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Abstract
We propose a new method to incorporate statistical priors on
the solution of the nonnegative matrix factorization (NMF)
for single-channel source separation (SCSS) applications. The
Gaussian mixture model (GMM) is used as a log-normalized
gain prior model for the NMF solution. The normalization
makes the prior models energy independent. In NMF based
SCSS, NMF is used to decompose the spectra of the observed
mixed signal as a weighted linear combination of a set of trained
basis vectors. In this work, the NMF decomposition weights are
enforced to consider statistical prior information on the weight
combination patterns that the trained basis vectors can jointly
receive for each source in the observed mixed signal. The NMF
solutions for the weights are encouraged to increase the log-
likelihood with the trained gain prior GMMs while reducing the
NMF reconstruction error at the same time.
Index Terms: Nonnegative matrix factorization, single-channel
source separation, and Gaussian mixture models.

1. Introduction
Nonnegative matrix factorization [1], is extensively used in
source separation applications, especially when only one ob-
servation of the mixed signal is available [2]. In NMF based
single-channel source separation, NMF uses the training data
for each source to train a set of basis vectors. After observing
the mixed signal, NMF is used to decompose the mixed sig-
nal as a weighted linear combination of the trained basis vec-
tors. The estimate for each source is found by summing the
decomposition terms that include its corresponding trained ba-
sis vectors. To improve the performance of NMF, there have
been many works that aim to enforce the NMF decomposition
weights to satisfy certain characteristics of the source signals.
In [3], temporal continuity and sparsity priors were enforced in
the decomposition weights. In [2, 4] temporal smoothness was
enforced on the NMF decomposition weights.

In this work, we propose a method that makes better use of
the available training data to improve the separation process. In
the training stage, NMF is used to decompose the power spec-
tral density of the training data of each source into a basis matrix
and a gains matrix. The gains matrix which was usually ignored
in previous works is used here to build a GMM prior model for
each source. The columns of the gains matrices are normalized
and their logarithm is taken and used to train the prior GMMs.
After observing the mixed signal, NMF is used to decompose
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the power spectra of the mixed signal with the trained basis ma-
trices. The decomposition solutions of the NMF are encouraged
to increase the log-likelihood with the trained GMM model for
each source. In [5] a single Gaussian model for the training gain
matrix was used. In that work, the training and testing signals
for all sources must have the same energy level. Our proposed
algorithm uses GMM, which better represents the data than a
single Gaussian model. We also do not put any restriction on
the energy level of the testing data compared to the training
data. Moreover, the source signals can have different energy
levels in the mixed signal without any restriction. Furthermore,
our update rules for the regularized NMF handle the nonnega-
tivity constrains better than the ones that were used in [5]. In
addition, we show the importance of the regularization parame-
ters which control the trade-off between the NMF cost function
and the prior likelihood.

The remainder of this paper is organized as follows: In
section 2, a mathematical description of the SCSS problem is
given. In section 3, we give a brief explanation about NMF.
In section 4, we show the training processes of the NMF basis
models and the GMM prior gain models for the source signals.
In section 5, the separation process is presented. In the remain-
ing sections, we present our observations and the results of our
experiments.

2. Problem formulation
In SCSS problems, the aim is to find estimates of source sig-
nals that are mixed on a single observation channel y(t). This
problem is usually solved in the short time Fourier transform
(STFT) domain. Let Y (t, f) be the STFT of y(t), where t rep-
resents the frame index and f is the frequency-index. Due to
the linearity of the STFT, we have:

Y (t, f) =

Z∑
i=1

S(i)(t, f), (1)

where S(i)(t, f) is the unknown STFT of source i in the mixed
signal, and Z is the number of sources in the mixed signal. As-
suming independence of the sources, we can write the power
spectral density (PSD) of the measured signal as the sum of
source signal PSDs as follows:

σ2
y(t, f) =

Z∑
i=1

σ2
i (t, f), (2)



where σ2
y(t, f) = E(|Y (t, f)|2). We can write the PSDs in

matrix form as follows:

Y =

Z∑
i=1

S(i), (3)

where S =
{
S(1), ..,S(i), ..,S(Z)

}
are the unknown PSDs

of the source signals, and they need to be estimated using the
observed mixed signal and training data for each source. The
PSD for the measured signal y(t) is calculated by taking the
squared magnitude of the DFT of the windowed signal.

The main idea to solve for S is to decompose each PSD
frame of the mixed signal y as a nonnegative weighted linear
combination of the trained set of nonnegative basis vectors b
for all sources as follows:

y ≈
Q(1)∑
q=1

g(1)q b(1)q︸ ︷︷ ︸
s̃(1)

+...+

Q(i)∑
q=1

g(i)q b
(i)
q︸ ︷︷ ︸

s̃(i)

+...+

Q(Z)∑
q=1

g(Z)
q b(Z)

q︸ ︷︷ ︸
s̃(Z)

.

(4)
Where s̃(i) is the estimated PSD frame of source i that is cor-
responding to the PSD frame of the mixed signal y, b(i)q is the
trained basis vector number q for source i, g(i)q is the gain that
basis b(i)q gets in the mixed signal, and Q(i) is the number of
trained basis vectors for source i. In this work, the set of gain
values g(i) for the set of basis vectors b(i) for each source i are
jointly encouraged to increase the log-likelihood with its corre-
sponding trained gain prior GMM.

3. Nonnegative matrix factorization
Nonnegative matrix factorization is a matrix factorization al-
gorithm based on nonnegativity constraints. The nonnegative
matrix V can be decomposed into a nonnegative basis matrix
B and a nonnegative gains matrixG as follows:

V ≈ BG. (5)

The matrix B contains nonnegative basis vectors that are opti-
mized to allow the data in V to be approximated as a nonnega-
tive linear combination of its constituent columns. The solution
forB andG can be found by minimizing the following Itakura-
Saito (IS) divergence cost function [4]:

min
B,G

DIS (V ||BG) , (6)

where

DIS (V ||BG) =
∑
a,b

(
V a,b

(BG)a,b
− log

V a,b

(BG)a,b
− 1

)
.

This divergence cost function is a good measurement for the
perceptual difference between different signals [4, 6]. The IS-
NMF solution for equation (6) can be computed by alternating
multiplicative updates ofB andG as follows [6]:

B ← B ⊗

(
V

(BG)2

)
GT(

1
BG

)
GT

, (7)

G← G⊗
BT

(
V

(BG)2

)
BT

(
1
BG

) , (8)

where 1 is a matrix of ones with the same size of V , the opera-
tion ⊗ is an element-wise multiplication, all divisions and (.)2

are element-wise operations.

4. Training the source models
Given a set of training data for each source signal, the power
spectrogram S(i)

train for each source i is calculated. NMF is used
to decompose the power spectrogram into bases and gains ma-
trices as follows:

S
(i)

train ≈ B
(i)G

(i)

train, (9)

the multiplicative update rules in equations (7) and (8) are used
to solve equation (9). Within each iteration, we normalize the
columns of B(i). All the matrices B and Gtrain are initialized
by positive random noise. After finding matrices B and Gtrain
for all sources, all matrices B are used in the mixed signal de-
composition as shown in section 5. We use the matrices Gtrain
to train prior models for the gain patterns that each source signal
can possibly receive in the gains matrix. For each matrixG(i)

train,
we take the logarithm of its normalized columns, and use them
to build its gain prior GMM. The reason for using logarithm is
because GMM is usually a better fit to the logarithm of the val-
ues between 0 and 1. Logarithm of values between 0 and 1 have
wider support, so GMM fits better. The reason for normaliza-
tion is to make the models insensitive to the energy level of the
signals, which leads to an energy independent prior model. The
multivariate Gaussian mixture model is defined as:

p(x) =

K∑
k=1

wk

(2π)d/2 |Σk|1/2
exp

{
−
1

2
(x− µk)

T Σ−1
k (x− µk)

}
,

(10)
where K is the number of Gaussian mixture components, wk

is the mixture weight, d is the vector dimension, µk is the
mean vector and Σk is the diagonal covariance matrix of the
kth Gaussian model.

5. Signal separation
After observing the mixed signal y(t), the power spectral den-
sity Y of the mixed signal is computed using STFT. To find the
contribution of every source in the mixed signal PSD, we use
NMF to decompose the power spectrogram Y with the trained
basis matricesB from equation (9) as follows:

Y ≈
[
B(1), ...,B(i), ...,B(Z)

]
G. (11)

LetB =
[
B(1), ...,B(i), ...,B(Z)

]
, we need only to solve for

the gain matrixG since the bases matrixB is fixed. The matrix
G is a combination of submatrices, and every column n ofG is
a concatenation of subcolumns as follows:

G(1)

.

.

G(i)

.

.

G(Z)


=



g
(1)
1 . . g

(1)
n . . g

(1)
N

. . . . . . .

. . . . . . .

g
(i)
1 . . g

(i)
n . . g

(i)
N

. . . . . . .

. . . . . . .

g
(Z)
1 . . g

(Z)
n . . g

(Z)
N


, (12)

where N is the maximum number of columns in matrix G,
and g(i)n is the column number n in the gain submatrix G(i).
Each submatrix represents the set of gains that its correspond-
ing trained basis matrix has in the mixed signal. For the log-
normalized columns of the submatrix G(i) there is a corre-
sponding trained gain prior GMM. We need the solution of G
in equation (11) to minimize the IS-divergence cost function
in equation (6), and the corresponding log-normalized columns
of each submatrix G(i) to maximize the log-likelihood with its



corresponding trained gain prior GMM. Combining these two
objectives, the solution of G should minimize the following
regularized IS-divergence cost function:

C (G) = DIS (Y ||BG)−R(G). (13)

Where DIS (Y ||BG) is the regular IS-divergence cost func-
tion, and R(G) is the weighted sum of the log-likelihoods of
the log-normalized columns that correspond to the gain sub-
matrices in G under the GMMs trained using the columns of
Gtrain in equation (9). For each log-likelihood of the gain sub-
matrix G(i) there is a corresponding regularization parameter
α(i). R(G) can be written as follows:

R(G) =

Z∑
i=1

α(i)L(G(i)), (14)

where α(i) is a regularization parameter of the log-likelihood
of source i. The regularization parameters play an important
role in the separation performance as we show later. The log-
likelihood for the submatrixG(i) for source i can be written as
follows:

L(G(i)) =

N∑
n=1

log

K∑
k=1

A
(i)
k,n, (15)

where

A
(i)
k,n =

w
(i)
k

(2π)

(
d(i)/2

) ∣∣∣Σ(i)
k

∣∣∣1/2 exp

− 1

2

log
g(i)n∥∥∥g(i)n

∥∥∥
2

− µ(i)
k


T

(
Σ

(i)
k

)−1

log
g(i)n∥∥∥g(i)n

∥∥∥
2

− µ(i)
k


 .

(16)

Each source subcolumns
[
g
(i)
1 , .., g(i)n , .., g

(i)
N

]
in matrix G in

equation (12) are normalized and treated separately than other
subcolumns sets, and each set of subcolumns is associated with
its corresponding trained gain prior GMM.

To find the multiplicative update rule solution for G in
equation (13), we follow the same procedures as in [3, 2]. We
express the gradient with respect toG of the cost function∇GC
as the difference of two positive terms∇+

GC and∇−
GC:

∇GC = ∇+
GC −∇

−
GC. (17)

The cost function is shown to be nonincreasing under the update
rule [3, 2]:

G← G⊗ ∇
−
GC

∇+
GC

, (18)

where the operations ⊗ and division are element-wise as in
equation (8). We can write the gradients as

∇GC = ∇GDIS −∇R(G), (19)

where ∇R(G) is a matrix with the same size of G and it is a
combination of submatrices as follows:

∇R(G) =



α(1)∇L(G(1))
.
.

α(i)∇L(G(i))
.
.

α(Z)∇L(G(Z))


. (20)

The gradient for the IS-cost function and the log-likelihood can
also be written as the difference of two positive terms as fol-
lows:

∇GDIS = ∇+
GDIS −∇−

GDIS , (21)

and
∇R(G) = ∇+R(G)−∇−R(G). (22)

We can rewrite equations (17, 19) as:

∇GC =
(
∇+

GDIS +∇−R(G)
)
−
(
∇−

GDIS +∇+R(G)
)
.

(23)
The final update rule in equation (18) can be written as follows:

G← G⊗ ∇
−
GDIS +∇+R(G)

∇+
GDIS +∇−R(G)

, (24)

where
∇GDIS = BT 1

BG
−BT Y

(BG)2
, (25)

∇−
GDIS = BT Y

(BG)2
, (26)

and
∇+

GDIS = BT 1

BG
. (27)

The row j and column n component of the gradient of the log-
likelihood in equation (15) can also be written as the difference
of two positive terms as(
∇L(G(i))

)
jn

=
(
∇+L(G(i))

)
jn
−
(
∇−L(G(i))

)
jn
,

(28)
where

(
∇−

L(G
(i)

)
)
jn

=

K∑
k=1

γ
(i)
k,n

(
Σ

(i)
kjj

)−1

µ(i)
kj

g
(i)
jn

+
g
(i)
jn∥∥∥g(i)n

∥∥∥2
2

log
g
(i)
jn∥∥∥g(i)n

∥∥∥
2

 ,

(29)

(
∇+

L(G
(i)

)
)
jn

=

K∑
k=1

γ
(i)
k,n

(
Σ

(i)
kjj

)−1

µ(i)
kj
g
(i)
jn∥∥∥g(i)n

∥∥∥2
2

+
1

g
(i)
jn

log
g
(i)
jn∥∥∥g(i)n

∥∥∥
2

 ,

(30)
and

γ
(i)
k,n =

−A(i)
k,n∑K

k=1A
(i)
k,n

.

Since the GMMs are trained by log-normalized columns,
we know that the values of the mean vectors µ are always neg-
ative. The values of the vectors g are always positive, so the
values from equations (29) and (30) will be always positive.
Equations (26, 27, 29, 30, 20) are used to find the total gradi-
ents in equation (23) and then to derive the update rules for G
in equation (24). The initialization of the matrix G is done by
running one regular NMF iteration without any prior.

Normalizing vectors in the prior model slightly increases
the complexity of the gradients computation, but it is beneficial
in situations where the source signals occur with varying energy
levels. Normalizing the training and testing gain matrices gives
the prior models a chance to work with any energy level that
the source signals can take in the mixed signal regardless of
the energy levels of the training signals. It is important to note
that, normalization during the separation process is done only
for maximizing the log-likelihood with the prior models only.
The general solution for the cost function in equation (13) is not
normalized. The normalization is done for the prior to match



the energy level of the training signals that are used to train the
GMMs.

After finding the suitable solution for the matrixG, the ini-
tial power spectrogram estimate of any source i is found as fol-
lows:

S̃
(i)

= B(i)G(i). (31)

The final STFT estimate Ŝ(i) (t, f) of source i can be found
as in [4] by scaling each entry of the mixed signal STFT ac-
cording to the contribution of the source i in the mixed signal
as follows:

Ŝ(i) (t, f) =H(i) (t, f)Y (t, f) , (32)

where

H(i) =
B(i)G(i)∑Z

j=1

(
B(j)G(j)

) , (33)

and the division is done element-wise. Since the multiplication(
B(i)G(i)

)
represents a PSD,H(i) can be seen as a Wiener fil-

ter. After finding the contribution of each source signal i in the
mixed signal, the estimated source signal ŝ(i)(t) can be found
by using inverse STFT of its corresponding STFT Ŝ(i)(t, f).

6. Experiments and Discussion
We applied the proposed algorithm to separate a speech signal
from a background piano music signal. Our main goal was to
get a clean speech signal from a mixture of speech and piano
signals. We simulated our algorithm on a collection of speech
and piano data at 16kHz sampling rate. For training speech
data, we used 540 short utterances from a single speaker, we
used other 20 utterances for testing. For music data, we down-
loaded piano music data from piano society web site [7]. We
used 12 pieces from different composers but from a single artist
for training and left out one piece for testing. The PSD for the
training speech and music data were calculated by using the
STFT: A Hamming window with 480 length and 60% overlap
was used and the FFT was taken at 512 points, the first 257
FFT points only were used since the conjugate of the remain-
ing 255 points are involved in first FFT points. We trained 128
basis vectors for each source, which makes the size of each B
matrix to be 257 × 128, hence, the vector dimension d = 128
in equation (16) for both sources. The suitable number of the
GMM component K always depends on the size and the type
of the training data. In this work, we fixed the number of GMM
components to be 32 for each source.

The test data was formed by adding random portions of
the test music file to the 20 speech utterance files at different
speech-to-music ratio (SMR) values in dB. The audio power
levels of each file were found using the ”audio voltmeter” pro-
gram from the G.191 ITU-T STL software suite [8]. For each
SMR value, we obtained 20 test utterances this way.

Performance measurement of the separation algorithm was
done using the signal to noise ratio (SNR). The average SNR
over the 20 test utterances for each SMR case are reported.

Table 1 shows the signal to noise ratio of the separated
speech signal using NMF with different values of the regular-
ization parameters α(speech) and α(music). First column of this
table shows the separation results of using NMF without using
the GMM gain prior models “α(speech) = 0, α(music) = 0”. In
the second column, we show small values for the regularization
parameters that improve the separation results comparing to us-
ing NMF without any prior information for all SMR cases. If
we know some information about SMR of the mixed signal, we

can choose different values for the regularization parameters for
each SMR case, that can lead to better results as we can see in
the last column of the table.

Table 1: Signal to Noise Ratio in dB for the speech signal us-
ing regularized NMF with different values of the regularization
parameters α(speech) and α(music).

SMR α(speech) = 0 α(speech) = 0.1 better choices
dB α(music) = 0 α(music) = 0.1 α(speech) α(music)

-5 3.32 3.45 4.55 0.5 0.005
0 7.19 7.43 7.68 0.1 0.01
5 10.58 10.64 10.67 0.1 0.01

10 12.91 13.02 13.06 0.01 0.05
15 15.62 15.92 16.42 0.01 0.5
20 17.14 17.69 20.69 0.01 10

As we can see from the last column in the table, at low SMR
we get better results when the values of α(speech) is slightly
higher than the values of α(music). This means, when the speech
signal has less energy in the mixed signal, we rely more on the
prior model for the speech signal. As the energy level of the
speech signal increases, the values of α(speech) decreases and
the value of α(music) increases since the energy level of the mu-
sic signal is decreasing. We can also see that, comparing with
no prior case, we can get better separation results by choosing
suitable values for the regularization parameters.

We applied our proposed algorithm using IS-NMF diver-
gence cost function. It also can be easily used with any other
NMF cost function. The gradients of the log-likelihood of the
gain GMMs will be the same. The only differences will be re-
lated to the gradient of the chosen NMF cost function.

7. Conclusion
In this work, we introduced a new regularized NMF algorithm
for single channel source separation. The energy independent
GMM prior models were incorporated with NMF solutions to
improve the separation performance.
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