title   
  

A maximal curve which is not a Galois subcover of the Hermitian curve

Garcia, Arnaldo and Stichtenoth, Henning (2006) A maximal curve which is not a Galois subcover of the Hermitian curve. Bulletin of the Brazilian Mathematical Society, 37 (1). pp. 139-152. ISSN 1678-7544 (Print) 1678-7714 (Online)

This is the latest version of this item.

Full text not available from this repository.

Official URL: http://springerlink.metapress.com/content/p4412hj831572451/?p=44cb88e6c4854f57a4fc14be262f944f&pi=1

Abstract

We present a maximal curve of genus 24 defined over Fq2 with q = 27, that is not a Galois subcover of the Hermitian curve.

Item Type:Article
Uncontrolled Keywords:Rational points; finite fields; maximal curves; Galois coverings; Hermitian curves.
Subjects:Q Science > QA Mathematics
ID Code:201
Deposited By:Henning Stichtenoth
Deposited On:20 Dec 2006 02:00
Last Modified:25 May 2011 14:06

Available Versions of this Item

Repository Staff Only: item control page