
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Test Case-Aware
Combinatorial Interaction Testing

Cemal Yilmaz

Abstract —The configuration spaces of modern software systems are too large to test exhaustively. Combinatorial interaction
testing (CIT) approaches, such as covering arrays, systematically sample the configuration space and test only the selected
configurations by using a battery of test cases. Traditional covering arrays, while taking system-wide inter-option constraints into
account, do not provide a systematic way of handling test case-specific inter-option constraints. The basic justification for t-way
covering arrays is that they can cost-effectively exercise all system behaviors caused by the settings of t or fewer options. In this
work we hypothesize, however, that in the presence of test case-specific inter-option constraints, many such behaviors may not
be tested due to masking effects caused by the overlooked test case-specific constraints. For example, if a test case refuses to
run in a configuration due to an unsatisfied test case-specific constraint, none of the valid option setting combinations appearing
in the configuration will be tested by that test case. To account for test case-specific constraints, we introduce a new combinatorial
object, called a test case-aware covering array. A t-way test case-aware covering array is not just a set of configurations as is the
case in traditional covering arrays, but a set of configurations, each of which is associated with a set of test cases, such that
all test case-specific constraints are satisfied and that, for each test case, each valid combination of option settings for every
combination of t options appears at least once in the set of configurations that the test case is associated with. We furthermore
present three algorithms to compute test case-aware covering arrays. Two of the algorithms aim to minimize the number of
configurations required (one is fast, but produces larger arrays, the other is slower, but produces smaller arrays), whereas the
remaining algorithm aims to minimize the number of test runs required. The results of our empirical studies conducted on two
widely-used highly-configurable software systems suggest that test case-specific constraints do exist in practice, that traditional
covering arrays suffer from masking effects caused by the ignorance such constraints, and that test case-aware covering arrays
are better than other approaches in handling test case-specific constraints, thus avoiding masking effects.

Index Terms —Software quality assurance, combinatorial interaction testing, covering arrays.

✦

1 INTRODUCTION

General-purpose, one-size-fits-all software solutions
are not acceptable in many application domains. For
example, web servers (e.g., Apache), databases (e.g.,
MySQL), and application servers (e.g., Tomcat) are
required to be customizable to adapt to particular run-
time contexts and application scenarios. One way to
support software customization is to provide config-
uration options through which the behavior of the
system can be controlled.

While having a configurable system promotes cus-
tomization, it creates many system configurations,
each of which may need extensive QA to validate.
Since the number of configurations grows exponen-
tially with the number of configuration options, ex-
haustive testing of all configurations, if feasible at all,
does not scale well.

Combinatorial interaction testing (CIT) approaches
systematically sample the configuration space and test
only the selected configurations [3], [9], [14], [22],
[34]. These approaches take as input a configuration
space model. The model includes a set of configu-

• C. Yilmaz is with the Faculty of Engineering and Natural Sciences,
Sabanci University, Istanbul, Turkey.
E-mail: see http://people.sabanciuniv.edu/cyilmaz

ration options, their possible settings, and a set of
system-wide inter-option constraints that explicitly or
implicitly invalidate some configurations, i.e., not all
configurations may be valid. Given a configuration
space model, CIT approaches compute a small set
of valid configurations, called a t-way covering array,
in which each valid combination of option settings
for every combination of t options appears at least
once [9].

Once a covering array is generated, the system
is then tested by running its test cases in all the
selected configurations. By doing so, traditional cov-
ering arrays assume that all test cases can run in
all the selected configurations. In this work we ar-
gue that the test cases of configurable systems are
likely to have assumptions about the underlying con-
figurations. That is, not all test cases may run in
all configurations even if those configurations satisfy
the system-wide constraints. For example, in a study
conducted on Apache, a highly-configurable HTTP
server, and MySQL, a highly-configurable database
management system, we observed that 378 out of 3789
Apache test cases and 337 out of 738 MySQL test
cases had test-case specific inter-option constraints.
While the system-wide constraints determined the set
of valid ways the system under test could be con-
figured, a test case-specific constraint determined the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

o1 o2 o3 o4 t1 t2 t3

1 1 1 1 S P P
1 1 0 0 S P P
1 0 1 0 S P P
1 0 0 1 S P P
0 1 1 0 P S P
0 1 0 1 P S P
0 0 1 1 P S P
0 0 0 0 P S P

(a)

o1 o2 o3 o4 tests o1 o2 o3 o4 tests

0 1 1 1 {t1} 1 1 1 1 {t2, t3}
0 1 0 0 {t1} 1 1 0 0 {t2, t3}
0 0 1 0 {t1} 1 0 1 0 {t2, t3}
0 0 0 1 {t1} 1 0 0 1 {t2, t3}
0 1 1 0 {t1, t3} 1 1 1 0 {t2}
0 1 0 1 {t1, t3} 1 1 0 1 {t2}
0 0 1 1 {t1, t3} 1 0 1 1 {t2}
0 0 0 0 {t1, t3} 1 0 0 0 {t2}

(b)

Fig. 1: A traditional 3-way covering array (a) vs. a 3-way test case-aware covering array (b).

set of configurations in which the respective test case
could run. These test case-specific constraints were
encoded in the test oracles of our subject applications,
indicating that they were known to the developers.
When a test case-specific constraint of a test case was
not satisfied by a configuration, the test case simply
skipped the configuration, i.e., the test case refused
to run in the configuration. For instance, a number
of Apache test cases were specifically designed to
test the Distributed Authoring and Versioning (DAV)
feature of the Apache server – a feature that needs
to be explicitly configured into the system. Therefore,
these test cases assumed that the server was already
configured with the DAV feature. If not, they simply
refused to run. Other test cases in the test suite were
unaffected by this aspect of server configuration and
ran regardless of the setting of this configuration
option.

It is important to note that running configuration-
dependent test cases in an ad hoc manner only in
configurations supporting the required features, such
as DAV, is not necessarily sufficient, as the interac-
tions between the required features and the rest of
the configurable features may still need to be tested.
Therefore, we still need a systematic way of testing
the interactions, such as the one provided by covering
arrays.

On the other hand, traditional covering arrays,
while handling system-wide constraints, do not pro-
vide a systematic way of handling test case-specific
constraints. Assuming the existence of a well con-
structed test suite, the basic justification for traditional
t-way covering arrays is that they can cost-effectively
exercise all system behaviors caused by the settings
of t or fewer options. We hypothesize however that,
in the presence of test case-specific constraints, many
such behaviors are not actually tested because of
masking effects [15] caused by the overlooked test
case-specific constraints. For instance, when a test
case skips a configuration due to an unsatisfied test
case-specific constraint, none of the option setting
combinations appearing in the configuration will be
tested by that test case.

Figure 1a illustrates masking effects in a hypothet-
ical scenario. In this scenario, the system under test
has 4 configuration options (o1 , o2 , o3 , and o4), each
of which takes a boolean value (0 or 1). The test suite
contains 3 test cases (t1 , t2 , and t3). There are no
system-wide constraints. However, test cases t1 and
t2 have some test case-specific constraints: t1 can run
only in configurations in which o1=0, and t2 can run
only in configurations in which o1=1. Test case t3 , on
the other hand, has no test case-specific constraints.
In our hypothetical scenario, by mimicking the way
traditional covering arrays are used in practice, a 3-
way covering array is created and then all the test
cases are executed in all the selected configurations
(Figure 1a). Literals P and S indicate a test success
and a test skip, respectively.

There are 20 valid 3-way combinations of option
settings to be tested by each of t1 and t2 , and 32 valid
combinations for t3 . Consider the test case t1. Since
t1 skipped the first 4 configurations, the 3-way option
setting combinations for options o2 , o3 , and o4 that
appear in the first 4 configurations, were actually not
tested by t1. As these 4 combinations appear nowhere
else in the covering array, t1 never had a chance to
test them. Similarly, t2 never had a chance to test
the 4 valid 3-way combinations, which happened to
appear only in the last 4 configurations skipped by
t2 . As a result, 8 out of 72 (11%) valid 3-way option
setting combination-test case pairs were not tested at
all, i.e., masked, due to the test skips caused by the
overlooked test case-specific constraints.

In this work, to account for test case-specific con-
straints and avoid the harmful consequences of mask-
ing effects caused by them, we introduce a new com-
binatorial object, called a test case-aware covering array.
Test case-aware covering arrays take as input a tra-
ditional configuration space model augmented with a
set of test cases, each of which can have a test case-
specific constraint. Given a configuration space model,
a t-way test case-aware covering array is not just a set
of configurations as is the case in traditional covering
arrays, but a set of configurations, each of which is
associated with a set of test cases, indicating the test
cases scheduled to be executed in the configuration.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Figure 1b, as an example, presents a 3-way test case-
aware covering array constructed for our hypothetical
scenario. A t-way test case-aware covering array has
the following properties: 1) For each test case, every
valid t-way combination of option settings occurs at
least once in the set of configurations in which the
test case is scheduled to be executed and 2) No test
case is scheduled to be executed in a configuration
which violates the test case-specific constraints of the
test case, or the system-wide constraints.

We furthermore present three algorithms to com-
pute test case-aware covering arrays. Two of the
algorithms aim to minimize the number of config-
urations required (one is fast, but produces larger
arrays, the other is slower, but produces smaller
arrays), whereas the remaining algorithm aims to
minimize the number of test runs required. The results
of our empirical studies conducted on two widely-
used highly-configurable software systems, namely
Apache and MySQL, strongly suggest that 1) test case-
specific inter-option constraints do exist in practice, 2)
traditional covering arrays suffer from masking effects
caused by the ignorance of such constraints, and 3)
test case-aware covering arrays are better than other
approaches in handling test case-specific constraints,
thus avoiding masking effects.

The remainder of this paper is organized as follows:
Section 2 provides background information; Section 3
introduces test case-aware covering arrays; Section 4
presents three algorithms to compute them; Section 5
describes the empirical studies; Section 6 discusses
the potential external threats to validity; Section 7
discusses the related work; and Section 8 presents
concluding remarks and possible directions for future
work.

2 BACKGROUND INFORMATION

In this section we provide background information on
traditional covering arrays and masking effects.

2.1 Traditional Covering Arrays

CIT approaches take as input a configuration space
model M=<O, V,Q>. The model includes a set of con-
figuration options O={o1, o2, . . . , on}, their possible
settings V={V1, V2, . . . , Vn}, and a system-wide inter-
option constraint Q (if any). In effect, the configura-
tion space model implicitly defines a valid configura-
tion space for testing.

Each option oi (1 ≤ i ≤ n) in the configuration
space model takes a value from a finite set of ki
distinct values Vi={v1, v2, . . . , vki

} (ki=|Vi|). Let sij be
an option-value tuple of the form <oi, vj>, indicating
that option oi is set to value vj ∈ Vi. Furthermore, let
Si be the set of all possible option-value tuples for
option oi, i.e., Si={<oi, vj>: vj ∈ Vi}.

Definition 1. A t-tuple φt={si1j1 , si2j2 , . . . , sitjt} is a
set of option-value tuples for a combination of t distinct

options, such that 1 ≤ t ≤ n, 1 ≤ i1 < i2 < . . . < it ≤ n,
and sipjp ∈ Sip for p=1, 2, . . . , t.

Let Φ̂t be the set of all t-tuples for some 1≤t≤ n. Not
all the t-tuples in Φ̂t may be valid due to the system-
wide constraint Q. Assume a deterministic function
valid(φt, Q), such that valid(φt, Q) is true, if and only
if, φt is a valid t-tuple under constraint Q. Otherwise,
valid(φt, Q) is false. The set of all valid t-tuples Φt

under constraint Q is then defined as: Φt={φt : φt ∈
Φ̂t ∧ valid(φt, Q)}.

Definition 2. Given a configuration space model
M=<O, V,Q>, a valid configuration c is a valid n-tuple,
i.e., c ∈ Φn, where n = |O|.

Note that, in a valid configuration, each option
defined in the configuration space model takes a valid
value and the configuration (i.e., n-tuple) does not
violate Q.

Definition 3. Given a configuration space model
M=<O, V,Q>, the valid configuration space C is the set
of all valid configurations, i.e., C={c : c ∈ Φn}.

CIT approaches systematically sample the valid
configuration space and test only the selected config-
urations. The sampling is carried out by computing a
t-way covering array [9], where t is often referred to
as the strength of the covering array.

Definition 4. A t-way covering array
CA(t,M=<O, V,Q>) is a set of valid configurations
in which each valid t-tuple appears at least once, i.e.,
CA(t,M=<O, V,Q>)={c1, c2, . . . , cN}, such that
∀φt ∈ Φt ∃ ci ⊇ φt, where ci ∈ C for i=1, 2, . . . , N .

Once a covering array is computed, the system un-
der test is validated by running its test suite in all the
selected configurations. Since the amount of resources
required for testing is a function of the covering array
size (i.e., N), covering arrays are constructed so that
all valid t-tuples are covered in a “minimum” number
of configurations.

Furthermore, it is also of practical interest to guar-
antee the inclusion of certain configurations in cov-
ering arrays for testing. A widely-used mechanism
for this purpose is the seeding mechanism [9], [13],
[18]. Given a seed, which is typically a set of con-
figurations, the covering array is constructed around
the seed. Conceptually, all the t-tuples included in the
seed are considered to be already covered and a new
set of configurations are generated only to cover the
rest of the valid t-tuples.

2.2 Masking Effects

We first introduced the concept of masking effects in
one of our earlier works [15].

Definition 5. A masking effect is an effect that prevents
a test case from testing all valid combinations of option

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

settings appearing in a configuration, which the test case
is normally expected to test.

A harmful consequence of masking effects is that
they cause developers to develop false confidence in
their test processes, believing them to have tested
certain option setting combinations, when they in fact
have not. One simple example of a masking effect
(besides the ones caused by overlooked test case-
specific constraints) would be an error that crashes
a program early in the program’s execution. The
crash then prevents some configuration dependent
behaviors, that would normally occur later in the
program’s execution, from being exercised. Unless the
combinations controlling those behaviors are tested
in a different configuration, or unless the error is
fixed and the faulty configuration is re-tested, we
cannot conclude that those configuration dependent
behaviors have been tested.

Masking effects can be caused by many factors.
System failures, unaccounted control dependencies
among configuration options (i.e., option setting com-
binations that effectively cancel other option set-
ting combinations), and incomplete or incorrect inter-
option constraints can all perturb program executions
in ways that prevent other configuration dependent
behaviors from being tested.

In our previous work [15], we focused on masking
effects caused by system failures and developed a
feedback driven adaptive combinatorial testing ap-
proach to reduce their harmful consequences. At each
iteration of the aforementioned approach, we detect
potential masking effects, isolate their likely causes,
and then schedule the t-tuples that are being masked,
for testing in the subsequent iteration. The iterations
end when, for each test case, all valid t-tuples have
been “tested”.

This work differs from our previous work in that
we in this work address masking effects caused by
overlooked test case-specific constraints rather than
the ones caused by system failures, and that, as these
constraints are known a priori, we compute static
interaction test suites rather than the dynamic ones
produced by the previous approach.

3 TEST CASE-AWARE COVERING ARRAYS

In this work we consider an inter-option constraint to
be a constraint among option settings, which explicitly
or implicitly invalidates some combinations of option
settings. System-wide inter-option constraints apply
to all test cases and define the set of valid ways
the system under test can be configured. A test case-
specific constraint, on the other hand, applies only to
the test case that it is associated with and determines
the configurations in which the test case can run.

It is important to note that expressing test case-
specific constraints as system-wide constraints and
then generating traditional covering arrays, is not

an adequate solution for handling test case-specific
constraints. One reason is that constraints for different
test cases may conflict with each other, in which case
no solution will be found. For example, in our hypo-
thetical scenario discussed in Section 1, the constraints
of t1 and t2 conflict; t1 cannot run when the binary
option o1 has one setting and t2 cannot run when the
same option has the other setting. Globally enforcing
these conflicting constraints will not generate any
covering arrays. Another reason is that, even if the
test case-specific constraints do not conflict, enforcing
them on all test cases can prevent the test cases from
exercising some valid option setting combinations
that are invalidated by other test cases. For example,
enforcing the constraint of t1 on t3 prevents t3 from
testing any combinations with o1=1, which are valid
for t3 .

In this work, to account for test case specific-
constraints, we introduce test case-aware covering
arrays. As is the case with traditional covering ar-
rays, test case-aware covering arrays take as input a
configuration space model M . The model contains a
set of configuration options O={o1, . . . , on}, their set-
tings V={V1, . . . , Vn}, and a system-wide inter-option
constraint Qs. Unlike traditional covering arrays, the
configuration space model of test case-aware cover-
ing arrays additionally includes a set of test cases
T={τ1, τ2, . . .}. Each test case τ ∈ T, in addition to
implicitly inheriting the system-wide constraint Qs,
can have a test case-specific constraint Qτ . In the
remainder of the paper, the collection of all test case-
specific constraints is referred to as QT.

In the presence of test case-specific constraints, we
define the set of valid t-tuples on a per-test case basis,
since a valid t-tuple for a test case may be invalid for
another test case. Let Φτ

t={φt : φt ∈ Φ̂t∧valid(φt, Qs∧
Qτ)} be the set of all valid t-tuples for a test case τ .

Definition 6. A valid configuration cτ for a test case τ ∈
T is a valid n-tuple for τ , i.e., cτ ∈ Φτ

n, where n = |O|.

Definition 7. The valid configuration space Cτ for a test
case τ ∈ T is the set of all valid configurations for τ , i.e.,
Cτ={c : c ∈ Φτ

n}.

Test case-aware covering arrays aim to ensure that
each test case has a fair chance to test all of its valid
t-tuples. To this end, each test case is scheduled to be
executed only in configurations which are valid for
the test case so that no masking effects can occur.

Definition 8. A t-pair is a pair of the form λt=<φt, τ>,
such that φt ∈ Φτ

t and τ ∈ T.

Definition 9. A t-way test case-aware covering array
TCA(t,M=<O, V,T, Qs, QT>) = {<c1,T1>, . . . ,

<cN ,TN>} is a set of rows of the form <ci,Ti>, where
ci ∈ C and Ti ⊆ T for i = 1, 2, . . . , N , such that each
valid t-pair appears at least once, i.e., ∀ τ ∈ T ∧ φt ∈
Φτ

t ∃<ci,Ti> :φt ⊆ ci ∧ τ ∈ Ti and τ ∈ Ti → ci ∈ Cτ .

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

In other words, for a given configuration space
model, a t-way test case-aware covering array is a set
of configurations, each of which is associated with a
set of test cases, indicating the test cases scheduled
to be executed in the configuration, such that 1) none
of the selected configurations violate the system-wide
constraint, 2) no test case is scheduled to be executed
in a configuration that violates the test case-specific
constraint of the test case, and 3) for each test case,
every valid t-tuple appears at least once in the set
of configurations in which the test case is scheduled
to be executed. Figure 1b, as an example, presents
a 3-way test case-aware covering array created for
our hypothetical scenario depicted in Figure 1a. Since
none of the test case-specific constraints are violated
in this covering array, each test case has a chance to
test all of its valid 3-tuples; no masking effects caused
by test skips can occur.

Compared to traditional t-way covering arrays,
handling test case-specific constraints is likely to in-
crease the number of configurations required, as the t-
tuples being masked in traditional arrays may need to
be covered in additional configurations. However, this
does not necessarily imply an increase in the number
of test runs required, as the test cases are executed
only in configurations that contribute to the coverage.
For example, comparing the 3-way test case-aware
covering array in Figure 1b to the traditional 3-way
covering array in Figure 1a, we observe that, while
the number of configurations doubles, the number of
test runs stays the same as each array requires a total
of 24 test runs. In this work, an execution of a test
case in a configuration is considered to be a test run.

Therefore, when the goal is to test all valid t-
pairs, then traditional t-way covering arrays will not
guarantee the coverage in the presence of test case-
specific constraints, whereas t-way test case-aware
covering arrays, while guaranteeing a full coverage,
will do so at the possible cost of increased num-
ber of configurations, but not necessarily increased
number of test runs. For example, the 3-way test
case-aware covering array in Figure 1b is optimal for
our hypothetical scenario; no other arrays requiring
fewer number of configurations or fewer number of
test runs, exist. Therefore, testing all 3-pairs in this
scenario is not possible without (at least) doubling the
number of configurations. Thus, developers must de-
cide between increasing the number of configurations
to remove masking effects or accepting their harmful
consequences. On the other hand, if the cost of con-
figuring the system is negligible, then the 3-way test
case-aware covering array in Figure 1b will remove
all masking effects at no additional cost compared to
the traditional 3-way covering array in Figure 1a; both
arrays require the same number of test runs.

4 COMPUTING TEST CASE-AWARE COVER-
ING ARRAYS

In this section we present three algorithms to compute
test case-aware covering arrays. A valuable obser-
vation we make is that there is often a trade-off
between minimizing the number of configurations
and minimizing the number of test runs in test case-
aware covering arrays. An attempt to reduce one
count often increases the other count. This trade-off
plays an important role in minimizing the total cost of
testing, especially when there is a profound practical
difference between the cost of configuring the system
and the cost of running the test cases.

The first two algorithms presented in this section,
namely Algorithm 1 and Algorithm 2, assume a cost
model in which the cost of running the test cases is
negligible compared to that of configuring the system
and the configuration cost is the same for all con-
figurations. Thus, Algorithm 1 and Algorithm 2 aim
to minimize the number of configurations required.
On the other hand, the remaining algorithm, namely
Algorithm 3, assumes an opposite cost model in
which the cost of configuring the system is negligible
compared to that of running the test cases and the
execution cost is the same for all test runs. Thus,
Algorithm 3 aims to minimize the number of test runs
required.

4.1 Algorithm 1: Maintaining a separate configu-
ration space model for each test case

A large number of algorithms have been proposed
for constructing traditional covering arrays [26]. In
our first algorithm, whose roots stem from one of our
earlier works [15], we use traditional covering array
construction as a computational primitive to generate
test case-aware covering arrays. At a high level, we
generate a separate traditional covering array for each
test case, and, while doing so, we force the test cases to
share configurations. The generated traditional cover-
ing arrays are then merged to construct the test case-
aware covering array.

In particular, we assume a generator
∏

(t,M, S) that
constructs a traditional t-way covering array around
the seed S for the configuration space model M . Such
covering array generators are commonplace [1].

Given a system-wide configuration space model
M=<O, V,T, Qs, QT>, for each test case τ ∈ T, we
first create a separate configuration space submodel
Mτ . The submodel Mτ , in addition to inheriting the
configuration options O, their settings V , and the
system-wide constraint Qs from M , includes the test
case-specific constraint of τ as a system-wide con-
straint. Since the submodels are maintained on a per-
test case basis, conflicting test case-specific constraints
do not pose any issues.

Once the configuration space submodels are cre-
ated, we feed these models to Algorithm 1. The t-way

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Algorithm 1 Computing a t-way test case-aware
covering array ΨM

t by maintaining a separate con-
figuration space submodel Mτ for each test case τ ,
where Sτ and ΩMτ

t are the seed and the traditional
t-way covering array created for τ , respectively.

Input M=<O, V,T, Qs, QT>: Config. space model
Input t: Covering array strength

1: ΨM
t ← ∅

2: for each test case τ in T do
3: Sτ ← {c : c ∈ ΨM

t ∧ c ∈ Cτ}
4: ΩMτ

t ←
∏

(t,Mτ , Sτ)
5: ΨM

t ← ΨM
t • Ω

Mτ

t

6: end for
7: return ΨM

t

test case-aware covering array ΨM
t to be computed,

is initially empty (line 1). For each test case τ , we
first compute a seed Sτ (line 3). The seed, out of all
the configurations which have been so far included in
the test case-aware covering array, contains only those
configurations that do not violate the test case-specific
constraints of τ . We then feed the seed Sτ and the
configuration space submodel Mτ to the generator

∏

.
The output is a traditional t-way covering array ΩMτ

t

that covers all the valid t-tuples for the test case τ (line
4). The test case τ is then scheduled to be executed in
all the selected configurations in ΩMτ

t , assuming that
non-contributing configurations that might be present
in the seed Sτ are eliminated by the generator.

We use the seeding mechanism to reduce the num-
ber of configurations required. Since

∏

marks all the
t-tuples included in the seed as already covered and
generates new configurations only to cover the rest of
the valid t-tuples, having the seed forces the test cases
to share configurations, i.e., test cases are scheduled
to be executed in the same configurations as much as
possible, reducing the total number of configurations
required.

Once the traditional covering array for the test case
τ is created, we merge it with the current test case-
aware covering array ΨM

t (line 5). The merge opera-
tion is performed in such a way that test cases that are
scheduled to be executed in the same configuration
are collected in a set and then the newly constructed
set is associated with the configuration. Finally, after
processing all the test cases, we output the generated
test case-aware covering array (line 7).

Figure 2 illustrates Algorithm 1 in an example. In
the example, we have a configuration space model
that contains 4 binary options, namely o1 , o2 , o3 , and
o4 . The system is to be tested with 3 test cases:
t1 , t2 , and t3 . Test cases t1 and t2 do not have
any test case-specific constraints, whereas t3 skips all
configurations in which o1=0∧o4=0 or o2=0∧o3=0.
There are no system wide constraints. Furthermore,

the system is required to be tested with a 2-way test
case-aware covering array.

To generate the test case-aware covering array, first,
a separate configuration space submodel is created
for each test case (Figure 2a-c). Then, a traditional
2-way covering array is created for each test case
in the arbitrary order of t1 , t2 , and then t3 . For t1 ,
as no configurations have been scheduled for testing
yet, an empty seed is used and a traditional 2-way
covering array of size 5 is created (Figure 2a). The
newly generated covering array is then used as the
seed for t2 . Since both t1 and t2 require to cover
exactly the same set of 2-tuples, no additional config-
urations are needed for t2 (Figure 2b). In the figure,
configurations that are reused from the previous iter-
ations are marked with the character ’*’. Next, out of
the 5 configurations that have been so far scheduled
for testing, the first 3 configurations, which do not
violate the test case-specific constraint of t3 is used
as the seed for t3 . Figure 2c presents the traditional
2-way covering array computed for t3 ; all of the 3
configurations in the seed happen to be reused by
t3 . Finally, the traditional covering arrays are merged
to generate the 2-way test case-aware covering array
given in Figure 2d. The resulting array requires 8
configurations and 16 test runs.

4.2 Algorithm 2: Maintaining a single configura-
tion space model

An attractive side of Algorithm 1 is that it can readily
and quickly be implemented by using the existing
covering array generators that support system-wide
constraints and a seeding mechanism. One downside
of the approach, though, is that the optimization
is carried out on a per-test case basis. While the
problem is being solved for a test case, the coverage
requirements of the remaining test cases waiting to be
processed are not taken into account. This leads to a
loss of opportunity for further reducing the number of
configurations. For example, changing the processing
order of the test cases in Figure 2 can produce a
smaller array.

In this section, to alleviate the shortcomings of Al-
gorithm 1, we present a greedy algorithm that keeps
a global view of all valid t-pairs to be covered. To this
end, we maintain a single configuration space model
for the system under test rather than a separate model
for each test case.

Our algorithm operates in an iterative manner. At
each iteration, we select the best configuration and
the set of associated test cases, which cover the most
number of previously uncovered t-pairs. The selection
is then included in the test case-aware covering array
and the t-pairs appearing in the selection are marked
as covered. The iterations end when every valid t-pair
is covered at least once.

Algorithm 2 presents the main loop of the proposed
approach. We maintain a pool λT

t that keeps track of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

1

0

1

0

o2

1

o3

1

0

1

0

0

1

0

1

0 0

o4

0

1

0

o1

0

1

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 #empty

Covering Array for t1:

Configuration Space

Submodel for t1:

Seed:
 #empty

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 #empty

Covering Array for t2:

Configuration Space

Submodel for t2:

Seed:

1 11 1

*

*

*1

0

1

0

o2

0

o3

1

0

1

0

1

1

1

1

0 1

o4

0

1

0

o1

0

1

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 (o1=0 o4=0)
 (o2=0 o3=0)

Covering Array for t3:

Configuration Space

Submodel for t3:

Seed:

1

o4

1

1

o3

0

1

1

o1

0

0

o2

01

0

1

1

0

1

0

o2

1

o3

1

0

1

0

0

1

0

1

0 0

o4

0

1

0

o1

0

1

*

*

*

*

*

1

0

1

0

o2

1

o3

1

0

1

0

0

1

0

1

0 0

o4

0

1

0

o1

0

1

1

1

1

0

1

0

{t1,t2}0

tests

0

{t1,t2,t3}

1

0 {t3}

1

o2

1

{t3}

0 {t1,t2,t3}

0

0

o3

0

1

1

1

0

1

1

{t3}

o1

0

o4

1

1 {t1,t2,t3}

1

0

{t1,t2}

1

0

1

0

0

Test Case-Aware

Covering Array

(a) (b) (c) (d)

Fig. 2: Illustrating Algorithm 1 in an example.

the valid t-pairs yet to be covered. The pool initially
contains all valid t-pairs (line 2), where λτ

t refers
to the set of valid t-pairs for the test case τ . As t-
pairs are covered, they are removed from the pool.
At each iteration, we pick the best row <c, T ′>, such
that the configuration c is a valid configuration for
all the test cases in T′ ⊆ T, and that there is no
other row covering more previously uncovered t-pairs
(line 4). The selected row is then included in the test
case-aware covering array ΨM

t (line 6) and the newly

covered t-pairs λ
<c,T′>
t in the row are removed from

the pool (line 5). When the pool is empty, the iterations
terminate (line 3) and the computed test case-aware
covering array is returned (line 8).

An integral part of this approach is to choose the
best row at each iteration (line 4). In this work, as a
proof of concept, we implement this functionality by
using Answer Set Programming (ASP).

ASP is a declarative programming paradigm, which
represents a computational problem as a “program”
whose models, called “answer set”, correspond to the
solutions [24], [27]. ASP solvers are then used to find
the answer sets for the program.

Figure 3 provides an example ASP encoding that
picks the best rows in the computation of a 2-way test
case-aware covering array for a hypothetical configu-
ration space model. The model contains four binary
options (o1,o2,o3,o4) and three test case (t1,t2,t3).
Below, we explain the encoding in a nutshell with
no intention to introduce ASP. For more details about
ASP, the interested reader may refer to an introduc-
tion [16] or a book [2].

In a configuration, every configuration option must
have exactly one valid setting:

1 {cfg(Opt,Val) : val(Opt,Val)} 1 :- opt(Opt).

A configuration is a valid configuration for a test
case T, if it is not an invalid configuration for the test
case:

validCfg(T) :- test(T), not invalidCfg(T).

As an example, the encoding provides two test case-
specific constraints. Configurations in which o1=1, are
invalid configurations for the test case t1, and the
ones in which o1=0, are invalid for the test case t2:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Algorithm 2 Computing a t-way test case-aware
covering array ΨM

t by maintaining a single config-
uration space model M for the software under test,
where λT

t is the set of all t-pairs yet to be covered,
λτ
t is the set of t-pairs yet to be covered for test case

τ , and <c, T ′> is the best row picked at the current
iteration.
Input M=<O, V,T, Qs, QT>: Config. space model
Input t: Covering array strength

1: ΨM
t ← ∅

2: λT

t ←
⋃

τ∈T
λτ
t

3: while λT

t 6= ∅ do
4: <c, T ′> ← bestRow(λT

t)

5: λT

t ← λT

t − λ
<c,T′>
t

6: ΨM
t ← ΨM

t ∪ <c, T ′>

7: end while
8: return ΨM

t

invalidCfg(t1) :- cfg(o1, 1).

invalidCfg(t2) :- cfg(o1, 0).

ASP is expressive enough to encode any type of
constraints. The constraints in the example encoding
are however kept simple for the sake of the discus-
sion.

The set of valid t-pairs yet to be covered, i.e., λT

t in
Algorithm 2, are expressed as a set of tpair facts. For
example, the following fact in the encoding indicates
that the 2-pair <<o1=0, o2=1>, t1> is a valid 2-pair
yet to be covered for the test case t1:

tpair(o1, 0, o2, 1, t1).

A 2-pair <<O1=V1, O2=V2>, T>, where
O1, O2, V1, V2 and T are variables that will be
grounded by the ASP solver, is considered to be
covered when 1) the 2-tuple <O1=V1, O2=V2> appears
in a configuration, 2) the configuration is a valid
configuration for the test case T and T is scheduled
to be executed in the configuration, and 3) the 2-tuple
has not yet been covered for T:

covered(O1,V1,O2,V2,T) :- cfg(O1,V1), cfg(O2,V2),
validCfg(T),
tpair(O1,V1,O2,V2,T).

Finally, the following ASP directive ensures that the
best row that covers the most number of previously
uncovered 2-pairs is chosen:

#maximize {covered(O1,V1,O2,V2,T)}.

Adapting the ASP encoding given in Figure 3 to
compute test case-aware covering arrays of arbitrary
strength for any given configuration space model
is straightforward. To conduct the experiments dis-
cussed in Section 5, for example, we developed a
simple script, which automatically generated the ASP
encoding for a given configuration space model and
a value of t.

% Test cases
test(t1;t2;t3).

% Config. options and their settings
opt(o1;o2;o3;o4).
val(o1;o2;o3;o4,0;1).

% The definition of a configuration
1 {cfg(Opt,Val) : val(Opt,Val)} 1 :- opt(Opt).

% The definition of a valid config. for a test T
validCfg(T) :- test(T), not invalidCfg(T).

% Example test case-specific constraints:
% t1 skips when o1=1
invalidCfg(t1) :- cfg(o1, 1).
% t2 skips when o1=0
invalidCfg(t2) :- cfg(o1, 0).

% An example 2-pair to cover:
tpair(o1, 0, o2, 1, t1).
%...

% The definition of a covered t-pair
covered(O1,V1,O2,V2,T) :- cfg(O1,V1), cfg(O2,V2),

validCfg(T),
tpair(O1,V1,O2,V2,T).

% The optimization criterion
#maximize {covered(O1,V1,O2,V2,T)}.

Fig. 3: An example ASP encoding for computing the
“best” row at a given iteration.

Figure 4 illustrates Algorithm 2 in our running
example introduced in Section 4.1. Unlike Algorithm
1, Algorithm 2 maintains a single configuration space
model for t1 , t2 , and t3 . Furthermore, Algorithm 2
keeps a global view of all the 2-pairs to be covered
and proceeds by selecting the best row, such that
the number of newly covered 2-pairs is maximized
at each iteration. The 2-way test case-aware covering
array generated by Algorithm 2 as well as the number
of newly covered 2-pairs by each row included in
the array, can be found in the figure. The first row
of the array covers the maximum number of 2-pairs
that can be covered by a row (i.e.,

(

4

2

)

∗ 3 = 18). As
new configurations are included in the array, since the
number of remaining 2-pairs to be covered decreases,
the number of newly covered 2-pairs monotonically
decreases. In the end, the computed 2-way test case-
aware covering array requires 6 configurations and 17
test runs.

Comparing the test case-aware covering arrays cre-
ated by Algorithm 1 and Algorithm 2, we observe that
Algorithm 2 increased the number of configurations
shared by the test cases. For example, in the test
case-aware covering array created by Algorithm 2
(Figure 4), 5 configurations were shared by all of the
3 test cases, whereas in the test case-aware covering
array created by Algorithm 1 (Figure 2), only 3 config-
urations were shared by all the test cases. This, in turn,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 t1, t2: #empty
 t3: (o1=0 o4=0)
 (o2=0 o3=0)

Test Case-Aware Covering Array

Configuration Space Model

9

15

18

9

of newly

covered 2-pairs

15

4

0

0

1

0 {t1, t2}

0

0 {t1,t2,t3}

1

0

1

{t1,t2,t3}1

0 {t1,t2,t3}

{t1,t2,t3}

1

1

testso2

1

{t1,t2,t3}0

1

1

o1

0

0

0

1

o3

0

1

o4

1

Fig. 4: Illustrating Algorithm 2 in an example.

reduced the total number of configurations required
from 8 to 6 (i.e., by 25%).

4.3 Algorithm 3: Minimizing number of test runs

Algorithm 1 and 2 aim to minimize the number of
configurations included in test case-aware covering
arrays. To do that, both algorithms force the test
cases to share configurations. However, reducing the
number of configurations does not necessarily reduces
the number of test runs required. In fact, there is
often a trade-off between minimizing the number of
configurations and minimizing the number of test
runs. The reason behind this trade-off is a simple
one. Forcing test cases to share configurations, thus
reducing the number of configurations, can cause a
test case to execute in a number of configurations to
cover a certain set of t-tuples, which could have been
otherwise covered by a smaller number of configura-
tions, thus reducing the number of test runs, if the
test case was not forced to share the configurations.
On the other hand, if configurations are not shared
among the test cases, the number of configurations
required will naturally increase.

For instance, the brute-force search of the configu-
ration space used in our running example depicted
in Figure 2 and 4, proved that a minimum of 6
configurations are needed to satisfy the coverage re-
quirements of all the test cases. The brute-force search
also revealed that when the number of configurations
is fixed at 6 (i.e., at the minimum), a minimum of
17 test runs are required. From this perspective, the
2-way test case-aware covering array computed by

Algorithm 3 Minimizing the number of test runs
required, where ΨM

t is the t-way test case-aware
covering array to be computed for the configuration
space model M , and Sτ and ΩMτ

t are the seed and
the traditional t-way covering array created for test
case τ , respectively.

Input M=<O, V,T, Qs, QT>: Config. space model
Input t: Covering array strength

1: ΨM
t ← ∅

2: for each test case τ in T do
3: Sτ ← ∅
4: ΩMτ

t ←
∏

(t,Mτ , Sτ)
5: ΨM

t ← ΨM
t • Ω

Mτ

t

6: end for
7: return ΨM

t

Algorithm 2 is optimal. On the other hand, we know
that a minimum of 5 configurations are needed for
each test case to satisfy the coverage requirement of
the test case. This indicates that the minimum number
of total test runs needed is 15 (3∗5=15). However, both
Algorithm 1 and Algorithm 2 required more test runs;
Algorithm 1 required 16 test runs, whereas Algorithm
2 required 17 test runs.

The algorithm presented in this section, namely
Algorithm 3, aims to minimize the number of test
runs. To this end, we slightly modify Algorithm 1,
such that, instead of creating a seed for each test case,
thus forcing the test cases to share configurations, we
use an empty seed (line 3). This provides each test case
with freedom to select its own configurations (line 4).
The rest of the algorithm is the same as Algorithm 1.

At each iteration of the algorithm, since the tradi-
tional covering array generator

∏

“minimizes” the
number of configurations required for a test case, the
number of test runs required for each test case would
be minimized, and so would the total number of test
runs.

Figure 5 illustrates Algorithm 3 in our running
example. As is the case with Algorithm 1, a separate
configuration space submodel is maintained for each
test case, a traditional 2-way covering array is com-
puted for each submodel, and the newly computed
covering arrays are merged to construct the 2-way
test case-aware covering array. However, unlike Al-
gorithm 1, the seeds are always empty. As Figure 5a-
c indicate, the size of the traditional covering array
created for each test case is 5 (i.e., at the minimum).
Although no attempt is made to share configurations,
3 configurations happen to be shared. In the end, the
computed test case-aware covering array (Figure 5d)
requires 12 configurations and 15 test runs.

Note that, had the test cases t1 and t2 shared
exactly the same set of configurations, the number of
configurations would have been reduced to 8 without

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

1

0

1

0

o2

1

o3

1

0

1

0

0

1

0

1

0 0

o4

0

1

0

o1

0

1

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 #empty

Covering Array for t1:

Configuration Space

Submodel for t1:

Seed:
 #empty

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 #empty

Covering Array for t2:

Configuration Space

Submodel for t2:

Seed:
 #empty

o2

1

*

0

0

o1

1 0

0

1

o4

1

0

11

o3

11

0

1

0

1

1

*

*

0

1

[options]
 o1,o2,o3,o4: {0, 1}

[constraints]
 (o1=0 o4=0)
 (o2=0 o3=0)

Covering Array for t3:

Configuration Space

Submodel for t3:

Seed:
 #empty

1

o4

0

1

1

1 0

o3

0

0

0

0

o1

1 1

1

0

1

0 1

1

0

0

o2

11 1 {t3}1

{t3}0 110

{t2}1 11 0

110 {t2}1

1

0

0

1

0

0

{t1}1

tests

1

{t2,t3}

0

0 {t2}

1

o2

1

{t2}

1 {t1,t3}

0

1

o3

1

0

1

1

1

0

1

{t1}

o1

0

o4

0

0 {t1,t3}

0

0

{t1}

0

0

0

0

0

Test Case-Aware

Covering Array

(a) (b) (c) (d)

Fig. 5: Illustrating Algorithm 3 in an example.

changing the number of test runs required. However,
we opted not to share any configurations between t1

and t2 to demonstrate potential scenarios that could
arise when non-deterministic traditional covering ar-
ray generators are used.

In any case, brute-force search proved that when
the number of test runs is fixed at 15 (i.e., at the
minimum), a minimum of 7 configurations are re-
quired. That is, for our running example, minimizing
the number of configurations requires a minimum of
6 configurations and 17 test runs, whereas minimizing
the number of test runs requires a minimum of 7
configurations and 15 test runs, demonstrating the po-
tential trade-off between the two optimization criteria.

5 EXPERIMENTS

We conducted a series of empirical studies to 1) gain
more insight on test case-specific constraints occurring
in practice, 2) quantify the extent to which traditional
covering arrays suffer from ignoring such constraints,
and 3) evaluate the efficiency and effectiveness of the
test case-aware covering arrays.

In these studies, we used two widely-used highly-
configurable software systems as our subject applica-
tions: Apache v2.3.11-beta and MySQL v5.1. Apache
is a HTTP server. MySQL is a database management
system.

We chose these systems for several reasons. First,
they share the key characteristics common to config-
urable software systems. They are highly configurable
with dozens of configuration options supporting a

wide variety of features. They have a large code
base and substantial test code. Both systems enjoy
a large developer community that actively updates
and tests the systems. Second, like many configurable
software systems, developers of these systems cannot
exhaustively test the entire configuration space; the
number of possible configurations is far beyond the
resources available to run the test cases in a timely
manner, e.g., for regression testing.

All the experiments were performed on an AMD 64
Athlon machine with 4 GB of RAM, running Ubuntu
10.10 operating system.

5.1 Study 1: Test case-specific constraints in
practice

In the first study, our goal was to gain more insight
on test case-specific constraints occurring in practice.

5.1.1 Study setup

To conduct the study, we studied the test cases that
came with the source code distribution of our subject
applications. Each test case in both subject appli-
cations had its own test oracle, which determines
whether each test case execution “passed”, “failed”,
or was “skipped”. Successful test cases simply emit
pass. Failed test cases emit fail. A test case returns
skipped when it determines that it cannot run in a
given configuration, indicating that the test case has
a test case-specific constraint.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 1: Traditional configuration space model
used in the experiments for Apache.

option settings

case-filter {enable, disable}
ssl {enable, disable}
dav {enable, disable}
echo {enable, disable}
rewrite {enable, disable}
case-filter-in {enable, disable}
bucketeer {enable, disable}
info {enable, disable}
headers {enable, disable}
vhost-alias {enable, disable}
cgi {enable, disable}
proxy-http {enable, disable}
proxy {enable, disable}

system-wide constraint
proxy-http = enable → proxy=enable

5.1.2 Data and analysis

We first observed that the test case-specific constraints
were encoded in the test oracles of our subject appli-
cations, indicating that they were known to the de-
velopers. This is important, because the more accurate
and complete the test case-specific constraints are, the
better the test case-aware covering arrays perform in
avoiding masking effects.

We then determined that, out of 3789 and 738 test
cases examined for Apache and MySQL, respectively,
378 Apache test cases and 337 MySQL test cases had
some test case-specific constraints. This is a good
indicator that these systems (and potentially other
configurable systems) can benefit from test case-aware
covering arrays in practice.

To identify the actual test case-specific constraints
for these configuration-dependent test cases, we stud-
ied the test cases and their oracles, read the user
manuals, and conducted experiments as needed. It
turned out that the test case-specific constraints to-
gether with the system-wide constraints needed to
build the systems, involved a total of 13 and 12
unique configuration options for Apache and MySQL,
respectively. These configuration options and their
settings together with the system-wide constraints can
be found in Table 1 and 2.

We observed that the configuration-dependent test
cases formed clusters with respect to their test case-
specific constraints. In other words, we had clusters
of test cases having exactly the same constraints. We
identified 17 clusters for Apache and 30 clusters for
MySQL. Table 3 and 4 present the the distribution
of the test cases over the clusters, each of which is
identified by a unique test case-specific constraint. The
constraints in these tables express the conditions that
must be satisfied for the test cases to run. For example,
the first row in Table 4 depicts that 86 MySQL test
cases share exactly the same constraint

log-bin=enable ∧ sql-mode6= ansi,

TABLE 2: Traditional configuration space model
used in the experiments for MySQL.

option settings

log-format {row, statement, mixed}
sql-mode {strict, traditional, ansi}
ext-charsets {disable, complex, all}
innodb {enable, disable}
libedit {enable, disable}
log-bin {enable, disable}
readline {enable, disable}
ndbcluster {enable, disable}
ssl {enable, disable}
archive {enable, disable}
blockhole {enable, disable}
federated {enable, disable}

system-wide constraint
ssl=disable1∧ (libedit=enable → readline=disable)

indicating that these test cases skip all configurations
in which log-bin6= enable or sql-mode=ansi.

An in-depth analysis revealed that these clusters
were formed due to two factors. First, there were
some test cases specifically designed to test features
that need to be explicitly configured into the system.
For example, all of the 16 test cases in cluster 6 (Ta-
ble 3) were designed to test the Distributed Authoring
and Versioning (DAV) feature of the Apache server.
Therefore, these test cases simply assume that DAV is
already configured into the system (i.e., dav=enable).
If not, they refuse to run.

The second factor was that some test cases origi-
nally designed to test a wide range of features, were
dependent on the same configurable feature. For ex-
ample, a number of test cases in MySQL used the
SQL ‘LIKE’ operator in their database queries with
wildcard characters that are not supported by the
ANSI SQL standard. Consequently, these test cases
refuse to run when the system is configured with the
ANSI SQL query engine (i.e., sql-mode=ansi).

5.1.3 Discussion
Considering the nature of the factors leading to hav-
ing clusters of test cases sharing exactly the same
constraints, it is likely that other configurable sys-
tems exhibit the same tendency. This is a valuable
observation towards improving the scalability of test
case-aware covering array generators in practice. One
test case can be chosen from each cluster and the
test case-aware covering array can be created only for
the selected test cases rather than for all test cases.
Once the test case-aware covering array is computed,
each test case in the array can then be replaced with
all the test cases in the respective cluster. As the
number of t-pairs is proportional to the number of
test cases, the proposed approach can considerably
reduce the number of t-pairs that need to be dealt with

1. This constraint was added to avoid some failures we consis-
tently experienced during the experiments. Although the failures
appeared to be platform-specific, to carry out the experiments, we
opted to express the constraint as a system-wide constraint.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 3: Test case-specific constraints used in the
experiments for Apache.

cluster # of test case-specific
idx tests constraint

1 172 ssl=enable ∧ proxy-http=enable
2 74 ssl=enable
3 26 rewrite=enable
4 22 headers=enable
5 21 proxy=enable
6 16 dav=enable
7 11 case-filter=enable
8 8 vhost-alias=enable
9 7 proxy-http=enable

10 5 proxy=enable∧rewrite=enable
∧ cgi=enable

11 4 echo=enable
12 3 ssl=enable ∧ headers=enable
13 2 rewrite=enable ∧ proxy=enable
14 2 ssl=enable ∧ case-filter-in=enable
15 2 case-filter-in=enable
16 2 bucketeer=enable
17 1 info=enable

at runtime, thus improving scalability. We employed
this approach to compute the test case-aware covering
arrays studied in Section 5.3.

5.2 Study 2: Masking effects in traditional cover-
ing arrays

In the second study, our goal was to quantify the
extent to which traditional covering arrays suffer from
ignoring test case-specific constraints.

5.2.1 Study setup

To conduct the study, we mimicked the way tradi-
tional covering arrays are used in practice. In partic-
ular, given a configuration space model, we created
traditional covering arrays, scheduled all the test cases
to execute in all the selected configurations, and quan-
tified the consequences of masking effects caused by
the overlooked test case-specific constraints.

We first started with the configuration space models
given in Table 1 and 2. These models consist of only
those configuration options that are referenced by the
system-wide or test case-specific constraints. In the
remainder of the paper, a configuration option that is
referenced by a constraint is referred to as a constrained
option, e.g., all the options in our initial configuration
models were constrained options.

We then varied the percentage of constrained op-
tions in configuration space models (in short, cop) to
evaluate the consequence of cop on masking effects.
Given a value of cop, our initial configuration models
were augmented with unconstrained binary configu-
ration options to obtain the desired percentage level.
For example, to obtain 60% constrained options (i.e.,
cop=60) for Apache, 9 unconstrained binary options
were added to the initial configuration space model

TABLE 4: Test case-specific constraints used in the
experiments for MySQL.

cluster # of test case-specific
idx tests constraint

1 86 log-bin=enable ∧ sql-mode 6=ansi
2 60 ndbcluster=enable
3 33 innodb=enable
4 28 log-format6=row ∧ log-bin=enable

∧ sql-mode 6=ansi
5 22 sql-mode 6=ansi
6 18 ext-charsets 6=disable ∧ sql-mode 6=ansi
7 17 log-format6=statement ∧ log-bin=enable

∧ ndbcluster=enable
8 17 innodb=enable ∧ log-bin=enable

∧ sql-mode 6=ansi
9 16 log-bin=enable ∧ ndbcluster=enable

10 6 log-format6=row ∧ innodb=enable
∧ log-bin=enable ∧ sql-mode 6=ansi

11 4 log-format6=row ∧ ext-charsets 6=disable
∧ log-bin=enable ∧ sql-mode 6=ansi

12 4 federated=enable ∧ log-bin=enable
∧ sql-mode 6=ansi

13 4 innodb=enable ∧ sql-mode 6=ansi
14 4 ndbcluster=enable ∧ sql-mode 6=ansi
15 2 log-format6=statement ∧ innodb=enable

∧ log-bin=enable ∧ sql-mode 6=ansi
16 2 blackhole=enable ∧ log-bin=enable

∧ ndbcluster=enable
17 1 archive=enable ∧ log-format6=row

∧ log-bin=enable ∧ sql-mode 6=ansi
18 1 federated=enable ∧ innodb=enable

∧ log-bin=enable ∧ sql-mode 6=ansi
19 1 log-format6=row ∧ blackhole=enable

∧ log-bin=enable ∧ sql-mode 6=ansi
20 1 log-format6=statement ∧ log-bin=enable

∧ ndbcluster=enable ∧ sql-mode 6=ansi
21 1 ext-charsets 6=disable ∧ log-bin=enable

∧ sql-mode 6=ansi
22 1 log-bin=enable ∧ ndbcluster=enable

∧ sql-mode 6=ansi
23 1 log-format6=row ∧ log-bin=enable

∧ ndbcluster=enable
24 1 ext-charsets 6=disable

∧ innodb=enable ∧ sql-mode 6=ansi
25 1 innodb=enable ∧ log-bin=enable

∧ ndbcluster=enable
26 1 innodb=enable ∧ ndbcluster=enable
27 1 archive=enable ∧ innodb=enable
28 1 archive=enable
29 1 log-bin=enable
30 1 ext-charsets 6=all

given in Table 1. In particular, we experimented with
cop=20, 30, 40, 50, 60, 80, and 100.

Given a configuration space model, we created tra-
ditional t-way covering arrays with varying strengths
(2 ≤ t ≤ 5). This was done by using a well-known
covering array generator, called ACTS (v1.r9.3.2) [1].
Once a t-way covering array was generated, all of
the 378 test cases for Apache and 337 test cases
for MySQL, which are known to have the test case-
specific constraints given in Table 3 and 4, were sched-
uled to be executed in all the selected configurations.
Test cases with no test case-specific constraints were

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Masking Effects in Traditional Covering Arrays

t

t−
m

as
ke

d
pe

rc
en

ta
ge

0

5

10

15

20

25

30

35

37

Apache

2 3 4 5

MySQL

2 3 4 5

cop
20
30
40
50
60
80

100

Fig. 6: Masking effects in the traditional covering
arrays created for Study 2.

not utilized in the experiments, as they would not
suffer from any masking effects.

To quantify the harmful consequences of masking
effects, we use a metric, called t-masked [15]. This
metric counts the number of unique t-pairs that are
for sure not tested due to the overlooked test case-
specific constraints. If a test case skips a configuration,
none of the t-tuples in the configuration will be tested
by that test case. To compute the value of t-masked,
for each test case, we first count the number of valid
t-tuples that appear only in the configurations skipped
by the test case. We then add these counts up for
all the test cases. For a given test case, the set of
valid t-tuples as well as the configurations skipped,
were determined by using the respective system-wide
constraints in Table 1 and 2 and the respective test
case-specific constraints in Table 3 and 4.

We, furthermore, compute the percentage of valid
t-pairs that are masked and refer to it as t-masked
percentage. For instance, the value of 3-masked and 3-
masked percentage in the traditional 3-way covering
array given in Figure 1, is 8 and 11, respectively. For
adequate testing, t-masked, thus t-masked percentage,
should be 0.

5.2.2 Data and analysis

Table 5 and 6 in Appendix A present the results
we obtained. The columns in these tables depict the
strength of the covering array generated (i.e., t), the
number of options in the configuration space model
used, the percentage of constrained options in the
model (i.e., cop), the number of configurations in-
cluded in the computed covering array, the number

of test runs required by the array, the time it took to
construct the array (in minutes), and the values of t-
masked and t-masked percentage for various values
of t. For each row of the tables, we created between
2 and 10 traditional covering arrays, depending on
the computational resources required. The values of
independent variables reported in these tables, are the
average values obtained from these arrays. Figure 6
visualizes the results we obtained.

We first observed that all the traditional t-way
covering arrays created for the study suffered from
masking effects caused by the overlooked test case-
specific constraints (Figure 6 and Table 5-6). For ex-
ample, when t=2 and cop=100, about 35% of all the
valid 2-pairs, on average, were not tested at all by the
traditonal 2-way covering arrays created for Apache,
i.e., about 35, 250 2-pairs were masked, on average.

We then observed that, for a fixed configuration
space model, higher strength covering arrays suffered
relatively less compared to lower strength covering
arrays. As t increased, t-masked percentage decreased,
but never reached 0, when 2 ≤ t ≤ 5 (Figure 6).
For instance, when cop=100 for Apache, 5-masked
percentage was about 3.6 in 5-way covering arrays
as opposed to the 2-masked percentage of about 35
in 2-way covering arrays. Clearly, when t=n, where
n is the number of options in the configuration space
model, as the configuration space will be tested ex-
haustively, t-masked percentage will be 0. However,
since t ≪ n in practice, with t=2 being the most
common case, handling test case-specific constraints
gains in importance.

We furthermore observed that, for a fixed value
of t, as the constrained options percentage (i.e., cop)
decreased, t-masked percentage tended to decrease
(Figure 6). The trend is more clearly observable when
t > 2. Clearly, when cop=0, as there will be no test
case-specific constraints, t-masked percentage will be
0. However, t-masked percentage never reached 0 for
the values of cop used in the experiments.

One way to remove masking effects can be to create
a higher strength covering array in order to cover
lower order interactions among configuration options,
i.e., using a t-way covering array to obtain t′-way
coverage, where t′ < t [15]. For example, using a 3-
way covering array is likely to reduce the number of
2-pairs masked compared to using a 2-way covering
array, as every 2-tuple will appear multiple times in
different 3-tuples.

To evaluate this conjecture, we used the traditional
t-way covering arrays created in this study, but rather
than monitoring t-masked percentages in these arrays,
we monitored 2-masked (when t ≥ 2) and 3-masked
percentages (when t ≥ 3). Figure 7 visualizes the
results we obtained. The raw data can be found in
Table 5 and 6.

We observed that, for a fixed configuration space
model, as t increased, both 2-masked and 3-masked

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Masking Effects in Higher Strength
Traditional Covering Arrays

t

2−
m

as
ke

d
pe

rc
en

ta
ge

0

5

10

15

20

25

30

35

37
Apache

2 3 4 5

MySQL

2 3 4 5

cop
20
30
40
50
60
80

100

(a)

Masking Effects in Higher Strength
Traditional Covering Arrays

t

3−
m

as
ke

d
pe

rc
en

ta
ge

0

5

10

15

20

Apache

3 4 5

MySQL

3 4 5

cop
20
30
40
50
60
80

100

(b)

Fig. 7: Using t-way traditional covering arrays to reduce a) 2-masked (when t ≥ 2) and b) 3-masked
percentages (when t ≥ 3).

percentages decreased, and rarely reached 0. For ex-
ample, when cop=100 for Apache, 2-masked percent-
ages were 35.11, 6.22, 0.002, and finally 0 for t=2, 3,
4, and 5, respectively.

Clearly, using a sufficiently high strength traditional
t-way covering array can prevent all t′-pairs from
being masked (t′ < t). However, the traditional t-
way covering arrays used in the experiments man-
aged to do so at the cost of significantly increased
number of configurations and test runs compared
to the t′-way test case-aware covering arrays. For
instance, when cop=100 for Apache, the traditional
5-way covering arrays, while preventing all 2-pairs
from being masked, required about 6 times (684%)
and 18 times (1888%) more configurations and test
runs, respectively, compared to the 2-way test case-
aware covering arrays created by Algorithm 2, which
also prevented all 2-pairs from being masked (Table 7
in Appendix B). Further discussion is provided in
Section 5.3.

5.2.3 Discussion
In the experiments, we used only those test cases
that had some test case-specific constraints. In the
remainder of the paper, such test cases are referred
to as constrained test cases, whereas test cases with
no test case-specific constraints are referred to as
unconstrained test cases.

Had we used some unconstrained test cases in
our experiments, regardless of the number of such
test cases used, t-masked values observed in the
experiments would not have changed, i.e., the same
number of t-pairs would have been masked. This is
because test cases are independent of each other and

unconstrained test cases do not suffer from any mask-
ing effects. On the other hand, t-masked percentages
observed in the experiments would have decreased
as the percentage of constrained test cases in the test
suite decreased. This is because adding unconstrained
test cases increases the total number of t-pairs to
be covered without affecting the number of t-pairs
masked; the dividend stays the same, but the divisor
increases.

As an example, consider the traditional 2-way cov-
ering arrays created for MySQL with cop=100. When
we used 337 constrained MySQL test cases in the
experiments (i.e., when 100% of the test cases were
constrained), out of 88, 328 valid 2-pairs about 20, 483
2-pairs were masked; 2-masked percentage was about
23. On the other hand, Figure 8 plots 2-masked per-
centages that were obtained by varying the percentage
of constrained test cases in the test suite. The varia-
tions in the test suite were obtained by keeping the
337 constrained test cases in the suite and adding
new unconstrained test cases as needed. Regardless
of the number of unconstrained test cases added,
the 2-masked value was always 20, 483. However,
adding a new unconstrained test case increased the
total number of valid 2-pairs by 307. Thus, 2-masked
percentage decreased accordingly.

Note that, since t-masked values do not depend
on the number of unconstrained test cases, all the
comparative analyses conducted in Section 5.2.2 are
valid regardless of the presence or absence of un-
constrained test cases. However, the real values of
t-masked percentages may vary. In the analyses, we
opted to use t-masked percentages rather than t-
masked values, since, being a normalized metric, t-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Varying the Percentage of Constrained Test Cases
in the Configuration Space Model of MySQL (t=2, cop=100)

Percentage of constrained test cases

2−
m

as
ke

d
pe

rc
en

ta
ge

0 10 20 30 40 50 60 70 80 90 100

0
5

10
15

20
25

Fig. 8: Varying the percentage of constrained test
cases in the configuration space model of MySQL
(t=2 and cop=100).

masked percentage offers a better interpretation of the
results. For example, for a fixed value of cop, when
t increased (2 ≤ t ≤ 5), t-masked values increased,
but, as the total number of valid t-pairs increased at
a faster rate, t-masked percentages decreased, indi-
cating that higher strength covering arrays actually
suffered less.

Overall, our analysis results suggest that the ex-
tent to which traditional covering arrays suffer from
masking effects depends on many factors, such as
the strength of the covering array, the percentage of
constrained options in the configuration space model,
and the percentage of constrained test cases in the
test suite. Therefore, given a particular combinatorial
testing scenario, reliably estimating the consequences
of masking effects caused by the overlooked test case-
specific constraints is of practical value. To do that
without ever configuring the system under test and
without ever running any test cases, we give the
following guidelines to the users of covering arrays:
Generate a traditional t-way covering array for the
scenario at hand and then compute the t-masked and
t-masked percentage values. The larger the value of
t-masked and/or the value of t-masked percentage,
the more the covering array suffers. Both t-masked
and t-masked percentage values are important for the
evaluation. For example, when t=5 and cop=30 for
MySQL, 5-masked percentage was 1.7. Although this
may seem to be a small percentage, it indicates that
quite a large number of 5-pairs, i.e., more than 120
million 5-pairs, were not tested at all. The evaluation
results can then be used to decide if test case-aware
covering arrays are required for the scenario at hand.

5.3 Study 3: Test case-aware covering arrays

In the third study, our goal was to evaluate the ef-
fectiveness and efficiency of test case-aware covering
arrays in avoiding masking effects.

5.3.1 Study setup

To carry out the study, we first implemented the al-
gorithms given in Section 4. In the implementation of
Algorithm 1 and 3, we used ACTS v1.r9.3.2 [1] as our
traditional covering array generator. To implement
Algorithm 2, we used gringo v3.0.3, a grounder for
ASP programs, together with clasp v2.0.2, an ASP
solver. The solver was configured to have a 3-minute
timeout period, i.e., at each iteration of the algorithm,
the best row found in 3 minutes was returned.

We then populated the traditional configuration
space models used in Study 2 with the test case-
specific constraints identified in Study 1. For a given
configuration space model and a value of t, we created
between 2 and 10 t-way test case-aware covering
arrays (2 ≤ t ≤ 3), depending on the computational
resources required. The values reported are the aver-
age values obtained from these arrays.

Furthermore, to evaluate the cost of using test case-
aware covering arrays, we in this section use a cost
function. In practice, typically, once a covering array
is constructed, it is repeatedly used for testing as long
as the underlying configuration space model stays
the same. Therefore, we define our cost function as
follows:

cost = cca +M(Ncacc +Rcacr), (1)

where cca, cc, and cr are the cost of computing the
covering array ca (either a test case-aware or a tradi-
tional covering array), the average cost of configuring
the system under test with a given configuration, and
the average cost of running a single test case, respec-
tively. Furthermore, Nca and Rca are the number of
configurations and the number of test runs required
by the covering array ca , whereas M is the number
of times the array is used for testing.

For a given configuration space model, when the
goal is to minimize the number of configurations (i.e.,
when cr≈0, which is implicitly assumed by this op-
timization criterion), a test case-aware covering array
tca is more cost-effective than a traditional covering
array ca when

ctca +MNtcacc < cca +MNcacc. (2)

Assuming that ctca > cca, but Ntca < Nca, we obtain

ctca − cca

cc(Nca −Ntca)
< M. (3)

Similarly, when the goal is to minimize the num-
ber of test runs (i.e., when cc≈0, which is implicitly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Comparing Number of Configurations (t=2)

Configuration space model

N
um

be
r

of
 c

on
fig

ur
at

io
ns

20

70

120

170

220

270

320

370

420

470
Apache

A13A13A13 A17A17A17 A22A22A22 A26A26A26 A33A33A33 A44A44A44 A65A65A65

MySQL

Q12Q12Q12 Q15Q15Q15 Q20Q20Q20 Q24Q24Q24 Q30Q30Q30 Q40Q40Q40 Q60Q60Q60

Algorithm 1
Algorithm 2
Algorithm 3

(a)

Comparing Number of Configurations (t=3)

Configuration space model
N

um
be

r
of

 c
on

fig
ur

at
io

ns

50

150

250

350

450

550

650

750

850

950

1050

1150

1250

1350

1450

1550

1650

1750

Apache

A13A13A13 A17A17A17 A22A22A22 A26A26A26 A33A33A33 A44A44A44 A65A65A65

MySQL

Q12Q12Q12 Q15Q15Q15 Q20Q20Q20 Q24Q24Q24 Q30Q30Q30 Q40Q40Q40 Q60Q60Q60

Algorithm 1
Algorithm 2
Algorithm 3

(b)

Comparing Number of Test Runs (t=2)

Configuration space model

N
um

be
r

of
 te

st
 r

un
s

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000
Apache

A13A13A13 A17A17A17 A22A22A22 A26A26A26 A33A33A33 A44A44A44 A65A65A65

MySQL

Q12Q12Q12 Q15Q15Q15 Q20Q20Q20 Q24Q24Q24 Q30Q30Q30 Q40Q40Q40 Q60Q60Q60

Algorithm 1
Algorithm 2
Algorithm 3

(c)

Comparing Number of Test Runs (t=3)

Configuration space model

N
um

be
r

of
 te

st
 r

un
s

8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000
31000

Apache

A13A13A13 A17A17A17 A22A22A22 A26A26A26 A33A33A33 A44A44A44 A65A65A65

MySQL

Q12Q12Q12 Q15Q15Q15 Q20Q20Q20 Q24Q24Q24 Q30Q30Q30 Q40Q40Q40 Q60Q60Q60

Algorithm 1
Algorithm 2
Algorithm 3

(d)

Fig. 9: Comparing the number of configurations (a-b) and test runs (c-d) required by the test case-aware
covering arrays.

assumed by this optimization criterion), tca is more
cost-effective than ca when

ctca − cca

cr(Rca −Rtca)
< M, (4)

assuming that ctca > cca, but Rtca < Rca.
We refer to the minimum M value satisfying in-

equality (3) or inequality (4) as M̂ . M̂ is the break-even
point – that is, the number of times testing is to be
performed, where the overall costs of of testing with
the test case-aware covering array tca are equal to the
overall costs of testing with the traditional covering
array ca . If testing is to be performed on more occa-
sions, testing with the test case-aware covering array

will be more cost-effective. The lower the value of M̂ ,
the broader the range of circumstances in which the
test case-aware covering array is more cost effective;
if it is less than 1, the test case-aware covering array
is always the more cost-effective choice.

In the experiments, we computed the cc and cr costs
for our subject applications by building the subject ap-
plications with their default configurations and then
executing the respective test suites. We opted to use
the default configurations for several reasons. First,
since both subject applications have a large configu-
ration space, it was infeasible for us to test the entire
configuration space to compute the actual average
costs. Second, we observed that a large portion of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

t−way Test Case−Aware Covering Arrays (Algorithm 3)
vs. Traditional t−way Covering Arrays

Configuration space model

M̂
 (

lo
g

sc
al

e)

0

1
2
4
7

17
30
57

215

0

1
2
4
7

17
30
57

215

Apache

A
13

A
17

A
22

A
26

A
33

A
44

A
65

A
13

A
17

A
22

A
26

A
33

A
44

A
65

MySQL

Q
12

Q
15

Q
20

Q
24

Q
30

Q
40

Q
60

Q
12

Q
15

Q
20

Q
24

Q
30

Q
40

Q
60

t =
 2

t =
 3

Fig. 10: Comparing the cost of using t-way test case-
aware covering arrays created by Algorithm 3 to that
of traditional t-way covering arrays.

features that are costly to build and to test, were not
included in the default configurations. This prevented
us, to the extent possible, from overestimating the
costs. It turned out that, for Apache, cc=8 minutes
for building the entire software suite and cr=0.00058
minutes, and, for MySQL, cc=82 minutes for building
the entire software suite and cr=0.055 minutes.

5.3.2 Data and analysis
We first compared the test case-aware covering arrays
created by our algorithms, with each other. Figure 9
visualizes the results we obtained. In these figures, the
horizontal axis denotes configuration space models.
The literals A and Q refer to the configuration space
models of Apache and MySQL, respectively. The su-
perscript numbers depict the number of configuration
options used in the models. The vertical axis denotes
the number of configurations in Figure 9a-b and the
number of test runs in Figure 9c-d. The raw data can
be found in Table 7 and 8 in Appendix B.

Algorithm 1 and Algorithm 2 aim to minimize
the number of configurations. Comparing these al-
gorithms (Figure 9a-b), we observed that having a
global view of t-pairs (i.e., Algorithm 2) performed
better than having a partial view (i.e., Algorithm 1).
Algorithm 2, compared to Algorithm 1, reduced the
number of configurations by 54% when t=2 and by
45% when t=3, on average.

Algorithm 2, however, provided these improve-
ments at the cost of increased construction time. For
instance, when cop=20 for Apache, our implementa-
tion of Algorithm 1 took 291 minutes on average to
create a 3-way test case-aware covering array, whereas
that of Algorithm 2 took 1476 minutes, but reduced

the number of configurations by 47%. Therefore, the
total cost depends on the actual cost of testing, e.g.,
47% reductions in the number of configurations may
or may not compensate for the increase in the con-
struction time.

We conjecture however that, in regression testing
scenarios, where the same covering array is repeatedly
used for testing, the increase in the construction cost is
likely to be compensated by the decrease in the actual
cost of testing. Therefore, Algorithm 2 is of interest,
especially in regression testing scenarios. For exam-
ple, for each subject application using inequality (3)
revealed that, in 13 out of 14 comparisons (7 values of
cop × 2 values of t) made between Algorithm 1 and
Algorithm 2, Algorithm 2 was more cost-effective than
Algorithm 1 after only a single use of the computed
test case-aware covering arrays, i.e., M̂ < 1. In the
remaining comparison, 1 < M̂ < 2 for both subject
applications, requiring to use the computed array at
least twice for Algorithm 2 to become more cost-
effective.

Algorithm 3, on the other hand, aim to minimize
the number of test runs. Comparing Algorithm 3 with
Algorithm 1 and 2, we observed that Algorithm 3
reduced the number of test runs by 20% when t=2
and by 21% when t=3 (Figure 9c-d), on average, while
increasing the number of configurations by 383% and
by 400%, respectively (Figure 9a-b). Although there is
a profound difference between the percentage reduc-
tion in the number of test runs and the percentage
reduction in the number of configurations, reducing
the number of test runs, thus Algorithm 3, is still of
great importance when the cost of configuring the
system is negligible.

We then compared t-way test case-aware covering
arrays with traditional t-way covering arrays. When
the goal was to minimize the number of test runs,
we observed that the t-way test case-aware covering
arrays created by Algorithm 3 (i.e., our best per-
forming algorithm for reducing the number of test
runs), removed all masking effects by using fewer
or comparable number of test runs compared to the
traditional t-way covering arrays. The t-way test case-
aware covering arrays computed by Algorithm 3,
except for 2 cases, which required 0.6% and 0.2%
increase in the test runs, reduced the number of test
runs by 11% when t=2 and by 17% when t=3, on
average, compared to the traditional t-way covering
arrays.

These test case-aware covering arrays, however,
took more time to construct than the traditional cov-
ering arrays. Comparing the total costs by using in-
equality (4), we observed that, for MySQL, ⌈M̂⌉ was
1 in 12 out of 14 comparisons and 2 in the remaining
2 comparisons (Figure 10). For Apache, except for
the 2 cases where the test case-aware covering arrays
required slightly more test runs, ⌈M̂⌉ was less than
18 in 9 out of 12 comparisons (min: 1, avg: 33, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Comparing 2−way Test Case−Aware Covering Arrays with
 Higher Strength Traditional Covering Arrays

Traditional covering array

R
ed

uc
tio

n
(%

)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Apache

C
A

(4
, A

13
)

C
A

(4
, A

13
)

C
A

(5
, A

13
)

C
A

(5
, A

13
)

C
A

(4
, A

65
)

C
A

(4
, A

65
)

C
A

(4
, A

26
)

C
A

(4
, A

26
)

C
A

(5
, A

26
)

C
A

(5
, A

26
)

C
A

(4
, A

22
)

C
A

(4
, A

22
)

C
A

(5
, A

22
)

C
A

(5
, A

22
)

C
A

(4
, A

33
)

C
A

(4
, A

33
)

C
A

(5
, A

33
)

C
A

(5
, A

33
)

C
A

(4
, A

44
)

C
A

(4
, A

44
)

C
A

(5
, A

44
)

C
A

(5
, A

44
)

C
A

(4
, A

17
)

C
A

(4
, A

17
)

C
A

(5
, A

17
)

C
A

(5
, A

17
)

MySQL

C
A

(4
, Q

15
)

C
A

(4
, Q

15
)

C
A

(5
, Q

15
)

C
A

(5
, Q

15
)

C
A

(4
, Q

40
)

C
A

(4
, Q

40
)

C
A

(5
, Q

40
)

C
A

(5
, Q

40
)

C
A

(4
, Q

24
)

C
A

(4
, Q

24
)

C
A

(5
, Q

24
)

C
A

(5
, Q

24
)

C
A

(4
, Q

12
)

C
A

(4
, Q

12
)

C
A

(5
, Q

12
)

C
A

(5
, Q

12
)

C
A

(4
, Q

60
)

C
A

(4
, Q

60
)

C
A

(4
, Q

30
)

C
A

(4
, Q

30
)

C
A

(5
, Q

30
)

C
A

(5
, Q

30
)

C
A

(4
, Q

20
)

C
A

(4
, Q

20
)

C
A

(5
, Q

20
)

C
A

(5
, Q

20
)

reduction in the number of configurations (Algorithm 2)
reduction in the number of test runs (Algorithm 3)

(a)

Comparing 3−way Test Case−Aware Covering Arrays with
 Higher Strength Traditional Covering Arrays

Traditional covering array
R

ed
uc

tio
n

(%
)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Apache

C
A

(5
, A

13
)

C
A

(5
, A

13
)

C
A

(4
, A

65
)

C
A

(4
, A

65
)

C
A

(4
, A

26
)

C
A

(4
, A

26
)

C
A

(5
, A

26
)

C
A

(5
, A

26
)

C
A

(4
, A

22
)

C
A

(4
, A

22
)

C
A

(5
, A

22
)

C
A

(5
, A

22
)

C
A

(4
, A

33
)

C
A

(4
, A

33
)

C
A

(5
, A

33
)

C
A

(5
, A

33
)

C
A

(4
, A

44
)

C
A

(4
, A

44
)

C
A

(5
, A

44
)

C
A

(5
, A

44
)

C
A

(5
, A

17
)

C
A

(5
, A

17
)

MySQL

C
A

(5
, Q

15
)

C
A

(5
, Q

15
)

C
A

(4
, Q

40
)

C
A

(4
, Q

40
)

C
A

(5
, Q

40
)

C
A

(5
, Q

40
)

C
A

(4
, Q

24
)

C
A

(4
, Q

24
)

C
A

(5
, Q

24
)

C
A

(5
, Q

24
)

C
A

(5
, Q

12
)

C
A

(5
, Q

12
)

C
A

(4
, Q

60
)

C
A

(4
, Q

60
)

C
A

(4
, Q

30
)

C
A

(4
, Q

30
)

C
A

(5
, Q

30
)

C
A

(5
, Q

30
)

C
A

(5
, Q

20
)

C
A

(5
, Q

20
)

reduction in the number of configurations (Algorithm 2)
reduction in the number of test runs (Algorithm 3)

(b)

Fig. 11: Comparing a) 2-way b) 3-way test case-aware covering arrays with higher strength traditional
covering arrays.

max: 215). One reason we observed high M̂ values for
Apache was the small cr cost (i.e., cr=35 milliseconds)
on this subject application, which is not aligned well
with the cost model Algorithm 3 is designed for. Had
we had cr=1 second, for example, ⌈M̂⌉ would have
been 1 in 9 comparisons, 2 in 2 comparisons, and 8 in
1 comparison.

On the other hand, when the goal was to minimize
the number of configurations, the t-way test case-
aware covering arrays required more configurations
than the traditional t-way covering arrays. For exam-
ple, the t-way test case-aware covering arrays created
by Algorithm 2 required 158% more configurations
when t=2 and 174% more configurations when t=3,
on average, than the traditional t-way covering arrays.
As discussed in Section 3, removing masking effects
is likely to increase the number of configurations
required, as the t-pairs being masked in traditional
covering arrays may need to be covered in additional
configurations. Therefore, to evaluate the efficiency
provided by test case-aware covering arrays, we com-
pared them to traditional higher strength covering ar-
rays – the best candidate that we know of to compare
our results. In particular, we compared the t′-way test
case-aware covering arrays with the traditional t-way
covering arrays that prevented all or almost all t′-pairs
from being masked, where t′ < t.

To carry out the analysis, among all the traditional
covering arrays created in Study 2, we first picked
the ones with a 2-masked (t′=2) or 3-masked (t′=3)
percentage of less than 1 and determined the config-
uration space models used to create these traditional
covering arrays. We then used our algorithms to cre-
ate 2-way and 3-way test case-aware covering arrays

for the same configuration space models, depending
on the value of t′. Finally, we compared the sizes of
the traditional covering arrays to those of the test case-
aware covering arrays.

Figure 11 presents the percentage reductions ob-
tained by the 2-way and 3-way test case-aware cov-
ering arrays. In this figure, the horizontal axis depicts
the traditional covering arrays used in the compar-
isons. The first and the second item in the parentheses
indicate the value of t and the configuration space
model used, respectively. The vertical axis denotes
the percentage reductions obtained. The symbol ’2’
represents the percentage reductions in the number
of configurations provided by Algorithm 2 (i.e., our
best performing algorithm for reducing the number
of configurations), whereas the symbol ’#’ represents
the percentage reductions in the number of test runs
provided by Algorithm 3 (i.e., our best performing
algorithm for reducing the number of test runs).

For instance, when t′=2, the first tick on the hori-
zontal axis in Figure 11a indicates that the traditional
4-way covering arrays (t=4) created for the config-
uration space model containing 13 Apache options,
performed well in preventing 2-pairs from being
masked; less than 1 percent of all valid 2-pairs (more
accurately, 0.002% of the 2-pairs) were masked, on
average (Table 5). These traditional 4-way covering
arrays required 82.40 configurations and 31, 147.20
test runs, on average. On the other hand, when the
goal was to minimize the number of configurations,
our 2-way test case-aware covering arrays created by
Algorithm 2 for the same set of configuration options,
required 25.50 configurations on average (Table 7).
Similarly, when the goal was to minimize the number

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Cost−Effectiveness of
2−way Test Case−Aware Covering Arrays

Traditional covering array

M̂

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Apache

C
A

(4
, A

13
)

C
A

(4
, A

13
)

C
A

(5
, A

13
)

C
A

(5
, A

13
)

C
A

(4
, A

17
)

C
A

(4
, A

17
)

C
A

(4
, A

22
)

C
A

(4
, A

22
)

C
A

(4
, A

26
)

C
A

(4
, A

26
)

C
A

(4
, A

33
)

C
A

(4
, A

33
)

C
A

(4
, A

44
)

C
A

(4
, A

44
)

C
A

(4
, A

65
)

C
A

(4
, A

65
)

C
A

(5
, A

17
)

C
A

(5
, A

17
)

C
A

(5
, A

22
)

C
A

(5
, A

22
)

C
A

(5
, A

26
)

C
A

(5
, A

26
)

C
A

(5
, A

33
)

C
A

(5
, A

33
)

C
A

(5
, A

44
)

C
A

(5
, A

44
)

MySQL

C
A

(4
, Q

12
)

C
A

(4
, Q

12
)

C
A

(5
, Q

12
)

C
A

(5
, Q

12
)

C
A

(4
, Q

15
)

C
A

(4
, Q

15
)

C
A

(4
, Q

20
)

C
A

(4
, Q

20
)

C
A

(4
, Q

24
)

C
A

(4
, Q

24
)

C
A

(4
, Q

30
)

C
A

(4
, Q

30
)

C
A

(4
, Q

40
)

C
A

(4
, Q

40
)

C
A

(4
, Q

60
)

C
A

(4
, Q

60
)

C
A

(5
, Q

15
)

C
A

(5
, Q

15
)

C
A

(5
, Q

20
)

C
A

(5
, Q

20
)

C
A

(5
, Q

24
)

C
A

(5
, Q

24
)

C
A

(5
, Q

30
)

C
A

(5
, Q

30
)

C
A

(5
, Q

40
)

C
A

(5
, Q

40
)

minimizing the number of configurations (Algorithm 2)
minimizing the number of test runs (Algorithm 3)

(a)

Cost−Effectiveness of
3−way Test Case−Aware Covering Arrays

Traditional covering array
M̂

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Apache

C
A

(5
, A

13
)

C
A

(5
, A

13
)

C
A

(4
, A

22
)

C
A

(4
, A

22
)

C
A

(4
, A

26
)

C
A

(4
, A

26
)

C
A

(4
, A

33
)

C
A

(4
, A

33
)

C
A

(4
, A

44
)

C
A

(4
, A

44
)

C
A

(4
, A

65
)

C
A

(4
, A

65
)

C
A

(5
, A

17
)

C
A

(5
, A

17
)

C
A

(5
, A

22
)

C
A

(5
, A

22
)

C
A

(5
, A

26
)

C
A

(5
, A

26
)

C
A

(5
, A

33
)

C
A

(5
, A

33
)

C
A

(5
, A

44
)

C
A

(5
, A

44
)

MySQL

C
A

(5
, Q

12
)

C
A

(5
, Q

12
)

C
A

(4
, Q

24
)

C
A

(4
, Q

24
)

C
A

(4
, Q

30
)

C
A

(4
, Q

30
)

C
A

(4
, Q

40
)

C
A

(4
, Q

40
)

C
A

(4
, Q

60
)

C
A

(4
, Q

60
)

C
A

(5
, Q

15
)

C
A

(5
, Q

15
)

C
A

(5
, Q

20
)

C
A

(5
, Q

20
)

C
A

(5
, Q

24
)

C
A

(5
, Q

24
)

C
A

(5
, Q

30
)

C
A

(5
, Q

30
)

C
A

(5
, Q

40
)

C
A

(5
, Q

40
)

minimizing the number of configurations (Algorithm 2)
minimizing the number of test runs (Algorithm 3)

(b)

Fig. 12: Comparing the cost of using a) 2-way b) 3-way test case-aware covering arrays to that of higher
strength traditional covering arrays.

of test runs, our 2-way test case-aware covering arrays
created by Algorithm 3, required 3, 449.60 test runs on
average (Table 7). That is, compared to the traditional
4-way covering arrays, which prevented almost all
(but not all) 2-pairs from being masked, Algorithm
2 reduced the number of configurations by 69% and
Algorithm 3 reduced the number of test runs by 89%,
while preventing all 2-pairs from being masked.

Overall, compared to the higher strength traditional
covering arrays used in Figure 11, the 2-way and 3-
way test case-aware covering arrays created by Algo-
rithm 2, while not suffering from any masking effects,
reduced the number of configurations by 82% and
by 50%, on average, respectively. Similarly, the 2-way
and 3-way test case-aware covering arrays created by
Algorithm 3, while not suffering from any masking
effects, reduced the number of test runs by 94% and
by 84%, on average, respectively.

However, in almost all the comparisons made in
Figure 11, constructing the test case-aware covering
arrays required more time than constructing the re-
spective higher strength traditional covering arrays.
Comparing the total costs by using inequality (3) and
(4), we observed that, when the goal was to minimize
the number of test runs, in 87% (41 out of 47) of
the comparisons, Algorithm 3 was more cost-effective
than the traditional higher strength covering arrays
after only a single use of the arrays, i.e., M̂ < 1
(Figure 12). For the rest of the comparisons, the max-
imum value of M̂ was 13.46. When the goal was to
minimize the number of configurations, in 89% (42
out of 47) of the comparisons, Algorithm 2 required
only a single use of the generated test case-aware
covering arrays to become more cost-effective than

the traditional covering arrays. For the rest of the
comparisons, the maximum value of M̂ was 11.52.

To interpret the M̂ values obtained in this study,
consider a daily build scenario where the same cov-
ering array is used once a day for smoke testing
the configuration spaces of our subject applications.
Had our test case-aware covering arrays been used in
such a scenario, they, in the worst case, would have
compensated for their construction cost in 14 days,
compared to the higher strength covering arrays. We
conjecture that, as the configuration space models of
our subject applications are highly unlikely to change
in every 14 days (they have stable code bases), the test
case-aware covering arrays would have been more
cost-effective than their counterparts. Furthermore, M̂
is inversely proportional to cc and cr (inequality 3
and 4). Therefore, the more the cost of configuring
the system and/or the more the cost of running the
test cases, the faster test case-aware covering arrays
compensate for their construction cost.

5.3.3 Discussion
In any case, reducing the construction cost of test case-
aware covering arrays is still of practical concern. As
discussed in Section 7, there are 4 main categories
of methods to compute traditional covering arrays;
random search-based methods [28], heuristic search-
based methods [7], [10], [12], [19], [29], mathematical
methods [20], [21], [32], [33], and greedy methods [4],
[6], [8], [9], [13], [23], [30], [31]. We conjecture that all
of these methods can also be used to compute test
case-aware covering arrays. However, we opted to
leverage only the greedy algorithmic paradigm due to
the relative ease of its application. Furthermore, all the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

algorithms presented in this work as well as their im-
plementations are developed mainly for correctness,
not for runtime performance. As a future work, we
plan to study alternative construction methods, such
as heuristic search-based methods. For the time being,
we present some consideration as to how the current
implementation of our algorithms can be sped up.

Algorithm 1 and Algorithm 3 use traditional cov-
ering array construction as a computational primi-
tive. In particular, both algorithms compute a tra-
ditional covering array for each test cluster rather
than computing a single array. Consequently, as the
performance of traditional covering array generators
improve, the runtime performance of Algorithm 1 and
Algorithm 3 will improve proportionally. To further
improve the performance, the traditonal covering ar-
rays required by these algorithms can be computed
in a parallel manner. Parallelizing Algorithm 3 is
easier than parallelizing Algorithm 1. As there are no
dependencies among the traditional covering arrays
generated by Algorithm 3, all of these arrays can
be generated in parallel. Algorithm 1, on the other
hand, requires more consideration as the traditional
covering arrays to be computed depend on the pre-
viously computed arrays via the seeding mechanism.
One approach can be to group the test clusters and
generate the required traditional covering arrays in
parallel within each group. After processing a group,
the current test case-aware covering array at hand can
then be used as a seed for the next group. While the
running time of this approach increases linearly with
the number of groups rather than with the number
of test clusters, the approach is likely to require more
configurations than the original approach, as the test
cases within a group will be less likely to share con-
figurations. One approach to reduce the impact of this
shortcoming can be to construct the groups, such that
test cases that are less likely to share configurations,
e.g., the ones that have conflicting constraints, are
placed in the same group.

Algorithm 2, on the other hand, do not depend
on traditional covering array generators. In the im-
plementation of this algorithm, we used a sequential
ASP solver to select the best row at each iteration of
the algorithm (Section 4.2). One approach to speed up
the computation is to use a parallel ASP solver [17],
instead of a sequential one. Furthermore, in our exper-
iments, we observed that the 2-way test case-aware
covering arrays tended to cover a large percentage
of the 3-pairs. For example, in the 2-way test case-
aware covering arrays created by Algorithm 2, 91%
of the 3-pairs (max: 94% and min: 89%) for Apache
and 92% of the 3-pairs (max: 96% and min: 88%)
for MySQL, on average, were already covered. Based
on this observation, another approach to improve the
runtime performance of Algorithm 2 can be to follow
an incremental construction strategy. For instance,
to compute a t-way test case-aware covering array,

a (t−1)-way test case-aware covering array can be
constructed first and then only those t-pairs which
are not covered by the (t−1)-way array can be fed
to Algorithm 2 to compute the additional rows as
needed. As this approach reduces the number of
t-pairs to be placed by Algorithm 2, the runtime
performance of this algorithm will be likely to be
improved. The same approach can also be used in a
recursive manner, e.g., the (t−1)-way test case-aware
covering array can be constructed from a (t−2)-way
array, and so on. This approach, however, can increase
the number of configurations required compared to
the original approach.

Another way to reduce the construction cost is
through support for efficient handling of simple, in-
cremental changes in the configuration model. To this
end, our algorithms need to be slightly modified so
that they also take as input an initial seed S ′. In
our context, S ′ is a set of configuration-test cases
pairs. The initial seed does not necessarily constitute
a test case-aware covering array. We however assume
that the seed does not violate any constraints. Given
an initial seed, Algorithm 1 and Algorithm 3 need
to compute an initial seed for each test case. For
Algorithm 3, the initial seed S ′

τ of a test case τ is the
set of configurations in S ′, in which the test case has
already been scheduled to execute. For Algorithm 1,
S ′

τ also contains those remaining configurations in S ′,
which do not violate the test case-specific constraint
of the test case. Once the initial seeds for the test
cases are computed, line 3 in both algorithms need to
change, such that the seed Sτ computed for a test case
τ by the algorithms is merged with the initial seed S ′

τ

of the test case. Given an initial seed, Algorithm 2, on
the other hand, marks all the t-pairs appearing in the
seed as covered and the main loop of the algorithm
is executed only for those t-pairs yet to be covered.

Once the seeding mechanism is in place, changes
made to the configuration space model can be han-
dled as follows: To add a new test case, if the test
case falls in an existing test cluster, then schedule
the test case with the rest of the test cases in the
cluster. Otherwise (i.e., when the test case forms a new
test cluster), use the current test case-aware covering
array as an initial seed and execute the main loops of
the algorithms only for the newly added test case. In
Algorithm 2, the test case first needs to be scheduled
to execute in all of its valid configurations included
in the seed. To remove a test case, remove the test
case from the current test case-aware covering array
together with the configurations that become redun-
dant after the removal of the test case. Changes in
the test case-specific constraint of a test case can then
be handled by removing the test case first and then
adding the same test case with the new constraints.
To add, remove, or modify a system-wide constraint,
remove all the invalidated configurations (if any) and
the respective test runs from the current test case-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

aware covering array, and use the remaining array as
an initial seed.

Populating the configuration space model with a
new configuration option, on the other hand, requires
more consideration. In particular, we need to handle
seeds with partially filled configurations. A partially
filled configuration is a configuration, in which some
option settings are left unset. When a new option
is added, the configurations in the current test case-
aware covering arrays are converted to partially filled
configurations by adding the option to every con-
figuration without a predetermined setting. Given a
partially filled seed, Algorithm 2 needs to iterate over
all the configuration-test cases pairs and, for each
partially filled configuration, determine the “best”
setting for the newly added option, given the test
cases that have already been scheduled to execute in
the configuration. The ASP encoding given in Figure 3
can easily be modified for this purpose. The resulting
array can then be used as a fully filled initial seed.
Modifying Algorithm 1 is harder. Since Algorithm 1
processes the t-pairs on a per-test case basis, making
it to handle more than one test case at once is not
trivial. Therefore, when adding a new configuration
option, Algorithm 1 can make use of Algorithm 2 to
address the change. Algorithm 3, however, handles
partially filled seeds without any modifications as
long as the traditonal covering array generator used
in the implementation handles them. Finally, removal
of a configuration option from the configuration space
model can trivially be handled.

One interesting observation we make from Figure 9
is that, although Algorithm 1 and Algorithm 2 aim
to minimize the number of configurations without
making any attempts to reduce the number of test
runs required, Algorithm 2, compared to Algorithm
1, required fewer test runs for Apache, but more
test runs for MySQL (Figure 9c-d), while requiring
fewer configurations than Algorithm 1 for both sub-
ject applications (Figure 9a-b). That is, for both subject
applications, while Algorithm 2 covered more t-pairs
per configuration on average, it covered more t-tuples
per test run for Apache, but fewer t-tuples per test run
for MySQL, on average.

We believe that this is mainly due to the differences
between the test suites of our subject applications.
First, Apache had fewer test clusters than MySQL; 17
test clusters vs. 30 test clusters (Table 3 and 4). Note
that each test cluster is associated with a unique test
case-specific constraint. Second, the test case-specific
constraints of Apache involved fewer configuration
options per constraint than those of MySQL. For ex-
ample, the percentage of test case-specific constraints
that involved only one option was 71 for Apache and
20 for MySQL. Therefore, when picking a configura-
tion and the associated set of test cases, Algorithm 2
had fewer constraints, thus more choices, to consider

for Apache, but more constraints, thus fewer choices,
for MySQL.

We observed that in heavily constrained configu-
ration spaces, the more the test cases are forced to
share configurations, the more likely it is that fewer
unique t-tuples will be covered per scheduled test run
(increasing the total number of test runs required).
This is because, when picking a configuration in a
heavily constrained configuration space, a large por-
tion of the configuration is likely to be dictated by
the constraints of few test cases, which can reduce
the number of unique t-tuples covered for the rest
of the test cases that are scheduled to be executed
in the same configuration. For example, when t=2
and cop=30 for Apache, Algorithm 2 covered 6.32
unique 2-tuples per test run, whereas Algorithm 1
covered 4.15 unique 2-tuples per test run, on average.
In the end, Algorithm 2 required 13% fewer test runs
than Algorithm 1. However, when t=2 and cop=30
for MySQL, Algorithm 2 required 7% more test runs
than Algorithm 1. For this scenario, Algorithm 2
covered 2.23 unique 2-tuples per test run, whereas
Algorithm 1 covered 4.08 unique 2-tuples per test run,
on average. In both cases, Algorithm 2 required fewer
configurations than Algorithm 1. Similar trends were
observed in the rest of the experiments.

6 THREATS TO VALIDITY

All empirical studies suffer from threats to their in-
ternal and external validity. For this work, we were
primarily concerned with threats to external validity
since they limit our ability to generalize the results of
our studies to industrial practice.

One potential threat is that the proposed approach
assumes that all test case-specific constraints are
known a priori. In the presence of missing or in-
correct constraints, as test cases can still skip some
configurations due to unsatisfied constraints, the test
case-aware covering arrays may suffer from masking
effects. In such cases, the feedback driven adaptive
combinational testing process we introduced in a
prior work [15] can be used to iteratively detect and
remove masking effects.

Another potential threat is that we have only stud-
ied two software systems; Apache and MySQL. How-
ever, both Apache and MySQL are widely-used non-
trivial applications with large configuration spaces
and both have been used in other related works in
the literature [15], [18]. A related threat concerns the
representativeness of the configuration space models
and the test suites used in the experiments. Although
these configuration space models and test suites were
culled from the actual configuration space models
and test suites of our subject applications, they only
represent two sets of data points. To reduce the threats
concerning the representativeness of the configuration
space models, we varied the percentage of constrained

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

options in the models (Section 5.2 and 5.3). To re-
duce the threats concerning the representativeness of
the test suites, we studied the effect of varying the
percentage of constrained test cases in the test suites
(Section 5.2).

Another potential threat concerns the representa-
tiveness of the traditional covering array generator
used in the experiments, namely ACTS. However,
ACTS is a well-known and widely-used generator. We
opted to use ACTS, since it offered the best runtime
performance among the generators we experimented
with.

Furthermore, our algorithms construct test case-
aware covering arrays for two cost models. In one cost
model, the cost of running the test cases is negligible
compared to that of configuring the system and the
configuration cost is the same for all configurations.
In the other cost model, the cost of configuring the
system is negligible compared to that of running the
test cases and the execution cost is the same for all
test runs. For other cost models, different algorithms
may be required to minimize the cost. Furthermore,
the cc and cr costs used in our cost function given
in Section 5.3.1, are application specific. Therefore,
M̂ values may vary from one application scenario to
another. To lower the strength of the dependency, we
presented some consideration as to how the construc-
tion cost of test case-aware covering arrays can fur-
ther be reduced (Section 5.3.3). However, we did not
experiment exhaustively with these approaches and
leave this as future work; the runtime performance of
these approaches has yet to be studied.

Finally, we have not directly evaluated the cost-
effectiveness of test case-aware covering arrays, i.e.,
evaluating the effectiveness, such as failure-detection
capabilities, as a function of cost, such as total testing
time. However, our empirical results reported in a
prior work [15] strongly suggest that, as masking
effects are removed, the number of failures observed
and the structural code coverage obtained in testing
monotonically increase.

7 RELATED WORK

Covering arrays aim to reveal option-related failures.
The results of many empirical studies strongly suggest
that a majority of option-related failures in practice are
caused by the interactions among only a small num-
ber of configuration options and that traditional t-way
covering arrays, where t is much smaller than then the
number of configuration options, are an effective and
efficient way of revealing such failures [3], [9], [13],
[14].

Nie et al. classify the methods for generating cover-
ing arrays, which is an NP-hard problem, into 4 main
categories [26]: random search-based methods [28],
heuristic search-based methods [7], [10], [12], [19],
[29], mathematical methods [20], [21], [32], [33], and
greedy methods [4], [6], [8], [9], [13], [23], [30], [31].

Random search-based methods employ a random
selection without replacement strategy [28]. Valid con-
figurations are randomly selected from the config-
uration space in an iterative manner until all the
required t-tuples have been covered by the selected
configurations.

Heuristic search-based methods, on the other hand,
employ heuristic search techniques, such as hill climb-
ing [12], tabu search [7], and simulated annealing [10],
or AI-based search techniques, such as genetic al-
gorithms [19] and ant colony algorithms [29]. These
methods maintain a set of configurations at any given
time and iteratively apply a series of transformations
to the set until the set constitutes a t-way covering
array.

Mathematical methods for constructing covering
arrays have also been studied [21], [32], [33]. Some
mathematical methods are based on recursive con-
struction methods, which build covering arrays for
larger configuration space models (i.e., the ones with
a larger number of configuration options) by us-
ing covering arrays built for smaller configuration
space models [21], [32]. Other mathematical methods
leverage mathematical programming, such as integer
programming, to compute covering arrays [33].

Greedy algorithms operate in an iterative man-
ner [4], [6], [8], [9], [13], [23], [30], [31]. At each
iteration, among the sets of configurations examined
as candidates, the one that covers the most previously
uncovered t-tuples is included in the covering array.
The iterations terminate when all the required t-tuples
have been covered.

The algorithms we present in this work fall into
the category of greedy algorithms. However, while
the existing greedy algorithms compute traditional
covering arrays, we compute test case-aware covering
arrays.

Handling system-wide inter-option constraints in
the construction of traditional covering arrays have
also been of interest. Cohen et al. study the nature
of such constraints in configurable software systems
and empirically demonstrate that ignoring such con-
straints leads to wasted testing efforts [11]. Mats et
al. propose various techniques to efficiently handle
system-wide constraints [25]. Bryce et al. introduce the
concept of “soft constraints” to mark option setting
combinations that are permitted, but undesirable to
be included in a covering array [5].

Traditional covering arrays, while handling system-
wide constraints, do not account for test case-specific
constraints. In this work we, on the other hand,
take test case-specific constraints into account when
constructing combinatorial interaction test suites.

Seeding mechanisms in CIT approaches have been
used to guarantee the inclusion of certain configura-
tions in traditional covering arrays [9], [13], [18]. In
this work, we use the seeding mechanism to construct
test case-aware covering arrays.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

8 CONCLUDING REMARKS

The basic justification for traditional t-way covering
arrays is that they can cost-effectively exercise all
system behaviors caused by the settings of t or fewer
options. In this work we hypothesize however that,
in the presence of test case-specific inter-option con-
straints, as traditional covering arrays do not provide
a systematic way of handling these constraints, many
such behaviors may not be tested due to masking
effects caused by the overlooked test case-specific
constraints.

To evaluate this hypothesis, we conducted a se-
ries of experiments on two widely-used highly-
configurable software systems, namely Apache and
MySQL. We first observed that test case-specific con-
straints do exist in practice. Out of all the test cases we
examined for our subject applications, 378 Apache test
cases and 337 MySQL test cases had some test case-
specific constraints. We then observed that traditional
covering arrays suffered from masking effects caused
by the overlooked test case-specific constraints. In a
study, for example, 35% of all valid 2-way option
setting combination-test case pairs (i.e., 2-pairs), on
average, were not tested at all by the traditional 2-
way covering arrays created. For a fixed configuration
space model, higher strength covering arrays suffered
relatively less compared to lower strength arrays; as t

increased, t-masked percentage (i.e., the percentage of
t-pairs that are masked) decreased. For a fixed value
of t, as the percentage of the configuration options
that are referenced by a constraint (i.e., constrained
options percentage) decreased and/or the percentage
of the test cases that have test case-specific constraints
(i.e., constrained test cases percentage) decreased, t-
masked percentage decreased. However, t-masked
percentage never reached 0 in the traditional t-way
covering arrays created in the experiments.

To account for test case-specific constraints and
avoid harmful consequences of masking effects
caused by the ignorance of such constraints, we first
introduced test case-aware covering arrays. We then
presented three algorithms to compute test case-aware
covering arrays. A valuable observation we make is
that there is often a trade-off between minimizing the
number of configurations and minimizing the number
of test runs in test case-aware covering arrays. Among
the algorithms we introduced, Algorithm 1 and Algo-
rithm 2 aim to minimize the number of configurations,
whereas Algorithm 3 aims to minimize the number of
test runs.

For the configuration space models studied in the
experiments, Algorithm 2 performed better than Al-
gorithm 1 in reducing the number of configurations
required. Algorithm 2, compared to Algorithm 1,
while having a higher computational complexity, sig-
nificantly reduced the number of configurations by
54% when t=2 and by 45% when t=3, on average.

Algorithm 3, on the other hand, performed better than
Algorithm 1 and 2, in reducing the number of test
runs required. Algorithm 3, compared to Algorithm 1
and 2, while requiring more configurations, reduced
the number of test runs by 20% when t=2 and by 21%
when t=3, on average. These results make Algorithm
3 to be of practical interest when the cost of config-
uring the system is negligible and Algorithm 2 to be
of practical interest when the cost of running the test
cases is negligible.

We also compared t-way test case-aware covering
arrays with traditional t-way covering arrays. When
the goal was to minimize the number of test runs,
we observed that the t-way test case-aware covering
arrays computed by Algorithm 3, while not suffering
from any masking effects, reduced the number of
test runs (except for two cases) by 11% when t=2
and by 17% when t=3, on average, compared to the
traditional t-way covering arrays. When the goal was
to minimize the number of configurations, however,
the t-way test case-aware covering arrays expectedly
required more configurations than the traditional t-
way covering arrays. To evaluate the efficiency pro-
vided by t-way test case-aware covering arrays, we
then compared them to traditional higher strength
covering arrays that prevented all or almost all t-pairs
from being masked. We observed that the test case-
aware covering arrays created by Algorithm 2, while
not suffering from any masking effects, reduced the
number of configurations by 82% when t=2 and by
50% when t=3, on average, compared to the higher
strength covering arrays.

In almost all the comparisons, constructing the test
case-aware covering arrays took more time than con-
structing their counterparts. We, however, observed
that the more the constructed arrays are reused for
testing, and the more the cost of configuring the
system and running the test cases, the faster test case-
aware covering arrays compensate for their construc-
tion cost.

We furthermore observed that the extent to which
traditional covering arrays suffer from masking effects
depends on many factors, such as the strength of the
covering array, the percentage of constrained options
in the configuration space model, and the percentage
of constrained test cases in the test suite. Therefore, we
provided a guideline to the users of covering arrays
to reliably estimate the consequences of masking ef-
fects without performing any system builds and test
runs. This guideline can be summarized as follows:
Generate a traditional t-way covering array for the
scenario at hand and then compute the t-masked and
t-masked percentage values. The larger the value of
t-masked and/or the value of t-masked percentage,
the more the covering array suffers. The evaluation
results can then be used to decide if test case-aware
covering arrays are required for the scenario at hand.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

As future work, we plan to work on cost- and test-
case aware covering arrays that support a general
cost model in which the overall cost of testing can
be specified at the granularity of option settings and
test cases.

9 ACKNOWLEDGMENTS

This research was supported by a Marie Curie Inter-
national Reintegration Grant within the 7th European
Community Framework Programme (FP7-PEOPLE-
IRG-2008), and by the Scientific and Technological
Research Council of Turkey (109E182).

REFERENCES
[1] Advanced Combinatorial Testing System (ACTS), 2012.

http://csrc.nist.gov/groups/SNS/acts/documents/
comparison-report.html.

[2] C. Baral. Knowledge Representation, Reasoning, and Declarative
Problem Solving. Cambridge University Press, Cambridge,
England, 2003.

[3] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of
AT&T PMX/StarMAIL using OATS. AT&T Technical Journal,
71(3):41–7, 1992.

[4] R. C. Bryce and C. J. Colbourn. Constructing interaction
test suites with greedy algorithms. In Proceedings of the
20th IEEE/ACM international Conference on Automated software
engineering, ASE ’05, pages 440–443, New York, NY, USA, 2005.
ACM.

[5] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Informa-
tion and Software Technology, 48(10):960 – 970, 2006. Advances
in Model-based Testing.

[6] R. C. Bryce and C. J. Colbourn. The density algorithm for
pairwise interaction testing: Research articles. Softw. Test. Verif.
Reliab., 17:159–182, September 2007.

[7] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic
search for interaction test suites. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO ’07,
pages 1082–1089, New York, NY, USA, 2007. ACM.

[8] R. C. Bryce and C. J. Colbourn. A density-based greedy
algorithm for higher strength covering arrays. Softw. Test. Verif.
Reliab., 19:37–53, March 2009.

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: an approach to testing based on combinatorial
design. IEEE Transactions on Software Engineering, 23(7):437–44,
1997.

[10] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augmenting
simulated annealing to build interaction test suites. In Proceed-
ings of the 14th International Symposium on Software Reliability
Engineering, ISSRE ’03, pages 394–, Washington, DC, USA,
2003. IEEE Computer Society.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing
of highly-configurable systems in the presence of constraints.
In Proceedings of the 2007 international symposium on Software
testing and analysis, ISSTA ’07, pages 129–139, New York, NY,
USA, 2007. ACM.

[12] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn. Constructing test suites for interaction testing.
In Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 38–48, Washington, DC, USA,
2003. IEEE Computer Society.

[13] J. Czerwonka. Pairwise testing in the real world: Practical
extensions to test-case scenarios. In Proc. of the 24th Pacific
Northwest Software Quality Conference, pages 285–294, 2006.

[14] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz. Model-based testing in
practice. In Proc. of the Int’l Conf. on Software Engineering, pages
285–294, 1999.

[15] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback
driven adaptive combinatorial testing. In Proceedings of the
2011 International Symposium on Software Testing and Analysis,
ISSTA ’11, pages 243–253, New York, NY, USA, 2011. ACM.

[16] T. Eiter, G. Ianni, and T. Krennwallner. Answer set pro-
gramming: A primer. In Reasoning Web. Semantic Technologies
for Information Systems, 5th International Summer School 2009,
Tutorial Lectures, volume 5689 of LNCS, pages 40–110. Springer,
2009.

[17] E. Ellguth, M. Gebser, M. Gusowski, B. Kaufmann, R. Kamin-
ski, S. Liske, T. Schaub, L. Schneidenbach, and B. Schnor. A
simple distributed conflict-driven answer set solver. In Proceed-
ings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning, LPNMR ’09, pages 490–495, Berlin,
Heidelberg, 2009. Springer-Verlag.

[18] S. Fouché, M. B. Cohen, and A. Porter. Towards incremental
adaptive covering arrays. In The 6th Joint Meeting on European
software engineering conference and the ACM SIGSOFT sympo-
sium on the foundations of software engineering: companion papers,
ESEC-FSE companion ’07, pages 557–560, New York, NY, USA,
2007. ACM.

[19] S. Ghazi and M. Ahmed. Pair-wise test coverage using genetic
algorithms. In Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, volume 2, pages 1420 – 1424 Vol.2, dec. 2003.

[20] A. Hartman. Software and hardware testing using combinato-
rial covering suites. In M. C. Golumbic and I. B.-A. Hartman,
editors, Graph Theory, Combinatorics and Algorithms, volume 34
of Operations Research/Computer Science Interfaces Series, pages
237–266. Springer US, 2005.

[21] N. Kobayashi. Design and evaluation of automatic test generation
strategies for functional testing of software. Osaka University,
Osaka, Japan, 2002.

[22] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEEE Trans.
on Soft. Engeering, 30(6):418–421, 2004.

[23] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog-
ipog-d: efficient test generation for multi-way combinatorial
testing. Softw. Test. Verif. Reliab., 18:125–148, September 2008.

[24] V. Marek and M. Truszczyński. Stable models and an alterna-
tive logic programming paradigm. In The Logic Programming
Paradigm: A 25-Year Perspective, 1999.

[25] G. Mats, O. Jeff, and M. Jonas. Handling constraints in the
input space when using combination strategies for software
testing. Technical Report HS- IKI -TR-06-001, University of
Skvde, School of Humanities and Informatics, 2006.

[26] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Comput. Surv., 43:11:1–11:29, February 2011.

[27] I. Niemelä. Logic programs with stable model semantics as a
constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence, 25(3-4):241–273, 1999.

[28] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault
detection effectiveness of n-way and random test suites. In
Proceedings of the 2004 International Symposium on Empirical
Software Engineering, pages 49–59, Washington, DC, USA, 2004.
IEEE Computer Society.

[29] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life
techniques to generate test cases for combinatorial testing. In
Proceedings of the 28th Annual International Computer Software
and Applications Conference - Volume 01, COMPSAC ’04, pages
72–77, Washington, DC, USA, 2004. IEEE Computer Society.

[30] K.-C. Tai and Y. Lei. A test generation strategy for pairwise
testing. Software Engineering, IEEE Transactions on, 28(1):109
–111, jan 2002.

[31] Y.-W. Tung and W. Aldiwan. Automating test case generation
for the new generation mission software system. In Aerospace
Conference Proceedings, 2000 IEEE, volume 1, pages 431 –437
vol.1, 2000.

[32] A. W. Williams. Determination of test configurations for pair-
wise interaction coverage. In Proceedings of the IFIP TC6/WG6.1
13th International Conference on Testing Communicating Systems:
Tools and Techniques, TestCom ’00, pages 59–74, Deventer, The
Netherlands, The Netherlands, 2000. Kluwer, B.V.

[33] A. W. Williams and R. L. Probert. Formulation of the in-
teraction test coverage problem as an integer program. In
Proceedings of the IFIP 14th International Conference on Testing
Communicating Systems XIV, TestCom ’02, pages 283–, Deven-
ter, The Netherlands, The Netherlands, 2002. Kluwer, B.V.

[34] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays
for efficient fault characterization in complex configuration
spaces. IEEE Transactions on Software Engineering, 31(1):20–34,
Jan 2006.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

Cemal Yilmaz received the BS and MS de-
grees in computer engineering and informa-
tion science from Bilkent University, Ankara,
Turkey, in 1997 and 1999, respectively. In
2005, he received the PhD degree in com-
puter science from the University of Maryland
at College Park. Between 2005 and 2008,
he worked as a post-doctoral researcher at
IBM Thomas J. Watson Research Center,
Hawthorne, New York. He is currently an
assistant professor of computer science at

the Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey. He received the Career Award of the Scientific
and Technological Research Council of Turkey in 2009. His current
research interests include software engineering and software quality
assurance.

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

O
N

S
O

F
T

W
A

R
E

E
N

G
IN

E
E

R
IN

G
26

APPENDIX A
MASKING EFFECTS IN TRADITIONAL COVERING ARRAYS

Table 5 and 6 quantify the extent to which the traditional covering arrays created in the experiments suffer
from masking effects caused by the overlooked test case-specific constraints. When cop=20 for Apache and
MySQL, we were not able to generate traditional 5-way covering arrays because of the scalability issues we
experienced with the ACTS tool.

TABLE 5: Masking effects in the traditional t-way covering arrays created for Apache.

t option cop config. test time 2-masked 2-masked 3-masked 3-masked t-masked t-masked
count count runs (mins) (%) (%) (%)

2 13 100% 10.30 3893.40 1 35250.30 35.1078% n/a n/a 35250.30 35.1078%
2 17 80% 10.50 3969.00 1 64282.70 35.2942% n/a n/a 64282.70 35.2942%
2 22 60% 12.00 4536.00 1 114041.40 35.8267% n/a n/a 114041.40 35.8267%
2 26 50% 12.30 4649.40 1 164328.10 36.1579% n/a n/a 164328.10 36.1579%
2 33 40% 12.30 4649.40 1 256403.10 34.1431% n/a n/a 256403.10 34.1431%
2 44 30% 14.00 5292.00 1 446331.30 32.6607% n/a n/a 446331.30 32.6607%
2 65 20% 14.10 5329.80 1 862429.60 28.2778% n/a n/a 862429.60 28.2778%
3 13 100% 28.20 10659.60 1 6243.00 6.2178% 132543.00 19.6027% 132543.00 19.6027%
3 17 80% 36.40 13759.20 1 8092.60 4.4432% 277826.00 16.2523% 277826.00 16.2523%
3 22 60% 42.00 15876.00 1 12012.10 3.7737% 601105.90 14.8594% 601105.90 14.8594%
3 26 50% 45.10 17047.80 1 15692.10 3.4528% 994835.10 14.2421% 994835.10 14.2421%
3 33 40% 49.10 18559.80 1 21469.00 2.8589% 2013820.00 13.3879% 2013820.00 13.3879%
3 44 30% 55.90 21130.20 1 29966.60 2.1928% 4467163.60 11.9485% 4467163.60 11.9485%
3 65 20% 62.60 23662.80 2 30498.70 1.0000% 10656026.90 8.4491% 10656026.90 8.4491%
4 13 100% 82.40 31147.20 1 2.00 0.0020% 11465.50 1.6957% 257637.70 8.3280%
4 17 80% 106.10 40105.80 1 3.00 0.0016% 23488.20 1.3740% 871431.50 7.7742%
4 22 60% 117.30 44339.40 1 7.00 0.0022% 27822.80 0.6878% 2218440.90 6.0633%
4 26 50% 137.10 51823.80 1 13.00 0.0029% 22996.70 0.3292% 3156356.20 4.0936%
4 33 40% 151.50 57267.00 4 37.50 0.0050% 47392.50 0.3151% 8403293.50 3.8445%
4 44 30% 158.00 59724.00 22 55.00 0.0040% 88987.00 0.2380% 27070689.00 3.6159%
4 65 20% 222.00 83916.00 458 0.00 0.0000% 189435.00 0.1502% 119258421.00 3.0984%
5 13 100% 199.90 75562.20 1 0.00 0.0000% 71.00 0.0105% 368286.10 3.6275%
5 17 80% 327.80 123908.40 2 0.00 0.0000% 81.00 0.0047% 1542638.10 2.8312%
5 22 60% 386.90 146248.20 5 0.00 0.0000% 276.50 0.0068% 2323385.60 0.9275%
5 26 50% 451.00 170478.00 15 0.00 0.0000% 85.00 0.0012% 12334132.90 1.8954%
5 33 40% 434.00 164052.00 112 0.00 0.0000% 262.50 0.0017% 28769495.00 1.1719%
5 44 30% 526.00 198828.00 1522 0.00 0.0000% 15.00 ≈ 0.0000% 132941257.00 1.1365%

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

O
N

S
O

F
T

W
A

R
E

E
N

G
IN

E
E

R
IN

G
27

TABLE 6: Masking effects in the traditional t-way covering arrays created for MySQL.

t option cop config. test time 2-masked 2-masked 3-masked 3-masked t-masked t-masked
count count runs (mins) (%) (%) (%)

2 12 100% 14.70 4953.90 1 20483.30 23.1900% n/a n/a 20483.30 23.1900%
2 15 80% 14.80 4987.60 1 42482.60 30.1342% n/a n/a 42482.60 30.1342%
2 20 60% 16.20 5459.40 1 57431.70 22.4616% n/a n/a 57431.70 22.4616%
2 24 50% 17.20 5796.40 1 64698.30 17.4051% n/a n/a 64698.30 17.4051%
2 30 40% 19.00 6403.00 1 125062.50 21.3342% n/a n/a 125062.50 21.3342%
2 40 30% 20.20 6807.40 1 199103.70 18.9347% n/a n/a 199103.70 18.9347%
2 60 20% 21.40 7211.80 1 334371.60 14.0106% n/a n/a 334371.60 14.0106%
3 12 100% 36.00 12132.00 1 3386.70 3.8342% 102780.20 17.8012% 102780.20 17.8012%
3 15 80% 37.00 12469.00 1 5566.30 3.9483% 212337.90 17.5885% 212337.90 17.5885%
3 20 60% 42.50 14322.50 1 9352.50 3.6578% 488045.10 16.0072% 488045.10 16.0072%
3 24 50% 46.60 15704.20 1 11600.70 3.1208% 783323.00 14.4284% 783323.00 14.4284%
3 30 40% 52.70 17759.90 1 14439.00 2.4631% 1334232.10 12.2239% 1334232.10 12.2239%
3 40 30% 57.20 19276.40 1 15891.80 1.5113% 2486800.60 9.3473% 2486800.60 9.3473%
3 60 20% 70.70 23825.90 2 25311.70 1.0606% 6906813.50 7.4880% 6906813.50 7.4880%
4 12 100% 108.60 36598.20 1 176.30 0.1996% 11635.70 2.0153% 264428.50 10.4976%
4 15 80% 128.10 43169.70 1 121.60 0.0863% 16098.60 1.3335% 575120.00 8.0912%
4 20 60% 145.10 48898.70 1 147.50 0.0577% 34740.90 1.1395% 1845005.50 7.1912%
4 24 50% 166.20 56009.40 1 96.30 0.0259% 41322.70 0.7611% 3128224.90 5.5248%
4 30 40% 176.67 59536.67 3 87.00 0.0148% 62573.67 0.5733% 6918783.00 4.7149%
4 40 30% 195.00 65715.00 14 121.50 0.0116% 122447.00 0.4602% 19105952.00 3.8903%
4 60 20% 221.50 74645.50 239 111.50 0.0047% 281216.50 0.3049% 79548051.00 3.0286%
5 12 100% 354.30 119399.10 1 0.20 0.0002% 201.50 0.0349% 337347.20 4.3681%
5 15 80% 395.80 133384.60 1 0.00 0.0000% 234.00 0.0194% 1235840.50 4.0557%
5 20 60% 440.00 148280.00 4 0.00 0.0000% 361.00 0.0118% 5499353.40 3.3959%
5 24 50% 470.50 158558.50 9 0.00 0.0000% 334.80 0.0062% 12398160.60 2.7627%
5 30 40% 513.50 173049.50 46 0.00 0.0000% 373.00 0.0034% 33600756.50 2.2144%
5 40 30% 560.50 188888.50 660 0.00 0.0000% 477.50 0.0018% 121823724.00 1.7279%

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

APPENDIX B
COMPARING TEST CASE-AWARE COVERING ARRAYS

Table 7 and 8 provide some statistics about the test case-aware covering arrays generated in the experiments.

TABLE 7: Test case-aware covering arrays created for Apache.

algorithm t option cop time config. test
count (mins) count runs

Algorithm 1 2 13 100% 2 48.60 3743.70
Algorithm 2 2 13 100% 1 25.50 3801.70
Algorithm 3 2 13 100% 2 131.00 3449.60
Algorithm 1 2 17 80% 2 56.80 4492.40
Algorithm 2 2 17 80% 2 27.40 4301.80
Algorithm 3 2 17 80% 2 144.20 3839.80
Algorithm 1 2 22 60% 2 65.20 5098.60
Algorithm 2 2 22 60% 21 28.67 4788.67
Algorithm 3 2 22 60% 2 171.20 4562.80
Algorithm 1 2 26 50% 3 69.40 5514.00
Algorithm 2 2 26 50% 55 30.00 5112.33
Algorithm 3 2 26 50% 2 172.20 4551.60
Algorithm 1 2 33 40% 3 77.40 6234.60
Algorithm 2 2 33 40% 81 32.50 5688.00
Algorithm 3 2 33 40% 3 172.80 4587.80
Algorithm 1 2 44 30% 4 84.40 7211.40
Algorithm 2 2 44 30% 106 34.00 6256.50
Algorithm 3 2 44 30% 3 201.40 5301.20
Algorithm 1 2 65 20% 7 98.40 8060.00
Algorithm 2 2 65 20% 133 37.50 7512.50
Algorithm 3 2 65 20% 4 202.60 5305.80
Algorithm 1 3 13 100% 3 114.30 9512.10
Algorithm 2 3 13 100% 7 65.90 8922.80
Algorithm 3 3 13 100% 2 349.90 8173.00
Algorithm 1 3 17 80% 5 141.40 11655.80
Algorithm 2 3 17 80% 10 78.60 10953.20
Algorithm 3 3 17 80% 4 422.00 9775.40
Algorithm 1 3 22 60% 9 165.40 14376.20
Algorithm 2 3 22 60% 99 86.00 12368.33
Algorithm 3 3 22 60% 6 506.20 11816.00
Algorithm 1 3 26 50% 14 171.80 15917.80
Algorithm 2 3 26 50% 179 91.00 13862.67
Algorithm 3 3 26 50% 9 549.40 12414.00
Algorithm 1 3 33 40% 30 188.60 18447.40
Algorithm 2 3 33 40% 287 103.00 16236.00
Algorithm 3 3 33 40% 18 592.60 13924.40
Algorithm 1 3 44 30% 77 214.00 21087.40
Algorithm 2 3 44 30% 491 113.50 19204.00
Algorithm 3 3 44 30% 45 692.80 15558.20
Algorithm 1 3 65 20% 291 247.00 24459.00
Algorithm 2 3 65 20% 1476 131.00 23269.50
Algorithm 3 3 65 20% 176 812.20 18359.40

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

TABLE 8: Test case-aware covering arrays created for MySQL.

algorithm t option cop time config. test
count (mins) count runs

Algorithm 1 2 12 100% 3 73.10 4617.20
Algorithm 2 2 12 100% 1 42.20 5112.70
Algorithm 3 2 12 100% 3 225.60 3609.10
Algorithm 1 2 15 80% 3 81.00 5100.60
Algorithm 2 2 15 80% 2 43.10 5727.10
Algorithm 3 2 15 80% 3 295.00 4268.20
Algorithm 1 2 20 60% 4 91.60 5599.80
Algorithm 2 2 20 60% 17 46.33 6351.00
Algorithm 3 2 20 60% 3 352.20 4825.40
Algorithm 1 2 24 50% 5 96.80 6008.80
Algorithm 2 2 24 50% 49 44.33 6721.00
Algorithm 3 2 24 50% 4 365.40 5059.40
Algorithm 1 2 30 40% 6 103.40 6531.20
Algorithm 2 2 30 40% 83 46.00 7249.33
Algorithm 3 2 30 40% 4 391.60 5411.20
Algorithm 1 2 40 30% 8 112.40 7254.60
Algorithm 2 2 40 30% 108 49.67 7773.67
Algorithm 3 2 40 30% 5 416.40 5577.80
Algorithm 1 2 60 20% 14 120.00 8010.40
Algorithm 2 2 60 20% 140 50.50 8824.00
Algorithm 3 2 60 20% 8 453.40 5918.40
Algorithm 1 3 12 100% 5 203.90 12419.00
Algorithm 2 3 12 100% 17 130.00 14726.33
Algorithm 3 3 12 100% 4 576.30 10392.50
Algorithm 1 3 15 80% 9 230.20 14428.60
Algorithm 2 3 15 80% 66 144.40 15962.40
Algorithm 3 3 15 80% 6 873.00 11831.20
Algorithm 1 3 20 60% 18 260.80 16954.20
Algorithm 2 3 20 60% 327 152.00 17940.33
Algorithm 3 3 20 60% 10 1068.00 13799.60
Algorithm 1 3 24 50% 31 282.60 18198.80
Algorithm 2 3 24 50% 665 155.67 20082.00
Algorithm 3 3 24 50% 16 1173.40 14772.60
Algorithm 1 3 30 40% 64 308.40 20027.40
Algorithm 2 3 30 40% 1504 166.67 22850.33
Algorithm 3 3 30 40% 28 1299.20 16119.00
Algorithm 1 3 40 30% 167 342.40 22785.40
Algorithm 2 3 40 30% 4599 181.00 26062.00
Algorithm 3 3 40 30% 71 1464.60 18253.40
Algorithm 1 3 60 20% 621 384.67 25584.67
Algorithm 2 3 60 20% 25277 195.00 30169.00
Algorithm 3 3 60 20% 271 1713.00 21087.00

