## Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equationsErkip, Albert and Babaoğlu, Ceni and Erbay, Hüsnü A. (2012)
Full text not available from this repository. Official URL: http://dx.doi.org/10.1016/j.na.2012.09.001 ## AbstractThis study deals with the analysis of the Cauchy problem of a general class of nonlocal nonlinear equations modeling the bi-directional propagation of dispersive waves in various contexts. The nonlocal nature of the problem is reflected by two different elliptic pseudodifferential operators acting on linear and nonlinear functions of the dependent variable, respectively. The well-known doubly dispersive nonlinear wave equation that incorporates two types of dispersive effects originated from two different dispersion operators falls into the category studied here. The class of nonlocal nonlinear wave equations also covers a variety of well-known wave equations such as various forms of the Boussinesq equation. Local existence of solutions of the Cauchy problem with initial data in suitable Sobolev spaces is proven and the conditions for global existence and finite-time blow-up of solutions are established.
## Available Versions of this Item- Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations. (deposited 20 Oct 2012 16:59)
**[Currently Displayed]**
Repository Staff Only: item control page |