matrix in 

order to fabricate polymer-based nanocomposites. The effect of surface functional groups on 
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nanocomposite production and the changes in surface morphologies of samples after each 

treatment were investigated in detail by surface analysis techniques.  

EXPERIMENT 

 

Chemical Exfoliation of Graphene Nanosheets from Graphite 

 

Graphene nanosheets (GNS) were exfoliated by following two ways presented in details 

in our previous publications [7, 9]. 1
st
 way, the shortest exfoliation technique, included graphite 

oxidation, ultrasonic treatment and chemical reduction. 2
nd

 way, the longest exfoliation 

technique, contained these steps: graphite oxidation, ultrasonic treatment, thermal exfoliation, 

ultrasonic treatment and chemical reduction. Both the reaction procedures with thermal 

expansion and without thermal expansion led to the formation of GNS. Graphite oxide (GO) was 

prepared by using K2Cr2O7 and H2SO4 as the oxidizing agents and acetic anhydride as an 

intercalating agent at 45
o
C at different oxidation times changing from 50 min to 10 days [7, 9]. 

GO sheets were expanded by heating up to 1000
o
C rapidly in a tube furnace and kept for 5 min 

at this temperature under an argon atmosphere to obtain expanded GO samples [10]. Thermal 

treatment caused the thermal decomposition of acetic anhydride into CO2 and H2O gas which 

swelled the layered graphitic structure and resulted in a high separation of GO sheets [10]. In the 

proposed two methods, both GO sheets and expanded GO were reduced through refluxing by 

hydroquinone under N2 atmosphere for 1 day in order to obtain GNS.  

 

Synthesis of Graphene-based Nanocomposites 

 

Polypyrrole (PPy) was synthesized by using Py (0.0447 mol) as the monomer and FeCl3 

(0.107 mol) as the oxidant in the mixture of H2O and ethanol in 1:1 (v/v) under N2 atmosphere 

[11]. PPy was coated on GO sheets, expanded GO and GNS by in situ polymerization of pyrrole 

at room temperature under N2 atmosphere for 24 h [12]. The precipitated sample was filtered and 

rinsed several times by ethanol and distilled water to remove excess pyrrole, catalyst and side 

products. Before polymerization, samples (GO, expanded GO and GNS) and Py monomer in 

adjusted weight fractions were exposed to ultrasonic vibration for 2 h in order to diffuse Py 

monomer through the layers. Ultrasonic treatment also provided to break expanded GO apart into 

thinner graphite nanoplatelets (GNPs) [10]. 

 

Characterization 

 

 The morphologies of nanocomposites were examined by a Leo Supra 35VP Field 

Emission Scanning Electron Microscope (SEM). Elemental analyses were performed by Energy-

Dispersive X-Ray (EDX) analyzing system. Functional groups on the surface of samples were 

determined by a Nicolet iS10 Fourier Transform Infrared Spectroscopy (FT-IR). X-ray 

photoelectron spectroscopy (XPS) measurements were performed using a Physical Electronics 

Quantum 2000 Scanning ESCA Microprobe. This system used a focused monochromatic Al Kα 

X-rays (1486.7 eV) source and a spherical sector analyzer. 
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DISCUSSION  

 

 SEM images of GO sheets, expanded GO and GNS were shown in Figure 1. Graphite 

flakes consisted rigid layers [7] but layers were broadened and swollen after oxidation process, 

Figure 1 a. Heat treatment of GO samples caused the thermal decomposition of acetic anhydride 

into CO2 and H2O vapors which further swelled the layered graphitic structure and thus worm-

like structures called expanded GO were obtained, Figure 1 b. After chemical reduction of GO 

sheets, graphene sheets made of a few graphene layers could be clearly seen in Figure 1 c. 

  
Figure 1. SEM images of (a) GO sheets, (b) expanded GO, and (c) GNS.  

 

 Polypyrrole (PPy) was synthesized by oxidation of the monomer with FeCl3 had a form 

of fine black powder and contained irregular sphere-like particles [12]. After PPy coating on GO 

samples, laminated structure of GO sheets was observed clearly in SEM image, Figure 2 a. PPy 

was also coated on the surface of expanded GO by in situ chemical oxidative polymerization of 

Py. Polymer coating and irregular sphere-like PPy formation observed clearly in SEM image of 

expanded GO based nanocomposites, Figure 2 b. This non-uniform polymerization stemmed 

from the lack of functional groups on the surface of expanded GO since most of oxygen 

functional groups were eliminated from GO surface during thermal shock. Furthermore, 

uniformly layer coating of PPy/GNS nanocomposites was observed in Figure 2 c. Pyrrole 

monomer intercalated into GNS during in situ polymerization and polymerized on GNS layer-

by-layer. 

 

 
Figure 2. SEM images of (a) Py:GO=1:1 nanocomposite, (b) Py:expanded GO=1:1 

nanocomposite, and (c) Py:GNS=1:1 nanocomposite 

(a) (b) (c) 

(b) (c) (a) 
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FTIR, XPS and EDX analyses were used to estimate the amount of surface oxygen 

functional groups in samples and examine the changes in surface oxygen functional groups after 

each treatment in exfoliation process.  

The characteristic peaks in the FTIR spectrum of GO sheets were two sharp C-H 

stretching bands at 2850 cm
-1

 and 2916 cm
-1

 and a sharp CH2 bending band near 1480 cm
-1

, 

Figure 3. Also, there were a broad band at around 1100 cm
-1

 due to the aromatic C-O stretching 

and two small peaks due to the C=O stretching.  Expanded GO had high carbon content as seen 

in Figure 3. This indicated that thermal expansion eliminated oxygen functional groups. After the 

chemical reduction of GO, the intensity of C=O stretching peaks at 1500 cm
-1

 decreased 

comparably, Figure 3. 

 

 
Figure 3. FTIR spectra of GO sheets, expanded GO and reduced GO (GNS). 

 

The atomic ratios and surface functional groups of GO sheets, expanded GO, GNS, and 

their composites were determined by using the XPS elemental analysis. The intensities of O1s 

and C1s peaks for GO, expanded GO and GNS were compared in the XPS survey scan spectra, 

Figure 4. The C/O ratios of GO, expanded GO and GNS were measured as 2.3, 6.0, and 3.2, 

respectively. These results indicated that thermal expansion led to the removal of oxygen 

functional groups on the surface of GO samples and thus carbon content increased in the 

structure of expanded GO. Therefore, PPy was agglomerated on the surface of expanded GO 

during the production of nanocomposites.  
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Figure 4. XPS survey scan spectra of GO sheets, expanded GO and GNS. 

 

Table I summarized functional groups, binding energies, FWHM values and atomic 

percentages which were estimated from the N1s XPS spectra of Py:GO=1:1, Py:Expanded 

GO=1:1, and Py:GNS=1:1 nanocomposites. Py:GNS=1:1 nanocomposite with the largest 

FWHM indicated that different types of carbon-oxygen and carbon-nitrogen containing bonds 

were superimposed [13]. 

 

Table I. XPS spectra results for N1s in the samples of Py:GO=1:1, Py:Expanded GO=1:1, and 

Py:GNS=1:1 composites 

 

Table II showed EDX results of GO sheets, expanded GO, GNS based nanocomposites. 

The C/O ratios of Py:GO=1:1, Py:Expanded GO=1:1 and Py:GNS=1:1 were calculated as 1.22, 

3.55 and 0.95, respectively. The results proved that the higher oxygen amount in GO structure 

hindered agglomeration and promoted PPy dispersion on the surface of sheets. These 

observations were consistent with the XPS analysis data and also indicated an increase of carbon 

content after thermal shock. 

 

Table II. EDX results of GO, expanded GO, GNS based nanocomposites 

Samples  Carbon 

(wt%)  

Nitrogen  

(wt%)  

Oxygen  

(wt%)  

Other elements  

(wt%)  

Py:GO=1:1  40.2 16.7 32.9 10.2 

Py:Expanded GO=1:1  54.6 23.0 15.4 7.0 

Py:GNS=1:1  42.3 7.9 44.3 5.5 

Samples N1s 

 Group Binding Energy (eV) FWHM At. (%) 

Py:GO=1:1 C-N, N-H 399.9 1.7 12.9 

Py:Expanded GO=1:1 C-N, N-H 399.9 1.5 10.1 

Py:GNS=1:1 C-N, N-H 399.7 1.9 13.6 
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CONCLUSIONS  

 

GO sheets, expanded GO and GNS were used as filler in conducting PPy matrix. The 

change in the amount of surface functional groups of nanocomposites according to filler type and 

polymer weight was investigated in detail by FTIR, XPS and EDX analyzing system. This 

comprehensive and quantitative study showed the significant effect of surface oxygen functional 

groups on nanocomposite production. Since thermal expansion led to the removal of oxygen 

functional groups on the surface, the C/O ratio increased up to 6.0 in the structure of expanded 

GO. Therefore, a layer-by-layer polymer coating was achieved on GO sheets and GNS due to the 

presence of oxygen functional groups. However, non-uniform polymer dispersion on the surface 

of expanded GO occurred due to the removal of oxygen functional groups on the surface during 

thermal expansion of GO sheets. Consequently, the relationship between surface functional 

groups and the chosen polymer carries a significant importance on the fabrication of novel 

composites.  
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