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Abstract

Minimization of decision trees is a well studied problem. In this work,

we introduce two new problems related to minimization of decision trees.

The problems are called minimum verification set (MinVS) and minimum

path decision tree (MinPathDT) problems. Decision tree problems ask

the question “What is the unknown given object?”. MinVS problem

on the other hand asks the question “Is the unknown object z?”, for a

given object z. Hence it is not an identification, but rather a verification

problem. MinPathDT problem aims to construct a decision tree where

only the cost of the root-to-leaf path corresponding to a given object is

minimized, whereas decision tree problems in general try to minimize the

overall cost of decision trees considering all the objects. Therefore, MinVS

and MinPathDT are seemingly easier problems. However, in this work we

prove that MinVS and MinPathDT problems are both NP-complete and

cannot be approximated within a factor in o(lgn) unless P = NP.

1 Introduction

Decision trees have been studied extensively (e.g. see [13] for an early survey)

and have many practical applications in a wide range of fields, such as databases,

switching theory, pattern recognition, taxonomy, medical diagnosis, etc. In this

work, we are interested in the minimization of decision trees for object (or entity)

identification, where binary tests (or queries) are used to classify the objects.

The topic is well explored and there is quite a large number of works on the

minimization of decision trees.
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In binary identification procedure, there are n objects and m binary tests

where the response of an object to a test is either 0 or 1. The purpose of the

problem is to design a deterministic procedure where a set of tests are applied

to an unknown object to identify the object. Such a procedure can be described

by using a binary decision tree where the leaves correspond to the objects and

the other nodes correspond to the tests.

As for the hardness results on these problems, Hyafil and Rivest showed that

it is NP-complete to decide if a decision tree with a certain expected cost exists

when tests have some associated costs [8]. They also showed, in the same work,

that the problem remains NP-complete if a probability of occurrence is assigned

to each object, if all tests have the same cost, and if worst case is considered

instead of expected cost.

There are some works also on the approximation of optimal binary decision

trees. Laber and Nogueria proved that there is no o(lg n) approximation to min-

imizing the height of the decision tree unless P= NP [10]. In [3], Chakaravarthy

et al. considered both the binary and K–ary tests, where the occurrence proba-

bility of objects may or may not be uniform. They call the problem K–DT when

K–ary tests are considered and when each object has a given certain probability

of occurrence. If the tests are binary, then the problem is called 2–DT . Simi-

larly, the problem is called K–UDT and 2–UDT , when each object has the same

probability, but the tests are K–ary and binary, respectively. They provide both

approximation algorithms and inapproximability results for these four types of

problems separately. The cost of a decision tree is the expected cost over all the

the objects. Adler and Heeringa present an (lnn+1) approximation for 2–UDT
and 2–DT problems in [1].

All works in the literature are related to the minimization of decision trees

with respect to the expected cost of identification or the worst case cost of the

identification. In this work, we are interested in a slightly different but a re-

lated problem. Instead of identifying an unknown object, we want to verify if

the unknown object is a certain object z or not. This can be accomplished by

using a subset of tests which we call as a verification set for the object z. The

minimization problem in this context is to find a minimum verification set. We

came across this problem as we were working on a related minimization problem

within the context of finite state machine based testing using adaptive distin-

guishing sequences [11]. To the best of our knowledge, the minimum verification
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set problem has not been studied before. Since the minimum verification set

problem focuses on a given object, it seems to be an easier problem than the

decision tree related problems where all the objects are considered. However,

we show that the decision version of the minimum verification set problem is

NP-complete. We also show that, the problem cannot be approximated within

a factor in o(lg n) unless P = NP. In addition, we study a directly related prob-

lem of finding a decision tree where the root-to-leaf path corresponding a certain

given object is minimized. We call this problem MinPathDT. This problem

also turns out to be NP-complete which cannot be approximated again within a

factor in o(lg n) provided that P 6= NP.

The paper is organized as follows. Section 2 gives formal definitions of binary

identification problem, binary decision trees used for the identification, and also

gives some notation we use throughout the paper. In Section 3, MinVS problem

is introduced formally. The hardness and inapproximability results for MinVS

problem are also given in Section 3. Section 4 presents the formal definition of

MinPathDT problem, and gives the hardness and the inapproximability results

for this problem. Finally, Section 5 concludes the paper summarizing our results

and giving some pointers for the extension of our work.

2 Preliminaries

Suppose that we are given a rooted tree A where the vertices and the edges are

labeled. The term internal vertex is used to refer to a node which is not a leaf.

For two vertices p and q in A, we say p is under q, if p is a vertex in the subtree

rooted at vertex q. A vertex is by definition under itself. For a child p′ of p, if

the label of the edge from p to p′ is l, then we call p′ as the l–successor of p. In

this work, we will always have distinct labels for the edges emanating from an

internal node, hence l–successor of a node will always be unique.

2.1 Binary Identification Problem

Let Z = {z1, z2, . . . , zn} be a finite set of distinct objects and T = {t1, t2, . . . , tm}
be a finite set of tests where each test t ∈ T is a function t : Z → {0, 1}. In-

tuitively, when a test t is applied to an object z, the object z produces the

response t(z), i.e. either a 0 or a 1 is obtained as an answer.
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The set of objects Z and the set of tests T can also be presented as a table

D[T,Z] (which we will call as a decision table) with m rows and n columns

where the rows are indexed by the tests and the columns are indexed by the

objects. An element D[t, z] is set to the value t(z). Table 1 is an example of

such a decision table where there are 4 objects and 3 tests. A row corresponds

to a test t and it gives the vector of responses of the objects to t. Similarly,

a column corresponds to an object z and it gives the vector of responses of z

to the tests. For a test t and an object z, we will use the notation D[t, .] and

D[., z] to refer to the row of D[T,Z] corresponding to the test t and the column

of D[T,Z] corresponding to the object z, respectively.

D z1 z2 z3 z4

t1 0 1 1 0

t2 1 0 1 0

t3 1 0 1 1

Table 1: An example decision table

For a decision table D[T,Z], if for all objects z ∈ Z, D[., z] is unique, then

D[T,Z] is called a unique response decision table. Suppose that we are given a

unique response decision table D[T,Z] and an unknown object from Z, and we

are asked to identify this object. One can apply all the tests in T and the results

of the tests will be corresponding to a unique column of the table, identifying the

unknown object. Throughout the paper, we will only consider unique response

decision tables, as otherwise such an identification is not possible.

Let us call a row/column as all–0 (resp. all–1) if every element in the

row/column is 0 (resp. 1). Note that if for a test t, D[t, .] is an all–0 or an

all–1 row, this means t does not distinguish between any objects. We call such

tests as useless since they provide no information for the identification of the

unknown object. If a decision table D[T,Z] has useless tests, one can eliminate

such tests in polynomial time, by performing a single pass over D[T,Z]. It is

possible, on the other hand, to have an all–0 (resp. an all–1) column in D[T,Z],

as an object z may always have 0 (resp. 1) as the response to all the tests.

Two different tests t and t′ for which D[t, .] and D[t′, .] are the same are called

duplicate tests. The information provided by t and t′ are the same. If a decision

table D[T,Z] has duplicate tests, one can eliminate such tests in polynomial
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time, by checking the equality of every pair of rows of D[T,Z]. A decision table

is said to be reduced if it has no useless and duplicate tests. We will only consider

reduced decision tables, unless stated otherwise.

2.2 Binary Decision Trees

Identifying an unknown object of Z by using tests in T can also be performed

adaptively. In this case the procedure to be applied can be described in the

form of a binary decision tree A having the following properties.

Definition 1. A decision tree for a given decision table D[T,Z] where Z =

{z1, z2, . . . , zn} and T = {t1, t2, . . . , tm} is a rooted tree A with n leaves such

that:

(1) Each leaf of A is labeled by a distinct object z ∈ Z.

(2) Each internal node of A is labeled by a test t ∈ T .

(3) Each internal node has two outgoing edges, one with label 0 and the other

with label 1.

(4) Consider a path from the root to a leaf node p labeled by an object z. Let q

be an internal node on this path and t be the test labeling the node q. If p is

under the 0–successor of q then t(z) = 0, and if p is under the 1–successor

of q then t(z) = 1.

Figure 1 and Figure 2 present two different decision trees for the decision

table given in Table 1. The identification procedure based on a given decision

tree A proceeds as follows: If r is the root node of A, we start by applying the

test labeling r. If the outcome is 0, then the subtree rooted at the 0–successor

of r is considered, otherwise (when the outcome is 1) the subtree rooted at the

1–successor of r is considered. The procedure is repeated recursively for the root

of each subtree visited, until a leaf is reached. When a leaf node p is reached,

the object labeling p gives the unknown object.

Note that it is always possible to find such a decision tree thanks to the

assumption that D[T,Z] is a unique response decision table (see Observation 1

in [5]).
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Figure 1: A decision tree for the

decision table of Table 1
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Figure 2: Another decision tree for

the decision table of Table 1

3 Minimum Verification Set Problem

Instead of trying to identify an unknown object from Z by using the tests in T ,

another interesting question can be the following. Given a certain object z ∈ Z,

find a set of tests that would check if the unknown object is z or not. Of course,

since we assume that D[., z] is unique, this check can be performed by applying

all the tests in T . However, we may be able to perform this check by using a

subset of tests in T .

Definition 2. Let D[T,Z] be a decision table and z ∈ Z be an object. A subset

of tests T ′ ⊆ T is said to be a verification set for z, if for any z′ ∈ Z \ {z},
∃t ∈ T ′ such that t(z) 6= t(z′). A verification set T ′ for z is called a minimum

verification set for z if there does not exist a verification set T ′′ for z such that

|T ′′| < |T ′|.

In other words, any object can be distinguished from z by using some test

in T ′. For the trivial case where Z = {z}, the minimum verification set for

z is simply the empty set. Note that T itself is always a verification set for

any object. One may want to minimize the effort for such a verification hence

a verification set with minimal cardinality is desirable. Definition 3 states the

problem formally.

Definition 3. MinVS problem: Given a decision table D[T,Z] and an object

z ∈ Z, find a minimum verification set for z.
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We will show the hardness of MinVS using a reduction from the set cov-

ering problem. The set covering problem is defined by a tuple (U,C) where

U = {u1, u2, . . . , up} is a (universal) set of items, and C = {c1, c2, . . . , cq} is a

collection of non–empty subsets of U (i.e. ∀c ∈ C, c ⊆ U), with the property

that ⋃
c∈C

c = U

A subset C ′ ∈ C is said to be a cover for U if⋃
c∈C′

c = U

The set covering problem (SCP) is to find a minimum cardinality cover C ′ for

U , i.e. a cover where |C ′| is minimized.

It is well known that SCP is NP-complete [9, 6]. We will consider only

nontrivial SCP instances with the following property: For each ci ∈ C, ci 6= U .

If there exists a subset ci such that ci = U , then for such instances, SCP has

the trivial solution consisting of ci only. The hardness of SCP is therefore not

due to such trivial instances, but due to nontrivial instances which are defined

above. Also, we assume that for any two different subsets ci and cj in C, we

have ci 6= cj , since such repeated occurrences of subsets can be detected and

eliminated in polynomial time by pairwise comparison of the subsets.

3.1 Hardness of Minimum Verification Set Problem

In this section, we will show that the decision version of MinVS is NP-complete.

We will use a reduction from SCP which we explain now. Let (U,C) be an

instance of SCP. We form the following decision table D[T,Z] from the instance

(U,C) of SCP. We call this translation as the mapping β.

• T = {tc|c ∈ C}

• Z = ZU ∪ {z?}, where ZU = {zu|u ∈ U} and z? is an additional object

not in ZU .

• ∀tc ∈ T, zu ∈ ZU

tc(zu) =

{
1 if u ∈ c
0 otherwise

• ∀tc ∈ T , tc(z
?) = 0
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It is easy to see that, if there are p elements in U and q subsets in C, then

there are p + 1 objects in Z and q tests in T . Note that, since a subset c ∈ C
is non–empty, the row D[tc, .] is not all–0. Also since we consider nontrivial

instances of SCP, for a subset c ∈ C, we also have c 6= U , therefore the row

D[tc, .] is not all–1. The assumption that for any two different subsets ci and cj

we have ci 6= cj , makes sure that there are no duplicate tests in T . For an object

zu ∈ ZU , the column D[., zu] can be an all–1 column, when u happens to belong

to every subset c ∈ C. However, D[., zu] cannot be an all–0 column, since u

must belong to at least one subset c ∈ C. The column D[., z?] on the other

hand is an all–0 column, and it is therefore the only all–0 column in D[T,Z].

We will use the notation β(U,C) to denote the decision table D[T,Z] gener-

ated by the mapping β from an instance (U,C) of SCP. For a given subset C ′

of C, we use the notation α(C ′) to denote the set {tc|c ∈ C ′} and for a given

subset T ′ of the tests of β(U,C), we use the notation α−1(T ′) to denote the set

{c|tc ∈ T ′}.

Lemma 1. Let (U,C) be an instance of SCP and D[T,Z] = β(U,C). Given a

cover C ′ for U , α(C ′) is a verification set for z? and |α(C ′)| = |C ′|. Also given

a verification set T ′ for z?, α−1(T ′) is a cover for U and |α−1(T ′)| = |T ′|.

Proof. Let C ′ be a cover for U and consider the set of tests T ′ = α(C ′). We will

now show that T ′ is a verification set for z?. We have Z \{z?} = ZU . Therefore

we need to show that for any zu ∈ ZU , there exists a test tc ∈ T ′ such that

tc(zu) 6= tc(z
?). Since C ′ is a cover for U , for any u ∈ U , there has to be a set

c ∈ C ′ such that u ∈ c. Then, for the test tc, we have tc(zu) = 1 6= tc(z
?) = 0.

Now let T ′ be a verification set for z? and consider the set C ′ = α−1(T ′).

We will now show that C ′ is a cover for U , by proving for any u ∈ U , there

exists a c ∈ C ′ such that u ∈ c. Since tc(z
?) = 0 for any test tc, for T ′ to be a

verification set for z?, for any zu ∈ ZU , there must be a test tc ∈ T ′ such that

tc(zu) = 1, implying u ∈ c. That is, for any u ∈ U , there must be a set c ∈ C ′

such that u ∈ c, which shows that C ′ is a cover for U .

In both cases, it is easy to see that |α(C ′)| = |C ′| and |α−1(T ′)| = |T ′| due to

the one–to–one correspondence of the tests in D[T,Z] and the subsets in (U,C)

by the mapping β.

We can now show that the decision version MinVS is NP-complete.

Theorem 1. The decision version of MinVS problem is NP-complete.
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Proof. Let K be a constant, D[T,Z] be a decision table, and z be an object in

Z. The decision version of MinVS problem asks if there exists a verification set

T ′ for z such that |T ′| ≤ K. Given a set T ′ such that |T ′| ≤ K, one can check if

T ′ is a verification set for z, by comparing t(z) and t(z′) for every z′ ∈ Z \ {z}
and for every t ∈ T ′, in polynomial time. Hence, the problem is in NP.

Let (U,C) be an instance of SCP and let D[T,Z] = β(U,C). Suppose that

it is possible to decide if there is a verification set T ′ for z? such that |T ′| ≤ K
in polynomial time. Then, we can also check if there exists a set cover C ′ such

that |C ′| ≤ K using the same algorithm, based on Lemma 1. However, we know

that SCP is NP-complete.

3.2 Inapproximability of Minimum Verification Set Prob-

lem

There are inapproximability results in the literature for the minimization version

of SCP. In [12, 4], it was shown that SCP cannot be approximated within a

factor in o(lg n) unless NP has quasipolynomial time algorithms. It was also

shown that SCP does not admit an o(lg n) approximation under the weaker

assumption that P 6= NP [14, 2].

Due to the construction of the mapping β, it is also possible to deduce such

inapproximability results for MinVS problem. We will first show the relation

between the optimal solution of an SCP instance (U,C) and the optimal solution

of the corresponding VSP instance β(U,C).

Lemma 2. Given an SCP instance (U,C) let D[T,Z] = β(U,C). Let OPTsc

be the optimal solution of (U,C) and OPTvs be the optimal solution for the VSP

instance of finding a verification set for z? in D[T,Z]. Then OPTsc = OPTvs.

Proof. Let C ′ and T ′ be a cover for U and a verification set for z? achieving

OPTsc and OPTvs, respectively. Suppose that OPTsc < OPTvs, meaning that

|C ′| < |T ′|. Using Lemma 1, T ′′ = α(C ′) is also a verification set for z? and

|T ′′| = |C ′|. However, this means |T ′′| < |T ′| which is not possible since we

know that T ′ is an optimal solution. Conversely, suppose that OPTsc > OPTvs,

meaning that |C ′| > |T ′|. Using Lemma 1, C ′′ = α−1(T ′) is also a cover for U

and |C ′′| = |T ′|. However, this means |C ′| > |C ′′| which is not possible since we

know that C ′ is an optimal solution.
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Theorem 2. MinVS does not admit an o(lg n) approximation algorithm unless

P = NP.

Proof. Suppose that P 6= NP and there exists a polynomial algorithm P which

gives an o(lg n) approximation for MinVS. In this case, for a given SCP instance

(U,C), one can consider D[T,Z] = β(U,C), and using P, get a solution T ′ which

is an o(lg n) approximation for the verification set for z? for D[T,Z]. In this

case, Lemma 1 and Lemma 2 together imply that α−1(T ′) is also an o(lg n)

approximation for the SCP instance (U,C), which we know to be impossible

when P 6= NP.

4 Minimum Path Decision Tree Problem

As noted before, there always exists a decision tree for a given decision table

D[T,Z] based on the assumption that D[T,Z] is a unique response decision

table. However, for a given decision table, there can be more than one decision

tree. For example, Figure 1 and Figure 2 are two different decision trees for

the decision table given in Table 1. Since the identification procedure for the

unknown object is directly based on the decision tree used, the cost of the

procedure depends on the decision tree. One may want to minimize this effort

by using an appropriate decision tree. There can be different metrics that can

be used to measure the effort. Given a decision tree A and an object z ∈ Z, let

dA(z) be the depth of the leaf node labeled by z in A. For the decision tree in

Figure 1, we have dA(z1) = 3, dA(z2) = 1, dA(z3) = 2, and dA(z4) = 3.

One problem can be to minimize the expected number of tests to be applied,

which corresponds to minimizing the sum
∑

z∈Z dA(z) assuming each object is

equiprobable. We will call this problem as MinDT problem. Another problem

can be to minimize the depth of the decision tree A in order to minimize the

worst case behaviour of the identification procedure based on A. We will call

this problem as MinHeightDT problem. It is known that decision versions

of the problems MinDT and MinHeightDT are NP-complete (for MinDT

problem see [7] and Decision Tree problem (MS15) in [6], for MinHeightDT

problem see the concluding remarks in [7]).

In this section, we will consider another metric for the minimization of de-

cision trees. To motivate the problem consider the following scenario. For a

given decision table D[T,Z], suppose that the objects are diagnoses in a medi-
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cal emergency room where some binary tests are applied to reach a diagnosis.

The tests all take the same amount of time, however one of the diagnosis is more

important than the others, since it requires a much more urgent action to be

taken. In such a case, the situation can be modeled as a binary identification

problem, where one would like to find a decision tree whose root–to–leaf path

corresponding to this urgent diagnosis is minimized. Definition 4 states the

problem formally.

Definition 4. MinPathDT problem: Given a decision table D[T,Z] and an

object z ∈ Z, find a decision tree A such that dA(z) is minimized.

In the following sections, we will show the hardness and inapproximability

of the MinPathDT problem.

4.1 Hardness of Minimum Path Decision Tree Problem

Consider a decision tree A and a leaf vertex p labeled by an object z in A.

We use the notation A|z to denote the set of internal vertex labels on the path

from the root of A to p. For example, for the decision tree A given in Figure 1,

A|z2 = {t3}, A|z3 = {t1, t3} and A|z1 = A|z4 = {t3, t1, t2}.
We will show the relation between solving MinVS for an object z and solving

MinPathDT for the same object z. Basically, the idea is to show that given

a minimum verification set T ′ for an object z, it is always possible to build a

decision tree A such that A|z = T ′.

If D[T,Z] is a decision table, one can consider a subset Z ′ of objects, and

form the table D[T,Z ′] which would still be a decision table. If D[T,Z] is

a unique response decision table, then so is D[T,Z ′]. However, even though

D[T,Z] is reduced, D[T,Z ′] may not be reduced. Some tests in D[T,Z ′] may

be duplicate and/or useless. As explained in Section 2.1 though, it is always

possible to get a reduced decision table from D[T,Z ′] by eliminating duplicate

and useless tests, in polynomial time.

For a value x ∈ {0, 1}, let x̄ denote the negation of the value x, i.e. x̄ = 1−x.

We will first introduce a textual notation to describe trees using the following

grammar. For any object z ∈ Z, z is a tree. Let A1 and A2 be two trees, and

t be a test. In this case, 〈A1
x← t

x̄→ A2〉 is a tree, where x ∈ {0, 1}. Using this

notation, the decision trees in Figure 1 and Figure 2 are given as 〈z2
0← t3

1→
〈〈z4

0← t2
1→ z1〉

0← t1
1→ z3〉〉 and 〈〈z4

0← t2
1→ z1〉

0← t1
1→ 〈z2

0← t2
1→ z3〉〉,
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respectively. Note that a tree given in this notation is not necessarily a decision

tree, however all decision trees can be described using this notation.

Lemma 3. Let D[T,Z] be a decision table and Z1 ⊂ Z and Z2 ⊂ Z be two

subsets of objects such that Z1 ∩ Z2 = ∅. Let A1 be a decision tree for D[T,Z1]

and A2 be a decision tree for D[T,Z2]. Furthermore, let t ∈ T be a test such

that ∀z1, z
′
1 ∈ Z1,∀z2, z

′
2 ∈ Z2, t(z1) = t(z′1) = x 6= x̄ = t(z2) = t(z′2). In this

case, A = 〈A1
x← t

x̄→ A2〉 is a decision tree for D[T,Z1 ∪ Z2].

Proof. Since ∀z1, z
′
1 ∈ Z1, t(z1) = t(z′1), i.e. t cannot distinguish between the

objects in Z1, t cannot appear in A1. Similarly, t cannot appear in A2 for the

same reason.

Condition (1) of Definition 1 is easily satisfied by A, since the leaves of A are

labeled by distinct objects from the set Z1∪Z2 due to the fact that Z1∩Z2 = ∅.
The nodes in A1 and A2 satisfy the conditions (2), (3), and (4) already, since

A1 and A2 are decision trees themselves. The tree A introduces one node only,

which is the root. Let r be this root node. Since r is labeled by t, a test in T ,

condition (2) is satisfied by r. Condition (3) is also satisfied by r, as it has two

outgoing edges with label 0 and label 1 (either x = 0 and x̄ = 1, or x = 1 and

x̄ = 0).

For condition (4), let us assume that x = 0. Let p be a leaf node with label z

where z ∈ Z1. Since z ∈ Z1, by the premises of the lemma, we have t(z) = x = 0.

In this case, p is under the 0–successor of r, satisfying the condition (4) for r.

For a leaf node p with label z where z ∈ Z2, by the premises of the lemma, we

have t(z) = x̄ = 1. In this case, p is under the 1–successor of r, satisfying the

condition (4) for r, again. For the case where x = 1 and x̄ = 0, the proof is

similarly easy.

Lemma 4. Let D[T,Z] be a decision table, z ∈ Z be an object, T ′ ⊆ T be a

minimum verification set for z in D[T,Z], and t ∈ T ′ be a test in the minimum

verification set T ′. Let Z ′ be the set of objects in Z that give the same response

to t as z, i.e. Z ′ = {z′ ∈ Z|t(z′) = t(z)}. In this case, T ′ \ {t} is a minimum

verification for z in the decision table D[T,Z ′].

Proof. Suppose there exists a verification set T ′′ for z in D[T,Z ′] such that

|T ′′| < |T ′ \ {t}|. Using the tests in T ′′, z can be distinguished from all the

objects in Z ′. The test t distinguishes z from all the objects in Z \ Z ′. Hence
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the set T ′′ ∪ {t} is a verification set for z in D[T,Z]. This is a contradiction

since |T ′′∪{t}| < |T ′| and T ′ is a minimum verification set for z in D[T,Z].

Lemma 5. Let D[T,Z] be a decision table, z ∈ Z be an object, T ′ ⊆ T be a

minimum verification set for z in D[T,Z]. There exists a decision tree A for

D[T,Z] such that A|z = T ′.

Proof. The proof is by induction on the size of the set T ′.

When |T ′| = {t} for a single test t, this means that t(z) 6= t(z′), for all

z′ ∈ Z \ {z}. Consider the decision table D[T,Z \ {z}] and let A′ be a decision

tree for D[T,Z\{z}]. Note that t cannot be used inA′, since t cannot distinguish

any two objects in Z \ {z}. In this case, using Lemma 3, A = 〈z t(z)← t
t(z)→ A′〉

is a decision tree for D[T,Z]. For A, we have A|z = {t} = T ′.

For the induction step, let t ∈ T ′ be a test in T ′ and let Z1 = {z′ ∈ Z|t(z′) =

t(z)}, and Z2 = Z \ Z1. Using Lemma 4, T ′ \ {t} is a minimum verification set

for z in the decision table D[T,Z1]. Since |T ′ \ {t}| < |T ′|, using the induction

hypothesis, there exists a decision tree A1 for D[T,Z1] such that A1|z = T ′\{t}.
Also consider the set of objects Z2, and let A2 be a decision tree for D[T,Z2].

Note that Z1 ∩ Z2 = ∅, and ∀z1, z
′
1 ∈ Z1,∀z2, z

′
2 ∈ Z2, we have t(z1) = t(z′1),

t(z2) = t(z′2), and t(z1) 6= t(z2). Using Lemma 3, A = 〈A1
t(z)← t

t(z)→ A2〉 is a

decision tree for D[T,Z]. For A, we have A|z = A1|z ∪ {t} = (T ′ \ {t}) ∪ {t} =

T ′.

Lemma 5 explains one direction of the connection between MinVS and Min-

PathDT problems. Namely, for any minimum verification set T ′, there exists

a decision tree A, where only the tests in T ′ are used in the branch of A cor-

responding to the object z. The other direction of the connection is stated by

the following lemma.

Lemma 6. Let D[T,Z] be a decision table, z be an object, and A be a decision

tree. A|z is a verification set for z.

Proof. A|z is the set of tests in A labeling the path from the root to the leaf

node p labeled by z. Let p′ be another leaf node labeled by another object

z′. Consider the node q on the path from the root to p such that p is under

x–successor of q (where x ∈ {0, 1}) and p′ is under x̄ successor of q. Since p

and p′ are two different leaves, we can always find such a node q. Since q is

on the path from the root to p, for the label t of q, we know that t ∈ A|z. By
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condition (4) of Definition 1, we have t(z) = x 6= x̄ = t(z′), which shows that

for t, t(z) 6= t(z′). Since for any object z′ 6= z, we can find such a node q (on

the path from root to p) and hence a test t ∈ A|z that distinguishes z from z′,

A|z is a verification set for z.

Theorem 3. The decision version of MinPathDT problem is NP-complete.

Proof. Let K be a constant, D[T,Z] be a decision table, z be an object. The

decision version of MinPathDT problem asks if there exists a decision tree A
for z in D[T,Z] such that |dA(z)| < K. The size of a decision tree is necessarily

polynomially bounded, since each leaf of the tree has a distinct object label.

Given a decision tree, one can check the length of the path from the root to the

leaf labeled by z to see if the length is smaller than K. Therefore, the decision

version of MinPathDT problem is in NP.

For the completeness result, we will use the obvious reduction from the

MinVS problem and show that if it is possible to decide MinPathDT problem

in polynomial time, it should be possible to decide MinVS problem in polyno-

mial time as well.

Suppose that it is possible to decide if there is a decision tree A such that

|dA(z)| < K in polynomial time. If such a decision tree A exists, then using

Lemma 6, we can deduce that a verification set T ′ = A|z for z where |T ′| < K

also exists. If such a decision tree does not exist, then we can also deduce that

there is no minimum verification set T ′ such that |T ′| < K, since existence of

such a set T ′, would also imply the existence of a decision tree A where A|z = T ′

using Lemma 5, which is a contradiction.

Therefore, a polynomial time algorithm that can decide MinPathDT prob-

lem can also be used to decide MinVS problem. However, by Theorem 1, we

know that MinVS problem is NP-complete.

4.2 Inapproximability of Minimum Path Decision Tree

Problem

Due to the construction of our reduction, it can also be shown that the inap-

proximability result given Section 3.2 for MinVS also applies to MinPathDT.

First, we show the relation between the optimal solutions of MinVS and Min-

PathDT.
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Lemma 7. For a given decision table D[T,Z] and an object z, let OPTvs and

OPTpdt be the optimal solutions for MinVS and MinPathDT problems for

D[T,Z] and z, respectively. Then OPTvs = OPTpdt.

Proof. Let T ′ be a verification set achieving the optimal value OPTvs and A
be a decision tree achieving the optimal value OPTpdt, where T ′′ = A|z. As-

sume that OPTvs < OPTpdt, which implies |T ′| = OPTvs < OPTpdt = |T ′′|.
Lemma 5 claims that there exists another decision tree A′ such that A′|z = T ′.

Since |T ′| < |T ′′|, this contradicts with the fact that A is an optimal solu-

tion. Reversely, assume that OPTvs > OPTpdt, which implies |T ′| = OPTvs >

OPTpdt = |T ′′|. In this case, using Lemma 6, we know that T ′′ is also a ver-

ification set. However, this cannot happen since T ′ is a minimum verification

set.

After showing the equivalence of the optimal solutions of these problems,

now we can carry the inapproximability result on MinVS to MinPathDT.

Theorem 4. MinPathDT problem does not admit an o(lg n) approximation

algorithm unless P = NP.

Proof. Suppose that P 6= NP and there exists a polynomial time algorithm

P such that P gives on o(lg n) approximation for MinPathDT. For a given

decision table D[T,Z] and an object z, we can then use algorithm P to find such

a decision tree A in polynomial time. Lemma 5 states that T ′ = A|z is also a

verification set for z. According to Lemma 7, the optimal solutions of MinVS

and MinPathDT are the same. Hence if A provides an o(lg n) approximation

to the optimal value of the MinPathDT instance, T ′ must also provide an

o(lg n) approximation to the MinVS instance. However, due to Theorem 2, we

know that o(lg n) approximation is not possible for MinVS when P 6= NP.

5 Conclusion and Future Work

We introduced the problem of verifying an unknown object by using binary

tests. Although this is a seemingly easier problem than identifying the unknown

object, we showed that the finding a minimum set of tests for such a verification

is also NP-complete. In addition, we also proved that minimization version of

the problem cannot be approximated within a factor in o(lg n) unless P = NP.
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We also introduced a new metric that can be used to measure the size of a

decision tree. In this new metric, the length of a certain root to leaf path of

the decision tree is used as the size of the tree. By showing the equivalence of

the problem of finding a minimum verification set for an object and finding a

minimum decision tree where the size of the tree is minimized for the root to

leaf path of the same object, we showed that decision tree minimization is also

NP-complete with respect to this new metric as well. Due to the equivalence

of the two problems, the inapproximability result shown for the verification set

problem is easily shown to apply for the decision tree minimization problem

with this metric as well.

The hardness and the inapproximability results for the verification set prob-

lem (and hence for the decision tree minimization problem) are based on a re-

duction from the set covering problem. There are approximation algorithms for

the set covering problem that provide an O(lg n) approximation. Investigating

these algorithms to see if they can be used to provide an O(lg n) approximation

for the problems studied in this work can be an interesting next step.
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