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Abstract

We identify a new channel through which schools can potentially manipulate the well-

known student and school optimal stable mechanisms. We introduce two different fictitious

students creation manipulation notions where one of them is stronger. While the student

and school optimal stable mechanisms turn out to be weakly fictitious student-proof under

acyclic (Ergin (2002)) and essentially homogeneous (Kojima (2011a)) priority structures,

respectively, they still lack strong fictitious student-proofness. We, then, compare the mech-

anisms in terms of their vulnerability to manipulations in the sense of Pathak and Sönmez

(2013) and find out that the student-optimal stable mechanism is more manipulable than

the school-optimal one. Lastly, in the large market setting of Kojima and Pathak (2009), the

student-optimal stable mechanism becomes weakly fictitious student-proof as the market is

getting large.
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1 Introduction

Initiated by Gale and Shapley (1962), matching theory has been fruitful both in theory

and practice. Theoretical findings have been successfully applied to real-life problems includ-

ing doctor assignments, student placements, and kidney exchanges. It has been documented

that the theoretically appealing stability notion of Gale and Shapley (1962) has also proved

to be very critical for the well-working of real-life matching markets.1

Fortunately, Gale and Shapley (1962) show the existence of a stable solution through

introducing the celebrated deferred acceptance algorithm. This positive result, however, has

not solved all the problems of matching market design, especially regarding the strategic

ones. Roth (1982) shows that no stable mechanism is immune to preference manipulations.

However, in the one-to-one matching setting, whenever either side’s preferences are common

knowledge, then there exists a stable and strategy-proof mechanism (Dubins and Freedman

(1981), Roth (1982)). As well as preference manipulations, Sönmez (1997, 1999) show that no

stable mechanism is immune to capacity and pre-arrangement manipulations, respectively.

Some recent related papers on manipulation incentives in matching markets include Kojima

(2011b), Kojima and Pathak (2009), Afacan (2012, 2011), and Kesten (2012).

In the current study, we investigate another channel via which schools could potentially

manipulate matching mechanisms. Yokoo et al. (2004) study false-bid manipulation incen-

tives in combinatorial auctions. In this kind of manipulations, a bidder tries to profit from

submitting false bids under a fictitious name. On the other hand, as a corresponding ma-

nipulation in the school choice setting, one can think of a situation where schools create

fictitious students in the hope of getting better assignments. This raises the question of

whether schools can manipulate matching mechanisms via creating fictitious students and

we address this issue in the current paper.

In order to model fictitious student creation incentives, we first introduce two different

manipulation notions where one of them is stronger. In the strong one, schools encounter

1For an excellent source, refer to Roth and Sotomayor (1990).
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two natural constraints in creating fictitious students: They can not affect the preference

profile of “non-fictitious” (real) students and the relative priority rankings of schools over

them. On the other hand, for the weak one, we also impose that fictitious students have to

be either unassigned or matched with the school which created them. Then, unfortunately,

it turns out that both the student and school-optimal stable mechanisms are not even weakly

fictitious student-proof.

Given the above negative result, we look for some structure on the primitives helping us to

gain fictitious student-proofness. The extant literature shows that the student-optimal stable

mechanism admits many good properties (including strategic ones) under Ergin (2002)’s

acyclic priority structures,2 which makes acyclicity a worthwhile condition to consider. It

turns out that the student-optimal stable mechanism becomes weakly fictitious student proof

under acyclicity, however, it still lacks strong fictitious student-proofness. On the other

hand, the school-optimal stable mechanism is not weakly fictitious student-proof even under

acyclicity. This leads us to look for a stronger condition for the school-optimal stable rule. A

recent paper Kojima (2011a) shows that, in the many-to-many matching environment, the

student-optimal stable mechanism becomes strategy-proof and Pareto efficient if and only

if the priority structure is “essentially homogeneous”. Fortunately, essential homogeneity

proves useful in the current paper as well: The school-optimal stable mechanism is weakly

fictitious student-proof if schools’ priorities are essentially homogeneous.

In spite of the above positive results, both acyclicity and essential homogeneity require

strong conditions in that the schools’ priorities would barely satisfy them. Given this fact,

instead of assuming them, we compare the manipulability of the mechanisms on problem

basis as done by Pathak and Sönmez (2013). It turns out that the student-optimal stable

mechanism is more manipulable than the school-optimal one in the sense that the former is

strongly manipulable via creating fictitious students at any problem where so is the latter,

and there is a problem instance at which the latter is not manipulable, yet, the former is.

2Please refer to Related Literature section for detailed references illustrating this point.
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Lastly, we investigate the scope of fictitious student manipulations under the student-

optimal stable mechanism in large markets. The existing literature (Roth and Peranson

(1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), and Hatfield et al.

(2011)) shows that some of undesirable properties of mechanisms may disappear as the

number of participants goes to infinity. Motivated by this fact, we employ the large market

setting of Kojima and Pathak (2009) and address the question of whether the same is true for

fictitious student manipulations. To this end, we show that instead of considering fictitious

student manipulations, we can consider a certain type of priority misreporting in the sense

that whenever there is a room for manipulation of the former kind, then so is there of

the latter kind. This result enables us to directly apply the results of Kojima and Pathak

(2009) for fictitious student manipulations as well: The student-optimal stable mechanism

becomes weakly fictitious student-proof under some regularity conditions as the number of

participants goes to infinity.

Why should we care about fictitious students creation manipulations? From the well-

known comparative statistics result of Gale and Sotomayor (1985), we know that, under

both the student and school optimal stable mechanisms, the presence of fictitious students

leads real ones to be at least weakly worse off, and in the case of a successful manipulation,

at least one of them is strictly worse off. This means that manipulation results in Pareto

inferior outcomes to the ones that would otherwise arise.3 Hence, this fact suggests the

benevolent social planner to take this kind of manipulation possibilities into account in

matching market design. A related policy recommendation of the paper is that the social

planner might influence the schools’ priorities in a way that makes them acyclic (essentially

homogeneous) to avoid manipulations under the student (school)-optimal stable mechanism.

Two conceptual issues are whether schools are strategic agents and whether their prior-

ities reflect their actual preferences. In the conventional school choice model, it is assumed

that schools are just objects to be consumed and their priorities are exogenously given based

3Since schools are considered as objects to be consumed in the school choice problems, only the welfare
of students matters (in our setting, naturally, only the welfare of real ones is considered).
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on certain criteria imposed by law.4 Hence, neither they are assumed to be strategic agents

nor their priorities necessarily reflect their actual preferences. However, there are some stu-

dent placement systems where schools can influence their priorities implying that they can

be strategic and their priorities do indeed reflect their actual preferences. The New York

City and Boston schools districts (see Abdulkadiroglu (2011) for details), which are the two

largest student placement system in USA, are examples for such school choice problems. On

the other hand, while we demonstrate our results in the school choice context, our analysis

is perfectly applicable to the two-sided intern-hospital matching market setting.5 Hospi-

tals might potentially manipulate matching mechanisms via creating fictitious doctors and,

in this setting, hospitals completely form their preferences themselves, hence, they can be

strategic.

Another related concern is whether schools manipulate mechanisms via creating fictitious

students in real-life problems? This paper demonstrates the potential for such manipula-

tions rather than claiming that they certainly exist in real-life problems. Indeed, generally

speaking, it is very difficult to identify manipulations even the well-known ones: preference,

capacity, pre-arrangements in real-life problems. Even though one figures out that a partic-

ipant misreports its private information, it is difficult to argue that it does so in the hope of

getting better outcome. The current paper like other similar works in the existing literature

discovers a new kind of manipulation and conducts theoretical analysis.

2 Related Literature

This paper is broadly related to the extensive literature on manipulations in matching

markets. In the two-sided matching context, Roth (1982) shows that no stable mecha-

nism is strategy-proof.6 Nonetheless, in the one-to-one matching setting, if one side of the

4Such as the proximity of students’ houses to schools and which schools their siblings are attending (if
applicable).

5In US, interns and hospitals are matched through the centralized matching program NRMP each year,
and intern-optimal stable mechanism is being used (Roth (1984)).

6A mechanism is strategy-proof if no agent ever benefits from misreporting his preference.
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market has commonly known preferences, then there exists a strategy-proof stable mech-

anism (Dubins and Freedman (1981),Roth (1982)). As well as preference manipulations,

Sönmez (1997, 1999) prove that no stable mechanism is non-manipulable via capacities and

pre-arrangements respectively. Similarly, Afacan (2011) shows that no stable mechanism

is immune to application fee manipulations. Given these impossibility results, Pathak and

Sönmez (2013) introduces a new methodology to compare mechanisms by their vulnerability

to manipulations based on the room for strategizing across problems.

The acyclicity (Ergin (2002)) and essential homogeneity (Kojima (2011a)) conditions

prove critical in the current paper. There are other related studies in the literature sharing

the same point. Ergin (2002) shows that the student-optimal stable mechanism is group

strategy-proof7 under acyclic priority structures. Kojima (2011b) demonstrates that no

individual student is better off by first misreporting his preference and then appealing to

the outcome under acyclicity. This result is, then, generalized to the groups of students by

Afacan (2012). Moreover, Kesten (2012) proves that acyclicity is necessary and sufficient

for the student-optimal stable mechanism to be immune to capacity manipulations. In a

recent study, Kojima (2011a) shows that the student-optimal stable mechanism is separately

efficient and strategy-proof in the many-to-many matching setting if and only if the priority

structure of schools is essentially homogeneous. The current paper identifies one more sense

in which such priority structures are important for the matching market design.

While there are many negative results in finite matching markets, some of them have

been shown to disappear in large markets. In the one-to-one matching setting, Immorlica

and Mahdian (2005) demonstrate that schools’ manipulation incentives vanish as the market

is getting large. This result is, then, generalized to the many-to-one matching environment

under certain conditions by Kojima and Pathak (2009).8 Moreover, in a recent paper,

Hatfield et al. (2011) look at the incentives of schools to improve themselves and they show

7A mechanism is group strategy-proof if no group of agents ever has incentive to misreport their prefer-
ences.

8Kojima and Pathak (2009) also do some equilibrium analysis.
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that stable mechanisms give right incentives in large markets, whereas, they fail to do so in

finite markets.

Another related paper from the auction theory literature is Yokoo et al. (2004) where

the authors examine the incentives of bidders to submit bids under fictitious names in com-

binatorial auctions. They say that an auction protocol is false-name-proof if no bidder can

profitably submit a false name bid in any problem instance. They first show that no effi-

cient auction protocol is false-name-proof then give a sufficient condition which makes VCG

mechanism false-name-proof. One could interpret fictitious student creation manipulation

as the counterpart of false name bidding in the matching context.

3 Model & Results

A school choice problem consists of a tuple (S,C, P,�, q). The first two components

are finite and disjoint sets of students and schools, respectively. Each student i ∈ S has a

preference relation Pi, which is a complete, strict, and transitive binary relation over the set

of schools C and being unassigned (denoted by ∅). Let P be the set of all such preference

relations and the list P = (Pi)i∈S is the preference profile of students. We write cRic
′ if

either cPic
′ or c = c′. Each school c ∈ C has a priority order �c, which is a complete, strict,

and transitive binary relation over the set of students S and keeping seat vacant, denoted

by ∅. We write �= (�c)c∈C for the priority order profile of schools. The last component

q = (qc)c∈C is the quota profile of schools where qc is of school c. We call the tuple (�, q)

priority structure.

We interpret the priority orders of schools as their preferences and extend them to over

the set of groups of students in the responsive (Roth (1985)) way. Then, the choice of a

school c ∈ C from a group of students J ⊆ S under the priority order �c and quota qc is

defined as

Chc(�c, qc, J) = {J ′ ⊆ J : |J ′| ≤ qc, J
′ �c J ′′ for all J ′′ ⊆ J such that |J ′′| ≤ qc}.
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A matching µ is an assignment of students to schools such that no student is assigned

more than one school, and no school is assigned to more students than its quota. We write

µk for the assignment of student (school) k ∈ S ∪ C under µ. A matching µ is individually

rational if µiRi∅ for all i ∈ S and, for any c ∈ C, Chc(�c, qc, µc) = µc. Matching µ is blocked

by a student-school pair (i, c) ∈ S × C if cPiµi and i ∈ Chc(�c, qc, µc ∪ {i}). A matching µ

is stable if it is individually rational and is not blocked by any pair (i, c) ∈ S × C.

A mechanism ψ is a systematic way to assign a matching for every problem. Mechanism

ψ is stable if its outcome is stable at every problem instance. In the rest of the paper, as q

and C will be fixed, we often write ψ(S, P,�) for the outcome and, for ease of notation, we

just write ψ(P ) whenever it does not cause confusion.

Below, we outline the student-proposing deferred acceptance algorithm (Gale and Shapley

(1962)) producing the student-optimal stable matching.

Step 1. Each student applies to his first choice school. Each school that receives one or

more offers holds as many best acceptable offers as at most its quota and rejects the rest.

In general,

Step t. Each student who was rejected in step (t − 1) applies to his best acceptable

choice in the set of schools to which he did not apply before. Each school holds as many

best acceptable offers as at most its quota among the set of offers held at step (t − 1) and

the offers it receives at this step and rejects the rest.

The algorithm terminates when no student applies to a school, and the tentatively held

offers at the termination step are realized as assignments. The student-optimal stable mech-

anism produces the student-optimal stable matching for every problem. On the other hand,

the school-proposing version of the above algorithm produces the school-optimal stable

matching. Similarly, the school-optimal stable mechanism assigns the school-optimal sta-

ble matching for every problem. In the rest of the paper, we write ψS and ψC for the student
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and school-optimal stable mechanism, respectively.

Definition 1. Mechanism ψ is weakly manipulable via creating fictitious students at a match-

ing problem instance (S,C, P,�, q) if there exist a school c ∈ C and another matching problem

instance (S ′, C, P ′,�′, q) such that the followings satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) ψc(S
′, P ′,�′) ∩ S �c ψc(S, P,�).

In words, we refer to the students in S ′\S as fictitious students and say that a mechanism

is weakly manipulable via creating fictitious students at a problem if a school can be strictly

better off by creating such students under the constraints that it can affect neither the priority

rankings of schools among non-fictitious students (Condition (ii)) nor the preference profile

of them (Condition (iii)).

Remark 1. In the definition, manipulating school c compares the outcomes based on

its non-fictitious students assignments (i.e, according to �c rather than �′c). This is very

natural since it knows that all students in the set S ′ \ S are fictitious created by itself.

Definition 2. A mechanism ψ is strongly fictitious student-proof if it is not weakly manip-

ulable via creating fictitious students at any matching problem instance (S,C, P,�, q).

Proposition 1. Neither ψS nor ψC is strongly fictitious student-proof.

Proof. Consider a problem consisting of S = {i} and C = {a, b} with qa = qb = 1. Assume

that student i prefers school a to school b to being unassigned, that is, Pi : a, b, ∅. The

priorities of schools are such that �a=�b: i, ∅. Then, ψCi (Pi) = ψSi (Pi) = a.

Now, let school b create fictitious student j with Pj : a, ∅. For the priority order of schools

over {i, j}, assume that �′a=�′b: j, i, ∅. Then, ψCi (Pi, Pj) = ψSi (Pi, Pj) = b. Hence, school b

is better off via creating fictitious student b, which finishes the proof.
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The above negative result is indeed very well expected as it is easy to see that whenever

a school does not match with its top priority group under any stable rule, then it can

manipulate the mechanism. Hence, in what follows, we weaken the manipulation concept

and investigate whether the mechanisms are manipulable via creating fictitious students in

this weak sense.

Definition 3. Mechanism ψ is strongly manipulable via creating fictitious students at a

matching problem instance (S,C, P,�, q) if there exist a school c ∈ C and another matching

problem instance (S ′, C, P ′,�′, q) such that the followings satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψi(S
′, P ′,�′) = c or ψi(S

′, P ′,�′) = ∅,

(v) ψc(S
′, P ′,�′) ∩ S �c ψc(S, P,�).

The only difference between the two manipulation concepts is Condition (iv) in the

above definition. Namely, it imposes the restriction that fictitious students have to be either

unassigned or assigned the school which created them. This condition, which we interpret as

capturing the situations where it is not in the schools’ interest to create such students where

some of them get matched with a school other the manipulating one, can realize in real-life

matching markets in the presence of some policy9 or externalities10 (even though we do not

consider externalities in the paper).

9One such policy might impose high penalties whenever a school reports that one of its assigned students
withdrew from his seat on all schools except the reporting one.

10One kind of such externalities might correspond to the case where each school prefers other schools to be
matched with their better options. Under the weak manipulation case (Definition 1), a manipulating school
might cause all other schools to be strictly worse-off (see the example given in the proof of Proposition
1: since student j is fictitious there, at the end, school a would end up with no student which is strictly
worse outcome than what would otherwise arise). Whereas, by the well-known comparative statistics result
(Gale and Sotomayor (1985)), whenever a school manipulates the student-optimal stable mechanism through
creating fictitious students in the strong sense (Definition 3), then all schools would be at least weakly better
off, with at least one of them being strictly better off as well as the manipulating one.
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Definition 4. A mechanism ψ is weakly fictitious student-proof if it is not strongly manip-

ulable via creating fictitious students at any matching problem instance (S,C, P,�, q).

Proposition 2. Neither ψS nor ψC is weakly fictitious student-proof.

Proof. We first prove the manipulability of ψS. Consider a matching problem instance

consisting of S = {i, j}, C = {a, b}, qa = qb = 1, the following preference and priority order

profiles:

Pi : b, a, ∅,

Pj : a, b, ∅,

�a: i, j, ∅,

�b: j, i, ∅.

Let P = (Pi, Pj), then ψS(P ) = (ψSi (P ), ψSj (P )) = (b, a). Now, let school b create a

fictitious student k and assume that the preference Pk and the priority rankings of schools

�′ over {i, j, k} are as follows:

Pk : a, ∅, b,

�′a: i, k, j, ∅,

�′b: j, i, k, ∅.

Let P ′ = (Pi, Pj, Pk). Then, ψS(P ′) = (ψSi (P ′), ψSj (P ′), ψSk (P ′)) = (a, b, ∅) (note that all

the conditions in the manipulation definition are met). Hence, school b is better off through

creating fictitious student k.

For the manipulability of ψC , let us consider the same problem as above with the dif-

ference that qa = 2. Then, ψC(P ) = (ψCi (P ), ψCj (P )) = (b, a). Let school a create ficti-

tious student k with the same preference profile P ′ and same priorities �′ as above. Then,

ψC(P ′) = (ψCi (P ′), ψCj (P ′), ψCk (P ′)) = (a, b, a), making school a better off.

Given the lack of even weak fictitious student-proofness, we look for some condition

on the primitives helping us to recover at least some of the above negative results. The
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extant literature shows that Ergin (2002)’s acyclicity condition has been very useful in that

sense. Specifically, the student-optimal stable mechanism admits many good properties

including strategic ones under acyclicity condition. In what follows, we therefore investigate

the fictitious student creation incentives under that condition.

Definition 5 (Ergin (2002)). Given a priority structure (�, q), a cycle is a, b ∈ C, i, j, k ∈ S

such that;

(i) i �a j �a k and k �b i, and

(ii) there exist (possibly empty) disjoint sets of students Sa, Sb ⊆ S \ {i, j, k} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa, and s �b i for every s ∈ Sb.

A priority structure (�, q) is acyclic if there exists no cycle.

Definition 6. Mechanism ψ is weakly (strongly) manipulable via creating fictitious students

under acyclicity at a matching problem instance (S,C, P,�, q) if there exist a school c ∈ C

and another matching problem instance (S ′, C, P ′,�′, q) such that (i) all the conditions in

Definition 1 (Definition 3) are met, and (ii) (�′, q) is acyclic.

Definition 7. A mechanism ψ is strongly (weakly) fictitious student-proof under acyclicity

if it is not weakly (strongly) manipulable via creating fictitious students under acyclicity at

any matching problem instance (S,C, P,�, q).

Unfortunately, given that the priority structure (�′, q) in the proof of Proposition 1 is

acyclic, it turns out that both the student and school optimal stable mechanisms are weakly

manipulable via creating fictitious students.

Corollary 1. Neither ψS nor ψC is strongly fictitious student-proof under acyclicity.

Below, we obtain the first sharp difference between the student and school optimal stable

mechanisms in terms of fictitious student creation incentives under acyclic priority structures.
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Theorem 1. While ψS is weakly fictitious student-proof under acyclicity, ψC is not.

Proof. See Appendix.

Given that the priority structure in the proof of Proposition 2 for the manipulability of

ψS is not acyclic, we obtain a necessary and sufficient condition in terms of priority structures

in the sense that there is a problem instance where a school can succeed in manipulation

through creating fictitious students in the absence of the acyclicity imposition, whereas, it

is otherwise impossible as the above theorem shows.

ψC being manipulable even under acyclicity leads us to look for more stringent priority

structures. In a recent paper, Kojima (2011a) considers the many-to-many matching setting

and shows that, as opposed to the many-to-one setting, the student-optimal stable mecha-

nism is neither strategy-proof nor weakly Pareto efficient. Then, he introduces the so called

“essentially homogeneous” priority structures, which are more stringent than acyclic ones,

and proves that the student-optimal stable mechanism recovers those properties (indeed, it

becomes Pareto efficient) if and only if the schools’ priority structure is essentially homoge-

neous. In what follows, we will show that the same is true for weak strategy-proofness of ψC

as well.

Definition 8 (Kojima (2011a)). A priority structure (�, q) is essentially homogeneous if

there exist no a, b ∈ C and i, j ∈ S such that

(i) i �a j and j �b i, and

(ii) There exist sets of students Sa, Sb ⊆ S \ {i, j} such that |Sa| = qa − 1, |Sb| = qb − 1,

k �a j for every k ∈ Sa, and k �b i for every k ∈ Sb.

Remark 2. It is easy to see that essentially homogeneous priority structures are acyclic,

yet, the converse is not true.

Definition 9. Mechanism ψ is weakly (strongly) manipulable via creating fictitious students

under essential homogeneity at a matching problem instance (S,C, P,�, q) if there exist a
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school c ∈ C and another matching problem instance (S ′, C, P ′,�′, q) such that (i) all the

conditions in Definition 1 (Definition 3) are met, and (ii) (�′, q) is essentially homogeneous.

We define strong (weak) fictitious student-proofness under essential homogeneity in the

same way as in Definition 7. As the priority structure (�′, q) in the proof of Proposition 1

is essentially homogeneous, we have the following result.

Corollary 2. Both ψS and ψC are not strongly fictitious student-proof under essential ho-

mogeneity.

However, we recover the weak fictitious student-proofness of ψC with the help of essential

homogeneity.

Theorem 2. ψC is weakly fictitious student-proof under essential homogeneity.

Proof. See Appendix.

As the priority structure given in the proof of Proposition 2 for the manipulability of

ψC is not essentially homogeneous, it is also necessary condition in the sense that there is

a problem instance where a school can succeed in manipulation through creating fictitious

students in the absence of the essential homogeneity imposition, whereas, it is otherwise

impossible as the above result shows.

Remark 3. In the manipulation notions, we assume that the priority rankings of ficti-

tious students in schools can be arranged in any way (as long as it is acyclic or essentially

homogeneous in the corresponding parts of the paper) by the school which created them.

However, the schools’ priorities might be correlated, hence, it might not be possible.11 While

we need this assumption in order to make analysis possible, our results would not be affected

by the absence of it. It is clear that manipulation would be harder without it, which implies

11For example, think of a situation where the manipulating school wants a fictitious student to be at the
top of the priority order of school a while at the bottom in that of school b. This, however, might not be
possible if the qualifications of the fictitious student, which make him top at the priority order of school a,
also put his name in a high position in that of school b as well.
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that acyclicity (essential homogeneity) would still be sufficient for the student (school)-

optimal stable mechanism to be weakly fictitious student-proof. On the other hand, since

all the examples for the negative results given in the paper would also work,12 the necessity

of them would be still valid as well.

Theorem 1&2 provide conditions in terms of priority structures making the mechanisms

weakly fictitious student-proof. While acyclicity is less demanding than essential homo-

geneity, it does not necessarily mean that the school-optimal stable mechanism is more

manipulable than the student-optimal stable rule in the sense that whenever the latter is

manipulable at a problem instance, then so is the former. This kind of manipulability com-

parison between mechanisms has been done by Pathak and Sönmez (2013), and the following

notion is taken from their work.

A mechanism ψ is at least as manipulable as mechanism φ via creating fictitious students

if whenever the latter is strongly manipulable at a problem, then so is the former at the

same problem. Mechanism ψ is more manipulable via creating fictitious students than φ if

it is at least as manipulable as φ via creating fictitious students, and there exists a problem

instance at which the former is strongly manipulable, whereas, the latter is not.

Theorem 3. ψS is more manipulable via creating fictitious students than ψC.

Proof. See Appendix.

Remark 4. We only consider strong manipulations in the above manipulability compar-

ison analysis. As pointed out previously, under any stable rule, if a school is not matched

with its top priority group of students, then it has incentive to manipulate the mechanism in

the weak sense. This basically implies that whenever the school-optimal stable mechanism

is weakly manipulable, then so is the student-optimal one, and vice-versa. Hence, we can

not say either one is more manipulable than the other one in terms of weak manipulations.

12Basically, in the examples, the relevant underlyings of schools might enable the manipulating schools to
arrange the priority orders as in the proofs even without our assumption.
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3.1 Large Market Analysis

Large market analysis has proved to be fruitful in recovering some negative results in

finite markets. Motivated by this fact, in this section, we show that the student-optimal

stable mechanism becomes weakly fictitious student-proof as the market is getting large

under the regularity conditions of Kojima and Pathak (2009). For the proof, we first show

that whenever there is a room for strong manipulation via creating fictitious students, then

so is there for a certain type of priority misreporting so called “dropping strategy”. That is,

this result says that we can consider priority misreporting incentives of schools rather than

fictitious students creation incentives. This enables us to directly apply Kojima and Pathak

(2009)’ result to fictitious student creation manipulations.

A reported priority list is said to be a dropping strategy if it simply declares some students

who are acceptable under the true priority list as unacceptable. Formally, a dropping strategy

is a report �′c such that (i) s �c s′ and s �′c ∅ imply s �′c s′ and (ii) ∅ �c s implies ∅ �′c s.

Lemma 1. Given a problem instance and a stable mechanism, suppose that the mechanism is

strongly manipulable by school c via creating fictitious students and matching µ is produced

through the manipulation. Then, there exists a dropping strategy of school c producing a

matching which is at least as good as µ for school c.

Proof. See Appendix.

In the rest of this section, we employ the large market setting of Kojima and Pathak

(2009). For the sake completeness, we fully describe it below.

A random market is a tuple Γ = (S,C,�c, k,D). Here, k is a positive integer representing

the length of students’ preferences, that is, the number of acceptable schools that students

can declare in their preferences. On the other hand, D = (pc)c∈C is a probability distribution

over C. Each student i’s preference unfolds as follows:

Step 1. Select a school independently from D and list this school as the top choice of

student i.
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In general,

Step t ≤ k. Select a school independently from D until a previously undrawn school is

drawn. List that school as the tth choice of student i.

A sequence of random markets is denoted by (Γ̃1, Γ̃2, ...) where Γ̃n = (Cn, Sn,�Cn , kn,Dn)

is a random market in which |Cn| = n.

Definition 10 (Kojima and Pathak (2009)). A sequence of random markets (Γ̃1, Γ̃2, ...) is

regular if there exist positive integer k and q̄ such that

(i) kn = k for all n,

(ii) qc ≤ q̄ for c ∈ Cn for all n,

(iii) |Sn| ≤ q̄n for all n, and

(iv) for all n and c ∈ Cn, any s ∈ Sn is acceptable to c.

Given a random market Γ̃n, the expected number of schools that can strongly manipu-

late the student-optimal stable mechanism via creating fictitious students when others are

truthful (i.e., when others do not manipulate via creating fictitious students) , denoted by

α(n), is given below:

α(n) = E[#{c ∈ Cn : school c can strongly manipulate ψS via creating fictitious students

in the induced problem (Sn, Cn, P,�n, qn) when other schools are truthful}|Γ̃n].

Due to Lemma 1, we can directly apply the result of Kojima and Pathak (2009), hence,

we have the following theorem.

Theorem 4. If the sequence of random markets is regular, then the expected proportion

of schools that can strongly manipulate ψS via creating fictitious students when others are

truthful, α(n)/n, converges to zero as the number of colleges goes to infinity.

Remark 5. We have the above large market result for strong manipulations. On the

other hand, Lemma 1 is not true for the weak manipulation. That is, a school might not

have a dropping strategy giving an outcome which is at least as good as the outcome induced
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through a weak fictitious student creation manipulation. For instance, consider a problem

consisting of S = {i} and C = {a, b} with qa = qb = 1. Student i prefers school a to b to

being unassigned and both schools prefer him to keeping the seat vacant. Then, under any

stable mechanism, student i is matched with school a, and school b can not be better off by

misreporting its priority. However, it can create a fictitious student j with Pj : a, b, ∅ and

�′a: j, i, ∅. Then, student i is matched with school b under any stable rule, making it better

off.

4 Conclusion & Discussion

We investigate the fictitious student creation incentives of schools under the student and

school optimal stable rules. The former is weakly fictitious student-proof under acyclicity,

and so is the latter under essential homogeneity. Even though essential homogeneity requires

a more stringent condition than acyclicity, the student optimal stable mechanism turns out

to be more manipulable than the school optimal stable rule. As opposed to these negative

results in finite markets, the student-optimal stable rule becomes weakly fictitious student-

proof as the market is getting large.

In our analysis, we assume that students might be unacceptable to schools.13 While there

are some schools districts where students can be unacceptable,14 since schools are considered

as objects in the conventional model, students are often assumed to be acceptable at any

school. Hence, it is worthwhile to point out that all of our results except Lemma 1 would

carry over to the smaller domain of acceptant priorities where any student is acceptable

to any school. Since Lemma 1 does not hold (since dropping strategies involve reporting

students unacceptable), we do not know whether the large market result would still be true

in that case.

13A student i is unacceptable to school c if ∅ �c i.
14As certain schools can determine their priorities at Boston and New York City school districts, they

can declare students unacceptable. Besides, in some school districts, students might not be acceptable due
to the living outside of the districts or discipline problems as well. For instance, not all school districts in
Massachusetts accept students from outside of their districts.
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Appendix

A mechanism ψ is group strategy-proof if there are no group of students A ⊆ S and a false

preference profile for them P ′A such that ψi(P
′
A, P−A)Riψi(P )15 for all i ∈ A, with holding

strictly for at least one student in A.

Mechanism ψ is efficient if there is no matching µ such that µiRiψi(P ) for all i ∈ S, with

holding strictly for at least one student.

The following definitions are due to Kojima and Manea (2010).

A preference profile R′i is individually rational monotonic transformation of Ri at c ∈

C ∪ {∅} (R′i i.r.m.t Ri at c) if c′R′ic and c′R′i∅ ⇒ c′Ric for all c′ ∈ C; and R′ i.r.m.t R at a

matching µ if R′i i.r.m.t Ri at µi for all i ∈ S.

A mechanism ψ satisfies individually rational monotonicity if R′ i.r.m.t R at ψ(R), then

ψi(R
′)R′iψi(R) for all i ∈ S.

Proof of Theorem 1. We prove by contradiction. Let us assume that ψS is not weakly ficti-

tious student-proof under acyclicity. It implies that there exist a school c, matching problem

instances (S,C, P,�, q) and (S ′, C, P ′,�′, q) such that (i) (�′, q) is acyclic, and (ii) the

following conditions satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψSi (S ′, P ′,�′) = c or ψSi (S ′, P ′,�′) = ∅,

(v) ψSc (S ′, P ′,�′) ∩ S �c ψSc (S, P,�).

Now, consider the following preference profile for students in S ′:

P ′′i =

 ψSi (S, P,�), ψSi (S ′, P ′,�′), ∅ if i ∈ S

ψSi (S ′, P ′,�′), ∅ otherwise

15P ′A and P−A stand for the preference profile of group of student A and that of the rest of the students,
respectively.
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Let P ′′ = (P ′′i )i∈S′ . Then, we claim that ψSi (S ′, P ′′,�′)R′iψSi (S ′, P ′,�′) for all i ∈ S ′, with

holding strictly for some j ∈ S. Once we prove this claim, proof will be finished since it

would contradict the group strategy-proofness of ψS under acyclic priority structures (Ergin

(2002)).

For ease of notation, let µ0 = ψS(S, P,�), µ1 = ψS(S ′, P ′,�′), and µ2 = ψS(S ′, P ′′,�′).

First, from the well-known comparative statistics result (Gale and Sotomayor (1985)),

µ0
iRiµ

1
i for all i ∈ S, which means µ0

iR
′
iµ

1
i (since R′i = Ri for all i ∈ S). On the other hand,

by the definition of P ′′, µ0
iR
′′
i ∅ for all i ∈ S. Therefore, R′′ i.r.m.t R′ at µ1. From Kojima and

Manea (2010), we know that ψS satisfies individually rational monotonicity which implies

that µ2
iR
′′
i µ

1
i for all i ∈ S ′. Then, by the definition of P ′′, we have µ2

iR
′
iµ

1
i for all i ∈ S ′.

Next, by our starting supposition, we have µ1
c ∩S �c µ0

c . This implies that there exists a

student i ∈ S such that (i) i ∈ µ1
c \ µ0

c and (ii) i �c j for some j ∈ µ0
c (j might be ∅, which

means that school c has empty seat under µ0
c and prefers student i to ∅). This along with

the stability of µ0 implies that µ0
iPiµ

1
i , which means µ0

iP
′
iµ

1
i .

Now, we claim that µ2
iP
′
iµ

1
i . We prove by contradiction: let us assume that µ1

i = µ2
i = c.16

Since µ0
iP
′
iµ

1
i , it is also true that µ0

iP
′
iµ

2
i . Then, given µ2

k ∈ {c, ∅} for all k ∈ S ′ \ S (by

Condition (iv)), it implies that there exists a student j ∈ S, j 6= i, such that µ0
i = µ2

j ,

µ0
j 6= µ2

j (these are due to the facts that school µ0
i has no excess capacity under µ2 (otherwise

it can not be stable) and µ0
i 6= µ2

i ), and j �µ0i i (due to the stability of µ2). Moreover, since

µ0 is stable in the problem (S,C, P,�, q), we have µ0
jPjµ

2
j , which means µ0

jP
′
jµ

2
j .

Now, let students i, j and school µ0
i point to schools µ0

i , µ
0
j and student j, respectively,

that is, we consider the following sequence:

i→ µ0
i → j → µ0

j . (1)

Then, we have the following two cases:

16Recall that we already proved µ2
iR
′
iµ

1
i .
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Case 1. If µ0
j = µ2

i , then let µ0
j point to student i. We, hence, end up with the following:

i→ µ0
i → j → µ0

j → i. (2)

The above situation is called “improvement cycle” in the literature in the sense that there

is a room for improving efficiency by letting students i, j trade their respective assignments

under µ2. Let us denote the matching obtained by implementing this trade while keeping

the other students’ assignments unchanged by µ̃. Then, µ̃ Pareto dominates µ2 with respect

to preference profile P ′. On the other hand, since µ2
iR
′
iµ

1
i for all i ∈ S ′, µ̃ is also Pareto

superior to µ1 in the problem (S ′, C, P ′,�′, q). This, however, contradicts the fact that ψS

is efficient under acyclic priority structures (Ergin (2002)).

Case 2.

Step 1. If µ0
j 6= µ2

i = c, then, since µ0
jP
′
jµ

2
j , by the same reasoning as before, there

exists a student k ∈ S different than both i and j such that µ0
j = µ2

k, µ
0
k 6= µ2

k, and k �µ0j j.

Moreover, since µ0 is stable in the problem (S,C, P,�, q), we have µ0
kPkµ

2
k, which means

that µ0
kP
′
kµ

2
k.

Now, let school µ0
j and student k point to student k and school µ0

k, respectively. Hence,

we end up with the following sequence:

i→ µ0
i → j → µ0

j → k → µ0
k. (3)

Step 2. Similar to Case 1, if there exists a student in the above sequence who is matched

with µ0
k under µ2, let µ0

k point to that student. Let us say this student is j, then we have

the following:

i→ µ0
i → j → µ0

j → k → µ0
k → j. (4)

In this case, we also end up with the improvement cycle consisting of students j, k and

schools µ0
j , µ

0
k. If we denote the matching obtained by implementing this cycle while keeping
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the other students’ assignments unchanged by µ̂, then µ̂ Pareto dominates µ2 with respect to

preference profile P ′, which implies that it also dominates µ1 in the problem (S ′, C, P ′,�′, q).

This, however, contradicts ψS being efficient under acyclic priority structures.

Step 3. If there exists no student in the sequence (3) who is matched with µ0
k under

µ2, then this implies that µ0
k 6= c (Since, otherwise, µ0

k would point to student i, who is

matched with school c under µ2 by our supposition). Then, by the same reasoning as before,

there exists a student h ∈ S different than i, j, k such that µ0
k = µ2

h, µ
0
h 6= µ2

h, and h �µ0k k.

Moreover, since µ0 is stable in the problem (S,C, P,�, q), µ0
hPhµ

2
h, which means µ0

hP
′
hµ

2
h.

Now, let school µ0
k and student h point to student h and school µ0

h, respectively. We,

therefore, end up with the following sequence:

i→ µ0
i → j → µ0

j → k → µ0
k → h→ µ0

h. (5)

Then, if we continue in the same way as before, since everything is finite, we will end up

with an improvement cycle. If we denote the matching obtained by implementing that cycle

while keeping the other students’ assignments unchanged by µ′, then µ′ Pareto dominates

µ2 with respect to P ′, which implies that it is also Pareto superior to µ1 in the problem

(S ′, C, P ′,�′, q). This, however, contradicts the fact that ψS is efficient under acyclic priority

structures.

Therefore, we show that µ2
iP
′
iµ

1
i while µ2

jR
′
jµ

1
j for all j ∈ S ′. This, however, contradicts

ψS being group strategy-proof under acyclic priority structures (Ergin (2002)), completing

the proof of the weak fictitious student-proofness of ψS under acyclicity.

Now, for the lack of weak fictitious student-proofness under acyclicity of ψC , we can

consider the problem instance given in the proof of Proposition 2. The priority structure

given there for ψC , (�′, qa = 2, qb = 1) is acyclic, yet, ψC is still strongly manipulable. Hence,

ψC is not weakly fictitious student-proof under acyclicity.
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Proof of Theorem 2. Assume for a contradiction that ψC is not weakly fictitious student-

proof under essential homogeneity. This means that there exist a school c′ and matching

problem instances (S,C, P,�, q) and (S ′, C, P ′,�′, q) such that (�′, q) is essentially homoge-

neous and the following conditions satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψCi (S ′, P ′,�′) = c′ or ψCi (S ′, P ′,�′) = ∅,

(v) ψCc′ (S
′, P ′,�′) ∩ S �c′ ψCc′ (S, P,�).

Condition (iv) above does not imply that no school in C \ {c′} makes offers to fictitious

students in the course of the school-proposing deferred acceptance procedure. Schools in

C \ {c′} can make offer like school c′, yet, that condition says that their offers are rejected

in some step of the procedure. Moreover, it is easy to observe that any fictitious student in

S ′\S who is unassigned has no effect on the outcome as it implies that either no school makes

offer to him or he declares all schools from which he receives offer unacceptable. Therefore,

without loss of generality, we assume that any fictitious student i ∈ S ′\S is matched with

school c′ under ψC(S ′, P ′,�′). For ease of notation, hereafter, we write µ and µ′ for the

outcomes ψC(S, P,�) and ψC(S ′, P ′,�′), respectively.

As S ⊂ S ′ and all fictitious students are matched with school c, by the well-known

comparative statistics (Gale and Sotomayor (1985)), either µ′c �′c µc or µ′c = µc for any

school c ∈ C \ {c′}, with former holding for at least one school in C \ {c′}. Moreover, by

our supposition, we have µ′c′ ∩ S �′c′ µc′ (note that �′c over S is the same as �c by our

supposition).

Let C ′ = {c ∈ C : µ′c 6= µc}. Let us pick a school c ∈ C ′. By our observation above,

there exists a student i ∈ S such that i ∈ µ′c \ µc and i �′c j for some j ∈ µc. On the other

hand, as µ is stable, µi 6= ∅. Let µi = c̃ and c̃ ∈ C ′. Due to the stability of µ and i �′c j,

we have c̃ Pi µ
′
i = c. Hence, this along with the stability of µ′ implies that there exists a
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student k ∈ S such that k ∈ µ′c̃ \ µc̃ and k �′c̃ i. By the same reasoning as above, µk 6= ∅

and let µk = c̄. That is, we have the following:

k �′c̃ i �′c j with µi = c̃ and µk = c̄.

If we continue in the same way as above, as everything is finite, we would end up with

a set of schools (ck)
n
k=1 where each of them in C ′ and a set of non-fictitious students (ik)

n+1
k=1

such that

(i) i1 �′c1 i2 �
′
c2
i3, ..., in �′cn in+1 = i1, and

(ii) µik+1
= ck and µ′ik = ck for each k = 1, ..., n.

Now, let us consider the assignments of above schools in cycle (i) under matching µ′. For

each ck, µ
′
ck
\{ik} ⊆ S ′ \{ik, ik+1}, |µ′ck | = qck − 1, and i �′ck ik+1 for any i ∈ µ′ck . This is due

to the facts that ck = µik+1
Pik+1

µ′ik+1
= ck+1 and µ′ being stable. Let us write Sik+1

= µ′ck

for k = 1, .., n.

Now, we will create a cycle from (i) consisting of only two schools and two students.

First, if n = 2 in the above construction, then we are done. Let us assume that n > 2. Then,

it implies that i1 �′c2 i2. As, otherwise, we would have i1 �′c1 i2 �
′
c2
i1. Now, we can shorten

our above cycle by removing school c1 and student i2. That is, we can consider the following

instead of (i) above:

i1 �′c2 i3 �
′
c3
i4..., in �′cn in+1 = i1

Therefore, we now have a cycle of reduced length by one. Moreover, from above, we know

that Si3 ⊆ S ′ \ {i2, i3} such that |Si3| = qc2 − 1 and i �′c2 i3 for any i ∈ Si3 . Moreover, as

i1 /∈ Si3 (since µ′i1 = c1 and Si3 = µ′c2), Si3 ⊆ S ′ \{i1, i3} such that |Si3 | = qc2−1 and i �′c2 i3

for any i ∈ Si3 . We can continue in the same way until we have a cycle consisting of only

two schools and two students. Therefore, at the end, we would have two schools a, b ∈ C ′

and two students i, j ∈ S such that

i �′a j �′b i.
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Moreover, by the same as above, there exist sets of students Sj, Si ⊆ S ′ \ {i, j} such that

|Si| = qb − 1, |Sj| = qa − 1, k �′a j for every k ∈ Sj, and k �′b i for every k ∈ Si. This,

however, contradicts the essential homogeneity of (�′, q), finishing the proof.

Proof of Theorem 3. We first show that ψS is at least as manipulable as ψC . To this end,

let us assume that the latter is strongly manipulable via creating fictitious students at prob-

lem (S,C, P,�, q) by school c. This means that there exists (S ′, C, P ′,�′, q) such that the

followings hold:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψCi (S ′, P ′,�′) = c or ψCi (S ′, P ′,�′) = ∅,

(v) ψCc (S ′, P ′,�′) ∩ S �c ψCc (S, P,�).

For ease of notation, let µ = ψC(S, P,�) and µ′ = ψC(S ′, P ′,�′). We first show that any

student i ∈ µ′c has higher priority than any student j ∈ µc\µ′c. For this purpose, first observe

that, for any student j ∈ µc \µ′c, c Pjµ′j (due to the well-known comparative statistics result

of Gale and Sotomayor (1985)). As µ′ is stable, it implies that any student i ∈ µ′c \ µc has

higher priority than anyone else in µc. Let us write s for the student in µ′c ∩ S having the

lowest priority at school c.

Let us consider the priority order �′′c for school c over S under which the relative ordering

of students having higher priority than s is the same as �c, and all other students are

unacceptable. We write �′′= (�′′c ,�−c). We now claim that ψCc (S, P,�′′) = µ′c ∩ S. To this

end, let us define matching µ′S as in below:

µ′Sc′ =

 µ′c′ ∩ S If c′ = c

µ′c′ otherwise

We first need to observe that µ′S is stable at (S,C, P,�′′, q). As, under µ′S, no school

other than school c is matched with a fictitious student in S ′ \ S and µ′ being stable at

25



(S ′, C, P ′,�′, q), there is no blocking pair involving a school in C \ {c}. On the other

hand, school c might have excess capacity under µ′S since we exclude its fictitious student

assignment under µ′. First, consider the students having lower priority than s. As they are

unacceptable under �′′c , they do not form a blocking pair with school c. On the other hand,

for all other students, the relative ordering under �′′c is the same as that of under �c, hence,

�′c. Therefore, as µ′ is stable at (S ′, C, P ′,�′, q), they do not form a blocking pair with school

c as well. Hence, µ′S is stable at (S,C, P,�′′, q). On the other hand, ψC(S, P,�′′) is stable

at the same problem as well. Moreover, we know that |µ′Sc | < qc (as school c is matched

with fictitious students under µ′. If it were not matched with fictitious students, then the

outcome would not change by creating fictitious students as explained in detail in the above

proof). Therefore, by the rural hospital theorem (Roth (1986)), ψCc (S, P,�′′) = µ′Sc = µ′c∩S.

In what follows, we will first think of a fictitious student manipulation scenario under

ψS and show that the part of the student-optimal stable matching over S at the artificial

problem is stable at (S,C, P,�′′, q). Then, the result will follow from the rural hospital

theorem (Roth (1986)).

Now, consider a set of students S ′′ such that S ⊂ S ′′ and |S ′′ \S| = qc. For the preference

of each fictitious student i ∈ S ′′\S, consider P̃i : c, ∅. That is, only the school c is acceptable.

We write P̃ = (P̃S′′\S, PS). Lastly, for the priority order of school c over S ′′, let us enumerate

each fictitious student k ∈ S ′′ \ S and write #k for the index of fictitious student k. Then,

the priority order of school c over S ′′, �̃c, is defined as follows:

For any i ∈ S ′′ \ S and j ∈ {k ∈ S : s �c k}, i �̃c k;

For any i ∈ S ′′ \ S and j ∈ {k ∈ S : k �c s} ∪ {s}, j �̃c i.

For any i, j ∈ S ′′ \ S, i �̃c j iff #i > #j.

The priority orders of schools c′ ∈ C \ {c} over S ′′, �̃c′ , can be anything as long as the

relative ordering over S is preserved by our supposition. Now, let us consider the artificial

problem (S ′′, C, P̃ , �̃, q). Let µ̃ = ψS(S ′′, C, P̃ , �̃, q). As only acceptable school for fictitious
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students in S ′′ \ S is school c, they can matched with only school c at µ̃. Now, consider the

following matching µ̃S:

µ̃Sc′ =

 µ̃c′ ∩ S If c′ = c

µ̃ otherwise

We now claim that µ̃S is stable at (S,C, P,�′′, q). We will follow the same steps as before

in showing the stability of µ′S. As, under µ̃, no school other than school c is matched with

a fictitious student in S ′′ \ S and µ̃ being stable at (S ′′, C, P̃ , �̃, q), there is no blocking

pair involving a school in C \ {c}. On the other hand, school c might have excess capacity

under µ̃S since we exclude its fictitious student assignment under µ̃. However, as all students

having lower priority than s are unacceptable under �′′c , they do not form a blocking pair

with school c. On the other hand, if any student k ∈ S such that k �′′c ∅ were to form

a blocking pair with school c, then µ̃ could not have been stable at (S ′′, C, P̃ , �̃, q) as the

relative ordering of such students under �̃c is the same as �′′c . Therefore, µ̃S is stable at

(S,C, P,�′′, q).

Now, we have two stable matchings µ̃S and ψC(S, P,�′′) at (S,C, P,�′′, q). Recall that

ψCc (S, P,�′′) = µ′c∩S. On the other hand, we know that |µ′c∩S| < qc. Therefore, by the Rural

hospital theorem (Roth (1986)), we have µ̃Sc = µ′c∩S. This means that µ̃c∩S �c ψS(S, P,�),

hence, ψS is weakly manipulable via creating fictitious student proof at (S,C, P,�, q) as well,

showing that ψS is at least as manipulable as ψC .

For a problem instance at which ψC is not strongly manipulable via creating fictitious

student, yet, ψS is manipulable, consider a problem consisting of S = {i, j} and C = {a, b}

with qa = qb = 1. The preference and priority order profiles are as follows:

Pi : a, b, ∅; Pj : b, a, ∅;

�a: j, i, ∅; �b: i, j, ∅.

Then, ψCa (P ) = j and ψCb (P ) = i, hence, schools do not have incentive to manipulate ψC

as they are already matched with their first choices. However, ψSa (P ) = i and ψSb (P ) = j.
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Now, let school b create fictitious student k with Pk : a, b, ∅. Assume that the new priority

orders of schools are as follows:

�′a: j, k, i and �′b: i, k, j.

Let P ′ = (Pi, Pj, Pk), then ψSb (S ′, P ′,�′) = i and ψSa (S ′, P ′,�′) = j. Hence, school b is

better off, showing the manipulability of ψS.

Proof of Lemma 1. Let us consider a problem instance (S,C, P,�, q) and stable mechanism

ψ. Assume that school c can strongly manipulate ψ at the given problem through creating

fictitious students. Let (S ′, C, P ′,�′, q) be the artificial problem including fictitious students

created by school c. By our supposition, ψ(S ′, P ′,�′)∩S �c ψ(S, P,�). For ease of notation,

let µ′ = ψ(S ′, P ′,�′).

Now let us consider the priority order �′′c over S for school c under which the relative

ordering over µ′c∩S is the same as �c, and any student who is not in µ′c∩S is unacceptable.

We write �′′= (�′′c ,�−c). Below, we define a new matching µ′′ :

µ′′c′ =

 µ′c ∩ S If c′ = c

µ′c′ otherwise

Note that, as school c strongly manipulate ψ by our supposition, µ′c′ ⊂ S for any c′ ∈

C \{c}. We now claim that µ′′ is stable at (S,C, P,�′′, q). First, there can not be a blocking

pair involving school c′ ∈ C \ {c} as, otherwise, such pair would block matching µ′ at

(S ′, C, P ′,�′, q), contradicting the stability of µ′. On the other hand, school c is not involved

in a blocking pair as any student i ∈ S \µ′′c is unacceptable under �′′c . Therefore, µ′′ is stable

at (S,C, P,�′′, q). On the other hand, ψ(S, P,�′′) is another stable matching. Then, by the

Rural hospital theorem (Roth (1984)), we know that |µ′′c | = |ψc(S, P,�′′)|. Moreover, as the

group of students µ′′c is the only acceptable ones under�′′c , we have µ′′c = ψc(S, P,�′′) = µ′c∩S.

This shows that µ′c∩S can be obtained through dropping strategy �′′c as well, which finishes

the proof.

28



Acknowledgment

I am grateful to Muriel Niederle, Parag Pathak and especially Fuhito Kojima for their

insightful comments and suggestions. I thank Tim Bresnahan.

References

Abdulkadiroglu, A. (2011): “Generalized Matching for School Choice,” mimeo.

Afacan, M. O. (2011): “Application Fee Manipulations in Two-Sided Matching Markets,”

mimeo.

——— (2012): “Group Robust Stability in Matching Markets,” Games and Economic Be-

havior, 74(1), 394–398.

Dubins, L. E. and D. A. Freedman (1981): “Machiavelli and the Gale-Shapley Algo-

rithm,” American Mathematical Monthly, 88, 485–494.

Ergin, H. I. (2002): “Efficient Resource Allocation on the Basis of Priorities,” Economet-

rica, 88, 485–494.

Gale, D. and L. S. Shapley (1962): “College Admissions and the Stability of Marriage,”

American Mathematical Monthly, 69, 9–15.

Gale, D. and M. Sotomayor (1985): “Ms. Machiavelli and the Stable Matching Prob-

lem,” The American Mathematical Monthly, 92(4), 261–268.

Hatfield, J. W., F. Kojima, and Y. Narita (2011): “Promoting School Competition

Through School Choice: A Market Design Approach,” mimeo.

29



Immorlica, N. and M. Mahdian (2005): “Marriage, honesty, and stability,” In Proceed-

ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

53–62.

Kesten, O. (2012): “On two kinds of manipulation for school choice problems,” Economic

Theory, 51(3), 677–693.

Kojima, F. (2011a): “Efficient Resource Allocation under Multi-unit Demand,” mimeo.

——— (2011b): “Robust Stability in Matching Markets,” Theoretical Economics, 6(2), 257–

267.

Kojima, F. and M. Manea (2010): “Axioms For Deferred Acceptance,” Econometrica,

78(2), 633–653.

Kojima, F. and P. A. Pathak (2009): “Incentives and Stability in Large Two-Sided

Matching Markets,” American Economic Review, 99(3), 608–627.

Pathak, P. A. and T. Sönmez (2013): “School Admissions Reform in Chicago and Eng-

land: Comparing Mechanisms by their Vulnerability to Manipulation,” American Eco-

nomic Review, 103(1), 80–106.

Roth, A. E. (1982): “The Economics of Matching: Stability and Incentives,” Mathematics

of Operations Research, 7, 617–628.

——— (1984): “The Evolution of the Labor Market for Medical Interns and Residents: A

Case Study in Game Theory,” Journal of Political Economy, 92, 991–1016.

——— (1985): “The college admissions problem is not equivalent to the marriage problem,”

Journal of Economic Theory, 36, 277–288.

——— (1986): “On the Allocation of Residents to Rural Hospitals: A General Property of

Two-Sided Matching Markets,” Econometrica, 54, 425–427.

30



Roth, A. E. and E. Peranson (1999): “The Redesign of the Matching Market for Amer-

ican Physicians: Some Engineering Aspects of Economic Design,” American Economic

Review, 89(4), 748–780.

Roth, A. E. and M. O. Sotomayor (1990): Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis, Econometric Society Monographs, Cambridge Univ.

Press, Cambridge.

Sönmez, T. (1997): “Manipulation via Capacities in Two-Sided Matching Markets,” Jour-

nal of Economic Theory, 77(1), 197–204.

——— (1999): “Can Pre-arranged Matches Be Avoided in Two-Sided Matching Markets?”

Journal of Economic Theory, 86, 148–156.

Yokoo, M., Y. Sakurai, and S. Matsubara (2004): “The effect of false-name bids in

combinatorial auctions: new fraud in internet auctions,” Games and Economic Behavior,

46(1), 174–188.

31


