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ABSTRACT

Railroads face the challenge of competing with the trucking industry in a fast-paced environment. In this
respect, they are working toward running freight trains on schedule and reducing travel times. The planned train
schedules consist of departure and arrival times at main stations on the rail network. A detailed timetable, on the
other hand, consists of the departure and arrival times of each train in each track section of its route. The train
dispatching problem aims to determine detailed timetables over a rail network in order to minimize deviations
from the planned schedule. We provide a new integer programming formulation for this problem based on a
space-time network; we propose heuristic algorithms to solve it and present computational results of these
algorithms. Our approach includes some realistic constraints that have not been previously considered as well as
all the assumptions and practical issues considered by the earlier works.
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1. INTRODUCTION

Railroads play a vital role in a country’s economy by providing efficient and cost-effective freight services
for the transportation of products and goods. In order to remain competitive, railroads continually seek to
improve customer service, reduce transit times and operating costs, increase asset utilization, and minimize
capital investments. Therefore, the rail transportation industry faces many planning and scheduling problems that
can be modeled and solved with mathematical optimization techniques. If solved, these problems promise
significant potential savings in costs and improved levels of service (see, for example, Assad 1980 and 1981, and
Cordeau et al. 1998). However, the literature devoted to railroad optimization has experienced a slow growth in
the past and, until recently, most contributions were dealing with simplified models or small instances that fail to
incorporate the characteristics of real-life applications.

Freight railroads usually publish their train schedules with respect to an ideal timetable that concerns only
the departure and arrival times at main stations, including origin and destination stations, as well as at
intermediate stations where any type of scheduled service should occur. The train dispatching problem, also
known as the frain meet-and-pass problem or the train timetabling problem, aims to determine detailed train
movements and timetables over a rail network under various constraints in order to minimize train deviations
from the ideal planned schedule. Deviations or delays occur when trains traveling on the same track line either in
opposite directions or in the same direction meet, thus requiring one of the trains to be pulled over for the other
to cross or to overtake it, which is called a meet-pass. The rail network is composed of corridors that are sets of
track lines connecting major stations. A corridor encompasses several intermediate points including stations,
sidings and junctions, and single- or double-line track sections between such points. A single-line section is a
track line segment that can accommodate only one train at a time. Similarly, a double-line section can
accommodate up to two trains at a time, traveling either in the same direction or in opposite directions. A track
section is delimited at each of its extreme endpoints by a station or a siding. A siding can accommodate at least
one train waiting for crossing or overtaking while a station serves as a yard or a terminal where passing trains
can wait for crossing or overtaking and where trains can depart from or arrive at.

It should be noted that these conflicts that lead to delays tend to occur in railroads where the dominant (or
total) traffic corresponds to freight trains. Since these delays, due to trains being pulled over, are much less
tolerated (or not at all) by passengers, sufficient infrastructure capacity is provided in order to avoid passenger
trains to be delayed due to crossings and overtakes. On the other hand, for freight railroads the additional
investment in tracks required to avoid or eliminate delays usually cannot be translated into increased prices to
the railroad users in order to generate enough revenue to cope with these additional investments. Freight railroad
users accept that delays due to traffic may occur and railroads tend to be slower than other modes of
transportation in terms of total transit times (due to several factors, including delays) but can offer competitive
and attractive lower prices for the services provided. As discussed in details later, this is a key issue at the
strategic capacity planning level.

The detailed timetable (dispatching plan) consists of the departure and arrival times of trains at each
intermediate point on their routes. Therefore, it also comprises the detailed information of all trains that are
delayed due to conflicts with other trains, delay locations, and the start and end times of intermediate stops.



A feasible timetable honors the rail traffic constraints such as:

e track capacities,

e cnsuring that train crossings and overtakes happen at sidings or stations,
e station and siding capacities, and

e minimum headway safety requirements.

In addition to the rail traffic constraints, freight railroads have to account for several practical constraints such
as:

e Trains may not be delayed more than a certain time (referred as maximum delay allowances) in order to
attain consistent schedules.

e Insufficient track length or the nature of the freight being carried may restrict the trains that can be
stopped at a specific siding or a station (for instance, a train of chemicals or other hazardous products
may not be allowed to pull over near a populated area).

e Some trains cannot be pulled over at some of the sidings because they may not have enough horsepower
available to resume moving due to the siding’s ascending slope.

e Lack of adequate infrastructure for crews may limit the maximum time a train can wait at a siding.

e Some trains such as passenger trains have to meet exact timetables including specified intermediate
stops and may not be pulled over at all.

e Trains with same origin and destination stations arrive at their destinations in the same sequence as they
depart.

The train dispatching problem arises in several contexts. In strategic planning, it relates to investment
decisions in expanding railroad infrastructure such as building new sidings, extending current siding lengths to
accommodate longer trains, and upgrading single-line segments to double-lines. In tactical planning, it consists
of finding the best master schedule on a regular basis (weekly, monthly, or quarterly) with respect to train
dispatching and timetabling decisions, which concerns determining when changes in the train schedules are
required and when new trains should be scheduled (e.g., during season peeks) on the same railroad line. In real-
time scheduling, it helps the dispatchers who are controlling the traffic to make sound decisions about which
trains to stop and where, as updated data about train positions becomes available. In operational planning,
dispatching plans that are updated every 2-12 hours provide the dispatchers with a guideline to aid in day-to-day
operations. All these planning perspectives except for the real-time scheduling are closely related to each other at
an abstract level in an attempt to represent the problem with a mathematical model. Nonetheless, the same
mathematical model can be used for different purposes when enhanced with appropriate decision support
mechanisms. For instance, it can be used as a what-if analysis tool to evaluate different investment options for
strategic planning purposes. The same model can be used by a railroad to analyze the feasibility of a new
schedule or the impact of inserting one or more new trains to the existing schedule at the tactical planning level.
On the other hand, the dispatcher would like to achieve an optimal or near-optimal solution in the case of day-to-
day operations using the same mathematical model.

In this paper, we report the development of a new modeling approach and related algorithms for solving the
train dispatching problem that can yield high quality or near-optimal solutions in reasonable computational
times. Our approach is flexible enough to incorporate a variety of practical constraints. We make the following
contributions to the field:



1. We develop a new integer programming formulation of the problem based on a space-time network. The
contribution with this formulation has two folds. First, it encompasses all relevant assumptions and
issues considered in previous works. Second, it allows us to obtain optimal or near-optimal solutions for
real problems in reasonable running times while considering practical constraints that have not been
considered before.

2. We propose heuristic algorithms, based on the space-time network formulation that can be employed to
solve some types of train-dispatching problems that have been considered earlier in the literature,
especially those related to railroads whose predominant traffic corresponds to freight trains.

3. The heuristic algorithms are designed to handle relevant constraints for freight railroads that appear in
practice. Some of these constraints have not been previously considered. Particularly, current state-of-
the-art heuristic algorithms are not able to handle maximum allowable delays, restricted stopping
stations for individual trains and constraints imposed by the restrictions of the physical infrastructure.

4. We present computational results of our approaches when applied to problems similar to those found in
practice as well as some randomly generated problems. The heuristic algorithms allow us to obtain good
or near-optimal solutions for both types of problems. On average, one of our heuristic algorithms
provides solutions that are within 3% of the best solution for some heavily congested problems, and
significantly better solutions than those that can be obtained by a commercial solver in much longer
times. The outcomes are additionally confirmed by the results obtained for a real-world problem of a
congested freight railroad.

To summarize, we present an integer programming formulation for the train dispatching problem that as a
special case subsumes the previous formulations. We also use this formulation as a basis to develop several
heuristic algorithms that capture most of the commonly used practical constraints. This study develops a
framework for modeling and solving the train dispatching problems of generalized railway infrastructures; we
demonstrate our findings for the case of bidirectional corridors.

2. LITERATURE REVIEW AND SCOPE OF THE PROBLEM

Several papers in the past are devoted to analytical line models whose main aim is to estimate train delays
caused by interferences on a rail line due to dispatching policies, traffic distribution, and physical track topology.
A good summary review of these papers can be found in Cordeau et al. (1998).

The following authors study the issues related to computerized train dispatching and computer-aided tools
that assist planners in constructing dispatching plans: Sauder and Westerman (1983), Rivier and Tzieropoulos
(1984, 1987), Peterson et al. (1986), Smith (1990), Churchod and Emery (1987), and Jovanovic and Harker
(1991). Sauder and Westerman (1983) describe a computer-aided dispatching system developed at Norfolk
Southern Railroad that consists of a partial enumeration scheme for generating effective train schedules on a
single-track line. Jovanovi¢ and Harker (1991) propose the SCAN I system, a decision support model for
scheduling of trains and track maintenance operations that help design reliable schedules in the sense that they
are robust under unpredictable changes in operating conditions. The model, which considers a 24-hour time-



horizon, can deal with single-line and double-line tracks, and generate feasible, but not necessarily optimal meet-
pass plans.

Carey and Lockwood (1995) study the timetabling problem in a setting that focuses on the passenger trains
of European railway systems. This first article proposes algorithms and strategies for rail network structures with
multiple one-way lines. In two related articles, Carey (1994a) and Carey (1994b) extend the findings of this
study. The former extends the previous model to include the choice of sections and waiting platforms during the
itinerary of the train. The latter considers two-way lines and generalizes the existing assumptions to those that
are typical to North American railway systems.

Kraay and Harker (1994) propose a model for optimizing freight train schedules over the entire rail network
with the intention of using them as part of a real-time control system. Its goal is to help coordinate train
dispatchers by determining the target time for each train at major points of its itinerary. These findings can then
be used in such dispatching models as the SCAN I system. The model, which is a large nonlinear, mixed-integer
problem, directly considers the current position and relative importance of each train. The authors additionally
propose a simple heuristic procedure and local search methods.

Higgins et al. (1996, 1997) study the problem of dispatching freight trains in a single-line track aiming to
minimize the total weighted travel times. They formulate a mixed integer linear problem in which the arrival and
departure times are modeled as continuous decision variables and the conflicts resolution as binary variables. In
their first paper, they propose a branch-and-bound method; in the second one, they develop local search
heuristics, genetic algorithms, tabu search, and related hybrid algorithms.

Cai et al. (1998) propose a greedy construction heuristic for timetabling and dispatching trains on a single-
track railroad. This heuristic is an extension of a previous work of Cai and Goh (1994). It can handle the physical
backups of the trains when necessary. In both works, the heuristic approach aims to resolve the capacity conflicts
that arise when the trains follow their planned schedule by selecting the train(s) to traverse the conflict segment
and the train(s) to be pulled over according to a greedy local criterion. The authors’ approach is based on
assigning trains to a position-time pair attributes at each time instant of the schedule horizon.

Adenso-Diaz et al. (1999) develop a real-time decision support system, which they designed for the Spanish
National Railway Company. This study considers a passenger train system with a focus on service level; they
attempt to satisfy the demands of a single corridor with three major lines while also solving the scheduling and
dispatching issues.

Sahin (1999) develops a heuristic algorithm for rescheduling trains in conflicting situations on a single-track
railway. The method is based on a systems approach in which conflicts with two trains are solved as they appear
in time. To resolve a conflict, the algorithm selects to stop one of the trains by comparing a look-ahead measure
that considers the potential conflicts and expected arrival times of the trains. This measure is based on analytical
models that estimate average interference delays.

Kroon and Peeters (2003) develop models to construct cyclic timetables for the major Dutch operator of
passenger trains. The system under consideration typically has a high frequency of repeated passenger trains
running on one-way multiple track lines. The proposed models extend the existing models to consider variable
trip times.



From a broader perspective, problems similar to the one we consider in this paper are addressed by
Brannlund et al. (1998) and Caprara et al. (2002), since both deal with train timetabling in the presence of traffic
conflicts that affect capacity. Brannlund et al. (1998) propose an integer programming formulation to obtain a
profit maximizing timetable in which profit is measured by estimates of the value of running different services at
specified times, and solve it using Lagrangian relaxation. Unnecessary waiting along the tracks are penalized and
trains may not get scheduled at all. Caprara et al. (2002) consider the problem of determining periodic timetable
for a set of trains traveling solely in the same direction on a corridor that consists of a single-line one-way track;
the authors propose a time-space network representation of the problem that is similar to ours. However, some
key differences to both articles should be highlighted: the approach proposed by Caprara et al. (2002) implicitly
considers a scenario in which the predominant traffic corresponds to passenger trains (in fact, in their
experiments they consider six different types of passenger services, from high-speed Eurostar to local trains) in
the presence of some freight trains, all traveling in the same direction. Thus, this approach cannot be applied to
the scheduling of a freight railroad, in which freight trains usually travel in both directions on a single-track line
and crossings are frequent. According to Caprara et al. (2002), their problem is similar to the one addressed by
Brannlund et al. (1998), which also implicitly focuses on situations in which the traffic of passenger train is
predominant. In both cases, the business rules and the constraints differ quite significantly from a congested,
single line freight railroad, in which trains must be pulled over and consequently delayed much more often than
the typical scenario of passenger railroads, with trains running on multiple-line, single direction corridors. In this
case, each corridor or direction could be dealt with independently. Therefore, although the mathematical model
in Caprara et al. (2002) is more comprehensive and generalizes the approach by Brinnlund et al. (1998), and
both solution methods are suitable for real-life instances, they are not targeted to handle the several and frequent
train meet-pass conflicts in opposite directions that arise in freight railroads. In addition, we claim that our
network representation and the corresponding integer programming formulation not only allow the
generalization of traffic constraints in Caprara et al. (2002), that is, track capacity in overtaking and time
window constraints, but also incorporate several additional practical considerations for the more complex
scenario of railroads in which the traffic of freight trains is dominant.

Most recently, Zhou and Zhong (2007) study a single-track environment in the context of a high-speed
passenger rail line in an existing network in which the both the expected waiting times for high-speed trains and
the total travel times of high-speed and medium-speed trains should be minimized. The authors propose branch-
and-bound procedures with enhanced lower-bounding and novel upper-bounding schemes. Tornquist and
Persson (2007) study the re-scheduling decisions under disturbances in real-time passenger train dispatch
management for unrestricted number of segment on bidirectional railway lines. Both formulation approaches
rely on the traditional and older version of assigning track usage rights to trains during a given time period rather
than the newer network representation approach in Caprara et al. (2002). Térnquist and Persson (2007), in
addition, provide a very compact analysis of the literature with a very precise classification scheme that
organizes the previous studies based on the type of railway infrastructure, evaluation approach and the type of
problems modeled and tested. According to their classification scheme, Caprara et al. (2002) should be classified
as modeling a line corridor with unidirectional single-track segments and testing the same type of railway
infrastructure while our study should be classified as modeling a network-type railway with bidirectional and
unrestricted number of tracks on a segment with experimental tests performed on line corridors.

To summarize, the algorithms developed so far for the freight train dispatching problem rely on
simplifications of the general problem in order to solve specific instances. Several more recent studies deal
exclusively or predominantly with problems of scheduling or timetabling passenger trains, in which the nature of
the problem, the function to be optimized and their constraints differ quite significantly from freight train



scheduling. For freight train dispatching problems, different mathematical formulations have been proposed as
linear or non-linear optimization problems. In general, these problems have integer decision variables related to
resolution of conflicts and continuous decision variables representing the departure and arrival times of each
train at each meet-point. These problems, however, turn out to be large and intractable. The feasible solutions
that are obtained with simplifications on the formulations are sometimes not even implementable.

In the remainder of the paper, we impose maximum delay allowances for trains, which play a significant role
in running consistent and reliable schedules especially for congested single-line freight railroads, in which some
passenger trains may be present among the predominant traffic of freight trains.. Maximum delay allowances
specify a time windows for not only the departure (arrival) time of the train from (at) its origin (destination) but
also the departure and arrival times of the train at all stations on its route. Maximum delay allowances have
never been explicitly considered in previous studies, and they help us build the space-time network discussed in
Section 3. Our modeling approach can also be used for problems where train speeds are not given a priori but
rather selected from a set of discrete choices, and where the timetables are cyclic, although these issues are not
necessarily related to our planning perspective as we describe previously. In general, the problems tackled in the
literature consider a railroad line linking two major points and comprising single- and double-line segments.
None of the problems explicitly consider the more general situation where a rail network may be composed of
different track lines or the interactions between different trains traveling from different origins to different
destinations that share parts of their routes. Decomposition approaches that deal with a network of rail lines may
lead to good, near-optimal partial solutions for each track line. However, this may result in a poor global solution
since the timetable in each track is made independently and it does not consider their impacts on the conflicts for
other tracks. This may be particularly significant to network configurations with a main, central line that
concentrates a significant amount of the traffic from different interconnecting lines (e.g. Y-shaped or fishbone-
like). Similarly, some of the practical operational constraints mentioned above have never been considered,
probably due to the difficulty of incorporating them into a mathematical formulation as well as into solution
strategies, in addition to the fact that they do not necessarily arise in passenger railroads. On the other hand, it
should be noted that our modeling approach does not aim to handle specific constraints that may arise in
railroads in which the traffic of passenger trains is predominant, such as routing trains among different lines and
paths, allocating trains to platforms, scheduling different types of traffic (intercity, local, etc.), reducing
passenger inconvenience due to delays and transfers, and robust scheduling with respect to minor disturbances.
To summarize, we believe that there are major opportunities for modeling real-world freight train dispatching
problems to determine efficiently near-optimal meet-pass plans that consider the additional practical constraints,
and are implementable. This study attempts to meet this need.

3. MATHEMATICAL PROGRAMMING FORMULATION

In this section, we first describe a space-time network representation. The train dispatching problem is then
formulated as a multi-commodity flow problem on this network. For the sake of clarity, we first consider a
corridor composed of both single- or double-track sections and a solution that honors maximum delay
allowances and all traffic constraints except for the headways. Later, we discuss how other constraints are easily
represented with the space-time network and do not even require any change in the mathematical model.

It should be noted that generalizing to a network of lines requires no major change. As illustrated in Figure
1, for the part of a railway network, which is not necessarily a corridor and contains both single- and double-
track sections, we can still identify the sidings and physical connections between stations as we do in a single-



track corridor-type network. In addition, each train to be scheduled has a pre-defined route in terms of sequence
of stations and track sections to follow. In most cases there is only one path linking each train’s origin and
destination; otherwise, each train’s path is clearly defined in terms of stations and sections to follow. Therefore,
contrarily to some passenger train problems, spatial issues like train pathing are not part of the decisions to be
made. Therefore, generalization of the procedures for a corridor-type network can be accomplished by as a
simple and straightforward extension of the network data structures we use. The mathematical model is based on
the network model we next discuss and the implementation of the solution procedures requires no conceptual
change at all for the generalized case.
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Figure 1. Part of a rail network with single and double-line tracks.

The network representation we propose is based on the concept of a train graph diagram, which is a standard
method for displaying the resulting train schedules, meeting points, and associated delays. Many freight railroads
still rely on train schedules that are made manually by skilled dispatchers using this kind of diagram. Figure 2
illustrates a sample train-graph schedule-diagram for a single-line track that links end- stations A and I
Intermediate meet-points are located at all the stations from B to H. The horizontal and vertical axes represent
time and space, respectively. There are two northbound trains that move from A to I, and one southbound train.
The southbound train is delayed twice, at meet-points E and C, as a possible solution for the conflicts with the
two northbound trains. In other words, these delays allow northbound trains to meet and pass.

Even in this simple example, there are many possible combinations of sidings and times for trains to be
pulled over in order to allow meets and passes, not to mention eventual changes in the departure times from the
intermediate stations. Therefore, the train meet-pass problem is a very large-scale combinatorial optimization
problem. When several trains in both directions are scheduled, many conflicts may arise. Each conflict involves
trains moving either in opposite directions or in the same direction. Depending on the chosen solution for a
conflict involving two trains (i.e. which train pulls over for the other to pass or overtake), the location and the
time of later conflicts may change, new conflicts at different locations and times may arise, and existing conflicts
may cease to exist. Thus, the number of feasible solutions to train meet-pass conflicts can be very large.
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Figure 2. A train graph schedule diagram.

3.1 Notation and Definitions

On a single-line corridor, let S= {0,..., s} represent the set of stations and sidings, numbered according to
the order in which they appear along the corridor from north to south. Let 7'be the set of trains traveling along S
Each train # € Tmay depart from any station s; € S'and arrive at any other station s, € S(s; # 5), which means
that the trains may travel not only between the endpoints of the line (0, s) in any direction, but also may depart
from and arrive at any intermediate station. The trains traveling from lower numbered stations to higher
numbered stations (from north to south) are called outbound trains and represented with 7°“c T.
Correspondingly, the set of inbound trains is represented with 7 7. Obviously, 7= 7" U T". We define L =
{0,..., 1} as the set of sections (line segments) to represent the tracks between consecutive stations or sidings,
where /=s-/ and s;and sz, € Sare the endpoints of section / As mentioned previously, a single-line corridor is
considered solely for the sake of clarity of the proposed network representation. The modifications for double-
line track segments, as well as a network of tracks interconnecting with each other, are straightforward and
require no modification in the proposed problem representation and in the formulation. We associate the
following data with each train ¢t € T:

e d" departure (origin) station for train ¢,

e 4" arrival (destination) station for train ¢,

e ed' departure time for train #according to the planned ideal schedule,

e md": maximum allowable delay for train ¢

e /d" latest possible departure time for train #(considering the maximum allowed delay time),
e sa" scheduled arrival time for train ¢,

e /a" latest possible arrival time for train

e f:travel time of train zalong the track segment 7 (e.g., travel time from station 7 to station 7+1 if #is an

outbound train (¢ € 7°*); travel time from station £+1 to station /if is an inbound train (¢ € 7%)),



e [S(?): the set of intermediate stations or sidings s € Swhere train ¢ € T'is allowed to pull over to wait for
crossing or overtaking,

e P(): the ordered set of consecutive sections (d~sy, $1—$»,.., sy —a') that compose the path of train t € T
from its departure station d" to its arrival station a".

Obviously, d' € S, a' € S, IS(t) = Sand P(t) c L. Also, sa’ and /a’ can be derived directly from ed’, Id, md’
and £ as Id' =ed'+ md’, sa' =ed" + z £ and la' =sa'+md', VteT.

1eP(?)

It should be noted that travel times are assumed to be fixed and known a priori. These times are determined
by ideal speeds that allow maximum efficiency in terms of fuel consumption for each train type and size on each
track segment.

3.2 The Space-Time Network

We formulate the train dispatching problem as a multicommodity network flow problem (Ahuja et al. 1993)
with additional constraints on the space-time network. The space-time network representation has been
traditionally used to model problems when there exists a time dimension. Similar network representations have
been discussed in Caprara et al. (2002) and Schrijver (1993) in the railroad context. Each train functions as a
commodity in the network. We represent the space-time network as G = (N, A), where N denotes the node set
and A denotes the arc set. The space-time network contains three types of nodes. DepNodes represents the set of
artificial nodes in which the outflow generate departure of a train from its origin. There exists a departure node
for each train ¢ € 7 denoted as Dep'. Therefore, the supply of each node in this set is one. The ArrNodes set
corresponds to the set of artificial nodes in which the inflow represents the arrival of a train to its destination. In
a similar way, the demand of an arrival node Arr’ is set to one for all ¢ € 7. StatTimeNodes is the set of nodes
with two attributes: place and time. Time is discretized into discrete time instants with equal time intervals
between consecutive time instants. Let the set of time instants be defined as Q = {1, 2, ..., g}. For instance, if a
daily schedule (24 hours) is discretized in 5 minute periods, then g=288. Nodes of the set Stat7imeNodes
correspond to the copies of each station node s € Sin each time period k€ @; in other words, Stat7TimeNodes

corresponds to the set Sx Q. An element of this set is denoted as 7, where 7 € Sand k€ Q.

The set A of arcs is composed of five subsets: origin arcs, destination arcs, outbound travel arcs, inbound
travel arcs, and waiting arcs. The arcs in the set of origin arcs emanate from nodes in DepNodes, and destination
arcs enter the nodes in ArrNodes. To represent the departure of a train # from its origin station d, we create arcs

from node Dep’ to nodes d for each time period k where ed’ < k< /d". Similarly, to model the arrival of a

train ¢ at its destination station &', we create arcs from nodes alt( to node Arr’ for sa' < k<gq', where
g = min{q,laf}.

The travel arcs (7Arcs) and waiting arcs ( WArcs) of the space-time network are created on a train-by-train
basis. For train ¢, we follow the sequence of stations and sidings in /5(?), and segments in P(?) on the train’s
route, starting from its origin station d' through its destination station a". The set of outbound travel arcs include

the arcs from node 7, to a consecutive node (7/+1), where k+1 < /< g. To model the possible movement of an

outbound train ¢ from station 7 to station (/+1) at time & we create an arc from each node 7, to node (7+1),,



where /= k+ f;-t if 7, has an incoming arc of train # Similarly, the set of inbound train arcs include the arcs
from node 7, to node (/—1),, where k+1 < /< g To model the possible movement of an inbound train ¢ from
station 7to station (7—1) at time & we create arcs from each node 7, to node (7—1),, where /= k+ £, if 7, has
an incoming arc of train # The set of waiting arcs for train ¢includes the arcs from node 7, to node 7,,, for all

stations 7 € IS§(2). Whenever 7, has an incoming arc that represents a possible movement of train # we create

consecutive waiting arcs on the same station level by considering the maximum possible delay of train ¢ at that
station. An example in Figure 3 shows a subset of the arcs defined for a train scheduled to depart from Station 0
at time #and arrive at Station 2 at time #+2 with a maximum delay allowance of 3 time periods.

Time
Departure —_————
- =~
Node === =< ~
. N . .

Time Time \ Time N\ Time Time

N ! t1 N w2 N H3 H4
\ N \ N

Station 0

Station 1 Q

Space
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Travel Arcs

Waiting Arcs — +eesesresess >

Origin Arcs — — — ) Arrival
Destination Arcs = + =— « ¥ Node

Figure 3. Time-space network representation.

All arc capacities are set to one since each arc represents flow of one train. The costs of waiting arcs are set
to the length (in minutes) in which time is discretized since each arc represents a train waiting at a particular
siding from time kto time &+1. Similarly, costs for origin arcs correspond to the respective lengths of the initial
delays. In other words, the origin arc that emanates from the departure node (Dep’) and enters a departure station
node at time period & (ed’ < k< Id") corresponds to a delay of (ked’) time periods multiplied by the length of
the discretization in minutes. All other arc costs are zero. Delays can also be multiplied by specific train weights
in order to reflect relative priority of certain trains.
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3.3 The IP Formulation

The problem is formulated as an IP problem with integer (unit-) flow decision variables X; J

representing
the flow of train #on arc (7,, j,) where e T and (7,, j,) € A. Note that for a given train ¢, each flow variable

is defined only for feasible moves corresponding to one of the five arc sets, as described in Section 3.2. The IP
formulation is as follows:

Minimize 2= 2 2 %% (1)
teT (1,))eA
subject to z X[Dep’d;, =1 Vte T )
ed'<k<ld"
D K =1 VieT 3)
sa'<k<la'
ZX? - ZX;I =0 Vte T, Vje StatTimeNodes (4)
1e StatTimeNodes  ic StatTimeNodes
Y <y V(i j) € WArcs )
t
Z Z ZXQ(HU,,, + Z Z ZX([HI)/I;,, <l vyje S,Vke Q (6)
te T [Kk—1 nm>k teT"<k—1 m>k
x; € {0,1} V(,)e A, VteT (7)

The objective function (1) minimizes the total delay of trains since the arc costs represent the delays in
discretized time units. Constraint set (2) ensures that for each train # there is a unit outflow from its departure
node to one of the nodes that is the copy of its origin station at a time within its possible departure time window.
Similarly, constraint set (3) imposes that for each train # there is a unit flow from one of the nodes that is the
copy of its destination node to its arrival node within its arrival time window. Constraint set (4) provides the
flow conservation constraints for the nodes in Stat7imeNodes, for which the demand and supply is zero.
Therefore, any flow entering these nodes should leave. Constraint set (5) ensures that at any time interval, the
number of waiting trains at a station or a siding do not exceed the capacity of the station or the siding, u;, where 7
€ S Constraint set (6) is the track capacity constraints. These constraints guarantee that at any time interval there
is no more than one train traveling on a track section. This is accomplished by ensuring that, at most one of the
arcs passing through the same time interval at a particular track section carries a unit flow. Figure 4 illustrates
track section AB and arcs of the space-time network that represent different trains that can travel along this
section during the time intervals from discrete time instant 0 to discrete time instant 6. For this section, we
should ensure that for each time interval, the sum of the flows on arcs passing through the same time interval
should not exceed 1. This results in six constraints, one for each time interval, the first three of which are
exemplified as follows:

o for time interval 0-1: X, p + X0 pu + Xy 0 + Xpo 3 <1,
o for time interval 1-2: X, o + X0 pu + Xy g3 + Xpo o + Xy 3 <1, and

o for time interval 2-3: X py + Xy g3 + Xpo ps + Xpo 5 + X 5 < 1.
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Figure 4. Track capacity constraints.

The first term in constraint set (6) represents the sum of flows on the arcs in the outbound direction (from
station 7 to station 1) during time period & The second term represents the flows on the arcs in the inbound
direction (from station 7+1 to station 7) during time period & In total, we need to write such constraints as much
as the number of tracks multiplied by the number of discrete time instants (i.e. (|9 - 1)*| Q).

To this end, as mentioned before, in view of the literature, the problem that we are dealing with is the most
generalized form of the train dispatching problem in which the focus is mainly on North American railway
systems, usually freight trains. Carey (1994b) considers the problem in a similar setting as ours. However, the
mathematical model in this study is based on a set of binary variables that represent the precedence relation of
two trains on a link, which magnifies the number of variables when compared to our formulation. The space-
time network representation here might share some characteristics with the problem representation in Caprara et
al. (2002); however, as mentioned earlier, the authors address a single-line corridor along which trains travel in
only one direction. Therefore, their resulting formulation cannot be generalized for the setting we study here. In
addition, Caprara et al. (2002) focus on the passenger trains. In the next two sections, we discuss some
constraints that are practical but skipped for the time being to provide a clear understanding of the network
representation and the formulation, and some other so-called complicating issues and their remedies according to
our modeling framework.

3.4 Practical Constraints

Some of the practical constraints in railroad practice are not explicitly addressed in the above formulation.
Nonetheless, our network representation and the associated IP formulation provide a framework to incorporate
these constraints without adding new constraints to the formulation. In the following subsections, we list such
practical constraints and discuss how to handle them only with slight modifications in the network representation
instead of adding new constraints.

3.4.1 Minimum Headways

The most crucial of these constraints are the so-called munimum headways constraints. For safety purposes,
trains departing (arriving) from (at) a station one after each other and trains following each other have to keep a
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minimum clearance distance between them which can be represented with respect to either time or track length.
We here discuss how to handle these two types of minimum headways:

e [f the headways are represented with respect to track length, say r miles, then we create artificial nodes
with no train holding capacity every r miles between two intermediate points along the corridor as
necessary while constructing the network. For instance, let = 20 miles and three stations be at miles 40,
65 and 80 along the corridor. When we create an artificial node at mile 60, track capacity constraints
would make sure that no train leaves the first station during a time interval when there is another train
occupying the section between the first station and the artificial node at mile 60. On the other hand, after
a train passes through the artificial node, a new train can depart from the first station to second station
without violating the minimum headway. It is easy to observe that we do not need to create any artificial
node between the second and the third station as the track length is shorter than 20 miles and the track
capacity constraints would automatically satisfy the minimum headway.

e [f the headways are represented with respect to time, say A minutes, then we only need to be careful in
selecting the length of the time interval between discrete time instants of the network representation. If
the selected equivalent time intervals between discrete time instants is larger than 4, the track capacity
constraints would honor the minimum headway requirements. In this case, the track capacity constraints
would automatically not allow two trains in the same direction to travel on the same section with a time
distance less than A. Otherwise, we need to write multiple additional constraints of type (6) for each
section in each time interval following a simple enumeration procedure. Particularly, for each travel arc,
we first enumerate all other arcs with which it cannot share the same time interval (due to the headway
length), then add a constraint that prevents any of these other enumerated arcs (which represents other
trains traveling at that time interval) to carry a positive flow. In this case, for any inbound (outbound)
travel arc, the outbound (inbound) that pass through the same interval appear in its headway constraint.
Among the same direction arcs, however, only those that emanate from a node of the same station but
within a time interval less than /4 should appear in the constraint.

Minimum headway constraints for trains that meet can also be easily handled. In this case, one pulled over
train cannot depart from a station before a given amount of time has elapsed since the departure of the other train
traveling in the opposite direction. To handle this situation, we simply add constraints that prevent two travel
arcs emanating from the same node at the same instant in opposite directions to carry flow, in a similar way to
the track capacity constraints (i.e., constraints of type (6)). However, our experience shows that this type of
“meet headway” constraint is unnecessary in most cases for freight railroads, since in a meeting, the train that is
not pulled over does not stop at the station or siding, contrarily to passenger trains in which both trains, not only
the one waiting, may have to stop momentarily at a given station. Also, freight trains usually travel at relatively
low speeds (i.e.,below 60 km/h), and these headways, usually around 2-3 minutes for freight trains, are, in most
cases, shorter than the minimum interval in which times are discretized. Thus, this constraint, which may arise in
the context of real-time scheduling, may require some manual minor adjustments to the schedule by the
dispatcher, with no major impact given the length of track segments and the corresponding travel times are
elevated when compared to these headways.

3.4.2 Terminal Track Lengths, Siding Lengths and Restricted Stops
In practice, not all trains are allowed to stop at any station or siding on their route. The foremost reason for

this may be due to infrastructure of stations and sidings. While waiting at a station, trains are held at the terminal
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tracks of the station. These tracks vary in length from station to station. Therefore, some tracks may not be long
enough to hold some trains. Similarly, sidings (usually designated as a single track) may not be long enough to
hold all trains that pass through. To represent such restrictions in our model, we need to be careful in
constructing the set of waiting arcs for a train. Particularly, if a train is longer than a siding length, we do not
create any waiting arcs for that train at that siding. The same idea applies to stations with a single track or
multiple tracks of same length. In the case of multiple terminal tracks with various lengths, a train may be short
enough for some tracks at the station but not for the others. We can still handle this restriction within the
network representation where we create one waiting arc for each track that is long enough and avoid creating
waiting arcs for the shorter tracks. Considering the constraint set (5) for a station, instead of writing one
constraint with the right-hand side u;, we write a separate constraint for each terminal track at the station with
right-hand side equal to 1.

Other types of restrictions prohibit particular train delays at particular stations. One restriction might be due
to the type of material being carried by the train. For instance, trains carrying hazardous materials may not be
allowed to stop at stations in proximity to populated areas. Another reason might be related to locomotives of
restricted power capacity. A locomotive or a consist of locomotives, depending on the size and weight of the
railcars it pulls, may not be able to resume moving the train after being pulled over at certain sidings or stations
due to slope of the track lines. In short, various types of restrictions can be easily handled with the same idea
discussed in the previous paragraph.

3.4.3 Explicit Time Windows and Implicit Time Windows Constraints

Caprara et al. (2002) discuss two types of constraints that might be considered in the set of practical
considerations. Explicit time windows constraints require that a train arrives at a particular station no later than a
given time, or depart from a station not earlier than a given time. Our method for creating travel arcs of a train at
a station within a set of time intervals (imposed by the maximum delay allowances) generalize this type
constraints for all stations on the train route. In the case of more specific time windows, the set of travel arcs
emanating from or entering a station node is created in a more restricted manner.

Implicit time windows constraints, on the other hand, favor a time interval (or a set of time intervals) over
the others among the set of possible arrival or departure times of a train at a station. Although this is usually not
a choice of operating principle in freight railroads, we can still represent these considerations in our model. In
this case, as some of the travel arcs are preferred over the others, we simply penalize the non-preferred ones by
attaching positive arc costs. However, the penalty scheme should be applied carefully keeping in mind that the
actual objective function penalizes only the delays. Therefore, instead of penalizing those arcs in proportion to
their corresponding travel times, we may apply a scheme that downgrades the arc travel times to a particular
ratio. A more general penalty scheme similar to the profit model in Brannlund et al. (1998) prefers a particular
arrival or departure time and gradually penalizes the times that are earlier or later. For instance, a train may
depart from a station at time instants &;, k, ..., k, with respect to its maximum delay allowance. The most
preferred departure time for this train at this station is given as &, 7< m. Then, we can attach penalty costs to

these arcs suchas ¢, =0, ¢, >¢, >...>¢c,=0and ¢, > c

m-1

>...>¢ =0.
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3.5 Other Issues on Dispatching Plans

Although it is out of the scope of the planning perspective we deal with, there are other planning issues
addressed in the literature and in railroad practice such as constructing cyclic timetables and allowing the
possibility of trains with varying speeds.

To demonstrate how we can use the same network representation for cyclic timetables, let us take an
example of 24-hour daily periodic timetable that starts and ends at midnight. Let us discretize the time in 5-
minute periods. Since the planning horizon is cyclic, the first time instant and the last time instant are the same
and equal to 12:00 AM corresponding to time instant 0. Then, in the time period set Q, g corresponds to 11:50
pm and is equal to 286. Consider a train that departs from station 7 at 11:30 pm (corresponding to time instant
282) towards station ;j of which the travel time is 1 hour, and arrives at 00:30 (corresponding to time instant 7).
The corresponding travel arcs emanates from the station node with space attribute 7 and time attribute 282 and
enters the station node with space attribute j and time attribute 7. Therefore, a cyclic timetable is easily
represented with a little twist by matching the first time instant with the last, and we do not need to change the IP
formulation at all.

To allow trains travel with varying speeds is again a matter of network representation. All we need to do in
this case is to create an alternate set of travel arcs for a train out of a node in Sta 7TimeNode. To go with an
example again, let us assume a train may depart from station 7 towards station j at time instants &;, &, ..., &, The

travel time of this train along this section is given as £, > and £° with respect to three discrete speed

choices respectively v, v and vV , where v > V' > V. In this example, we create travel arcs for this train
from nodes with place attribute 7and with time attribute &’ to nodes with place attribute ; and time attribute &”

if =K+ or K'=K+ > or K" =K+ £ as long as these nodes are among the possible station-time

combination according to maximum delay allowances.

4. HEURISTIC ALGORITHMS BASED ON THE IP FORMULATION

Although each study in the literature focuses on a particular version of the problem, the train dispatching
problem in its general form is designated as a NP-hard problem. As expected, solving the problem with a
commercial IP solver reveals that even real-life problems cannot be solved to optimality with reasonable
computational effort. In order to confirm this, we first attempt to solve some problem instances with CPLEX
version 8.1, setting all MIP solver parameters to their default values. Our experiments show that it is highly
unlikely to obtain optimal solutions even to moderate size problems. Thus, in this paper we present heuristic
ideas that benefit from the IP formulation. Instead of conventional heuristic approaches similar to Cai et al.
(1998) and Sahin (1999) that rely on greedy selection heuristics and LP-based techniques similar to Higgins et
al. (1996), Brannlund et al. (1998) and Caprara et al. (2002), our heuristics rely on the IP formulation we
develop. The first heuristic can be classified as a search technique, not necessarily according to general
understanding, which progresses through feasible solutions of restricted versions of the problem. The second
idea is inspired by the dispatcher’s decision-making process and constructs a feasible solution by resolving the
train conflicts in a chronological order.
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4.1 An IP-Based Heuristic

This heuristic is based on our observation of the performance of CPLEX version 8.1, well-known
commercially available optimization software, to solve different instances of the train dispatching problem. We
realize that for moderately small instances that are measured in terms of the number of sidings, the length of the
time horizon, the number of trains, and the number of potential conflicts, CPLEX performs well, reaching the
optimal solution in a few minutes. An important aspect of the formulation is that larger maximum delay
allowances lead to larger problems by increasing the number of arcs in the network as well as the complicating
capacity constraints (i.e., constraint set 6) that compromises the network structure of the problem. Thus,
decreasing maximum delay allowances tightens the formulation without affecting the feasibility. As the size of
the problem increases and/or as longer maximum train delays are allowed, CPLEX fails to quickly deliver the
optimal solution. We have also observed that a feasible solution in general can be found in a reasonably short
amount of time, usually in less than a minute.

In their day-to-day operations, train dispatchers face an overwhelmingly dynamic environment; unexpected
and unpredictable events occur all the time, causing trains to be delayed. Therefore, a major effort to determine a
global optimal solution for all trains over the whole scheduling horizon (typically 1-2 days) may not be worth the
effort. The dispatcher, under this scenario, sacrifices the impact of conflict resolution decisions in the long term.
On the contrary, the sub-optimal decisions of the dispatcher favor the feasibility in the long term and good
quality decisions in the short term. Our heuristic idea tries to repair this drawback by integrating this planning
approach into the IP formulation. On one hand, we progressively tighten the formulation by shortening the
maximum delay allowances. On the other hand, we constantly make sure that a feasible solution exists even with
shorter maximum delay allowances, and pay special attention to short-term conflicts of the planning horizon.

The key idea behind this method consists of gradually reducing the maximum total allowable delays (md")
for all trains based on new feasible integer solutions that are progressively obtained. Initially, we divide the
scheduling horizon ¢ into two periods, the short and the long terms. Let g, be the length of the short term (g, <
q); consequently g, = (¢— ¢) define the remaining length of the scheduling horizon (i.e. the long term). We
define J; and J; as increments to the train delays obtained in a feasible solution for the short and long terms,
respectively. Suppose we can quickly find a feasible solution in which a train #is delayed cd’ units of time (cd’ <
md"). The idea is to make the mathematical formulation progressively tighter, in order to make it converge faster
to a good solution, possibly optimal or near-optimal. In this case, for train ¢ the maximum allowed delay is
reduced from md' to the minimum of (cd’ + &) and md’ for the time periods within the short term. Similarly,
maximum delay is reduced from md ‘to the minimum of (cd’ + 0) and md'in the long term where 6, < &, Note
that the maximum delay allowed for the short term is still superior to the total initial delay obtained along the
whole scheduling horizon. Therefore, a feasible solution is always guaranteed and the problem is tighter. The
optimization process is then re-started for this tighter problem and proceeds for a fixed running time period o
With this method, the chances that a better feasible solution is found in a shorter amount of time are increased.
The same process is repeated until either an optimal solution for the progressively tightened problem is found or
a maximum total CPU time is reached. Figure 5 formalizes our IP-based heuristic for the train dispatching
problem.
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algorithm /P-Based Heuristic for TDF;
begin
find the first initial feasible solution for the IP formulation using CPLEX;
while the current solution is not locally optimal or CPU time limit is not reached do
for each train ¢
set md'= min (d' + &, , md") for the short term (periods 1-qy);
set md'= min (d' + & , md") for the long term (periods g,+1, q);
end ; {for each train £
process CPLEX for oseconds and find the current best feasible solution;
end;
end;

Figure 5. The IP-based heuristic for the train dispatching problem.
4.2 A Simulation-Based LP-Greedy Construction Heuristic

This algorithm constructs a feasible solution so that the conflicts in the planned ideal schedule are solved in
chronological order according to a selection criterion. To resolve a conflict between two trains the algorithm
selects which train to stop and which train to pass/overtake, and this decision is based on the criterion. The
algorithm proceeds maintaining a feasible schedule until the last resolved conflict, and it terminates when it finds
a feasible schedule. However, as the conflicts are progressively resolved, the remaining conflicts in the original
schedule are not valid anymore. In other words, as the train schedules are disturbed due to conflict resolutions,
the conflicts in the schedule may change in time and space. The dynamicity of the schedule implies the
dynamicity of the information with which the algorithm works; we need a technique to handle this. Similar to the
approach in Sahin (1999), we use a method based on the discrete event simulation technique. Instead of score-
based selection criteria, we use the LP relaxation of the IP formulation to predict which stopping decision leads
to a better dispatching plan for the remainder of the planning horizon after this conflict. Before proceeding to the
details of the algorithm, we need to state the differences between the previous algorithm by Sahin (1999) and
ours.

First, in our problem definition, the trains have a maximum delay allowance that cannot be exceeded in a
feasible schedule. The choice to resolve a conflict is not only dependent on the criterion used to resolve the
conflict but also on feasibility. Consider the following situation. Trains # and & meet at section s at time &
However, neither train can be any further delayed, because they both have consumed their maximum delay
allowances according to the feasible schedule maintained up to that time. Therefore, it is not possible to obtain a
feasible schedule for the rest of the planning horizon since none of the trains can be delayed anymore. Our
algorithm is designed in such a way that when it discovers an infeasible conflict, the algorithm goes back on the
timeline to the time corresponding to the last conflict involving either train 4 or train % (say time & < £). It then
reverses the simulation procedure moving all trains backwards until time 4;, and then changes the resolution of
the conflict at time 4, and finally (re)proceeds forward solving the conflicts that follow starting from time 4.

Second, to resolve a conflict, Sahin (1999) projects the conflicts after the current conflict time according to
the different choices. We make the projection by approximating the likelihood of happenings in the future.
Particularly, we employ an approximate optimization scheme, the LP relaxation of the real problem, to two
future scenarios based on two present choices. In our case, projecting the future would be a computational
burden because of the maximum delay allowances. We use two special data structures: an event list that handles
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the simulation process and a conflict list that provides the simulation with the ability to go backwards on the
timeline.

The steps of the algorithm where a generalized selection rule is applied can be summarized as follows:

Step 0.

Step 1.

Step?2.

Step 3.

Set the current conflict number to 770. Initialize the event list with the departure event for each train
from its origin station at the scheduled origin time;

0. 1.1f there are trains that have not yet arrived at their final destinations, proceed to Step/;
0.2.Otherwise, stop.

Using the event list, advance trains on the timeline until either a pending conflict is found or all the
trains have arrived at their destinations;
1. 1.1f no conflict is found and all trains have reached their destinations, stop; a feasible solution has
been found.
1.2.0Otherwise, set the current conflict to =nt1. Check if this conflict can be solved;
1.2.1. If at least one of the two trains can be pulled over without violating maximum delay
allowances, proceed to Step2.
1.2.2. Otherwise, proceed to Step3.

Select the train to be pulled over based on the selection criterion;
2. 1.1f no feasible solution can be found for the current conflict, go to Step3.
2.2.0therwise, update the departure time of the delayed train in the event list and return to Step/.

Reverse the event list back in time until the most recent prior conflict involving any of the trains in the
current conflict z2is found, say conflict r (r < n). Is changing the choice for delayed train in conflict r
feasible?

3. 1.1f yes, return to Stepl.

3.2.Otherwise, restore the most recent prior conflict as the current conflict (7= r) and repeat Step3.

The algorithm is flexible in the sense that it allows the use of various alternate selection criteria in StepZ2 to
resolve a conflict involving two trains that meet (i.e, crossing or overtaking). We only discuss a LP relaxation-
based greedy selection rule. Let the trains in the conflict at time #be 7 and j.

Construct an LP-relaxation of the IP formulation given in Section 3.

Set the decision variables fixed to 0 or 1 according to the feasible part of the schedule (i.e. the
maintained schedule up to time #).

Solve the LP relaxation, LP; for which train 7is given priority and can occupy the conflict section at
time #while train j is delayed. Let the resulting objective function value of LP;be Z.

Similarly, solve the relaxation LP;in which train ;is given priority; thus, the corresponding variables
that allow train j to occupy the conflict section at time ¢are set accordingly. The corresponding objective
function value is Z;

If Z< Z, delay train ;. Otherwise, delay train .

We emphasize that LP-based selection rule also allows a later infeasible conflict to be detected if both LP;
and LP;are infeasible. This feature, however, would not exist if the selection were based on a scoring scheme of
the trains involved in the conflict.
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5. COMPUTATIONAL RESULTS

In this section, we report the results for some experimental problems using the solution methods that we
propose. We report results for three different set of problems:

1. Congested test problems: We test our heuristic methods on randomly generated, congested problem
settings. We use this set to analyze how the size of the problem (determined by the number of trains,
number of stations and the magnitude of maximum delay allowances) affects the difficulty level.

2. Synthetic test problems. We generate a second set of problems that are representative of the real-life
problems with three different congestion levels. By keeping length of the planning horizon constant over
all instances, we test the performance of the heuristic algorithm for the different congestion levels and
different choices of the time interval selection in constructing the space-time network.

3. Areal-life problent We solve a real-life problem and compare our results with the existing solutions.

In addition to computational results for the IP formulation with CPLEX and proposed heuristics, we report
results for the IP formulation where CPLEX running time is limited. This is mainly done to help us understand
the performance of the heuristic algorithms when it is very difficult to obtain even a feasible solution with the
methods that are used currently in practice. All CPU times are in seconds.

5.1 Congested Test Problems

We have created five problems varying by number of trains and stations. All of these problems are highly
congested compared to real-life cases in the sense that the congestion can easily be observed throughout the
entire timeline by the number of conflicts that arise once the original schedule diagram is observed. An
important characteristic of the problem corresponds to the maximum delay allowances that change the size of the
IP formulation together with the number of trains and number of stations along the corridor. The maximum delay
allowances of the five original problem settings are created randomly based on a known feasible schedule for
each of these problems. These maximum delay allowances vary from 25% to 75% of a train’s ideal total travel
time. Then, we modify these problems by fixing the maximum delay allowances of the trains to much longer
maximum allowed delays, that is, 50% and 100% of their ideal travel time. In total, we have five different
problem settings (number of trains varying from 17 to 30, and number of stations varying from 9 to 20), and
each problem is modified with respect to the maximum delay allowances in three different ways.

Tables 1 and 2 show the results of the experiments with this set of randomly generated problems. All
computational times represent the actual times spent by a Pentium 4, 3.0 GHz PC with 1,024 MB of RAM.
Heuristic gaps are calculated as the percentage deviation from the best integer feasible solution (not necessarily
optimal) obtained from the CPLEX solution of the IP formulation. All gap figures are calculated based on the
optimal (or the best feasible if the optimal solution is unavailable) objective function value. In Tables 1 and 2, a
problem instance is described by a triple “#-s-%,” where ¢ corresponds to the number of trains, s corresponds to
the number of stations, and % corresponds to the degree of the maximum delay allowances (where r represents
random allowances from 25 % to 75 %). The column ‘Solution’ in both tables correspond to the objective
function value in discrete time-periods of 15-minute length, which are compatible with 24-hour horizon usual in
the planning level.
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In Table 1, the column “Infeasibilities” denotes the number of times that the simulation-based approach
detects infeasibility (as mentioned in Section 4.2) and goes back on the timeline. This figure should be used as a
reference for unexpectedly high computational times when they are different from zero. We test the IP-based
heuristic with different times per iteration from 1 second to 20 seconds, as presented in Table 2. The first row
shows the time per iteration in parentheses for each column.

The results for the IP formulation show that the tightness of the problem significantly affects the
performance and the size of the network as well. As the maximum delay allowance is increased, the network
grows larger and the problem loosens. This makes it difficult for CPLEX to confirm an optimal solution even
when it is reached early in the branch and bound procedure. However, when we follow the progress of branch
and bound iterations, we observe that most of the time is spent verifying the optimality. In most cases, an
unverified optimal solution is found in less than half the time CPLEX takes to prove the optimality of the
solution. Therefore, we also provide results on the performance of CPLEX when the running time is limited. We
chose the limit on the maximum running times based on the number of trains and number of stations of the
problem.

Since the LP-formulation is also based on the time-space network representation, the same conclusion is
valid for the IP-formulation; see the column “LP-Greedy Construction” for the results of the simulation-based
construction approach using the LP-greedy selection rule. The results show that it takes significantly longer for
the algorithm to reach a feasible solution when the maximum delay allowances are larger, irrespective of the
tightness of the problem. The gap between the best/optimal solution and the heuristic result varies from 4.76% to
35.71%. Whenever the algorithm reaches an infeasible solution and has to go back in time, the heuristic result is
significantly worse when compared with the IP-formulation. For smaller problems, the time for the heuristic is
almost identical with the IP-formulation. For larger problems, the time difference between the heuristic and IP-
formulation is significant.

We test the IP-based heuristic by varying the time per iteration (o ) from 1 second to 20 seconds. The IP-
based heuristic is superior to the simulation-based LP-greedy construction in terms of both the quality of the
solution and the time. Out of 15 problems, the IP-based heuristic finds the best solution for 14 of them (breaking
the ties in favor of the shorter time). For problem 30-20-r, the LP-based simulation approach finds a better
quality solution with a gap of 5.00% from the best solution obtained by the IP formulation. The results for the
best solution found for an instance by any of the heuristics are printed in bold. It should be noted that the
performance of the IP-based heuristic is based on selecting the length of the short term (g;) and the time per
iteration. Our preliminary results show that setting the ratio of g,/g between 1/4 and 1/6 is a good choice. Lower
or higher ratios decrease the possibility for improvement in a single iteration. The results in Table 2 use a ratio of
1/5; we only report the results based on different choices of time per iteration. When the different times per
iteration are compared, longer iterations are expectedly better, since they significantly outweigh the shorter
iterations with better quality solutions for larger problems. The results do not matter for smaller problems, as we
do not need to go further than a single iteration in most cases. However, the individual results for larger
problems are satisfactory with longer iteration times of the IP-based heuristic.

5.2 Synthetic Test Problems

We have generated three instances in this set. The number of stations and sidings, and the physical
infrastructure (spacing between stations and/or sidings) of the rail network, as well as train speeds mimics a
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typical large North American railroad corridor, which has 40 stations and sidings. The typical load of this
corridor is 35 to 40 trains in a repetitive fashion, which is above the average traffic of a typical single track
congested railroad similar to, for instance, an iron ore corridor found in Brazil. We first set up a base instance
with 40 trains, which is representative of the frequency of trains between the pairs of end stations. Then, we
generate a larger instance with 50 trains by increasing the frequency of trains on expectedly larger demand
origin-destination pairs; we generate a smaller instance by eliminating the shortest 10 trains from the 40-train
schedule. The instances still consider the same planning horizon of two-days, which corresponds to the usual
strategic planning horizon and is also much above the usual operational planning horizon.

Although we cannot use real data for the speed of trains and their exact schedules, the targeted departure and
arrival times help us roughly assign maximum delay allowances at 50% of their ideal total travel times
calculated at an average speed expectation. From a practical perspective, the length of 15-minutes is considered
accurate enough by the railroad practitioners to represent the resolution of possible conflicts, especially at
strategic and tactical planning levels. In order to understand the sensitivity of the solution approaches to the
choice of time discretization, we solve each instance with 10, 15 and 20 minutes of discretization.

The choice of the time discretization is an important issue that affects the capacity of the model in
representing real-life situations. It also depends on the purpose of the model. At strategic and tactical planning
levels, discretization in 10 or 15 minute periods may be sufficient for the level of accuracy and certainty of all
input data, as well for the type of result usually aimed. At the operational level, a shorter time step would be
required; in most cases, a 5 minute period may suffice given the low speeds of freight trains, as well as the
length of track segments. In general, an interval of less than 3 minutes would never be required, even in highly
congested freight railroads, or in the presence of passenger trains. If the operational planning should consider a
longer planning period (e.g. 24 hours or more), the size of the network may increase and affect the performance
of the proposed approaches to reach a good solution in short running times. One alternative to overcome this
difficulty is to consider different time intervals for the short and long terms, similarly to the approach adopted in
the IP heuristic with respect to the maximum allowable delays. In other words, given the uncertainty of the
schedule in the long range (due to future disruptions and other unpredictable events that may cause trains to get
delayed) it may not be necessary to consider a short time interval for the long range, since a longer interval (e.g.
10 minutes) may be enough to ensure feasibility in the long term and good quality solutions in short term. This
can be accomplished in an easy and straightforward manner, posing no difficulties or any changes in the
modeling, but ensuring the managability of the I[P formulation with the [P-based heuristic and the LP relaxations,
as evidenced by our experiments with the synthetic test problems.

In Table 3, we only report results for the IP-based heuristic and pure CPLEX runs. The LP-greedy
construction algorithm performs poorly when compared to the IP-based heuristic. Particularly, since the size of
this set of problems are larger than those of Section 5.1, the solution times increase unfavorably. A problem
instance from this set is described by a triple “#-s/p” where ¢ represents the number of trains, s represent the
number of stations, and p is the length of the time interval for discretization. We note that the number of discrete
time instants is equal for those with the same value of p. The second and third columns of Table 3 report the
objective function value and time to solve the problem to optimality if an optimal solution is known for the
problem. The next two columns report the same for the IP-based heuristic; the time per iteration is set to 20
seconds and the ratio of gy/q is set to 1/5 for all instances. The results clearly show that finding an optimal
solution in a reasonable time is almost impossible when the problem is large, the horizon is long and the
discretization interval is too small. Yet, the [P-based heuristic finds very good quality solutions in a reasonable
amount of time. Considering that this type of problem may be solved daily (or at the beginning of each
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dispatcher’s shift), the time for 50-50/10 might be too high. Yet, the quality of the solution is significantly better
than that of CPLEX. Nonetheless, 50-50/15 solves the same problem with less accuracy; and the solution quality
is still superior to CPLEX alone while the time is in reasonable limits. The last four columns report the
performance of the [P-based heuristic with respect to the solutions obtained by CPLEX in a limited time (1 hour,
2 hours and 3 hours) and the best solution we know for the instance. The negative gap figures show that the IP-
based heuristic solution is better than the feasible solution obtained by CPLEX with the time limit.

It is quite apparent from the results that the IP-based heuristic performs significantly better than what
CPLEX can do even under time limit restrictions (hence sacrificing from the optimality) for the test problems
that represent real-life instances. The results also show that the number of trains (hence the frequency of arrivals
and departures) with the same planning horizon and the same physical network has an expected effect on the
solution time (either by CPLEX alone or by the heuristic) on the average. Similarly, when the results for the
same instance are compared for different time discretization level, the less accurate (i.e., larger time interval) the
problem setting is, the easier problem to solve.

5.3 A Real-Life Problem

The proposed algorithms are also applied to a real-world problem of a major railroad in Brazil. We get all
the necessary data from Leal et al. (2004). The problem comprises a single-line track that links two major
stations with 23 intermediate stations or sidings where trains can be pulled over; 25 scheduled trains are to be
dispatched over a 24-hour period; trains run in both directions. The train routes, the travel times in each section,
and the scheduled departure times are all known in advance. Our objective is to minimize the total unweighted
delay of all the trains. For the trains traveling between the two endpoints, we set the maximum allowed delay
equal to four hours; for the remaining trains, we set the maximum allowed delay as proportional to this value.
We choose to discretize times in periods equal to five minutes in order to produce a precise timetable for the
trains that could be used at the operational level.

Table 4 presents the results obtained by the IP formulation and the heuristics in this study for the problem. It
reveals that all the results related to the proposed heuristics significantly improve those obtained manually by the
dispatchers, as well as the previous results of Leal et al. (2004).

6. CONCLUSIONS

We present in this paper a new network based IP formulation and an application of two heuristic approaches
for the freight train dispatching problem. We investigate the previous approaches and identify those issues that
have not been considered earlier in the literature. We develop a novel IP formulation based on the space-time
network representation of the problem. The heuristic approaches benefit from the IP-formulation and the
available solver technology, and they build new ideas upon those that have been studied before.

The novelty of the IP formulation is due to its ability to handle several practical constraints without
complicating the formulation further. The structure of the formulation does not change with the addition of these
new constraints since the variables of the formulation are based on the space-time network representation rather
than the conventional definition of the decision variables in the previous formulations that are based on selecting
the train to be pulled over in case of a conflict. The complex infrastructures of railroad networks, such as double
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lines and intersecting railroads, are easily handled with this type of network representation, which avoids the
complications in the formulation.

These approaches should be evaluated from the perspective of a master planning tool that provides a
guideline to dispatchers in their day-to-day operations. Nonetheless, we emphasize that the planning scope of the
problem is indeed very large, and with appropriate decision support mechanisms, the same modeling approach
can be used for different planning purposes.

Computational results reveal that each solution methods have its pros and cons. Our experiments indicate
that with enough technology and advanced computational infrastructure that can support the most recent solver
technology, the IP formulation may provide satisfactory results as a master planning tool for moderate size
problems. On the other hand, the IP-based heuristic should be considered as a trustworthy master planning tool
since the experiments confirm that it provides high quality solutions with a significantly less amount of
computational effort particularly when the problem size is large and the accuracy of the representation (based on
the time discretization) is better. The simulation-based LP-greedy algorithm is inspired by the dispatcher’s
decision-making process. Although, it is clear that the other methods outweigh the LP-greedy algorithm from a
master planning tool perspective, it raises the question “Why should the dispatcher not use the LP-relaxation
solutions at the time of a conflict resolution?”. It is clear that solving the LP-relaxations of the problem is
accomplished in a matter of seconds even for the largest problems, not to mention the possibility of detecting
future infeasibilities.

We hope this study motivates the railroad industry to consider incorporating these optimization-based
approaches into their efforts in order to tackle the train dispatching problem. We believe that our methods verify
the feasibility of an effective solution using analytical and systems-based approach.
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Table 1. Results for the IP formulation and simulation-based approach with the LP-based selection rule.

IP Formulation

IP Formulation with Limited Time

LP-Greedy Construction

Problem Solution CPU Time Gap (>) | Solution Time Limit Gap Solution  CPU Time Infeasibilities Gap
17-9-r 24 3.6 27 9.0 0 12.50%
17-9-50 24 2.5 30 5.6 0 25.00%
17-9-100 24 5.3 27 9.6 0 12.50%
24-10-r 31 26.9 36 29.4 0 16.13%
24-10-50 34 10.1 43 25.2 0 26.47%
24-10-100 31 16.2 34 31.3 0 9.68%
24-16-r 42 197.6 42 180 0.00% 57 171.9 14 35.71%
24-16-50 42 990.9 42 180 0.00% 44 83.3 0 4.76%
24-16-100 41 757.0 42 180 1.00% 44 163.6 0 7.32%
24-20-r 43 1013.2 44 360 0.00% 48 103.7 1 11.63%
24-20-50 43 717.8 44 360 0.00% 48 158.0 0 11.63%
24-20-100 43 4153.5 48 360 11.00% 48 362.1 0 11.63%
30-20-r 82 > 7200 25.00% n/a 720 n/a 84 499.7 3 5.00%
30-20-50 73 > 7200 25.00% 81 720 37.00% 78 677.1 0 6.85%
30-20-100 73 > 7200 25.00% 82 720 38.00% 82 1849.0 0 12.33%




Table 2. Results for the IP-based heuristic.

IP Based Heuristic (20) IP Based Heuristic (10) IP Based Heuristic (5) IP Based Heuristic (2) IP Based Heuristic (1)
Problem Solution CPU Time Gap Solution CPU Time Gap Solution CPU Time Gap Solution CPU Time Gap Solution CPU Time Gap
17-9-r 24 1.9 0.00% 24 2.6 0.00% 24 2.1 0.00% 24 1.9 0.00% 24 4.5 0.00%
17-9-50 24 1.5 0.00% 24 1.7 0.00% 24 L.5 0.00% 24 1.4 0.00% 24 3.5 0.00%
17-9-100 24 4.6 0.00% 24 4.3 0.00% 24 4.3 0.00% 24 7.4 0.00% 24 5.4 0.00%
24-10-r 34 15.5 9.68% 34 18.3 9.68% 34 13.2 9.68% 34 24.3 9.68% 43 8.7 38.71%
24-10-50 34 9.1 0.00% 34 9.4 0.00% 34 11.9 0.00% 34 12.3 0.00% 34 13.2 0.00%
24-10-100 34 35.2 9.68% 34 24.8 9.68% 34 23.0 9.68% 34 13.9 9.68% 34 10.3 9.68%
24-16-r 42 131.5 0.00% 42 49.9 0.00% 42 36.5 0.00% 46 15.7 9.52% 46 11.6 9.52%
24-16-50 43 112.7 2.38% 42 75.1 0.00% 44 29.2 4.76% 44 17.2 4.76% 44 13.0 4.76%
24-16-100 41 136.0 0.00% 42 105.4 2.44% 42 53.1 2.44% 51 20.2 24.39% 51 15.9 24.39%
24-20-r 43 155.5 0.00% 43 54.8 0.00% 45 26.7 4.65% 45 17.7 4.65% 45 13.5 4.65%
24-20-50 43 144.7 0.00% 43 56.5 0.00% 44 41.2 2.33% 44 28.6 2.33% 44 24.4 2.33%
24-20-100 43 152.8 0.00% 45 168.1 4.65% 59 70.2 37.21% 59 58.9 37.21% 59 55.4 37.21%
30-20-r 92 220.0 15.00% 93 98.6 16.25% 96 75.6 20.00% 96 61.7 20.00% 98 62.8 22.50%
30-20-50 76 183.3 4.11% 76 82.2 4.11% 92 78.3 26.03% 117 45.4 60.27% 117 34.5 60.27%
30-20-100 75 128.9 2.74% 80 86.3 9.59% 85 30.9 16.44% 85 9.9 16.44% 85 8.1 16.44%
Average - - 2.91% - - 3.76% - - 8.88% - - 13.26% - - 15.36%




Table 3. Results of the synthetic problem set with the IP-based heuristic.

Optimal IP-Based Heuristic Heuristic Gap (%)

Problem Solution CPU Time | Solution = CPU Time 1 hour 2 hours 3 hours Best
30-50/10 - - 142 105.6 -5.96% 0.00% 0.00% 0.00%
30-50/15 98 1023.9 100 58 2.04% 2.04% 2.04% 2.04%
30-50/20 62 5.2 62 6.1 0.00% 0.00% 0.00% 0.00%
40-50/10 - - 205 180.6 4.06% 4.06% 4.06% 4.06%
40-50/15 119 149.5 124 14.8 4.20% 4.20% 4.20% 4.20%
40-50/20 80 25.5 82 9.1 2.50% 2.50% 2.50% 2.50%
50-50/10 - - 285 1205.4 -20.39% -20.39% -17.15% -17.15%
50-50/15 - - 175 196.8 -1.13% -0.57% -0.57% -0.57%
50-50/20 110 548.2 110 38.6 0.00% 0.00% 0.00% 0.00%
Average -1.63% -0.91% -0.55% -0.55%

Table 4. Results of the real-world problem.

Total Travel Time | Total Delay
(minutes) (minutes) CPU Time

Dispatchers Solution 14,119 6,311 -

Optimal IP Solution 8,240 432 820

IP-Based Heuristic 8,245 437 173

LP-Greedy Construction 8,573 765 136

Heuristic 1, Leal et al (2004) 8,766 958 -

Heuristic 2, Leal et al (2004) 8,755 947 -




