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Abstract

This thesis studies repeated games with pure strategies and stochastic dis-

counting under perfect information. We consider infinite repetitions of any

finite normal form game possessing at least one pure Nash action profile. We

consider stochastic discounting processes satisfying Markov property, Martin-

gale property, having bounded increments (across time) and possessing an

infinite state space with a rich ergodic subset. We further require that there

are states of the stochastic process with the resulting stochastic discount fac-

tor arbitrarily close to 0, and such states can be reached with positive (yet

possibly arbitrarily small) probability in the long run. In this study, a player’s

discount factor is such a process. In this setting, we, not only establish the

(subgame perfect) Folk Theorem, but also prove the main result of this study:

In any equilibrium path, the occurrence of any finite number of consecutive

repetitions of the period Nash action profile, must almost surely happen within

a finite time window. That is, any equilibrium strategy almost surely contains

arbitrary long realizations of consecutive period Nash action profiles.
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Özet

Bu tez tam bilgi altında sonsuz tekrar edilen ve stokastik olarak iskonto edilen

oyunlar hakkındadır. Bu çalışmamızda içinde en az bir adet saf stratejiler-

den oluşan Nash dengesi bulunan sonsuz tekrarlı oyunları inceliyoruz. Bu

oyunlarda stokastik iskonto süreçleri Markov özelliğini ve martingale özelliğini

içeren, sınırlı artışları olan ve sonsuz bir durumlar uzayına, ve bu uzayın içinde

zengin bir ısrarlı durum uzayına sahip olan süreçlerle ilgileniyoruz. Ayrıca

bu durum uzayının 0 a çok yakın elemanları olmasını da istemekteyiz. Tüm

bu şartlar sağlandığı durumda yalnızca alt-oyun yetkin Folk teoremini değil

aynı zamanda bu çalışmanın ana sonucunu da elde etmekteyiz: hangi denge

patikası olursa olsun, o patikanın içerisinde uzun, ardışık periyodlar süresince

saf stratejilerden oluşan Nash dengesi hareketleri, neredeyse kesinlikle sonlu

bir gelecek içerisinde gözlenmek zorundadır.
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Chapter 1

Introduction

In this thesis our aim is to consider strategic interactions where a stage game,

a normal form game in which players make simultaneous choices, is played

infinitely often and the parties involved discount future returns in a stochastic

manner.

Repeated games are standard models used in analyzing strategic interac-

tions that occur repeatedly. Thus, they constitute the cornerstone of modeling

dynamic strategic relations, hence, are essential in the theory of economics.

In fact, repeated games are a certain type of simple dynamic games in which

players face the same stage game in every period. The results obtained from

infinitely repeated games depend critically on the number of repetitions and

change drastically from cases where the stage game is played a finite number

of times.

The important feature of the repeated game structure is the ability of

players to condition their actions to the past. This distinctive ability of players

1
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allows game theorists to obtain very attractive and striking results that cannot

be obtained in standard one shot games, as Robert Aumann also points out

in his Nobel Prize Lecture:

The theory of repeated games is able to account for phenom-

ena such as altruism, cooperation, trust, loyalty, revenge, threats

(self destructive or otherwise), phenomena that may at first seem

irrational, in terms of the “selfish” utility-maximizing paradigm of

game theory and neoclassical economics. That it “accounts” for

such phenomena does not mean that people deliberately choose to

take revenge, or to act generously, out of consciously self-serving,

rational motives. Rather, over the millennia, people have evolved

norms of behavior that are by and large successful, indeed opti-

mal. Such evolution may actually be biological, genetic. Or, it

may (even) be “memetic”.

Clearly, the techniques and results in repeated games are widespread not

only in the economics theory, but also in the theories of biology, finance,

operation research and political science. In order to discuss some of these

results, we need to introduce some notions that will be employed.

1.1 Payoff Notions

In finitely repeated games, the payoffs associated with the game are usually

defined as the sum of the payoffs obtained at each period. Particularly, this

notion of summing through period payoffs becomes problematic in infinitely
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repeated games as the total payoff implies an infinite sum that might not

converge to a finite value. Thus, an intuitive method of forming payoffs is to

consider discounted (i.e. geometrically weighted) summation of period returns.

However, identifying payoffs in infinitely repeated games is not restricted

to this particular method hinted above. In general, obtaining a payoff in an

infinitely repeated game involves mapping an infinite sequence of real numbers

into a single one. One may find situations in which considering simple average

returns more plausible than discounted ones. Likewise, there also may be

situations in which the payoff of the infinitely repeated game is given by the

infimum of the infinite sequence of real numbers, each of which corresponds to

some period returns. 1 Thus, one may imagine many forms of payoff notions

for infinitely repeated games.

In the literature of repeated games, the following three forms of payoff

notions are widely used: Payoffs’ description by limits of the means is consid-

ered by Aumann and Shapley (1994), overtaking criterion is due to Rubinstein

(1979) and the most common description is the discounting payoff structure

in which players’ payoffs at the end of the repeated game is the summation of

discounted stage game payoffs obtained at each stage.

1Consider a strategic interaction where two countries decide whether or not to launch
nuclear missiles toward each other at every period. In such a game it might be argued that
the above given payoff notion is plausible. This is because, any one of the parties being the
subject of a nuclear attack, even though once, is more than enough.
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1.1.1 Limits of the Means

In the limits of the means payoff notion in an infinitely repeated game, return

streams (infinite sequence of real numbers, each of which corresponds to some

return obtained in some period) are evaluated with respect to the average

returns associated in order to obtain payoffs. In other words, every period is

equally important.

The drawback of this evaluation criterion is that anything that happens

finitely often (no matter how large this finite integer may be) does not matter

at all. Clearly, such a restriction imposed by this payoff notion limits the scope

of applications to be considered. Consequently, one may even argue that such

a payoff notion makes the game somewhat pathological. To see this, consider

the following infinite sequence of real numbers: For every period up to T , the

period return is 1; and thereafter it is 0. Under the notion of limits of the

means, this sequence will be associated with a payoff 0, no matter how big T

maybe.

On the other hand, it is not difficult to think of situations, in which, deci-

sion makers put overwhelming emphasis on the long run averages rather than

the short run concerns. An extreme form of this concern is reflected with the

payoff notion of the limits of the means.

1.1.2 Overtaking

The overtaking payoff notion of an infinitely repeated game is developed by

Rubinstein (1979) in order to keep the advantages of the limits of the means

payoff notion, while overcoming its most serious shortcoming: The return
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streams are evaluated with respect to the average payoffs associated, how-

ever, this notion also emphasizes single period differences between two return

streams. In other words, this criterion also treats each period equally (i.e.

placing the priority to the long run), while allowing a single period to affect

the overall payoff structure. More details along with examples will be given in

the next chapter of this thesis.

In the literature, the payoff notions of limits of the means and overtaking

criterion is often referred to as the no discounting payoff notions.

1.1.3 Discounting

In the discounting payoff structure of repeated games, return streams are eval-

uated with respect to the discounted summation of returns. Furthermore, the

discounted summations are normalized in order to associate them with overall

payoff values.

This payoff notion does not treat periods equally, and puts greater emphasis

on returns obtained in the short run. However, long run concerns are also

present, and they can be captured under the consideration of high discount

factors.

It is important to remark that discounting is the most common payoff

structure in the literature. Moreover, the level of the discount factor is often

referred to as the patience of a particular decision maker.

Next, we wish to introduce one of the most important results in the the-

ory of economics. But before doing that, we need to define the notion of

equilibrium.
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1.2 Subgame Perfection

This concept, which is the standard notion of equilibrium in extensive form

games under perfect information, is due to Reinhard Selten, initially intro-

duced in Selten (1965) and later criticized and extended in Selten (1975).

Due to his contributions, he was awarded the 1994 Nobel Memorial Prize in

Economic Sciences (shared with John Harsanyi and John Nash).

The basic motivation for this equilibrium concept is that common knowl-

edge of rationality implies that rationality should be expected in all of the

states of the game. Informally, given what has happened in the past, agents

look forward to do the best they can from that point on, provided that they

have such a foresight in all the states of the remainder of the game.

Consequently, subgame perfection asks for each player’s plan of actions,

strategies, to be optimal starting at any given history of the game. That is,

there should not be any histories such that a player finds it optimal to deviate

from the prescribed behavior, if that behavior is subgame perfect. That is

why subgame perfection treats all histories in the same fashion, unlike Nash

equilibrium which discriminates between histories that will happen (under the

given prescribed behavior) and histories that will never be reached (often called

off the path behavior).

It needs to be pointed out that this notion of equilibrium can be used with

any of the payoff notions discussed in the previous section.



Chapter 1. Introduction 7

1.3 Folk Theorems

An important observation emerges in the analysis of infinitely repeated games:

With sufficiently patient players or under the payoff notions of no discounting,

an infinitely repeated game permits players to design a joint long run behavior,

supported by threats, which result in equilibria with socially optimal (in the

Pareto sense) outcomes. When the equilibrium notion of subgame perfection

is employed, then these threats have to be enforceable (i.e. credible). Such

threats, in turn, sustain behavior described above because in an infinitely

repeated game a player always has enough time to credibly retaliate, i.e. to

punish a deviator in an enforceable manner.

On the other hand, the subgame perfect Folk Theorem2, one of the most

hated–celebrated results in repeated games, simply displays that the above

given construction (with either sufficiently patient players or under the payoff

notions of no discounting) can be employed to support in subgame perfection

not only the Pareto optimal outcomes, but also any payoff profile that can be

obtained as a result of an individually rational behavior profile in the repeated

game. It should be pointed out that we say that a behavior is individually

rational whenever it results in a payoff vector in which each players’ payoff

exceeds the least return level that he could guarantee to himself in the stage

game. Thus, behavior that is not individually rational can never be sustained

under subgame perfection, because then the relevant player could simply de-

viate and continue even with the least payoff that he can guarantee to himself

2This name is due to the fact that there is no well defined author of the first version of
it.
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in the stage game.

It should be noticed that the payoffs that one needs to concentrate on

are the individually rational ones. This is because, as was displayed in the

previous paragraph, payoffs that are not individually rational can never be

obtained with subgame perfection.

However, the subgame perfect Folk Theorem, displays that any individually

rational payoff vector can obtained under subgame perfection with sufficiently

patient players. This, in turn, implies that game theoretic analysis of infinitely

repeated games does not have any predictive power, because anything goes.

Therefore, the subgame perfect Folk Theorem is a powerful and negative result.

Consequently, the systematic check of whether or not the Folk Theorem holds

in various settings is of great value in the theory of economics.

Subgame perfect Folk Theorems under various settings have been proven

with the limit of the means and overtaking criterion payoff notions. The most

significant of those are by Aumann and Shapley (1994), for the limits of the

means payoff notion, and Rubinstein (1979) for the overtaking criterion notion.

However, since this thesis will be concentrated on discounting, we will not put

further emphasis on no discounting payoff notions.

In infinitely repeated discounted games, Folk Theorems have been proven

under a variety of settings as well. The pioneering works on the subgame

perfect Folk Theorem in infinitely repeated discounted games was done by

Aumann and Shapley (1994) and Fudenberg and Maskin (1986), where they

showed the following: Any individual rational payoff for the one-shot game

can be achieved as the discounted, normalized payoff of the repeated game via
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the use of public randomization, a technical tool which is often interpreted

as communication among the players in the stage game. Later in Fudenberg

and Maskin (1991), it is shown that public randomization is inessential, hence

can be dispensed with, for their subgame perfect Folk Theorem. The con-

siderations of limited memory and bounded rationality, does not change this

conclusion documented by Kalai and Stanford (1988), Sabourian (1998), Barlo,

Carmona, and Sabourian (2009), Barlo, Carmona, and Sabourian (2007). Con-

sidering cases where the actions of other players are not perfectly observable,

Fudenberg, Levine, and Maskin (1994), Hörner and Olszewski (2006), Mailath

and Olszewski (2011) show that the Folk Theorem still holds. For the in-

stances when there is uncertainty about the returns of the stage game, Dutta

(1995), Fudenberg and Yamamato (2010), Hörner, Sugaya, Takahashi, and

Vieille (2010), show that the Folk Theorem still remains.

Out of these Folk Theorems, Fudenberg and Maskin (1986) and Fudenberg

and Maskin (1991) are of special interest to us. In those studies, they not

only obtain the subgame perfect Folk Theorem but also dispense with the use

of public randomization. They also develop techniques generating any indi-

vidual rational outcome exactly as a sequence of actions while the resulting

continuation values are within the neighborhood of the desired payoff level.

Furthermore, in order to sustain such sequences in the presence of unobserv-

able mixed actions, they show that a uniform level on the discount factor,

strictly below one, can be identified so that the continuation values still re-

main the same, regardless of the realized actions as long as they are in the

support of the equilibrium behavior. If any of the realized actions is not in
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the support of the permitted equilibrium behavior, punishments are triggered.

These punishments have to be credible, thus, they are constructed so that

conforming with the prescribed behavior always results in a higher (continu-

ation) payoff than the one obtained by deviating today and being punished

from thereon. Often, this construction is referred to as the enforceability of

the punishments.

1.4 Our Contributions

As discussed above, the Folk Theorems of Aumann and Shapley (1994) and Fu-

denberg and Maskin (1986) establish that payoffs which can be approximated

in equilibrium with patient players are equal the set of individually rational

ones. Players’ ability to coordinate their actions using past behavior allows

such a large set of equilibria. In turn, this vast multiplicity of equilibrium pay-

offs, considerably weakens the predictive power of game theoretic analysis. 3

An important aspect of these findings is the use of constant discounting. The

accepted interpretation of the use of discounting in repeated games, offered by

Rubinstein (1982) and Osborne and Rubinstein (1994), is that the discount

factor determines a player’s perception about the probability of the game con-

tinuing into the next period. Thus, constant discounting implies that this

3Moreover, the consideration of limited memory and bounded rationality, lack of perfect
observability of the other players’ behavior and the past, and uncertainty of future payoffs
do not change this conclusion, documented by Kalai and Stanford (1988), Sabourian (1998),
Barlo, Carmona, and Sabourian (2009), Barlo, Carmona, and Sabourian (2007); Fudenberg,
Levine, and Maskin (1994), Hörner and Olszewski (2006), Mailath and Olszewski (2011);
Dutta (1995), Fudenberg and Yamamato (2010), and Hörner, Sugaya, Takahashi, and Vieille
(2010).
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probability is independent of the history of the game, in particular, invariant.

On the other hand, keeping the same interpretation, but allowing for the

discount factor to depend on the history of the game and/or vary across time,

is not extensively analyzed in the literature on repeated games. Indeed, to our

knowledge, the only relevant work in the study of repeated games is Baye and

Jansen (1996) which considers stochastic discounting with period discounting

shocks independent from the history of the game. Related work concerning

stochastic interest rates can be found in the theory of finance, see Ross (1976),

Harrison and Kreps (1979), and Hansen and Richard (1987).

In this thesis, we consider a wide class of games with stochastic discount-

ing, when the discounting process is not independent of the past and has a

rich state space. In such a setting, we impose the restriction that players

expectation of the future discount factor is equal to the current one, and only

the current value is relevant when trying to make assertions about the future

values of the discount factor. Under this construction, we not only prove a

Folk Theorem for repeated games with stochastic discounting, but we also,

show that no matter how patient players are, every subgame perfect equilib-

rium path must entail arbitrarily long (yet, finite) consecutive repetitions of

period Nash behavior, and these consecutive periods almost surely happen in

a finite time window.

In order to present these results in full detail, the next chapter presents

the preliminaries for infinitely repeated games. Chapter 3, on the other hand,

will introduce the notion of stochastic discounting, and we will present our

contributions in chapter 4. Finally, chapter 5 concludes.



Chapter 2

Preliminaries

Let G = (N, (Ai, ui)i∈N ) be a normal form game with |N | ∈ N and, for all

i ∈ N , Ai is player i’s actions with property that |Ai| ∈ N; and i’s payoff

function denoted by ui : A → R where A =
∏

i∈N Ai and A−i =
∏

j 6=iAi.

Writing A = {a1, a2, . . . , am} let wk = u(ak). Thus, {w1, w2, . . . , wm} is the

set of payoff vectors in G corresponding to pure strategies.

Let, for all i ∈ N , Si = ∆(Ai); the set Si is the set of mixed actions

for player i. We abuse notation and let ui, for all i ∈ N , denote the usual

mixed-extension. Let S = S1 × · · · × Sn and let

u(S) = {(ui)i∈N ∈ RN : (ui)i∈N = (ui(s))i∈N for some s ∈ S}.

Let, for i ∈ N ,

vi ≡ min
s−i∈S−i

max
si∈Si

ui(si, s−i),

and let mi ∈ S be such that ui(m
i) = maxsi ui(si, m

i
−i) = vi. The number

12
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vi denotes the minmax payoff of player i in G, and mi is some action com-

bination that is an optimal punishment of player i in G. Notice that, vi is

the least payoff level that player i can guarantee to himself. Similarly, define

ūi ≡ maxs−i∈S−i
maxsi∈Si

ui(si, s−i), ūi denotes the highest returns player i can

get in the stage game.

The set of individually rational payoffs is denoted by

U = {u ∈ co (u(A)) : ui ≥ vi for all i ∈ N} ,

and the set of strictly individually rational payoffs by

U0 = {u ∈ co(u(A) : ui > vi for all i ∈ N}.

The supergame Ḡ consists of an infinite sequence of repetitions of G taking

place in periods t = 0, 1, 2, 3, . . . . Moreover, we denote N0 = N ∪ {0}.

Thus, for k ≥ 1, a k−stage history is a k−length sequence h̄k = (a1, . . . , ak),

where, for all 1 ≤ t ≤ k, at ∈ A; the space of all k−stage histories is H̄k, i.e.,

H̄k = Ak (the k−fold Cartesian product of A). We use ē for the unique 0–stage

history, it is a 0–length history that represents the beginning of the supergame.

The set of all histories is defined by H̄ =
⋃∞

n=0 H̄n.

For every h̄ ∈ H̄ , define h̄r ∈ A to be the projection of h̄ onto its rth

coordinate. For every h̄ ∈ H̄, we let ℓ(h̄) denote the length of h̄. For two

positive length histories, h̄ and h̄′ in H̄ , we define the concatenation of h̄ and

h̄′, in that order, to be the history (h̄ · h̄′) of length ℓ(h̄) + ℓ(h̄′): (h̄ · h̄′) =

(h̄1, h̄2, . . . , h̄ℓ(h̄), h̄′1, h̄′2, . . . , h̄′ℓ(h̄′)). We follow the convention that, ē · h̄ =
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h̄ · ē = h̄ for every h̄ ∈ H̄.

Remember that, we assume that the game has perfect information, in other

words, we assume that at stage k each player knows h̄k. Regarding strategies,

players employ behavioral strategies, that is, in each stage k, they choose a

function from H̄k−1 to Ai, denoted f̄k
i , for player i ∈ N . The set of player

i’s strategies is denoted by F̄i, and F̄ =
∏

i∈N F̄i is the joint strategy space.

Finally, a strategy vector is f̄ =
({

f̄k
i

}∞

k=1

)

i∈N
.

Given an individual strategy f̄i ∈ F̄i, and a history h̄ ∈ H̄ we denote the

individual strategy induced at h̄ by f̄i|h̄. This strategy is defined pointwise

on H̄ : (f̄i|h̄)(h̄′) = f̄i(h̄ · h̄′), for every h̄′ ∈ H̄. We will use (f̄ |h̄) to denote

(f̄1|h̄, . . . , f̄n|h̄) for every f̄ ∈ A and h̄ ∈ H̄ . We let F̄i(f̄i) = {f̄i|h̄ : h̄ ∈ H̄}

and F̄ (f̄) = {f̄ |h̄ : h̄ ∈ H̄}.

Any strategy f̄ ∈ F̄ induces an outcome π̄(f̄) ∈ A∞ as follows: π̄1(f̄) =

f̄(ē), π̄k(f̄) = f̄(π̄1(f̄), . . . , π̄k−1(f̄)), for k ∈ N. Letting A∞ = A× A× · · · ,

we have defined a function π̄ : F̄ → A∞, which gives the outcome induced by

any strategy.

2.1 Payoff Notions in Repeated Games

Suppose that, Ūi : S
∞ → R represents the preference relation of player i on

S∞. We now can define the notions of Nash and subgame perfect equilibrium.

Note that, when required we abuse notation letting,

Ūi(f̄) = Ūi(π̄(f̄)).
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Definition. A strategy vector f ∈ F is a Nash equilibrium of Ḡ if for

all i ∈ N , Ūi(f̄) ≥ Ūi(f̄ ′
i, f̄−i) for all f̄ ′

i ∈ F̄i. A strategy vector f̄ ∈ F̄ is a

subgame perfect equilibrium of Ḡ if every f̄ ∈ F̄ (f̄) is a Nash equilibrium.

We will be working with three notions of returns in the supergame Ḡ.

The first two are the no-discounting cases, and there the notion of limits of

the means, and overtaking criterion, will be introduced. The final one is the

discounting case, where all the agents discount future returns.

Definition (Limits of Means). The limit of means payoff in the supergame

of G, Ḡ for a given π̄ ∈ S∞ is

Ūi(π̄) = lim
T→∞

inf
1

T

T
∑

t=1

ui(π̄
t).

The logic behind the limits of means criterion is that, most research dealing

with non-discounted supergames assume that, players try to maximize their

average payoffs. More precisely, if π̄ and π̄′ are both outcome paths then,

player i’s strict preference ordering ≻i is assumed to be

π̄ ≻i π̄
′ ⇔ lim

T→∞
inf

1

T

T
∑

t=1

(ui(π̄
t)− ui(π̄

′t)) > 0.

Limit inferior is used instead of the regular limit notion, as only a bound on

the “limit” of the payoff stream is necessary. Technically, limit inferior always

exists since the payoffs are real numbers, whereas, the existence of a limit is

not guaranteed, the (averaged) stream itself may as well be unbounded.

The drawback of the evaluation criterion is that, anything that happens in a
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finite time interval does not matter at all. The sequence (0, 0, . . . , 0, 1, 1, 1, . . .),

in which M zeros are followed by a constant sequence of 1’s, is preferred by

the limit of means criterion to (1, 0, 0, . . . ), for every value of M , no matter

how large M is.

Due to the shortcomings of the limit of means criterion, we now will intro-

duce the other no-discounting payoff, Ramsey/Weiszacker overtaking criterion.

The most famous paper pioneering in the analysis of infinitely repeated games

with these two criteria is Rubinstein (1979), which is based on Roth (1976).

Definition (Overtaking). The overtaking criterion in the supergame of G,

Ḡ is a preference relation ≻o defined by: for any outcome paths π̄, π̄′ ∈ A∞

π̄ ≻o
i π̄

′ ⇔ lim
T→∞

inf

T
∑

t=1

(ui(π̄
t)− ui(π̄

′t)) > 0

.

The overtaking criterion is considered to be a stronger version of the limit

of means criterion. Therefore, all the results relating to equilibria with the

overtaking criterion would also hold for the limit of means criterion.

According to the overtaking criterion, the sequence (−1, 2, 0, 0, . . .) is pre-

ferred to (0, 0, . . .), but the two sequences are indifferent according to the limit

of means criterion. On the other hand, the sequences (1,−1, 0, 0, . . .) and

(0, 0, . . .) are indifferent according to both criteria.

The following gives a representation of preferences over a given outcome

path π ∈ A∞ with discounting, using a common discount factor δ ∈ [0, 1).

Definition (Discounting). The discounting payoff in the supergame of G,
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Ḡ is, for δ ∈ [0, 1), for a given π̄ ∈ A∞ is the discounted sum of stage game

payoffs:

Ū δ
i (π̄) = (1− δ)

∞
∑

k=1

δk−1ui(π̄
k).

Clearly, defining V̄i : A
∞ → R by

V̄i(π̄) = (1− δ)

∞
∑

k=1

δk−1ui(π̄
k).

Note that, we have Ūi = V̄i ◦ π̄. For π̄ ∈ A∞, k ∈ N, and i ∈ N , we let

V̄ k
i (π) = (1− δ)

∞
∑

t=k

δt−kui(πt),

be called the player i’s value function in date k under π̄, and it denotes the

continuation payoff of player i, starting from period k, under π̄ ∈ A∞.

To see more about the distinction of these three concepts consider the

following examples: The sequence (1,−1, 0, 0, . . .) is preferred for any δ ∈ [0, 1)

to the sequence (0, 0, . . .). However, according to the other two criteria, the

two sequences are indifferent. Finally, the sequence (0, 0, . . . , 0, 1, 1, 1, . . .), in

which M zeros are followed by a constant sequence of 1’s, is preferred by the

limit of means criterion to (1, 0, 0, . . . ) for every value ofM . On the other hand,

for every δ ∈ [0, 1), there exists M∗ large enough, so that for all M > M∗, the

latter is preferred to the former according to the discounting criterion for the

fixed value of δ.
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2.2 Folk Theorem Without Public Random-

ization

In this section, we will focus on the Folk Theorem without Public Random-

ization of Fudenberg and Maskin (1991). The proof of this essential result is

included in this thesis because that we will be using some of the ingredients of

the proof in our constructing, hence, would like to present them in full detail

Theorem (Folk Theorem Without Public Randomization). Consider an n-

player game, in which public randomization is not available and only the play-

ers’ choice of actions are observable, assume that the dimension of U0 is equal

to n. Then, for any u = (u1, u2, . . . , un) ∈ U0, there is a δ < 1 such that for

all δ ∈ (δ, 1), there is a subgame perfect equilibrium of the infinitely repeated

game with discount factor δ, in which the discounted average payoffs are u.

Proof. Consider u′ in the interior of U0 such that u′
i < ui for all i. Take ρ > 0

such that for all players i the vector u′(i) = (u′
1 + ρ . . . u′

i−1 + ρ, u′
i, u

′
i+1 +

rho, . . . , u′
n + ρ) is in U0. Furthermore, set u′(0) = u Let wj

i = ui(m
j) be

player i’s period payoff when j is being punished with mj . Choose ε > 0 such

that for all i and j, ε < u′
j and −wj

i <
u′

i
−ε

u′

i

(ρ − wj
i ). Then, by the Lemma

presented below, there exists some δε such that for all δ > δε and each i, there

exists deterministic sequences {ai(t, δ)}, whose average discounted payoffs are

u′
i, and whose continuation payoffs are within ε of u′

i.

Lemma. For any ε > 0, there exists δε such that for all δ ≥ δε, and every

u ∈ U0 with ui ≥ ε for all i, there is a deterministic sequence of pure strategies
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whose discounted average payoffs are u, and whose continuation payoffs at each

time t are within ε of u.

Proof. Given any u in U0, and ε > 0, let ε′ = ε/4. Let B(u, ε′) = {u′ ∈ U0 :

‖u′ − u‖ < ε′} be the ball of radius ε′ centered at u. Let Z be a polygon with

vertices {zl} such that: (i) each zl is within 2ε′ of u, (ii) every u′ ∈ B(u, ε′)

can be expressed as a convex combination of {zl}, and (iii) each zl can be

expressed as
∑

k = 1mλk(l)wk, where each weight λk(l) is a rational number

between zero and one, and the weights sum to 1. Since the weights are rational,

one can find integers c and {rk(l)}mk=1 such that for all l and k, λk(l) = rk(l)/c.

Let cycle l be the c-period sequence of pure strategies, in which a1 is played

for the first r1(l) periods, a2 is played for the first r2(l) periods and so on.

Let zl(δ) be the average discounted payoff of cycle l. Using the algoritmh of

Sorin (1986) (which is also their lemma 1) with zl(δ), they verify that they

can generate each u′ ∈ B(u, ε′) by a sequence zl(δ)′s for δ > 1 − 1/m. Now,

for any given u′ each of these cycles are of length c, and each zl(δ) is in 3ε′

of u′. Then, for all u ∈ U0 and all ε > 0 there is a δ < 1 such that for all

δ > δ, and all u′ ∈ B(u, ε/4), there is a deterministic sequence whose payoffs

are equal to u′ and whose continuation payoffs at each date are within ε of u

and u′.

Now, consider the set Q = {u ∈ U0 : ui ≥ ε for all i}. The collection

B =
⋃

u∈Q B(u, ε/4) is an open cover of Q and Q is compact, therefore, B has

a finite subcover. Using that subcover, let δε be the maximum of associated

δ′s. Then, for all u ∈ Q, there is a deterministic sequence with properties

asserted by lemma.
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Choose δ > δε such that for all δ > δ, there exists an integer N(δ) such

that for all i and j, the following holds:

(1− δ)ūi + δN(δ)+1u′
i < u′

i − ε

(1− δ)ūi + δN(δ)+1u′
i < (1− δN(δ))wj

i + δN(δ)(u′
i + ρ)

(1− δ)ūi + δN(δ)+1u′
i < (1− δ)wj

i + δ(u′
i + ρ)

If there is more than one such integer, let N(δ) be the smallest. Now, consider

the following strategy for player i:

(A) Begin by playing the sequence {a0i (t, δ)}, and continue to do so as long

as {a0(t, δ)} was played the previous period or at least two players deviated

that period.

(Bj) Play mj
i for N(δ) periods, if player k unilaterally chooses an action

outside the support of mj
i , go to phase Bk, ignore simultaneous deviations.

(Cj) At the end of phase Bj switch to phase Cj , which requires further

explanation. Observe that, in the presence of mixed minmax strategies, the

payoffs of Bj will be a random variable. Let rji be the player i’s discounted

average payoff during phase Bj . Furthermore, set

zji =







rji (1− δN(δ))/δN(δ) i 6= j

0 i = j.

Let {a(t, δ, {zji })} be a deterministic sequence that results in the payoffs (u′
i+

ρ− zj1, . . . , u
′
j−1 + ρ− zjj−1, u

′
j, u

′
n + ρ− zjn, u

′
n + ρ− zjn), with the continuation

values being in ε neighborhood of these values. Now, we are ready to define
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the strategy at (Cj).

(Cj) Play {ai(t, δ, {z
j
i })} unless player k unilaterally deviates, in which case

go to (Bk). Observe that, by the construction of (Cj), each player i 6= j is

indifferent among all actions during punishment phase (Bj). His continuation

payoff is equal to δN(δ)(ui + ρ) regardless of the actions realized.

Now, due to the selection of δε, deviating at phase (A) then conforming

gives a continuation value strictly less than u′
i − ε. If a player who is being

punished deviates during phase (B), he receives δ · δN(δ)u′
i, which is strictly

less than δN(δ)u′
i, the punishment payoff. If a player i deviates from phase

Bj , again the selection of δε ensures that deviating results in a strictly worse

payoff. Finally, if a player i deviates at (Ck), deviation will result in a payoff

strictly less than u′
i − ε. Therefore, no player will find it profitable to deviate

at any date of any phase. Now, the only thing to show is the existence of

the sequences of actions used in (Cj). Now, consider the sequence {(εn, δn)},

where εn tends to 0 and δn tends to 1. Then, rearranging the equations used

in identifying δε, we reach

δN(δ)+1 < (u′
i − ε− (1− δ)ūi)/u

′
i.

However, when εn tends to 0 and δn tends to 1, the right-hand side tends to

1, implying δ
N(δn)
n ≈ 1 for n sufficiently large similarly, zji ≈ 0 and ρ− zji > 0.

Moreover, for large n the payoffs are in the interior of U0, and bounded away

from the axes by at least εn. Now, using the lemma presented earlier ascertains

the existence of {ai(t, δ, {z
j
i })}, as was to be shown.
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Stochastic Discounting

The accepted interpretation of the use of discounting in repeated games, offered

by Rubinstein (1982) and Osborne and Rubinstein (1994), is that the discount

factor determines the probability of the strategic interaction surviving into

the next period. Thus, constant discounting implies that this probability is

independent of the history of the game, in particular, invariant. Keeping

the same interpretation, but allowing for the discount factor to depend on

the history of the game and/or vary across time, results in the consideration

of stochastic discounting, which in fact, is not extensively analyzed in the

literature on repeated games.

Particularly, a tangible set of applications of repeated games can be found

in industrial organization settings. In such settings, firms can invest at the

present rate of interest to obtain principal and interest tomorrow. Thus, in

such settings a natural interpretation of the discount factor would be 1
1+rt

,

where rt is the real interest rate between the periods t and t + 1. Under such

22
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a construction, the use of a constant discount factor would imply the interest

rates to be restricted to fixed constants. Clearly, one can easily see that a

model with the interest rate varying over time has more appeal. Surprisingly,

most of the results in the existing literature assume the discount factor be

deterministic. In order to formally represent time preferences with discount

factors (interest rates) that may vary over time, the one-shot discount factors

need to be a Stochastic Process.

This chapter introduces and presents the specifics of the construction of the

stochastic discounting that we will employ. It is appropriate to mention that,

in order to render a formal treatment, we have to go over some mathematical

concepts of the theory of probability.

3.1 Related Concepts in Probability Theory

Before defining how a stochastic discounting process is constructed, let us re-

view a few concepts in probability theory.

Definition (σ − algebra). Given a set Ω and its power set 2Ω, a set F ⊆ 2Ω

is a σ − algebra over Ω if (i)F is non-empty, (ii)for all A ∈ F , Ac ∈ F , and

(iii) for all countable collections {A1, A2, . . . , } in F , A1∪A2∪ . . . is in F . An

ordered pair (Ω,F), where F is a σ − algebra over Ω is called a measurable

space.

Definition (Measure). Given a set Ω and a σ−algebra, F of Ω, a function P :

F → R is called a measure if (i) P(E) ≥ 0 for all E ∈ F , (ii) for all countable

collections {Ei}i∈I of pairwise disjoint sets, P(
⋃

i∈I Ei) =
∑

i∈I P(Ei), and
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(iii) P(∅) = 0.

Definition (Probability Space). In probability theory, a probability space for

a probabilistic experiment(random variable) is a triple (Ω,F ,P), where Ω

denotes the set of outcomes of the probabilistic experiment, F denotes the

σ− algebra of Ω, the collection of all the events that are considered, and P is

a function, measuring the probability of an event.

Let us remind that P : F → [0, 1]. An event is considered to have happened

when the outcome is a member of the event. An outcome can be a member in

more than one events.

Definition (Measurable Function). Given two measurable spaces, (Ω,F) and

(S,B), a function X : Ω → S is called a measurable function if X−1(E) ∈ F

for every E ∈ B.

Definition (Random Variable). Given a probability space (Ω,F ,P) and a

measurable space (S,B), a random variable X : Ω → S is a measurable func-

tion.

Definition (Stochastic Process). Given a probability space (Ω,F ,P) a stochas-

tic process {Xt}t is a collection of random variables {Xt : t ∈ T}, where the

index t belongs to the index set T .

Definition (Filtration). Given a probability space (Ω,F ,P) and a stochastic

process {Xt}t, a filtration is a collection of sub-σ−algebras of the σ−algebra

F such that if s ≤ t, Fs ⊂ Ft, and Xt is Ft measurable.
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Definition (Martingale Process). A process {Xt}t with a filtration {Ft}t sat-

isfies the martingale property if E (Xt|Fs) = Xs for all s ≤ t.

Definition (Markov Process). A process {Xt}t with a filtration {Ft}t satisfies

the Markov property if P(Xt+s ∈ B|Ft) = P(Xt+s ∈ B|Xt) for all s, t ∈ T .

With these theoretical preliminaries, we might say more about a stochas-

tic discounting process. Starting from the very basics, since for any kind of

discounting we must have δ ∈ (0, 1), the stochastic discounting processes we

consider also must have Ω ⊆ (0, 1).

The information of the players regarding the realizations of the stochastic

process can be captured by the filtration construction. If a random variable

is measurable in some σ − algebra, its value is known at that σ − algebra.

Furthermore, since the filtration is a collection of growing sets, at any Ft all

the values of X0, X1, . . . , Xt are known.

The martingale property, although not essential, is a nice property because

if we were to consider models in industrial organization where the decision

makers are firms and discount factors are inverse interest rates, the martingale

property is equivalent to a no-arbitrage condition. 1

The Markov property is a technically nice property. In repeated games,

the critical point is that players face the same continuation game at every

period. Without the Markov property, even in cases where the realizations in

two different periods are equal, players would have to face different situations

as the entire history of the process would be important. Thus, making the

1The usage of martingales as a notion of arbitrage free market conditions is common
practice in the theory of finance, documented by Harrison and Kreps (1979)
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analysis significantly difficult. Moreover, even tough the Markov property is

limiting, the efficient-market hypothesis of Fama (1970) lays the theoretical

framework, and provides empirical evidence supporting the use of Markovian

Models in Economic Analysis.

A stochastic discounting process is a stochastic process {dt}t, with an

outcome space Ω ⊆ (0, 1), and a suitable filtration {Ft}t. dt denotes the

discount factor from period t to period t + 1. Similar to the convention of

taking the n-th power of the discount factor for evaluating future returns, the

stochastic discount factor from period t to period τ , with τ > t, is defined by

multiplying the respective random variables,
∏τ−1

s=t ds.

3.2 An Example: Stochastic Discounting via

Polya’s Urn

A well known example of a stochastic process, that is a good candidate for

being a stochastic discounting process, is the normalized beta–binomial distri-

bution with two dimensions, more commonly known as the Polya’s urn scheme.

Define {dt}t as follows: Without loss of generality, let d0 = δ̂ be a rational

number in (0, 1). Thence, δ̂ = g

g+b
for some g, b ∈ N, where g is interpreted

as the number of “good”, b as the “bad”, balls in the urn. A ball is drawn

randomly, and is put back into the urn along with a new ball of the same

nature, and this process is repeated in each round. Thus, the support of

d1 is { g+1
g+1+b

, g

g+1+b
} where the first observation happens with probability d0.

Inductively, for any t > 1 given dt−1 (a realization of dt−1) the support of dt
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equals { g+k+1
g+b+t

, g+k

g+b+t
} where k ≤ t denotes the number of good balls drawn up

to period t and the first element of this support is drawn with a probability

given by dt−1.

Figure 3.1 illustrates how the process proceeds starting from an initial value

of 6
10

and displays the possible states reachable in 3 turns.
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Figure 3.1: Polya Tree

In figure 3.1, the urn initially contains 6 good balls and 4 bad balls. Then,

a ball randomly drawn from the urn will be a good ball with 6
10

probability,

and a bad ball with 4
10
. Suppose we draw a good ball in the first turn, and

as dictated by the mechanism we put the good ball back in together with

a new good ball. Then, there will be 7 good balls in the urn and 11 balls

total, and the resulting ratio will be 7
11
. From this state, we will repeat the

experiment, but this time the probability of drawing a good ball will be 7
11
,

and the probability of drawing a bad ball will be 4
11
. Suppose this time we

draw a bad ball, and we return the bad ball to the urn with a new bad ball.

Then, there will be 7 good balls in the urn and 12 balls total. Our new state
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will be 7
12
. From this state, we will repeat the same experiment again, but this

time the probability of drawing a good ball will be 7
12
, and the probability of

drawing a bad ball will be 5
12
; which essentially means that in the next period,

the state will be 8
13

with probability 7
12
, and it will be 7

13
with probability 5

12
.

Given any initial value in δ̂ ∈ (0, 1) ∩ Q, a Polya scheme has some very

nice properties, which makes it a good candidate for a stochastic discounting

process. First of all, observe that the process is defined as the number of

good balls over the number of total balls. Hence, it is easy to verify that

the only possible outcomes in the process are in (0, 1) ∩ Q. In other words,

Ω ⊆ (0, 1)∩Q. Furthermore, the process in the numerator, the number of good

balls, obviously satisfies the Markov property, since the number of good balls

can only increase by one or remain the same at any given period, regardless of

the history of the process. On the other hand, the process in the denominator

is a degenerate random process, it just increases by one at every period. Hence,

Polya scheme is also Markovian. 2 The Polya process also satisfies the other

nice property, it is a martingale process. Suppose at any time t ∈ N0 there are

g good balls, and b bad balls in the urn. Then, the value of the process will be

2In some sources, the Polya scheme is defined directly by the rational number obtained
from the ratio (of the number of good balls over the number of total balls). That is, such
definitions do not distinguish between having 1 good ball among 2 and having 50 good balls
among 100. Consequently the Markov property does not hold when such a definition is
employed. On the other hand, the same stochastic process can be defined by the number
of good balls divided by the total number of balls, where the information kept consists of
the number of good balls and the number of total balls. Then, the process is a Markovian
martingale. To see this, observe that a stochastic process defined by the number of good
balls is clearly Markovian, and it is a martingale with respect to 1 divided by the number
of total balls. For more information about martingales with respect to a specific filtration
we refer the reader to Karlin and Taylor (1975)
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g

g+b
= dt. Hence, the expected value of the process at time t + 1 is equal to:

E (dt+1|Ft) =
g

g + b

g + 1

g + b+ 1
+

b

g + b

g

g + b+ 1
=

g

g + b
.

Now, since time is discrete in the Polya Scheme, just showing one period ahead

is sufficient to show the martingale property. 3 Furthermore, even tough the

process may seem prone to snowballing, it will never become a degenerate

process. In fact, the probability of reaching from any rational number in (0, 1)

to another rational number in (0, 1) is always positive (although it might take

some time). In other words, the entire outcome space of Polya is ergodic. This

is also easy to verify because the support of dt equals { g+k+1
g+b+t

, g+k

g+b+t
}, where

k ≤ t and for any t ∈ N the probability that k = n for any n ≤ t is strictly

positive. Hence, the normalized negative binomial process constitutes a good

example of a stochastic discounting process.

3For more information on discrete time Martingales, we refer the reader to Williams
(1991).
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Awaiting the Almost Inevitable

The Folk Theorems of Aumann and Shapley (1994) and Fudenberg and Maskin

(1986) establish that payoffs, which can be approximated in equilibrium with

patient players are equal the set of individually rational ones. The main rea-

son for this observation is players’ ability to coordinate their actions using

past behavior. In turn, this vast multiplicity of equilibrium payoffs, consid-

erably weakens the predictive power of game theoretic analysis. Moreover,

the consideration of limited memory and bounded rationality, lack of perfect

observability of the other players’ behavior and the past, and uncertainty of fu-

ture payoffs do not change this conclusion, documented by Kalai and Stanford

(1988), Sabourian (1998), Barlo, Carmona, and Sabourian (2009), Barlo, Car-

mona, and Sabourian (2007); Fudenberg, Levine, and Maskin (1994), Hörner

and Olszewski (2006), Mailath and Olszewski (2011); Dutta (1995), Fudenberg

and Yamamato (2010), and Hörner, Sugaya, Takahashi, and Vieille (2010). An

important aspect of all these findings is the use of constant discounting. The

30
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accepted interpretation of the use of discounting in repeated games, offered by

Rubinstein (1982) and Osborne and Rubinstein (1994), is that the discount

factor determines a player’s probability of surviving into the next period. Thus,

constant discounting implies that this probability is independent of the history

of the game, in particular, invariant.

On the other hand, keeping the same interpretation, but allowing for the

discount factor to depend on the history of the game and/or vary across time,

is not extensively analyzed in the literature on repeated games. Indeed, to our

knowledge, the only relevant work in the study of repeated games is Baye and

Jansen (1996), which considers stochastic discounting with period discounting

shocks independent from the history of the game. Related work concerning

stochastic interest rates can be found in the theory of finance, see Ross (1976),

Harrison and Kreps (1979), and Hansen and Richard (1987).

This thesis studies repeated games with pure strategies and common stochas-

tic discounting under perfect information. We consider infinite repetitions of

any finite normal form game possessing at least one pure Nash action pro-

file. We require the stochastic discounting process to to satisfy the following:

(1) Markov property, (2) Martingale property, (3)to have bounded increments

(across time) and to possess a denumerable state space with a rich ergodic

subset, (4) there are states of the stochastic discounting process that are ar-

bitrarily close to 0, and such states can be reached with positive (yet possibly

arbitrarily small) probability in the long run. In this setting, we, not only es-

tablish the (subgame perfect) Folk Theorem, but also prove the main result of

this study: Under any subgame perfect equilibrium strategy, the occurrence of
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any finite number of consecutive repetitions of the period Nash action profile,

must almost surely happen within a finite time window. That is, any equilib-

rium strategy almost surely contains arbitrary long realizations of consecutive

period Nash action profiles. In other words, every equilibrium outcome path

almost surely involves a stage, i.e. the stochastic process governing the one–

shot discount factor possesses a stopping time, after which long consecutive

repetitions of the period Nash action profile must be observed. Considering

the repeated prisoners’ dilemma with pure strategies and stochastic discount-

ing, our results display that: (1) the subgame perfect Folk Theorem holds;

and, (2) in any subgame perfect equilibrium strategy for any natural num-

ber K, the occurrence of K consecutive defection action profiles must happen

almost surely within a finite time period.

The fundamental reason of our main result is captured by a significant

phrase to be found on page 101 of Williams (1991): “Whatever always stands

a reasonable chance of happening, will almost surely happen – sooner rather

than later.” Indeed, due to the restrictions on the stochastic processes we

prove that for any ε > 0, the one–shot discount factor must fall below ε in

a finite time period almost surely. Then, given any natural number K, the

restriction of bounded increments enable us to identify the level of ε (via the

use of K) so that: In any equilibrium path, the one–shot discount factors

cannot exceed a certain threshold even when K+1 consecutive “good” shocks

are realized. Hence, the occurrence of K consecutive repetitions of the period

Nash action profile, must almost surely happen within a finite time window

under any subgame perfect strategy.
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In order to see why the subgame perfect Folk Theorem holds, first, no-

tice that due to restricting attention to perfect information and stochastic

processes with the Markov property, given any history of shocks, players eval-

uate future payoffs with their expected discount factors and the conclusions

of Abreu (1988) applies. Moreover, we show that the following observation

holds regarding players’ expectations for future discount factors: In any pe-

riod t with any given history of shocks up to that period, each player evaluates

future return streams at least as much as a player using a constant discount

factor obtained from the same shocks. That is, each player’s expectation of

the discount factor from period t into period τ , τ > t, is not less than the

discount factor from t into t+1 raised to the power of τ − (t+1). Hence, one

may approximate a given strictly individually rational payoff vector by con-

structing a simple strategy profile (supporting that payoff vector via period–0

expectations) and working with its extensions to our setting.

The literature on stochastic discounting in repeated games is surprisingly

not very rich. A significant contribution in that field is Baye and Jansen

(1996). Their study considers a form of stochastic discounting with no strin-

gent restrictions on the values that one–shot discount factor can take, and,

the distribution of one–shot discount factors may depend on the time index.

However, such a distribution in a particular period is independent from the

past distributions. Moreover, they identify two significant cases: The first,

when the one–shot discount factor is realized before the actions in the stage

game are undertaken; the second, when the actions need to be chosen before

the one–shot discount factor is realized. They prove that the Folk Theorem
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holds with in the latter case. They also establish that in the first case, “a full

folk theorem is unobtainable... since average payoffs on the efficiency frontier

are unobtainable as Nash equilibrium super–game payoffs”.

Our formulation involves the stochastic discount level in a period t, δt+1
t ,

being common knowledge among the players in period t before they choose ac-

tions. Thus, apart from the beginning of the game our formulation corresponds

to the case in Baye and Jansen (1996) where “... players choose actions in each

period after having observed the current discount factor”. In this setting, as

was mentioned above, they show that the (full) Folk Theorem “...breaks down;

payoffs on the boundary of the set of individually rational payoffs are unob-

tainable as Nash equilibrium average payoffs to the supergame.” However, it

is important to emphasize the following: (1) Their stochastic discounting for-

mulation involves a common discount factor determined by a random variable

distributed independently from the history of the game; and (2) While our

formulation necessitates (due to the use of stochastic processes) the period 0

discount factor to be deterministic, the failure of the Folk Theorem shown in

the setting of Baye and Jansen (1996) is primarily due to the action profile

chosen in period 0 being a function of the random period 0 discount factor

(drawn before the period 0 action is chosen).

There is a number of notable contributions in the context of stochas-

tic games. Indeed, recent studies by Fudenberg and Yamamato (2010) and

Hörner, Sugaya, Takahashi, and Vieille (2010) generalize the Folk Theorem of

Dutta (1995) for irreducible stochastic games with the requirement of a finite

state space. Our setup can be expressed as an irreducible stochastic game
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where each players’ discounting is constant, yet their payoffs are all obtained

from a (stochastic) scalar, and the actions chosen have no bearing on the fu-

ture payoffs. Indeed, ours is a particular irreducible stochastic game with an

infinitely rich state space, hence these Folk Theorems do not apply.

It is important to point out that the two theorems presented in this study

are two distinct observations. The first concerns the inevitable state that the

stochastic discount factor must almost surely reach in far future; the reasons

why the inevitable state that the stochastic discount factor must almost surely

reach in far future is not reflected in date zero evaluations of future payoffs, are

the martingale property and the linearity of players payoff functions. There-

fore, the first result should not be interpreted as an “Anti–Folk Theorem”.

It displays that when players use stochastic discounting, one should not be

surprised to observe long consecutive repetitions of Nash behavior in the far

yet foreseeable future, no matter how patient players were in the initial stages

of the repeated interaction.

On the other hand the second theorem in our study concerns state contin-

gent plans of actions, formulated and evaluated with the information available

at date zero. Therefore the small possibilities of future shocks do not impact

the expected returns evaluated at the beginning. In other words our Folk The-

orem says that when players are sufficiently patient at the beginning of the

game (they are expected to be just as patient in the future due to martingale

property) any strictly individual payoff vector can be approximately obtained

(with date zero expectations) under subgame perfection. 1

1This Folk Theorem is one that concerns a special class of irreducible stochastic games
with infinitely many states.
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The organization of this chapter is as follows: The next section will present

the basic model, notation and definitions and, some preliminary yet important

results. In section 2 we characterize the set of subgame perfect equilibrium

payoffs and the principle of one deviation. In section 3 we will present and

prove the main theorem of this thesis. Finally, in section 4, we will find an

anology between regular repeated games and their stochastically discounted

brethren, and present our Folk Theorem for repeated games with stochastic

discounting.

4.1 Notations and Definitions

Let G = (N, (Ai, ui)i∈N) be a normal form game with |N | ∈ N and for all

i ∈ N , Ai is player i’s actions with property that |Ai| ∈ N; and i’s payoff

function denoted by ui : A → R where A =
∏

i∈N Ai and A−i =
∏

j 6=iAi.

For what follows, we assume some structure on the set of actions in G and

also that it has a pure strategy Nash equilibrium:

Assumption 1. G = (N, (Ai, ui)i∈N) is such that there exists a∗ ∈ A with the

property that for all i ∈ N , ui(a
∗) ≥ ui(ai, a

∗
−i) for all ai ∈ Ai.

For any i ∈ N denote respectively the (pure strategy) minmax payoff and a

(pure strategy)minmax profile for player i by vi = mina−i∈A−i
maxai∈Ai

ui(ai, a−i)

and the associated action profile by mi ∈ argmina−i∈A−i
maxai∈Ai

ui(ai, a−i).

The set of individually rational payoffs is denoted by

U = {u ∈ co (u(A)) : ui ≥ vi for all i ∈ N} ,
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the set of strictly individually rational payoffs by

U0 = {u ∈ co(u(A) : ui > vi for all i ∈ N}.

The supergame of G consists of an infinite sequence of repetitions of G

taking place in periods t = 0, 1, 2, 3, . . . . Let N0 = N ∪ {0}.

In every period t ∈ N0, a random variable, dt, is determined. The following

summarizes the assumptions needed, which allows for a wide class of random

variables:

Assumption 2. {dt}t∈N0
is a stochastic process satisfying the following:

1. Markov property;

2. martingale property;

3. the state space Ω of dt, is a subset of (0, 1) with infinitely many elements;

4. given the state space Ω of dt, the set of ergodic states, denoted by ΩE, is

dense in Ω;

5. dt is such that for any ε > 0, there exists τ ≥ t with Pr (dτ < ε | Ft) > 0;

6. for any given state ω ∈ Ω ⊆ (0, 1), the set of states ω′ ∈ Ω that are

reachable from ω in a single period and satisfying ω < ω′, denoted by

R(ω), is finite. Moreover, for any ω, ω′ ∈ Ω with ω′ > ω, supR(ω′) ≥

supR(ω);

7. d0 is non-stochastic.
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The first two parts of Assumption 2 imply not only that the best guess

about the future depends only on the current value of the stochastic process,

but also that this best guess is equal to the current value.

The third and fourth parts of Assumption 2 imply that the set of values

that are reachable both in the long run and in the short run are large, but

bounded. That is, the set of aperiodic and non-transient states of dt must be

dense in the state space, which is a subset of (0, 1).

In the fifth part of Assumption 2 we require that there are states of the

stochastic process arbitrarily close to 0, and such states can be reached with

positive, but possibly arbitrarily small, probability in the long run. It is es-

sential to note that when the state space of the process is finite, then the fifth

part of our assumption cannot hold.

The sixth part of Assumption 2 requires that the “upward jumps” in the

process cannot involve infinitely many states. This can be considered as a

special form of bounded increments requirement. This is because, due to the

process itself being bounded, the above requirement limits the increments to

be bounded non-trivially at every state.

The final part of Assumption 2 requires that the start of the process is

deterministic.

We wish to point out that the stochastic process known as the normalized

beta-binomial distribution with two dimensions, a Polya’s urn scheme, satisfies

all the requirements of Assumption 2, where the relevant state space Ω is a

subset of rational numbers in (0, 1). To see this we refer the reader to Karlin

and Taylor (1975).
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Given a stochastic process {dt}t∈N, let {Ft}t∈N0
denote its natural filtration

(i.e. sequence of growing σ-algebras); and for any given t ∈ N0, Ft is commonly

interpreted as the information in period t.

Given τ , we let a particular realization of the stochastic process {dt}t∈N be

denoted by dτ ∈ R.

The supergame is defined for a given d ∈ (0, 1) with d = rd0 and r ∈ (0, 1],

and is denoted by G({dt}t).
2 For k ≥ 1, a k−stage history is a k-length

sequence hk = ((a0, d1), . . . , (ak−1, dk)), where, for all 0 ≤ t ≤ k − 1, at ∈ A;

and for all 1 ≤ t ≤ k, dt is realization of dt; the space of all k-length histories

is Hk, i.e., Hk = (A× R)k. We use e for the unique 0–stage history — it is a

0–length history that represents the beginning of the supergame. The set of

all histories is defined by H =
⋃∞

n=0Hn. For every h ∈ H we let ℓ(h) denote

the length of h. For t ≥ 2, we let dt = (d1, . . . , dt) denote the history of shocks

up to and including period t.

We assume that players have complete information. That is, in period

t > 0, knowing the history up to period t, given by ht, the players make

simultaneous moves denoted by at,i ∈ Ai. The players’ choices in the unique

0–length history e are in A as well. Notice that in our setting, given t, a

player not only observes all the previous action profiles, but also all the shocks

including the ones realized in period t. In other words, the period–t shocks

are commonly observed before making a choice in period t.

For all i ∈ N , a strategy for player i is a function fi : H → Ai mapping

2The reason why we have chosen to formulate d ∈ (0, 1) as a multiplication of a real
number r in (0, 1] and d0 is as follows: The stochastic process at hand may involve states
spaces that are strict subsets of (0, 1). Hence, for obtaining d precisely, a multiplication
with a real number in (0, 1] might be necessary.
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histories into actions. The set of player i’s strategies is denoted by Fi, and

F =
∏

i∈N Fi is the joint strategy space. Finally, a strategy vector is f =

(f1, . . . , fn). Given an individual strategy fi ∈ Fi and a history h ∈ H we

denote the individual strategy induced at h by fi|h. This strategy is defined

point-wise on H : (fi|h)(h̄) = fi(h · h̄), for every h̄ ∈ H . We will use (f |h) to

denote (f1|h, . . . , fn|h) for every f ∈ F and h ∈ H . We let Fi(fi) = {fi|h :

h ∈ H} and F (f) = {f |h : h ∈ H}.

A strategy f ∈ F induces an outcome π(f) as follows: π0(f) = f(e) ∈

A; and for d1 ∈ R we have π1(f)(d1) = f(f(e), d1) ∈ A; and, π2(f)(d2) =

f(f(e), f(f(e), d1), d2) ∈ A, d1, d2 ∈ R; and continuing in this fashion for all

k > 1 and d1, . . . , dk ∈ R, we obtain

πk(f)(dk) = f
(

π0(f), π1(f)(d1), . . . , πk−1(f)(dk−1), dk
)

∈ A.

On the other hand, the repeated game with common and constant dis-

counting, with a discount factor δ̂ ∈ (0, 1), is denoted by Ḡ(δ̂). We employ

the above definitions, of course, without the parts concerning the stochastic

discounting process.

Next, we wish to present the construction of expected payoffs. Due to

that regard, first we will present our stochastic discounting construction, and

second formulate the resulting expected utilities.

Players payoffs are evaluated with a common stochastic discount factor:

The stochastic discount factor of any player i, i ∈ N , is a random variable, de-

noted by
{

dt+1
t

}

t∈N0
, where for any given t ∈ N0, d

t+1
t identifies the probability

of the game continuing from period t to period t + 1. Hence, the stochastic
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discount factor from period t to period τ , with τ ≥ t, given Fs, s ≤ t, is de-

fined by dτ
t ≡ r

∏τ−1
s=t ds, for some r ∈ (0, 1] with the convention that dt

t = 1.

This trivially implies that dt+1
t ≡ rdt. We denote E(dt+1

t | Fs) for s ≤ t − 1,

by Es

(

dt+1
t

)

, which indeed is the projection of dt+1
t on Fs. For any t ∈ N0,

we let a realization of dt+1
t be denoted by δt+1

t , which stands for the realized

probability that the game continues from period t to period t+ 1.

One thing to note is the particular timing and information setting that

we employ: Given rd0 = d the stochastic discount factor determining the

probability that the game continues into the next period is pinned down to a

constant, d1
0 = rd0 = d. In the next period, t = 1, d1 is realized before players

decide on a1 ∈ A. So the realization of rd1 = d2
1 is also known at t = 1. Thus,

following an inductive argument in any period t > 1, the given dt determines

the particular level of δt+1
t , i.e. the probability that the game continues from

period t into period t+ 1.

The following Lemma display that the stochastic discounting process con-

structed in this study involves weaker discounting than the one associated with

constant discounting:

Lemma 1. Suppose that Assumption 2 is satisfied. Then

1. every possible realization of dτ
t is in (0, 1) for every τ, t ∈ N0 with τ > t,

2. E
(

dt+1
t |F0

)

= δ(0) for some δ(0) ∈ (0, 1) and for all t ∈ N0,

3. for every given δ̂ ∈ (0, 1), there exists d ∈ R such that δ(0) = δ̂,
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4. for every τ, t, s ∈ N0 with τ > t ≥ s, given dt+1
t = δt+1

t

E
(

dτ+1
τ |Ft

)

= δt+1
t , (4.1)

and

E
(

dτ
t+1|Fs

)

≥
(

E
(

dt+2
t+1|Fs

))τ−(t+1)
. (4.2)

The implications of this Lemma are essential for the proof, the interpreta-

tion and the evaluation of our results:

The first one displays that the stochastic process specified results in a

well-defined construction for stochastic discounting. This is because for every

τ, t ∈ N0 with τ > t, dτ
t = r

∏τ−1
s=t ds is in (0, 1) which is due to r ∈ (0, 1] and

every possible realization of ds for every s ∈ N0 being in (0, 1).

The second shows that date zero expectations of future one–period discount

factors are constant with respect to the time index.

And the third, displays that d can be chosen so that any given constant

discount factor can be precisely obtained. In fact, we wish to point out that

the reason for using a real number r ∈ (0, 1] in the definition given by dτ
t ≡

r
∏τ−1

s=t ds (and not simply letting r = 1) is that our construction does not

necessarily require the stochastic processes to have a support consisting the

entirety of (0, 1). Particularly, the Polya’s urn scheme, employed later in the

paper as an example, requires d0 to be a rational number in (0, 1). Therefore,

when dealing with stochastic processes requiring Ω 6= (0, 1), for any δ̂ ∈ (0, 1)\

Ω, r ∈ (0, 1] and ω̂ ∈ Ω can be identified such that r is sufficiently close to 1

and δ̂ = rω̂. Thus, without loss of generality we assume r = 1 in the rest of
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this study.

Using the first three results presented in the above Lemma, we conclude

with respect to date zero expectations the repeated game at hand can be

associated with one having a constant and common discount factor. Thus, our

repeated game with stochastic discounting can be interpreted as a perturbation

of a “standard” repeated game under perfect information with common and

constant discount factor (given by δ̂).

Finally, the fourth implication of Lemma 1 is twofold: Given any history

of shocks up to time period t, the first is that the expected level of future one–

period discount factors are equal to the current one. The second shows that

every player values future returns more than a player using a constant discount

factor obtained from the same shocks. That is, a player discounts a return

in period τ , τ > t, with Et (d
τ
t ) which is greater or equal to

(

Et

(

dt+1
t

))τ−t
.

(Notice that given dt, Et (d
τ
t ) = δt+1

t Et

(

dτ
t+1

)

, because dt+1
t = δt+1

t is realized.)

In particular, this implies d can be chosen so that

E0 (d
τ
t ) ≥

(

E0

(

dt+1
t

))τ−t
=
(

δ(0)
)τ−t

= δ̂τ−t,

and when τ = t + 1 then this inequality holds with an equality. Hence, these

properties establish that with a date 0 point of view, our stochastic discounting

construction involves weaker discounting than that associated with a constant

and common discount factor.

The following Remark summarizes these observations:

Remark 1. Given any repeated game under perfect information and a common
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and constant discount factor δ̂ ∈ (0, 1), there exists a repeated game under

perfect information and stochastic discounting with a process specified such that

Assumption 2 holds and the perturbed game exhibits the following properties:

(1) The date zero expectations of the one–shot discount factors are all equal

to δ̂; and (2) in date 0 players employ weaker discounting than that associated

with a constant and common discount factor δ̂; and (3) expected level of future

one–period discount factors are equal to the current one.

Proof of Lemma 1. The proofs of parts 1, 2 and 3 of the Lemma are already

discussed above. The first part of the fourth result is, in fact, the martingale

identity. For the second part, notice that

E
(

d
τ
t+1|Ft

)

= rE

(

τ
∏

s=t+1

ds|Ft

)

= rE (dt+1E (dt+2 . . .E (dτ−1|Fτ−1) . . .|Ft+1)|Ft)

≥ rE
(

(dt+1)
(τ−(t+1))|Ft

)

≥
(

E
(

d
t+2
t+1|Ft

))τ−(t+1)

due to the tower property (see Williams (1991)), the martingale identity and

the Jensen’s inequality.

The next Assumption is about how players’ employ knowledge of the past

when taking expectations:

Assumption 3. In every period t ∈ N0, each player uses the most up to date

information, i.e. Ft.

Given a strategy profile f , because that each period’s supremum return is

bounded for every player, the payoff of player i ∈ N in the supergame G({dt}t)
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of G is, where d = δ̂ ∈ (0, 1):

Ui(f, {dt}t) = (1− δ̂)u1

(

π0(f)
)

+(1− δ̂)E
(

δ10u1

(

π1(f)(d1)
)

|F0

)

+(1− δ̂)E
(

E
(

δ20u1

(

π2(f)(d2)
)

|F1

)

|F0

)

+(1− δ̂)E
(

E
(

E
(

δ30u2

(

π3(f)(d3)
)

|F2

)

|F1

)

|F0

)

+ . . . .

Because that {Fs}s=0,1,,2,... is the natural filtration, the above term reduces to

Ui(f, {dt}t) = (1− δ̂)u1

(

π0(f)
)

+(1− δ̂)E
(

δ10u1

(

π1(f)(d1)
)

|F0

)

+(1− δ̂)E
(

δ20u1

(

π2(f)(d2)
)

|F0

)

+(1− δ̂)E
(

δ30u1

(

π3(f)(d3)
)

|F0

)

+ . . . ,

i.e.

Ui(f, {dt}t) = (1− δ̂)

∞
∑

k=0

E
(

δk0u1

(

πk(f)(dk)
)

|F0

)

, (4.3)

where π0(f)(d0) = π(f(e)), and recall that E (δtt|Fs) = 1 for all s ≤ t. Follow-

ing a similar method, we can also define the continuation utility of player i as

follows: Given t ∈ N and dt ∈ Rt for τ ≥ t

V τ,dt

i (f, {dt}t) = (1− δ̂)

∞
∑

k=τ

E
(

δkτui

(

πk(f)(dk)
)

|Ft

)

. (4.4)

We use the convention that V 0,d0

i (f, {dt}t) = Ui(f, {dt}t).

When attention is restricted to Ḡ(δ̂), i.e. the repeated game with con-
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stant discounting, the payoffs are defined as follows: For any strategy f̄

of the repeated game Ḡ(δ̂), the payoff of player i is given by Ūi(f̄ , δ̂) =

(1−δ̂)
∑∞

t=0 δ̂
tui(π̄

t(f̄)), where π̄(f̄) ∈ A∞ is the outcome path of Ḡ(δ̂) induced

by f̄ . For any π̄ ∈ A∞, t ∈ N0, and i ∈ N , let V̄ t
i (π̄, δ̂) = (1−δ̂)

∑∞
r=t δ̂

r−tui(π̄r)

be the continuation payoff of player i at date t if the outcome path π̄ is played.

4.2 Subgame Perfect Equilibria

A strategy vector f ∈ F is a Nash equilibrium of G({dt}t) if for all i ∈ N ,

Ui(f, {dt}t) ≥ Ui((f̂i, f−i), {dt}t) for all f̂i ∈ Fi. A strategy vector f ∈ F is a

subgame perfect equilibrium of the supergame G({dt}t) if every f ′ ∈ F (f) is

a Nash equilibrium. We denote the set of subgame perfect equilibrium strate-

gies of G({dt}t) by SPE(G({dt}t)). Let V ({dt}t) be the subgame perfect

equilibrium payoffs of G({dt}t). We will abuse notation and will let V ({dt}t)

denoted by V (d) where d = d0. Moreover, V ({dt}t, τ) are the subgame per-

fect equilibrium continuation payoffs (in period τ terms), when dτ is realized.

In fact, abusing notation we let V ({dt}t, τ) = V(δτ+1
τ ).

Moreover, when attention is restricted to the repeated game with con-

stant discounting, Ḡ(δ̂), subgame perfection can easily be defined by excluding

stochastic parts of the above definitions. We denote the set of subgame per-

fect strategies in Ḡ(δ̂) by SPE(Ḡ(δ̂)). Let V̄(δ̂) be the set of subgame perfect

equilibrium payoffs in the repeated game with constant discount factor δ̂.

Letting d = d0 = δ̂ below we will show that for every t and dt, V(δt+1
t )

is compact, hence obtain the following characterization analogous to Abreu
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(1988): A strategy f is subgame perfect if and only if for all i ∈ N and for all

t ∈ N0 and for all dt ∈ Rt, we have

V t,dt

i (f, {dt}t) ≥ (1− δ̂) max
ai∈Ai

ui(ai, π
t
−i(f)(d

t)) + δt+1
t E

(

vi(d
t+1)|Ft

)

, (4.5)

where δt+1
t = dt+1

t (i.e. given dt, the realization of dt+1
t is equal to δt+1

t ), and

for every i ∈ N

vi(d
t+1) = min

{

ui : ui ∈ V(δt+2
t+1)

}

. (4.6)

Before the justification of these, we wish to describe the resulting construc-

tion briefly. Notice that, when player i decides whether or not to follow the

equilibrium behavior in period t given the history of process dt, it must be

that: The player i’s expected continuation payoff associated with the equi-

librium behavior must be as high as player i deviating singly and optimally

today, and being punished tomorrow. An important issue to notice is that,

tomorrow players will know dt+1 (thus, δt+2
t+1) before deciding on their actions.

Thus, players will be punishing player i, the deviator, with the most severe

and credible punishment with the information they have in period t+1. Thus,

the punishment payoff to player i with the information that players have in

period t + 1, i.e. dt+1, is vi(d
t+1). Player i forecasts these in period t, and

hence, forms an expectation regarding his punishment payoff (starting from

period t+1 onwards) with the information that he has in period t, namely dt.

In order to show that for every t and dt, V(δt+1
t ) is compact, we will be

employing the construction of Abreu, Pearce, and Stachetti (1990), and it is

important to point out that their assumptions, 1 – 5 are all satisfied in our
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framework: A2, A3, and A4 are trivially satisfied as the period payoffs are

deterministic, and we also impose A1 and A5.

Following their construction, given dt for any W ⊂ RN and the result-

ing level of δt+1
t ∈ (0, 1), let g(δt+1

t ) be the expected discounted continuation

utility vector (not including today’s payoff levels and using the normaliza-

tion via δ̂ ∈ (0, 1)) for an arbitrary strategy profile. Furthermore, for that

given level of δt+1
t , consider the pair, (g(δt+1

t ), a) and define E(g(δt+1
t ), a) =

δt+1
t

(

(1− δ̂)u(a) + g(δt+2
t+1)

)

. A pair (g(δt+1
t ), a) is called admissible with re-

spect to W if E(gi(δ
t+1
t ), a) ≥ E

(

gi(δ
t+1
t ), (γi, a−i)

)

for all γi ∈ Ai and for

all i ∈ N . Moreover, for each set W , define Bdt(W ) as follows Bdt(W ) =

{E(g(δt+1
t ), a)|(g(δt+1

t ), a) is admissible w.r.t W}. Any set that satisfies W ⊂

Bdt(W ) is called self-generating at dt. At this point it is useful to recall that

V(δt+1
t ) = {V t,dt(f, {dt}t)| f is a subgame perfect equilibrium strategy profile}.

Notice that

g(δt+1
t ) = (1− δ̂)

∞
∑

k=t+1

E
(

δkt u
(

πk(f)(dk)
)

|Ft

)

,

for some strategy profile f . Furthermore since, δt+1
t is actually realized before

the actions are taken and the multiplicative nature of our discount factor, the

above equation becomes

g(δt+1
t ) = (1− δ̂)δt+1

t

[

u
(

πt+1(f)(dt)
)

+

∞
∑

k=t+2

E
(

δkt u
(

πk(f)(dk)
)

|Ft

)

]
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which is equal to

g(δt+1
t ) = δt+1

t

[

(1− δ̂)u
(

πt+1(f)(dt)
)

+ g(δt+2
t+1)

]

. (4.7)

Now, it is easy to see that V(δt+1
t ) is self-generating, as the pair, (g(δt+1

t ),

πt+1(f)(dt)) is admissible with respect to V(δt+1
t ) whenever f is a subgame

perfect equilibrium strategy profile with

V t,dt(f, {dt}t) = (1− δ̂)u(at) + g(δt+1
t ), (4.8)

where at = πt(f)(dt−1). The two further points to notice is that, due to lemma

1 of Abreu, Pearce, and Stachetti (1990), Bdt(W ) is compact whenever W

is compact, and the operator Bdt is monotone. Furthermore, since V(δt+1
t )

is bounded (by (1/1 − δt+1
t )U), closure of V(δt+1

t ), denoted by cl(V(δt+1
t ))

is compact. Hence, Bdt(cl(V(δt+1
t ))) is compact, and due to cl(V(δt+1

t )) ⊂

Bdt(cl(V(δt+1
t ))) and self-generation cl(V(δt+1

t )) ⊂ V(δt+1
t ). Thus, by Theorem

2 of Abreu, Pearce, and Stachetti (1990), Bdt(V(δt+1
t )) = V(δt+1

t ), thus V(δt+1
t )

is compact.

4.3 Inevitability of Nash behavior

In this section, we wish to present the main result of this study:

Theorem 1. Suppose Assumptions 1, 2, 3 hold. Then, for every K ∈ N, for

every δ̂ ∈ (0, 1), for every stochastic discounting process {dt}t with d0 = δ̂, and

for every subgame perfect strategy profile f of the repeated game with stochastic
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discounting; there exists T which is almost surely in N0, and the probability of

πτ (f) being a Nash equilibrium action profile of the stage game conditional on

the information available at s, equals 1, for all s = T, . . . , T + K and for all

τ = s, . . . , T +K.

The above theorem establishes that when Assumptions 1, 2 and 3 hold,

then arbitrary long (yet, finite) consecutive repetitions of the period Nash

action profile must almost surely happen in a finite time window no matter

which subgame perfect equilibrium strategy is considered and no matter how

high the initial discount factor is. That is, any equilibrium strategy almost

surely entails arbitrary long consecutive observations of the period Nash action

profile.

Showing this result involves 2 steps: The first displays that every subgame

perfect strategy must involve the prescription of the Nash behavior whenever

the current discount factor is sufficiently small. The second displays that for

any given level of the initial discount factor and any given natural number

K, the stochastic process governing the one–shot discount factors possesses a

stopping time, after which the return to some sufficiently high level of one–shot

discount rates within a K–period time window, has zero probability with the

evaluation being made in any period within that time window.

The Proof of Theorem 1. The result follows from Lemmas 2 and 3.

Lemma 2. Suppose Assumptions 1, 2, 3 hold. Then, there exists δ ∈ (0, 1)

such that for all δt+1
t ≤ δ, t ∈ N0, every subgame perfect strategy profile f of

G({dt}) must be such that f(dt, at) ∈ A is a Nash equilibrium of G.
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Proof. Without loss of generality, assume that the subgame perfect strategy f

is such that
(

maxai∈Ai
ui(ai, π

t
−i(f)(d

t))− ui(π
t(f)(dt))

)

> 0 for some t ∈ N0

and for some dt and for some i ∈ N . Because otherwise, the strategy is

resulting in a repetition of period Nash behavior. Then, by equation 4.5, for

any such subgame perfect strategy f and i and t and dt

δt+1
t

(

V
t+1,dt

i − E
(

vi(d
t+1)|Ft

)

)

≥ (1−δ̂)

(

max
ai∈Ai

ui(ai, π
t
−i(f)(d

t))− ui(π
t(f)(dt))

)

.

Both the left and the right hand sides of this inequality are strictly positive.

Yet, when the prescribed action is not a Nash equilibrium of G, then the left

hand side converges to 0 when δt+1
t tends to 0, but the right hand side is

constant.

Lemma 3. Suppose Assumptions 1, 2, 3 hold. Then, for every δ ∈ (0, 1),

for every K ∈ N, for every δ̂ ∈ (0, 1), and for every stochastic discounting

process {dt}t with δ̂ = d0; there exists T which is almost surely in N0 and

Pr [dτ+1
τ < δ | Fs] = 1, for every s = T, . . . , T +K and τ = s, . . . , T +K.

Proof. Let δ ∈ (0, 1) and K ∈ N and δ̂ ∈ (0, 1) with δ̂ = d0. Let ω0 ∈

{ω ∈ ΩE : ω < δ} 6= ∅ due to part (4) and (5) of Assumption 2. Consider

ω1 ∈ ΩE with ω0 ≥ maxR(ω1), and such an ω1 exists due to part (4), (5) and

(6) of Assumption 2. 3 Now, define ω2 ∈ ΩE that satisfies ω1 ≥ maxR(ω2).

Inductively, for a given ωK−1 ∈ ΩE define ωK ∈ ΩE likewise. Again notice

that due to Assumption 2 such an ωK exists.

3Recall that for any given state ω ∈ Ω ⊆ (0, 1), the set of states ω′ ∈ Ω that are reachable
from ω in a single period and satisfying ω < ω′, denoted by R(ω).
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Following Karlin and Taylor (1975), define the following event

ζ ≡ min{τ ∈ N0 : dτ ≤ ωK}.

Then by construction, it must be that Pr [ds+k ≥ δ | Fs] = 0, for all s =

ζ, . . . , ζ +K and k = 0, . . . , K − s. Finally, due to the ergodicity of ωK , ζ is a

stopping time, that is it will almost surely happen in a finite time period, i.e.

Pr [ζ < ∞] = 1. Hence, ζ is almost surely in N0 with Pr [ds+k < δ | Fs] = 1

for all s = ζ, . . . , ζ +K and k = 0, . . . , K − s. Indeed, this also implies that ζ

is almost surely in N0 with Eτ (δ
τ+1
τ ) < δ for every τ = ζ, . . . , ζ +K.

4.4 The Subgame Perfect Folk Theorem

In this section we prove the following subgame perfect Folk Theorem for re-

peated games with stochastic discounting.

Theorem 2. Suppose Assumptions 1, 2, 3 hold, and either dim(U) = n or

n = 2 and U0 6= ∅. Then, for all ε > 0, there exists δ ∈ (0, 1) such that for all

u ∈ U0 and for all stochastic discounting processes {dt}t∈N0
with δ̂ = d0 ≥ δ,

there exists a subgame perfect strategy f of G({dt}t) such that ‖U (f, {dt}t)−

u‖ < ε.

In order to establish this result, an analogy between repeated games with

stochastic discounting and those with constant discounting is constructed as

follows: Given any repeated game with stochastic discounting, we consider the
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repeated game with a constant discount factor that equals the initial level of

the stochastic discounting process. Particularly, in the repeated game with

constant discounting we concentrate on strictly enforceable strategies, those

to which players strictly prefer to conform, in each date and state including

equilibrium and punishment phases. It is useful to remind the reader that due

to the monotonicity result of Abreu, Pearce, and Stachetti (1990), Theorem

6, such strategies are strictly enforceable for higher discount factors as well.

Formulating an extension of such a strategy and requiring it to be subgame

perfect in the repeated game with stochastic discounting, turns out to be an

arduous, yet feasible (as proven in Lemma 4), endeavor whenever the initial

level of the stochastic discounting is sufficiently high.

To see the difficulties involved, consider a repeated prisoners’ dilemma, with

actions Ai = {c, d} and u1(d, c) = u2(c, d) > ui(c, c) >
1
2
(u1(c, d) + u2(c, d)) >

ui(d, d) > u1(c, d) = u2(d, c), i = 1, 2. Clearly, there exists δ ∈ (0, 1) such that

the cooperative payoff (hence, path given by ((c, c);∞)) is sustained with a

strictly enforceable strategy profile for all δ > δ. Now, consider any stochastic

discounting process satisfying our restrictions and possessing a sufficiently high

initial level, and any strategy such that its utility (evaluated at the beginning

of the game) is arbitrarily close to (ui(c, c))i=1,2. Due to Lemma 2, for any

realizations of the one-shot discount factor that is strictly below δ, any such

strategy must dictate the play of (d, d), if it were to be subgame perfect. Thus,

any subgame perfect strategy in the repeated game with stochastic discounting

sustaining the cooperative payoff must be contingent on the realizations of the

one-shot discount factors. A simple formulation is one where this contingency
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is represented by a date and state independent threshold, δ∗ ≥ δ, so that:

the play continues on the cooperative path as long as every past realization

of the one-shot discount factors is above δ∗; and otherwise, the play switches

to the defection phase. Then, the verification of subgame perfection in the

repeated game with stochastic discounting calls for checking every subgame,

in particular, those with the current one-shot discount factor arbitrarily close,

yet, strictly exceeding δ∗. In such a subgame where additionally there have

not been any single player deviations in the past and all past one-shot discount

factors have been above δ∗, this strategy should call for the play of (c, c). How-

ever, it is not subgame perfect whenever the following holds: The stochastic

discounting process is one where the probability of the next period’s one-shot

discount factor being strictly less than δ∗, is high enough such that any one of

the players finds it profitable to deviate in the current period.

Therefore, given a strictly enforceable strategy in the repeated game with

constant discounting, the extended strategy we employ is contingent on the

stochastic discounting process in the following manner: It will prescribe the

play to continue on the paths dictated by its counterpart in the repeated game

with constant discounting, whenever each of the past realizations of the one-

shot discount factors exceeds a date and state specific threshold. Otherwise,

our strategy will recommend the play to consist of the repetitions of a Nash

action profile of the stage game thereafter. The initial level of the stochastic

discounting process can be chosen sufficiently high so that we can construct

date and state specific thresholds such that, given a date and state, the proba-

bility (evaluated in that date and state) of the one-shot discount factor in the
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next period falling below its associated threshold, is sufficiently low. This and

strict enforceability, in turn, imply that the relevant incentive conditions hold

for any date and state. Meanwhile, choosing the initial level of the stochastic

discounting process to be sufficiently high, also results in the utility (evaluated

at the beginning of the game) of this strategy profile in the repeated game with

stochastic discounting to be arbitrarily close to the utility of its counterpart

in the game with the constant discount factor given by that initial level.

Finally, our result is obtained by combining the above construction and the

observation that when restricted to pure actions, the strategy profile in the

proof of the subgame perfect Folk Theorem of Fudenberg and Maskin (1991)

is, in fact, strictly enforceable.

The rest of this section presents the details about the proof of Theorem 2.

Suppose Assumptions 1, 2, and 3 hold. Then, for any δ̂ ∈ (0, 1), consider

the repeated game with stochastic discounting G({dt}t) with d0 = δ̂; and,

the repeated game with constant discounting Ḡ(δ̂). For any k−stage history

hk = ((a0, d1), . . . , (ak−1, dk)) of G({dt}t) where for all 0 ≤ t ≤ k − 1, at ∈ A,

and for all 1 ≤ t ≤ k, dt is realization of dt, define its deterministic counterpart,

a k−stage history, in Ḡ(δ̂) by h̄k = (a0, . . . , ak−1).

Following Abreu (1988), it is well known that one may restrict attention

to simple strategies in the analysis of subgame perfection in repeated games

with constant discounting: f̄ in Ḡ(δ), δ ∈ (0, 1) is a simple strategy profile

represented by n + 1 paths (π̄(0), π̄(1), . . . , π̄(n)) if f̄ specifies: (i) play π̄(0) un-

til some player deviates singly from π̄(0); (ii) for any j ∈ N , play π̄(j) if the

jth player deviates singly from π̄(i), i = 0, 1, . . . , n, where π̄(i) is the ongoing
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previously specified path; (iii) continue with the ongoing specified path π̄(i),

i = 0, 1, . . . , n, if no deviations occur or if two or more players deviate simul-

taneously. These strategies are simple because the play of the game is always

in only (n + 1) states, namely, in state j ∈ {0, . . . , n} where π̄(j),t is played,

for some t ∈ N0. In this case, we say that the play is in phase t of state j.

A profile (π̄(0), π̄(1), . . . , π̄(n)) of n+ 1 outcome paths is subgame perfect if the

simple strategy represented by it is a subgame perfect equilibrium. Moreover,

following Barlo, Carmona, and Sabourian (2009), we say that a simple strat-

egy f̄ in Ḡ(δ), δ ∈ [0, 1), is weakly enforceable if for all i ∈ N and for all

j ∈ {0, 1, .., n} and for all t ∈ N0

V̄ t
i (π̄

(j), δ) ≥ (1− δ) max
ai∈Ai

ui(ai, π̄
(j),t
−i ) + δV̄i(π̄

(i), δ), (4.9)

where (π̄(0), π̄(1), . . . , π̄(n)) is the simple strategy associated with f̄ . Due to

Abreu (1988), we know that a simple strategy f̄ ∈ SPE(Ḡ(δ)) if and only if

f̄ in Ḡ(δ) is weakly enforceable. Moreover, we say that a simple strategy f̄ in

Ḡ(δ) with associated outcome paths (π̄(0), π̄(1) . . . , π̄(n)) is strictly enforceable

if for all i ∈ N and for all j ∈ {0, 1, .., n} and for all t ∈ N0

inf
i,j,t

(

V̄ t
i (π̄

(j), δ)−

(

(1− δ) max
ai∈Ai

ui(ai, π̄
(j),t
−i ) + δV̄i(π̄

(i), δ)

))

> 0 (4.10)

Let f̄ be a strictly enforceable simple strategy in Ḡ(δ), δ ∈ (0, 1), and

the profile of outcome paths associated be (π̄(0), π̄(1), . . . , π̄(n)). Now, let us

formulate an analogy between G({dt}t) with d0 = δ̂ and Ḡ(δ̂) for δ̂ ≥ δ.

Lemma 4. Suppose that Assumptions 1, 2, 3 hold, and f̄ of Ḡ(δ), where
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δ ∈ (0, 1) and the associated outcome paths are (π̄(0), π̄(1), . . . , π̄(n)), is a strictly

enforceable simple strategy. Then, for all η > 0 there exists δ∗ ∈ (δ, 1) such

that for all δ̂ > δ∗ there is f in G({dt}t) with d0 = δ̂, with the properties that

f is subgame perfect in G({dt}t) and

∥

∥

∥
U (f, {dt}t)− Ū

(

f̄ , δ̂
)
∥

∥

∥
< η.

Proof. Let ν∗ be defined by

ν∗ ≡ inf
i,j,t

(

V̄ t
i (π̄

(j), δ)−

(

(1− δ) max
ai∈Ai

ui(ai, π̄
(j),t
−i ) + δV̄i(π̄

(i), δ)

))

> 0,

and consider ν > 0 with ν < min{ν∗, η}. Then, there exists δν > δ and

pν ∈ (0, 1) sufficiently close to 0 such that the following conditions hold: For

all i ∈ N , j ∈ N ∪ {0}, t ∈ N0

∥

∥

∥
δν V̄

t+1
i (π̄(j), δν)−

(

δν((1− pν)V̄
t+1
i (π̄(j), δν) + pν V̄

t+1
i (a∗, δν))

)∥

∥

∥
<

ν

6
(4.11)

inf
i,j,t

[

(1− δν)ui(π̄
(j),t) + δν((1− pν)V̄

t+1
i (π̄(j), δν) + pνV̄

t+1
i (a∗, δν))

− ((1− δν) max
ai∈Ai

ui(ai, π̄
(j),t
−i ) + δν

(

(1− pν)V̄
t+1
i (π̄(i), δν) + pν V̄

t+1
i (a∗, δν)

)

]

> ν (4.12)

∥

∥

∥

∥

∥

∞
∑

t=0

E0

(

δt0
)

(

ui

(

π̄(j),t(f̄)
))

−
∞
∑

t=0

δtν

(

ui

(

π̄(j),t(f̄)
))

∥

∥

∥

∥

∥

<
ν

6
. (4.13)

∥

∥

∥

∥

∥

∞
∑

t=0

E0

(

δt0
)

(ui (a
∗))−

∞
∑

t=0

δtν (ui (a
∗))

∥

∥

∥

∥

∥

<
ν

6
. (4.14)
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Condition 4.11 holds trivially. On the other hand, condition 4.12 holds be-

cause f̄ is strict enforceable at δ, and the monotonicity result, Theorem 6 of

Abreu, Pearce, and Stachetti (1990), implies that f̄ ∈ SPE(Ḡ(δ′)) for any

δ′ ≥ δ. Indeed, it can easily be verified (by using the same techniques of the

proof of this result) that f̄ is also strictly enforceable at δ′ ≥ δ. Furthermore,

since pν can be selected arbitrarily close to 0, the associated slack (the left

hand side of condition 4.12, which converges to ν∗ when pν tends to 0) can be

chosen to strictly exceed ν. Moreover, conditions 4.13 and 4.14 are due to the

following: Observe that for any process satisfying Assumption 2 with d0 = δν ,

the fourth part of Lemma 1 and the Sandwich Lemma directly imply that as

δν tends to 1, E (δτt |F0) tends to (δν)
τ−t for all τ, t ∈ N0 with τ ≥ t. It is

important to point out that because pν can be selected arbitrarily small, all

these conditions, 4.11 – 4.14, keep holding when they are evaluated at pν and

δ̂ > δν and d0 = δ̂.

Furthermore, observe that since {dt}t is a non–negative bounded martin-

gale, {et}t defined by et ≡ (1 − dt) for all t ∈ N0 is also a non-negative,

bounded martingale. Using Doob’s Maximal Inequality (we refer the reader
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to Doob (1984)) 4 for this martingale we obtain for any t < T and δ̄ ∈ (0, 1)

(1− δ̄)Pr

[

sup
t≤s≤T

(1− δs+1
s ) ≥ (1− δ̄)

∣

∣

∣

∣

Ft

]

≤ E
(

(1− δT+1
T )|Ft

)

(1− δ̄)Pr

[

inf
t≤s≤T

δs+1
s ≤ δ̄

∣

∣

∣

∣

Ft

]

≤ E
(

(1− δT+1
T )|Ft

)

Pr

[

inf
t≤s≤T

δs+1
s ≤ δ̄

∣

∣

∣

∣

Ft

]

≤
E
(

(1− δT+1
T )|Ft

)

(1− δ̄)
.

Moreover, since {dt}t is a martingale the right hand side of the above condition

is constant for all T ∈ N0 and t < T , i.e.

Pr

[

inf
t≤s≤T

δs+1
s ≤ δ̄

∣

∣

∣

∣

Ft

]

≤
1− δt+1

t

1− δ̄
. (4.15)

In the following we will inductively construct the set of states in which the

strategy that we will employ in the game with stochastic discounting, would

prescribe the play to continue following f̄ . Consider d0 > δν , and recall that

it is deterministic. Then, let δ̄(1) be such that δ̄(1) ≥ δν and

1− d0

1− δ̄(1)
≤ pν ,

and define

Ω ν
(1) =

{

δ ∈ Ω : δ > δν and
1− δ

1− δ̄(1)
≤ pν

}

.

Now, given δ̄(t−1) and Ω ν
(t−1), define δ̄(t) such that δ̄(t) ≥ δν and for any δ ∈

4Doob’s Maximal Inequality for nonnegative submartingales is as follows: Let {Xt}t∈N0

be a nonnegative submartingale with a filtration {Ft}t∈N0
and ℓ > 0. Then for any T for

any s < T , ℓPr
[

sups≤t≤T Xt ≥ ℓ
∣

∣Fs

]

≤ E (XT |Fs).
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Ω ν
(t−1),

1− δ

1− δ̄(t)
≤ pν ,

and let

Ω ν
(t) =

{

δ ∈ Ω : δ > δν and
1− δ

1− δ̄(t)
≤ pν

}

.

Notice that for any history h, with δt+1
t ∈ Ω ν

(t), it must be that δt+1
t is not only

strictly above δν , but also, the probability of any one of the future one-shot

discount factors being less than or equal to δ̄(t) is less than or equal to pν . An

important observation is that when d0 is chosen sufficiently high, then Ω ν
(t) 6= ∅

for all t ∈ N. This follows from the denseness of ΩE (the ergodic set of states)

in Ω following the fourth part of Assumption 2.

The strategy we use as follows: For any history h = (h̄, dt) for some t ∈ N0

with ℓ(h) = ℓ(h̄) = t

f(h) =







f̄(h̄) if δs+1
s ∈ Ω ν

(s) for all s ≤ t

a∗ otherwise.
(4.16)

In words, this strategy prescribes the continuation along the simple strategy

f̄ whenever the history is one in which the following hold: In any period t, all

realizations of one-shot discount factors up to period t, δs+1
s with s ≤ t, have

been such that (1) each one of them is strictly above δν , and (2) the probability

evaluated with date s information of any one of the future one-shot discount

factors, δk+1
k with k ≥ s, being less than or equal to δ̄(s) is less than or equal

to pν , s ≤ t. For all other cases, the strategy prescribes the repetitions of the

Nash action profile of the stage game. An interesting observation about this
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strategy f is that it induces the play to be in only (n + 2) states, namely,

(π̄(0), π̄(1), . . . , π̄(n), π∗), where π∗,t = a∗ for all t ∈ N0.

Clearly, this strategy is well defined.

Consider any history h. Below, we will prove that when d0 = δ̂ is chosen

sufficiently high, f is Nash in the subgame starting at h, hence, subgame

perfect.

If δs+1
s /∈ Ω ν

(s) for some s ≤ t, f recommends the repetition of a∗ thereafter.

Hence, is clearly Nash in such subgames.

If δs+1
s ∈ Ω ν

(s) for all s ≤ t, f recommends the continuation of the simple

strategy given by f̄ , which is associated with (π̄(0), π̄(1), . . . , π̄(n)). Then, the

continuation utility, equation 4.4, can be written as follows:

V t,dt

i (f, {dt}t) = (1− δ̂)
∞
∑

k=t

Et

(

δkt
)

(

ui

(

πk(f)(dk)
)

(

1− ρ
(t)
k

)

+ ui (a
∗) ρ

(t)
k

)

,

(4.17)

where d0 = δ̂ and for any k ≥ t,

ρ
(t)
k = 1− Pr

[

δs+1
s ∈ Ω ν

(s), for all s with t ≤ s ≤ k
∣

∣Ft

]

≤ pν .

Notice that, given h, hence at, (πk(f)(dk)) is equal to some (π̄(j),κ) for some

j ∈ N ∪ {0} and κ, whenever δs+1
s ∈ Ω ν

(s) for all s with t ≤ s ≤ k, an event

which happens with probability 1− ρ
(t)
k . That is, in such cases the play must

be in some phase of π̄(j) for some j ∈ N ∪ {0}.

Observe that for any process satisfying Assumption 2 (specifically the

Markov property) with d0 = δ̂ > δν , condition 4.13 directly implies (recall
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that the history is such that δt+1
t > δν for all t, and Et

(

δk+1
k

)

= δt+1
t , k ≥ t)

∥

∥

∥

∥

∥

∞
∑

k=t

Et

(

δkt
) (

ui

(

π̄k(f̄)
))

−
∞
∑

k=t

(

δt+1
t

)k (

ui

(

π̄k(f̄)
))

∥

∥

∥

∥

∥

<
ν

6
. (4.18)

Similarly due to the same reasons, condition 4.14 implies that

∥

∥

∥

∥

∥

∞
∑

k=t

Et

(

δkt
)

(ui (a
∗))−

∞
∑

k=t

(

δt+1
t

)k
(ui (a

∗))

∥

∥

∥

∥

∥

<
ν

6
. (4.19)

Conditions 4.13 and 4.14 together with the fact that δt+1
t > δν bring about

ν

3
>

∥

∥

∥

∥

∥

δt+1
t ((1− pν)V̄

t+1
i (π̄(j), δt+1

t ) + pν V̄
t+1
i (a∗, δt+1

t ))

−
δt+1
t

1− δ̂

(

(1 − pν)
∞
∑

k=t

Et

(

δkt
)

(

ui

(

π̄(j),k(f̄)
))

+ pν

∞
∑

k=t

Et

(

δkt
)

(ui (a
∗))

)∥

∥

∥

∥

∥

.

Now, using condition 4.11 we obtain

ν

2
>

∥

∥

∥

∥

∥

δt+1
t ((1 − pν)V̄

t+1
i (π̄(j), δt+1

t ) + pν V̄
t+1
i (a∗, δt+1

t ))

−
δt+1
t

1− δ̂

(

(1− ρ
(t)
t+1)

∞
∑

k=t

Et

(

δkt
)

(

ui

(

π̄(j),k(f̄)
))

+ ρ
(t)
t+1

∞
∑

k=t

Et

(

δkt
)

(ui (a
∗))

)
∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

δt+1
t ((1 − pν)V̄

t+1
i (π̄(j), δt+1

t ) + pν V̄
t+1
i (a∗, δt+1

t ))

− δt+1
t

(

(1− ρ
(t)
t+1)V

t+1,dt+1

i (f, {dt}t) + ρ
(t)
t+1V

t+1,dt+1

i (a∗, {dt}t)
)
∥

∥

∥

delivering

ν

2
>

∥

∥

∥
(1− δ̂)ui(π̄

(j),t) + δt+1
t ((1 − pν)V̄

t+1
i (π̄(j), δt+1

t ) + pν V̄
t+1
i (a∗, δt+1

t ))

− V
t,dt

i (f, {dt}t)
∥

∥

∥
, (4.20)
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and

ν

2
>

∥

∥

∥

∥

(1− δ̂) max
ai∈Ai

ui(ai, π̄
(j),t
−i ) + δt+1

t ((1 − pν)V̄
t+1
i (π̄(i), δt+1

t ) + pν V̄
t+1
i (a∗, δt+1

t ))

−

(

(1− δ̂) max
ai∈Ai

ui(ai, π̄
(j),t
−i )

+δt+1
t

(

(1− ρ
(t)
t+1)V

t+1,dt+1

i (f, {dt}t) + ρ
(t)
t+1V

t+1,dt+1

i (a∗, {dt}t)
))∥

∥

∥
, (4.21)

where V t+1,dt+1

i (f, {dt}t) in condition 4.21, is the continuation payoff of player

i’s punishment path in the stochastic game when δt+2
t+1 ∈ Ω ν

(t+1) (otherwise,

player i’s deviation is followed by the repetitions of the Nash action).

Conditions 4.12, and conditions 4.20 and 4.21 together imply that

V t,dt

i (f, {dt}t)−

(

(1− δ̂) max
ai∈Ai

ui(ai, π̄
(j),t
−i )

+δt+1
t

(

(1− ρ
(t)
t+1)V

t+1,dt+1

i (f, {dt}t) + ρ
(t)
t+1V

t+1,dt+1

i (a∗, {dt}t)
))

> ν −
ν

2
−

ν

2
= 0,

showing that f is Nash in every subgame that starts with h such that δs+1
s ∈

Ω ν
(s) for all s ≤ t with ℓ(h) = t.

Thus, f is subgame perfect.

Choose d0 = δ̂ > δν such that δ̂ ∈ Ω ν
(1). Then, conditions 4.11, and 4.13

and 4.14 imply

∥

∥

∥

∥

∥

V 0,d0

i (f, {dt}t)− (1− δ̂)
∞
∑

t=0

E0

(

δt0
) (

ui

(

π̄t(f̄)
))

∥

∥

∥

∥

∥

<
ν

2
,
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and

∥

∥

∥

∥

∥

(1− δ̂)
∞
∑

t=0

E0

(

δt0
) (

ui

(

π̄t(f̄)
))

− (1− δ̂)
∞
∑

t=0

δ̂t
(

ui

(

π̄t(f̄)
))

∥

∥

∥

∥

∥

<
ν

6
.

These, in turn, finishes the proof because of the following conclusion

∥

∥

∥
U (f, {dt}t)− Ū

(

f̄ , δ̂
)
∥

∥

∥
=
∥

∥

∥
V 0,d0

i (f, {dt}t)− Ū
(

f̄ , δ̂
)
∥

∥

∥
<

4

6
ν < ν < η.

Now, we are ready to present the proof of our subgame perfect Folk The-

orem for repeated games with stochastic discounting:

Proof of Theorem 2. The proof of the Folk Theorem of Fudenberg and Maskin

(1991) shows that for any u ∈ U0, there exists some δ̄ ∈ (0, 1) and a strictly

enforceable simple strategy f̄ in Ḡ(δ̄) such that for all δ ∈ (δ̄, 1), Ū(f̄ , δ) = u.

This follows from considering conditions 2 – 4 and 8 in their proof, which

guarantee that each phase of play (which they denote A for the equilibrium,

Bj for the minmax and Cj for the reward phases of j ∈ N) they consider sat-

isfies incentive conditions strictly. Additionally, their strategy becomes simple

and strictly enforceable when attention is restricted to obtaining individually

rational payoffs constructed with the pure strategy minmax.

Hence, Lemma 4 applies and delivers the conclusion that for all η > 0 there

exists δ∗ ∈ (δ̄, 1) such that for all δ̂ > δ∗ there is f in G({dt}t) with d0 = δ̂,

such that f is subgame perfect in G({dt}t) and
∥

∥

∥
U (f, {dt}t)− Ū

(

f̄ , δ̂
)
∥

∥

∥
< η.

Thus, letting η ≤ ε, renders the desired conclusion.
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Conclusions

In this thesis, we consider a wide class of games with stochastic discounting

with rich state spaces, when the discounting process is not independent of the

past. In such a setting, we imposed the restriction that players expectation

of the future discount factor is equal to the current one, and only the current

value is relevant when trying to make assertions about the future values of the

discount factor. Under this construction, we not only proved a Folk Theorem

for repeated games with stochastic discounting but we also, showed that no

matter how patient players are every subgame perfect equilibrium path must

entail arbitrarily (yet finite) consecutive repetitions of period Nash behaviour,

and these consecutive periods almost surely happen in a finite time window.

The reason why these seemingly contradictory results appear together is

about the timing. The Folk Theorem involves complete contingent plans of

actions, drafted at the beginning of the game, and the expected results from

such plans again calculated at the beginning of the game. The inevitability

65
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result on the other hand, concerns observations about the behavior of the

stochastic discounting process in the far, yet almost surely finite future.

It is well worth to investigate this construction with weaker assumptions

on the stochastic process, namely reducing the martingale requirement to a

submartingale requirement. Under such a construction, the evaluation of the

continuation values becomes more problematic as the compactness of the con-

tinuation values are hard to ascertain. Moreover, the inevitability result be-

comes even more complicated, because we have to consider same stopping

time in the martingale case as a moving boundary in the submartingale case.

Our initial findings suggest that when the submartingale is generated from a

markovian martingale via a convex transformation, the same stopping time

in the martingale case can be found as a moving boundary however, the al-

most sureness can not be guaranteed and is dependent on both the initial

martingale, and the transformation used.

Relating our work to the existing literature is also essential in understand-

ing our contribution. There is a number of notable contributions in the con-

text of stochastic games. Indeed, recent studies by Fudenberg and Yamamato

(2010) and Hörner, Sugaya, Takahashi, and Vieille (2010) generalize the Folk

Theorem of Dutta (1995) for irreducible stochastic games with the requirement

of a finite state space. Nevertheless, the setting we employ can be perceived as

a specific form of an irreducible stochastic game with perfect information, with

an infinite state space. Even tough Folk Theorems for irreducible stochastic

games can be found in the literature, to our knowledge, ours is the only one
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with an infinitely rich state space. 1

As a further research question one can look at the case when every player

has an identically and independently(with other players) distributed stochastic

discounting process. It is interesting to try to find analogies between deter-

ministically discounted repeated games and stochastically discounted repeated

games, and even just characterizing the set of subgame perfect strategies in

such a setting constitutes an avenue for future research.

1It is essential to note that the studies mentioned have less stringent requirements than
ours beside the richness of the state space.
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