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Abstract—The configuration spaces of modern software sys-
tems are often too large to test exhaustively. Combinatorial
interaction testing approaches (CIT), such as covering arrays,
systematically sample the configuration space and test only
the selected configurations. Traditional t-way covering arrays
aim to cover all t-way combinations of option settings in a
minimum number of configurations. By doing so, they assume
that the testing cost of a configuration is the same for all
configurations. In this work, we however argue that, in practice,
the actual testing cost may differ from one configuration to
another and that accounting for these differences can improve
the cost-effectiveness of covering arrays. In this work, wefirst
introduce a novel combinatorial object, called a cost-aware
covering array. A t-way cost-aware covering array is a t-way
covering array that minimizes a given cost function. We then
provide a framework for defining the cost function. Finally, we
present an algorithm to compute cost-aware covering arrays
for a simple, yet important scenario, and empirically evaluate
the cost-effectiveness of the proposed approach. The results of
our empirical studies suggest that cost-aware covering arrays,
depending on the configuration space model used, can greatly
reduce the actual cost of testing compared to traditional
covering arrays.

I. I NTRODUCTION

The configuration spaces of configurable software systems
are often too large to test exhaustively. The number of
possible configurations is often far beyond the available
resources to test the entire configuration space in a timely
manner, e.g., for regression testing.

Combinatorial interaction testing (CIT) approaches take
as input a configuration space model. The model includes
a set of configuration options, each of which can take on a
small number of option settings. As not all configurations
may be valid, the model can also include some system-
wide inter-option constraints. In the context of this work,
an inter-option constraint is a constraint that implicitlyor
explicitly invalidates some combinations of option settings.
In effect, the configuration space model implicitly defines a
set of valid ways the software under test can be configured.

CIT approaches systematically sample the valid config-
uration space and test only the selected configurations.
The sampling is carried out by computing a combinatorial
object, called acovering array. Given a configuration space
model, at-way covering array is a set of configurations, in

which each possible combination of option settings for every
combination oft options appears at least once [6].

The basic justification for covering arrays is that they can
cost-effectively exercise all system behaviors caused by the
settings oft or fewer options. The results of many empirical
studies strongly suggest that a majority of option-related
failures in practice are caused by the interactions among only
a small number of configuration options and that traditional
t-way covering arrays, wheret is much smaller than the
number of options, are an effective and efficient way of
revealing such failures [6], [2], [10], [9].

Existing approaches construct a t-way covering array in
such a way that all valid t-way combinations of option
settings are covered by using a minimum number of config-
urations. By doing so, these approaches implicitly assume a
simple cost model where the cost of configuring the system
under test is the same for all configurations.

In this work we, however, argue that this cost model
is not always valid in practice. First, we observe that the
configuration cost often varies from one configuration to
other. For example, in a study conducted on MySQL – a
widely-used and highly-configurable database management
system, we observed that the cost of configuring the MySQL
Community Server (a core component of the system) with its
default configuration took about 6 minutes on average1. On
the other hand, configuring the system with NDB cluster
storage support – a feature that enables clustering of in-
memory databases, and with embedded server support – a
feature that makes it possible to run a full-featured MySQL
server inside a client application, took about 9 minutes,
as these features needed to be compiled into the system.
Therefore, in a covering array, reducing the number of
configurations that include these features, without adversely
affecting the coverage of option setting combinations, can
significantly reduce the amount of time required for testing.
However, existing approaches do not take actual testing costs
into account when computing covering arrays.

Second, we observe that highly configurable systems often
have reusable components which, once configured, can be
used in other configurations with no or very little additional

1Performed on an 8-core Intel(R) Xeon(R) CPU 2.53GHz machinewith
32 GB of RAM, running CentOS 6.2 operating system.
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Figure 1. (a) A traditional 2-way covering array. (b,c) Illustrates our algorithm where (b) shows 2-way covering array for only compile-time options and
(c) shows 2-way cost-aware covering array.

cost. One simple example is the presence of compile-time
and runtime configuration options.

Compile-time options need to be set before the system
can be built. The system is then configured as a part of the
build process. Therefore, changing the setting of a compile-
time option requires a partial or a full rebuild of the system.
On the other hand, given a build of the system, runtime
options are set when the system is running and the system
is configured on the fly. Note that a build of the system is
a reusable component. Once the system is built for a given
combination of compile-time option settings, the same build
can be used with different runtime configurations without
any additional cost; as long as the settings of compile-time
options stay the same, the same binaries can be reused.
However, runtime configurations are not reusable. Even for
the same build (i.e., the same compile-time configuration)
they need to be reconfigured every time the program is
executed, unless the program state is saved for future use.

Figure 1(a) and 1(c) illustrate the effect of reusable
components on testing cost in a hypothetical scenario. In this
scenario, we have 7 configuration optionso1 , . . . , o7 , each
of which can take on a binary value (i.e.,0 or 1). The first 3
optionso1 , o2 , ando3 are compile-time options, whereas
the remaining optionso4 , o5 , o6 , and o7 are runtime
options. There are no system-wide inter-option constraints;
all option setting combinations are valid. Furthermore, the
system is to be tested with a 2-way covering array. Two
covering arrays are created for comparison.

The 2-way covering array presented in Figure 1(a) in-
cludes 8 unique combinations of compile-time option set-

tings, requiring to build the system 8 times. On the other
hand, the 2-way covering array presented in Figure 1(c)
requires to build system only 4 times, as it includes 4
unique compile-time configurations. For example, once the
system is built foro1=0, o2=0, and o3=0, the same
binaries are reused without any additional cost for 3 more
configurations included in the covering array. Assuming that
the runtime configuration cost is negligible compared to the
compile-time configuration cost and that the compile-time
configuration cost is the same for all configurations, the 2-
way covering array in Figure 1(c) tests all 2-way option
setting combinations at half of the cost compared to the 2-
way covering array in Figure 1(a).

To improve the cost-effectiveness of CIT approaches, we
in this work introduce a novel combinatorial object, calleda
cost-aware covering array. Given a traditional configuration
space model augmented with a cost function and a value oft,
a t-way cost-aware covering array is a t-way covering array
that minimizes the cost function. We, furthermore, provide
an algorithm to compute cost-aware covering arrays for a
simple, yet frequently-faced scenario in practice. The results
of our empirical studies suggest that cost-aware covering
arrays, depending on the configuration space model used,
can greatly reduce the actual cost of testing compared to
traditional covering arrays.

The remainder of the paper is organized as follows:
Section II discusses related work; Section III introduces
cost-aware covering arrays; Section IV presents an algorithm
to compute cost-aware covering array for a particular cost
model; Section V describes the empirical studies; Section VI



presents concluding remarks and possible directions for
future work.

II. RELATED WORK

In this section we provide background information on
traditional covering arrays and discuss related work.

Traditional CIT approaches take as input a configuration
space modelM=<O, V,Q>. The model includes a set
of configuration optionsO={o1, o2, . . . , on}, their possible
valuesV={V1, V2, . . . , Vn}, and some system-wide inter-
option constraintsQ (if any). Each configuration optionoi
(1 ≤ i ≤ n) takes a value from a finite set of|Vi| distinct
valuesVi = {vi1, vi2, . . . , vi|Vi|}.

Definition 1. Given a configuration space model
M=<O, V,Q>, a t-tuple φt={<oi1 , vj1>, <oi2 , vj2>,
. . ., <oit , vjt>} is a set of option-value tuples for a
combination oft distinct options, such that1 ≤ t ≤ n,
1 ≤ i1 < i2 < . . . < it ≤ n, and vjp ∈ Vip for
p=1, 2, . . . , t.

Not all the t-tuples may be valid due to the constraints
Q. Let valid(φt, Q) be a deterministic function such that
valid(φt, Q) is true, if and only if,φt satisfies the constraint
Q. Otherwise,valid(φt, Q) is false. The set of allvalid t-
tuplesΦt under constraintQ is then defined as:Φt={φt :
valid(φt, Q)}.

Definition 2. Given a configuration space model
M=<O, V,Q>, a valid configuration c is a valid
n-tuple, i.e.,c ∈ Φn, wheren = |O|.

Definition 3. Given a configuration space model
M=<O, V,Q>, the valid configuration spaceC is
the set of all valid configurations, i.e.,C={c : c ∈ Φn}.

Definition 4. A t-way covering array
CA(t,M=<O,V ,Q>) is a set of valid configurations
in which each valid t-tuple appears at least once, i.e.,
CA(t,M=<O, V,Q>)={c1, c2, . . . , cN}, such that
∀φt ∈ Φt ∃ ci ⊇ φt, whereci ∈ C for i=1, 2, . . . , N .

The problem of generating covering arrays is NP-
hard [15]. Nie et al. classify the methods for generating
covering arrays into 4 main categories [15]: random search-
based methods [16], heuristic search-based methods [8], [4],
[7], [11], [4], [17], greedy methods [6], [9], [5], [19], [18],
[14], and mathematical methods [20], [13], [21], [12].

Random search-based methods employ a random selection
without replacement strategy [16]. Valid configurations are
randomly selected from the configuration space in an itera-
tive fashion until all the requiredt-tuples have been covered
by the configurations selected.

Heuristic search-based methods, on the other hand, em-
ploy heuristic search techniques, such as hill climbing [8],
tabu search [4], and simulated annealing [7], or AI-based
search techniques, such as genetic algorithms [11] and ant

colony algorithms [17], to compute covering arrays. These
methods typically maintain a set of configurations at any
given time and iteratively apply a series of transformations
to the set until the set constitutes at-way covering array.

Greedy algorithms also operate in an iterative manner [6],
[9], [5], [19], [18], [14]. At each iteration, among the setsof
configurations examined as candidates, the one that covers
the most previously uncoveredt-tuples is included in the
covering array and the newly coveredt-tuples are then
marked as covered. The iterations end when all the required
t-tuples have been covered.

Mathematical methods for constructing covering arrays
have also been studied [20], [13], [21]. Some mathematical
methods are based on recursive construction methods, which
build covering arrays for larger configuration space models
(i.e., the ones with a larger number of configuration options)
by using covering arrays built for smaller configuration
space models (i.e., the ones with a smaller number of con-
figurations) [20], [13]. Other mathematical methods leverage
mathematical programming, such as integer programming, to
compute covering arrays [21].

Our approach differs from existing covering array gen-
erators in that we compute a t-way covering array that
minimizes a given cost function, rather than computing a
covering array that minimizes the number of configurations
required.

Furthermore, Bryce et al. introduce the concept of soft
constraints to mark option setting combinations that are
permitted, but undesirable to be included in a covering
array [3]. Although soft constraints could be used to avoid
costly combinations of options settings, thus to reduce
testing cost, using soft constraints for this purpose can be
considered to be an opportunistic approach. Our approach,
on the other hand, takes the task of reducing the cost as an
optimization criterion.

III. C OST-AWARE COVERING ARRAYS

In our approach we take as input a traditional configura-
tion space model augmented with a cost functioncost(.).
Given a covering arrayca, cost(ca) returns the expected
cost of testingca.

Definition 5. Given a configuration space model
M=<O, V,Q, cost(.)> and a value of t, a t-way
cost-aware covering array is a t-way covering array that
minimizes the functioncost(.).

Defining the cost function is not a trivial task. For
example, the cost of a given covering array may not simply
be the sum of the cost of the configurations included in the
array, as some parts of a configured system can be reused
by other configurations with no or little additional cost.
Therefore, we present a framework for defining the cost
function.



Definition 6. Given a configuration space model
M=<O, V,Q>, a component classX={oi1 , oi2 , . . . , oik}
is a set ofk distinct options, such thatX ⊆ O.

Definition 7. Given a component class
X={oi1 , oi2 , . . . , oik}, a componentx is a k-tuple of
the form{<oi1 , vj1>, <oi2 , vj2>, . . ., <oik , vjk>} for the
configuration options included inX , wherek=|X |.

We assume that the set of configuration optionsO
are divided intop (1 ≤ p ≤ |O|) component classes
X1, X2, . . . , Xp, such thatXi ∩ Xj = ∅ for i 6=j and
X1 ∪ . . . ∪ Xp = O. Consequently, a given configuration
c is composed ofp componentsx1, x2, . . . , xp, such thatxi

is a component of component classXi for i=1, . . . , p.
For example, in our running example depicted in Figure 1,

we have two component classes:X1={o1 , o2 , o3} and
X2={o4 , o5 , o6 , o7}. Component classX1 includes all the
compile-time options, whereasX2 includes all the runtime
options.

We distinguish between two types of component classes:
reusable and non-reusable component classes.

Definition 8. A reusable component classXr is a compo-
nent class whose components can be configured in isolation
and, once configured, they can be reused in other configu-
rations.

Definition 9. A non-reusable component classXnr is a
component class whose components need to be configured
every time they are used.

Going back to our running example, we observe thatX1

is a reusable component class, since, once the system is
built for a given compile-time configuration, the resulting
binaries can be reused in other configurations with different
runtime configurations. On the other hand,X2 is a non-
reusable component class, since the runtime options need to
be configured every time the system is executed.

To determine the cost of a given covering array, we
assume two cost functions:cc(.) and lc(.). The function
cc(x) takes as input a componentx (either a reusable or a
non-reusable component) and returns the configuration cost
of x. For example, assuming that the reusable component
x represents a configuration for a library,cc(x) is the
cost of compiling the library with the given configuration.
The function lc(c), on the other hand, takes as input a
configurationc and returns the cost of linking (i.e., gluing)
together the components appearing in the configuration. For
example, assuming that a configurationc is composed of
reusable componentsxr

1
and xr

2
, each of which represents

a library, lc(c) is the cost of linking the two libraries after
they are compiled, i.e., after thecc(xr

1
) and cc(xr

2
) costs

are paid.

Definition 10. The cost of a configurationc, which is
composed of componentsx1, x2, . . . , xp, is defined as

(

∑

1≤i≤p cc(xi)
)

+ lc(c)

However, in the presence of reusable components, the cost
of a given covering array isnot the sum of the cost of the
configurations included in the array.

Definition 11. Given a covering arrayca={c1, c2, . . . , cN},
letRi andSi be the set of reusable and non-reusable compo-
nents in a configurationci, respectively, where1 ≤ i ≤ N .
The cost of the covering arrayca is then defined as follows:

cost(ca)=
∑

x∈
⋃

1≤i≤N
Ri

cc(x) +
∑

1≤i≤N

(

lc(ci) +
∑

x∈Si
cc(x)

)

Furthermore, reusable components can form a hierarchy.

Definition 12. A reusable composite component is a com-
ponent, which is composed of reusable components and/or
other reusable composite components.

Reusable composite components are constructed by link-
ing the components appearing in the composite, once these
components are configured. Therefore, to account for com-
posite components, thelc(.) function should ensure that the
linking cost of the same reusable composite components is
paid only once.

IV. COMPUTING COST-AWARE COVERING ARRAYS FOR

A SIMPLE COST MODEL

We conjecture that all the methods that have so far been
used to compute traditional covering arrays, such as ran-
dom search-based methods, heuristic search-based methods,
greedy methods, and mathematical methods (Section II), can
also be used to construct cost-aware covering arrays, all
with their own pros and cons. In this work, however, we, as
a proof of concept, present an algorithm to compute cost-
aware covering arrays for a simple, yet important cost model.

In this cost model, the system under test has compile-time
and runtime options. For a given configuration space model
of the system, we define two componentsXr andXnr. Xr

is a reusable component class, containing all the compile-
time options in the model, whereasXnr is a non-reusable
component class, containing all the runtime options in the
model. We assume that (1) the cost of linking compile-time
and runtime configurations is negligible, i.e.,lc(c)=0 for
all c, (2) the compile-time configuration cost is the same
for all compile-time configurations, i.e.,cc(xr)=a for some
constanta for all xr, and (3) the runtime configuration cost
of the system is negligible, i.e.,cc(xnr)=0 for all xnr.

Under this cost model, the cost of a covering array
ca={c1, c2, . . . , cN} is

cost(ca)=a× |
⋃

1≤i≤N Ri|,



where a is the constant cost of building the system, and
Ri is the set of compile-time components appearing in
configurationci (1 ≤ i ≤ N ). In other words, under this
model the optimization criterion is to minimize the number
of times the system is built, while covering all t-tuples.

Although this cost model may seem to be overly con-
strained at a first glance, since our goal in this paper is to
demonstrate the differences between the cost-effectiveness
of traditional and cost-aware covering arrays, rather than
to compute cost-aware covering arrays for any given cost
function, we believe that the cost model employed serves
well to its purpose.

Furthermore, based on our feasibility studies conducted
on MySQL – a highly-configurable database management
system, and Apache – a highly-configurable HTTP server,
we argue that this simple cost model still has some practical
importance. For example, we observed that (1) both subject
applications have compile-time and runtime options, (2)
runtime configuration cost for both subject applications is
negligible, (3) the cost of linking runtime configurations
with compile-time configurations is negligible. Although,
for both subject applications, compile-time configuration
costs vary from one configuration to another, since building
these systems from scratch is costly, reducing the number of
times they are built is still of practical value, e.g., building
the entire software suite that comes with the source code
distribution of our subject applications with the default
configuration takes about 80 minutes for MySQL and 8
minutes for Apache, on average.

With all these in mind, Algorithm 1 presents our algo-
rithm. In this algorithm, we use traditional covering array
construction as a computational primitive. In particular,we
assume a generator

∏

(t,M) that constructs a traditionalt-
way covering array for the configuration space modelM .

Given a configuration space modelM and a value of
t, our algorithm operates as follows: (1) a traditional t-
way covering arrayΩ is generated for only the compile-
time options (line 1), (2) all the compile-time configurations
included in the newly computed array are expressed as
an inter-option constraintQ (line 3-5), (3) a traditional t-
way covering arrayΨ satisfyingQ, is generated for all the
configuration options (line 6). The outputΨ (line 7) is a
t-way cost-aware covering array, minimizing the number of
compile-time configurations, i.e., minimizing the number of
times the system is required to be built.

The rationale behind this algorithm is a simple one.
Step (1) selects a “minimal” set of compile-time configu-
rations covering all t-way combinations of option settings
for the compile-time options. Step (2), by expressing these
compile-time configurations as constraints, ensures that step
(3) computes a traditional t-way covering array around
these configurations without introducing new compile-time
configurations, “minimizing” the number of compile-time
configurations required, thus the testing cost.

Algorithm 1 Computes a t-way cost-aware covering
array
Input M=<O, V, ∅>: Configuration space model
Input t: Covering array strength
Let M ′ be the configuration space model for only the
compile-time options inM

1: Ω←
∏

(t,M ′)
2: Q← ∅
3: for each c = {<oi1 , vj1>, <oi2 , vj2>, . . .} in Ω do
4: Q← Q ∨ {oi1 = vj1 ∧ oi2 = vj2 ∧ . . .}
5: end for
6: Ψ←

∏

(t, M=<O, V,Q>)
7: return Ψ

Figure 1(b) and (c) illustrate the algorithm in our running
example introduced in Section I. First, a traditional 2-way
covering array is generated for the 3 compile-time options
o1 , o2 , ando3 (Figure 1b). The array has 4 compile-time
configurations. Second, these configurations are expressed
as a constraint so that no additional compile-time config-
urations can be selected (Figure 1c). Finally, a traditional
2-way covering array satisfying the constraint is generated
for all the options. The resulting cost-aware covering array
requires to build the system under test 4 times.

V. EXPERIMENTS

To evaluate the proposed approach, we conducted a set of
experiments.

A. Experimental Setup

To carry out the experiments, we first implemented our
algorithm. In the implementation, we used a well-known and
widely-used covering array generator: ACTS (v1.r9.3.2) [1].

We then determined a base configuration space model and
varied the model in a systematic and controlled manner to
obtain other models. For each configuration space model ob-
tained, we computed a traditionalt-way covering array and
a t-way cost-aware covering array, and compared their cost-
effectiveness, i.e., compared the number of builds required
by these arrays.

All the experiments were performed on an 8-core Intel(R)
Xeon(R) CPU 2.53GHz machine with 32 GB of RAM,
running CentOS 6.2 operating system.

B. Independent Variables

In particular we experimented with 3 independent vari-
ables:

• m: The number of compile-time options in the
configuration space model. We experimented with
m=5, 6, . . . , 20.

• m/n: The ratio of compile-time options to the total
number of options in the configuration space model,
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Figure 2. Cost Improvements in a) 3-way b) 4-way cost-aware covering arrays with differentm.

wheren is the total number of options andn −m is
the number of runtime options. We experimented with
m/n=0.1, 0.2, . . . , 0.9.

• t: The strength of the covering array. We experimented
with t=3, 4.

In all the configuration space models, we, without losing
the generality, used binary options only. Givenm andm/n
ratio, the respective configuration space model is obtained
by adding binary runtime options to the model, such that
the requestedm/n ratio is attained. Furthermore, we opted
not to experiment witht=2 because for them and m/n
values used in the experiments, the sizes of the covering
arrays generated were similar to each other. This made it
difficult to analyze the effect of our independent variables
on the cost-effectiveness of cost-aware covering arrays.

C. Evaluation Framework

To evaluate the cost-effectiveness of cost-aware covering
arrays and compare it to that of traditional covering arrays,
we counted the number of unique compile-time configura-
tions required by the arrays. That is, we counted the number
of times the system is required to be built. Note that this is
indeed the optimization criterion dictated by the cost model
our algorithm is designed for (Section IV).

When creating the traditional covering arrays, we config-
ured ACTS to create partially filled covering arrays. In a
partially filled covering array, some option settings are left
unset, indicating that, regardless of the actual settings used
for these, as long as they are valid settings for the respective

options, the array will still be a covering array. Once a
partially filled traditional covering array was obtained, we
followed a greedy approach to pick the best settings for the
unset options so that the number of compile-time configura-
tions is ”minimized”. Had we had ACTS to create fully filled
covering arrays, the unset options would have been randomly
set, which could have increased the number of compile-time
configurations required. Therefore, the fully filled traditional
covering arrays used in the comparisons represent the best
case scenario for the partially filled covering arrays created
by ACTS.

D. Data Analysis

Figure 2a-b present the results we obtained. In these
figures, the horizontal axis denotes the values ofm (i.e., the
number of compile-time options) used in the experiments,
whereas the vertical axis depicts the percentage of cost
improvements (i.e., percentage of decrease in the number
of compile-time configurations required) provided by cost-
aware covering arrays over traditional covering arrays. Fig-
ure 2a is fort=3 and Figure 2b is fort=4.

We first observed that the cost-effectiveness of cost-
aware covering arrays were better or the same (but never
worse) compared to that of traditional covering arrays. More
accurately, whent=3, the cost-effectiveness of cost-aware
covering arrays were better than that of traditional covering
arrays in 89% (128 out of 144) of the comparisons. In the
remaining comparisons (i.e., 11% of the comparisons), the
cost-effectiveness of the arrays were the same. Whent=4,



Table I
3-WAY AND 4-WAY COST IMPROVEMENT(%) AVERAGES FOR DIFFERENT M/N RATIOS.

m/n ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3-way 54.58 46.31 38.86 31.31 25.63 20.27 14.03 6.89 2.48
4-way 55.83 46.80 39.25 31.83 26.88 20.45 14.80 7.72 1.83
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Figure 3. Cost Improvements in 4-way cost-aware covering arrays with
different m/n ratio for m = 19.

the cost-effectiveness of cost-aware covering arrays were
better in 94% and the same in 6% of the comparisons.

We then observed that actual cost improvements provided
by cost-aware covering arrays varied depending on them/n
ratio used in the configuration space models. For a fixedm,
as them/n ratio increased, cost improvements tended to
decrease. Table I presents the cost improvement percentages
provided by cost-aware covering arrays. For example, when
t=4 andm=19, the cost-aware covering arrays, compared to
the traditional covering arrays, reduced the cost by 59.24%,
52%, 38.89%, 32.1%, 29.17%, 22.99%, 17.72%, 12%,
5.71% when m/n=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
respectively (Figure 3). Clearly, whenm/n=1, regardless
of the value ofm, as the configuration space model will in-
clude only compile-time options, there will be no difference
between the cost-effectiveness of traditional and cost-aware
covering arrays.

For the values ofm and m/n used, when them/n
ratio was fixed, the cost improvements tended to be stable
regardless of the value ofm. On the other hand, when
m ≤ t, as the compile-time configurations will be tested
significantly, there will be no difference between the cost-
effectiveness of traditional and cost-aware covering arrays.

Furthermore, comparing 4-way and 3-way cost-aware
covering arrays with traditional covering arrays, we observed
that 4-way cost-aware covering arrays tended to provide

slightly more cost improvements than 3-way cost-aware
covering arrays; ast was increased from 3 to 4, the cost
improvements over traditional covering arrays tended to
increase (Table I). For example, whenm/n=0.1, the average
cost improvement provided by 3-way cost-aware covering
arrays was 54.58%, whereas 4-way cost-aware covering
arrays provided 55.83% cost improvement.

VI. CONCLUDING REMARKS

In this paper, we first introduced a novel combinatorial
object, called acost-aware covering array. Unlike traditional
t-way covering arrays, which aim to minimize the number
of configurations required to cover all valid t-tuples, t-way
cost-aware covering arrays aim to cover all t-tuples in a set
of configurations, which minimizes a given cost function.
Given a set of configuration, the cost function computes
the actual cost of testing. Furthermore, since computing the
testing cost in configuration spaces is a nontrivial task, espe-
cially in the presence of reusable components, we provided
a framework for defining the cost function. Finally, we pre-
sented an algorithm to compute cost-aware covering arrays
for a particular cost scenario, and empirically evaluated the
cost-effectiveness of cost-aware covering arrays.

All empirical studies suffer from threats to their internal
and external validity. For this work, we were primarily
concerned with threats to external validity since they limit
our ability to generalize the results of our experiment to
industrial practice. One potential threat is that our algorithm
was designed for a particular cost scenario. However, the
cost scenario used in the paper, although simple, is of great
practical importance.

Another possible threat to external validity concerns the
representativeness of the configuration space models used
in the experiments. Although we systematically varied the
models and evaluated the cost-effectiveness of the proposed
approach, i.e., a total of 288 different models were used in
the experiments (16 values ofm × 9 values ofm/n × 2
values oft), these models are still one suite of models. A
related issue is that the configuration space models used in
the experiments did not contain any inter-option constraints.
While these issues pose no theoretical problems (our algo-
rithm can be modified to account for constraints), we need
to apply our approach to more realistic configuration space
models in future work.

Despite these limitations, we believe our study supports
our basic hypotheses. We reached this conclusion by noting
that our studies showed that: (1) in practice, the testing cost



may not be the same for all configurations, (2) accounting for
the presence of reusable components, i.e., the components,
which, once configured, are reused in other configurations,
can reduce the testing cost, (3) minimizing the number of
configurations as is the case in traditional covering arrays
does not necessarily minimize the actual cost of testing,
and (4) the cost-aware covering arrays were generally more
cost-effective than the traditional covering arrays used in the
experiments.

We believe that this line of research is novel and in-
teresting, but much work remains to be done. We are
therefore continuing to develop new approaches that over-
come existing limitations and threats to external validity. In
particular, we are developing tools and algorithms that are
based on metaheuristic search techniques, such as simulated
annealing, to compute cost-aware covering arrays for any
given configuration space model and for any cost function.

REFERENCES

[1] Advanced Combinatorial Testing System (ACTS),
2010. http://csrc.nist.gov/groups/SNS/acts/documents/
comparison-report.html.

[2] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing
of AT&T PMX/StarMAIL using OATS. AT&T Technical
Journal, 71(3):41–7, 1992.

[3] R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and constraints.
Information and Software Technology, 48(10):960 – 970,
2006. Advances in Model-based Testing.

[4] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic
search for interaction test suites. InProceedings of the 9th
annual conference on Genetic and evolutionary computation,
GECCO ’07, pages 1082–1089, New York, NY, USA, 2007.
ACM.

[5] R. C. Bryce and C. J. Colbourn. A density-based greedy
algorithm for higher strength covering arrays.Softw. Test.
Verif. Reliab., 19:37–53, March 2009.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing based
on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–44, 1997.

[7] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augment-
ing simulated annealing to build interaction test suites. In
Proceedings of the 14th International Symposium on Software
Reliability Engineering, ISSRE ’03, pages 394–, Washington,
DC, USA, 2003. IEEE Computer Society.

[8] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn. Constructing test suites for interaction testing. In
Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 38–48, Washington, DC, USA,
2003. IEEE Computer Society.

[9] J. Czerwonka. Pairwise testing in the real world: Practical
extensions to test-case scenarios. InProc. of the 24th
Pacific Northwest Software Quality Conference, pages 285–
294, 2006.

[10] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz. Model-based testing in
practice. InProc. of the Int’l Conf. on Software Engineering,
pages 285–294, 1999.

[11] S. Ghazi and M. Ahmed. Pair-wise test coverage using genetic
algorithms. InEvolutionary Computation, 2003. CEC ’03.
The 2003 Congress on, volume 2, pages 1420 – 1424 Vol.2,
dec. 2003.

[12] A. Hartman. Software and hardware testing using combinato-
rial covering suites. In M. C. Golumbic and I. B.-A. Hartman,
editors,Graph Theory, Combinatorics and Algorithms, vol-
ume 34 ofOperations Research/Computer Science Interfaces
Series, pages 237–266. Springer US, 2005.

[13] N. Kobayashi. Design and evaluation of automatic test
generation strategies for functional testing of software. Osaka
University, Osaka, Japan, 2002.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.
Ipog-ipog-d: efficient test generation for multi-way com-
binatorial testing. Softw. Test. Verif. Reliab., 18:125–148,
September 2008.

[15] C. Nie and H. Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43:11:1–11:29, February 2011.

[16] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the
fault detection effectiveness of n-way and random test suites.
In Proceedings of the 2004 International Symposium on
Empirical Software Engineering, pages 49–59, Washington,
DC, USA, 2004. IEEE Computer Society.

[17] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life
techniques to generate test cases for combinatorial testing.
In Proceedings of the 28th Annual International Computer
Software and Applications Conference - Volume 01, COMP-
SAC ’04, pages 72–77, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] K.-C. Tai and Y. Lei. A test generation strategy for pair-
wise testing. Software Engineering, IEEE Transactions on,
28(1):109 –111, jan 2002.

[19] Y.-W. Tung and W. Aldiwan. Automating test case generation
for the new generation mission software system. InAerospace
Conference Proceedings, 2000 IEEE, volume 1, pages 431 –
437 vol.1, 2000.

[20] A. W. Williams. Determination of test configurations for
pair-wise interaction coverage. InProceedings of the IFIP
TC6/WG6.1 13th International Conference on Testing Com-
municating Systems: Tools and Techniques, TestCom ’00,
pages 59–74, Deventer, The Netherlands, The Netherlands,
2000. Kluwer, B.V.

[21] A. W. Williams and R. L. Probert. Formulation of the
interaction test coverage problem as an integer program. In
Proceedings of the IFIP 14th International Conference on
Testing Communicating Systems XIV, TestCom ’02, pages
283–, Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V.


